
The electron-light Hamilton operator reads in second quantization

Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω)

that is determined by 
microscopic polarization

Bloch equation in the limit of linear optics (10,0) CNT

Summary lecture IX



VI. Optical properties of solids

1. Electron-light interaction

2. Absorption spectra 

3. Differential transmission spectra

4. Statistics of light

Chapter VI



Learning outcomes lecture X

Recognize the importance of pump-probe experiments for revealing 
carrier dynamics

Explain the photon statistics for different light sources



3.  Differential transmission spectra

Differential transmission spectra

• Bloch equations provide microscopic access to carrier dynamics, however 
it is difficult to directly measure the carrier occupation

• In pump-probe experiments, differential transmission spectra (DTS) are 
measured, where a pump pulse creates a non-equilibrium distribution 
and a weaker probe pulse measures the dynamics of excited carriers

• Exploit the relation  with the 
intensity and assume that the 
absorption coefficient  α is relatively small



3.  Differential transmission spectra

Differential transmission spectra

• Assuming a delta-shaped probe pulse and exploiting the Bloch 
equations, we obtain for the differential transmission

with the optical matrix element               in polar coordinates and with 
where                        is the carrier 

occupation before the pump pulse and                the pump-induced 
carrier occupation (momentum k0 corresponds to the pumped state)

• The crucial quantity is the carrier occupation 



3. Differential transmission spectra

Carrier thermalization

Significant relaxation takes place already during the excitation pulse

Coulomb-induced carrier-carrier scattering is the dominant channel

Thermalized Fermi distribution reached within the first 50 fs



3. Differential transmission spectra

Carrier cooling takes place on a picosecond time scale

Optical phonons (in particular ΓLO, ΓTO and K phonons) are more 
efficient than acoustic phonons

Carrier cooling



Pump-probe experiment in the infrared

Pump-probe-experiment measuring 
differential transmission in graphene 

Excitation energy is 1.5 eV, temporal 
resolution is 10 fs

Initial increase of transmission is due 
to the absorption bleaching

Following decay is characterized by 
two time constants:

τ1 = 140 fs;  τ2 = 0.8 ps
Experiments performed by Thomas 
Elsaesser (Max-Born Institut, Berlin)

3. Differential transmission spectra



3. Differential transmission spectra

Experiment-theory comparison

Theory is in good agreement with experiment: τ1 corresponds to carrier 
thermalization, τ2 describes carrier cooling

two decay timesτ1  = 140 fs, τ2 = 0.8 ps τ1  = 104 fs, τ2 = 0.7 ps

experiment theory



3.  Differential transmission spectra

Pump-probe experiment close to the Dirac point

Transmission in the vicinity of Dirac point and below the energy of
optical phonons (~ 200 meV)           acoustic phonons dominant?    

Relaxation dynamics is slowed down (5 ps at 245 meV, 25 ps at 30 meV) 

experiments performed by Manfred Helm (Helmholtz-Zentrum Dresden)



Experiment-theory comparison

Theory in good agreement with experiment (slowed-down dynamics):

Optical phonons remain the dominant relaxation channel, since 
carrier-carrier scattering leads to a spectrally broad distribution 

3. Differential transmission spectra

experiment theory



Anisotropic carrier dynamics

Anisotropy of the carrier-light 
coupling element

Scatering across the
Dirac cone reduces
anisotropy

Carrier distribution
becomes entirely isotropic within
the first 50 fs

3.  Differential transmission spectra



Microscopic mechanism

3.  Differential transmission spectra



Polarization-dependent pump-probe experiment

Polarization-dependent high-resolution pump-probe experiments 
performed by Manfred Helm (Helmholtz-Zentrum Dresden)

Variation of the relative polarization of the pump and the probe pulse

experiment

3.  Differential transmission spectra



Experiment-theory comparison

Nano Lett. 14, 1504 (2014)

Theoretical prediction is in excellent agreement with experiment:

Anisotropic differential transmission can be observed
within the first 100 fs

experiment theory

3.  Differential transmission spectra



Anisotropy close to the Dirac point

Optical excitation below the optical phonon energy of 200 meV strongly 
suppress carrier-phonon scattering

Isotropic carrier distribution is reached via carrier-carrier scattering 
on a much smaller picosecond time scale

3.  Differential transmission spectra



Carrier multiplication

Carrier density increases during 
the excitation pulse

Auger scattering leads to carrier 
multiplication (CM)

Carrier-phonon scattering 
reduces CM on a ps time scale

3.  Differential transmission spectra



Experiment performed by Daniel 
Neumaier andHeinrich Kurz, 
AMO Aachen

Extract temporal evolution of the 
carrier density from multi-color 
pump-probe measurements  and 
assume a quick thermalization

Estimate the optically injected
carrier density

Carrier multiplication in        
dependence of pump fluence

High-resolution multi-color pump-probe experiment

3.  Differential transmission spectra



Experiment-theory comparison

Theoretical prediction is in 
excellent agreement with 
experiment:

Appearance of long-lived    
CM in the weak  
excitation regime

Distinct fluence 
dependence found both 
in theory and experiment

3.  Differential transmission spectra



Quantization of light

Light consists of electromagnetic waves with the energy

corresponds to the energy of uncoupled harmonic oscillators

Quantization of light through annihilation and creation operators

They fulfil the fundamental commutation relations for bosons

4.  Statistics of light



Hamilton operator for photons reads

Eigen states are the Fock states

Eigen energies are quantized

with the photon number n and the zero-point energy

Photons

4.  Statistics of light



Vacuum fluctuations

Zero-point energy corresponds to vacuum fluctuations and results
from the Heisenberg uncertainty principle

Vacuum fluctuations give rise to non-classical phenomena

spontaneous emission (light emission without excitation) 

Lamb-Shift (Energy shift in hydrogen atom)

4.  Statistics of light

Classical oscillator    quantum mechanical oscillator

Position exact Position not 
known

Occupation 
probability



R. Hanbury Brown and R. Twiss,  
Nature 178, 1046 (1956)

Hanbury Brown – Twiss Experiment

          

                    

         
         

1956: Hanbury Brown und Twiss measure correlations between starlight
intentisities with two separate detectors (star radius determination)

The signal is proportional to where is the intensity 
measured at detector 1

characteristic photon statistics for different light sources

4.  Statistics of light

Hanbury
Brown Twiss 
experiment

Light source

detector 1

detector 2beam splitter

correlator



For coherent light with constant
frequency, phase, and amplitude, the
signal at both detectors is uncorrelated

Photon statistics corresponds to the
Poisson distribution

probability to measure photons
at an averaged photon number

For large       goes into a Gaussian distribution

Standard deviation is

Poisson distribution

M. Fox, Quantum Optics, Oxford University Press (2006)

4.  Statistics of light



Super-Poisson distribution

Thermal light shows intensity fluctuations

Super-Poisson distribution

Thermal light corresponds to Bose-
Einstein distribution

with

Thermal light is characterized by a broader distribution compared to
coherent light (Poisson distribution)

Bose-Einstein distribution has a  standard deviation of

M. Fox, Quantum Optics

4.  Statistics of light



Sub-Poisson distribution

Sub-Poisson distribution with

is narrower compared to Poisson
(less fluctuations thancoherent light)

non-classical light

Fock states with correspond
to purest non-classical light

Detection of such light is a proof of quantum
nature of light, but difficult to measure, since
all losses destroy the Poisson statistics

M. Fox, Quantum Optics

4.  Statistics of light



Second-order correlation function g(2)

with intensities and
measured at detectors 1 and 2 with a 
time delay

g(2) is a measure for the probability to detect a photon at the detector 2, 
after a photon has already been measured at the detector 1  

The correlation vanishes for τ >> τc with the coherence time τc , since on 
this time scale the intensity fluctuations become small

4.  Statistics of light

          

                    

         
         

Hanbury
Brown Twiss 
experiment

Light source

detector 1

detector 2beam splitter

correlator



Photon statistics

Bunched

uncorrelated

Anti-bunched

A. Carmele (TU Berlin)

Measurements at detectors are
uncorrelated

coherent light

Positive correlation between the
measurements (bunching)

thermal light

Negative correlation between the
measurements (anti-bunching)

non-classisical light

4.  Statistics of light



Photon statistics

bunching

anti-bunching

forphys.de

Classification of light via g(2) – function (quantitative determination of
photon correlation in different light sources)

Evaluaation at τ = 0 sufficient, since here the correlation the strongest

uncorrelated

4.  Statistics of light

time

time

time

Non-classical light

coherent light

thermal light

photon order in



Photon statistics via g(2)

Coherent light
Poisson distribution
Example: laser

Thermal light
Super-Poisson distribution
Exampel: sun light

Non-classical light
Sub-Poisson distribution
Example: Fock state

bunching

anti-bunching

uncorrelated

4.  Statistics of light



Photon statistics at one sight

Coherent light
(e.g. laser light)

4.  Statistics of light

Bunched

uncorrelated

Anti-bunched

Poisson

Super-Poisson

Sub-Poisson

thermal light
(e.g. sun light)

Non-classical light
(e.g. Fock states)



Learning outcomes lecture X

Recognize the importance of pump-probe experiments for revealing 
carrier dynamics

Explain the photon statistics for different light sources



I. Introduction
1. Main concepts
2. Theoretical approaches
3. Born-Oppenheimer approximation

II. Electronic properties of solids
1. Bloch theorem
2. Electronic band structure 
3. Density of states

III. Electron-electron interaction
1. Coulomb interaction
2. Second quantization
3. Jellium & Hubbard models
4. Hartree-Fock approximation
5. Screening
6. Plasmons
7. Excitons

Contents: FKA091 Part I 



IV. Density matrix theory
1. Statistic operator
2. Bloch equations
3. Boltzmann equation

V.    Density functional theory (guest lecture by Paul Erhart)

VI. Optical properties of solids
1. Electron-light interaction
2. Absorption spectra 
3. Differential transmission spectra
4. Statistics of light

Contents: FKA091 Part I 



Learning Outcomes

Recognize the main concepts of condensed matter physics including 
introduction of quasi-particles (such as excitons, plasmons)

Realize the importance of Born-Oppenheimer, Hartree-Fock, and
Markov approximations

Explain the Bloch theorem and calculate the electronic band structure

Define Hamilton operator in the formalism of second quantization

Realize the potential of density matrix and density functional theory

Explain the semiconductor Bloch and Boltzmann equations

Recognize the optical finger print of nanomaterials



Recap chapter I

Introduction of non-interacting quasi-particles (eg
excitons) is an important concept of condensed matter 
physics to deal with many-particle systems

Main theoretical approaches include density matrix 
theory (DMT) with semiconductor Bloch and Boltzmann 
scattering equations and density functional theory (DFT) 
with the central Hohenberg-Kohn theorem

In Born-Oppenheimer approximation, electron and ion 
dynamics is separated based on the much larger mass and 
slower motion of ions

Δ

exciton

DMT

Born-Oppenheimer approximation



Recap chapter II

Bloch theorem: eigen functions of an electron in a 
periodic potential have the shape of plane waves 
modulated with a periodic Bloch factor

Eigen energies are expressed in material-specific 
electronic band structure that can be calculated in 
effective mass or tight-binding approximation

Graphene exhibits a remarkable linear and gapless 
electronic band structure

Bloch theorem



Recap chapter III

Electron-electron interaction is driven by the 
repulsive Coulomb potential

Second quantization avoids (anti-)symmetrisation 
of many-particle states and mirrors the physics in
fundamental commutation relations

1 4

2 3

q

k, s k+q, s

k’-q, s’k’, s’

Second quantization



Recap chapter III

Jellium model assumes interacting electrons in a smeared potential of ions 
(no lattice structure considered)

Hubbard model assumes strong lattice potential and tightly bound electrons

Jellium/Hubbard model



Recap chapter III

Hartree-Fock approximation introduces an effective one-particle problem by 
considering a single particle in a mean-field potential generated by all other 
particles

Most important approximation is the factorization of 2-particle into single-
particle expectation values

Hartree term
(direct term)

Fock term
(exchange term)

Hartree-Fock approximation



Recap chapter III

Lindhard equation describes the screening of the Coulomb
interaction due to the presence of many particles

In the static and long-wavelength limit we find

with the screening length

Screening removes  the divergence of  Coulomb potential 
for

-+
+

+
+ -+

+
+
+

Momentum q

C
ou

lo
m

b 
po

te
nt
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l

Screening



Recap chapter III

Besides a continuum of electron-hole excitations, 
there is a collective oscillation of the entire electron 
plasma with the characteristic plasma frequency

Excitonic binding energy reads

with the reduced mass
and the dielectric background constant

Δ

Plasmons and excitons



Recap chapter IV

Statistical operator (density matrix) characterizes 
quantum systems in a mixed state

and builds the expectation value of observables

In the limiting case of one-particle systems, the diagonal (non-diagonal) 
elements of the statistical operator correspond to the carrier occupation 
probability (microscopic polarization)

Carrier occupation

Microscopic polarization

Statistical operator (density matrix)



Recap chapter IV

To tackle the many-particle-induced hierarchy problem, we perform the 
correlation expansion followed by a systematic truncation resulting in
semiconductor Bloch equations on Hartree-Fock level

Semiconductor Bloch equations



Recap chapter IV

Boltzmann scattering equation reads in second-order Born-Markov 
approximation

and describes time- and momentum-resolved electron 
scattering dynamics in non-equilibrium

Markov approximation neglects quantum-mechanical 
memory effects stemming from energy-time uncertainty 

In graphene, carrier multiplication can take place due to 
efficient Auger scattering channels

Boltzmann scattering equation



Recap chapter IV

Optically generated anisotropic non-equilibrium carrier distribution

Carrier-phonon scattering accounts for isotropy, while carrier-carrier 
scattering leads to a spectrally broad thermalized distribution in the first 50 fs

Carrier-phonon scattering gives rise to carrier cooling on ps time scale

thermalization &
isotropyoptical excitation

cooling

Equilibrium

50 fs
1 ps

Carrier dynamics in graphene



Density functional theory aims at the calculation of the quantum 
mechanic ground state                                      of a many-particle system

Ground state can be unambiguously determined from the electron 
density                                         (Hohenberg-Kohn Theorem)

full Schrödinger equation with N3 degrees of freedom does not 
need to be solved

• Electron density is solved through Kohn-Sham equations assuming an 
effective one-particle Hamilton operator

Recap chapter V

Density functional theory



Recap chapter VI

The electron-light Hamilton operator reads in second quantization

Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω)

that is determined by 
microscopic polarization

In pump-probe experiments, differential transmission
is measured, where pump pulse creates non-equilibrium
and weaker probe pulse measures the carrier dynamics

Electron-light interaction



Graphene Bloch equation in the limit of linear optics

Electron-electron interaction leads 
to a renormalization of the energy 

and to a renormalization of the 
Rabi frequency (excitons)

Recap chapter VI

(10,0) CNT
E11 transition

0.75 eV

Semiconductor Bloch equation (linear optics)



Recap chapter VI

Coherent light
(e.g. laser light)

Bunched

uncorrelated

Anti-bunched

Poisson

Super-Poisson

Sub-Poisson

thermal light
(e.g. sun light)

non-classical light
(e.g. Fock states)

Photon statistics



Learning Outcomes

Recognize the main concepts of condensed matter physics including 
introduction of quasi-particles (such as excitons, plasmons)

Realize the importance of Born-Oppenheimer, Hartree-Fock, and
Markov approximations

Explain the Bloch theorem and calculate the electronic band structure

Define Hamilton operator in the formalism of second quantization

Realize the potential of density matrix and density functional theory

Explain the semiconductor Bloch and Boltzmann equations

Recognize the optical finger print of nanomaterials
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