
Circularly and elliptically 
polarized waves

•  When there is a  phase 
difference between orthogonal 
polarization vectors in a light 
wave their vector sum E-field 
will be ellipically or circularly 
polarized
–  The orthogonal vectors must be 

90° out of phase and have equal 
amplitudes for the vector sum to be 
circularly polarized!

–  Other phase differences or relative 
amplitudes produce ellliptic 
polarization, of which linear 
polarization is a limiting case

E is vector sum of Ex and Ey.  Tip of E-
vector will trace out helix in z at given time
or circle in x-y plane at a given z
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More explanation of circular polarization

k parallel to thumb
Left/right handedness determined by poin-
ting  left or right thumb in wave propag-
ation direction, and matching curl of one's 
fingers to direction of rotation of field at one 
z.  Convention of non-optics physics com-
munity (Plasma physics, high energy, etc)

E
k

Looking from other side, �
k points out of paper,  thumb 
still || to k, but now counter-
clockwise�
STILL RT CIRC Polarized. 

k antiparallel to thumb
Alternative convention, — left/right handednes 
determined by pointing  left/right thumb toward 
−k, and matching curl of fingers to rotation  of E   
Many optics textbooks use this second 
convention 

E

k

E at different �
times at one pt

For k out of paper, 
clockwise = RT CIRC 
Polarized

Eqns. describing t-dependence  for thumb  ||  to k
Ex z,t( ) = Acos kz−ωt +ϕ( ),   
Ey z,t( ) = −Asin kz−ωt +ϕ( ),  
Ex

2 +Ey
2 = A2  for all z, t.

At z such that kz+ϕ = 0,   

Ex ωt( ) = Acosωt,   Ey ωt( ) = Asinωt
For  k into paper,  clockwise E(t)
at one z = RT CIRC Polarized

x
E

k
x

y

E at different pts. along ray at one time

E E
E E E

k
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Conventions for circularly polarized light  
Two different conventions 

•  Summary of conventions

•  Both conventions in physics 
(Jackson, EM Theory) ⇒ 
–  Parallel convention is con-�

sistent with positive helicity

thumb  || k           RightCP   Ex z,t( ) = Acos kz−ωt( ),  Ey z,t( ) = −Asin kz−ωt( )
thumb  || k           LeftCP      Ex z,t( ) = Acos kz−ωt( ),  Ey z,t( ) = +Asin kz−ωt( )   
thumb anti- || k    RightCP    Ex z,t( ) = Acos kz−ωt( ),  Ey z,t( ) = +Asin kz−ωt( )
thumb anti- || k    LeftCP      Ex z,t( ) = Acos kz−ωt( ),  Ey z,t( ) = −Asin kz−ωt( )
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Screw sense of spatial helix to parallel k when use 
antiparallel convention for finding rotation in time  

k antiparallel to thumb  ⇒ t-dependence

E
k

E at different �
times at one pt

For k out of paper, 
clockwise = RIGHT 
CIRC Polarized

k parallel to thumb ⇒ t-dependence

For k into paper,�
clockwise = RIGHT �
CIRC Polarized

x
E

k

E at different �
times at one pt

ψ = kz − ωt
ParametricPlot3D[{Cos[ψ], Sin[ψ], ψ/2π}, {θ,0,4π}]
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k
k is in 

direction
of helix 

advancement 
with correct 

RH rule

kz

Thumb anti - parallel to k:  
Eqns. for t-dependence
Ex z,t( ) = Acos kz−ωt +ϕ( ),   
Ey z,t( ) = Asin kz−ωt +ϕ( ),    At, kz+ϕ = 0,   

Ex ωt( ) = Acosωt,   Ey ωt( ) = −Asinωt

ParametricPlot[{Cos[θ ], -Sin[θ ]]}, {θ , 0, 6}]
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Elliptically polarized light

•  Two ways to make 
elliptically polarized light
–  Let Ex and Ey have different 

amplitudes

–  Let phase difference 
between equal-amplitude   
Ex and Ey be different from 
90° (next slide)

thumb  || k           RightEP   Ex z,t( ) = Ax cos kz−ωt( ),  Ey z,t( ) = −Ay sin kz−ωt( )
thumb  || k           LeftEP      Ex z,t( ) = Ax cos kz−ωt( ),  Ey z,t( ) = +Ay sin kz−ωt( )   
thumb anti- || k    RightEP    Ex z,t( ) = Ax cos kz−ωt( ),  Ey z,t( ) = +Ay sin kz−ωt( )
thumb anti- || k    LeftEP      Ex z,t( ) = Ax cos kz−ωt( ),  Ey z,t( ) = −Ay sin kz−ωt( )

                                                  Ex

Ax

⎛

⎝
⎜

⎞

⎠
⎟

2

+
Ey

Ay

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

=1   Eqn of ellipse
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Phase difference between two orthogonal equal-amplitude 
vector components of E-field  determine kind of polarization
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Circularly polarized light
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Summary of linear, circular and 
elliptic polarization

•  Can understand all of 
these polarizations as well 
as unpolarized light by 
thinking of the electric 
field vector as the sum of 
two orthogonal component 
vectors.
–  Type of polarization 

depends on relative 
amplitude and phase of 
components 
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Birefringence
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Polarization in birefringent crystals 
(half and quarter wave plates)

•  Different indices of 
refraction depending on 
direction of wave electric 
field vector with respect to 
crystal axis

•  Birefringent materials
•  Anisotropic (e.g., stressed)
•  Can produce two shifted images
•  Can create circular or elliptic 

polarization
•  Can rotate plane of polarization of 

light wave
•  Can display different colors
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Anisotropic media have different 
properties in different direction 

•  Calcite

•  Free electrons in a DC 
magnetic field, B0
–  Plasma in B-field
–  Thin metal film in B-field

Structured
but isotropic

Anisotropic Unstructured
and isotropic

B0
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Birefringent anisotropic media have a 
special direction called the optic axis

•  Normally incident monochromatic 
polarized light with k || optic axis has 
same index of refraction, n, for both 
components of E

•  Normally incident light with k ⊥ optic 
axis has different n for wave with 
component of E || optic axis (E|| = 
Eextraordinary) and wave with component  
⊥ optic axis (E⊥ = Eordinary)
–  next = ckext/ω  ≠  nord = ckord/ω
–  Different wavenumbers, kext ≠ kord 
–  Different wavelengths, λext  ≠  λord

–  Different phase velocities,�
ω/kext ≠ ω/kord

–  Slow versus fast wave

x

y E

k

Optical axis along z
Propagation along z
Ex and Ey waves
see same index�
of refraction

x
y E

k

Optical axis along z
Propagation along x
Ez ( = E||) waves and �
Ey ( = E⊥) waves
see different
indices of refraction

Optical axis
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Double image of object viewed  �
through birefringent crystal

•  Two images
•  Wolfram Demo

Wikipedia Theory

z

x

ordinary wave �
(E polarized along y)

extraordinary wave �
(E polarized in x-z plane)

optic axis

çimagesì
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Double image of object viewed  �
through birefringent crystal

•  Two images

•  Wolfram Demo

Unpolarized

Unpolarized light 
ray from dot enters

crystal

optic axis

x-wave bends towards normal
o-wave bends more towards normal

extraordinary-wave bends away from normal
ordinary wave bends more away from normal
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Theory of  
EM waves in 
an anisotropic 
birefractive 

media

 

Wave eqn: k2 −
ω 2

c2

⎛

⎝
⎜

⎞

⎠
⎟E−kk·E = 4π iωJ.  J = oscillating dipole current in medium

Isotropic medium, J =σE,  ε =1+ 4π iσ
ω

,  k2E−kk·E =
ω 2ε
c2 E =

ω 2n2

c2 E

Anisotropic medium, J = !σ ·E,  !ε =1+
4π i !σ
ω

,   k2E−kk·E =
ω 2

c2 !ε ·E

Take optic axis in z-direction, !ε =

nx
2 0 0

0 ny
2 0

0 0 nz
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,  where, nx
2 = ny

2 = no
2,  nz

2 = ne
2

Assume k y = 0 :  Propagation (k) in x-z plane.  Wave eqn becomes :

kz
2 −ω 2no

2 / c2 0 −kxkz
0 k2 −ω 2no

2 / c2 0

−kxkz 0 kx
2 −ω 2ne

2 / c2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

·
Ex

Ey

Ez

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
= 0

Ordinary wave :   E = E y ≠ 0,   k
2

no
2 =

ω 2

c2   Index refraction = no

Extraordinary wave :  E y = 0,  − ω 2 / c2( ) kx2no2 + kz2ne2 −ω 2ne
2no

2 / c2( ) = 0,  or,

E in x-z plane, kx
2

ne
2 +

kz
2

no
2 =

ω 2

c2  Effective index of refraction, neff  between ne  and n0

depending on angle, θ , between k and z-axis: 1
neff

2 =
ω 2

k2c2 =  sin2θ
ne

2 +
cos2θ
no

2
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