Circularly and elliptically polarized waves

- When there is a *phase difference* between orthogonal polarization vectors in a light wave their vector sum **E-field** will be ellipically or circularly polarized
 - The orthogonal vectors must be 90° out of phase and have equal amplitudes for the vector sum to be *circularly* polarized!
 - Other phase differences or relative amplitudes produce *elliptic* polarization, of which *linear* polarization is a limiting case

E is vector sum of $\mathbf{E}_{\mathbf{x}}$ and $\mathbf{E}_{\mathbf{y}}$. Tip of **E**-vector will trace out helix in z at given time or circle in x-y plane at a given z

More explanation of circular polarization

<u>k parallel to thumb</u>

Left/right handedness determined by **pointing left or right thumb in wave propagation direction**, and matching curl of one's fingers to direction of rotation of field at one z. Convention of non-optics physics community (Plasma physics, high energy, etc)

For k into paper, clockwise E(t) at one z **= RT** CIRC Polarized

E at different pts. along ray at one time

Looking from other side, k points out of paper, thumb still || to k, but now counterclockwise STILL RT CIRC Polarized.

Eqns. describing t-dependence for **thumb** || to k

$$E_x(z,t) = A\cos(kz - \omega t + \varphi),$$

$$E_y(z,t) = -A\sin(kz - \omega t + \varphi),$$

$$E_x^2 + E_y^2 = A^2 \text{ for all } z, t.$$

At z such that $kz + \varphi = 0$,

$$E_x(\omega t) = A\cos\omega t, \ E_y(\omega t) = A\sin\omega t$$

cantiparallel to thumb

Alternative convention, - left/right handednes determined by pointing left/right thumb toward -k, and matching curl of fingers to rotation of E Many optics textbooks use this second

convention

E at *different times* at one pt

For k out of paper, clockwise = RT CIRC Polarized

Conventions for circularly polarized light <u>Two different conventions</u>

• Summary of conventions

thumb k	Right C
thumb k	LeftCP
thumb anti- k	RightC
thumb anti- k	LeftCP

Parallel convention is consistent with positive helicity

$$E_{x}(z,t) = A\cos(kz - \omega t), E_{y}(z,t) = -A\sin(kz - \omega t)$$
$$E_{x}(z,t) = A\cos(kz - \omega t), E_{y}(z,t) = +A\sin(kz - \omega t)$$
$$E_{x}(z,t) = A\cos(kz - \omega t), E_{y}(z,t) = +A\sin(kz - \omega t)$$
$$E_{x}(z,t) = A\cos(kz - \omega t), E_{y}(z,t) = -A\sin(kz - \omega t)$$

$$\mathbf{E}(z,t) = \operatorname{Re}\left[E_{x}e^{i(kz-\omega t)}\right]\hat{\mathbf{x}} + \operatorname{Re}\left[e^{i\pi/2}E_{x}e^{i(kz-\omega t)}\right]\hat{\mathbf{y}}$$

= $E_{x}\cos(kz-\omega t)\hat{\mathbf{x}} + E_{x}\cos(kz-\omega t+\pi/2)\hat{\mathbf{y}}$ (left circular) (6.3)
= $E_{x}\left[\cos(kz-\omega t)\hat{\mathbf{x}} - \sin(kz-\omega t)\hat{\mathbf{y}}\right]$

$$E_{x}(\mathbf{x}, t) = E_{0} \cos (kz - \omega t)$$

$$E_{y}(\mathbf{x}, t) = \bigoplus E_{0} \sin (kz - \omega t)$$
(7.21)

At a fixed point in space, the fields (7.21) are such that the electric vector is constant in magnitude, but sweeps around in a circle at a frequency ω , as shown in Fig. 7.3. For the upper sign ($\epsilon_1 + i\epsilon_2$), the rotation is counterclockwise when the observer is facing into the oncoming wave. This wave is called *left circularly polarized* in optics. In the terminology of modern physics, however, such a wave is said to have *positive helicity*. The latter description seems more appropriate because such a wave has a positive projection of angular momentum on the z axis (see Problem 6.12). For the lower sign ($\epsilon_1 - i\epsilon_2$), the rotation of E is clockwise when looking into

Screw sense of spatial helix to parallel **k** when use *antiparallel* convention for finding rotation in time

Elliptically polarized light

- Two ways to make elliptically polarized light
 - Let E_x and E_y have different amplitudes

thumb || kRightEPthumb || kLeftEPthumb anti-|| kRightEPthumb anti-|| kLeftEP

Let phase difference
 between equal-amplitude
 E_x and E_y be different from 90° (next slide)

$$E_{x}(z,t) = A_{x}\cos(kz - \omega t), E_{y}(z,t) = -A_{y}\sin(kz - \omega t)$$
$$E_{x}(z,t) = A_{x}\cos(kz - \omega t), E_{y}(z,t) = +A_{y}\sin(kz - \omega t)$$
$$E_{x}(z,t) = A_{x}\cos(kz - \omega t), E_{y}(z,t) = +A_{y}\sin(kz - \omega t)$$
$$E_{x}(z,t) = A_{x}\cos(kz - \omega t), E_{y}(z,t) = -A_{y}\sin(kz - \omega t)$$

$$\left(\frac{E_x}{A_x}\right)^2 + \left(\frac{E_y}{A_y}\right)^2 = 1 \quad \text{Eqn of ellipse}$$

Phase **difference** between two orthogonal equal-amplitude vector components of **E**-field determine kind of polarization

Fig. 33–2. Superposition of x-vibrations and y-vibrations with equal amplitudes but various relative phases. The components E_x and E_y are expressed in both real and complex notations.

Circularly polarized light

LHCP LEFT HAND CIRCULAR POLARIZATION

RHCP RIGHT HAND CIRCULAR POLARIZATION

HORIZONTAL LINEAR POLARIZATION

VERTICAL LINEAR POLARIZATION

Summary of linear, circular and elliptic polarization

- Can understand all of these polarizations as well as unpolarized light by thinking of the electric field vector as the *sum of two orthogonal component vectors*.
 - Type of polarization depends on relative amplitude and phase of components

Linear Polarization

- Plane EM wave linearly polarized
- Trace of electric field vector is linear
- Also called plane-polarized light
- Convention is to refer to the electric field vector

Circular Polarization

- Two perpendicular electric field components of equal amplitude with 90° difference in phase
- Electric vector rotates clockwise

 Ieft-hand circular polarization

Elliptical Polarization

- Two perpendicular eletric field components not in phase, either with different amplitudes and/or not 90° out of phase
- Electric vector rotates counterclockwise

 right-hand elliptical polarization
- Electric vector rotates clockwise → left-hand elliptical polarization
- The most general state of complete polarization is elliptical

Birefringence

Polarization in birefringent crystals (half and quarter wave plates)

- Different indices of refraction depending on direction of wave electric field vector with respect to crystal axis
- Birefringent materials
 - Anisotropic (e.g., stressed)
 - Can produce two shifted images
 - Can create circular or elliptic polarization
 - Can rotate plane of polarization of light wave
 - Can display different colors

Anisotropic media have different properties in different direction

• Calcite

- Free electrons in a DC magnetic field, B₀
 - Plasma in B-field
 - Thin metal film in B-field

Birefringent anisotropic media have a special direction called the optic axis

- Normally incident monochromatic polarized light with k II optic axis has same index of refraction, n, for both components of E
- Normally incident light with $\mathbf{k} \perp$ optic axis has different n for wave with component of $\mathbf{E} \parallel$ optic axis ($\mathbf{E}_{\parallel} = \mathbf{E}_{\text{extraordinary}}$) and wave with component \perp optic axis ($\mathbf{E}_{\perp} = \mathbf{E}_{\text{ordinary}}$)

$$- n_{ext} = ck_{ext}/\omega \neq n_{ord} = ck_{ord}/\omega$$

- Different wavenumbers, $k_{ext} \neq k_{ord}$
- Different wavelengths, $\lambda_{ext} \neq \lambda_{ord}$
- Different phase velocities, $\omega/k_{ext} \neq \omega/k_{ord}$
- Slow versus fast wave

Optical axis along z Propagation along z E_x and E_y waves see same index of refraction

Optical axis along z Propagation along x $E_z (= E_{\parallel})$ waves and $E_y (= E_{\perp})$ waves see **different** indices of refraction

Double image of object viewed through birefringent crystal

• <u>Two images</u>

• <u>Wolfram Demo</u>

<u>Wikipedia Theory</u>

Double image of object viewed through birefringent crystal

• <u>Two images</u>

Theory of EM waves in an <u>anisotropic</u> birefractive media

Wave eqn: $\left(k^2 - \frac{\omega^2}{c^2}\right)\mathbf{E} - \mathbf{k}\mathbf{k}\cdot\mathbf{E} = 4\pi i\omega\mathbf{J}$. \mathbf{J} = oscillating dipole current in medium Isotropic medium, $\mathbf{J} = \sigma \mathbf{E}$, $\varepsilon = 1 + \frac{4\pi i \sigma}{\omega}$, $k^2 \mathbf{E} - \mathbf{k} \mathbf{k} \cdot \mathbf{E} = \frac{\omega^2 \varepsilon}{c^2} \mathbf{E} = \frac{\omega^2 n^2}{c^2} \mathbf{E}$ Anisotropic medium, $\mathbf{J} = \boldsymbol{\sigma} \cdot \mathbf{E}, \quad \boldsymbol{\varepsilon} = 1 + \frac{4\pi i \boldsymbol{\sigma}}{\omega}, \quad k^2 \mathbf{E} - \mathbf{k} \mathbf{k} \cdot \mathbf{E} = \frac{\omega^2}{c^2} \boldsymbol{\varepsilon} \cdot \mathbf{E}$ Take **optic axis** in z-direction, $\underline{\varepsilon} = \begin{bmatrix} n_x^2 & 0 & 0 \\ 0 & n_y^2 & 0 \\ 0 & 0 & n_z^2 \end{bmatrix}$, where, $n_x^2 = n_y^2 = n_o^2$, $n_z^2 = n_e^2$ Assume $k_y = 0$: Propagation (**k**) in x-z plane. Wave eqn becomes : $\begin{pmatrix} k_z^2 - \omega^2 n_o^2 / c^2 & 0 & -k_x k_z \\ 0 & k^2 - \omega^2 n_o^2 / c^2 & 0 \\ -k_x k_z & 0 & k_x^2 - \omega^2 n_e^2 / c^2 \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0$ **Ordinary wave:** $\mathbf{E} = \mathbf{E}_y \neq 0, \quad \frac{k^2}{n^2} = \frac{\omega^2}{c^2}$ Index refraction = \mathbf{n}_o **Extraordinary wave :** $E_y = 0$, $-(\omega^2 / c^2)(k_x^2 n_o^2 + k_z^2 n_e^2 - \omega^2 n_e^2 n_o^2 / c^2) = 0$, or, E in x-z plane, $\frac{k_x^2}{n^2} + \frac{k_z^2}{n^2} = \frac{\omega^2}{c^2}$ Effective index of refraction, n_{eff} between n_e and n_0 depending on angle, θ , between **k** and z-axis: $\left| \frac{1}{n_{ex}^2} - \frac{\omega^2}{k^2 c^2} - \frac{\sin^2 \theta}{n_{ex}^2} + \frac{\cos^2 \theta}{n_{ex}^2} \right|$