Circularly and elliptically
polarized waves

e When there i1s a phase
difference between orthogonal
polarization vectors in a light
wave their vector sum E-field
will be ellipically or circularly

polarized

— The orthogonal vectors must be
90° out of phase and have equal
amplitudes for the vector sum to be
circularly polarized!

Other phase differences or relative
amplitudes produce ellliptic E is vector sum of E, and E,. Tip of E-
polarization, of which linear vector will trace out helix in z at given time
polarization is a limiting case or circle in x-y plane at a given z




More explanation of circular polarization

para]le] to thumb Eqns. describing t-dependence for thumb Il to k

Left/right handedness determined by poin- E. ( z,t) = Acos(kz — ot + qp),
ting left or right thumb in wave propag- E,(z,t)=—Asin(kz - wt + ),
ation direction, and matching curl of one's
fingers to direction of rotation of field at one
z. Convention of non-optics physics com- At z such that kz+ @ =0,
munity (Plasma physics, high energy, etc)

For clockwise E(t)
at one z = RT CIRC Polarized

E at different pts. along ray at one time

E;+E; =A’forall z,t.

E (owt)=Acoswt, E (wt)=Asinwt

antiparallel to thumb
Alternative convention, — left/right handednes
determined by pointing left/right thumb toward
, and matching curl of fingers to rotation of E
Many optics textbooks use this second

. . convention E at different
Looking from other side, fimes at one pt

thumb For
still Il to ~ but now counter- clockwise = RT CIRC

clockwise Polarized
STILL RT CIRC Polarized.




Conventions for circularly polarized light

e Summary of conventions

thumb Ik RightCP
thumb Ik LeftCP
thumb anti-llk RightCP
thumb anti-llk LeftCP

e Both conventions in physics
(Jackson, EM Theory) =

— Parallel convention is con-
sistent with positive helicity

(z,1)=Acos(kz-wt), E, (z,t) =-Asin(kz—wr)
= Acos(kz—wt), E, (z,t)=+Asin(kz - wr)

Ex(z, )=Acos(kz—a)t), Ey(z,t)=+Asin(kz—a)t)

E, (z,t)=Acos(kz-wt), E,(z,t) =—-Asin(kz - wt)

E(z 1) = Re [Exei(kz—wt) ] %+ Re [einlexei(kz—wt)] y

= Excos(kz—wt)X+ Excos(kz—wt+n/2)y (left circular) (6.3)

= Ex [cos(kz—wD)X—sin(kz—w1)§]

E.(x, 1) = E; cos (kz — wi) }

E!/(xs t) - @EO Sin (1\2 — (l)t)

At a fixed point in space, the fields (7.21) are such that the electric vector
is constant in magnitude, but sweeps around in a circle at a frequency o,
as shown in Fig. 7.3. For the upper sign (€, + ie,), the rotation is counter-
clockwise when the observer is facing into the oncomime |
is called left circularly polarized in optics. In the terminology of modern |
hysics, however, such a wave is said to have positive helicity. The latter |
description seems more appropriate because such a wave has a positive |
projection of angular momentum on the 2 axis (see Problem 6.12). For
the lower sign (e, — i€,), the rotation of E is clockwise when looking into




Screw sense of spatial helix to parallel

when use

antiparallel convention for finding rotation in time

parallel to thumb = t-dependence

E at different
times at one pt

For
clockwise = RIGHT
CIRC Polarized

antiparallel to thumb = t-dependence

Thumb anti - parallel to k:

Eqns. for t-dependence

E (z.t)=Acos(kz-wt+@),

E (z,t)=Asin(kz—wt +@), At kz+@=0,

E, (wt)=Acoswt, E, (wt)=-Asinwr

ParametricPlot[{Cos[#], -Sin[O8]]}, {0, 0, 6}]

ParametricPlot3D[{Cos[vy], Sin[W}], }/25}, {0,045} ]

P =kz — ot

k isin
direction
of helix
advancement
with correct
RH rule

E at different
times at one pt

For
clockwise = RIGHT
CIRC Polarized




Elliptically polarized light

e Two ways to make
elliptically polarized light

— LetE, and E, have different
amplitudes
thumb Ik RightEP | E.
thumb Ik LeftEP | E,
thumb anti-llk RightEP| E
thumb anti-llk LeftEP | £

(z.t)=A, cos(kz—wt), E,(z,t) =-A, sin(kz - wt)
(z.t)=A, cos(kz—wt), E,(z,t) =+A, sin(kz - ot)
(z t) A cos(kz a)r) /5 Zl) ! sm(kz a)t)
(z.t)=A,cos(kz—wt), E,(z,t) =-A, sin(kz - wt)

A
(

v

—~ | +|—| =1 Eqgn of ellipse
A A\.J ! .

— Let phase difference
between equal-amplitude
E, and E, be different from
90° (next slide)




Phase difference between two orthogonal equal-amplitude
vector components of E-field determine kind of polarization

L GRS

cos wt; coeasr. cos awt; cos at;

E = .
O NIS cos(at+” /4); !.21"/4 -sin at; 1 cos (a4 74) ei"/ =cos at; -1

Qx S

B:
cos wt; cos wt; cos wt; cos wt; 1

Y = -cos(m-_..."/" sin wt; -1 -cos(at-t-’“/d 2 e cos ast; 1

Fig. 33-2. Superposition of x-vibrations and y-vibrations with equal amplitudes but various relative
phases. The components E, and E, are expressed in both real and complex notations.




Circularly polarized light

LerT HAND RIGHT HAND *—=
CIRCULAR CIRCULAR r
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Summary of linear, circular and
elliptic polarization

e (Can understand all of
these polarizations as well
as unpolarized light by
thinking of the electric
field vector as the sum of
two orthogonal component
vectors.

— Type of polarization
depends on relative
amplitude and phase of
components




Linear Polarization

%

Electric field

A
Magnetic field

* Plane EM wave - linearly polarized

 Trace of electric field vector is linear

* Also called plane-polarized light

« Convention is to refer to the electric field vector




Circular Polarization

direction of 4

& propagation

direction of
propagation

\Y

\Y
Electric 90°

Fields
~~ k. Notethe 90°
. phase difference

If this wave were approaching
an observer, its electric
vector would appear to be
rotating counterclockwise.
This is called nght -

circular polarization.

« Two perpendicular electric field components of equal amplitude with 90°

difference in phase
« Electric vector rotates counterclockwise = right-hand circular polarization

« Electric vector rotates clockwise = left-hand circular polarization



Elliptical Polarization

direction of
Z;l propagation
direction of
propagation

If this wave were approaching
an observer, its electric
vector would appear to be
rotating counterclockwise.
This is called right -

elliptic polarization.

« Two perpendicular eletric field components not in phase, either with different
amplitudes and/or not 90° out of phase
» Electric vector rotates counterclockwise = right-hand elliptical polarization
» Electric vector rotates clockwise = left-hand elliptical polarization
* The most general state of complete polarization is elliptical
- 000000



Birefringence




Polarization 1n birefringent crystals
(half and quarter wave plates)

* Different indices of * Birefringent materials
refraction depending on * Anisotropic (e.g., stressed)
direction of wave electric * Can produce two shifted images
field vector with respect to Can create circular or elliptic

| axi polarization
crystal axis Can rotate plane of polarization of

light wave
Can display different colors




Anisotropic media have different
properties in different direction

Figure 1 - Crystalline Structure of Isotropic and Anisotropic Materials

e (alcite

Structured  Anisotropic Unstructured
but isotropic and isotropic

e Free electrons in a DC
magnetic field, B,
— Plasma in B-field
— Thin metal film in B-field




Birefringent anisotropic media have a
special direction called the optic axis

Normally incident monochromatic
polarized light with Kk Il optic axis has
same index of refraction, n, for both
components of E

Normally incident light with k L optic

axis has different n for wave with

component of E Il optic axis (E, =

E exraordinary) @0d Wave with component

1 optic axis (E;, =E
=ck

ext

ordinary)

/o # ngy=cK,/0

ord

leferent wavenumbers s Koyt # Kopg

Different wavelengths, A_ . # }\‘ord

ext
Different phase velocities,
/K Z O/K 4

ext

Slow versus fast wave

K
W

<« Ordinary Wave
<e=p= Extraordinary Wave

— Co-Axial —
Trajectories

Incident \1. “ Calcite
» — Polarized— ., Crystal
Light Waves

Optical axis along z
Propagation along z
E, and E, waves
see same index

of refraction

Optical axis along z
Propagation along x
E, (=E;) waves and
E, (=E,) waves
see different
indices of refraction

Optical axis

<>




Double image ot object viewed

through birefringent crystal

extraordinary wave
(E polarized in x-z plane)

ordinary wave
(E polarized along y)

X \
\
A N
\
\ L4 L3
N optic axis
Incoming light in the parallel (s) 7 Q/) > \
polarization sees a different /) \\
effective index of refraction than P 0{9 \
light in the perpendicular (p) /‘0 f}- > \
polarization, and is thus refracted @ e@ \\
at a different angle. \ (7.4 @ \

Q

\\ & \\
_ * €images?d °




Double image of object viewed ¢
through birefringent crystal .

extraordinary-wave bends away from normal
ordinary wave bends more away from normal

ave bends towards normal
wave bends more towards normal

Unpolarized light
R, ray from dot enters
crystal




Theory of
EM waves 1n
an anisotropic

birefractive

media

2

Isotropic medium, J=0cE, =1+

Anisotropic medium, J=0'E, £¢=1+

Take optic axis in z-direction, ¢ =

. 2 2.2
4dmio |KE Kk E = (1)28E= W ;@ E
® c c
A 2
2 |PE-kkE=2 ¢E
® c
n> 0 0
0 n, O |, where,n;=n=n,,n
0O O nf

=0

Assume k =0: Propagation (k) in x-z plane. Wave eqn becomes :

kX -w’n. /c? —k k, E.
0 k> —w’n’/c? 0 E,
—k k. k> -w’n’/c’ E,
kK>
Ordinary wave: [E=E =0, ”_5 =7 Index refraction = n,
Extraordinary wave: E =0, - (oo2 /c

2
E in x-z plane, —-+

e
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)(kxno+kZ c—wnn;/c )=O, or,

2
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Wave eqn: (k2 - w—z)E -KKk'‘E=4miw]. J = oscillating dipole current in medium
c

2

=ne

Effective index of refraction, n , between n, and n,

depending on angle, 6, between k and z-axis:

sin” 6
+

cos’ 0

2
ne

2
no




