Circularly and elliptically polarized waves

- When there is a phase difference between orthogonal polarization vectors in a light wave their vector sum E-field will be ellipically or circularly polarized
- The orthogonal vectors must be 90° out of phase and have equal amplitudes for the vector sum to be circularly polarized!
- Other phase differences or relative amplitudes produce ellliptic polarization, of which linear polarization is a limiting case

\mathbf{E} is vector sum of \mathbf{E}_{x} and \mathbf{E}_{y}. Tip of \mathbf{E} vector will trace out helix in z at given time or circle in $\mathrm{x}-\mathrm{y}$ plane at a given z

More explanation of circular polarization

parallel to thumb

Left/right handedness determined by pointing left or right thumb in wave propagation direction, and matching curl of one's fingers to direction of rotation of field at one z. Convention of non-optics physics community (Plasma physics, high energy, etc)

For k into paper, clockwise E(t) at one $\mathrm{z}=$ RT CIRC Polarized
E at different pts. along ray at one time

Looking from other side, still II to k, but now counterclockwise

STILL RT CIRC Polarized.

Eqns. describing t-dependence for thumb II to k
$E_{x}(z, t)=A \cos (k z-\omega t+\varphi)$,
$E_{y}(z, t)=-A \sin (k z-\omega t+\varphi)$,
$E_{x}^{2}+E_{y}^{2}=A^{2}$ for all z, t.
At z such that $k z+\varphi=0$,

$E_{x}(\omega t)=A \cos \omega t, E_{y}(\omega t)=A \sin \omega t$

antiparallel to thumb

Alternative convention, - left/right handednes determined by pointing left/right thumb toward k , and matching curl of fingers to rotation of \mathbf{E} Many optics textbooks use this second
convention
For
clockwise = RT CIRC
Polarized

E at different
times at one pt

Conventions for circularly polarized light

Two different conventions

- Summary of conventions

thumb IIk
thumb IIk
thumb anti- Ilk RightCP
thumb anti- Il k LeftCP
RightCP

$$
\begin{aligned}
& E_{x}(z, t)=A \cos (k z-\omega t), E_{y}(z, t)=-A \sin (k z-\omega t) \\
& E_{x}(z, t)=A \cos (k z-\omega t), E_{y}(z, t)=+A \sin (k z-\omega t) \\
& E_{x}(z, t)=A \cos (k z-\omega t), E_{y}(z, t)=+A \sin (k z-\omega t) \\
& E_{x}(z, t)=A \cos (k z-\omega t), E_{y}(z, t)=-A \sin (k z-\omega t)
\end{aligned}
$$

- Both conventions in physics (Jackson, EM Theory) \Rightarrow
- Parallel convention is consistent with positive helicity

$$
\begin{aligned}
\mathbf{E}(z, t) & =\operatorname{Re}\left[E_{x} e^{i(k z-\omega t)}\right] \hat{\mathbf{x}}+\operatorname{Re}\left[e^{i \pi / 2} E_{x} e^{i(k z-\omega t)}\right] \hat{\mathbf{y}} \\
& =E_{x} \cos (k z-\omega t) \hat{\mathbf{x}}+E_{x} \cos (k z-\omega t+\pi / 2) \hat{\mathbf{y}} \\
& =E_{x}[\cos (k z-\omega t) \hat{\mathbf{x}}-\sin (k z-\omega t) \hat{\mathbf{y}}]
\end{aligned}
$$

$$
\left.\begin{array}{l}
E_{x}(\mathbf{x}, t)=E_{0} \cos (k z-\omega t) \\
E_{y}(\mathbf{x}, t)=\mp E_{0} \sin (k z-\omega t) \tag{7.21}
\end{array}\right\}
$$

At a fixed point in space, the fields (7.21) are such that the electric vector is constant in magnitude, but sweeps around in a circle at a frequency ω, as shown in Fig. 7.3. For the upper sign $\left(\epsilon_{1}+i \epsilon_{2}\right)$, the rotation is counterclockwise when the observer is facing into the oncoming wave. This wave is called left circularly polarized in optics. In the terminology of modern physics, however, such a wave is said to have positive helicity. The latter description seems more appropriate because such a wave has a positive projection of angular momentum on the z axis (see Problem 6.12). For the lower sign $\left(\boldsymbol{\epsilon}_{1}-i \boldsymbol{\epsilon}_{2}\right)$, the rotation of \mathbf{E} is clockwise when looking into

Screw sense of spatial helix to parallel k when use antiparallel convention for finding rotation in time

k parallel to thumb $\Rightarrow \mathrm{t}$-dependence

E at different
times at one pt

For
clockwise = RIGHT
CIRC Polarized

antiparallel to thumb \Rightarrow t-dependence
ParametricPlot3D[\{Cos[$\psi], \operatorname{Sin}[\psi], \psi / 2 \pi\},\{\theta, 0,4 \pi\}]$

$\psi=k z-\omega t$
k is in direction of helix advancement with correct RH rule

Thumb anti - parallel to k :
Eqns. for t-dependence
$E_{x}(z, t)=A \cos (k z-\omega t+\varphi)$,
$E_{y}(z, t)=A \sin (k z-\omega t+\varphi), \quad A t, k z+\varphi=0$,
$E_{x}(\omega t)=A \cos \omega t, E_{y}(\omega t)=-A \sin \omega t$
ParametricPlot[\{Cos[日], - $\operatorname{Sin}[\theta]]\},\{\theta, 0,6\}]$

E at different
times at one pt
For
clockwise = RIGHT
CIRC Polarized

Elliptically polarized light

- Two ways to make elliptically polarized light
- Let E_{x} and E_{y} have different amplitudes

| thumb \||k | RightEP |
| :--- | :--- |
| thumb \||k | LeftEP |
| thumb anti-\||k | RightEP |
| thumb anti- \||k | LeftEP |

$E_{x}(z, t)=A_{x} \cos (k z-\omega t), E_{y}(z, t)=-A_{y} \sin (k z-\omega t)$
$E_{x}(z, t)=A_{x} \cos (k z-\omega t), E_{y}(z, t)=+A_{y} \sin (k z-\omega t)$
$E_{x}(z, t)=A_{x} \cos (k z-\omega t), E_{y}(z, t)=+A_{y} \sin (k z-\omega t)$
$E_{x}(z, t)=A_{x} \cos (k z-\omega t), E_{y}(z, t)=-A_{y} \sin (k z-\omega t)$
$\left(\frac{E_{x}}{A_{x}}\right)^{2}+\left(\frac{E_{y}}{A_{y}}\right)^{2}=1$ Eqn of ellipse

- Let phase difference between equal-amplitude E_{x} and E_{y} be different from 90° (next slide)

Phase difference between two orthogonal equal-amplitude vector components of E-field determine kind of polarization

Fig. 33-2. Superposition of x-vibrations and y-vibrations with equal amplitudes but various relative phases. The components E_{x} and E_{y} are expressed in both real and complex notations.

Circularly polarized light

Left Hand LEFT HaND
COLRCULAR Polarization

Horizontal
Linear
polarization

RHCP Right Hand E CIRCULAR

Summary of linear, circular and elliptic polarization

- Can understand all of these polarizations as well as unpolarized light by thinking of the electric field vector as the sum of two orthogonal component vectors.
- Type of polarization depends on relative amplitude and phase of components

Linear Polarization

- Plane EM wave - linearly polarized
- Trace of electric field vector is linear
- Also called plane-polarized light
- Convention is to refer to the electric field vector

Circular Polarization

- Two perpendicular electric field components of equal amplitude with 90° difference in phase
- Electric vector rotates counterclockwise $\boldsymbol{\rightarrow}$ right-hand circular polarization
- Electric vector rotates clockwise \rightarrow left-hand circular polarization

Elliptical Polarization

- Two perpendicular eletric field components not in phase, either with different amplitudes and/or not 90° out of phase
- Electric vector rotates counterclockwise $\boldsymbol{\rightarrow}$ right-hand elliptical polarization
- Electric vector rotates clockwise \rightarrow left-hand elliptical polarization
- The most general state of complete polarization is elliptical

Birefringence

Polarization in birefringent crystals (half and quarter wave plates)

- Different indices of refraction depending on direction of wave electric field vector with respect to crystal axis
- Birefringent materials
- Anisotropic (e.g., stressed)
- Can produce two shifted images
- Can create circular or elliptic polarization
- Can rotate plane of polarization of light wave
- Can display different colors

Anisotropic media have different properties in different direction

- Calcite

Figure 1 - Crystalline Structure of Isotropic and Anisotropic Materials

Structured but isotropic

Anisotropic Unstructured and isotropic

- Free electrons in a DC magnetic field, B_{0}
- Plasma in B-field
- Thin metal film in B-field

Birefringent anisotropic media have a special direction called the optic axis

- Normally incident monochromatic polarized light with \mathbf{k} II optic axis has same index of refraction, n , for both components of \mathbf{E}
- Normally incident light with $\mathbf{k} \perp$ optic axis has different n for wave with component of $\mathbf{E} \|$ optic axis ($\mathrm{E}_{\|}=$
$\mathrm{E}_{\text {extraordinary }}$) and wave with component \perp optic axis ($\mathrm{E}_{\perp}=\mathrm{E}_{\text {ordinary }}$)
- $\mathrm{n}_{\text {ext }}=\mathrm{ck}_{\text {ext }} / \omega \neq \mathrm{n}_{\text {ord }}=\mathrm{ck}_{\text {ord }} / \omega$
- Different wavenumbers, $\mathrm{k}_{\text {ext }} \neq \mathrm{k}_{\text {ord }}$
- Different wavelengths, $\lambda_{\text {ext }} \neq \lambda_{\text {ord }}$
- Different phase velocities, $\omega / k_{\text {ext }} \neq \omega / k_{\text {ord }}$
- Slow versus fast wave

Optical axis along z Propagation along z E_{x} and E_{y} waves see same index of refraction

Optical axis along z Propagation along x $\mathrm{E}_{\mathrm{z}}\left(=\mathrm{E}_{\|}\right)$waves and $\mathrm{E}_{\mathrm{y}}\left(=\mathrm{E}_{\perp}\right)$ waves see different indices of refraction

Double image of object viewed through birefringent crystal

- Wolfram Demo Wikioedia Theory

Double image of object viewed through birefringent crystal

Theory of

EM waves in
an anisotropic
Wave eqn: $\left(k^{2}-\frac{\omega^{2}}{c^{2}}\right) \mathbf{E}-\mathbf{k k} \cdot \mathbf{E}=4 \pi i \omega \mathbf{J} . \mathbf{J}=$ oscillating dipole current in medium Isotropic medium, $\mathbf{J}=\sigma \mathbf{E}, \varepsilon=1+\frac{4 \pi i \sigma}{\omega}, k^{2} \mathbf{E}-\mathbf{k} \mathbf{k} \cdot \mathbf{E}=\frac{\omega^{2} \varepsilon}{c^{2}} \mathbf{E}=\frac{\omega^{2} n^{2}}{c^{2}} \mathbf{E}$
Anisotropic medium, $\mathbf{J}=\underset{\sim}{\sigma} \cdot \mathbf{E}, \underset{\sim}{\varepsilon}=1+\frac{4 \pi i \sigma}{\omega}, \quad k^{2} \mathbf{E}-\mathbf{k k} \cdot \mathbf{E}=\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon} \cdot \mathbf{E}$
Take optic axis in z-direction, $\underset{\sim}{\boldsymbol{\varepsilon}}=\left[\begin{array}{ccc}n_{x}^{2} & 0 & 0 \\ 0 & n_{y}^{2} & 0 \\ 0 & 0 & n_{z}^{2}\end{array}\right]$, where, $n_{x}^{2}=n_{y}^{2}=n_{o}^{2}, n_{z}^{2}=n_{e}^{2}$
Assume $\mathrm{k}_{y}=0$: Propagation (k) in x-z plane. Wave eqn becomes:

$$
\left.\begin{array}{ccc}
k_{z}^{2}-\omega^{2} n_{o}^{2} / c^{2} & 0 & -k_{x} k_{z} \\
0 & k^{2}-\omega^{2} n_{o}^{2} / c^{2} & 0 \\
-k_{x} k_{z} & 0 & k_{x}^{2}-\omega^{2} n_{e}^{2} / c^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)=0
$$

Ordinary wave : $\quad \mathbf{E}=\mathrm{E}_{y} \neq 0, \frac{k^{2}}{n_{o}^{2}}=\frac{\omega^{2}}{c^{2}}$ Index refraction $=\mathrm{n}_{\mathrm{o}}$
Extraordinary wave: $\mathrm{E}_{y}=0,-\left(\omega^{2} / c^{2}\right)\left(k_{x}^{2} n_{o}^{2}+k_{z}^{2} n_{e}^{2}-\omega^{2} n_{e}^{2} n_{o}^{2} / c^{2}\right)=0$, or, E in x-z plane, $\frac{k_{x}^{2}}{n_{e}^{2}}+\frac{k_{z}^{2}}{n_{o}^{2}}=\frac{\omega^{2}}{c^{2}}$ Effective index of refraction, $\mathrm{n}_{e f f}$ between n_{e} and n_{0}
depending on angle, θ, between \mathbf{k} and z-axis: $\frac{1}{n_{e f f}^{2}}=\frac{\omega^{2}}{k^{2} c^{2}}=\frac{\sin ^{2} \theta}{n_{e}^{2}}+\frac{\cos ^{2} \theta}{n_{o}^{2}}$

