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Cosets

A left coset of H in G is gH where g ∈ G (H is on the right).

A right coset of H in G is Hg where g ∈ G (H is on the left).

Theorem

If two left cosets of H in G intersect, then they coincide, and similarly for
right cosets. Thus, G is a disjoint union of left cosets of H and also a
disjoint union of right cosets of H.

Corollary(Lagrange’s theorem) If G is a finite group and H is a
subgroup of G , then the order of H divides the order of G . In
particular, the order of every element of G divides the order of G .
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Applications of Lagrange’s Theorem

Theorem

For any integers n ≥ 0 and 0 ≤ m ≤ n, the number n!
m!(n−m)! is an integer.

Theorem

For any positive integers a, b the ratios (ab)!
(a!)b

and (ab)!
(a!)bb!

are integers.

Theorem

For an integer m > 1 let ϕ(m) be the number of invertible numbers
modulo m. For m ≥ 3 the number ϕ(m) is even.
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Polya’s Enumeration Theorem

Theorem

Suppose that a finite group G acts on a finite set X . Then the number of
colorings of X in n colors inequivalent under the action of G is

N(n) =
1

|G |
∑
g∈G

nc(g)

where c(g) is the number of cycles of g as a permutation of X .
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N(n) =
1

|G |
∑
g∈G

nc(g)

What is the number of necklaces with 4 beads of two colors?

First compute it directly.

The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

The identity element has 4 cycles, so it contributes 1 · 24 = 16.

The rotations by π/2 and 3π/2 have only one cycle, so they
contribute 2 · 21 = 4.

The rotation by π has two cycles, so it contributes 1 · 22 = 4.

There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles,
with contribute 2 · 22 + 2 · 23 = 24.

Summing up, N(2) = 1
8(16 + 4 + 4 + 24) = 6.

For n colors, N(n) = n4+2n3+3n2+2n
8 . For example, N(4) = 55.
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One more example

How many ways are there to color faces of a cube into n colors?

The element 1 ∈ S4 has 6 cycles, so contributes n6.

Rotations by π/2 and 3π/2 around axes through opposite faces
(2 · 3 = 6 of them) have 3 cycles, so contribute 6 · n3.

Rotations by π (3 of them) have 4 cycles, so contribute 3 · n4.

Rotations around axes through midpoints of opposite edges (6 of
them) have 3 cycles, hence contribute 6 · n3.

Rotations around the main diagonals (4 · 2 = 8 of them) have 2
cycles, so contribute 8 · n2.

Summing up, N(n) = n6+3n4+12n3+8n2

24 .
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Cosets and orbits

Let G act on a set X , pick a point x ∈ X and let Gx and Gx be its orbit
and stabilizer.

Lemma 1. The orbit Gx is in a natural bijection with the set of
cosets G/Gx = {gGx | g ∈ G}. In particular, for finite groups,
|Gx | = |G |/|Gx |.

The bijection is given by gGx 7→ gx . Check that this is a well-define
bijective map.

Lemma 2. For any other point y ∈ Gx of the orbit of x , the
stabilizer of Gy is Gy = gGxg

−1 for some g ∈ G . In particular, for
finite groups, all the stabilizers of points from the same orbit have the
same number of elements.

Since y = gx for some g ∈ G , then Gy = gGxg
−1. Check that it

indeed works!

Note: the formula g .h := ghg−1 actually defines an action of G on
itself. This action is called conjugation. Moreover, for each g ,
fg : G → G defined by fg (h) = ghg−1 is an isomorphism!
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Proof of Polya’s Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of
G is

N(n) =
1

|G |
∑
g∈G

nc(g)

where c(g) is the number of cycles of g as a permutation of X .

Let Xn be the set of colorings of X in n colors. Then we want to
compute the number of G -orbits on Xn.
Let’s instead count the pairs (g ,C ) with C ∈ Xn a coloring and
g ∈ GC ⊂ G an element of G preserving C .
The orbit GC of C has |G |/|GC | elements (used Lemma 1).
Each element of GC will appear |GC | times in our counting (used
Lemma 2).
Thus each orbit of Xn will appear |GC | · |G |/|GC | = |G | many times
in our counting. So to find N(n) we will have to divide the result of
our counting by |G |.
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Proof of Polya’s Theorem

Want: to count pairs (g ,C ) with C being a coloring of X , and
g ∈ G preserving C .

For each g ∈ G , let’s count in how many pairs (g ,C ) is can appear,
i.e. we need to find for each g how many colorings are invariant under
g .

Decomposing X into orbits (=cycles) of g , we see that the color
along each cycle must be constant, and that’s the only restriction.

This gives nc(g) invariant colorings.

Summing over all g ∈ G and dividing by |G | gives the required
formula.
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Summing over all g ∈ G and dividing by |G | gives the required
formula.
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Weighted Polya theorem

Let cm(g) denote the number of cycles of length m in g ∈ G when
permuting a finite set X .

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly ri occurrences of
the i-th color is the coefficient of tr11 . . . t

rn
n in the polynomial

P(t1, . . . , tn) =
1

|G |
∑
g∈G

∏
m≥1

(tm1 + · · ·+ tmn )cm(g)

The previous formula is obtained by putting t1 = · · · = tn = 1.

What is the number of necklaces with exactly 3 white and 3 black
beads?
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