Polya Enumeration Theorem

Sasha Patotski

Cornell University

ap744@cornell.edu

December 11, 2015

- A left coset of H in G is gH where $g \in G$ (H is on the right).
- A **right** coset of *H* in *G* is *Hg* where $g \in G$ (*H* is on the **left**).

Theorem

If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H.

Corollary(Lagrange's theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. In particular, the order of every element of G divides the order of G.

Theorem

For any integers $n \ge 0$ and $0 \le m \le n$, the number $\frac{n!}{m!(n-m)!}$ is an integer.

Theorem

For any positive integers a, b the ratios $\frac{(ab)!}{(a!)^b}$ and $\frac{(ab)!}{(a!)^b b!}$ are integers.

Theorem

For an integer m > 1 let $\varphi(m)$ be the number of invertible numbers modulo m. For $m \ge 3$ the number $\varphi(m)$ is even.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

Suppose that a finite group G acts on a finite set X. Then the number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where c(g) is the number of cycles of g as a permutation of X.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

• What is the number of necklaces with 4 beads of two colors?

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^2 + 2 \cdot 2^3 = 24$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^2 + 2 \cdot 2^3 = 24$.
- Summing up, $N(2) = \frac{1}{8}(16 + 4 + 4 + 24) = 6.$

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^2 + 2 \cdot 2^3 = 24$.
- Summing up, $N(2) = \frac{1}{8}(16 + 4 + 4 + 24) = 6.$
- For *n* colors, $N(n) = \frac{n^4 + 2n^3 + 3n^2 + 2n}{8}$. For example, N(4) = 55.

5 / 10

• How many ways are there to color faces of a cube into *n* colors?

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.

• How many ways are there to color faces of a cube into *n* colors?

- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.

• How many ways are there to color faces of a cube into *n* colors?

- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^3$.

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^3$.
- Rotations around the main diagonals (4 · 2 = 8 of them) have 2 cycles, so contribute 8 · n².

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^3$.
- Rotations around the main diagonals (4 · 2 = 8 of them) have 2 cycles, so contribute 8 · n².
- Summing up, $N(n) = \frac{n^6 + 3n^4 + 12n^3 + 8n^2}{24}$

Let G act on a set X, pick a point $x \in X$ and let G_x and G_x be its orbit and stabilizer.

Lemma 1. The orbit G_X is in a natural bijection with the set of cosets $G/G_x = \{gG_x \mid g \in G\}$. In particular, for finite groups, $|G_X| = |G|/|G_x|$.

Let G act on a set X, pick a point $x \in X$ and let G_x and G_x be its orbit and stabilizer.

Lemma 1. The orbit G_X is in a natural bijection with the set of cosets $G/G_x = \{gG_x \mid g \in G\}$. In particular, for finite groups, $|G_X| = |G|/|G_x|$.

• The bijection is given by $gG_x \mapsto gx$. Check that this is a well-define bijective map.

Let G act on a set X, pick a point $x \in X$ and let G_x and G_x be its orbit and stabilizer.

Lemma 1. The orbit G_X is in a natural bijection with the set of cosets $G/G_x = \{gG_x \mid g \in G\}$. In particular, for finite groups, $|G_X| = |G|/|G_x|$.

• The bijection is given by $gG_x \mapsto gx$. Check that this is a well-define bijective map.

Lemma 2. For any other point $y \in Gx$ of the orbit of x, the stabilizer of G_y is $G_y = gG_xg^{-1}$ for some $g \in G$. In particular, for finite groups, all the stabilizers of points from the same orbit have the same number of elements.

Let G act on a set X, pick a point $x \in X$ and let G_x and G_x be its orbit and stabilizer.

Lemma 1. The orbit G_X is in a natural bijection with the set of cosets $G/G_x = \{gG_x \mid g \in G\}$. In particular, for finite groups, $|G_X| = |G|/|G_x|$.

• The bijection is given by $gG_x \mapsto gx$. Check that this is a well-define bijective map.

Lemma 2. For any other point $y \in Gx$ of the orbit of x, the stabilizer of G_y is $G_y = gG_xg^{-1}$ for some $g \in G$. In particular, for finite groups, all the stabilizers of points from the same orbit have the same number of elements.

• Since y = gx for some $g \in G$, then $G_y = gG_xg^{-1}$. Check that it indeed works!

Let G act on a set X, pick a point $x \in X$ and let G_x and G_x be its orbit and stabilizer.

Lemma 1. The orbit G_X is in a natural bijection with the set of cosets $G/G_x = \{gG_x \mid g \in G\}$. In particular, for finite groups, $|G_X| = |G|/|G_x|$.

• The bijection is given by $gG_x \mapsto gx$. Check that this is a well-define bijective map.

Lemma 2. For any other point $y \in Gx$ of the orbit of x, the stabilizer of G_y is $G_y = gG_xg^{-1}$ for some $g \in G$. In particular, for finite groups, all the stabilizers of points from the same orbit have the same number of elements.

- Since y = gx for some $g \in G$, then $G_y = gG_xg^{-1}$. Check that it indeed works!
- Note: the formula g.h := ghg⁻¹ actually defines an action of G on itself. This action is called **conjugation**. Moreover, for each g, f_g: G → G defined by f_g(h) = ghg⁻¹ is an isomorphism!

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where c(g) is the number of cycles of g as a permutation of X.

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where c(g) is the number of cycles of g as a permutation of X.

• Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n .

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where c(g) is the number of cycles of g as a permutation of X.

- Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n .
- Let's instead count the pairs (g, C) with C ∈ X_n a coloring and g ∈ G_C ⊂ G an element of G preserving C.

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where c(g) is the number of cycles of g as a permutation of X.

- Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n .
- Let's instead count the pairs (g, C) with $C \in X_n$ a coloring and $g \in G_C \subset G$ an element of G preserving C.
- The orbit GC of C has $|G|/|G_C|$ elements (used Lemma 1).

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where c(g) is the number of cycles of g as a permutation of X.

- Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n .
- Let's instead count the pairs (g, C) with C ∈ X_n a coloring and g ∈ G_C ⊂ G an element of G preserving C.
- The orbit GC of C has $|G|/|G_C|$ elements (used Lemma 1).
- Each element of *GC* will appear $|G_C|$ times in our counting (used Lemma 2).
- Thus each orbit of X_n will appear |G_C| · |G|/|G_C| = |G| many times in our counting. So to find N(n) we will have to divide the result of occ

Sasha Patotski (Cornell University)

8 / 10

• Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each g ∈ G, let's count in how many pairs (g, C) is can appear,
 i.e. we need to find for each g how many colorings are invariant under g.

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each g ∈ G, let's count in how many pairs (g, C) is can appear,
 i.e. we need to find for each g how many colorings are invariant under g.
- Decomposing X into orbits (=cycles) of g, we see that the color along each cycle must be constant, and that's the only restriction.

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each g ∈ G, let's count in how many pairs (g, C) is can appear,
 i.e. we need to find for each g how many colorings are invariant under g.
- Decomposing X into orbits (=cycles) of g, we see that the color along each cycle must be constant, and that's the only restriction.
- This gives $n^{c(g)}$ invariant colorings.

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each g ∈ G, let's count in how many pairs (g, C) is can appear,
 i.e. we need to find for each g how many colorings are invariant under g.
- Decomposing X into orbits (=cycles) of g, we see that the color along each cycle must be constant, and that's the only restriction.
- This gives $n^{c(g)}$ invariant colorings.
- Summing over all $g \in G$ and dividing by |G| gives the required formula.

Let $c_m(g)$ denote the number of cycles of length m in $g \in G$ when permuting a finite set X.

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly r_i occurrences of the *i*-th color is the coefficient of $t_1^{r_1} \dots t_n^{r_n}$ in the polynomial

$$P(t_1,\ldots,t_n)=\frac{1}{|G|}\sum_{g\in G}\prod_{m\geq 1}(t_1^m+\cdots+t_n^m)^{c_m(g)}$$

Let $c_m(g)$ denote the number of cycles of length m in $g \in G$ when permuting a finite set X.

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly r_i occurrences of the *i*-th color is the coefficient of $t_1^{r_1} \dots t_n^{r_n}$ in the polynomial

$$P(t_1,\ldots,t_n)=\frac{1}{|G|}\sum_{g\in G}\prod_{m\geq 1}(t_1^m+\cdots+t_n^m)^{c_m(g)}$$

• The previous formula is obtained by putting $t_1 = \cdots = t_n = 1$.

Let $c_m(g)$ denote the number of cycles of length m in $g \in G$ when permuting a finite set X.

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly r_i occurrences of the *i*-th color is the coefficient of $t_1^{r_1} \dots t_n^{r_n}$ in the polynomial

$$P(t_1,\ldots,t_n)=\frac{1}{|G|}\sum_{g\in G}\prod_{m\geq 1}(t_1^m+\cdots+t_n^m)^{c_m(g)}$$

- The previous formula is obtained by putting $t_1 = \cdots = t_n = 1$.
- What is the number of necklaces with exactly 3 white and 3 black beads?