Polya Enumeration Theorem

Sasha Patotski

Cornell University
ap744@cornell.edu

December 11, 2015

Cosets

- A left coset of H in G is $g H$ where $g \in G$ (H is on the right).
- A right coset of H in G is $H g$ where $g \in G$ (H is on the left).

Theorem

If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H.

Corollary(Lagrange's theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. In particular, the order of every element of G divides the order of G.

Applications of Lagrange's Theorem

Theorem

For any integers $n \geq 0$ and $0 \leq m \leq n$, the number $\frac{n!}{m!(n-m)!}$ is an integer.

Theorem

For any positive integers a, b the ratios $\frac{(a b)!}{(a!)^{b}}$ and $\frac{(a b)!}{(a!)^{b} b!}$ are integers.

Theorem

For an integer $m>1$ let $\varphi(m)$ be the number of invertible numbers modulo m. For $m \geq 3$ the number $\varphi(m)$ is even.

Polya's Enumeration Theorem

Theorem

Suppose that a finite group G acts on a finite set X. Then the number of colorings of X in n colors inequivalent under the action of G is

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

where $c(g)$ is the number of cycles of g as a permutation of X.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^{4}=16$.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^{4}=16$.
- The rotations by $\pi / 2$ and $3 \pi / 2$ have only one cycle, so they contribute $2 \cdot 2^{1}=4$.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^{4}=16$.
- The rotations by $\pi / 2$ and $3 \pi / 2$ have only one cycle, so they contribute $2 \cdot 2^{1}=4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^{2}=4$.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^{4}=16$.
- The rotations by $\pi / 2$ and $3 \pi / 2$ have only one cycle, so they contribute $2 \cdot 2^{1}=4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^{2}=4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^{2}+2 \cdot 2^{3}=24$.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^{4}=16$.
- The rotations by $\pi / 2$ and $3 \pi / 2$ have only one cycle, so they contribute $2 \cdot 2^{1}=4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^{2}=4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^{2}+2 \cdot 2^{3}=24$.
- Summing up, $N(2)=\frac{1}{8}(16+4+4+24)=6$.

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^{4}=16$.
- The rotations by $\pi / 2$ and $3 \pi / 2$ have only one cycle, so they contribute $2 \cdot 2^{1}=4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^{2}=4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^{2}+2 \cdot 2^{3}=24$.
- Summing up, $N(2)=\frac{1}{8}(16+4+4+24)=6$.
- For n colors, $N(n)=\frac{n^{4}+2 n^{3}+3 n^{2}+2 n}{8}$. For example, $N(4)=55$.

One more example

- How many ways are there to color faces of a cube into n colors?

One more example

- How many ways are there to color faces of a cube into n colors?
- The element $1 \in S_{4}$ has 6 cycles, so contributes n^{6}.

One more example

- How many ways are there to color faces of a cube into n colors?
- The element $1 \in S_{4}$ has 6 cycles, so contributes n^{6}.
- Rotations by $\pi / 2$ and $3 \pi / 2$ around axes through opposite faces ($2 \cdot 3=6$ of them) have 3 cycles, so contribute $6 \cdot n^{3}$.

One more example

- How many ways are there to color faces of a cube into n colors?
- The element $1 \in S_{4}$ has 6 cycles, so contributes n^{6}.
- Rotations by $\pi / 2$ and $3 \pi / 2$ around axes through opposite faces ($2 \cdot 3=6$ of them) have 3 cycles, so contribute $6 \cdot n^{3}$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^{4}$.

One more example

- How many ways are there to color faces of a cube into n colors?
- The element $1 \in S_{4}$ has 6 cycles, so contributes n^{6}.
- Rotations by $\pi / 2$ and $3 \pi / 2$ around axes through opposite faces ($2 \cdot 3=6$ of them) have 3 cycles, so contribute $6 \cdot n^{3}$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^{4}$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^{3}$.

One more example

- How many ways are there to color faces of a cube into n colors?
- The element $1 \in S_{4}$ has 6 cycles, so contributes n^{6}.
- Rotations by $\pi / 2$ and $3 \pi / 2$ around axes through opposite faces ($2 \cdot 3=6$ of them) have 3 cycles, so contribute $6 \cdot n^{3}$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^{4}$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^{3}$.
- Rotations around the main diagonals ($4 \cdot 2=8$ of them) have 2 cycles, so contribute $8 \cdot n^{2}$.

One more example

- How many ways are there to color faces of a cube into n colors?
- The element $1 \in S_{4}$ has 6 cycles, so contributes n^{6}.
- Rotations by $\pi / 2$ and $3 \pi / 2$ around axes through opposite faces ($2 \cdot 3=6$ of them) have 3 cycles, so contribute $6 \cdot n^{3}$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^{4}$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^{3}$.
- Rotations around the main diagonals ($4 \cdot 2=8$ of them) have 2 cycles, so contribute $8 \cdot n^{2}$.
- Summing up, $N(n)=\frac{n^{6}+3 n^{4}+12 n^{3}+8 n^{2}}{24}$.

Cosets and orbits

Let G act on a set X, pick a point $x \in X$ and let $G x$ and G_{x} be its orbit and stabilizer.

Lemma 1. The orbit $G x$ is in a natural bijection with the set of cosets $G / G_{X}=\left\{g G_{X} \mid g \in G\right\}$. In particular, for finite groups, $|G x|=|G| /\left|G_{x}\right|$.

Cosets and orbits

Let G act on a set X, pick a point $x \in X$ and let $G x$ and G_{x} be its orbit and stabilizer.

Lemma 1. The orbit $G x$ is in a natural bijection with the set of cosets $G / G_{X}=\left\{g G_{X} \mid g \in G\right\}$. In particular, for finite groups, $|G X|=|G| /\left|G_{x}\right|$.

- The bijection is given by $g G_{x} \mapsto g x$. Check that this is a well-define bijective map.

Cosets and orbits

Let G act on a set X, pick a point $x \in X$ and let $G x$ and G_{x} be its orbit and stabilizer.

Lemma 1. The orbit $G x$ is in a natural bijection with the set of cosets $G / G_{x}=\left\{g G_{x} \mid g \in G\right\}$. In particular, for finite groups, $|G X|=|G| /\left|G_{x}\right|$.

- The bijection is given by $g G_{x} \mapsto g x$. Check that this is a well-define bijective map.
Lemma 2. For any other point $y \in G x$ of the orbit of x, the stabilizer of G_{y} is $G_{y}=g G_{x} g^{-1}$ for some $g \in G$. In particular, for finite groups, all the stabilizers of points from the same orbit have the same number of elements.

Cosets and orbits

Let G act on a set X, pick a point $x \in X$ and let $G x$ and G_{x} be its orbit and stabilizer.

Lemma 1. The orbit $G x$ is in a natural bijection with the set of cosets $G / G_{x}=\left\{g G_{x} \mid g \in G\right\}$. In particular, for finite groups, $|G X|=|G| /\left|G_{x}\right|$.

- The bijection is given by $g G_{x} \mapsto g x$. Check that this is a well-define bijective map.
Lemma 2. For any other point $y \in G x$ of the orbit of x, the stabilizer of G_{y} is $G_{y}=g G_{x} g^{-1}$ for some $g \in G$. In particular, for finite groups, all the stabilizers of points from the same orbit have the same number of elements.
- Since $y=g x$ for some $g \in G$, then $G_{y}=g G_{x} g^{-1}$. Check that it indeed works!

Cosets and orbits

Let G act on a set X, pick a point $x \in X$ and let $G x$ and G_{x} be its orbit and stabilizer.

Lemma 1. The orbit $G x$ is in a natural bijection with the set of cosets $G / G_{x}=\left\{g G_{x} \mid g \in G\right\}$. In particular, for finite groups, $|G x|=|G| /\left|G_{x}\right|$.

- The bijection is given by $g G_{x} \mapsto g x$. Check that this is a well-define bijective map.
Lemma 2. For any other point $y \in G x$ of the orbit of x, the stabilizer of G_{y} is $G_{y}=g G_{x} g^{-1}$ for some $g \in G$. In particular, for finite groups, all the stabilizers of points from the same orbit have the same number of elements.
- Since $y=g x$ for some $g \in G$, then $G_{y}=g G_{x} g^{-1}$. Check that it indeed works!
- Note: the formula $g . h:=g h g^{-1}$ actually defines an action of G on itself. This action is called conjugation. Moreover, for each g, $f_{g}: G \rightarrow G$ defined by $f_{g}(h)=g h g^{-1}$ is an isomorphism!

Proof of Polya's Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

where $c(g)$ is the number of cycles of g as a permutation of X.

Proof of Polya's Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_{n} be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_{n}.

Proof of Polya's Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_{n} be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_{n}.
- Let's instead count the pairs (g, C) with $C \in X_{n}$ a coloring and $g \in G_{C} \subset G$ an element of G preserving C.

Proof of Polya's Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_{n} be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_{n}.
- Let's instead count the pairs (g, C) with $C \in X_{n}$ a coloring and $g \in G_{C} \subset G$ an element of G preserving C.
- The orbit $G C$ of C has $|G| /\left|G_{C}\right|$ elements (used Lemma 1).

Proof of Polya's Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$
N(n)=\frac{1}{|G|} \sum_{g \in G} n^{c(g)}
$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_{n} be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_{n}.
- Let's instead count the pairs (g, C) with $C \in X_{n}$ a coloring and $g \in G_{C} \subset G$ an element of G preserving C.
- The orbit $G C$ of C has $|G| /\left|G_{C}\right|$ elements (used Lemma 1).
- Each element of $G C$ will appear $\left|G_{C}\right|$ times in our counting (used Lemma 2).
- Thus each orbit of X_{n} will appear $\left|G_{C}\right| \cdot|G| /\left|G_{C}\right|=|G|$ many times in our counting. So to find $N(n)$ we will have to divide the result of

Proof of Polya's Theorem

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.

Proof of Polya's Theorem

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each $g \in G$, let's count in how many pairs (g, C) is can appear, i.e. we need to find for each g how many colorings are invariant under g.

Proof of Polya's Theorem

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each $g \in G$, let's count in how many pairs (g, C) is can appear, i.e. we need to find for each g how many colorings are invariant under g.
- Decomposing X into orbits (=cycles) of g, we see that the color along each cycle must be constant, and that's the only restriction.

Proof of Polya's Theorem

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each $g \in G$, let's count in how many pairs (g, C) is can appear, i.e. we need to find for each g how many colorings are invariant under g.
- Decomposing X into orbits (=cycles) of g, we see that the color along each cycle must be constant, and that's the only restriction.
- This gives $n^{c(g)}$ invariant colorings.

Proof of Polya's Theorem

- Want: to count pairs (g, C) with C being a coloring of X, and $g \in G$ preserving C.
- For each $g \in G$, let's count in how many pairs (g, C) is can appear, i.e. we need to find for each g how many colorings are invariant under g.
- Decomposing X into orbits (=cycles) of g, we see that the color along each cycle must be constant, and that's the only restriction.
- This gives $n^{c(g)}$ invariant colorings.
- Summing over all $g \in G$ and dividing by $|G|$ gives the required formula.

Weighted Polya theorem

Let $c_{m}(g)$ denote the number of cycles of length m in $g \in G$ when permuting a finite set X.

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly r_{i} occurrences of the i-th color is the coefficient of $t_{1}^{r_{1}} \ldots t_{n}^{r_{n}}$ in the polynomial

$$
P\left(t_{1}, \ldots, t_{n}\right)=\frac{1}{|G|} \sum_{g \in G} \prod_{m \geq 1}\left(t_{1}^{m}+\cdots+t_{n}^{m}\right)^{c_{m}(g)}
$$

Weighted Polya theorem

Let $c_{m}(g)$ denote the number of cycles of length m in $g \in G$ when permuting a finite set X.

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly r_{i} occurrences of the i-th color is the coefficient of $t_{1}^{r_{1}} \ldots t_{n}^{r_{n}}$ in the polynomial

$$
P\left(t_{1}, \ldots, t_{n}\right)=\frac{1}{|G|} \sum_{g \in G} \prod_{m \geq 1}\left(t_{1}^{m}+\cdots+t_{n}^{m}\right)^{c_{m}(g)}
$$

- The previous formula is obtained by putting $t_{1}=\cdots=t_{n}=1$.

Weighted Polya theorem

Let $c_{m}(g)$ denote the number of cycles of length m in $g \in G$ when permuting a finite set X.

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly r_{i} occurrences of the i-th color is the coefficient of $t_{1}^{r_{1}} \ldots t_{n}^{r_{n}}$ in the polynomial

$$
P\left(t_{1}, \ldots, t_{n}\right)=\frac{1}{|G|} \sum_{g \in G} \prod_{m \geq 1}\left(t_{1}^{m}+\cdots+t_{n}^{m}\right)^{c_{m}(g)}
$$

- The previous formula is obtained by putting $t_{1}=\cdots=t_{n}=1$.
- What is the number of necklaces with exactly 3 white and 3 black beads?

