The genetics of hair shaft disorders

Amy S. Cheng, MD,^a and Susan J. Bayliss, MD^{b,c} Saint Louis, Missouri

Many of the genes causing hair shaft defects have recently been elucidated. This continuing medical education article discusses the major types of hair shaft defects and associated syndromes and includes a review of histologic features, diagnostic modalities, and findings in the field of genetics, biochemistry, and molecular biology. Although genetic hair shaft abnormalities are uncommon in general dermatology practice, new information about genetic causes has allowed for a better understanding of the underlying pathophysiologies. (J Am Acad Dermatol 2008;59:1-22.)

Learning objective: At the conclusion of this article, the reader should be familiar with the clinical presentation and histologic characteristics of hair shaft defects and associated genetic diseases. The reader should be able to recognize disorders with hair shaft abnormalities, conduct appropriate referrals and order appropriate tests in disease evaluation, and select the best treatment or supportive care for patients with hair shaft defects.

EVALUATION OF THE HAIR

For the student of hair abnormalities, a full review of microscopic findings and basic anatomy can be found in the textbook Disorders of Hair Growth by Elise Olsen,¹ especially the chapter on "Hair Shaft Disorders" by David Whiting, which offers a thorough review of the subject.¹ The recognition of the anatomic characteristics of normal hair and the effects of environmental factors are important when evaluating a patient for hair abnormalities. The normal hair cycle of anagen, catagen, and telogen is important in the foundational knowledge of hair, as is the microscopic structure of the hair shaft (Fig 1).

The normal hair cycle

Hair follicles produce hairs that range in size from minute vellus hair to long, thick terminal hair, and are divided anatomically into bulb, suprabulbar, isthmus, and infundibular zones.² Each follicle is ectodermally derived from hair germ cells in the developing embryo, the development of which

Conflicts of interest: None declared.

progresses via interactions with the mesenchymal dermal papillae, leading to the formation of anagen hairs with complete follicular components, including sebaceous and apocrine glands.³

Anagen hair. The hair shaft is composed of three layers, called the medulla, cortex, and cuticle (Fig 1). The medulla lies in the center of the shaft and contains granules with citrulline, an amino acid, which is unique to the medulla and internal root sheath (IRS). The cortex forms the bulk of the shaft, and its outermost layer, the cuticle, interlocks with the IRS cuticle. The IRS also consists of three layers, including the IRS cuticle (the innermost layer), the Huxley layer, and the Henle layer (the outermost layer). Keratinization of the IRS, which first begins in the Henle layer, provides supports to the hair shaft up to the level of the isthmus, at which point the IRS disintegrates. Keratinization abnormalities in the IRS are involved in the pathogenesis of certain hair shaft defects, such as loose anagen syndrome (LAS). Trichilemmal keratinization begins at the level of the isthmus, where keratinization does not occur with the formation of a granular layer, and begins epidermal keratinization with the formation of both stratum granulosum and corneum only at the level of the infundibulum.² The hair cuticle can be divided into different sections: endocuticle (the innermost), exocuticle, exocuticular A-layer, which contains high amounts of sulfur, and fiber cuticle surface membrane (the outermost).^{4,5} Finally, the last two layers of the follicular unit consist of the vitreous layer (a periodic acid-Schiff-positive and diastase-resistant zone which thickens during the early catagen phase), and a fibrous root sheath.²

From the Departments of Dermatology at Saint Louis University School of Medicine^a; the Division of Medicine and Pediatrics, Washington University School of Medicine^b; and the Department of Pediatric Dermatology Saint Louis Children's Hospital.^c Funding sources: None.

Reprint requests: Amy S. Cheng, MD, Department of Dermatology, Saint Louis University, School of Medicine, 1755 S Grand Ave, Saint Louis, MO 63104. E-mail: amscheng@hotmail.com. 0190-9622/\$34.00

^{© 2008} by the American Academy of Dermatology, Inc. doi:10.1016/j.jaad.2008.04.002

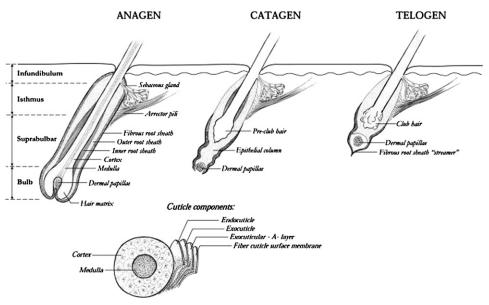
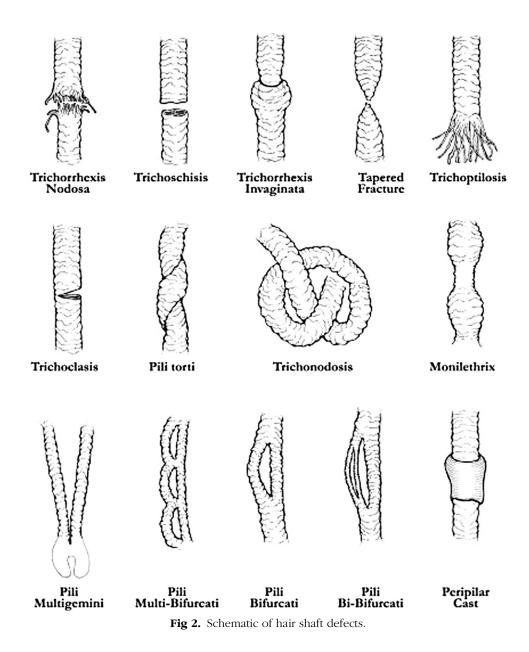


Fig 1. Schematic of anagen, catagen, and telogen hair.

The bulb of a follicular unit consists of the dermal papillae, the lowest portion of the fibrous sheath, and matrix cells whose replication forms the hair shaft. The suprabulbar region lies between the bulb and the isthmus. The isthmus lies between the attachment of the arrector pili muscle and the entry of the sebaceous duct, and the infundibulum lies above the entry to the sebaceous duct to the surface epithelium.

Anagen hairs have indented elongated roots with pigmented adjacent shafts. In the scalp, anagen follicles usually grow from 2 to 7 years, while shorter hairs and vellus hairs have more abbreviated anagen growth periods. Anagen follicles are actively replicating and therefore are especially susceptible to nutritional deficiencies and metabolic insults. They are covered by intact long inner root and outer root sheaths and are rooted deeply in the reticular dermis. Therefore, anagen hairs are difficult to detach, and do not come off with regular brushing of hair.


Catagen hair. During this phase, matrix cells retract from the dermal papillae and degenerate.^{2,6} Early on, the vitreous layer thickens and a group of matrix and ORS cells begins to form the presumptive club of the follicle (Fig 1).² As catagen phase continues, the disintegration of the epithelial column, vitreous layer, IRS, and proximal ORS occur, along with the cessation of pigment formation. These changes lead to the migration of the dermal papillae and follicular unit towards more superficial layers of the dermis. Catagen hairs usually represent approximately 1% of all scalp hairs, and therefore are usually not easily found on a pull test or biopsy.

Telogen hair. Telogen hairs have short, white, club-shaped roots, and lack both an ORS and an IRS

(Fig 1).^{2,7} Pigment is lacking in the hair shaft adjacent to the root, and the vitreous and epithelium columns have regressed at this point. With the formation of the new anagen hair below the club, the developing follicle will eventually replace the telogen hair resting above, leading to shedding of an average of 50 to 100 scalp hairs a day. Telogen hairs normally consist of 6% to 10% of all terminal scalp hair. Telogen hairs are usually located more superficially in the papillary dermis, are no longer firmly anchored, and are easy to detach with a pull test or normal hair brushing.

EVALUATION OF THE HAIR SHAFT

The initial evaluation of a patient should start with a good history, physical examination, and review of symptoms. A pull test, which is performed using gentle traction on the patient's hairs, can be used to easily determine a weakness in anchoring of the hairs on the scalp.¹ For example, telogen effluvium and LAS will both release more hairs than normal. Usually 40 to 60 hairs are grasped and gentle traction is used on a pull test. Telogen hairs should roughly comprise 10% of the scalp hairs, so usually 4 to 6 or fewer hairs extracted is considered normal ($\leq 10\%$). Next, hair shafts should be evaluated by light microscopy with dry-mounting on a glass slide followed by application of a coverslip, or using glass slides previously coated with double-stick clear tape.⁸ A more permanent way of looking at individual haft shafts is to use a mounting medium^{9,10} (Cytoseal 60; Thermo Fisher Scientific, Waltham, MA) and observing the hairs after the medium has dried. It should be kept in mind that normal patients can have occasional hair shaft anomalies which are not clinically relevant.¹

GENETIC DISEASES MOST COMMONLY ASSOCIATED WITH HAIR SHAFT DISORDERS

In order to understand the genetics of hair shaft disorders, the nomenclature for the specific hair anomalies must be understood and recognized (Fig 2). Table I lists the diseases associated with hair shaft abnormalities that are discussed in this paper; Table II separates hair shaft disorders into those with or without increased hair fragility.

Trichorrhexis nodosa

In trichorrhexis nodosa (TN), beaded swellings associated with loss of cuticle on the hair shaft are seen, along with a microscopic appearance of frayed cortical fibers pushed up against each other like two paintbrushes (Fig 3). TN is traumatic in origin and can affect hairs weakened by congenital or acquired disorders. Acquired proximal TN is most commonly seen in people with very curly hair who style their hair with chemicals and excessive mechanical trauma. Breakage of the proximal hair shaft is prominent. Acquired distal TN ("split ends") shows breakage of the distal hair shaft and is caused by mechanical trauma and weathering. Congenital TN can be seen alone and has been reported in certain genodermatoses and metabolic disorders, and is discussed further below.

Argininosuccinicaciduria. TN occurs in approximately 50% of cases of argininosuccinicaciduria,¹¹ an inborn error of urea synthesis caused by argininosuccinate lyase (ASL) deficiency.¹² ASL

Table I. Hair shaft and asso	ociated disorders
------------------------------	-------------------

Trichorrhexis nodosa
Argininosuccinicaciduria
Citrullinemia
Trichoschisis
Trichothiodystrophy
Trichorrhexis invaginata
Netherton syndrome
Monilethrix
Pili torti
Bjornstad syndrome
Crandall syndrome
Menkes syndrome
Woolly hair
Naxos disease
Carvajal syndrome
Naxos-like disease
Woolly hair and skin fragility syndrome
Diffuse partial woolly hair
Woolly hair nevus
Curly hair
CHAND syndrome
Costello syndrome
Noonan syndrome
Miscellaneous
Marie Unna hypotrichosis
Uncombable hair syndrome
Loose anagen syndrome
Pili annulati
Mitochondrial disorders

catalyzes the formation of arginine and fumarate from argininosuccinate in the urea cycle, and deficiency leads to an impairment of nitrogenous metabolism and excretion.^{13,14} Accumulation of nitrogenous waste products can lead to organ toxicity, seizures, hyperanmonemic coma, neurologic damage, and growth retardation.^{13,15,16}

ASL is a homotetrameric enzyme¹⁷ that has been mapped to region pter \rightarrow 22 on chromosome 7.¹⁸⁻²⁰ Genetic heterogeneity at this locus, along with the variable phenotype of different mutations,^{21,22} results in a wide clinical spectrum of disease presentation and partly accounts for the three major clinical forms of argininosuccinicaciduria.²³⁻²⁵

The most severe phenotype occurs at birth, with the symptoms of lethargy, seizures, and respiratory distress culminating in early death if not treated early. Less severe disease presents in either the first few months of life (with mental retardation, developmental delay, and hepatomegaly) or in early childhood (with psychomotor retardation, mental retardation, and central nervous system [CNS] abnormalities). Hair is usually normal at birth, with later development of dry, dull hair and TN in infancy or early childhood (Fig 4). Low serum arginine and

Table II. Hair shaft disorders distinguished by hair fragility

Hair shaft disorders with increased fragility Trichorrhexis nodosa
Trichoschisis
Trichorrhexis invaginata
Pili torti
Monilethrix
Hair shaft disorders without increased fragility
Pili annulati
Loose anagen hair syndrome
Uncombable hair syndrome

Fig 3. Light microscopy of trichorrhexis nodosa.

elevated serum and urine citrulline values are found on laboratory evaluation.

Arginine supplementation can be beneficial in patients with less severe deficiencies and can normalize systemic acidosis and improve hair texture and neurologic development; this should be initiated at diagnosis.^{11,13} Arginine supplementation, however, does not reverse the deficiency in severely affected patients.^{11,16,26}

Citrullinemia. Citrullinemia is caused by a deficiency of the urea cycle enzyme argininosuccinic acid synthetase (AAS). Citrulline is a normal amino acid constituent of the hair medulla and IRS that catalyzes the formation of argininosuccinate from citrulline and aspartate. Patients with infantile citrullinemia present with hyperammonemia, excess citrulline, and low plasma arginine.²⁷ The AAS gene is located on chromosome 9q34.^{28,29}

There are two types of citrullinemia: infantile and adult-onset. Infantile citrullinemia results in the disturbance of AAS in all tissues. In the hair, this leads to findings of TN,^{30,31} atrophic hair bulbs, and/or pili torti (PT).³² A rash similar to acrodermatitis enter-opathica has been reported in some patients.^{27,31} Clinically, manifestations are similar to argininosuc-cinicaciduria. Adult-onset citrullinemia differs from infantile citrullinemia because the AAS deficiency is

Fig 4. Patient with argininosuccinicaciduria.

liver-specific with an abnormal transporter protein citrin. This gene is located on chromosome 7q21.3.²⁹

Trichoschisis

Trichothiodystrophy. Trichothiodystrophy (TTD) is a clinically diverse autosomal recessive neuroectodermal disorder with brittle hair and low sulfur content of hair³³ caused by a mutation of a regulatory gene involved in the transcription of DNA^{34,35} (Fig 5). Trichoschisis is a common finding,³⁶ and involvement of all body hair has been reported^{37,38} (Fig 6). Trichoschisis is characterized by a clean transverse fracture of the hair shaft. The low cystine (sulfur) content of hair is postulated to account for cuticular and cortical weakness.

TTD is a heterogeneous disorder with a list of more than 100 variable features.³⁵ Eight subgroups have been categorized by Itin et al³⁵ and include BIDS (*br*ittle hair, *i*ntellectual impairment, *d*ecreased fertility, and short stature), IBIDS (BIDS + *i*chthyosis), PIBIDS (BIDS + *p*hotosensitivity), SIBIDS (otosclerosis + IBIDS), ONMR (*o*nychotrichodysplasia, *c*hronic neutropenia, and *m*entral *r*etardation), and Tay, Sabinas, and Pollitt syndromes.^{35,39-53}

Trichoschisis is characteristically seen on light microscopy. Under polarized light, the characteristic "tiger tail" pattern of alternating bright and dark diagonal bands is seen in most TTD patients and is rarely found in normal individuals.⁵⁴ The underlying cause of the tiger tail pattern is unknown, but it is hypothesized to be secondary to the irregular sulfur content of the hair shaft.⁵⁵ This pattern can be seen in utero,⁵⁶ but its absence does not exclude the diagnosis.⁵⁷ The sulfur and cystine content of the hair is reduced to approximately 50% in both the cuticle and the cortex,⁵⁸ with a marked absence of high sulfur content proteins^{59,60} and an increase in low sulfur content proteins in the hair shaft.³³

TTD, photosensitivity, and impaired DNA repair. Some patients with TTD exhibit photosensitivity and

Fig 5. Patient with trichothiodystrophy. Note the short sparse hair.

Fig 6. Light microscopy of trichoschisis. Note the clean break in the hair shaft.

impaired DNA repair mechanisms.⁶¹⁻⁶⁸ These DNA repair defects have been linked to abnormalities in nucleotide excision repair (NER) which eliminates ultraviolet light-induced cyclobutane pyrimidine dimers, pyrimidine pyrimodone photoproducts (6-4PP), and intrastrand crosslinks in the DNA.⁶⁹ NER comprises a complex-overlapping network of enzymatic pathways for DNA repair with approximately 30 gene products involved.⁷⁰ Studies have found that in TTD, 95% of photosensitive patients with NER defects can be assigned to the xeroderma pigmentosum (XP) complement group D (XPD).³⁵ In addition, defects in two other genes, the XP complement group B gene (XPB) and TTD-A gene, have been identified in a few patients.⁶⁴ XPD, first identified as excision repair cross-complementing gene (ERCC2),⁷¹ is located on chromosome 19q13.2.72 XPB is mapped to chromosome 2q21.73 TTD patients with defective DNA repair are not at increased risk for developing skin cancer, in contrast to patients with XP.68 Hypotheses for this discrepancy include differences in activation of apoptosis,⁷⁴ function of natural killer cells, expression of molecules such as intracellular adhesion molecule-1,75 and mutation-induced changes in protein structure.⁷⁶

XPD and XPB are two of seven known XP genes, and encode DNA helicases that are subunits in the 10 protein transcription initiation factor IIH (TFIIH) complex, a transcription factor required for RNA



Fig 7. Patient with Netherton syndrome.

polymerase II-mediated transcription and involved in nucleotide excision repair.^{35,65} Its function has only recently been elucidated.

TTD-A encodes the tenth subunit of the TFIIH complex, and is an 8-kDa protein that has been designated GTF2H5 in the human homolog.^{77,78} This protein has been found to participate in ultraviolet light repair and maintainence of TFIIH levels. A mutation of the gene for TTD-A leads to decreased intracellular TFIIH levels,^{35,79} which is similar to TTD patients with XPB and XPD gene defects.^{77,78,80} It has been theorized that different XP gene mutations cause varying defects in DNA repair and/or gene transcription, leading to the pathognomonic presentations in each syndrome.^{34,35,59,81-93}

In a small group of patients, elevated temperatures can cause in vitro instability of TFIIH.^{35,79,88,94} It has been suggested that fever may cause worsening of TTD features in subgroups of patients.

Non-photosensitive TTD: Genetically heterogeneous disorder. Mutations in chromosome 7p14 at C7orf11 designated TTD nonphotosensitive 1 (TTDN1), has been identified in two types of non-photosensitive TTD: Amish brittle-hair syndrome and non-photosensitive TTD with mental retardation and/or decreased fertility.⁹⁵ The function of C7orf11 is unknown, but is expressed in the epidermis, fibroblasts, and hair follicles, and may play a role in transcriptional processes.⁹⁵ Mutation of C7orf11 does not alter TFIIH levels, suggesting that C7orf11 differs from photosensitive TTD.⁹⁵ This mutation has not been found in patients with Sabinas or Pollitt syndromes, which are two other variants of non-photosensitive TTD.

Trichorrhexis invaginata

Netherton syndrome. Netherton syndrome (NS) is an autosomal recessive disorder with variable penetrance⁹⁶⁻⁹⁹ defined by a triad of symptoms: ichthyosis linearis circumflexa, trichorrhexis invaginata (TI), and an atopic diathesis^{96,100-102} (Fig 7). TI usually appears in infancy,⁵⁷ but can develop

Fig 8. Light microscopy of trichorrhexis invaginata.

later.¹⁰³⁻¹⁰⁵ Clinically, the scalp hair is short and brittle and the eyebrows may be affected.¹⁰⁶

The extent of skin findings in NS is highly variable and ranges from ichthyosis linearis circumflexa in milder cases^{107,108} to nonbullous congenital ichthyosiform erythroderma (CIE)^{96,109} with severe erythroderma. Ichthyosis linearis circumflexa is a polycyclic and serpiginous scaling eruption that can change in pattern with a characteristic, double-edged scale on its borders. In NS, babies may be born with a collodion membrane, generalized scaling, or erythema.¹¹⁰ Failure to thrive, recurrent infections, and dehydration can be attributable to impaired epidermal barrier function early in life.^{103,109,111,112}

Atopic dermatitis, hay fever, angioedema, urticaria, allergic rhinitis, hypereosinophilia, recurrent skin infections, and elevated immunoglobulin E (IgE) levels can be found in many patients.^{109,113} Short stature, growth retardation, and mental deficits can occur.¹¹⁴ Other Ig levels are usually normal, although there are reports of IgG subclass deficiency.^{96,109} Intermittent aminoaciduria has been described in some cases.^{101,115}

Microscopically, TI ("bamboo hair") demonstrates the distal hair shaft invaginating into the proximal hair shaft (Fig 8). As the hair breaks at this area of invagination, sometimes only the proximal invaginated hair shaft can be seen ("golf-tee hair").

NS is caused by an defect in the SPINK5 gene on chromosome $5q32^{116}$ encoding the serine protease inhibitor LEKTI (lymphoepithelial Kazal-type related inhibitor).117,118 Absence of LEKTI is thought to lead to the premature activation of stratum corneum tryptic/chymotryptic enzymes, resulting in proteolysis of desmosomes and adhesion molecules.^{119,120} Another theory is that it causes prematurely activation of phospholipase A2¹¹⁹ which stimulates early lamellar body secretion.^{119,121} Electron microscopy (EM) findings of premature lamellar body secretion in the stratum corneum from skin biopsies may be caused by the dysregulation of serine proteases involved in control and coordination of receptors associated with keratinocyte maturation, lamellar secretion, and normal desquamation.¹²⁰

The correlation between the type of SPINK5 mutation and the specific phenotype has yet to be

Fig 9. Patient with monilethrix.

elucidated.^{104,117,120} A study of six coding polymorphisms in SPINK5 found that a Glu420 \rightarrow Lys mutation is linked to atopy in two extended family groups.¹²²

Hair breakage may improve with age, perhaps because hair shafts become thicker. The use of oral retinoids has yielded mixed results.^{96,112,123} Any topical medication should be used with extreme caution because of skin barrier dysfunction, which increases the risk for marked systemic absorption and toxicity.^{119,124}

Monilethrix

Monilethrix (beaded hair) is characterized by hair shafts with elliptical nodes at regular intervals with intervening, non-medullated tapered fragile constrictions.¹²⁵ Hairs rarely grow beyond 1 to 2 cm in length because of breakage (Fig 9), resulting in a stubbly appearance. Inheritance is usually autosomal dominant with high penetrance and variable expressivity.^{126,127} Other common findings are keratotic follicular papules at the nape of the neck, keratosis pilaris, and TN. Monilethrix usually presents in early childhood, but it has been reported as late as the second decade of life.¹²⁸ A diagnosis can be elucidated by examining hairs by light microscopy¹²⁹ (Figs 10 and 11). At the internodes, electron microscopy reveals increased longitudinal ridging with fluting.^{130,131}

The gene for monilethrix is linked to the type II keratin gene cluster on chromosome 12q13.¹³²⁻¹³⁴ Studies have isolated mutations in type II hair cortex keratins hHB6 and hHB1. The gene is divided structurally into α -helical rod domains, helix initiation motifs (HIM), and helix termination motifs (HTM).

Fig 10. Light microscopy of the nodes and internodes seen in monilethrix.

Fig 11. Light microscopy highlighting the medullated nodes and nonmedullated internodes in the hair of a patient with monilethrix.

The hHB6 and hHB1 gene products are both expressed in the hair cortex.¹³⁵ The most common mutation involves lysine substitution of a high conserved glutamic acid residue in the HTM of the hHB6 gene (E413K).¹³⁵⁻¹³⁷ No definitive link between mutational genotype and clinical phenotype has been identified.^{138,139} Linkage studies have excluded type I cortex keratins and other genes involved in hair shaft formation, such as trichohyalin, involucrin, ultra-high sulfur matrix proteins, and type 1 to 3 transglutaminases,¹⁴⁰ but the clinical heterogeneity seen in monilethrix may still result from other related gene products^{135,139,141-147} and environmental factors.^{127,138,148}

Although there are no specific treatments, topical minoxidil¹⁴⁹ and oral etretinate have all been reported to improve hair growth.^{150,151}

Pili torti

PT is characterized by hair shafts which are flattened and twist with an angle of $180^{\circ 152}$ (Figs 12 and 13). Fractures occur within the twists, which is the weakest point.

Classic PT. The original cases of classic PT reported by Ronchese 153 in 1932 were described

Fig 12. Light microscopy of pili torti with visible twisting of the hair shaft.

with thin fragile hair of eyebrows, eyelashes, and the entire scalp. PT presents in the first 2 years of life.¹⁵² Inheritance patterns can be autosomal dominant,¹⁵² autosomal recessive,¹⁵⁴ or sporadic.¹⁵⁵ A limited number of cases have been reported, and no gene defect has been elucidated.

Late-onset PT. Beare¹⁵⁶ described an autosomal dominant disorder with the onset of PT in childhood or after puberty in white patients with black unruly hair and non-progressive mental deficiency. The disease typically presents with breakage of eyebrows and eyelashes.

PT and hearing loss (Bjornstad and Crandall syndromes). Bjornstad syndrome is a rare disorder characterized by congenital sensorineural hearing loss and PT¹⁵⁷⁻¹⁶⁴ which has been mapped to chromosone 2q34-36.^{162,165} Crandall syndrome is similar with findings of hypogonadism.^{161,164} Mental retardation is rarely associated^{161,166,167} with either. Typically, patients develop PT in the first 2 years of life, and have evidence of hearing loss by 4 years of age. The severity of the hair shaft abnormality has been demonstrated to correlate with the severity of deafness.^{164,167}

Genetic mapping of the region 2q34-36 revealed a mutation in BCS1L, which encodes an ATPase required for the assembly of a mitochondrial complex.¹⁶⁸ The BCS1L protein plays a role in the assembly of mitochondrial complex III and in the electron-transport chain of energy production.¹⁶⁸ Patients with Bjornstad syndrome have mutations in BCS1L that alter protein-protein interactions, whereas patients with GRACILE (growth retardation, *a*minoaciduria, *c*holestasis, *i*ron overload, *l*actic acidosis and *e*arly death) syndrome, a multisystem lethal mitochondrial disorder, have altered adenosine triphosphate binding.¹⁶⁸ Most cases are autosomal recessive, but two reports suggest dominant

Fig 13. Patient with pili torti.

transmission.^{158,169} Early auditory testing is important with all children with PT.

PT and ectodermal dysplasias. As part of an ectodermal dysplasia (ED), hair can be affected. ED is a heterogenous group of hereditary diseases caused by developmental anomalies during embryogenesis of one or more epidermal appendages.^{170,171} PT has been reported with different EDs.^{153,154,172-184} (Table III).

PT and other associations. PT has been reported in association with other genetic hair shaft abnormalities^{32,98,105,127,183-189} (Table IV).

Menkes syndrome. The primary hair finding in classic Menkes syndrome (MS; Menkes kinky hair syndrome) is PT, but other defects, such as TN, have been described.^{190,191} This X-linked recessive condition is associated with skin and hair hypopigmentation, progressive neurologic degeneration with mental retardation, bone and connective tissue alterations with soft doughy skin and joint laxity, and vascular abnormalities, including aneurysms and bladder diverticula.¹⁹²⁻¹⁹⁴ Patients exhibit low serum concentrations of copper and ceruloplasmin. Most patients appear normal at birth and then typically develop neurologic deteroriation, lethargy, and a loss of milestones in the second or third months of life. Hairs become sparse, short, brittle, and depigmented, and they fracture easily and resemble steel wool.⁷

Cases affecting females have been reported¹⁹⁵⁻¹⁹⁷ because of X-chromosome translocations¹⁹⁶⁻¹⁹⁹ or 45X/46XX mosaicism. Female heterozygotes may exhibit mild PT on close inspection.²⁰⁰

MS is caused by a defective copper export from cells with normal copper absorption into cells. The Menkes gene (MNK) has been mapped to Xq13.3²⁰¹⁻²⁰³ and encodes ATP7A, a P-type cation transporting ATPase localized to the plasma membrane and the trans-Golgi network (TGN).^{204,205} At normal levels of intracellular copper, ATP7A is concentrated at the

Cheng and Bayliss 9

Table III. Ectodermal dysplasias/defects reported with pili torti

Widely spaced teeth and enamel hypoplasia ^{153,172} Acrofacial dysostosis of the palagonia type ^{173,174}
Tooth agenesis ¹⁷⁵
Arthrogryphosis ¹⁷⁹
Nail dystrophy ¹⁸⁰
Clefting ¹⁷⁶⁻¹⁷⁸
Corneal opacities ¹⁵⁴
Trichodysplasiaxeroderma ¹⁸¹
Hypohidrotic ectodermal dysplasia ¹⁸²
Ichthyosis ^{154,183,184}

TGN and functions to transfer copper into copperdependent enzymes, such as lysyl oxidase. With increased intracellular copper absorbed through the hCTR1 transporter, ATP7A is redistributed to small cytoplasmic vesicles and to the plasma membrane, functioning to pump copper out of cells to prevent toxicity.²⁰⁴⁻²⁰⁶ If copper levels fall to normal, ATP7A returns to the TGN network and resumes transfer of copper. Mutations in the MNK gene lead to accumulation of intracellular copper and prevent copper transport to copper dependent enzymes such as lysyl oxidase. With excess intracellular copper, RNA synthesis of metallothionine is triggered, which chelates the accumulated copper to prevent cellular toxicity, but further reducing the transfer of copper to enzymes.

Accumulation of copper occurs in intestinal enterocytes, which absorb copper from nutritional sources and in renal tubular cells, which absorb copper present in the glomerular filtrate. With inadequate functional transfer of copper from the intestines and kidney, copper cannot be exported into the enterohepatic and systemic circulation for liver absorption and processing respectively. The enzyme ATP7A is also expressed in cells involved in copper transport across the blood—brain barrier and cardiac myocytes, leading to low levels of copper in these organs.

Functional deficiency of copper-dependent enzymes is involved in collagen/elastin/keratin crosslinkage,²⁰⁷ myelin synthesis, free radical defense, melanin formation, and electron transport chain function,^{204,208,209} and results in clinical features (Table V). Keratinization abnormalities¹⁹⁰ of the hair shaft, with impaired formation of disulfide cross-links in the keratin,¹⁹³ are likely to be secondary to dysfunction of copper-dependent enzymes, leading to increased hair fragility.

Milder variants of classic MS arise from mutations in the Menkes genetic locus that allow some residual ATP7A function, primarily from missense mutations that result in altered mRNA splicing.²⁰⁴ Occipital

Table IV. Disorders associated with pili torti

Monilethrix¹²⁷ Pseudomonilethrix¹⁸⁵ Woolly hair²²¹ Mitochondrial disorders¹⁸⁶ Netherton syndrome¹⁸⁴ Bazex syndrome¹⁸⁹ Longitudinal grooves³²³ Trichorrhexis nodosa¹⁸⁷ Trichorrhexis invaginata^{98,105,183} Citrullinemia³² Laron syndrome¹⁸⁸

horn syndrome (OHS) manifests with PT and connective tissue abnormalities, such as soft doughy lax skin and diverticula, and little neurologic aberration. It is called OHS because of bony projections (exostoses) which occur on the occipital bone of the skull.

Mouse models exist for MS and its variants,^{205,206,210-214} where the effects of decreased levels closely parallel findings in humans. From mouse and human models, phenotypic expression resulting from the ATP7A mutation is determined by the effect of the mutation on protein function, intracellular localization, and trafficking.²⁰⁴

Treatment of MS syndrome consists of infusions with copper-histidine. Copper-histidine increases serum copper levels and can permit survival into adolescence. However, many children do not survive beyond the first decade of life, and death is caused by a multitude of factors including neurologic deteroriation and organ failure. The full function of copper histidine and how it works is not well characterized. It must be administered early in life, because it may prevent but not reverse permanent neurologic damage.²¹⁵⁻²²⁰ Copper-histidine therapy has limited effects on connective tissue abnormalities. Postmortem examination of a 10-year-old child treated with copper-histidine revealed straight coarse hypopigmented hair, skeletal abnormalities, vascular degeneration, and bladder diverticula, but limited CNS pathology and normal mentation. Treatment is thought to alter its phenotype to one that is closer to OHS if treatment is implemented early.^{217,218}

Woolly hair

Woolly hair (WH) occurs in persons of non-African ancestry.¹³¹ Hairs are tightly curled, with an average curl diameter of 0.5 cm,²²¹ and can also contain wide twists over several millimeters along its own longitudinal axis.²²² It was originally described by Hutchinson²²¹ as "pseudopili-torti." Hair shafts are ovoid, flattened, or irregular.²²¹⁻²²³ Associated hair findings may include increased hair fragility, TN,²²⁴

Enzyme	Function	Consequence of enzyme deficiency	
Lysyl oxidase	Cross-linking of collagen/elastin	Connective tissue abnormalities, laxity of skin/joints, vascular abnormalities, bony abnormalities, and bladder diverticula	
Tyrosinase	Melanin formation	Hypopigmentation	
Cytochrome c oxidase	Electron transport chain	Hypothermia, muscle weakness, ataxia, seizures, and energy deficiency	
Peptidylglycine a amidating monooxygenase (PAM)	Neuropeptide processing	Unknown, possible neurodegeneration	
Superoxide dismutase	Free radial scavenger	Low tolerance of oxidative stress, demyelination	
Cross-linkase	Cross-linkage of keratin	Coarse, brittle hair	
Dopamine B hydroxylase	Catecholamine production	Hypothalamic imbalance, hypothermia, hypotension	

Table V. Copper-dependent enzymes in Menkes syndrome

Adapted from Mercer²⁰⁴ and Peterson.²⁰⁸

trichoschisis, and pili annulati (PA).²²¹ The rate of hair growth is typically normal (approximately 1 cm/month), and the composition of keratin and amino acids do not differ from normal hair.

Hereditary dominant woolly hair. Hereditary dominant woolly hair usually affects the entire scalp and is seen either at birth or within the first few months of life.^{220,225} It usually occurs alone, but has been reported with PT and PA,²²¹ ocular problems, or keratosis pilaris.²²⁶⁻²³¹ The genetic defect is unknown.

Familial recessive woolly hair. Hair is fragile and fine with a light pale or blonde color²²¹ at birth, and the hair may not grow beyond the length of a few centimeters, probably secondary to a shortened anagen phase. The genetic defect is unknown.

Woolly hair with cardiac abnormalities: Naxos disease, Carvajal syndrome, and Naxoslike disease. In Naxos disease, WH is usually present at birth; palmoplantar keratoderma (PPK) usually develops during childhood. Arrhythmogenic right ventricular cardiomyopathy (ARVC)²³² begins to manifest during adolescence or early adulthood. Definitive diagnosis of ARVC requires biopsy of the myocardium showing fibrofatty replacement.²³³

Naxos disease has been mapped to chromosome 17q21 and is an autosomal recessive disorder. The candidate gene for this disorder is plakoglobin, a key component of desmosomal and tight junctions, and is found in the heart, skin, and hair.^{233,234} Carriers of Naxos disease can show minor phenotypic features, such as woolly hair, mild electrocardiographic abnormalities, and mild right ventricular dilatation without progression to ARVC.^{235,236} Mutational heterogeneity has been demonstrated in the Naxos gene locus, and may account for the variable phenotype in patients and carriers of the disease.²³⁵

Desmoplakin mutations have also been reported with WH and cardiomyopathy without keratoderma. Desmoplakin is a protein found in desmosomes in cell-cell junctions in the heart, skin, and hair. It contains three functional domains: an N-terminal domain that binds to cadherins (desmogleins and desmocollins) via plakoglobin and plakophilin interactions; a rod domain; and a C-terminal domain which binds intermediate filaments.²³⁷

Abnormalities in desmoplakin are involved in Carvajal syndrome, an autosomal recessive disorder with biventricular dilated cardiomyopathy, PPK, and WH.²³⁸ Mutation analysis of an Ecuadorian family with Carvajal syndrome demonstrated a 7901delG mutation in exon24 on chromosome 6, forming a premature stop codon. A truncated desmoplakin protein missing the terminal part of the C-terminal domain results.²³⁹ Postmortem analysis of a heart specimen from a patient with Carvajal syndrome demonstrated reductions in desmoplakin, plakoglobin, connexin 43 staining, and reduced levels of desmin, an intermediate filament protein, at the intercalated discs of cardiac myocytes.

Naxos-like disease is an autosomal recessive disorder with ARVC, WH, early-onset blistering on the knees, palms and soles, and dry skin.²⁴⁰ Skin biopsies of the blister sites demonstrate histology similar to pemphigus foliaceus on hemotoxylin—eosin staining. Mutation analysis demonstrates a missense mutation in the C-terminus of the desmoplakin protein.

The pathogenesis of WH and its associated findings is not well known. Hair follicle desmosomes contain desmoplakin, plakoglobin, and plakophilin1. Fragility at desmosomal junctions is hypothesized to dysregulate hair development leading to the common phenotype of WH.^{234,239,241} Plakoglobin has been shown to be important in hair follicle proliferation and differentiation.²⁴² However, the pathogenesis of WH, PPK, and cardiomyopathy has yet to be elucidated in desmosomal mutations. Even more confusing is the report of two Arab families with clinical findings consistent with Naxos disease without plakoglobin, desmoplakin, plakophillin, desmocollin, and desmoglein mutations.^{242,243}

Woolly hair without cardiac abnormalities. Woolly hair and skin fragility syndrome. WH and skin fragility syndrome consists of early-onset blistering, focal and diffuse PPK, WH, dystrophic nails, and alopecia.²⁴¹ It differs from Naxos-like disease in that there are no cardiac abnormalities. Blistering at the heels and lower extremities is reported during infancy and recurrent during childhood, and blistering can also affect the scalp and other regions of the body. It is associated with recurrent secondary infections with Staphylococcus aureus on the palms and soles. Electron microscopy of palmoplantar skin desmonstrates suprabasilar dysadhesion. Mutations in desmoplakin have been identified with this disorder, but there is no associated cardiac disorder. A patient with a plakophilin1 mutation was also reported to exhibit a similar phenotype, except the proband had short sparse hair without reported features of WH.²⁴⁴

Diffuse partial woolly hair. Autosomal dominant diffuse partial WH has been found in six members of a family²⁴⁵ and patients presented in early adult life. The underlying genetic defect is unknown. WHs are short, fine, and kinky. Normal-appearing family members had a smaller percentage of WHs interspersed within normal scalp hair, and therefore did not have any apparent clinical complaints, while clinically apparent members had a higher fraction of WHs. Another family was described with wavy hypopigmented, thin, and short hairs interspersed with normal-appearing straight hairs.²²¹ A trichogram (examination of hair roots by microscopy after epilation) of the wavy/WHs revealed a predominance of dysplastic anagen and telogen hairs without the presence of normal anagen hairs.

Spontaneous improvement in one adolescent-onset case has been noted.²⁴⁶ Cataracts,²²⁸ pupillary membranes, and retinal dysplasia have been reported.²²⁷

Woolly hair nevus. WH nevus (WHN) is a rare sporadic disorder that affects a localized area on the scalp and typically presents generally within the first 2 years of life, ^{247,248} although onset in a teenager has been reported.²⁴⁶ The hair is usually thinner and lighter in color when compared to the adjacent normal hairs.^{131,246} and examination reveals tightly curled hair with decreased cross-sectional diameter. Half of the cases reported have been associated with an epidermal or a congenital nevus, usually located ipsilaterally on the neck or arms.246,249,250 WHN syndrome has been reported with epidermal nevi, boney abnormalities, precocious puberty, speech and dental anomalies.^{251,252} WHN can follow Blaschko lines, suggesting that it may be a mosaic disorder. The genetic mutation has not been identified, and probably represents a variant of epidermal nevus syndrome.

Curly hair

Curly hair demonstrates large loose spiral locks. It can be seen in many genetic syndromes, including tricho-dento-osseous (TDO), CHAND (*curly bair, ankyloblepharon, and nail dysplasia*), Costello, and Noonan syndromes and lipoatrophic diabetes (Table VI).

With TDO, patients are born with diffuse curly hair that frequently straightens with age. Associated anomalies include enamel hypoplasia; small, eroded, widely spaced, and taurodont teeth (enlarged pulp chambers); otosclerosis, dolichocephaly (long and narrow cranium), and frontal bossing.^{226,253-256} TDO is autosomal dominant and the proposed mutant gene, *DLX3* on chromosome 17q21, is a homeobox gene important for embryonic development.

CHAND syndrome includes the symptoms above along with variable ataxia. 257 It is an autosomal recessive disorder, 258 and the gene mutation is unknown.

Costello syndrome is characterized by sparse curly hair, growth deficiency, mental retardation, coarse facies, loose skin on the hands and feet, nasal and perioral papillomata, and other variable features.²⁵⁹⁻²⁶³ There is also an increased risk of developing solid tumors, such as rhabdomyosarcoma, neuroblastoma, and transitional cell carcinoma. Twisting of the hair shaft has been demonstrated by light microscopy.²⁶⁴ HRAS mutations have been identified in 12 out of 13 patients with Costello syndrome in one study.²⁶⁵ RAS proto-oncogenes encode GTP-binding proteins that function in the mitogen-activated protein kinase pathway (MAPK), and play a role in cell regulation and proliferation.

Noonan syndrome is characterized by dysmorphic facies, ear and ocular anomalies, cardiovascular anomalies, multiple nevi, short stature, keratosis pilaris atrophicans, webbed neck, and either curly or woolly hair.^{231,266,267} It is an autosomal dominant disorder with near complete penetrance, and approximately one-half of all cases are caused by gain of function mutations in PTPN11, a gene encoding the SHP-2 tyrosine phosphatase.²⁶⁸ The SHP-2 protein is important in intracellular signal conduction and has effects on developmental processes.

Miscellaneous

Marie Unna hypotrichosis. In Marie Unna hypotrichosis (MUH), affected persons are born with normal to coarse sparse hair and eyebrows and develop progressive coarsening within the first few

Disorder	Hair features	Other features	Transmission/gene
Trichodento-osseou syndrome	s Curly hair at birth, straightens with age; no specific defects	Small, eroded, widely spaced teeth; enamel hypoplasia; taurodont teeth; frontal bossing; square jaw; dolicheocephaly; otosclerosis ^{226,254-256}	AD, gene on 17q21, ²⁵⁵ DLX3 (Homeobox gene)
CHAND syndrome	Curly hair at birth; no specific defects	Ankyloblepharon, nail dysplasias, ataxia (variable) ²⁵⁷	AD ²⁵⁷
Costello syndrome	Curly hair at birth	Growth deficiency; mental retardation; coarse facies; loose skin on hands/feet; nasal/perioral papillomata; brittle dystrophic nails; dark hyperpigmentation, hyperextensible fingers ^{259-262,324,325}	AR ^{259,260} or AD ^{260,325} HRAS ²⁶⁵
Noonan syndrome	Curly or woolly hair	Dysmorphic facies, ear and ocular anomalies, cardiovascular anomalies, short stature, webbed neck ^{231,267}	AD, PTPN11 gene ²⁶⁸

Table VI. Disorders associated with curly hair

years of life. Eyebrows, eyelashes, and axillary hair are also affected. On the scalp, hair loss typically starts in the parietal and vertex areas, with partial sparing of the posterior part of the occipital scalp. Heterogeneity of clinical presentations exist.²⁶⁹ Histologically early on, mild to moderate inflammation with little fibrosis is seen in the dermis.²⁷⁰ In the late stages, follicles are dramatically reduced in number.²⁶⁹⁻²⁷¹

MUH^{270,271-273} is an autosomal dominant disorder²⁷³ involving an unknown hair growth regulatory gene on chromosomal region 8p21.²⁷⁴⁻²⁷⁷ The exact gene for MUH has yet to be identified. Genetic heterogeneity likely exists based on recent studies linking MUH in a Chinese family to chromosome 1p21.1-1q21.3.²⁷⁸

A recently described entity, "progressive patterned scalp hypotrichosis," was found to have curly hair and a similar pattern of hair loss, but is distinct from MUH in several ways. A family of 22 members demonstrated progressive patterned scalp hypotrichosis with wiry/curly hair, onycholysis, and associated cleft lip and palate.²⁷⁹ This family had wiry hair starting at about 2 years of age. Onset of patterned alopecia developed from 15 to 23 years of age with an increased number of telogen hairs found on hair pull test. Distal onycholysis of the fingernails and facial clefting were reported in 5 members of the family with the hair anomaly, but were not features in any of the unaffected members. The gene is unknown.

Uncombable hair syndrome

Uncombable hair syndrome (UHS; also known as spun glass hair or pili trianguli et canaliculi) was first described in the French literature in 1973 by Dupre et al.²⁸⁰ The entire hair shaft is rigid with longitudinal grooving. On cross section, the shaft has a triangular shape.^{281,282} Scalp hair typically has greater than 50% involvement.²⁸³ Hair shafts are not twisted as in PT. The hair cannot be combed flat (Fig 14). Although it can be present in dark hair, it is usually not as noticeable. UHS usually manifests during childhood. Analysis of the hair shaft has found no consistent physical or chemical abnormalities,²⁸⁴⁻²⁸⁶ although one study demonstrated increased exocuticle high-sulfur protein content,²⁸⁶ and another study demonstrated decreased solubility of abnormal fibrous proteins in the hair shaft.^{286,287}

UHS is thought to arise from premature keratinization of a triangular-shaped IRS caused by an abnormally shaped dermal papilla.²⁸⁸ Another author suggested that longitudinal grooves arose from an asymmetric matrix defect.²⁸⁹ The definitive diagnosis of UHS is made by scanning electron microscopy,^{283,284,290} although it is easy to see on standard microscopy.

Familial cases show autosomal dominant inheritance with variable penetrance.²⁹¹⁻²⁹⁴ Associated anomalies are rare but have been described include: cataracts,^{294,295} anomalies in bone development,^{294,296-298} alopecia areata,²⁹⁰ PT,²⁹⁹ and lichen sclerosus.³⁰⁰

Hair tends to become more manageable with age, although the defect persists. A positive response to biotin has been reported in a few cases.^{283,284}

Loose anagen syndrome. In LAS, anagen hairs lack IRS and external root sheaths, have ruffled cuticles, and are easily pulled from the scalp³⁰¹⁻³⁰³ (Fig 15). Most patients are blonde girls older than 2 years of age (mean, 6 years). Symptoms may persist into adulthood. Adult-onset LAS is frequently misdiagnosed as telogen effluvium.^{304,305} More than 80% of the plucked anagen hairs are devoid of root sheaths.³⁰⁴ The hair is typically not brittle and has normal tensile strength. Gentle hair care is recommended.

Fig 14. Patient with uncombable hair syndrome.

The genetic defect in LAS has not been well characterized, but is thought to be a keratin defect.³⁰⁶ A mutation of keratin K6hf was found in three of nine families with autosomal dominant LAS. K6hf is a type II cytokeratin found exclusively in the companion layer connected to Henle layer via desmosomes. More than one keratin gene may be involved in the pathogenesis of LAS.³⁰⁶

There is evidence of autosomal dominant transmission with variable expression and incomplete penetrance,^{304,306,307} but sporadic cases and rare associations³⁰⁸⁻³¹⁰ have been reported.

Pili annulati

PA has characteristic alternating light and dark bands in the hair shafts that can be seen on clinical and microscopic exam. It is thought that this hair disorder is caused by the formation of abnormal air cavities in the hair shaft. It is usually clinically seen only detectable only in blonde or lightly pigmented hair,¹⁰ because the banding pattern caused by the air cavities tends to be obscured by the additional pigment in dark colored hair.

PA appears at birth or during infancy. It is a rare keratinization abnormality with autosomal dominant^{311,312} or sporadic inheritance.³¹³ Axillary hair,³¹⁴ beard hair,³¹⁵ and pubic hair³¹⁶ are occasionally affected, and the hair is not brittle. Growth of scalp hair is usually normal, although in one case growth rate was decreased.³¹¹

Both small and large air spaces are found between macrofibrillar units within the cortex of the hair shaft.³¹³ An unknown defect in the formation of the micro/macrofibril matrix complex is considered to be the cause.^{315,317,318} The hairs themselves are not excessively fragile³¹¹; however, it has been reported in some patients that excessive weathering occurs in the bands, suggesting that intrinsic shaft weaknesses may occasionally exist.³¹⁹

On transmission electron microscopy, a large number of abnormal cavities of varying shapes and sizes are visible within the cortex between cortical macrofibrils and within cortical cells.³¹³ In one study,



Fig 15. Young child with loose anagen hair syndrome.

the cystine content of hair from PA is hypothesized to be lower than normal, despite a normal amino acid analysis and sulfur content.³¹¹ Gummer et al³¹⁷ found a cystine-positive, electron negative opaque material in the intermicrofibrillar spaces. They speculated that this material is formed because not all the available cystine is utilized in keratinization as a result of insufficient production of a cortical component, and hypothesize that the deposit sites will go on to form cavities when the material is washed out of the hair shaft.

There is no associated hair or systemic abnormalities in PA. There have been reports of alopecia areata,^{320,321} WH,²²¹ and blue nevi of the scalp³¹¹ occuring concurrently with PA, possibly coincidentally. No treatment for PA is usually necessary, and most patients do not experience hair fragility.

Mitochondrial disorders. TN, trichorrhexis, longitudinal grooving, trichoschisis, and PT have been reported with mitochondrial disorders. In a French series of 140 children with mitochondrial disorders, 14 had cutaneous findings, of which six had hair shaft anomalies including longitudinal grooving, trichoschisis, and/or PT.¹⁸⁶ In another study, 8 out of 25 children with a mitochondrial disorder had slow growing, sparse and fragile hair and microscopic evidence of TN and PT.³²² Electron microscopy demonstrates loss of the hair cuticle. The authors suggest that hair anomalies may be an early clinical sign of a mitochondrial disorder.³²²

CONCLUSION

Clinically, hair shaft defects may cause hair to be fragile or have an unusual appearance. With the use of light microscopy, defects may be classified by the hair shaft morphology combined with clinical presentation. Recently, there have been advances in the genetic causes of hair shaft disorders, but work in the fields of molecular biology, biochemistry, genetics, and dermatology is still ongoing. The ultimate goal is to understand mechanisms of these defects, and to elucidate normal and pathogenic pathways, so that successful therapies can be found.

REFERENCE

- Olsen EA, editor. Disorders of hair growth, 2nd ed. New York: McGraw-Hill Professional; 2003.
- 2. Sperling LC. Hair anatomy for the clinician. J Am Acad Dermatol 1991;25(1 Pt 1):1-17.
- Abell E. Embryology and anatomy of the hair follicle. In: Olsen EA, editor. Disorders of hair growth. New York: McGraw Hill; 1994. pp. 1-19.
- 4. Jones LN. Hair structure anatomy and comparative anatomy. Clin Dermatol 2001;19:95-103.
- Forslind B. Structure and function of the hair follicle. In: Camacho FM, Randall VA, Price VH, editors. Hair and its disorders: biology, pathology, management. London: Martin-Dunitz; 2000. pp. 1-15.
- Paus R, Muller-Rover S, McKay I. Control of the hair follicle growth cycle. In: Camacho FM, Randall VA, Price VH, editors. Hair and its disorders: biology, pathology, and management. London: Martin-Dunitz; 2000. pp. 83-94.
- 7. Whiting DA. Structural abnormalities of the hair shaft. J Am Acad Dermatol 1987;16(1 Pt 1):1-25.
- 8. Shelley WB. Hair examination using double-stick tape. J Am Acad Dermatol 1983;8:430-1.
- 9. Price VH. Office diagnosis of structural hair anomalies. Cutis 1975;5:231-40.
- Price VH. Structural anomalies of the hair shaft. In: Orfanos CE, Happle R, editors. Hair and hair diseases. Berlin: Springer-Verlag; 1990. p. 363.
- Kvedar J, Baden H, Baden L, Shih V, Kolodny E. Dietary management reverses grooving and abnormal polarization of hair shafts in argininosuccinase deficiency. Am J Med Genet 1991;40:211-3.
- Brenton D, Cusworth D, Hartley S, Lumley S, Kuzemko J. Argininosuccinicaciduria: clinical, metabolic and dietary study. J Ment Defic Res 1974;18:1-13.
- Batshaw M, Thomas G, Brusilow S. New approaches to the diagnosis and treatment of inborn errors or urea synthesis. Pediatrics 1981;68:290-7.
- Batshaw ML, Brusilow S, Waber L, Blom W, Brubakk AM, Burton BK, et al. Treatment of inborn errors of urea synthesis. N Engl J Med 1982;306:1387-92.
- Allan JD, Cusworth DC, Dent CE, Wilson VK. A disease, probably hereditary, characterized by severe mental deficiency and a constant gross abnormality of amino acid metabolism. Lancet 1958;1:182-7.
- Levin B, Mackay HMM, Oberholzer VG. Argininosuccinic aciduria. Arch Dis Child 1961;36:622-32.
- Simard L, O'Brien W, McInnes R. Argininosuccinate lyase deficiency: evidence for heterogeneous structural gene mutations by immunoblotting. Am J Hum Genet 1986;39:38-51.

- O'Brien WE, McInnes RR, Kalumuck K, Adcock M. Cloning and sequence analysis of cDNA for human argininosuccinate lyase. Proc Natl Acad Sci U S A 1986;83:7211-5.
- Todd S, McGill J, Moore C, Weider I, Naylor S. cDNA sequence, interspecies comparison, and gene mapping analysis of argininosuccinate lyase. Genomics 1989;4:53-9.
- Yu B, Howell P. Intragenic complementation and the structure and function of argininosuccinate lyase. Cell Mol Life Sci 2000;57:1637-51.
- 21. Linnebank M, Homberger A, Rapp B, Winter C, Marquardt T, Harms E, et al. Two novel mutations (E86A, R113W) in argininosuccinate lyase deficiency and evidence for highly variable splicing of the human argininosuccinate lyase gene. J Inherit Metab Dis 2000;23:308-12.
- Yu B, Thompson GD, Yip P, Howell PL, Davidson AR. Mechanisms for intragenic complementation at the human argininosuccinate lyase locus. Biochemistry 2001;40:15581-90.
- Walker DC, Cristodoulou J, Craig HJ, Simard LR, Ploder L, Howell PL, et al. Intragenic complementation at the human argininosuccinate lyase locus. J Biol Chem 1997;272: 6777-83.
- Turner MA, Simpson A, McInnes RR, Howell PL. Human argininosuccinate lyase: a structural basis for intragenic complementation. Proc Natl Acad Sci U S A 1997;94:9063-8.
- Shih V. Early dietary management in an infant with argininosuccinase deficiency: preliminary report. J Pediatr 1972;80: 645-7.
- Hartlage PL, Coryell ME, Hall WK, Hahn DA. Argininosuccinic aciduria: prenatal diagnosis and early dietary management. J Pediatrs 1974;85:86-8.
- Goldblum OM, Brusilow SW, Maldonado YA, Farmer ER. Neonatal citrullinemia associated with cutaneous manifestations and arginine deficiency. J Am Acad Dermatol 1986;14: 321-6.
- Northrup H, Lathrop M, Lu S, Daiger S, Beaudet A, O'Brien W. Multilocus linkage analysis with the human argininosuccinate synthetase gene. Genomics 1989;5:442-4.
- Kobayashi K, Sinasac D, Iijima M, Boright A, Begum L, Lee J, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 1999;22:159-63.
- Porter PS, Lobitz WC. Human hair: a genetic marker. Br J Dermatol 1970;83:225-41.
- Danks DM, Tippett P, Zentner G. Severe neonatal citrullinaemia. Arch Dis Child 1974;49:579-81.
- 32. Patel HP, Unis ME. Pili torti in association with citrullinemia. J Am Acad Dermatol 1985;12(1 Pt 2):203-6.
- Price V, Odom R, Ward W, Jones F. Trichothiodystrophy: sulfur-deficient brittle hair as a marker for a neuroectodermal symptom complex. Arch Dermatol 1980;116:1375-84.
- 34. Vermeulen W, Bergmann E, Auriol J, Rademakers S, Frit P, Appeldoorn E, et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat Genet 2000;26:307-13.
- Itin P, Sarasin A, Pittelkow M. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 2001;44:891-920.
- Bracun R, Hemmer W, Wolf-Abdolvahab S, Focke M, Botzi C, Killian W, et al. Diagnosis of trichothiodystrophy in 2 siblings. Dermatology 1997;194:74-6.
- Leonard J, Gummer C, Dawber R. Generalized trichorrhexis nodosa. Br J Dermatol 1980;103:85-90.
- Peter C, Tomczok J, Hoting E, Behrendt H. Trichothiodystrophy without associated neuroectodermal defects. Br J Dermatol 1998;139:137-40.

- Petrin J, Meckler K, Sybert V. A new variant of trichothiodystrophy with recurrent infections, failure to thrive, and death. Pediatr Dermatol 1998;15:31-4.
- Hersh J, Klein L, Joyce M, Hordinsky M, Tsai M, Paller A, et al. Trichothiodystrophy and associated anomalies: a variant of SIBIDS or new symptom complex? Pediatr Dermatol 1993;10: 117-22.
- Przedborski S, Ferster A, Goldman S, Wolter R, Song M, Tonnesen T, et al. Trichothiodystrophy, mental retardation, short stature, ataxia, and gonadal dysfunction in three Moroccan siblings. Am J Med Genet 1990;35:566-73.
- Happle R, Traupe H, Grobe H, Bonsmann G. The Tay syndrome (congenital ichthyosis with trichothiodystrophy). Eur J Pediatr 1984;141:147-52.
- Lucky PA, Kirsch N, Lucky AW, Carter DM. Low-sulfur hair syndrome associated with UVB photosensitivity and testicular failure. J Am Acad Dermatol 1984;11(2 Pt 2):340-6.
- 44. Jorizzo J, Crounse R, Wheeler C Jr. Lamellar ichthyosis, dwarfism, mental retardation, and hair shaft abnormalities. A link between the ichthyosis-associated and BIDS syndromes. J Am Acad Dermatol 1980;2:309-17.
- 45. Pollitt RJ, Jenner FA, Davies M. Sibs with mental and physical retardation and trichorrhexis nodosa with abnormal amino acid composition of the hair. Arch Dis Child 1968;43:211-6.
- Norwood WF. The Marinesco—Sjögren syndrome. J Pediatr 1964;65:431-7.
- Rebora A, Guarrera M, Crovata F. Amino acid analysis in hair from PIBI(D)S syndrome. J Am Acad Dermatol 1986;15:109-11.
- 48. Arbisser AI, Scott CI Jr, Howell RR, Ong PS, Cox HL Jr. A syndrome manifested by brittle hair with morphologic and biochemical abnormalities, developmental delay and normal stature. Birth Defects Orig Artic Ser 1976;12:219-28.
- Howell RR, Collie WR, Cavasas OI. The Sabinas brittle hair syndrome. In: Brown AC, Crounse RG, editors. Hair, trace elements and human illness. New York: Praeger; 1980. p. 210.
- Jackson CE, Weiss L, Watson JHL. "Brittle" hair with short stature, intellectual impairment and decreased fertility: an autosomal recessive syndrome in an Amish kindred. Pediatrics 1974;54:201-7.
- Jorizzo JL, Atherton DJ, Crounse RG, Wells RS. Ichthyosis, brittle hair, impaired intelligence, decreased fertility and short stature (IBIDS syndrome). Br J Dermatol 1982;106:705-9.
- 52. Tay CH. Ichthyosiform erythroderm, hair shaft abnormalities, and mental and growth retardation. Arch Dermatol 1971;104:4-13.
- Crovata F, Borrone C, Rebora A. Trichothiodystrophy-BIDS, IBIDS, and PIBIDS. Br J Dermatol 1983;108:247-51.
- 54. Liang C, Kramer K, Morris A, Schiffman R, Price V, Menefee E, et al. Characterization of tiger-tail banding and hair shaft abnormalities in trichothiodystrophy. J Am Acad Dermatol 2005;52:224-32.
- 55. Calvieri S, Zampetti M, Corbo A. Preliminary results using a microanalysis system on the hair of patients affected by trichothiodystrophy. Clin Exp Dermatol 1989;14:404.
- Sarasin A, Blanchet-Bardon C, Renault G, Lehmann A, Arlett C, Dumez Y. Prenatal diagnosis in a subset of trichothiodystrophy patients defective in DNA repair. Br J Dermatol 1992;127: 485-91.
- 57. Brusasco A, Restano L. The typical "tiger tail" pattern of the hair shaft in trichothiodystrophy may not be evident at birth. Arch Dermatol 1997;133:249.
- Gummer C, Dawber R. Trichothiodystrophy: an ultrastructural study of the hair follicle. Br J Dermatol 1985;113:273-80.
- 59. Gillespie JM, Marshall RC. A comparison of proteins of normal and trichothiodystrophic human hair. J Invest Dermatol 1983; 80:195-202.

- Gillespie JM, Marshall RC. Effect of mutations on the proteins of wool and hair. In: Rogers GE, Reis PJ, Ward KA, Marshall RC, editors. The biology of wool and hair. London: Chapman & Hall; 1989. p. 257.
- Crovato F, Borrone C, Rebora A. The Tay syndrome (congenital ichthyosis with trichothiodystrophy). Eur J Pediatr 1984; 142:233-4.
- 62. Lehmann AR, Arlett CF, Broughton BC, Harcourt SA, Steingrimsdottir H, Stefanini M, et al. Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light. Cancer Res 1988;48:6090-6.
- 63. Stefanini M, Lagomarsini P, Arlett CF, Marinoni S, Borrone C, Crovato F, et al. Xeroderma pigmentosum (complementation group D) mutation is present in patients affected by trichothiodystrophy with photosensitivity. Hum Genet 1986;74: 107-12.
- 64. Stefanini M, Vermeulen W, Weeda G, Giliani S, Nardo T, Mezzina M, et al. A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am J Hum Genet 1993;53:817-21.
- Chen E, Cleaver JE, Weber CA, Packman S, Barkovich A, Koch TK, et al. Trichothiodystrophy: clinical spectrum, central nervous system imaging, and biochemical characterization of two siblings. J Invest Dermatol 1994;103(5 Suppl):154S-85.
- Van Neste D, Caulier B, Thomas P, Vasseur F. PIBIDS: Tay's syndrome and xeroderma pigmentosum. J Am Acad Dermatol 1985;12(2 Pt 1):372-3.
- Crovata F, Rebora A. PIBI(D)S syndrome: a new entity with defect of the deoxyribonucleic acid excision repair. J Am Acad Dermatol 1985;13:683-5.
- Lehmann AR. Cockayne's syndrome and trichothiodystrophy: defective repair without cancer. Cancer Res 1987;7:82-103.
- Cleaver J. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J Dermatol Sci 2000;23:1-11.
- 70. de Boer J, Hoeijmakers J. Nucleotide excision repair and human syndromes. Carcinogenesis 2000;21:453-60.
- Weber CA, Salazar EP, Stewart SA, Thompson LH. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with hair homology to yeast RAD3. EMBO J 1990;9:1437-47.
- 72. Flejter W, McDaniel L, Askari M, Friedberg E, Schultz R. Characterization of a complex chromosomal rearrangement maps the locus for in vitro complementation of xeroderma pigmentosum group D to human chromosome band 19q13. Genes Chromosomes Cancer 1992;5:335-42.
- Weeda G, Wiegant J, van der Ploeg M, Geurts van Kessel AH, van der Eb AJ, Hoeijmakers JH. Localization of the xeroderma pigmentosum group B-correcting gene ERCC3 to human chromosome 2q2. Genomics 1991;10:1035-50.
- Queille S, Drougard C, Sarasin A, Daya-Grosjean L. Effects of XPD mutations on ultraviolet-induced apoptosis in relation to skin cancer-proneness in repair-deficient syndromes. J Invest Dermatol 2001;117:1162-70.
- Berneburg M, Clingen P, Harcourt S, Lowe J, Taylor E, Green M, et al. The cancer-free phenotype in trichothiodystrophy is unrelated to its repair defect. Cancer Res 2000;60:431-8.
- George J, Salazar E, Vreeswijk M, Lamerdin J, Reardon J, Zdzienicka M, et al. Restoration of nucleotide excision repair in a helicase-deficient XPD mutant from intragenic suppression by a trichothiodystrophy mutation. Mol Cell Biol 2001; 21:7355-65.
- Ranish J, Hahn S, Lu Y, Yi E, Li X, Eng J, et al. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat Genet 2004;36:707-13.

- Giglia-Mari G, Coin F, Ranish J, Hoostraten D, Theil A, Wijgers N, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy grouip A. Nat Genet 2004;36:714-9.
- 79. Stratigos A, Baden H. Unraveling the molecular mechanisms of hair and nail genodermatoses. Arch Dermatol 2001;137: 1465-71.
- Cleaver J. Splitting hairs—discovery of a new DNA repair and transcription factor for the human disease trichothiodystrophy. DNA Repair (Amst) 2005;4:285-7.
- Coin F, Bergmann E, Tremeau-Bravard A, Egly J. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 1999;18:1357-66.
- Riou L, Zeng L, Chevallier-Lagente O, Stary A, Nikaido O, Taieb A, et al. The relative expression of mutated XPB genes results in xeroderma pigmentosum/Cockayne's syndrome or trichothiodystrophy cellular phenotypes. Hum Mol Genet 1999;8:1125-33.
- 83. Theron T, Fousteri MI, Volker M, Harries LW, Botta E, Stefanini M, et al. Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 2005;25:8368-78.
- 84. Taylor E, Broughton B, Botta E, Stefanini M, Sarasin A, Jaspers N, et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Nat Acad Sci U S A 1997;94: 8658-63.
- Cleaver J, Thompson L, Richardson A, States J. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat 1999;14:9-22.
- Maru Y, Koyashi T, Tanaka K, Shibuya M. BCR binds to the xeroderma pigmentosum group B protein. Biochem Biophys Res Comm 1999;260:309-12.
- 87. Bergmann E, Egly J. Trichothiodystrophy, a transcription syndrome. Trends Genet 2001;17:279-86.
- 88. Friedberg E. Hot news: temperature-sensitive humans explain hereditary disease. Bioessays 2001;23:671-3.
- 89. Coin F, Marinoni J, Rodolfo C, Fribourg S, Pedrini A, Egly J. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 1998;20:184-8.
- Winkler G, Vermeulen W, Coin F, Egly J, Hoeijmakers J, Weeda G. Affinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged xeroderma pigmentosum B protein. J Biol Chem 1998;273:1092-8.
- Viprakasit V, Gibbons RJ, Broughton BC, Tolmie JL, Brown D, Lunt P, et al. Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy. Hum Mol Genet 2001;10:2797-802.
- Raciopii L, Cancrini C, Romiti ML, Angelini F, Di Cesare S, Bertini E, et al. Defective dendritic cell maturation in a child with nucleotide excision repair deficiency and CD4 lymphopenia. Clin Exp Dermatol 2001;126:511-8.
- 93. Wijnhoven S, Beems R, Roodbergen M, van den Berg J, Lohman P, Diderich K, et al. Accelerated aging pathology in ad libitum fed Xpd TTD mice is accompanied by features suggestive of caloric restriction. DNA Repair (Amst) 2005;4: 1314-24.
- 94. Vermeulen W, Rademakers S, Jaspers N, Appeldoorn E, Raams A, Klein B, et al. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nat Genet 2001;27: 299-303.

- Nakabayashi K, Amann D, Ren Y, Saarialho-Kere U, Avidan N, Gentles S, et al. Identification of C7orf11 (TTDN1) gene mutations and genetic heterogeneity in nonphotosensitive trichothiodystrophy. Am J Hum Genet 2005;76:510-6.
- Greene SL, Muller SA. Netherton's syndrome. Report of a case and review of the literature. J Am Acad Dermatol 1985; 13(2 Pt 2):329-37.
- Kassis V, Nielsen J, Klem-Thomsen H, Dahl-Christensen J, Wadskov S. Familial Netherton's disease. Cutis 1986;38:175-8.
- Ansai S, Itsuhashi Y, Sasaki K. Netherton's syndrome in siblings. Br J Dermatol 1999;141:1097-100.
- 99. Stankler L, Cochrane T. Netherton's disease in two sisters. Br J Dermatol 1967;79:187-96.
- 100. Netherton EW. A unique case of trichorrhexis nodosa— "Bamboo hairs." Arch Dermatol 1958;78:483-7.
- 101. Wilkinson RD, Curtis GH, Hawk WA. Netherton's disease. Arch Dermatol 1964;89:106-14.
- 102. Morganti P, Avico U, Muscardin L, et al. Abnormal amino acid changes in human hair associated with rare congenital syndromes. In: Orfanos CE, Montagna W, Stuttgen C, editors. Hair research: status and future aspects. Berlin: Springer-Verlag; 1979. p. 442.
- Pohl M, Zimmerhackl L, Hausser I, Ludwig H, Hildebrandt F, Gordjani N, et al. Acute bilateral renal vein thrombosis complicating Netherton syndrome. Eur J Pediatr 1998;157: 157-60.
- 104. Muller F, Hausser I, Berg D, Casper C, Maiwald R, Jung A, et al. Genetic analysis of a severe case of Netherton syndrome and application for prenatal testing. Br J Dermatol 2002;146: 495-9.
- 105. Stevanović DV. Multiple defects of the hair shaft in Netherton's disease. Association with ichthyosis linearis circumflexa. Br J Dermatol 1969;81:851-7.
- 106. Powell J, Dawber R, Ferguson D, Griffiths W. Netherton's syndrome: Increased likelihood of diagnosis by examining eyebrow hairs. Br J Dermatol 1999;141:544-6.
- Mevorah B, Frenk E. Ichthyosis linearis circumflexa with trichorrhexis invaginata (Netherton's syndrome). A light microscopical study of the skin changes. Dermatologica 1974; 149:193-200.
- 108. Comel VM. Ichthyosis linearis circumflexa. Dermatologica 1949;98:133-6.
- 109. Judge M, Morgan G, Harper J. A clinical and immunological study of Netherton's syndrome. Br J Dermatol 1994;131: 615-21.
- 110. Krafchik B. What syndrome is this? Netherton syndrome. Pediatr Dermatol 1992;9:157-60.
- 111. Jones S, Thomason L, Surbrugg S, Weston W. Neonatal hypernatraemia in two siblings with Netherton's syndrome. Br J Dermatol 1986;114:741-3.
- 112. Hausser I, Anton-Lamprecht I. Severe congenital generalized exfoliative erythroderma in newborns and infants: A possible sign of Netherton syndrome. Pediatr Dermatol 1996;13:183-99.
- 113. Smith DL, Smith JG, Wong SW, deShazo RD. Netherton's syndrome: A syndrome of elevated IgE and characteristic skin and hair findings. J Allergy Clin Immunol 1995;95(1 Pt 1): 116-23.
- 114. Greig D, Wishart J. Growth abnormality in Netherton's syndrome. Australasian J Dermatol 1982;23:27-31.
- 115. Hersle K. Netherton's disease and ichthyosis linearis circumflexa. Report of a case and review of the literature. Acta Derm Venereol 1972;52:298-302.
- 116. Chavanas S, Garner C, Bodemer C, Ali M, Teillac D, Wilkinson J, et al. Localization of the Netherton syndrome gene to

chromosome 5q32, by linkage analysis and homozygosity mapping. Am J Hum Genet 2000;66:914-21.

- 117. Sprecher E, Chavanas S, DiGiovanna J, Amin S, Nielsen K, Prendiville J, et al. The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: Implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol 2001;117:179-87.
- 118. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine A, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 2000;25:141-2.
- 119. Allen A, Siegfried E, Silverman R, Williams M, Elias P, Szabo S, et al. Significant absorption of topical tacrolimus in 3 patients with Netherton syndrome. Arch Dermatol 2001;137: 747-50.
- 120. Bitoun E, Bodemer C, Amiel J, De Prost Y, Stoll C, Calvas P, et al. Prenatal diagnosis of a lethal form of Netherton syndrome by SPINK5 mutation analysis. Prenat Diagn 2002;22:121-6.
- 121. Fartasch M, Williams M, Elias P. Altered lamellar body secretion and stratum corneum membrane structure in Netherton syndrome: Differentiation from other infantile erythrodermas and pathogenic implications. Arch Dermatol 1999;135:823-32.
- 122. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet 2001;29:175-8.
- 123. Hausser I, Anton-Lamprecht I, Hartschuh W, Petzoldt D. Netherton's syndrome: Ultrastructure of the active lesion under retinoid therapy. Arch Dermatol Res 1989;281: 165-72.
- 124. Halverstam CP, Vachharajani A, Mallory SB. Cushing syndrome from percutaneous absorption of 1% hydrocortisone ointment in Netherton syndrome. Pediatr Dermatol 2007;24: 42-5.
- 125. Dawber R. Weathering of hair in monilethrix and pili torti. Clin Exp Dermatol 1977;2:271-7.
- 126. Schaap T, Even-Paz Z, Hodes M, Cohen M, Hachman-Zadeh S. The genetic analysis of monilethrix in a large inbred kindred. Am J Med Genet 1982;11:469-74.
- Summerly R, Donaldson EM. Monilethrix. A family study. Br J Dermatol 1962;74:387-91.
- 128. Gilchrist TC. A case of monilethrix with an unusual distribution. J Cutan Genito-Urinary Dis 1898;16:157.
- Landau M, Brenner S, Metzker A. Medical Pearl: An easy way to diagnose severe neonatal monilethrix. J Am Acad Dermatol 2002;46:111-2.
- Gummer C, Dawber R, Swift J. Monilethrix: An electron microscopic and electron histochemical study. Br J Dermatol 1981;105:529-41.
- 131. de Berker D, Sinclair R. Defects of the hair shaft. In: Dawber R, editor. Diseases of the hair and scalp. Oxford: Blackwell Science; 1997. p. 239.
- 132. Healy E, Holmes S, Belgaid C, Stephenson A, McLean W, Rees J, et al. A gene for monilethrix is closely linked to the type II keratin gene cluster at 12q13. Hum Mol Genet 1995;4: 2399-402.
- Stevens H, Kelsell D, Bryant S, Bishop D, Dawber R, Spurr N, et al. Linkage of monilethrix to the trichocyte and epithelial keratin gene cluster on 12q11-q13. J Invest Dermatol 1996; 106:795-7.
- 134. Birch-Machin M, Healy E, Turner R, Haldane F, Belgaid C, Darlington S, et al. Mapping of monilethrix to the type II keratin gene cluster at chromosome 12q13 in three new families, including one with variable expressivity. Br J Dermatol 1997;137:339-43.

- 135. Winter H, Rogers M, Langbein L, Stevens H, Leigh I, Labreze C, et al. Mutations in the hair cortex keratin hHb6 cause the inherited hair disease monilethrix. Nat Genet 1997;16: 372-4.
- 136. Korge B, Healy E, Munro C, Punter C, Birch-MacHin M, Holmes S, et al. A mutational hotspot in the 2B domain of human hair basic keratin 6 (hHb6) in monilethrix patients. J Invest Dermatol 1998;111:896-9.
- 137. Korge B, Healy E, Traupe H, Punter C, Mauch C, Hamm H, et al. Point mutation in the helix termination peptide (HTP) of human type II hair keratin hHb6 causes monilethrix in five families. Exp Dermatol 1999;8:310-2.
- 138. Zlotogorski A, Horev L, Glaser B. Monilethrix: a keratin hHb6 mutation is co-dominant with variable expression. Exp Dermatol 1998;7:268-72.
- 139. Winter H, Clark R, Tarras-Wahlberg C, Rogers M, Schweizer J. Monilethrix: a novel mutation (Glu402Lys) in the helix termination motif and the first causative mutation (Asn114Asp) in the helix initiation motif of the type II hair keratin hHb6. J Invest Dermatol 1999;113:263-6.
- 140. Richard G, Itin P, Lin J, Bon A, Bale S. Evidence for genetic heterogeneity in monilethrix. J Invest Dermatol 1996;107: 812-4.
- 141. Winter H, Rogers MA, Gebhardt M, Wollina U, Boxall L, Chitayat D, et al. A new mutation in the type II hair cortex keratin hHb1 involved in the inherited hair disorder monilethrix. Hum Genet 1997;101:165-9.
- 142. Winter H, Labreze C, Chapalain V, Surleve-Bazeille JE, Mercier M, Rogers MA, et al. A variable monilethrix phenotype associated with a novel mutation, Glu402Lys, in the helix termination motif of the type II hair keratin hHb1. J Invest Dermatol 1998;111:169-72.
- 143. Pearce EG, Smith SK, Lanigan SW, Bowden PE. Two different mutations in the same codon of a type II hair keratin (hHb6) in patients with monilethrix. J Invest Dermatol 1999;113: 1123-7.
- 144. Korge BP, Hamm H, Jury CS, Traupe H, Irvine AD, Healy E, et al. Identification of novel mutations in basic hair keratins hHb1 and hHb6 in monilethrix: implications for protein structure and clinical phenotype. J Invest Dermatol 1999; 113:607-12.
- 145. Horev L, Glaser B, Metzker A, Ben Amitai D, Vardy D, Zlotogorski A. Monilethrix: mutational hotspot in the helix termination motif of the human hair basic keratin 6. Hum Hered 2000;50:325-30.
- 146. Winter H, Vabres P, Larregue M, Rogers MA, Schweizer J. A novel missense mutation, A118E, in the helix initiation motif of the type II hair cortex keratin hHb6, causing monilethrix. Hum Hered 2000;50:322-4.
- 147. Oetting WS, Fryer JP, Wyman Z, Shtorch A, Cordoba M, Lazarov A, et al. Molecular analysis of an extended Palestinian family from Israel with monilethrix. Genet Med 1999;1:109-11.
- Gebhardt M, Fischer T, Claussen U, Wollina U, Elsner P. Monilethrix—improvement by hormonal influences? Pediatr Dermatol 1999;16:297-300.
- 149. Saxena U, Ramesh V, Misra RS. Topical minoxidil in monilethrix. Dermatologica 1991;182:252-3.
- 150. Tamayo L. Monilethrix treated with the oral retinoid Ro 10-9359 (Tigason). Clin Exp Dermatol 1983;8:393-6.
- 151. de Berker D, Dawber RP. Monilethrix treated with oral retinoids. Clin Exp Dermatol 1991;16:226-8.
- 152. Hellier RR, Astbury W, Bell FO. A case of pili torti. Br J Dermatol Syphilol 1940;52:173.
- 153. Ronchese F. Twisted hairs (pili torti). Arch Dermatol Syphilol 1932;26:98-109.

- 154. Kurwa AR, Abdel-Aziz AH. Pili torti-congenital and acquired. Acta Dermatol Venereol 1973;53:385-92.
- 155. Lyon JB, Dawber RP. A sporadic case of dystrophic pili torti. Br J Dermatol 1977;96:197-8.
- 156. Beare JM. Congenital pilar defect showing features of pili torti. Br J Dermatol 1952;64:295-8.
- 157. Robinson G, Johnston M. Pili torti and sensory neural hearing loss. J Pediatr 1967;70:621-3.
- 158. Petit A, Dontenwille M, Bardon C, Civatte J. Pili torti with congenital deafness (Bjornstad's syndrome)—report of three cases in one family, suggesting autosomal dominant transmission. Clin Exp Dermatol 1993;18:94-5.
- 159. Van Buggenhout G, Trommelen J, Hamel B, Fryns J. Bjornstad syndrome in a patient with mental retardation. Genet Couns 1998;9:201-4.
- Loche F, Bayle-Lebey P, Carriere J, Bonafe J, Bazex J, Schwarze H. Pili torti with congenital deafness (Bjornstad syndrome): a case report. Pediatr Dermatol 1999;16:220-1.
- 161. Selvaag E. Pili torti and sensorineural hearing loss. A followup of Bjornstad's original patients and a review of the literature. Eur J Dermatol 2000;10:91-7.
- 162. Richards K, Mancini A. Three members of a family with pili torti and sensorineural hearing loss: the Bjornstad syndrome. J Am Acad Dermatol 2002;46:301-3.
- Reed WB, Stone VM, Boder E, Ziprkowski L. Hereditary syndromes with auditory and dermatologic manifestations. Arch Dermatol 1967;95:456-61.
- Crandall BF, Samec L, Sparkes RS, Wright SW. A familial syndrome of deafness, alopecia, and hypogonadism. J Pediatr 1973;82:460-5.
- 165. Lubianca Neto JF, Lu L, Eavey RD, Flores MA, Caldera RM, Sangwatanaroj S, et al. The Bjornstad syndrome (sensorineural hearing loss and pili torti) disease gene maps to chromosome 2q34-36. Am J Hum Genet 1998;62:1107-12.
- 166. Van Buggenhout G, Trommelen J, Hamel B, Fryns JP. Bjornstad syndrome in a patient with mental retardation. Genet Couns 1998;9:201-4.
- 167. Voigtlander V. Pili torti with deafness (Bjornstad syndrome). Report of a family. Dermatologica 1979;159:50-4.
- 168. Hinson J, Fantin V, Schonberger J, Breivik N, Siem G, McDonough B, et al. Missense mutations in the BCS1L gene as a cause of the Bjornstad syndrome. N Engl J Med 2007;356:809-19.
- 169. Cremers C, Geerts S. Sensorineural hearing loss and pili torti. Ann Otol Rhinol Laryngol 1979;88(1 Pt 1):100-4.
- 170. Argenziano G, Monsurrò MR, Pazienza R, Delfino M. A case of probable autosomal recessive ectodermal dysplasia with corkscrew hairs and mental retardation in a family with tuberous sclerosis. J Am Acad Dermatol 1998;38(2 Pt 2): 344-8.
- 171. Barbareschi M, Cambiaghi S, Crupi AC, Tadini G. Family with "pure" hair-nail ectodermal dysplasia. Am J Med Genet 1997; 72:91-100.
- 172. Appel B, Messina SJ. Pili torti hereditaria. N Engl J Med 1942; 226:912-7.
- 173. Zlotogora J, Zilberman Y, Tenenbaum A, Wexler M. Cleft lip and palate, pili torti, malformed ears, partial syndactyly of fingers and toes, and mental retardation: a new syndrome? J Med Genet 1987;24:291-3.
- 174. Sorge G, Pavone L, Polizzi A, Mauceri L, Leonardi R, Tripi T, et al. Another "new" form, the palagonia type of acrofacial dysostosis in a Sicilian family. Am J Med Genet 1997;69:388-94.
- 175. Selvaag E. Pili torti et canaliculi and agenesis of the teeth: report of a new "pure" hair-tooth ectodermal dysplasia in a Norwegian family. J Med Genet 2000;37:721-3.

- 176. Trueb R, Tsambaos D, Spycher M, Muller J, Burg G. Scarring folliculitis in the ectrodactyly-ectodermal dysplasia-clefting syndrome. Histologic, scanning electron-microscopic and biophysical studies of hair. Dermatology 1997;194:191-4.
- Fosko SW, Stenn KS, Bolognia JL. Ectodermal dysplasias associated with clefting: significance of scalp dermatitis. J Am Acad Dermatol 1992;27:249-56.
- 178. Vanderhooft SL, Stephan MJ, Sybert VP. Severe skin erosions and scalp infections in AEC syndrome. Pediatr Dermatol 1993;10:334-40.
- 179. Cote GB, Adamopoulos D, Pantelakis S. Arthrogyrposis and ectodermal dysplasia. Hum Hered 1982;32:71-2.
- Calzavara-Pinton P, Carlino A, Benetti A, De Panfilis G. Pili torti and onychodysplasia. Report of a previously undescribed hidrotic ectodermal dysplasia. Dermatologica 1991;182: 184-7.
- Pinheiro M, Freire-maia N. Trichodysplasia-xeroderma: an autosomal dominant condition. Am J Clin Genet 1987;31: 337-42.
- 182. Rouse C, Siegfried E, Breer W, Nahass G. Hair and sweat glands in families with hypohidrotic ectodermal dysplasia: further characterization. Arch Dermatol 2004;140:850-5.
- 183. Marshall J, Brede HP. Black piedra in a child with pili torti, bamboo hair and congenital ichthyosiform erythroderma. S Afr Med J 1961;35:221.
- 184. Altman J, Stroud J. Netherton's syndrome with ichthyosis linearis circumflexa. Arch Dermatol 1969;100:550.
- Bentley-Phillips B, Bayles M. A previously undescribed hereditary hair anomaly (pseudo-monilethrix). Br J Dermatol 1973;89:159-67.
- Bodemer C, Röting A, Rustin P, Cormier V, Niaudet P, Saudubray JM, et al. Hair and skin disorders as signs of mitochondrial disease. Pediatrics 1999;103:428-33.
- 187. Chernosky M, Owens D. Trichorrhexis nodosa. Clinical and investigative studies. Arch Dermatol 1966;94:577-85.
- 188. Lurie R, Ben-Amitai D, Laron Z. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair. Dermatology 2004;208:314-8.
- 189. Plosila M, Kiistala R, Niemi KM. The Bazex syndrome: follicular atrophoderma with multiple basal cell carcinomas, hypotrichosis and hypohidrosis. Clin Exp Dermatol 1981;6:31-41.
- 190. Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH. A sex-linked recessive disorder with retardation of growth, peculiar hair and focal cerebral and cerebellar degeneration. Pediatrics 1962;29:764-79.
- 191. French JH, Sherard ES. Trichopoliodystrophy. Arch Neurol 1972;26:229-44.
- 192. Swartz EN. A child with kinky hair. CMAJ 2002;166:1442-3.
- 193. Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwright E. Menkes's kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 1972;50: 188-201.
- 194. Goka TJ, Stevenson RE, Hefferan PM, Howell RR. Menkes' disease: a biochemical abnormality in cultured human fibroblasts. Proc Nat Acad Sci U S A 1976;73:604-6.
- 195. Gerdes A, Tonnesen T, Horn N, Grisar T, Marg W, Muller A, et al. Clinical expression of Menkes syndrome in females. Clin Genet 1990;38:452-9.
- 196. Sugio Y, Sugio Y, Kuwano A, Miyoshi O, Yamada K, Niikawa N, et al. Translocation t(X;21)(q13.3; p11.1) in a girl with Menkes disease. Am J Med Genet 1998;79:191-4.
- 197. Abusaad I, Mohammed S, Ogilvie C, Ritchie J, Pohl K, Docherty Z. Clinical expression of Menkes disease in a girl with X;13 translocation. Am J Med Genet 1999;87:354-9.

- Kapur S, Higgins J, Delp K, Rogers B. Menkes syndrome in a girl with X-autosome translocation. Am J Med Genet 1987;26: 503-10.
- 199. Beck J, Enders H, Schliephacke M, Buchwald-Saal M, Tumer ZX. 1 translocation in a female Menkes patient: characterization by fluorescence in situ hybridization. Clin Genet 1994;46: 295-8.
- Collie WR, Moore CM, Goka TJ, Howell RR. Pili torti as a marker for carriers of Menkes disease. Lancet 1978;1:607-8.
- 201. Chelly J, Tümer Z, Tønnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 1993;3:14-9.
- Mercer J, Livingston J, Hall B, Paynter J, Begy C, Chandrasekharappa S, et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 1993;3:20-5.
- 203. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 1993;3:7-13.
- 204. Mercer J. The molecular basis of copper-transport diseases. Trends Mol Med 2001;7:64-9.
- Llanos R, Mercer J. The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol 2002;21:259-70.
- Rossi L, De Martino A, Marchese E, Piccirilli S, Rotilio G, Ciriolo M. Neurodegeneration in the animal model of Menkes' disease involves Bcl-2-linked apoptosis. Neurosci 2001;103: 181-8.
- Martins C, Goncalves C, Moreno A, Goncalves O, Baptista A, Bairos V. Menkes' kinky hair syndrome: ultrastructural cutaneous alterations of the elastic fibers. Pediatr Dermatol 1997; 14:347-50.
- 208. Peterson J, Drolet B, Esterly N. What syndrome is this? Menkes' kinky-hair syndrome. Pediatr Dermatol 1998;15: 137-9.
- Strausak D, Mercer J, Dieter H, Stremmel W, Multhaup G. Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases. Brain Res Bull 2001; 55:175-85.
- 210. Mercer JF. Menkes syndrome and animal models. Am J Clin Nutr 1998;67(5 Suppl):1022S-8S.
- 211. Cunliffe P, Reed V, Boyd Y. Intragenic deletions at Atp7a in mouse models for Menkes disease. Genomics 2001;74:155-62.
- 212. Kumode M, Yamano T, Shimada M. Histochemical study of mitochondrial enzymes in cerebellar cortex of macular mutant mouse, a model of Menkes kinky hair disease. Acta Neuropathologica 1994;87:313-6.
- 213. Ohno M, Narita T, Abe J, Tsuzuki T, Yagi K, Takikita S, et al. Apoptosis in cerebrum of macular mutant mouse. Acta Neuropathologica 2002;103:356-62.
- 214. Kumode M, Yamano T, Shimada M. Neuropathological study on cerebellum of macular mutant mouse heterozygote. Acta Neuropathologica 1993;81:411-7.
- Sherwood G, Sarkar B, Kortsak A. Copper histidinate therapy in Menkes' disease: prevention of progressive neurodegeneration. J Inherit Metab Dis 1989;12(Suppl 2):393-6.
- 216. Kreuder J, Otten A, Fuder H, Tumer Z, Tonnesen T, Horn N, et al. Clinical and biochemical consequences of copperhistidine therapy in Menkes disease. Eur J Pediatr 1993;152: 828-32.
- 217. Christodoulou J, Danks D, Sarkar B, Baerlocher K, Casey R, Horn N, et al. Early treatment of Menkes disease with parenteral copper-histidine: long-term follow-up of four treated patients. Am J Med Genet 1998;76:154-64.

- 218. George DH, Casey RE. Menkes disease after copper histidine replacement therapy: case report. Pediatr Dev Pathol 2001;4: 281-8.
- 219. Kirodian BG, Gogtay NJ, Udani VP, Kshirsagar NA. Treatment of Menkes disease with parenteral copper histidine. Indian Pediatr 2002;39:183-5.
- 220. Sarker B, Lingerlat-Walsh K, Clarke JR. Copper-histidine therapy for Menkes' disease. J Pediatrics 1993;122:828.
- 221. Hutchinson P, Cairns R, Wells R. Woolly hair. Clinical and general aspects. Trans St Johns Hosp Dermatol Soc 1974;60: 160-77.
- 222. Lantis SD, Pepper MC. Woolly hair nevus. Two case reports and a discussion of unruly hair forms. Arch Dermatol 1978; 114:233-8.
- 223. Hasper MF, Klokke AH. Woolly hair naevus with triangular hairs. Br J Dermatol 1983;108:111-3.
- 224. Lalević-Vasić B, Nikolić M, Polić D, Radosavljević B. Diffuse partial woolly hair. Dermatology 1993;187:243-7.
- 225. Mohr O. Woolly hair a dominant mutant character in man. J Hered 1932;23:345-52.
- Robinson GC, Miller JR. Hereditary enamel hypoplasia: its association with characteristic nail structure. Pediatrics 1966; 37:498-502.
- Jacobsen K, Lowes M. Woolly hair naevus with ocular involvement. Report of a case. Dermatologica 1975;151:249-52.
- 228. Taylor A. Hereditary woolly hair with ocular involvement. Br J Dermatol 1990;123:523-5.
- 229. Verbov J. Woolly hair-study of a family. Dermatologica 1978; 157:42-7.
- 230. McHenry P, Nevin N, Bingham E. The association of keratosis pilaris atrophicans with hereditary woolly hair. Pediatr Dermatol 1990;7:202-4.
- 231. Neild V, Pegum J, Wells R. The association of keratosis pilaris atrophicans and woolly hair, with and without Noonan's syndrome. Br J Dermatol 1984;110:357-62.
- Barker JN, Protonatorios N, Tsatopoulou A, MacDonald DM. Palmoplantar keratoderma, curly hair and endomyocardial fibrodysplasia: a new syndrome. Br J Dermatol 1983; 119(Suppl 33):13-4.
- 233. Coonar AS, Protonotarios N, Tsatsopoulou A, Needham EW, Houlston RS, Cliff S, et al. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation 1998;97:2049-58.
- 234. McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000;355:2119-24.
- 235. Protonotarios N, Tsatsopoulou A, Anastasakis A, Sevdalis E, McKoy G, Stratos K, et al. Genotype-phenotype assessment in autosomal recessive arrhythmogenic right ventricular cardiomyopathy (Naxos disease) caused by a deletion in plakoglobin. J Am Coll Cardiol 2001;38:1477-84.
- 236. Tosti A, Misciali C, Piraccini B, Fanti P, Barbareschi M, Ferretti R. Woolly hair, palmoplantar keratoderma, and cardiac abnormalities: report of a family. Arch Dermatol 1994;130:522-4.
- 237. Kaplan S, Gard J, Carvajal-Huerta L, Ruiz-Cabezas J, Thiene G, Saffitz J. Structural and molecular pathology of the heart in Carvajal syndrome. Cardiovasc Pathol 2004;13:26-32.
- Carvajal-Huerta L. Epidermolytic palmoplantar keratoderma with woolly hair and dilated cardiomyopathy. J Am Acad Dermatol 1998;39:418-21.
- 239. Norgett E, Hatsell S, Carvajal-Huerta L, Cabezas J, Common J, Purkis P, et al. Recessive mutation in desmoplakin disrupts

desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000;9:2761-6.

- 240. Alcalai R, Metzger S, Rosenheck S, Meiner V, Chajek-Shaul T. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 2003;42:319-27.
- 241. Whittock N, Wan H, Morley S, Garzon M, Kristal L, Hyde P, et al. Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J Invest Dermatol 2002;118:232-8.
- 242. Protonotarios N, Tsatsopoulou A. Naxos disease and Carvajal syndrome: cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right venticular cardiomyopathy. Cardiovasc Pathol 2004;13: 185-94.
- Djabali K, Martinez-Mir A, Horev L, Christiano A, Zlotogorski A. Evidence for extensive locus heterogeneity in Naxos disease. J Invest Dermatol 2002;118:557-60.
- McGrath J, McMillan J, Shemanko C, Runswick S, Leigh I, Lane E, et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat Genet 1997;17:240-3.
- 245. Ormerod A, Main R, Ryder M, Gregory D. A family with diffuse partial woolly hair. Br J Dermatol 1987;116:401-5.
- 246. Reda AM, Rogers RS 3rd, Peters MS. Woolly hair nevus. J Am Acad Dermatol 1990;27(2 Pt 2):377-80.
- 247. Amichai B, Grunwald M, Halevy S. A child with a localized hair abnormality. Woolly hair nevus. Arch Dermatol 1996;132: 573-4.
- 248. Wise F. Woolly hair nevus. A peculiar form of birthmark of hair of the scalp hitherto undescribed, with report of two cases. Med J Rec 1927;125:545-7.
- 249. Wright S, Lemoine N, Leigh I. Woolly hair naevi with systematized linear epidermal naevus. Clin Exp Dermatol 1986;11:179-82.
- 250. Peteiro C, Oliva N, Zulaica A, Toribio J. Woolly-hair nevus: report of a case associated with a verrucous epidermal nevus in the same area. Pediatr Dermatol 1989;6:188-90.
- 251. al Harmozi SA, Mahmoud SF, Ejeckam GC. Woolly hair nevus syndrome. J Am Acad Dermatol 1992;27:t-60.
- 252. Yong-Kwang T, Weston W, Ganong C, Klingensmith GJ. Epidermal nevus syndrome: association with central precocious puberty and woolly hair nevus. J Am Acad Dermatol 1996;35:839-42.
- 253. Price J, Bowden D, Wright J, Pettenati M, Hart T. Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Mol Genet 1998;7:563-9.
- 254. Wright J, Roberts M, Wilson A, Kudhail R. Tricho-dentoosseous syndrome. Features of the hair and teeth. Oral Surg Oral Med Oral Pathol 1994;77:487-93.
- 255. Price J, Wright J, Walker S, Crawford P, Aldred M, Hart T. Tricho-dento-osseous syndrome and amelogenesis imperfecta with taurodontism are genetically distinct conditions. Clin Genet 1999;56:35-40.
- 256. Lichtenstein J, Warson R, Jorgenson R, Dorst JP, McKusick VA. The tricho-dento-osseous (TDO) syndrome. Am J Hum Genet 1972;24:569-82.
- 257. Baughman FA Jr. CHANDS: the curly hair-ankyloblepharonnail dysplasia syndrome. Birth Defects Orig Artic Ser 1971;7: 100-2.
- 258. Sahin M, Turel-Ermertcan A, Chan I, McGrath J, Ozturkcan S. Ectodermal dysplasia showing clinical overlap between AEC, Rapp-Hodgkin and CHAND syndromes. Clin Exp Dermatol 2004;29:486-8.

- 259. Torrelo A, López-Avila A, Mediero IG, Zambrano A. Costello syndrome. J Am Acad Dermatol 1995;32(5 Pt 2):904-7.
- Johnson J, Golabi M, Norton M, Rosenblatt R, Feldman G, Yang S, et al. Costello syndrome: phenotype, natural history, differential diagnosis, and possible cause. J Pediatr 1998;133: 441-8.
- 261. Franceschini P, Licata D, Di Cara G, Guala A, Bianchi M, Ingrosso G, et al. Bladder carcinoma in Costello syndrome: report on a patient born to consanguineous parents and review. Am J Med Genet 1999;86:174-9.
- 262. van Eeghen AM, van Gelderen I, Hennekam RC. Costello syndrome: report and review. Am J Med Genet 1999;82: 187-93.
- 263. Sigaudy S, Vittu G, David A, Vigneron J, Lacombe D, Moncla A, et al. Costello syndrome: report of six patients including one with an embryonal rhabdomyosarcoma. Eur J Pediatr 2000;159:139-42.
- 264. Nasca M, Strano L, Musumeci M, Micali G. The syndrome page. What syndrome is this? Pediatr Dermatol 2003;20:447-50.
- 265. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 2005;37:1038-40.
- 266. Burton JL. The genes for Noonan's syndrome, woolly hair and ulerythema ophryogenes. Postgrad Med J 1992;68:595.
- 267. Daoud MS, Dahl PR, Su WP. Noonan syndrome. Semin Dermatol 1995;14:140-4.
- Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet 2005;6:45-68.
- 269. Yan K, He P, Yang S, Li M, Yang Q, Ren Y, et al. Marie Unna hereditary hypotrichosis: report of a Chinese family and evidence for genetic heterogeneity. Clin Exp Dermatol 2004; 29:460-3.
- 270. Roberts J, Whiting D, Henry D, Basler G, Woolf L. Marie Unna congenital hypotrichosis: clinical description, histopathology, scanning electron microscopy of a previously unreported large pedigree. J Invest Dermatol Symp Proc 1999;4:261-7.
- 271. Niiyama S, Freyschmidt-Paul P, Happle R, Hoffmann R. Guess what! Hypotrichosis congenita of Marie Unna: comment. Eur J Dermatol 2001;11:379-80.
- 272. Argenziano G, Sammarco E, Rossi A, Delfino M, Calvieri S. Marie Unna hereditary hypotrichosis. Eur J Dermatol 1999;9: 278-80.
- 273. Papadavid E, Dover R, Mallon E, Dawber RPR. Marie Unna hypotrichosis: an autosomal dominant disorder. J Eur Acad Dermatol Venereol 1996;7:279.
- 274. van Steensel M, Smith FJ, Steijlen PM, Kluijt I, Stevens HP, Messenger A, et al. The gene for hypotrichosis of Marie Unna maps between D8S258 and D8S298: exclusion of the hr gene by cDNA and genomic sequencing. Am J Hum Genet 1999; 65:413-9.
- 275. Cichon S, Kruse R, Hillmer AM, Kukuk G, Anker M, Altland K, et al. A distinct gene close to the hairless locus on chromosome 8p underlies hereditary Marie Unna type hypotrichosis in a German family. Br J Dermatol 2000;143:811-4.
- 276. Sreekumar GP, Roberts JL, Wong CQ, Stenn KS, Parimoo S. Marie Unna hereditary hypotrichosis gene maps to human chromosome 8p21 near hairless. J Invest Dermatol 2000;114: 595-7.
- 277. Hung BS, Wang XQ, Cam GR, Rothnagel JA. Characterization of mouse Frizzled-3 expression in hair follicle development and identification of the human homolog in keratinocytes. J Invest Dermatol 2001;116:940-6.
- 278. Yang S, Gao M, Cui Y, Yan K, Ren Y, Zhang G, et al. Identification of a novel locus for Marie Unna Hereditary

Hypotrichosis to a 17.5cM interval at 1p21.1-1q21.3. J Invest Dermatol 2005;125:711-4.

- 279. Green J, Fitzpatrick E, de Berker D, Forrest S, Sinclair R. Progressive patterned scalp hypotrichosis, with wiry hair, onycholysis, and intermittently associated cleft lip and palate: clinical and genetic distinction from Marie Unna. JID Symp Proc 2003;8:121-5.
- Dupre A, Bonafe JL, Litoux F, Victor M. Uncombable hair syndrome [in French]. Ann Dermatol Venereol 1978;105:627-30.
- Mallon E, Dawber R, de Berker D, Ferguson D. Cheveux incoiffables—diagnostic, clinical and hair microscopic findings, and pathogenic studies. Br J Dermatol 1994;131: 608-14.
- 282. Shelley WB, Ohman S. Technique for cross sectioning hair specimens. J Invest Dermatol 1969;52:533-6.
- Rest E, Fretzin D. Quantitative assessment of scanning electron microscope defects in uncombable-hair syndrome. Pediatr Dermatol 1990;7:93-6.
- Shelley W, Shelley E. Uncombable hair syndrome: observations on response to biotin and occurrence in siblings with ectodermal dysplasia. J Am Acad Dermatol 1985;13:97-102.
- 285. Hicks J, Metry D, Barrish J, Levy M. Uncombable hair (cheveux incoiffables, pili trianguli et canaliculi) syndrome: brief review and role of scanning electron microscopy in diagnosis. Ultrastruct Pathol 2001;25:99-103.
- Baden H, Schoenfeld R, Stroud J, Happle R. Physiocochemical properties of "spun glass" hair. Acta Dermato Venereol 1981; 61:441-4.
- 287. Van Neste D, Baden HP. Abnormal fibrous protein patterns in the uncombable hair syndrome. Arch Dermatol Res 1985;277: 151-2.
- 288. Van Neste D, Armijo-Subieta F, Tennstedt D, Mrene E, Marchal G, Lachapelle JM, et al. The uncombable hair syndrome: four non-familial cases of pili trainguli et canaliculi. Arch Dermatol Res 1981;271:223-7.
- Stone J, Reizner G, Muller S, Elpern D. Hair bulb anomaly in a Japanese girl with uncombable hair. J Am Acad Dermatol 1987;17(5 Pt 1):841-3.
- 290. McCullum N, Sperling L, Vidmar D. The uncombable hair syndrome. Cutis 1990;46:479-83.
- 291. de Luna M, Rubinson R, de Kohan Z. Pili trianguli canaliculi: uncombable hair syndrome in a family with apparent autosomal dominant inheritance. Pediatr Dermatol 1985;2: 324-7.
- 292. Hebert A, Charrow J, Esterly N, Fretzin D. Uncombable hair (pili trianguli et canaliculi): evidence for dominant inheritance with complete penetrance based on scanning electron microscopy. Am J Hum Genet 1987;28:185-93.
- 293. Garty B, Metzker A, Mimouni M, Varsano I. Uncombable hair: a condition with autosomal dominant inheritance. Arch Dis Childhood 1982;57:710-2.
- 294. Bork K, Stender E, Schmidt D, Berzas C, Rochels R. Familial congenital hypotrichosis with "uncombable hair," retinal pigmentary dystrophy, juvenile cataract and brachymetacarpia: another entity of the ectodermal dysplasia group [in German]. Hautarzt 1987;38:342-7.
- 295. de Jong PT, Bleeker-Wagemakers EM, Vrensen GF, Broekhuyse RM, Peereboom-Wynia JD, Delleman JW. Crystalline cataract and uncombable hair. Ultrastructural and biochemical findings. Ophthalmol 1990;97:1181-7.
- 296. Fritz TM, Trueb RM. Uncombable hair syndrome with angelshaped phalango-epiphyseal dysplasia. Pediatr Dermatol 2000;17:21-4.
- 297. Kozlowski K, Krajewska M. Mental retardation, postaxial polydactyly, phalangeal hypoplasia, 2-3 toe syndactyly,

unusual face, uncombable hair: new syndrome? Am J Med Genet 1997;68:142-6.

- 298. Silengo M, Lerone M, Romeo G, Calcagno E, Martucciello G, Jasonni V. Uncombable hair, retinal pigmentary dystrophy, dental anomalies, and brachydactyly: report of a new patient with additional findings. Am J Med Genet 1993;47:931-3.
- 299. Aguiar A, Sobrinto-Simoes MM, Finseth I, Johannessen JV, Nesland JM. Uncombable hair. Arch Dis Childhood 1984;59: 92-3.
- Powell J, Wojnarowska F, Dawber R, Slavotinek A, Huson S. Childhood vulval lichen sclerosus in a patient with ectodermal dysplasia and uncombable hair. Pediatr Dermatol 1998; 15:446-9.
- 301. Chapman D, Miller R. An objective measurement of the anchoring strength of anagen hair in an adult with the loose anagen hair syndrome. J Cutan Pathol 1996;23:288-92.
- 302. Price VH, Gummer CL. Loose anagen syndrome. J Am Acad Dermatol 1989;20(2 Pt 1):249-56.
- 303. Hamm H, Traupe H. Loose anagen hair of childhood: the phenomenon of easily pluckable hair. J Am Acad Dermatol 1989;20(2 Pt 1):242-8.
- Tosti A, Peluso A, Misciali C, Venturo N, Patrizi A, Fanti P. Loose anagen hair. Arch Dermatol 1997;133:1089-93.
- 305. Olsen E, Bettencourt M, Cote N. The presence of loose anagen hairs obtained by hair pull in the normal population. J Invest Dermatol Symp Proc 1999;4:258-60.
- Chapalain V, Winter H, Langbein L, Le Roy J, Labreze C, Nikolic M, et al. Is the loose anagen hair syndrome a keratin disorder? A clinical and molecular study. Arch Dermatol 2002; 138:501-6.
- 307. Chong AH, Sinclair RD, Chow CW, Bailey M, Fitzpatrick E. Loose anagen hair syndrome shows evidence of an autosomal dominant pattern of inheritance with variable expression and incomplete penetrance: results from a study of 16 families. Br J Dermatol 2000;143:127-8.
- Azon-Masoliver A, Ferrando J. Loose anagen hair in hypohidrotic ectodermal dysplasia. Pediatr Dermatol 1996;13:29-32.
- Tosti A, Misciali C, Borrello P, Fanti PA, Bardazzi F, Patrizi A. Loose anagen hair in a child with Noonan's syndrome. Dermatologica 1991;182:247-9.
- 310. Sadick N. Clinical and laboratory evaluation of AIDS trichopathy. Int J Dermatol 1993;32:33-8.
- 311. Dawber R. Investigations of a family with pili annulati associated with blue naevi. Trans St Johns Hosp Dermatol Soc 1972;58:51-8.
- 312. Ashley LM, Jacques RS. Four generations of ringed hair. J Hered 1950;41:82-4.
- 313. Price VH, Thomas RS, Jones FT. Pili annulati. Optical and electron microscopic studies. Arch Dermatol 1968;98:640-7.
- 314. Montgomery RM, Binder Al. Ringed hair. Arch Dermatol Syphilol 1970;58:177-9.
- 315. Musso LA. Pili annulati. Aust J Dermatol 1970;11:67-75.
- Amichai B, Grunwald MH, Halevy S. Hair abnormality present since childhood. Pili annulati. Arch Dermatol 1996;132(575):578.
- 317. Gummer CL, Dawber RP. Pili annulati: electron histochemical studies on affected hairs. Br J Dermatol 1981;105:303-9.
- Ito M, Hashimoto K, Sakamoto F, Sato Y, Voorhees JJ. Pathogenesis of pili annulati. Arch Dermatol Res 1988;280: 308-18.
- Feldmann KA, Dawber RP, Pittelkow MR, Ferguson DJ. Newly described weathering pattern in pili annulati hair shafts: a scanning electron microscopic study. J Am Acad Dermatol 2001;45:625-7.
- 320. Smith SR, Kirkpatrick RC, Kerr JH, Mezebich D. Alopecia areata in a patient with pili annulati. J Am Acad Dermatol 1995;32(5 Pt 1):816-8.

22 Cheng and Bayliss

- 321. Moffitt DL, Lear JT, de Berker DA, Peachey RD. Pili annulati coincident with alopecia areata. Pediatr Dermatol 1998;15:271-3.
- 322. Silengo M, Valenzise M, Spada M, Ferrero G, Ferraris S, Dassi P, et al. Hair anomalies as a sign of mitochondrial disease. Eur J Pediatr 2003;16:459-61.
- 323. Peachey R, Wells R. Hereditary hypotrichosis (Marie Unna type). Trans St Johns Hosp Dermatol Soc 1971;57:157-66.
- 324. Hinek A, Smith AC, Cutiongco EM, Callahan JW, Gripp KW, Weksberg R. Decreased elastin deposition and high proliferation of fibroblasts from Costello syndrome are related to functional deficiency in the 67-kD elastin-binding protein. Am J Hum Genet 2000;66:859-72.
- 325. Hou JW, Tunnessen WW Jr. Picture of the month. Costello syndrome. Arch Pediatr Adolesc Med 2000;154:631-2.