VITAMIN A AND CAROTENOIDS IN CERTAIN INVERTEBRATES

VI. CRUSTACEA: PENAEIDEA

By L. R. FISHER, S. K. KON and S. Y. THOMPSON

Unit for Biochemical Research bearing on Fisheries' Problems* at the National Institute for Research in Dairying, Shinfield, near Reading

Fisher (1957) has pointed out the possible connexion between the richness in vitamin A and the pelagic existence of species of the orders Amphipoda and Mysidacea of the malacostracan Crustacea. The most striking example is seen in the Eucarida, of which the more benthic Decapoda are nearly all poorer in vitamin A than the pelagic Euphausiacea. In the Decapoda, species of the suborder Natantia do, however, lead a more or less pelagic life. Of its two constituent groups the Penaeidea swim more actively than the Caridea. The Penaeidea were believed by Calman (1910) to be primitive decapods and similarities in larval development indicated a possible affinity with the Euphausiacea. Gordon (1955) has recently produced further evidence of this relationship, particularly between euphausiids and sergestids, from the structure of the petasma, spermatophores, thelycum and photophores in the two groups. Taxonomically as well as ecologically, then, the penaeids may be said to lie between the rest of the decapods and the euphausiids, and we wished to compare these groups in their biochemical relationships so far as vitamin A and carotenoids were concerned. Moreover, some species of penaeids are the basis of important fisheries and knowledge of their vitamin A content might be of some economic value.

Published work on vitamin A and carotenoids in penaeids is confined almost entirely to that of Grangaud and his colleagues at Algiers on Aristeomorpha foliacea and Aristeus antennatus. These workers reported in several papers, summarized by Grangaud (1951) and Grangaud & Massonet (1951), on the anti-xerophthalmic activity of astaxanthin isomers from these species. Grangaud, Massonet & Sansac (1954) also mentioned the presence of vitamin A in concentrations of 5–10 i.u./g in the eyes and ovaries and of 30 i.u./g in the intestines of Aristeomorpha foliacea, Aristeus antennatus and Parapenaeus longirostris. In an earlier paper we reported vitamin A at a concentration of 5·7 i.u./g in the eyes of Trachypenaeus membranaceus from Naples (Fisher, Kon & Thompson, 1953).

^{*} Grant-aided by the Development Fund.

MATERIAL AND METHODS

Apart from Trachypenaeus membranaceus just mentioned we have analysed samples of thirteen species of penaeids, of which seven belong to the family Penaeidae and six to the Sergestidae. Details of these samples are given in Table T

Carotenoids and vitamin A were measured by the recent modification (Fisher, Kon & Thompson, 1956) of our usual method (Fisher, Kon & Thompson, 1952). None of the groups analysed contained enough specimens for biological assay or for the separation of vitamin A isomers carried out for some other Eucarida (Fisher, Kon & Plack, 1957; Wald & Brown, 1956-7; Wald & Burg, 1956-7).

Detailed results for the Penaeidae are shown in Table 2 and those for the Sergestidae in Table 3.

DISCUSSION

The results in the tables show that, apart from Gennadas borealis, all the species analysed contained vitamin A in at least one sample. The concentration of the vitamin in the Penaeidae was relatively low and its distribution varied. In some species it was confined to the eyes, in others to the bodies, and only in Parapenaeopsis atlantica was it found in both eyes and bodies. In the Sergestidae, vitamin A concentrations in most species tended to be higher than in the Penaeidae, but distribution varied in the different species.

All species of both families contained appreciable quantities of carotenoids and some, for example, Petalidium foliaceum, were very rich in them. The more actively pelagic sergestids usually contained only astaxanthin or its esters with an occasional trace of xanthophylls. There was a greater variety of carotenoids in the penaeids. Fisher, Kon & Thompson (1954) reported a similar difference between decapods with several different carotenoids and the more pelagic euphausiids in which only astaxanthin or its derivatives were found.

The results show that the concentration of vitamin A in penaeids is similar to those in other Natantia. Fisher (1957) has shown that, of the species we have examined, more Penaeidea (13 out of 14 listed in his paper) contain vitamin A than Caridea (29 out of 36). The results now presented indicate that Sergestidae with a more oceanic existence may be richer in vitamin A than Penaeidae, but more individuals of more species must be analysed in order to establish any such relationship.

Taken as a whole the vitamin A values for the Sergestidae would place them between the other Penaeidea (and other Decapods) and the Euphausiacea, a biochemical classification in agreement with current taxonomical views. Penaeus aztecus, the basis of an important shrimp fishery in Texas, contained modest amounts of vitamin A, all in the eyes and so of no importance in human nutrition.

TABLE 1. SPECIES, NUMBERS, SOURCES AND METHODS OF PRESERVATION OF PENAEIDS ANALYSED

Sample no.	Species	No. of specimens per sample		Ship	Date	How caught	Method of preservation
I	Amalopenaeus elegans Smith	16	39° 39′ N., 12° 08′ W.	Discovery II	16. xi. 1954	2 m stramin net	BF
2	A. elegans Smith	4	Bay of Biscay	Sarsia	18-24. vii. 1955	2 m stramin net	BF
3	Funchalia woodwardi Johnson		Madeira	_	17. v. 1955	From stomach of sword fish	- DA
4	Gennadas borealis Rathbun	7	32° 45′ N., 117° 38′ W.	Paolina T	4. iv. 1956	Isaacs-Kidd mid-water trawl	BF
5	G. parvus Bate	4	Bay of Biscay	Sarsia	28-30. iv. 1955	2 m stramin net	BF
6	G. parvus Bate	27	North Atlantic	Discovery II	vi. 1955	2 m stramin net	BF
7	G. parvus Bate	107	Bay of Biscay	Sarsia	18-24. vii. 1955	2 m stramin net	BF
8	Parapenaeopsis atlantica Balss	25	Gold Coast	_	Spring 1955	_	DS
9	Penaeus aztecus Ives	44	Gulf of Mexico		24. vi. 1952	-	DA
10	Plesiopenaeus edwardsianus (Johnson)	Ī	Madeira	_	1. vi. 1955	Deep fishing line	DA
II	Petalidium foliaceum Bate	29	32° 45′ N., 117° 38′ W.	Paolina T	4. iv. 1956	Isaacs-Kidd mid-water trawl	BF
12	Sergestes arcticus Kröyer	4	North Atlantic	Discovery II	16. xi. 1954	2 m stramin net	BF
13	S. arcticus Kröyer	4	North Atlantic	Discovery II	vi. 1955	2 m stramin net	BF
14	S. arcticus Kröyer	i	58° 54′ N., 13° 44′ W.	George Bligh	20. vii. 1955	Prawn trawl	BF
15	S. arcticus Kröver	289	Bay of Biscay	Sarsia	18-24. vii. 1955	2 m stramin net	BF
16	S. atlanticus Milne Edwards	2	North Atlantic	Discovery II	16. xi. 1954	2 m stramin net	DA
17	S. atlanticus Milne Edwards	12	North Atlantic	Discovery II	vi. 1955	2 m stramin net	DA
18	S. bisulcatus Wood-Mason	6	32° 45′ N., 117° 38′ W.	Paolina T	4. iv. 1956	Isaacs-Kidd mid-water trawl	BF
19	S. robustus Smith	6	North Atlantic	Discovery II	16. xi. 1954	2 m stramin net	BF
20	S. robustus Smith	12	Bay of Biscay	Sarsia	18-24. vii. 1955	2 m stramin net	BF
21	S. similis Hansen	15	North Pacific	Horizon	26. v. 1953	ı m silk net	DS
22	S. similis Hansen	25	32° 45′ N., 117° 38′ W.	Paolina T	4. iv. 1956	Isaacs-Kidd mid-water trawl	BF

BF: boiled (Fisher, Kon & Thompson, 1952) and kept frozen until arrival at Shinfield laboratory.

DA: eyes dissected off and both parts preserved separately in alcohol; kept at low temperature, sent by air to London and immediately taken to Shinfield.

DS: dissected as above and preserved in alcohol, but sent by sea to England. Parapenaeopsis atlantica was stored in ship's refrigerator but Sergestes similis came by ordinary surface mail.

TABLE 2. OIL, VITAMIN A AND CAROTENOIDS IN SOME PENAEIDAE

Court pl. ordinary surface				Vitamin A				Total carotenoids		0	Other
Sampl no.	Species	Av. wt. (mg)	Oil (%)	μg/spec.	μg/g	% ester	% alcohol	μg/spec.	μg/g	β -carotene $(\mu g/g)$	carotenoids
1	Amalopenaeus elegans Eyes (pairs) Bodies Total	0·14 66 66	9·I 4·I 4·I	o o·o54 o·o54	o o·83 o·82	0 100	0 0	0·28 17 17	2000 260 270	0	A AE AE
2	A. elegans Eyes (pairs) Bodies Total	0·10 74 74	O·34	0	0	0	0	0·075 3·7 3·8	750 50	0	A A A
3	Funchalia woodwardi Eyes (pairs) Bodies Total	240 17500 17800	3.1	0 1·7 1·7	o o·o98 o·o97	0 100	0 0	2·8 506 509	12 29 29	0.19 0	A AE, C AE, C
4	Gennadas borealis Eyes (pairs) Bodies Total	0·40 350 350	11 12 12	0 0	0 0	0 0	0 0	1·4 9·0 10	3500 26 30	0 0	A AE AE
5, 6	G. parvus Eyes (pairs) Bodies Total	0·13 69	19 3·2	0.012	88 o	0	100	0.38	2900 57 62	0	AE AE, X AE, X
7	G. parvus Whole specimens	12	3.3	0.012	0.17	0	100	4·3 2·3	190	0	AE, X
8	Parapenaeopsis atlantica Eyes (pairs) Bodies Total		2·9 0·73 0·77	0.10	1.9 0.032 0.049	100	o 100 63	0·53 93 94	9·3 15	o o·o86 o·o85	AE AE, C, X AE, C, X
9	Penaeus aztecus Eyes (pairs) Bodies Total	51 4000	0.66	0·22 0	4.3	67	33	o·96 56	19	0 0.013	A AE, C, X
10	Plesiopenaeus edwardsian Eyes (pairs) Body	470 138000	3.2	0.69	0.024	100	0 0	57 50 19000	14 150 140	o o Trace	AE, C, X
	Total	138500	10	0.69	0.0020	100	0	19000	140	Trace	AE, C, X
ibje	Trachypenaeus membran Eyes (pairs) Bodies Total	100 8700 8800	3.0	0.23	2.2	=	=	<u>0.24</u>	_5.3	°_	A

^{*} Result previously reported by Fisher et al. (1953) for comparison. A – astaxanthin; AE – astaxanthin or its esters; C – carotene; X – xanthopyll.

TABLE 3. OIL, VITAMIN A AND CAROTENOIDS IN SOME SERGESTIDAE

Petalic Eye Bod Tot	tes arcticus es (pairs) lies	Av. wt. (mg) 0.57 180 180 0.88	Oil (%) 27 14 14	μg/spec. 0 0.37 0.37	μg/g 0 2·0	% ester	% alcohol	μg/spec.	µg/g	Carotenoid present
Eye Bod Tot 12	es (pairs) lies tal tes arcticus es (pairs) lies al	0.88	14	0.37		0				
Eye Bod Tot 13	es (pairs) lies cal			- 31	2.0	10	90 90	60 60	900 330 330	AE, X AE, X
Tot 13	cal	170	2.9	0	0	0	0	5.0	5700 65	AE AE
13		170	2.2	0	0	0	0	16	94	AE
Eye Bod Tot 14	ticus									
14	es (pairs) lies	0.40	3.5	0	0	0	0	0·17 1·8	420 58	A AE
Eye Bod Tot 15	cal	31	3.2	0	0	0	0	2.0	63	AE
15 S. ara Eye Bod Tot 16 S. atl Eye Bod	es (pairs) ly	1.0 23 24	30 17 18	0 0	0 0	0 0	0 0	3.0	0 130 120	AE AE
Eye Bod Tot 16 S. atl Eye Bod		2 8 8 0								
S. atla Eye Bod	es (pairs) lies	0·65 99 100	12 2·1 2·1	0.0065 0.024 0.031	0°24 0°31	50 25 32	50 75 68	0·0048 3·7 3·7	7·4 37 37	A AE, X AE, X
Eye		100		0 032	0 32	3-	00	31	31	,
	es (pairs) lies	1·3 320 320	3·4 3·4	0·24 0 0·24	184 0 0.74	100 0 100	0 0	1·1 47 48	820 140 150	A A A
	anticus es (pairs) lies	0.33	1.3	0.078	238	100	0	0·12 4·1	360 44	A AE
Tot	tal	91	1.3	0.078	0.85	100	0	4.2	46	AE
18 S. biss Eye Boo	ulcatus es (pairs)	6.3	9.5	0 3.4	0 2.3	0 80	0 20	I·4 127	220 84	A AE, X
Tot		520	5.2	3.4	2.2	80	20	128	84	AE, X
19 S. rob									10 PM (C)	
	es (pairs)	0·37 74	4.5	0	0	0	0	0.63	1700 140	AE AE
Tot	tal	74	0.25	0	0	0	0	II	150	AE
20 S. rob Eye	es (pairs)	0.84	-	0	0	0	0	0	0	AE, X
Boo Tot	tal	230 230	6.0	0.092	0.40	67 67	33 33	5·7 5·7	25	AE, X
S. sim	iilis iole specimens	52	2.9	0	0	0	0	0.65	12	AE
S. sim Eye Boo	es (pairs)	2.7	3.1	0·076 0·55	28	63 83	37 17	0 20	o 97	AE, X
Tot	lies						1/	20	4/	The same

 β -carotene absent from all groups.

A = astaxanthin; AE = astaxanthin or its esters; X = xanthophyll.

As in the past we are indebted to the many people who have helped us in the collection of specimens. Our thanks are due to Mr P. M. David and his colleagues of the National Institute of Oceanography for material collected on R.R.S. Discovery II; to Mr G. E. Maul of the Museu Municipal at Funchal for specimens from Madeira; to Dr D. T. Gauld of the University of Ghana, Achimota, for specimens from Ghana; to Dr A. Collier of the Gulf Fishery Investigation, Fort Crockett, Galveston, Texas, for specimens from the Gulf of Mexico; and to Dr J. H. Fraser of the Scottish Home Department's Marine Laboratory at Aberdeen for specimens collected during a cruise of F.R.S. George Bligh. We are grateful for the generous hospitality and collecting facilities extended to us by the Directors and Staffs of the Marine Laboratory at Plymouth and of the Scripps Institution of Oceanography at La Jolla, California.

SUMMARY

Vitamin A and carotenoids were measured in six species of Penaeidae and seven species of Sergestidae.

Vitamin A was present in at least one sample of all species except *Gennadas borealis* at concentrations mostly of the same order as previously found in other Decapoda, but usually higher in the Sergestidae than in the Penaeidae.

Carotenoids in the Penaeidae included astaxanthin and its esters, carotenes and xanthophylls, but only astaxanthin or its esters with occasional traces of xanthophylls were found in the Sergestidae.

REFERENCES

CALMAN, W. T., 1910. Oxford Treatise on Zoology, Part VII. Appendiculata. Third Fascicle. Crustacea. London: Black.

Fisher, L. R., 1957. 'Vitamins'. In *The Physiology of Crustacea* (ed. T. H. Waterman). New York: Academic Press (in the Press).

FISHER, L. R., KON, S. K. & PLACK, P. A., 1957. Vitamin A isomers in some eucaridan Crustacea. *Proc. roy. Soc.* B, Vol. 147, pp. 200–17.

FISHER, L. R., KON, S. K. & THOMPSON, S. Y., 1952. Vitamin A and carotenoids in certain invertebrates. I. Marine Crustacea. J. mar. biol. Ass. U.K., Vol. 31, pp. 229–58.

GORDON, I., 1955. Importance of larval characters in classification. Nature, Lond., Vol. 176, pp. 911–12. GRANGAUD, R., 1951. L'astaxanthine nouveau facteur vitaminique A. Actualités biochim., No. 15, 49 pp.

GRANGAUD, R. & MASSONET, R., 1951. Activité vitaminique A de l'astaxanthine.

Tunis. méd., T. 29, pp. 680-3.

Grangaud, R., Massonet, R. & Sansac, A., 1954. Activité antixérophtalmique du pigment caroténoïde de Pénéidés (*Aristeomorpha foliacea Risso et Aristeus antennatus Risso*). Technique de préparation des extraits actifs. *C.R. Soc. Biol.*, *Paris*, T. 148, pp. 533–6.

WALD, G. & Brown, P. K., 1956-7. The vitamin A of a euphausiid crustacean. J.

gen. Physiol., Vol. 40, pp. 627-34.

Wald, G. & Burg, S. P., 1956-7. The vitamin A of the lobster. J. gen. Physiol., Vol. 40, pp. 609-25.