## Graph theory connectivity

Yulia Burkatovskaya
Department of Information Systems and Technologies
Associate professor

## 2. Connectivity

- Walks
- Distances
- Connectivity of simple graphs
- Connectivity of directed graphs


### 2.1. Walks

A walk is a sequence of vertices and edges

$$
\left\langle v_{0}, v_{n}\right\rangle=v_{0} e_{1} v_{1} \ldots v_{i-1} e_{i} v_{j} \ldots v_{n-1} e_{n} v_{n}
$$

where $e_{i}=v_{i-1} v_{i}$. A walk is closed if its first and last vertices are the same, and open if they are different.
If there are no multiple edges then it is possible to omit edges

## Examples.



$<a, f>=a b f c f c b f$

## Trail and tour

A trail is an open walk in which all the edges are different.
A tour (or a circuit) is a closed walk in which all the edges are different.
Examples.


$$
\begin{aligned}
\text { Trail }\langle\mathrm{a}, \mathrm{f}\rangle & =\mathrm{abfcbef} \\
\text { Tour }\langle\mathrm{a}, \mathrm{a}> & =\mathrm{abfcbea}
\end{aligned}
$$

## Path and cycle

A path (or a chain) is an open walk in which all the vertices (and hence the edges) are different.
A cycle (or a circuit) is a closed walk in which all the vertices are distinct.

## Examples.



$$
\begin{aligned}
\text { Path }\langle\mathrm{a}, \mathrm{f}\rangle & =\mathrm{abef} \\
\text { Cycle }<\mathrm{a}, \mathrm{a}> & =\mathrm{ab} f \mathrm{e} \mathrm{a}
\end{aligned}
$$

### 2.2. Distances

The length of a walk is the number of edges that it uses.
The shortest path $\langle u, v\rangle$ is a path of minimum length $|<u, v\rangle \mid$.
The distance between two vertices $d(u, v)$ is the length of a shortest path $\langle u, v\rangle$, if one exists, and otherwise the distance is infinity.

## Examples.



$$
\begin{gathered}
<a, f>=a \operatorname{ab} \zeta f \eta c \theta f \kappa c \beta b \zeta f \\
|<a, f>|=7
\end{gathered}
$$

Shortest path <a,f>=a $\alpha b \zeta f$

$$
d(a, f)=2
$$

## Distances

The eccentricity $\varepsilon(v)$ of a vertex $v$ is the maximum distance from $v$ to any other vertex.

$$
\varepsilon(v)=\max _{u \in V} d(u, v) .
$$

The diameter $D(G)$ of a graph $G$ is the maximum distance between two vertices in a graph or the maximum eccentricity over all vertices in a graph.

$$
D(G)=\max _{v \in V} \varepsilon(v)=\max _{u, v \in V} d(u, v) .
$$

The radius $R(G)$ is the minimum eccentricity over all vertices in a graph.

$$
R(G)=\min _{v \in V} \varepsilon(v)=\min _{v \in V} \max _{u \in V} d(u, v) .
$$

## Distances

Vertices with maximum eccentricity are called peripheral vertices.
Vertices of minimum eccentricity form the center.

## Examples.



$$
\begin{gathered}
\varepsilon(\mathrm{a})=\varepsilon(\mathrm{b})=2 \\
\varepsilon(\mathrm{c})=\varepsilon(\mathrm{d})=\varepsilon(\mathrm{e})=\varepsilon(\mathrm{f})=3 \\
\mathrm{R}(\mathrm{G})=2 \\
\mathrm{D}(\mathrm{G})=3 \\
\text { Peripheral vertices } \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \\
\text { Centre } \mathrm{a}, \mathrm{~b}
\end{gathered}
$$

### 2.3. Connectivity of simple graphs

If it is possible to establish a path $<u, v>$ from vertex $u$ to other vertex $v$, the vertices $u$ and $v$ are connected.
If all the pairs of vertices are connected, the graph is said to be connected; otherwise, the graph is disconnected.
Examples.



Disconnected graph

## Connected component

A connected component of a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is any its maximally connected subgraph, i.e. an induced subgraph which is not a proper subgraph of any other connected subgraph of $G(V, E)$.
Examples.


Graph with two components


Component


Not a component

## Articulation point and bridge

An articulation point (or separating vertex) of a graph is a vertex whose removal from the graph increases its number of connected components.
A bridge, or (cut edge) is an analogous edge.

Examples.
de - bridge
d, e, h-articulation points


## Cuts

A vertex cut, (or separating set) of a connected graph $G$ is a set of vertices whose removal makes $G$ disconnected or trivial.
Analogous concept can be defined for edges.

## Examples.


$\{b, e\}$ - vertex cut
$\{a b$, be, ef $\}$ - edge cut

## Graph invariants

$k(G)$ - the number of connected components
The vertex connectivity $\kappa(G)$ is the size of a minimal vertex cut. The edge connectivity $\lambda(G)$ is the size of a smallest edge cut. A graph is called n -vertex-connected ( n -edge-connected) if its vertex (edge) connectivity is $n$ or greater.

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

Examples.


$$
\begin{aligned}
& \mathrm{K}=2(\text { vertices } \mathrm{d}, \mathrm{e}) \\
& \lambda=2(\text { edges ad, de })
\end{aligned}
$$

## Cuts for a pair of vertices

A vertex cut $\mathbf{S ( u , v}$ ), (or separating set) for two connected vertices $u$ and $v$ is a set of vertices whose removal mekes the vertices $u$ and $v$ disconnected.
Analogous concept can be defined for edges.

## Examples.



> Vertex cut $S(a, f)=\{b, d, e\}$
> Edge cut $S(a, f)=\{a b, a e, e f\}$

### 2.4. Connectivity of directed graphs

If it is possible to establish a path $\langle u, v\rangle$ and a path $<v, u\rangle$ in a digraph, the vertices $u$ and $v$ are strongly connected.
If it there exists either a path $<u, v>$ or a path $<v, u>$ in a digraph, the vertices $u$ and $v$ are unilaterally connected.
If it there exists a path $<u, v>$ in a graph obtained from a digraph by canceling of edges direction, the vertices $u$ and $v$ are weakly connected.


Strongly connected


Unilaterally connected


Weakly connected

## Connectivity of directed graphs

If all the pairs of vertices of a digraph are strongly / unilaterally / weakly connected, the digraph is strongly / unilaterally / weakly connected.

## Examples.



Strongly connected


Unilaterally connected


Weakly connected

## Strongly connected component

A strongly connected component of a digraph $G(V, E)$ is any its maximally strongly connected subgraph, i.e. an induced subgraph which is not a proper subgraph of any other strongly connected subgraph of $G(V, E)$.
Example.


## Quotient graph

The quotient graph of a digraph $\mathrm{D}(\mathrm{V}, \mathrm{E})$ with k strongly connected components induced by sets of vertices $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ is a graph $D^{\prime}\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=\left\{v_{1}, \ldots, v_{k}\right\}, v_{i} v_{j} \in E^{\prime}$ if there is an edge $u_{i} u_{j} \in E: u_{i} \in V_{i}, u_{j} \in V_{j}$.

## Example.



Digraph
Quotient graph

## Transitive closure of a graph

Given a directed graph, find out if a vertex $j$ is reachable from another vertex $i$ for all the vertex pairs $\{i, j\}$ in the given graph. Here reachable means that there is a path $<i, j\rangle$. The results are usually presented in the reachability matrix $T$, where
Ti,j=1 iff <l,j> exists.

The reachability matrix is called transitive closure of a graph.
Example.


$$
T(D)=\begin{array}{c|cccc} 
& a & b & c & d \\
\hline a & 1 & 1 & 0 & 1 \\
b & 1 & 1 & 0 & 1 \\
c & 1 & 1 & 1 & 1 \\
d & 1 & 1 & 0 & 1
\end{array}
$$

## Transitive closure of a graph

- Let $A: n \times m$ and $B: n \times m$ be Boolean matrices. Then the sum of the matrices is a Boolean matrix $C: n \times m$ defined as follows:

$$
C=A \vee B: \quad C_{i j}=A_{i j} \vee B_{i j}
$$

- Let $A: n \times k$ and $B: k \times m$ be Boolean matrices. Then the product of the matrices is a Boolean matrix $C: n \times m$ defined as follows:

$$
C=A B: \quad C_{i j}=\bigvee_{l=k}^{m} A_{i l} B_{l j}
$$

- Let $A: n \times n$ be a Boolean matrix. Then the $\boldsymbol{k}$-th power of the matrix is a Boolean matrix $A^{k}: n \times n$ defined as follows

$$
A^{n}=\underbrace{A A_{\ldots} \ldots A}_{n}
$$

## Transitive closure of a graph

For a graph $G(V, E)$, the matrix $M^{k}$, where $M$ is the adjacency matrix of the graph $G$, contains some information about paths of the length $k$.

- Lemma. For the matrix $M^{k}$, element $(1, j)$ is equal to 1 iff there is path $<1, j>$ of the length $k$.
- Lemma. The reachability matrix $T$ can be calculated as follows:

$$
T(D)=E \vee M \vee M^{2} \vee \ldots \vee M^{p-1}
$$

## Transitive closure of a graph

## Example.



$$
M=\begin{array}{c|cccc} 
& a & b & c & d \\
\hline a & 0 & 0 & 0 & 1 \\
b & 1 & 0 & 0 & 0 \\
c & 1 & 0 & 0 & 1 \\
d & 0 & 1 & 0 & 0
\end{array}
$$

## Transitive closure of a graph

## Example.

$$
M^{2}=M M=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

## Transitive closure of a graph

## Example.

$$
M^{3}=M^{2} M=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Transitive closure of a graph

## Example.

$$
\begin{aligned}
T= & E \vee M \vee M^{2} \vee M^{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] \\
& \vee\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

## Transitive closure of a graph

## Warshall algorithm

The main idea of the algorithm is the following: a path <i,j> exists if and only if:

- $i=j$
- ; or there is an edge $(i, \lambda)$;
- or there is a path $<i, j>$ going only through vertex 1 ;
- or there is a path $\langle i, j\rangle$ going through vertex 1 and/or 2;
- or there is a path $<i, j>$ going through vertices 1,2 and/or 3;
- or there is a path $<i, j>$ going through vertices $1, \ldots, n-1$ and/or $n$.


## Transitive closure of a graph

## Warshall algorithm

Define the sequence of matrices $B^{(0)}, \ldots, B^{(p)}$ as

$$
\begin{gathered}
B^{(0)}=E \vee M \\
B_{i j}^{(l)}=B_{i j}^{(l-1)} \vee B_{i l}^{(l-1)} B_{l j}^{(l-1)}
\end{gathered}
$$

Then, $\mathrm{T}=\mathrm{B}^{(\mathrm{p})}$.

## Transitive closure of a graph

## Warshall algorithm

Define the sequence of matrices $B^{(0)}, \ldots, B^{(p)}$ as

$$
\begin{gathered}
B^{(0)}=E \vee M \\
B_{i j}^{(l)}=B_{i j}^{(l-1)} \vee B_{i l}^{(l-1)} B_{l j}^{(l-1)}
\end{gathered}
$$

Then, $\mathrm{T}=\mathrm{B}^{(\mathrm{p})}$.

$$
B^{(l)}=B^{(l-1)} \vee D^{(l)}, \quad D_{i j}^{(l)}=B_{i l}^{(l-1)} B_{l j}^{(l-1)}
$$

## Transitive closure of a graph

## Example.



$$
M=\begin{array}{c|cccc} 
& a & b & c & d \\
\hline a & 0 & 0 & 0 & 1 \\
b & 1 & 0 & 0 & 0 \\
c & 1 & 0 & 0 & 1 \\
d & 0 & 1 & 0 & 0
\end{array}
$$

## Transitive closure of a graph

## Example.

$$
B^{(0)}=E \vee M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

## Transitive closure of a graph

## Example.

$$
\begin{aligned}
B^{(a)}=B^{(0)} \vee D^{(a)}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \vee\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \\
B^{(b)}=B^{(a)} \vee D^{(b)}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

## Transitive closure of a graph

## Example.

$B^{(c)}=B^{(b)} \vee D^{(c)}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right] \vee\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$
$B^{(d)}=B^{(c)} \vee D^{(d)}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right] \vee\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$

## Transitive closure of a graph

## Strong connectivity matrix

Given a directed graph, the strong connectivity matrix S is defined as follows: $\mathrm{S}_{\mathrm{i}, \mathrm{j}}=1$ iff vertices I and j are strongly connected.

## Example.



$S=$|  | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | 1 | 1 | 0 | 1 |
| $b$ | 1 | 1 | 0 | 1 |
| $c$ | 0 | 0 | 1 | 0 |
| $d$ | 1 | 1 | 0 | 1 |

## Transitive closure of a graph

## Defining strong connected components

- Start. All rows of the matrix $S$ are unmarked. Set $k=1$.
- Step 1. Consider an unmarked row I and form $k$-th strongly connected component Gk induced by the vertices corresponding the columns containing 1 in row $i$. Mark all the rows containing 1 in column $i$.
- Step 2. If there are unmarked rows go to Step 1.
- End.


## Transitive closure of a graph

Exam ple. For the digraph $D(V, E)$ from the previous examples,

