IUCN

National fisheries fish spawning calendar for Lebanon

Nancy Sayar and Michel Bariche

INTERNATIONAL UNION FOR CONSERVATION OF NATURE

Abstract

About IUCN IUCN is a membership Union uniquely composed of both government and civil society organisations. It provides public, private and non-governmental organisations with the knowledge and tools that enable human progress, economic development and nature conservation to take place together.

Created in 1948, IUCN is now the world's largest and most diverse environmental network, harnessing the knowledge, resources and reach of more than 1,500 Member organisations and some 18,000 experts. It is a leading provider of conservation data, assessments and analysis. Its broad membership enables IUCN to fill the role of incubator and trusted repository of best practices, tools and international standards.

IUCN provides a neutral space in which diverse stakeholders including governments, NGOs, scientists, businesses, local communities, indigenous people's organisations and others can work together to forge and implement solutions to environmental challenges and achieve sustainable development.

Working with many partners and supporters, IUCN implements a large and diverse portfolio of conservation projects worldwide. Combining the latest science with the traditional knowledge of local communities, these projects work to reverse habitat loss, restore ecosystems and improve people's well-being.

www.iucn.org
https://twitter.com/IUCN/

National fisheries fish spawning calendar for Lebanon

Nancy Sayar and Michel Bariche

The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The views expressed in this publication do not necessarily reflect those of IUCN.

IUCN is pleased to acknowledge the support of its Framework Partners who provide core funding: Ministry of Foreign Affairs of Denmark; Ministry for Foreign Affairs of Finland; Government of France and the French Development Agency (AFD); the Ministry of Environment, Republic of Korea; the Norwegian Agency for Development Cooperation (Norad); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC) and the United States Department of State.

This publication has been made possible in part by funding from the Royal Norwegian Embassy of Beirut.

Published by:	IUCN, Gland, Switzerland
Produced by:	IUCN Regional Office for West Asia, in collaboration with IUCN Lebanon Project Office
Copyright:	© 2022 IUCN, International Union for Conservation of Nature and Natural Resources
Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder.	
Recommended citation:	Sayar, N and Bariche, M. (2022). National fisheries fish spawning calendar for Lebanon. Gland, Switzerland: IUCN.

Cover photo: Michel Bariche
Layout by: Mira Husseini

Table of contents

List of figures IV
Foreword
Executive summary VI
I. Introduction 1
II. Methodology 3
Sampling 3
Morphometric analysis 4
Population structure and sex-ratio 5
Spawning and first maturity 5
III. Results 8
IV. Discussion 9
References 15
Annex 1: Captions for the factsheets. 16
Annex 2: Factsheets with reproductive characteristics for fish species from this study 17
Annex 3: Factsheets with estimated reproductive characteristics for fish species from this study 44
Annex 4: List of species excluded during the study due to the small numbers of non-mature individuals during the study 73

List of figures

Figure 1. Map of Lebanon showing fishers' ports corresponding to sampling sites (Source: Mira Husseini) 3
Figure 2.Processing collected fish specimens (Photo credit: Michel Bariche) 4
Figure 3. Bony fish anatomy (Campbell \& Reece, 2008) 5
Figure 4. Macroscopic stages of gonad development (Source: Mira Husseini) 6
Figure 5. Dissection of a goldblotch grouper (Epinephelus costae) and extraction of its guts (Photo credit: Michel Bariche) 7
Figure 6. (a) Yellowmouth barracuda (Sphyraena viridensis), (b) Brown meagre (Sciaenaumbra) with ovaries and; (c) White seabream (Diplodus sargus) with testes in advancedmaturity stages (Photo credit: Michel Bariche)8
Figure 7 Sample photographs of Saddled seabream (Oblada melanura) showing ovaries(photo 1 to 4) and testes (photo 5 to 8) in different stages of maturity (Photo credit:Michel Bariche)12

Foreword

This spawning calendar, prepared in the context of the project "Enhancing socioecological climate change resilience of marine and coastal systems in Lebanon", gathers information for commercial marine fish native to Lebanon. During the years 2020 and 2021, fish samples were collected, from various ports around the country, and thoroughly analysed, providing some valuable insight on native fish population. Considered essential for future fishery management plans, it will in turn contribute to a more efficient, sustainable management of the marine ecosystems, in partnership with the Ministry of Agriculture in Lebanon.

This project, under which the calendar was created, is funded by the Royal Nonwegian Embassy in Beirut and managed by the IUCN, International Union for Conservation of Nature Regional Office for West Asia. It aims to assess and lessen the vulnerability of coastal towns in Lebanon to protect local communities. It also intends to improve Marine Protected Areas while following efficient methods for sustainable management of the ecosystems and increasing the capacity of stakeholders to effectively manage the marine ecosystem. More specifically, it relies on measures that have been previously used in the Mediterranean Sea to evaluate the vulnerability of coastal communities and sustainably manage natural resources.

In Lebanon, IUCN ROWA is working with the Ministry of Agriculture in Lebanon to develop a fish spawning calendar for commercial marine fishes that are native to the country. This spawning calendar is considered essential for future fishery management plans for the Lebanese fishery, which in turn will contribute to a sustainable management of the marine ecosystems.

Hany El Shaer, Ph.D

Regional Director, IUCN (International Union for Conservation of Nature)
Regional Office for West Asia (ROWA)

Executive summary

Fish species show different reproductive characteristics. They range from gonochoristic, where the individual is either a male with testes producing sperm or a female with ovaries producing ova, to hermaphroditic, where an individual has both testicular and ovarian tissues. Hermaphroditism may be synchronous, where an individual produces sperm and ova, or sequential, where the change in sex occurs at some point during the life cycle. Individuals are either protandrous (a male turning into a female) or protogynous (a female turning into a male).

Fish species present in the Lebanese coastal waters display those various characteristics. Observing the macroscopic stage of gonad development allows the estimation of maturity, and thus the spawning season for each species. Preparing a spawning calendar is required for any fishery management programme.

The main objective of the study is to collect basic information on reproductive parameters of the maximum number of native species of commercial importance in Lebanon. Timing and duration of spawning activities and sex-ratios are described, in addition to the population structure of the processed samples. A total of 1109 specimens were collected and processed, representing 64 different fish species out of the 89 native commercially important species that are known to breed in the Lebanese territorial waters.

In this work, the basic reproductive characteristics of 54 species have been assessed and a spawning calendar has been created. The calendar includes a relatively precise estimate for 26 species.

I. Introduction

The marine environment in Lebanon is exposed to high anthropogenic pressures, with human activities contributing both directly and indirectly to its degradation. Illegal fishing activities, habitat destruction, pollution, species introduction and climate change are among the most significant threats.

The Lebanese fishery has remained artisanal over the years and is mostly composed of small-scale artisanal métiers. Despite that, intensive fishing practices are taking place and fish catch is considered to have reached its upper limit. An additional increase of harvest rate has occurred in the last few years in response to increased socioeconomic perturbation in the country.

The list of marine fish species present in the Lebanese marine waters has been recently published (Bariche \& Fricke, 2020). It is an annotated checklist that enumerates the presence of 368 marine fish, from 159 families. Species are divided into native and non-indigenous species. However, the biology and ecology of most of those species remain unknown as they have been poorly studied in the region, especially in Lebanon. A lack of information on the reproduction of fishes present in the Lebanese coastal waters exists. More specifically, the timing and duration of the spawning seasons for species of commercial importance is unknown, which hinders the development of fisheries management programmes.

Fish are vertebrates that are characterised by a high diversity and various modes of reproduction (Moyle \& Cech, 2004). For most species there are only two sexes, either males or females (gonochoric), producing sperm and ova respectively. Some species are hermaphroditic, and individual organisms have both testicular and ovarian tissues. Those presenting synchronous hermaphroditism can produce both sperm and ova. Others are sequential hermaphrodites and can be either protandrous (starting as males then turning into females at some point during the life cycle), or protogynous (starting as females then turning into males) (Moyle \& Cech, 2004). Most fishes are oviparous with fertilisation taking place
externally in the water. Fertilisation may also occur internally and different types of viviparity also exist.

Although the gender of some fishes is easily recognizable due to sexual dimorphism or dichromatism, a visual inspection of the internal anatomy is usually needed for sex determination. Testes are usually white and flat with irregular lobes, whereas ovaries are clear, pinking or yellowish and are rounded in shape.

This study aims at collecting native species of commercial importance in Lebanon and studying their gonad development to determine the timing and duration of their spawning period. Additional features, such as sex-ratios and sizes at first maturity were also estimated.

II. Methodology

Sampling

Sampling was carried out for two years during the estimated reproductive period of the fish species. Fish specimens were collected from February to June 2020, and February to August in 2021. They were purchased from fishing ports in various locations along the coast of Lebanon, mainly from Tripoli, Dora, Beirut, Damour, Jiyyeh and Tyre (Figure 1). Some ports, such as Ouzai and Abdeh were not considered due to their accessibility or low number of large individuals.

Figure 1. Map of Lebanon showing fishers' ports corresponding to sampling sites (Source: Mira Husseini)

Specimens were collected once or twice per week based on the expected reproductive season for marine fishes in the eastern Mediterranean. Data acquired in 2020 was used in order to sample more precisely in the following year (2021). The majority of the specimens were purchased in the morning, while others were bought from fishers whenever available. They were transported on crushed ice to the laboratory for analysis. They were identified, sorted by species and frozen at $-20^{\circ} \mathrm{C}$. In some cases, fish were frozen on site and brought to the laboratory whenever possible. Sampling only included native Mediterranean fish species; all non-indigenous species were excluded.

Morphometric analysis

The same procedure for data collection was followed in both years of the study. Specimens were removed from the freezer in the morning and left to thaw in separate trays (Figure 2). Each individual fish was assigned a separate and unique label, using the first letter of its genus name and the first two letters of the species name (example: DCe for Diplodus cervinus), along with a number. Each specimen was photographed with the label. Fin clips were removed and preserved in 100% ethanol for future studies.

Figure 2.Processing collected fish specimens (Photo credit: Michel Bariche)

The gonads, livers and remaining guts were preserved afterwards in 10\% buffered formaldehyde. Additional photos were taken during the process, as needed. All fish heads were removed and stored in a freezer for future studies.

Population structure and sex-ratio

The population structure of the collected samples was described using weightlength relationships ($W-L$) and sex-ratios. The W-L were analysed by regression analyses separately with a hypothesized power function of the form $W_{G}=a T L^{b}$, where a and b are regression parameters. Weight-length data was later pooled and analysed using the same function. Lengths were grouped into ranges of 5 cm intervals and length-frequency histograms were constructed (e.g. 20=15.1-20.0 $\mathrm{cm} ; 25=20.1-25.0 \mathrm{~cm}$).

The sex-ratios were analysed using $\chi 2$ goodness-of-fit tests with a hypothesized ratio of $1: 1$ (males : females). Sex-ratios were calculated monthly for the whole duration of sampling in order to assess the variations of the sampled population. Sex-ratios across total lengths were also analysed, where the data was divided into 5 cm intervals.

Spawning and first maturity

Figure 3. Bony fish anatomy (Campbell \& Reece, 2008)

Gonads were extracted and weighed $\left(\mathrm{W}_{\mathrm{g}}\right)$ to the nearest 0.001 g . They were macroscopically examined for shape, volume, colour, presence or absence of oocytes and sperm or egg shedding. A photo of each gonad was taken according to an established protocol, showing the gonad and the gut cavity together with the unit of measure next to the fish (Figure 5). Ovaries in mature stages were yellow to pinkish red, granulated and rounded, while testes were white, smooth and tapered on the edges. Immature gonads were examined under the stereoscope for sex identification based on texture and the presence of follicles whenever possible (Figure 6). The developmental stages were classified based on the macroscopic gonad maturity stages adopted by the Mediterranean International Trawl Survey (MEDITS) (Follesa and Carbonara, 2019). Fish within the spawning season were assigned into two categories, either mature or immature, based on the macroscopic staging.

Figure 4. Macroscopic stages of gonad development (Source: Mira Husseini)

Figure 5. Dissection of a goldblotch grouper (Epinephelus costae) and extraction of its guts (Photo credit: Michel Bariche)

The length at first sexual maturity $\left(L_{50}\right)$ denotes the length at which 50% of the population has reached reproductive maturity. It was calculated for the sexes separately. Binary logistic regression analyses were performed on the reproductive status and L_{T} of the selected samples, without grouping into size intervals. This produced logistic equations of the form $P=1 /\left\{1+e\left[-r\left(L_{T}-L_{50}\right)\right]\right\}$ which expressed the proportion of sexually mature fish in terms of the total length and the L_{50}.

Figure 6. (a) Yellowmouth barracuda (Sphyraena viridensis), (b) Brown meagre (Sciaena umbra)) with ovaries and; (c) White seabream (Diplodus sargus) with testes in advanced maturity stages (Photo credit: Michel Bariche)

III. Results

A total of 1075 specimens were collected and processed, representing 64 different fish species out of the 89 native commercially important species that are known to breed in the Lebanese territorial waters (Table 1).

In this work, the basic reproductive characteristics of 54 species have been assessed and a spawning calendar has been created. The calendar includes a relatively precise estimate for 26 species. This is because of a relatively adequate sample size which covers most of the spawning season and is in line with the literature from the eastern Mediterranean Sea. A less precise estimate is available for 28 species, which were collected in smaller numbers, particularly during the start or end of their spawning season. The reproductive characteristics for those
species was estimated from the data provided by the specimens collected, field observation and an extensive literature review from the Mediterranean. Finally, the remaining 10 species were not processed during the study (Annex 4).

Specific factsheets were developed for each species, showing general descriptive statistics related to the reproduction and sample characteristics (Annexes 2, 3).

IV. Discussion

This study provided some essential insight on the population structure and spawning period for native fish species present in the fish market.

Some obstacles that were encountered in 2020 (year 1) were removed, at least partially in 2021 (year 2), with an increase in the number of species collected, a larger number of individuals from specific species and a better preliminary list of months, suspected to be within the spawning period for most fish species.

In fact, significant efforts were made to expand the sampling area and include new fish landing spots, as well as increase the sampling size. The total number of native Mediterranean species collected changed from 46 species (year 1) to 64 species (year 2). The number of fish individuals was also significantly increased, which resulted in statistically accurate information for some species (Annex 2). While in year 1, the time of purchase was based on a preliminary spawning calendar compiled from available scientific literature and personal observations or notifications from fishers and fishmongers, many fishes did not display maturing gonads and were thus captured outside their real spawning period. In fact, published scientific work describes reproduction in the specific region of study within the Mediterranean, where the timing and temporal patterns are often different from Lebanon. This is particularly relevant, knowing that the general biology of fishes, especially the breeding season may fluctuate between years, as it often depends on environmental and biotic factors. During the sampling year that followed (year 2), the preliminary spawning months expected for most species
were more accurate than year 1, since they were based on additional data acquired from the same sampling location (Lebanon) in year 1.

Acquiring such a large amount of information has been a considerable achievement despite the economic crisis and political instability encountered during the sampling years. In fact, the inflation on gasoline and goods resulted in an increased national demand on local food, such as fish, which consequently led to shortage in the fish market. Furthermore, the limited circulation due to civil protests in year 1 restricted precious sampling days within the spawning period of many fish species. Finally, the several lockdown periods due to the coronavirus pandemic amplified the problem, as many fishers stopped going out at sea, resulting in a decreased number of fish present on the market.

Other challenges encountered in year 1 remained in 2021 (year 2) and significantly affected the results for some species. They pertain to the number of specimens collected for some species that remained considerably low for not allowing a statistically significant estimate of their spawning periods. Therefore, no reliable conclusions can be drawn for those species (Annex 3). This is due to three main reasons: the scarcity of some species in the environment, misleading statements made by fishers and the large percentage of juvenile and immature fishes present in the Lebanese fishery.

In fact, the relatively low number of some species in our sample reflects their population size in the marine environment of Lebanon. Additional efforts in sampling significantly increase the cost and do not necessarily result in acquiring more specimens, particularly when they have to coincide with the few critical weeks of the spawning period for each species. Fishers occasionally indicate the potential breeding period of a rare species and encourage us to purchase it remotely. Their observation is based on the presence of developed gonads they extract and sell to customers. These gonads do not always reflect a real spawning event, as they may be immature, non-virgin (old gonads that have reproduced in previous years) or atretic (post-spawning gonads that are in a state of resorption). They are large enough to be seen and sold by fishers for consumption, but are
not technically reproducing gonads. The vast majority of catch is either juveniles in their first year, or larger individuals that have not reached maturity yet. These subadults are often recognized as such after being purchased and processed, which adds a significant bias to the study, since the fishes are not used.

The small number of acquired fish, with the majority being juvenile, is certainly due to serious overfishing. This is caused by various illegal fishing activities and the lack of fishing regulations occurring in the Lebanese coastal waters. Furthermore, it is also related to other factors, such as habitat destruction, pollution, competition with the large number of invasive species and even the general climatic changes occurring in the eastern Mediterranean. All these factors are clearly affecting the marine coastal environment in Lebanon and the Levant.

Figure 7 Sample photographs of Saddled seabream (Oblada melanura) showing ovaries (photo 1 to 4) and testes (photo 5 to 8) in different stages of maturity (Photo credit: Michel Bariche)

					N $\frac{2}{2}$ 0 0 0 0 0 0 0 0			$\begin{array}{\|l\|l} & \text { Phycis blennoides } \\ \hline \text { Soleidae } & \text { Solea solea } \\ \hline \end{array}$																			$\begin{array}{c\|c} 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$								$\begin{array}{l\|l\|} \hline 0 \\ 0 \\ 0 \\ ⿳ 亠 口 冋 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
0	\rightarrow－	\checkmark	vor	\vec{v}	\triangle os	$\infty \rightarrow$	－\rightarrow	$\rightarrow \omega$	o or	－ $0 \times$	∞ or	or or			$\stackrel{\square}{+} \overbrace{}^{2}$		¢	$\stackrel{\rightharpoonup}{\square}$	ω_{\circ}－				$\stackrel{\rightharpoonup}{\infty}$	$\rightarrow \infty$		－	\rightarrow	－		क し	$\stackrel{\rightharpoonup}{+} \stackrel{\omega}{*}$	ω_{0}^{0}	$\stackrel{\rightharpoonup}{\mathrm{O}} \mathrm{O}$	A O	O－		合＝
$\begin{aligned} & G O \\ & 0 \mathbb{D} \end{aligned}$																																					遃
																																					$\stackrel{\square}{\square}$
$\begin{aligned} & \text { (1) } \\ & \stackrel{y}{\mathrm{O}} \end{aligned}$				N					－				ω					の	\rightarrow	$\rightarrow \sim$	v				－		N			\bullet	－	あ		as	－		－${ }_{\text {¢ }}^{\substack{\text { ¢ }}}$
$\underset{\sim}{\gtrless} \underset{0}{2}$				N												ω										－	\rightarrow	Or			－	$\stackrel{\rightharpoonup}{\omega}$	v	Or -	－		$\sim \stackrel{2}{3}$
$\begin{aligned} & \therefore 3 \\ & \because T \end{aligned}$																																					钺
																																					3
3						－											－		－ 0														$\stackrel{\rightharpoonup}{+}$				亭
IT						\rightarrow－	\rightarrow		－or		N 0	v					or ω	－							－		\rightarrow	－		0				ω			䋯
\bigcirc			－			\checkmark									O	ω		\rightarrow			\pm			－\rightarrow	－		N			$\stackrel{\rightharpoonup}{\text {－}}$		$\stackrel{\rightharpoonup}{v}$	N		$\infty \rightarrow$		－+T $\substack{0 \\ \hline}$
$\vec{\sigma} \subseteq$						－								$\stackrel{\rightharpoonup}{0}$	or						๑	ar										O					E
$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \omega \mathrm{~N} \end{aligned}$																																					氠
$\xrightarrow{2}$																																					E
$\begin{array}{ll} 0 & \infty \\ \stackrel{\omega}{2} & 0 \end{array}$																																					脙
$$																														ω							$\bigcirc \omega$
$\begin{aligned} & \tilde{0} \\ & \stackrel{\rightharpoonup}{ \pm} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		or				－	$\stackrel{\rightharpoonup}{\square}$		v			－		\rightarrow	－		N								－					ar		N	N	ar	or		
$\begin{aligned} & 0 \\ & \frac{1}{3} \\ & 0 \\ & \end{aligned}$	\rightarrow			\cdots									－		$\rightarrow 0$	∞	$\stackrel{\rightharpoonup}{\circ} 0$	－							－					$\stackrel{\rightharpoonup}{\text { a }}$		\rightarrow	\％				芴
$\begin{aligned} & 100 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\rightarrow \mathrm{N}$				－						$\stackrel{\rightharpoonup}{+}$		N								$\stackrel{\rightharpoonup}{+}$					$\pm \sim$	N	心	ぁ	\checkmark の	0		∞
$\begin{array}{ll} \text { D } \\ \text { D } \\ \text { O } \end{array}$	\rightarrow			\rightarrow							－	\rightarrow		$\stackrel{\rightharpoonup}{+}$			N				Or				$\stackrel{\rightharpoonup}{0}$					N	\rightarrow	N	－	A			哭
	N	N		$\omega \sim$	N						\rightarrow－	－					o		\bullet			A	－		ω						ω	¢	あ		\rightarrow		3
		N	N	$N-$	\rightarrow	N	\bigcirc		\sim	N	$\rightarrow \rightarrow$						$\checkmark \stackrel{\rightharpoonup}{v}$				\cdots			v			\rightarrow			N	\rightarrow	$\stackrel{\rightharpoonup}{\infty}$	Or	013	\pm		号
$\frac{0}{2}$																										－					N		－	ω or	O		砍
$\begin{aligned} & \text { D } \\ & \underline{0} \end{aligned}$		ω	－							\rightarrow								v				v								－	\rightarrow	\％	$\stackrel{\rightharpoonup}{\infty}$	ω			罘
$\frac{0}{\hat{D}}$				$\stackrel{ }{ }$							\rightarrow			\rightarrow	¢	の					$\stackrel{\sim}{\omega}$		$\stackrel{\rightharpoonup}{+}$				N				N				\bigcirc		E
$\frac{2}{3}$											N											v											$\stackrel{\rightharpoonup}{\circ}$			ω N	－
17																																					亭
$\frac{\mathrm{N}}{\mathrm{~S}}$																																					先

Spawning calendar for fish species of commercial importance in Lebanon

References

Bariche, M. and Fricke, R. (2020). The marine ichthyofauna of Lebanon: an annotated checklist, history, biogeography, and conservation status. Zootaxa, 4775(1), pp.1-157.

Campbell, N.A. and Reece, J.B. (2008). Biology (8th ed.). San Francisco, USA: Pearson.

Follesa, M.C. and Carbonara, P. (eds.) (2019). Atlas of the maturity stages of Mediterranean fishery resources. General Fisheries Commission for the Mediterranean. Studies and Reviews, 99, pp. I-259. Rome, Italy: FAO

Moyle P.B. and Cech J.J. (2004). Fishes: An Introduction to Ichthyology. Fifth edition. New York, USA: Pearson Benjamin Cummings.

Annex 1: Captions for the factsheets

Annex 2: Factsheets with reproductive characteristics for fish species from this study

Mugilidae

Chelon labrosus (Risso, 1827)
Thicklip grey mullet

© Michel Bariche

بوري شثيلان

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Winter
Sample size	40
Mean \pm SD (range)	$35.5 \pm 3.5 \mathrm{~cm}(27.3-46.2 \mathrm{~cm})$
First maturity	25.2 cm
Sex-ratio	$1: 0.7$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Mugilidae

Chelon auratus (Risso, 1810)
Golden grey mullet
بوري دلهبان

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Winter
Sample size	21
Mean \pm SD (range)	$33.3 \pm 4.5 \mathrm{~cm}(25.3-43.1 \mathrm{~cm})$
First maturity	28.0 cm
Sex-ratio	$1: 3.5$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Sparidae
Diplodus cervinus (Lowe, 1838)

Zebra seabream

حداد

Reproduction summary

Strategy	Upon maturity, fish are first males and change to females later in life (protandrous hermaphrodites)
Frequency	One spawning per year
Season	Spring
Sample size	50
Mean \pm SD (range)	$30.5 \pm 5.6 \mathrm{~cm}(17.7-41.1 \mathrm{~cm})$
First maturity	24.2 cm
Sex-ratio	$1: 1.6$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae
Diplodus sargus (Linnaeus, 1758) White seabream

سـر غوس

Reproduction summary

Strategy	Sexes are separate (gonochoric) but also some are protandrous hermaphrodites (first males and change to females later in life)
Frequency	One spawning per year
Season	Winter-spring
Sample size	42
Mean \pm SD (range)	$22.7 \pm 3.1 \mathrm{~cm}(16.4-29.7 \mathrm{~cm})$
First maturity	19.6 cm
Sex-ratio	$1: 1.2$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae

Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817)

Common two-banded seabream

Reproduction summary

Strategy	Sexes are separate (gonochoric) but also some are protandrous hermaphrodites (first males and change to females later in life)
Frequency	One spawning per year
Season	Winter
Sample size	25
Mean \pm SD (range)	$22.7 \pm 1.2 \mathrm{~cm} \mathrm{(20.3-25.2} \mathrm{cm)}$
First maturity	15.6 cm
Sex-ratio	$1: 0.9$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Sparidae

Reproduction summary

Strategy	Sexes are separate (gonochoric) but also some are protandrous hermaphrodites (first males and change to females later in life)
Frequency	One spawning per year
Season	Spring
Sample size	104
Mean \pm SD (range)	$23.6 \pm 3.4 \mathrm{~cm}(18.1-32.1 \mathrm{~cm})$
First maturity	17.2 cm
Sex-ratio	$1: 1.6$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Sparidae

Lithognathus mormyrus (Linnaeus, 1758)

Sand steenbras

Reproduction summary

Strategy	Upon maturity, fish are first males and change to females later in life (protandrous hermaphrodites)
Frequency	One spawning per year
Season	Spring-summer, possibly to September
Sample size	24
Mean \pm SD (range)	$21.5 \pm 2.6 \mathrm{~cm}(15.9-25.5 \mathrm{~cm})$
First maturity	19.1 cm
Sex-ratio	$1: 2$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae
Boops boops (Linnaeus, 1758)

© Michel Bariche

Bogue

Reproduction summary

Strategy	Sexes are separate (gonochoric) but possibility to become a protogynous hermaphrodites (first females and change to males later in life)
Frequency	One spawning per year
Season	Winter-spring
Sample size	100
Mean \pm SD (range)	$17.1 \pm 5.2 \mathrm{~cm}(10.0-29.0 \mathrm{~cm})$
First maturity	13.2 cm
Sex-ratio	$1: 1.9$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Sparidae

Spicara smaris (Linnaeus, 1758)
Picarel

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	One spawning per year
Season	Spring
Sample size	33
Mean \pm SD (range)	$12.1 \pm 0.7 \mathrm{~cm}(10.2-13.2 \mathrm{~cm})$
First maturity	7.8 cm
Sex-ratio	$1: 1.5$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae
Pagrus caeruleostictus (Linnaeus, 1758)

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	More than one spawning per year
Season	Spring-summer, fall (some years)
Sample size	14
Mean \pm SD (range)	$38.9 \pm 6.9 \mathrm{~cm}(24.8-47.2 \mathrm{~cm})$
First maturity	19.2 cm
Sex-ratio	$1: 1$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae
Pagrus pagrus (Linnaeus, 1758)

Red porgy

جربيدن مكحل

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	One spawning per year
Season	Spring
Sample size	30
Mean \pm SD (range)	$20.2 \pm 6.0 \mathrm{~cm}(15.1-45.4 \mathrm{~cm})$
First maturity	23.5 cm
Sex-ratio	$1: 1.5$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov

Sparidae

Dentex macrophtalmus (Bloch, 1791)

Large-eye dentex

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	46
Mean \pm SD (range)	$16.9 \pm 2.8 \mathrm{~cm}(12.2-23.7 \mathrm{~cm})$
First maturity	13.6 cm
Sex-ratio	$1: 1.8$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Carangidae

Caranx crysos (Mitchill, 1815)
© Michel Bariche
Blue runner

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Summer
Sample size	16
Mean \pm SD (range)	$42.0 \pm 10.2 \mathrm{~cm}(29.2-58.3 \mathrm{~cm})$
First maturity	28.4 cm
Sex-ratio	$1: 1.2$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Carangidae

Trachinotus ovatus (Linnaeus, 1758)

Pompano

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	18
Mean \pm SD (range)	$26.4 \pm 1.1 \mathrm{~cm}(24.1-28.7 \mathrm{~cm})$
First maturity	24.2 cm
Sex-ratio	$1: 2$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Carangidae

Trachurus mediterraneus (Steindachner, 1868) Mediterranean horse mackerel

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	35
Mean \pm SD (range)	$28.4 \pm 3.4 \mathrm{~cm}(19.2-34.5 \mathrm{~cm})$
First maturity	20.1 cm
Sex-ratio	$1: 0.6$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Scombridae

Euthynnus alleteratus (Rafinesque, 1810)

Little tunny

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Summer
Sample size	18
Mean \pm SD (range)	$55.5 \pm 15.2 \mathrm{~cm}(42.6-86.8 \mathrm{~cm})$
First maturity	43.8 cm
Sex-ratio	$1: 0.5$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

© Michel Bariche

Male

Scombridae
Scomber colias (Gmelin, 1789)
Atlantic chub mackerel

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Winter
Sample size	74
Mean \pm SD (range)	$25.6 \pm 3.7 \mathrm{~cm}(14.2-32.6 \mathrm{~cm})$
First maturity	19.5 cm
Sex-ratio	$1: 1.7$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Mullidae

Mullus surmuletus (Linnaeus, 1758) Surmullet

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	36
Mean \pm SD (range)	$17.6 \pm 3.7 \mathrm{~cm}(13.1-24.7 \mathrm{~cm})$
First maturity	15.9 cm
Sex-ratio	$1: 0.9$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Haemulidae

Pomadasys incisus (Bowdich, 1895)
Bastard grunt

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Summer, possibly to October
Sample size	14
Mean \pm SD (range)	$21.2 \pm 4.0 \mathrm{~cm}(17.3-28.9 \mathrm{~cm})$
First maturity	16.3 cm
Sex-ratio	$1: 2.3$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Merlucciidae

Merluccius merluccius (Linnaeus, 1758)

European hake

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Possibly all year round
Sample size	28
Mean \pm SD (range)	$38.8 \pm 7.0 \mathrm{~cm}(26.7-56.4 \mathrm{~cm})$
First maturity	40.6 cm
Sex-ratio	$1: 1.1$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

© Michel Bariche

Labridae

© Michel Bariche

Symphodus tinca (Linnaeus, 1758)

East Atlantic peacock wrasse

شفاف

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	One spawning per year
Season	Spring
Sample size	40
Mean \pm SD (range)	$19.8 \pm 3.3 \mathrm{~cm}(10.6-24.9 \mathrm{~cm})$
First maturity	10.2 cm
Sex-ratio	$1: 0.6$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Scaridae

Sparisoma cretense (Linnaeus, 1758)

Parrotfish

Reproduction summary

Strategy	Sexes are separate (gonochoric), with a possibility of sex- change (protogyny)
Frequency	One spawning per year
Season	Spring
Sample size	20
Mean \pm SD (range)	$186.6 \pm 3.7 \mathrm{~cm}(11.8-24.7 \mathrm{~cm})$
First maturity	16.2 cm
Sex-ratio	$1: 2.6$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Clupeidae

Sardinella aurita (Valenciennes, 1847)
Round sardinella
رينغا

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One or more spawning per year
Season	Spring
Sample size	66
Mean \pm SD (range)	$19.8 \pm 2.4 \mathrm{~cm}(15.2-25.5 \mathrm{~cm})$
First maturity	14.9 cm
Sex-ratio	$1: 0.65$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Clupeidae
Sardinella maderensis (Lowe, 1838)
Madeiran sardinella

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Summer
Sample size	26
Mean \pm SD (range)	$23.5 \pm 5.9 \mathrm{~cm}(14.8-30.6 \mathrm{~cm})$
First maturity	13.8 cm
Sex-ratio	$1: 0.6$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Engraulidae

Engraulis encrasicolus (Linnaeus, 1758)

European anchovy

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring-summer
Sample size	20
Mean \pm SD (range)	$10.3 \pm 0.8 \mathrm{~cm}(8.5-11.8 \mathrm{~cm})$
First maturity	9.3 cm
Sex-ratio	$1: 4.6$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Serranidae

Epinephelus marginatus (Lowe, 1834)

Dusky grouper

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	One spawning per year
Season	Winter
Sample size	8
Mean \pm SD (range)	$44.0 \pm 1.8 \mathrm{~cm}(32.4-89.3 \mathrm{~cm})$
First maturity	32.4 cm
Sex-ratio	$1: 1.3$

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

© Michel Bariche

Annex 3: Factsheets with estimated reproductive characteristics for fish species from this study

Mugilidae

© Michel Bariche
طوبارة

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Winter
Sample size	3
Mean \pm SD (range)	$33.8 \pm 3.7 \mathrm{~cm}(29.9-37.3 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Mugilidae

Mugil cephalus Linnaeus, 1758
Flathead grey mullet

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Fall
Sample size	1
Mean \pm SD (range)	--
First maturity	--cm
Sex-ratio	--

\mathbf{J}	\mathbf{F}	\mathbf{M}	\mathbf{A}	\mathbf{M}	\mathbf{J}	$\mathbf{J y}$	\mathbf{A}	\mathbf{S}	\mathbf{O}	\mathbf{N}	\mathbf{D}

Sparidae
Dentex dentex (Linnaeus, 1758)

Common dentex

Reproduction summary

Strategy	Sexes are separate (gonochoric), but some individuals can be hermaphroditic without signs of contribution to the reproduction
Frequency	One spawning per year
Season	Late spring-early summer
Sample size	4
Mean \pm SD (range)	$44.1 \pm 12.1 \mathrm{~cm}(30.7-54.4 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Sparidae

Pink dentex

جربيان أبو ريشه

Reproduction summary

Strategy

Frequency
Season
Sample size
Mean \pm SD (range)
First maturity
Sex-ratio

Upon maturity, fish are first males and change to females later in life (protandrous hermaphrodites). Can also be gonochoric with some hermaphroditic individuals

One or more spawning per year
Late spring - early summer
1
25.7 cm
-- cm
--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Sparidae

Dentex maroccanus (Valenciennes, 1830) Morocco dentex

مرجان

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring-early summer
Sample size	5
Mean \pm SD (range)	$16.6 \pm 1.2 \mathrm{~cm}(15.3-18.3 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

© Michel Bariche

Male

Sparidae
Pagellus acarne (Risso, 1827)
Axillary seabream
ذكر جربيدن

Reproduction summary

Strategy	Upon maturity, fish are first males and change to females later in life (protandrous hermaphrodites)
Frequency	One spawning per year
Season	Fall
Sample size	4
Mean \pm SD (range)	$16.4 \pm 1.3 \mathrm{~cm}(15.5-18.4 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae

Common pandora

Reproduction summary

Strategy

Frequency
Season
Sample size

Mean \pm SD (range)
First maturity
4

Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)

More than one spawning per year
Spring-Fall
$25.1 \pm 6.6 \mathrm{~cm}(15.8-31.2 \mathrm{~cm})$

Sex-ratio

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

© Michel Bariche

Male

Sparidae
Sparus aurata (Linnaeus, 1758)
Gilthead seabream

Reproduction summary

Strategy	Upon maturity, fish are first males and change to females later in life (protandrous hermaphrodites)
Frequency	One spawning per year
Season	Winter
Sample size	5
Mean \pm SD (range)	$22.8 \pm 2.5 \mathrm{~cm}(19.7-26.7 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae
Spondyliosoma cantharus (Linnaeus, 1758)
Black seabream

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	One spawning per year
Season	Winter
Sample size	4
Mean \pm SD (range)	$23.2 \pm 0.6 \mathrm{~cm}(22.4-23.7 \mathrm{~cm})$
First maturity	-cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sparidae

© Michel Bariche
Sarpa salpa (Linnaeus, 1758)
Salema

Reproduction summary

Strategy

Frequency
Season
Sample size
Mean \pm SD (range)
First maturity

Sex-ratio

Upon maturity, fish are first males and change to females later in life (protandrous hermaphrodites)

More than one spawning per year
Spring

3
$29.7 \pm 6.5 \mathrm{~cm}(23.6-36.7 \mathrm{~cm})$
-- cm
--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Carangidae

Trachurus trachurus (Linnaeus, 1758)

Atlantic horse mackerel

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	1
Mean \pm SD (range)	17.2 cm
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Carangidae

Lichia amia (Linnaeus, 1758)

Leerfish

© Michel Bariche

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	3
Mean \pm SD (range)	$100.9 \pm 1.6 \mathrm{~cm}(88.0-119.0 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Carangidae

Seriola dumerili (Risso, 1810)

© Michel Bariche

Greater amberjack

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	8
Mean \pm SD (range)	$104.5 \pm 18.1 \mathrm{~cm}(87.4-134.6 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Scombridae

Auxis rochei (Risso, 1810)
Bullet tuna

بلموط

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring-summer
Sample size	4
Mean \pm SD (range)	$35.9 \pm 1.9 \mathrm{~cm}(33.6-37.7 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Male

Serranidae
Serranus scriba (Linnaeus, 1758)
Painted comber

ديب أبو شفهـه

Reproduction summary

Strategy	Reported as simultaneous hermaphrodite, probably protogynous hermaphrodites
Frequency	One spawning per year
Season	Spring-summer
Sample size	7
Mean \pm SD (range)	$17.5 \pm 1.4 \mathrm{~cm}(14.9-18.9 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Serranidae
Serranus cabrilla (Linnaeus, 1758)

Comber

Reproduction summary

Strategy	Reported as simultaneous hermaphrodite, probably protogynous hermaphrodites
Frequency	One spawning per year
Season	Spring
Sample size	5
Mean \pm SD (range)	$16.4 \pm 6.4 \mathrm{~cm}(15.4-17.2 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Hermaphroditic gonad

Serranidae
Epinephelus costae (Steindachner, 1878)

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	One spawning per year
Season	Summer
Sample size	5
Mean \pm SD (range)	$37.4 \pm 8.5 \mathrm{~cm}(29.5-45.1 \mathrm{~cm})$
First maturity	-cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Serranidae

Epinephelus aeneus (Geoffroy Saint-Hilaire, 1817)

White grouper

Reproduction summary

Strategy	Upon maturity, fish are first females and change to males later in life (protogynous hermaphrodites)
Frequency	One spawning per year
Season	Summer
Sample size	6
Mean \pm SD (range)	$41.7 \pm 12.1 \mathrm{~cm}(31.2-55.1 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Sebastidae

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Winter-spring
Sample size	5
Mean \pm SD (range)	$244.2 \pm 1.7 \mathrm{~cm}(23.4-27.5 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Phycidae

Phycis blennoides (Brünnich, 1768)
Greater forkbeard

© Michel Bariche

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	Unclear, probably two spawning per year
Season	Fall-winter
Sample size	3
Mean \pm SD (range)	$38.7 \pm 3.5 \mathrm{~cm}(34.7-41.0 \mathrm{~cm})$
First maturity	-cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Male

Uranoscopidae

Uranoscopus scaber (Linnaeus, 1758)

Stargazer

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Winter
Sample size	4
Mean \pm SD (range)	$27.0 \pm 2.5 \mathrm{~cm}(24.8-30.2 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Paralepididae

Sudis hyalina (Rafinesque, 1810) Barracudinas

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	Unclear, likely one spawning per year
Season	Spring-summer
Sample size	4
Mean \pm SD (range)	$34.7 \pm 1.0 \mathrm{~cm}(34.1-36.3 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

\mathbf{J}	\mathbf{F}	\mathbf{M}	\mathbf{A}	\mathbf{M}	J	Jy	A	\mathbf{S}	\mathbf{O}	\mathbf{N}	D

Male

Sciaenidae
Sciaena umbra (Linnaeus, 1758)

Brown meagre

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	Unclear, likely one spawning per year
Season	Summer
Sample size	6
Mean \pm SD (range)	$28.3 \pm 6.5 \mathrm{~cm}(22.0-36.1 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Male

Sciaenidae
Umbrina cirrosa (Linnaeus, 1758)
Shi drum

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring-summer
Sample size	4
Mean \pm SD (range)	$48.8 \pm 8.4 \mathrm{~cm}(39.2-57.4 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Female

Sphyraenidae

Sphyraena sphyraena (Linnaeus, 1758)
European barracuda
سفرنة

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring
Sample size	5
Mean \pm SD (range)	$34.3 \pm 1.2 \mathrm{~cm}(32.3-35.4 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Balistidae

Balistes capriscus (Gmelin, 1789)
Grey triggerfish

© Michel Bariche
مبرد/خنزير

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Spring-summer
Sample size	7
Mean \pm SD (range)	$37.7 \pm 14.2 \mathrm{~cm}(24.3-58.6 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Male

Moronidae

Dicentrarchus labrax (Linnaeus, 1758)

European seabass

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning per year
Season	Winter-early spring
Sample size	7
Mean \pm SD (range)	$34.4 \pm 3.5 \mathrm{~cm}(29.3-38.2 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Congridae

Conger conger (Linnaeus, 1758)

European conger

Reproduction summary

Strategy	Sexes are always separate (gonochoric)
Frequency	One spawning in a lifetime
Season	Spring
Sample size	7
Mean \pm SD (range)	$67.3 \pm 6.1 \mathrm{~cm}(58.1-76.5 \mathrm{~cm})$
First maturity	--cm
Sex-ratio	--

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Annex 4: List of species excluded during the study due to the small numbers of non-mature individuals during the study

Family	Species
Carangidae	Alectis alexandrina (Geoffroy Saint-Hilaire, 1817)
Clupeidae	Sardina pilchardus (Walbaum, 1792)
Echeneidae	Echeneis naucrates Linnaeus, 1758
Labridae	Xyrichtys novacula (Linnaeus, 1758)
Phycidae	Phycis phycis (Linnaeus, 1766)
Scombridae	Sarda sarda (Bloch, 1793)
Soleidae	Solea solea (Linnaeus, 1758)
	Pegusa lascaris (Risso, 1810)
Sphyraenidae	Sphyraena viridensis (Cuvier, 1829)
Triglidae	Chelidonichthys lucerna (Linnaeus, 1758)

IUCN

INTERNATIONAL UNION FOR CONSERVATION OF NATURE

Abdel Latif Salah Street, bldg.29, Sweifiyeh, Amman, Jordan
P.O. Box 942230 Amman 11194, Jordan Tel: +962 6554 6912/3/4;
Fax: +962 65546915
www.iucn.org/westasia
www.iucn.org/resources/publications

