

The conservation status of freshwater species and habitats in Key Biodiversity Areas at the Douro river basin

INTERNATIONAL UNION FOR CONSERVATION OF NATURE

About IUCN

IUCN is a membership Union uniquely composed of both government and civil society organisations. It provides public, private and non-governmental organisations with the knowledge and tools that enable human progress, economic development and nature conservation to take place together.

Created in 1948, IUCN is now the world's largest and most diverse environmental network, harnessing the knowledge, resources and reach of 1,400 Member organisations and some 15,000 experts. It is a leading provider of conservation data, assessments and analysis. Its broad membership enables IUCN to fill the role of incubator and trusted repository of best practices, tools and international standards.

IUCN provides a neutral space in which diverse stakeholders including governments, NGOs, scientists, businesses, local communities, indigenous peoples' organisations and others can work together to forge and implement solutions to environmental challenges and achieve sustainable development.

Working with many partners and supporters, IUCN implements a large and diverse portfolio of conservation projects worldwide. Combining the latest science with the traditional knowledge of local communities, these projects work to reverse habitat loss, restore ecosystems and improve people's well-being.

www.iucn.org https://twitter.com/IUCN/

IUCN Species Survival Commission

With over 10,500 Members, the Species Survival Commission (SSC) is the largest of the six expert Commissions of IUCN and enables IUCN to influence, encourage and assist societies to conserve biodiversity by building knowledge on the status and threats to species, providing advice, developing policies and guidelines, facilitating conservation planning, and catalysing conservation action.

Members of SSC belong to one or more of the 160+ Specialist Groups, Red List Authorities, Task Forces and Conservation Committees, each focusing on a taxonomic group (plants, fungi, mammals, birds, reptiles, amphibians, fishes and invertebrates), or a disciplinary issue, such as sustainable use and livelihoods, reintroduction of species, wildlife health, climate change and conservation planning.

https://www.iucn.org/our-union/commissions/species-survival-commission https://twitter.com/iucnssc

IUCN Centre for Mediterranean Cooperation

The IUCN Centre for Mediterranean Cooperation (IUCN-Med) opened in Malaga (Spain) in October 2001 with the core support of the Spanish Ministry of Environment and the regional Government of Junta de Andalucía. The Centre's mission is to influence, encourage and assist Mediterranean societies to conserve and use sustainably the natural resources of the region and work with IUCN Members and cooperate with all other agencies that share the objectives of IUCN.

www.iucn.org/mediterranean

The conservation status of freshwater species and habitats in Key Biodiversity Areas at the Douro river basin The designation of geographical entities in this report, and the presentation of the material do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations.

IUCN is pleased to acknowledge the support of its Framework Partners who provide core funding: Ministry of Foreign Affairs of Denmark; Ministry for Foreign Affairs of Finland; Government of France and the French Development Agency (AFD); the Ministry of Environment, Republic of Korea; the Norwegian Agency for Development Cooperation (Norad); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); and the United States Department of State.

This document has been prepared by IUCN Centre for Mediterranean Cooperation (IUCN-Med) as part of the project « Reconnecting Iberian Rivers. Upscaling Reviving Douro Basin to Tagus as case studies ». The project is the product of a partnership between the Grupo de Estudos de Ordenañento do Território e Ambiente (GEOTA), the World Wide Fund for Nature Portugal (ANP/WFF), Centro de Estudos de Direito do Ordenamento, do Urbanismo e do Ambiente (CEDOUA), Rede Inducar, Wetlands International – EA, WWF-Spain funded by the MAVA foundation under its Action Plan M1-M2 Ensuring integrated management of river basins.

Published by:	IUCN, Gland, Switzerland
Produced by:	IUCN Centre for Mediterranean Cooperation (IUCN-Med)
Copyright:	© 2022 IUCN, International Union for Conservation of Nature and Natural Resources
	Reproduction of this publication for non-commercial purposes, including educational purposes, is authorized without prior written permission from the copyright holder(s) provided the source is fully acknowledged.
	Reproduction of this publication for commercial purposes, including sale, is prohibited without prior written permission of the copyright holder(s).
Recommended citation:	IUCN (2022). The conservation status of freshwater species and habitats in Key Biodiversity Areas at the Douro river basin. Gland, Switzerland: IUCN.
Designed by:	Wouter Plouvier, IUCN-Med
Layout by:	miniestudio.es
Cover photo:	The main River Douro channel between the city of Zamora in Spain and the Portuguese border © Ronaldo Sousa

An introductory and interactive web story of this report is available at: https://storymaps.arcgis.com/stories/68e1296bc4da48a6b987387e595abaa6

CONTENTS

	ecutive summary	
	t of acronyms	
2.00		
1.	Introduction	1
2.	Methodology	4
З.	Freshwater biodiversity in KBA sites	6
	3.1 Babia-Somiedo KBA site	6
	3.2 Fuentes Carrionas KBA site	8
	3.3 Sierra de Gredos y Candelario KBA site	10
	3.4 Sierras de Peña Labra y del Cordel KBA site	12
	3.5 Sierras de Urbión, Cebollera y Neila KBA site	14
	3.6 Cañón del Río Lobos KBA site	16
	3.7 Serras de Montesinho e Nogueira KBA site	18
	3.8 Sierra de la Cabrera KBA site	
	3.9 El Rebollar KBA site	22
	3.10 Malcata KBA site	24
4.	Freshwater biodiversity in potential KBA sites	
	4.1 Río Corneja potential KBA site	
	4.2 Río Yeltes potential KBA site	
	4.3 Río Adaja potential KBA site	
	4.4 Río Eresma potential KBA site	32
5.	Threats	
6.	Conservation guidance	
7.	Conclusions	
Re	eferences	40
•		
	nexes	
	nex A - Site location for the surveys of the distinct freshwater groups	41
Ann	nex B – Detected species presence and abundance per sampling site in the different (potential) KBA sites	43
Ann	nex C – Habitat parameters measured per sampling site in the different (potential) KBA sites	47

Executive summary

his report presents the results of a broad assessment on freshwater diversity in 14 investigated sites within the Douro river basin in the Iberian Peninsula. These sites, either identified as Key Biodiversity Areas1 (KBA) or potential KBA (Máiz-Tomé et al., 2017) were assessed on their effectiveness in containing important populations of KBA trigger species² and threatened species. For this, biodiversity surveys of the taxa used to identify freshwater KBA sites (fishes, molluscs, odonates, and aquatic plants) were undertaken in selected sampling sites. A total of 122 species were recorded in 43 sampling sites, including 82 aquatic plant species, 15 fish species, 12 dragonflies and damselflies species, 2 crayfish species, 5 bivalve species, and 6 gastropod species. Eleven of these species (8 fish, 1 bivalve, 1 odonate and 1 aquatic plant) are classified as threatened with extinction on the IUCN Red List of Threatened Species[™]. A total of 7 non-native species were also recorded.

Among the 14 investigated sites, the KBA sites Malcata and Montesinho e Nogueira were the sites with the highest total species richness (45 and 42 species, respectively). Taking out the aquatic plant species richness (observed only in a few KBA sites) the highest total species richness was still found in KBA sites Malcata and Serras de Montesinho e Nogueira, but also in the potential KBA Río Yeltes and the KBA Sierra de Gredos y Candelario. Five investigated sites sheltered the highest number of threatened species: potential KBA Río Yeltes and the 4 KBA sites Malcata, El Rebollar, Sierra de Gredos y Candelario and Sierra de la Cabrera. The highest number of non-native species were found in the KBA sites Fuentes Carrionas and Sierras de Peña Labra y del Cordel, with KBA Fuentes Carrionas having a higher number of non-native than native species. Concerning Habitat Quality (HQA) from the River Habitat Survey (RHS), the KBA El Rebollar and the potential KBA Río Yeltes recorded the highest habitat quality. However, these investigated sites (El Rebollar and Río Yeltes) did also show high scores of Habitat Modification (HMI), only being outnumbered by the KBAs Malcata and Sierras de Peña Labra y del Cordel. Lowest Habitat Modification scores (HMI) were found in KBAs Sierras de Urbión, Cebollera y Neila and Cañón del Río Lobos.

The study shows worrying results on the status of freshwater biodiversity. No trigger species was found in 43% of all investigated sites surveyed in the Douro river basin. Recognizing that freshwater KBAs have high conservation importance, we identify the shortcomings, which mainly relate to either flawed or lack of distribution data for the trigger species.

Trigger species were found in all four investigated sites that were considered as potential KBA (Máiz-Tomé et al., 2017), but that are not included as such in the World Database of Key Biodiversity Areas. The results of this study support the need for the incorporation of these sites as KBA to help focus conservation efforts and promote management actions that allow the persistence of the biodiversity elements present. On the other hand, no trigger species were detected in several KBA sites, particularly in the northern part of the Douro river basin. In two KBAs (Sierra de Gredos y Candelario and Malcata), the trigger species were not recorded because the habitat where the species normally occurs was not sampled. In 5 KBA sites (Babia-Somiedo, Fuentes Carrionas, Sierras de Peña Labra y del Cordel, Sierras de Urbión, Cebollera y Neila and Cañón del Río Lobos) no trigger species was found even after intensive sampling. In 3 of these KBA sites (Babia-Somiedo, Fuentes Carrionas, Sierras de Peña Labra y del Cordel)

1 Sites that contribute significantly to the global persistence of biodiversity. https://www.keybiodiversityareas.org/

2 Trigger species are the species that trigger the criteria for threatened, geographically restricted, biological processes or irreplaceability and thus identify a site as a KBA (IUCN, 2016).

other threatened species were detected, which should be added as biodiversity elements in the KBA profiles.

A total of 11 threatened species were found in the investigated sites, including 8 fish species: Achondrostoma arcasii (VU), Achondrostoma salmantinum (EN), Anguilla anguilla (CR), Cobitis calderoni (EN), Cobitis paludica (VU), Cobitis vettonica (EN), Pseudochondrostoma duriense (VU), Squalius alburnoides (VU), 1 bivalve species Margaritifera Margaritifera (EN), 1 odonate species Macromia splendens (VU) and 1 aquatic plant species Eryngium viviparum (EN). Besides the ones that were already identified as trigger species for the freshwater KBA sites, including the gastropod species Iberhoratia aurorae (DD), there were 3 threatened species that could qualify as trigger species: 2 fish species Anguilla anguilla (CR), Squalius alburnoides (VU) and 1 odonate species Macromia splendens (VU). The presence of the Critically Endangered european eel (Anguilla anguilla) is however puzzling since two specimens were detected in one of the KBA sites (Serras de Montesinho e Nogueira). Possible explanations are that it is either specimens introduced by man or some eels were able to pass all the dams in the Douro river basin and travel until the Sanabria lake. Further investigation is needed to better understand the current distribution of the european eel in the Douro river basin. The highest number of threatened species was found in the southwestern part of the Douro river basin, including in one potential KBA (Río Yeltes). At 2 KBA sites in the far northeastern part of the Douro river basin (Sierras de Urbión, Cebollera y Neila and Cañón del Río Lobos) no threatened species were recorded.

Non-native species were identified as an important threat for the native freshwater biodiversity. A total of 7 non-native species were found during this study in the Douro river basin: 2 crayfish species (*Pacifastacus leniusculus* and *Procambarus clarkii*), 1 bivalve species (*Corbicula fluminea*) and 4 fish species (*Barbatula barbatula*, *Gambusia holbrooki*, *Gobio lozanoi* and *Phoxinus bigerri*). Non-native species were found in all but 3 investigated sites (potential KBA Río Corneja, KBA Cañón del Río Lobos, KBA Sierra de Gredos y Candelario). These findings suggest that some of the endemic species remaining in sub-basins are being replaced by non-native species. The situation is especially alarming in the northern part of the Douro river basin.

Apart from non-native species negative impacts, the native freshwater biodiversity is also suffering from the presence of a large number of dams. Intensive agricultural practices are causing sedimentation, eutrophication, water shortage and droughts in several parts of the Douro river and its tributaries. The rivers and streams of the southern and eastern part of the Douro river basin suffer mostly from water shortage. In potential KBA Río Adaja, where a high number of the 2 trigger species was found, the rivers are completely dry in the summer. Since these potential KBAs form no part of other protective zones, incentives are necessary to safeguard the survival of the freshwater biodiversity that is crucial for the rest of the Douro river basin. On the other side, the western part of the Douro river basin suffers greatly from the large dams along the border between Spain and Portugal. Many of the populations of fish are isolated from the middle and lower sections of the Douro river basin, with an especially large impact on potamodromous migratory fish (species whose entire migration takes place in freshwater).

KBA sites have high conservation importance but additional measures are necessary in order to preserve the freshwater biodiversity. Steps should be taken for the inclusion of KBA trigger species in the management plans of existing protected areas (Ramsar Sites, Natura 2000 sites, other national or regional protection figures) and the inclusion of KBA sites in river basin management plans. This will ensure more appropriate planning and correct allocation of funds for nature conservation. Furthermore, management plans to control or even eradicate non-native species should be designed promplty and implemented. Finally, obsolete dams and barriers should be selected for decommissioning, and building fish passages on barriers impermeable to fish should be promoted.

Contributors

COORDINATORS

Manuel Lopes Lima

Catherine Numa

BIOPOLIS-CIBIO/InBIO, University of Porto, Portugal IUCN SSC Molluscs Specialist Group IUCN Centre for Mediterranean Cooperation, Spain

AUTHORS

_

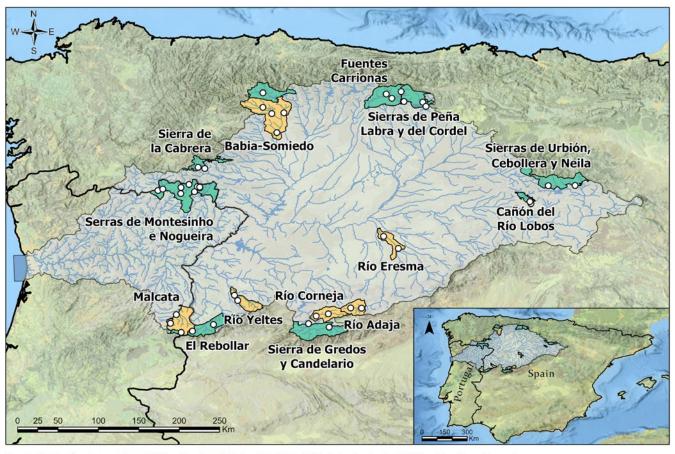
Ana Filipa Filipe	BIOPOLIS-CIBIO/InBIO, University of Porto, Portugal
Aina Garcia-Raventós	BIOPOLIS-CIBIO/InBIO, University of Porto, Portugal
Filipa Martins	BIOPOLIS-CIBIO/InBIO, University of Porto, Portugal
Joana Nogueira	BIOPOLIS-CIBIO/InBIO, University of Porto, Portugal
Mário Ferreira	BIOPOLIS-CIBIO/InBIO, University of Porto, Portugal
Amílcar Teixeira	CIMO-ESA, Polytechnic Institute of Bragança, Portugal
Fernando Miranda	CIMO-ESA, Polytechnic Institute of Bragança, Portugal
Fernando Teixeira	CIMO-ESA, Polytechnic Institute of Bragança, Portugal
Ronaldo Sousa	CBMA, University of Minho, Portugal IUCN SSC Molluscs Specialist Group IUCN SSC Invasive Species Specialist Group
Francisco Carvalho	CBMA, University of Minho, Portugal
José Pedro Ramião	CBMA, University of Minho, Portugal
Simone Varandas	CITAB, University of Trás-os-Montes and Alto Douro, Portugal
André Gomes dos Santos	CIIMAR, University of Porto, Portugal
Elsa Froufe	CIIMAR, University of Porto, Portugal
Richard Lansdown	IUCN SSC Aquatic Plants Specialist Group, United Kingdom

List of acronyms

BIOPOLIS	Program in Genomics, Biodiversity and Land Planning
CIBIO	Centro de Investigação em Biodiversidade e Recursos Genéticos (Research Centre in Biodiversity and Genetic Resources)
CIIMAR	Centro Interdisciplinar de Investigação Marinha e Ambiental (Interdisplinary Centre of Marine and Environmental Research)
СІМО	Centro de Investigação de Montanha (Mountain Research Centre)
CITAB	Centro de Investigação e Tecnologias Agroambientais e Biológicas (Centre for Research & Technology of Agro-Environmental & Biological Sciences)
InBIO	Research Network in Biodiversity and Evolutionary Biology

Introduction

1


he Douro is one of the major rivers of the Iberian Peninsula, flowing from its source near Duruelo de la Sierra in the province of Soria across northern-central Spain and northern Portugal to its outlet in Porto (Cortes et al., 2019). The river has a total length of 897 kilometers and passes through a very diverse landscape, from its source through the arid Castillian meseta and high mountains until it reaches the Atlantic Ocean. The microclimate allow for the cultivation of olives, almonds and grapes, the latter being used for the production of the famous Ribera del Duero and port wines (Lourenço-Gomes et al., 2015). The river also forms the natural border line between Spain and Portugal for 112 kilometers, and many important cities have been built along its river banks, including Valladolid, Zamora, Vila Nova de Gaia and Porto (Bordalo et al., 2006).

Once a wild river bursting with wildlife, the Douro has been undergoing quite a change due to human intervention. Fifteen hydrodams have been built to regulate the water flow, generate hydroelectric power, and allow navigation through locks. Consequently, river connectivity was highly impaired (Cortes et al., 2019). The lower part of the Portuguese drainage is influenced by the Atlantic climate. The upper-middle part of the Portuguese and Spanish section is used for agriculture (mainly vineyards) with some tributaries subject to a semi-arid (Mediterranean climate) while others in mountain areas have more water availability (Andresen et al., 2004). The main threats are posed by big urban areas and severe pollution. Many of the developments in the Douro river basin had a negative impact on the biodiversity of the region (Nogueira et al., 2021). In order to protect the fragile wildlife of this river basin, 196 Natura 2000 zones have been designated. Several wetlands are designated as protected areas, including 4 wetlands under the Ramsar Convention. Finally, 64 Key Biodiversity Areas have been delineated in the Douro river basin, 9 are located in Portugal and 55 in Spain. Of these sites, only 2 have been identified as freshwater KBA with a focus on the conservation of freshwater biodiversity (BirdLife International, 2021).

During the years 2018 and 2019, a team of experts on freshwater biodiversity surveyed several sampling sites in the entire Douro river basin to assess the status of freshwater biodiversity (Figure 1). The aim was to understand the current situation of the freshwater biodiversity in 10 Key Biodiversity Areas and 4 sites identified as potential KBAs (Máiz-Tomé et al., 2017). These experts assessed the presence of freshwater trigger species, recorded the occurrence of fish, odonates, bivalves, crayfish and aquatic plants and determined the potential threats for these species (Table 1). Finally, they assessed the status of each site and gave recommendations on possible measures to better conserve freshwater biodiversity.

Investigated zones: 🔲 KBA sites 🦳 Potential KBA (Máiz-Tomé et al., 2017) O Sampling sites

Figure 1. Map of the main Douro river network indicated in blue, the Key Biodiversity Areas in green, the sites identified as potential KBA (Máiz-Tomé et al., 2017) in orange and the sampling sites as white circles. Most of the sampling sites were assessed for macroinvertebrates, bivalves, gastropods, crayfish, odonates, RHS and physical chemical parameters. Both perennial and intermittent stretches illustrated without distinction. Source base map: Esri, USGS. Source data: <u>HydroSHEDS database</u> from © World Wildlife Fund, Inc. (2006-2013) and <u>World Database of KBA</u>.

Table 1. Overview of freshwater trigger species surveyed in the KBA sites and potential KBA sites in the Douro river basin.

 (IUCN Red List Categories: Image: Critically Endangered, Image: Critically Endage: Critically Endagered, Image: Critically Endage: Critically End

Name	Area type	Sampling sites	Таха	Trigger Species	IUCN Red List Cat
Babia- Somiedo	KBA	5	Fish	Cobitis calderoni	EN
Fuentes Carrionas	KBA	3	Fish	Pseudochondrostoma duriense	<u>~</u>
Sierra de Gredos y Candelario	KBA	2	Gastropods	Iberhoratia aurorae	DD
Sierras de Peña Labra y del Cordel	KBA	3	Fish	Pseudochondrostoma duriense	vu
				Cobitis calderoni	EN
Sierras de Urbión, Cebollera y Neila	KBA	2	Fish	Achondrostoma arcasii	vu
				Pseudochondrostoma duriense	vu
		0		Achondrostoma arcasii	vu
Cañón del Río Lobos	KBA	2	Fish	Pseudochondrostoma duriense	vu
		-	Fish	Cobitis calderoni	EN
Serras de Montesinho e Nogueira	KBA	9	Bivalves	Margaritifera margaritifera	EN
			Fish	Cobitis calderoni	EN
Sierra de la Cabrera	KBA	3		Achondrostoma arcasii	vu
El Rebollar	KBA	3	Fish	Cobitis vettonica	EN
Malcata	KBA	3	Aq. plants	Eryngium viviparum	EN
Río Corneja	Potential KBA	2	Fish	Achondrostoma arcasii	vu
				Achondrostoma salmantinum	EN
Río Yeltes	Potential KBA	2	Fish	Cobitis paludica	vu
			E.L.	Cobitis paludica	vu
Río Adaja	Potential KBA	2	Fish	Achondrostoma arcasii	vu
	Potential KBA 2			Cobitis calderoni	EN
Río Eresma			Fish	Achondrostoma arcasii	w

KBA = delineated KBA sites (World Database of KBA), Potential KBA = delineated KBA sites (Máiz-Tomé et al., 2017). Source: Darwall et al., 2014.

Methodology

SITE SELECTION

2

A total of 43 sampling sites were visited for sampling in three campaigns between June 2018 and September 2019. The sampling sites were surveyed for fish and all macroinvertebrates, in addition to River Habitat Surveys and standard water physical-chemical parameters (Figures 1; Appendix A). Aquatic plants were sampled in September 2019 in a few selected sampling sites with previously reported presence of rare species. Priority was given to sites where the species had previously been recorded or that were within the focal area of the designated or potential KBA sites.

SURVEYS

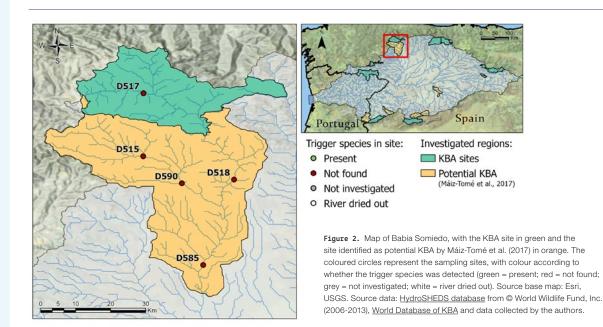
All selected sites were visited for potential surveys on aquatic plants, fish, and all macroinvertebrates including special surveys for crayfish, molluscs, and odonates (Appendix A). However, not all taxa were surveyed on all 43 sites but only those that could potentially be present in specific freshwater habitats (Appendix A). The surveys were then complemented with River Habitat Surveys, and standard water physical-chemical features to evaluate ecological integrity and anthropogenic modification of each site.

DATA COLLECTION

- Fish were assessed using electrofishing following INAG (2008)
- Freshwater molluscs were assessed using a Rapid Bioassessment for freshwater molluscs following Cummings et al. (2016) and complemented with macroinvertebrate sampling
- Crayfish were assessed by the combined effort of macroinvertebrate sampling and electrofishing
- Odonates were assessed based on the presence of larval stages identified through macroinvertebrate sampling
- Aquatic plants were assessed by walking surveys of selected river reaches and selected parts of the margins and water column of standing water bodies. The numbers employed indicate the percentage cover
- Macroinvertebrates were sampled following INAG (2008)
- Habitat Survey was accomplished using the River Habitat Survey Methodology (Raven et al., 1997; 1998)
- Water temperature, dissolved oxygen, conductivity, and pH were measured at each site using a YSI EXO 2 multi-parameter probe

Freshwater biodiversity in KBA sites

3.1 Ba	ibia Somiedo KBA	site) (?	
Trigger spe	ecies presence and abundance	e ref	D515	D517	Sampling sites	D585	D590
Fish	Cobitis calderoni	EN	×	×	×	×	×


Source: data compiled by the authors with categories from IUCN Red List.

- not sampled 🗙 no species found 💋 dried out river

Description

The KBA site is composed of mountain streams with a focal area in Órbigo River for the northern iberian spinedloach *Cobitis calderoni*. The Babia-Somiedo streams presented low fish diversity and diverse freshwater macroinvertebrate communities, but few odonates. Aquatic plants were not surveyed.

We failed to detect the trigger species, that is being replaced in the Esla river sub-basin by the introduced stone loach *Barbatula barbatula*. The fish community was also composed of *Achondrostoma arcasii* (VU) and *Salmo trutta fario*, common in headwater streams. No bivalves and only common freshwater gastropods were detected. Only a single species of odonates was detected in this site. The macroinvertebrate communities presented a high diversity score.

Trigger species: Northern iberian spined-loach (*Cobitis calderoni*) with Red List Category added © David Pérez (DPC), Wikimedia Commons, License cc-by-sa-3.0

Species richness (Non-native/Threatened) Sampling sites Таха D515 D517 D518 D585 D590 📀 Fish 1 1 2(**1**) 3(1/1) 3(**1**/**1**) \varTheta Bivalves Х Х Х Х Х 1 1 2 1 1 Gastropods Odonates 🕅 1 Х X X Х Crayfish Х X 1 Х Х Aquatic plants -TOTAL 3 2 5(<mark>2</mark>) 4(1/1) 4(**1**/**1**) Macroinvertebrates Families 20 15 20 18 22 2.26 Shannon-Weiner Diversity 1.68 1.94 1.57 2.03

Source: data collected by the authors.

- not sampled $$ no species found $$ dried out river

Habitat

The habitat quality of the streams was moderate to good but substantially modified by humans. The surrounding environment is mostly occupied by intense agriculture activities.

		Sampling sites				
River Habitat Survey (RHS)	D515	D517	D518	D585	D590	
Habitat Quality Assessment (HQA)	33	38	55		48	
Habitat Modification Score (HMS)	460	990	530			
Source: data collected by the authors.				- not sampled	💋 dried out river	

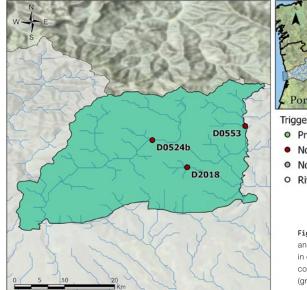
Threats

Non-native species followed by sedimentation and nutrient pollution from agriculture should be the main threats to the KBA's freshwater diversity.

> Non-native species: Stone loach (Barbatula barbatula) © OpenCage, Wikimedia Commons, License cc-by-sa-2.5

Conservation guidance

The KBA site apparently lost its trigger species *Cobitis calderoni*. This is probably due to the introduction of a non-native loach, i.e. the stone loach *Barbatula barbatula*, that is quickly spreading throughout the whole Esla river basin. This introduction should be studied in more detail in order to design proper management plans devoted to the control or even eradication of this species and reintroduction of *C. calderoni*. If this is not viable, the status of the site should be re-evaluated.


3.2 Fuentes Carrionas KBA site

				Sampling site	s
Trigger spe	cies presence and abundance 3	rep Rep	D0524b	D2018	D0553
Fish	Pseudochondrostoma duriense	'U	×	×	×
Source: data	a compiled by the authors with categories from IUCN	Red List.	- not sampled >	no species found	d 🗡 dried out rive

Description

The KBA site is composed of moderate quality headwater streams with a focal area in the upper river Pisuerga for Pseudochondrostoma duriense. We observed a low fish diversity, half of them nonnative. The macroinvertebrate communities were diverse, but no threatened and rare species were found. Aquatic plants were not sampled.

- Trigger species in site:
- Present
- Not found Not investigated

Investigated regions: KBA sites Potential KBA (Máiz-Tomé et al., 2017)

River dried out

Figure 3. Map of Fuentes Carrionas, with the KBA site in green and the site identified as potential KBA by Máiz-Tomé et al. (2017) in orange. The coloured circles represent the sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: HydroSHEDS database from © World Wildlife Fund, Inc. (2006-2013), World Database of KBA and data collected by the authors.

The KBA site is composed of good quality streams with low-density populations of the native *Salmo trutta fario* and *Achondrostoma arcasii* (VU). However, we failed to detect the trigger species. The fish communities are mainly composed of two non-native species *Phoxinus bigerri* and *Gobio lozanoi*. No bivalves, gastropods or odonates species were detected. Only a single non-native species of crayfish was detected. The macroinvertebrate communities exhibited reasonable diversity metrics.

Sampling sites

Species richness (Non-native/Threatened)

Таха	D0524b	D2018	D0553
Fish	1	4(2 /1)	2
Bivalves	×	×	×
Gastropods	×	×	×
Odonates	×	×	×
Crayfish	×	×	1
Aquatic plants		-	-
TOTAL	1	4(<mark>2/1</mark>)	3
Macroinvertebrates			
Families	23	18	23
Shannon-Weiner Diversity	2,21	1,47	1,21
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out rive

Habitat

The habitat quality of the streams was moderate to good, but substantially modified by humans. Water quality is high as indicated by both biotic indices and the physicalchemical parameters of the water (Annex C).

		Sampling sites	
River Habitat Survey (RHS)	D0524b	D2018	D0553
Habitat Quality Assessment (HQA)	41		38
Habitat Modification Score (HMS)	100	260	560
Source: data collected by the authors.		- not sampled	💋 dried out river

Threats

Non-native species are very abundant and might be outcompeting the native Achodrostoma arcasii. As for the disappearance of the trigger species, the many dams and barriers that are hindering their migratory seasonal patterns and the many stresses on the middle and lower sections of the Río Pisuerga should be the main impacts. Sedimentation caused by agriculture activities is probably also one of the main threats to the freshwater diversity.

Annual Service Section Signal crayfish (Pacifastacus leniusculus) Astaicoides, Wikimedia Commons, License CC BY-SA 3.0

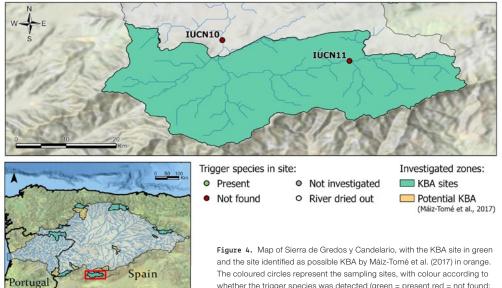
Conservation guidance

This KBA site needs to be revaluated and surveyed in more detail seasonally for the presence of *P. duriense*. Trigger species should include *A. arcasii*, another threatened fish detected here. The management of non-native species, such as the fish *Phoxinus bigerri* and *Gobio Iozanoi*, and the crayfish *P. leniusculus*; as well as the increase of the riparian buffer to avoid sedimentation in streams should be pursued as the main conservation measures.

3.3 Sierra de Gredos y Candelario KBA site

IUNC10	IUCN11
×	×
	IUNC10

Source: data compiled by the authors with categories from <u>IUCN Red List</u>.


- not sampled 🗙 no species found 💋 dried out river

Description

The KBA site includes the Sierra de Gredos regional park, and is composed of mountain streams and springs. It contains an important population of the spring snail Iberhoratia aurorae. Several threatened fish species and diverse communities of macroinvertebrates were detected. A threatened odonate species and a nearthreatened bivalve species were also found. Aquatic plants were not surveyed.

whether the trigger species was detected (green = present red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: HydroSHEDS database from © World Wildlife Fund, Inc. (2006-2013), $\underline{\text{World Database of KBA}}$ and data collected by the authors.

The trigger species was not detected, given that no springs but only riverine sites were sampled in the current survey. A high abundance of native fish species was detected, especially in the most downstream site, including 3 threatened species. An extremely low diversity and abundance of freshwater molluscs was observed but a good stable population of the freshwater mussel *Unio delphinus* (NT) was found. Several common odonates species were detected, including a single individual of *Macromia splendens* (VU).

Splendid cruiser (Macromia splendens) © gailhampshire, Flickr, License CC BY-SA 2.0

Sampling sites

Species richness (Non-native/Threatened)

Таха		IUNC10	IUCN11
🛞 Fish		5(3)	3(1)
Bivalves		1	1
Gastropods		1	1
Odonates		5(1)	2
Crayfish		×	×
Aquatic plants		-	-
TOTAL		12(2)	7(1)
Macroinvertebrates Families Shannon-Weiner Diversity		28 2.24	32 2,69
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out river

Habitat

The habitat quality of the streams was very good but one of the sites was substantially modified by humans. Water quality was high by both biotic indices and physical-chemical parameters (Annex C).

	Sampling	g sites
River Habitat Survey (RHS)	IUNC10	IUCN11
Habitat Quality Assessment (HQA)		72
Habitat Modification Score (HMS)		1280
Source: data collected by the authors.	- not sampled	💋 dried out river

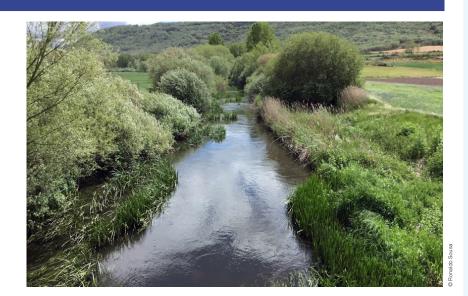
Commo

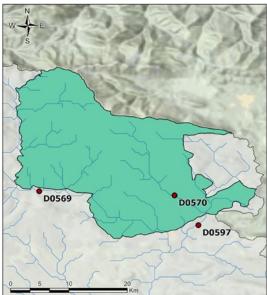
Threats

No major threats were observed in the Tormes river upper catchment but many of the populations are isolated from the middle and lower section due to the many dams and barriers built on the Tormes main channel. Most of the fish communities of the remaining river sub-basins are declining fast and being replaced by non-native species. Here, we did not find any non-native species, but prevention measures should be developed given the presence of non-native species in the lower section of the river Tormes and the Douro watershed.

Conservation guidance

Although the site with the trigger species population was not visited, we contacted the authors that had described the species in 2007 and got confirmation about the population status. Therefore, the KBA site seems to be well evaluated but should include other fish trigger species such as *Pseudochondrostoma duriense* and *Squalius alburnoides*, both rarely found in other Douro KBA sites in Spain. Management plans for non-native crayfish and fish species should be implemented.




3.4 Sierras de Peña Labra y del Cordel KBA site

		Sampling sites				
Trigger spe	cies presence and abundance	D0569	D0570	D0597		
Fish	Pseudochondrostoma duriense	vu	×	×	×	
Source: data	a compiled by the authors with categories fro	m <u>IUCN Red List</u> .	- not sampled 🗙 no	species found	💋 dried out rive	

Description

This KBA site was surveyed due to the previous presence of important populations of the Iberian nase Pseudochondrostoma duriense. It is composed of mountain streams and rivers belonging to the Pisuerga basin, one of the largest in the Douro watershed. The site presented a low diversity and abundance of all native species. The trigger species was not detected. Aquatic plants were not surveyed.

- Trigger species in site: • Present
- Not found
- Not investigated
- River dried out

KBA sites Potential KBA (Máiz-Tomé et al., 2017)

Investigated regions:

Figure 5. Map of Sierras de Peña Labra y del Cordel, with the KBA site in green and the site identified as potential KBA by Máiz-Tomé et al. (2017) in orange. The coloured circles represent the sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: HydroSHEDS database from © World Wildlife Fund, Inc. (2006-2013), World Database of KBA and data collected by the authors.

A low diversity and abundance of native fish was detected, including the Achondrostoma arcasii (VU), but two non-native fish species were present in high abundances and seem to be replacing the native species. An extremely low diversity and abundance of common freshwater molluscs were observed and no odonates species were detected. One non-native species of crayfish was found. The macroinvertebrate communities exhibited low diversity metrics.

Species richness (Non-native/Threatened)		Sampling sites				
Таха	D0569	D0570	D0597			
🛞 Fish	2(1)	2(<mark>1</mark> /1)	3(<mark>2</mark> /1)			
Bivalves	1	1	×			
Gastropods	3	×	1			
Odonates	×	×	×			
Crayfish	1	×	1			
Aquatic plants	-	-	-			
TOTAL	7(<mark>2</mark>)	3(<mark>1</mark> /1)	5(<mark>3/1</mark>)			
Macroinvertebrates						
Families	23	13	19			
Shannon-Weiner Diversity	2,29	1,13	1,21			
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out river			

Habitat

The habitat quality of the streams was good, but the sites were substantially modified by humans. Water quality was high by the IBMWP biotic index but with an unexpected low ratio of EPT taxa (Annex C). The conductivity was a bit higher than expected for headwater streams, indicating potential eutrophication.

	Sampling sites				
River Habitat Survey (RHS)	D0569	D0570	D0597		
Habitat Quality Assessment (HQA)	54		49		
Habitat Modification Score (HMS)	610		1130		
Source: data collected by the authors.		- not sampled	💋 dried out river		

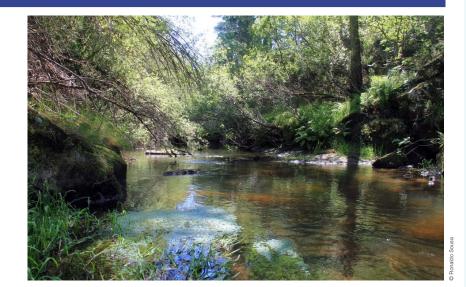
Threats

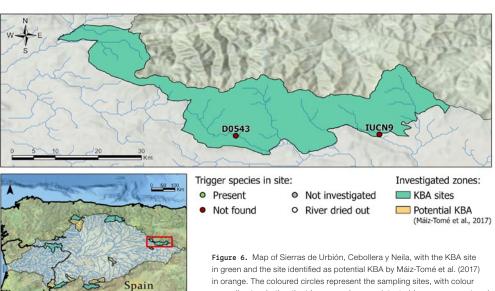
The many alterations and presence of barriers on the Pisuerga main channel might be disruptive for potamodromous migratory fish such as the trigger species *P. duriense*. Most of the fish communities of the remaining river sub-basins of the Douro watershed are declining fast and being replaced by non-native species. The increased siltation and conductivity caused by eutrophication due to nutrients and sediment loads from agriculture practices might be an additional threat.

Non-native species: Adour minnow (Phoxinus bigerri) © David Pérez (DPC), Wikimedia Commons, License cc-by-sa-3.0

Conservation guidance

Containment and eradication plans for the non-native species already present in the Douro watershed should be implemented. The increase of the riparian buffer in agricultural areas and the increase of riverine connectivity downstream are other suggested measures to improve the status of freshwater fish. A more detailed and comprehensive survey of the trigger species *P. duriense* and the vulnerable *A. arcasii* should be implemented to assess the abundance of both species and update the biodiversity elements of the KBA site.


3.5 Sierras de Urbión, Cebollera y Neila KBA site


		Sar	npling sites	
Trigger spec	cies presence and abundance	D0543	IUCN9	
Fish	Cobitis calderoni	EN	×	×
Fish	Achondrostoma arcasii	vu	×	×
Fish	Pseudochondrostoma duriense	vu	×	×
Source: data	compiled by the authors with categories fror	n IUCN Red List.	- not sampled 🗙 no species fou	nd 🛛 💋 dried out river

Description

Portugal

The KBA site was surveyed due to the reported presence of important populations of fish, i.e. the Iberian nase *P. duriense*, the Lamprehuela *C. calderoni*, and the Bermejuela *A. arcasii*. It is composed of mountain oligotrophic streams and rivers. The diversity of all taxa was low, no trigger or threatened species were detected. Aquatic plants were not surveyed.

in green and the site identified as potential KBA by Máiz-Tomé et al. (2017) in orange. The coloured circles represent the sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: <u>HydroSHEDS database</u> from © World Wildlife Fund, Inc. (2006-2013), <u>World Database of KBA</u> and data collected by the authors.

The common brown trout was the only native fish detected and there were no signs of any of the three trigger species. Instead, a high abundance of the non-native fish species *Phoxinus bigerri* was detected in one of the sampling sites. Only a single pea-clam *Pisidium casertanum* was detected, and a single common odonate species, *Calopteryx virgo*. A non-native crayfish species was found in one of the sampling sites. The macroinvertebrate communities exhibited high values.

Sampling sites

Species richness (Non-native/Threatened)

Таха		D0543	IUCN9			
🛞 Fish		2(1)	1			
Bivalves		×	1			
Gastropods		×	1			
Odonates		1	×			
Crayfish		1	×			
Aquatic plants		-	-			
TOTAL		4(2)	2			
Macroinvertebrates Families Shannon-Weiner Diversity		16 1,41	20 1,96			
Source: data collected by the authors.	- not sampled 🗙	no species found	💋 dried out river			

Habitat

The habitat quality of the streams was very good. The water quality was high by the IBMWP biotic index but with an unexpected low ratio of EPT taxa (Annex C).

	Sampling sites			
River Habitat Survey (RHS)	D0543	IUCN9		
Habitat Quality Assessment (HQA)	55	43		
Habitat Modification Score (HMS)	0	270		
Source: data collected by the authors.	- not sampled	💋 dried out river		

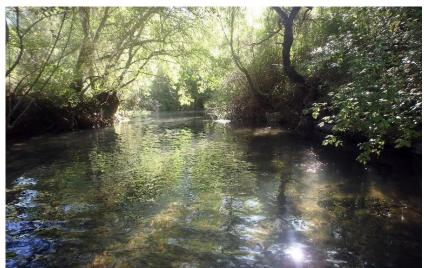
Threats

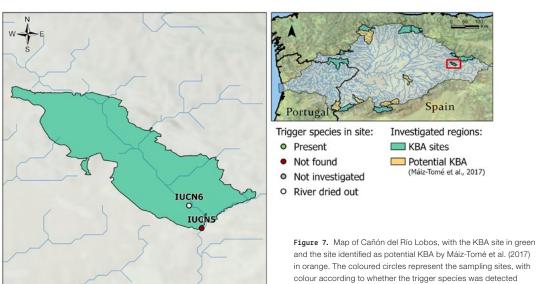
Many of the populations are isolated from the middle and lower sections of the Douro river basin due to the barriers built on the Douro main channel, which might be disruptive for potamodromous migratory fish such as the trigger species *P. duriense*. Most of the fish communities of the remaining river sub-basins of the Douro watershed are declining fast and being replaced by non-native species. Here, we already found a high abundance of one nonnative fish that could be displacing the native species.

Reservoir of the Cuerda del Pozo, Spain © JM, Wikimedia Commons, License CC BY-SA 4.0

Conservation guidance

Containment and eradication plans for the non-native species already present in the Douro watershed should be implemented. The increase of the riparian buffer in agricultural areas and the increase of riverine connectivity downstream are other suggested measures to improve the status of freshwater fish. A more detailed and comprehensive survey of the trigger species is needed to detect and assess the abundance of these species in this KBA site. If its absence or low abundance is confirmed, the status of the KBA site should be revaluated.




3.6 **Cañón del Río Lobos** KBA site

		Sa	mpling sites	
Trigger species presence and abundance		IUCN	5 IUCN6	
Fish	Achondrostoma arcasii	vu	×	×
Fish	Pseudochondrostoma duriense	vu	×	×
Source: data	a compiled by the authors with categories fror	m IUCN Red List.	- not sampled 🗙 no species fo	und 💋 dried out rive

Description

The KBA site was proposed to be extended from the existing natural park limits due to the reported presence of important fish populations, i.e. P. duriense and A. arcasii in the River Ucero. The KBA site only covers a small portion of this river and the remaining freshwater habitats are dry most of the year. Two sampling sites were checked but only one was surveved, because no water was found upstream of IUCN5. The diversity of all taxa was low, no trigger or threatened species were detected. Aquatic plants were not surveyed.

Only the native fish species *Salmo trutta fario* was detected, and no signs were found of any of the trigger species. From conversations with the natural park workers, none of these cyprinids has been reported recently (>5 years) for this river section. Only the common gastropod *Ancylus fluviatilis* was found, and no odonate or crayfish species. The macroinvertebrate community exhibited high values.

River limpet (Ancylus fluviatilis) © Alexander Mrkvicka, Wikimedia Commons, License CC BY-SA 3.0

Species richness (Non-native/Threatened)		Sampling sites			
Таха		IUCN5	IUCN6		
Fish		1	×		
Bivalves		×	×		
Gastropods		1	×		
Godonates		×	×		
© Crayfish		×	×		
Aquatic plants		-	-		
TOTAL		2	×		
Macroinvertebrates Families Shannon-Weiner Diversity		18 1,65	1		
Source: data collected by the authors.	- not sampled	× no species found	发 dried out river		

Habitat

The habitat quality of the river was very good. Water quality was high by the IBMWP biotic index but with an unexpected low ratio of EPT taxa (Annex C).

	Samplin	sites	
River Habitat Survey (RHS)	IUCN5	IUCN6	
Habitat Quality Assessment (HQA)	53	×	
Habitat Modification Score (HMS)	100	×	
Source: data collected by the authors.	- not sampled	💋 dried out river	

Threats

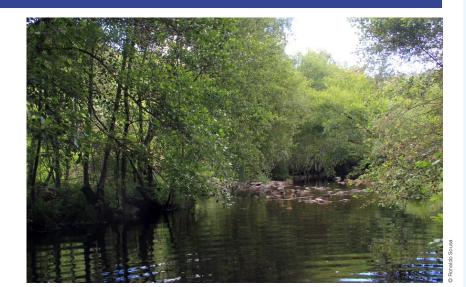
Many of the populations are isolated from the middle and lower sections of the Douro river basin due to the many alterations and barriers built on the Douro main channel, which might be disruptive for potamodromous migratory fish such as the trigger species *P. duriense*.

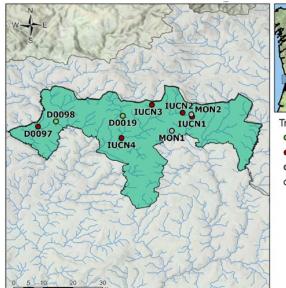
> Villacampo dam, Spain © Rodelar, Wikimedia Commons, License CC BY-SA 3.0

Conservation guidance

The portion of River Ucero within this KBA is extremely small and the other rivers and streams inside the KBA dry up during the summer. No signs of the trigger species or other rare species were found. Natural park officers said that the trigger species are generally not found in this area. Therefore, this KBA should be withdrawn as important site for freshwater biodiversity.

3.7 Serras de Montesinho e Nogueira KBA site


			Sampling sites								
Trigger specie	es presence and abundance	ده ا له: ۲۹۲ ک	D19	D97	D98	IUCN1	IUCN2	IUCN3	IUCN4	MON1	MON2
Fish	Cobitis calderoni	EN	×	×	21	×	×	×	×	-	-
Bivalves	Margaritifera margaritifera	EN	51	×	188	×	×	×	×	-	-


Source: data compiled by the authors with categories from IUCN Red List.

- not sampled 🗙 no species found 💋 dried out river

Description

The Serras de Montesinho e Nogueira KBA site was adopted for the existing natural park of Montesinho in Portugal due to the reported presence of important populations of C. calderoni and M. margaritifera. It is composed of high-quality mountain rivers and streams of two of the main sub-basins of the Douro watershed. The diversity of all taxa was high and both trigger species were detected.

- Trigger species in site: • Present
- Not found
- Not investigated

Investigated regions: KBA sites Potential KBA (Máiz-Tomé et al., 2017)

River dried out

Figure 8. Map of Serras de Montesinho e Nogueira, with the KBA site in green and the site identified as potential KBA by Máiz-Tomé et al. (2017) in orange. The coloured circles represent the sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: HydroSHEDS database from © World Wildlife Fund, Inc. (2006-2013), $\underline{\text{World Database of KBA}}$ and data collected by the authors.

The fish communities were composed of healthy populations of C. calderoni (EN), P. duriense (VU) and other native species. The most abundant population of *M. margaritifera* in the Iberian peninsula is located within this KBA site. Only common species of gastropods, odonates were detected and also one non-native crayfish species. Aquatic plants revealed a diverse composition of common species. The macroinvertebrate community exhibited high values.

Trigger species: Freshwater pearl mussel (*Margaritifera margaritifera*) © MrKimm, Wikimedia Commons, License CC BY-SA 3.0

Species richness (Non-native/Threatened)

	Sampling sites							
D19	D97	D98	IUCN1	IUCN2	IUCN3	IUCN4	MON1	MON2
4(1)	3(1)	4(2)	3(1)	2	1	2(1)	-	-
1	×	1	×	×	×	×	-	-
×	1	×	×	×	×	×	-	-
2	3	3	×	×	×	×	-	-
×	1	1	×	×	×	×	-	-
-	-	-	-	-	-	-	18	15
7(2)	8(<mark>1/1</mark>)	9(<mark>1/2</mark>)	3(1)	2	1	2(1)	18	15
22	34	34	23	41	22	20	-	-
2,52	2,61	2,6	2,15	1,68	2,5	2,25	-	-
	4(1) 1 × 2 × - 7(2) 22	4(1) 3(1) 1 × × 1 2 3 × 1 7(2) 8(1/1) 22 34	4(1) $3(1)$ $4(2)$ 1 X 1 X 1 X 2 3 3 X 1 1 - - - 7(2) $8(1/1)$ $9(1/2)$ 22 34 34	D19 D97 D98 IUCN1 4(1) 3(1) 4(2) 3(1) 1 X 1 X X 1 X X 2 3 3 X X 1 1 X - - - - 7(2) 8(1/1) 9(1/2) 3(1) 22 34 34 23	D19 D97 D98 IUCN1 IUCN2 4(1) 3(1) 4(2) 3(1) 2 1 X 1 X X X 1 X X X 2 3 3 X X 2 1 X X X 2 3 3 X X 7 1 X X X 7 8(1/1) 9(1/2) 3(1) 2 22 34 34 23 41	D19 D97 D98 IUCN1 IUCN2 IUCN3 4(1) 3(1) 4(2) 3(1) 2 1 1 X 1 X X X X 1 X X X X 2 3 3 X X X 2 3 3 X X X 2 1 1 X X X 2 3 3 X X X 2 3 3 X X X 2 3 3 X X X 2 3 3 X X X 1 1 X X X X - - - - - - - 7(2) 8(1/1) 9(1/2) 3(1) 2 1 22	D19 D97 D98 IUCN1 IUCN2 IUCN3 IUCN4 $4(1)$ $3(1)$ $4(2)$ $3(1)$ 2 1 $2(1)$ 1 X 1 X X X 1 X X X X X 2 3 3 X X X $7(2)$ $8(1/1)$ $9(1/2)$ $3(1)$ 2 1 $2(1)$ 22 34 34 23 41 22 20	D19D97D98IUCN1IUCN2IUCN3IUCN4MON1 $4(1)$ $3(1)$ $4(2)$ $3(1)$ 2 1 $2(1)$ $ 1$ X 1 X X X X $ 1$ X 1 X X X X $ 2$ 3 3 X X X X $ 7$ 1 1 X X X $ 7$ 3 3 2 1 2 1 18 $7(2)$ $8(1/1)$ $9(1/2)$ $3(1)$ 2 1 $2(1)$ 18 22 34 34 23 41 22 20 $-$

Source: data collected by the authors.

Habitat

The habitat quality of the streams was moderate

to good but substantially modified by humans.

The surrounding environment is mostly

occupied by intense agricultural activities.

				Sampling	sites				
River Habitat Survey (RHS)	D19	D97	D98	IUCN1	IUCN2	IUCN3	IUCN4	MON2	MON2
Habitat Quality Assessment (HQA)				-	-	-	-	-	-
Habitat Modification Score (HMS)		465	100	-	-	-	-	-	-
Source: data collected by the authors.							- not sampled	🗡 dried	out river

Threats

All freshwater species populations are now isolated from the Douro river basin due to two large dams, one in the lower Tua and another in the lower Sabor river. These dams might be disruptive for potamodromous migratory fish such as P. duriense or L. bocagei. The recent introduction of the signal crayfish might also have an important impact on the future of aquatic species in these basins.

Conservation guidance

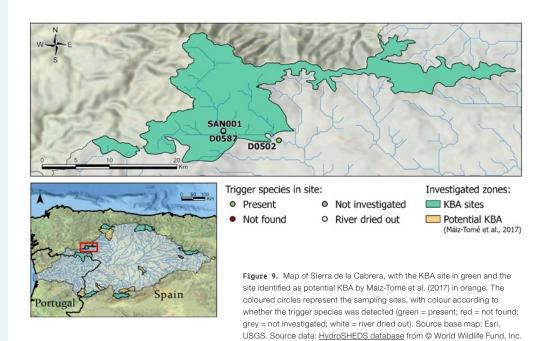
The site is already protected. However a recent study mentions that the park should be extended downstream to include areas richer in diversity and abundance of threatened fish species. Therefore, ideally the KBA site should be extended 10-15 km downstream. The KBA should also include the Iberian Nase P. duriense as a trigger species, which has dramatically declined in the whole basin.

- not sampled 🗙 no species found 💋 dried out river

3.8 **Sierra de la Cabrera** KBA site

				Sampling sites	
Trigger spe	cies presence and abundance	e dep	D0587	D0502	SAN001
Fish	Cobitis calderoni	EN	19	26	-
Fish	Achondrostoma arcasii	vu	42	×	-

Source: data compiled by the authors with categories from <u>IUCN Red List</u>.


- not sampled 🗙 no species found 💋 dried out river

Description

This KBA site was surveyed due to the reported presence of important populations of the fish *C. calderoni* and *A. arcasii.* It is composed of the Sanabria lake and the Tera river with its tributaries. Two sites were surveyed for riverine taxa in the river Tera main channel and an additional site was surveyed for all taxa was high in all sites, and we detected a high abundance of both trigger species.

(2006-2013), World Database of KBA and data collected by the authors.

Abundant populations of the trigger species and the non-native *G. lozanoi* were detected. Four other species were detected at lower quantities including the european *A. anguilla* (CR). The presence of the european eel is puzzling. Two explanations are likely: either specimens have been introduced by man or some eels were able to pass all the dams in the Douro river basin and travel from the sea to the Sanabria lake. The site surveyed for aquatic plants revealed a diverse composition of common species. The macroinvertebrate community showed high values.

European eel (Anguilla anguilla)

Species richness (Non-native/Threatened)		Sampling sites	
Таха	D0587	D0502	SAN001
Fish	7(1/4)	4(<mark>1</mark> /2)	-
Sivalves	×	×	-
Gastropods	×	×	-
Odonates	2	2	-
S Crayfish	×	×	-
Aquatic plants	-	-	19
TOTAL	9(1/4)	6(<mark>1</mark> /2)	19
Macroinvertebrates			
Families	24	22	-
Shannon-Weiner Diversity	2,14	1,43	-
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out rive

Habitat

The habitat quality of the river was high.

		Sampling sites	
River Habitat Survey (RHS)	D0587	D0502	SAN001
Habitat Quality Assessment (HQA)	41	39	-
Habitat Modification Score (HMS)	360	10	-
Source: data collected by the authors.		- not sampled	💋 dried out river

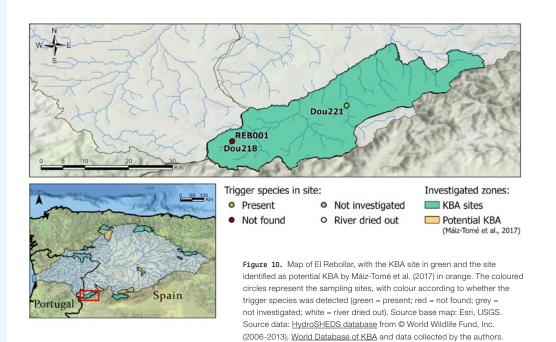
Threats

No major threats were detected in the KBA site. However, barriers in the lower Tera and Esla basin are now isolating freshwater species populations, making them more prone to genetic erosion and exposure to local extinction. Additionally, non-native species such as the signal crayfish *P. leniusculus* and the fish species *P. bigerri* and *B. barbatula* are already in other upper catchments of the Douro river basin and should arrive to this area shortly.

Non-native species: Iberian gudgeon (Gobio lozanoi) ©Javi Guerra Hernando, Wikimedia Commons, License CC BY-SA 4.0

Conservation guidance

Management plans for potential non-native crayfish and fish should be implemented. An effort should be made to increase the connectivity of the River Tera to the River Douro, by selecting obsolete dams and barriers for decommissioning and building fish passages on barriers impermeable to fish.


3.9 **El Rebollar** KBA site

				Sampling sites	5
Trigger spe	cies presence and abundance	• • • • • • • • • •	Dou218	Dou221	REB001
Fish	Cobitis vettonica	EN	×	14	-
Source: data	a compiled by the authors with categories	s from IUCN Red List.	- not sampled 🗙 no	species found	💋 dried out river

Description

The KBA site is coincident with the protected natural area of El Rebollar and Los Agadones and is composed of good quality headwater mountain streams. It was designed to include populations of the trigger species C. vettonica, although no focal area was designated. A high diversity of fish, including rare and threatened species was observed. The macroinvertebrate communities were also highly diverse, but no threatened and rare species were found. Aquatic plants were well represented by common species.

An abundant population of the trigger species C. vettonica was found in sympatry with another vulnerable loach, C. paludica. The fish community showed a good ecological condition being composed of vulnerable (S. alburnoides and P. duriense) and common species. Only a single odonate species and a non-native crayfish species were also found. No bivalves or gastropods were detected. The survey of aquatic plants revealed diverse common species of riverine habitats. The macroinvertebrate communities exhibited high diversity metrics, although not a high number of EPT taxa were detected.

Species richness (Non-native/Threatened)		Sampling sites	
Таха	Dou218	Dou221	REB001
Fish	1	6(4)	-
Sivalves	×	×	-
@ Gastropods	×	×	-
Odonates	1	×	-
Crayfish	×	×	-
Aquatic plants	-	1	9
TOTAL	2	7(<mark>1</mark> /4)	9
Macroinvertebrates Families Shannon-Weiner Diversity	33 2,07	41 2,47	-
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out river

Habitat

The habitat quality of the streams was moderate to good but substantially modified by humans. The water quality is high as indicated by both the biotic indices and the physical-chemical parameters of the water (Annex C).

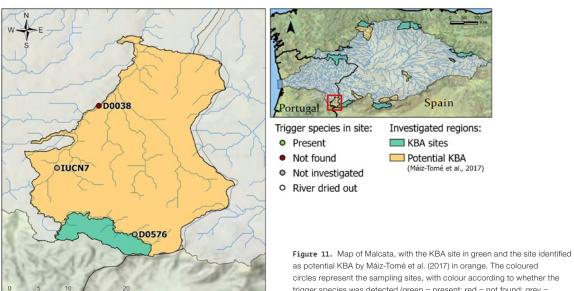
		Sampling sites	
River Habitat Survey (RHS)	Dou218	Dou221	REB001
Habitat Quality Assessment (HQA)	73	84	-
Habitat Modification Score (HMS)	1580	420	-
Source: data collected by the authors.		- not sampled	💋 dried out river

Threats

Non-native species followed by water shortage by increasing water use and climate change, and sedimentation caused by summer fires are the main threats to the KBA's freshwater diversity.

Conservation guidance

The KBA site includes a rare concentration of several threatened fish species. Given the dramatic decline of native freshwater fish in the Douro river basin, it emphasizes the need to preserve this area. The other threatened species that were detected in this study should be added as trigger species. Management of non-native species, such as the red swamp crayfish, and the control of water usage by avoiding agriculture practices with high water consumption should be pursued as the main conservation measures.


3.10 Malcata KBA site

			5	Sampling site	s
Trigger species	presence and abundance	日本 3 問	D0038	D0576	IUCN7
Aquatic plant	Eryngium viviparum	EN	×	-	-
Source: data con	npiled by the authors with categorie	s from IUCN Red List.	- not sampled 🗙 no s	species found	💋 dried out rive

Description

The KBA site is composed by the River Coa upper catchment and associated good quality streams. The region is protected as a national reserve for Portugal and a Natura 2000 site. This KBA site was surveyed due to the potential presence of the aquatic plant Eryngium viviparum. Important populations of threatened fish and molluscs were observed. Aquatic plants also presented a high diversity, although the trigger species was not detected.

as potential KBA by Máiz-Tomé et al. (2017) in orange. The coloured circles represent the sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: <u>HydroSHEDS database</u> from © World Wildlife Fund, Inc. (2006-2013), <u>World Database of KBA</u> and data collected by the authors.

Only native fish species were detected with abundant populations of *C. paludica* (VU), *P. duriense* (VU), and *S. alburnoides* (VU). Also very abundant populations of freshwater mussels *A. anatina* (LC) and *U. delphinus* (NT) were detected, species that are becoming rarer in the whole Douro river basin. A high diversity of odonates was detected. A high diversity of aquatic plants was observed but not the trigger species *E. viviparum*. This could be due to the fact that only a single river site was sampled and the trigger species mainly occurs in temporary wetlands. The macroinvertebrate communities exhibited high diversity metrics, although not a high number of EPT taxa were detected.

Trigger species: Panicaut nain vivipare (Eryngium viviparum © ramses, Wikimedia Commons, License CC BY-SA 4.0

Species richness (Non-native/Threatened)		Sampling sites	
Таха	D0038	D0576	IUCN7
🛞 Fish	5(3)	2(1)	4(2)
e Bivalves	2	×	×
Gastropods	1	×	×
Odonates	5	4	×
Crayfish	×	×	×
Aquatic plants	28	-	-
TOTAL	41(3)	6(1)	4(2)
Macroinvertebrates Families Shannon-Weiner Diversity	31 2,71	40 2,23	18 2,15
Source: data collected by the authors.	- not sampled	× no species found	发 dried out rive

Habitat

The habitat quality of the streams was good but substantially modified by humans. Water quality is high as indicated by both biotic indices and the physical-chemical parameters of the water (Annex C).

		Sampling sites	
River Habitat Survey (RHS)	D0038	D0576	IUCN7
Habitat Quality Assessment (HQA)	60		-
Habitat Modification Score (HMS)	2200		-
Source: data collected by the authors.		- not sampled	💋 dried out river

Threats			

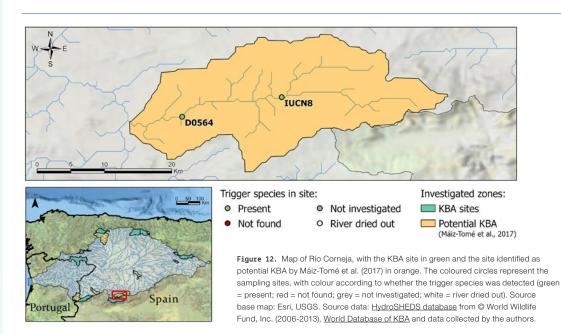
The Coa river basin is threatened with water shortage and scenarios of global warming. The basin is also composed of many small dams and weirs that break the river connectivity.

ario Caruso on Unsplash

Conservation guidance

The presence of the trigger species could not be confirmed, but additional trigger species should include the threatened fish that were detected: *C. paludica*, *P. duriense*, and *S. alburnoides*. The water consumption by agricultural practices should be tightly controlled to maintain water levels in riverine and wetland systems. The many weirs and small dams should be analysed for their impact on river connectivity and obsolete barriers should be investigated for removal.

	o Corneja tential KBA site			
Trigger spe	cies presence and abundance	● *● BF	Sampli IUCN8	ing sites D0564


Description

4

The site includes the river Corneja, a tributary of the river Tormes basin, one of the largest in the Douro watershed. It was identified as potential KBA due to the reported abundant population of the fish species Achondrostoma arcasii. The site presented an overall low diversity of all groups surveyed. The possible trigger species Achondrostoma arcasii was detected, but not in high abundance and no other threatened species was detected for the surveyed groups.

Only a single native fish, i.e. Achondrostoma arcasii, was detected at both sampled sites but not in high abundance. An extremely low diversity and abundance of molluscs was detected, since only a single *Planorbidae* sp. individual was collected at each site. No odonate or crayfish species were detected. A low diversity of common riverine aquatic plants was observed. The macroinvertebrates communities exhibited low diversity metrics.

Species richness (Non-native/Threatened)

Таха		IUCN8	D0564
🛞 Fish		1(1)	3(3)
Bivalves		×	×
Gastropods		×	1
Odonates		×	×
Crayfish		×	×
Aquatic plants		10	-
TOTAL		11(1)	4(3)
Macroinvertebrates Families Shannon-Weiner Diversity		11 0,99	19 1,89
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out river

Habitat

The habitat quality of the streams was moderate to good, depending on the sampled site, but substantially modified by humans. Water quality was also site-dependent by both biotic indices and the physical-chemical parameters of the water, being better in site IUCN8 than D0564 (Annex C). The abundance of loose sands seems to suggest strong sedimentation/ siltation, probably derived from agricultural practices.

	Samplin	g sites	
River Habitat Survey (RHS)	IUCN8	D0564	
Habitat Quality Assessment (HQA)			
Habitat Modification Score (HMS)	340		
Source: data collected by the authors.	- not sampled	💋 dried out river	

Threats

The river Corneja basin is threatened with water shortage. The basin is also highly threatened by high sedimentation that is probably affecting the benthic communities.

High sedementation in river Corneja basin

Conservation guidance

The region seems to be well evaluated as KBA site, although the abundance of the single possible trigger species is not high. Changes to agriculture practices that increase water consumption should be avoided to maintain water levels in riverine and wetland systems. Silt traps and the rehabilitation and increase of the riparian buffer could decrease the ongoing sedimentation/siltation problem.

nuel Lopes-Lima BIOPOLIS-CIBIO/InBI

4.2 Río Yeltes potential KBA site

			Sampli	ng sites	
Trigger spe	cies presence and abundance	Contraction of the second seco		D0508	D0513
Fish	Achondrostoma salmantinum	EN		17	35
Fish	Cobitis paludica	vu		32	1
Source: data	compiled by the authors with categories fro	om IUCN Red List.	- not sampled	× no species found	发 dried out rive

Source: data compiled by the authors with categories from <u>IUCN Red List</u>.

Description

The site only includes the Yeltes river basin which includes the Natura 2000 site Riberas de los Ríos Huebra Yeltes Uces y Afluentes. It is composed of Mediterranean climate rivers and was triggered by having abundant populations of the threatened fish A. salmantinum and C. paludica. The Río Yeltes region presented good populations of threatened fish species and diverse communities of macroinvertebrates.

- Trigger species in site:
- Present
- Not found
- Not investigated
- River dried out

Figure 13. Map of Río Yeltes, with the KBA site in green and the site identified as potential KBA by Máiz-Tomé et al. (2017) in orange. The coloured circles represent the sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: HydroSHEDS database from © World Wildlife Fund, Inc. (2006-2013), $\underline{\text{World Database of KBA}}$ and data collected by the authors.

Investigated regions:

Potential KBA (Máiz-Tomé et al., 2017)

KBA sites

A diverse native fish abundance was detected, especially in the most downstream site, including four threatened species. Only a single specimen of the non-native species *Gambusia holbrooki* was found. Only common species were found of bivalves and odonates. Abundant populations of the non-native crayfish species *Procambarus clarkii* were detected. Diverse common riverine aquatic plant community observed. The macroinvertebrate communities exhibited high diversity metrics.

Sampling sites

Species richness (Non-native/Threatened)

Таха		D0508	D0513	
🛞 Fish		8(1/4)	4(2)	
Bivalves		×	×	
Gastropods		1	1	
Odonates		×	2	
Crayfish		1	×	
Aquatic plants		16	-	
TOTAL		26(<mark>2</mark> /4)	7(2)	
Macroinvertebrates Families Shannon-Weiner Diversity		22 2,36	25 2,16	
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out river	

Habitat

The habitat quality of the streams was good, but substantially modified by humans. Water quality was high by both biotic indices and the physical-chemical parameters of the water (Annex C).

	Samplin	g sites	
River Habitat Survey (RHS)	D0508	D0513	
Habitat Quality Assessment (HQA)	78	81	
Habitat Modification Score (HMS)	710	1400	
Source: data collected by the authors.	- not sampled	💋 dried out river	

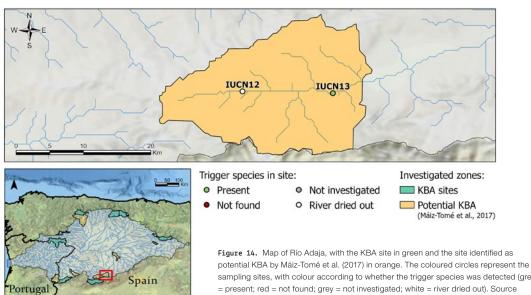
Threats

The Yeltes river basin is threatened with water shortage. The basin is also highly threatened by sand extraction along the Huebra river. Most of the fish communities of the remaining river sub-basins of the Douro watershed are declining fast and being replaced by non-native species. Abundant populations of the non-native red swamp crayfish *P. clarkii* were found.

Non-native species: Eastern mosquitofish (Gambusia holbrooki) © Smithsonian Environmental Research Center, Flickr, License CC BY-SA 2.0

Conservation guidance

The region seems to be well evaluated as potential KBA but should include other fish trigger species such as *P. duriense* and *S. alburnoides* that were rarely found in other Douro KBA sites in Spain. Changes to agriculture practices that increase water consumption should be avoided to maintain water levels in riverine and wetland systems. Containment and eradication plans for the non-native red swamp crayfish *P. clarki* and other non-native species already present in the Douro watershed should be implemented.


4.3 Río Adaja potential KBA site

			Sam	pling sites
Trigger spe	cies presence and abundance	e ter	IUCN12	IUCN13
Fish	Cobitis paludica	vu	×	181
Fish	Achondrostoma arcasii	vu	×	119
Source: data	a compiled by the authors with categories	from IUCN Red List.	- not sampled 🗙 no species four	d 🎽 dried out riv

Description

The upper Río Adaja site was identified as potential KBA site for the existing Natura 2000 site Encinares de los ríos Adaja y Voltoya and due to the reported presence of important populations of the fish C. calderoni and A. arcasii. It is composed of the intermittent Mediterranean climate river river Adaja and its tributaries. Two sites were visited for riverine taxa but only one had water. The diversity of all taxa was extremely low in the standing pool, but both possible trigger species were detected in high abundance. Aquatic plants were not surveyed.

sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white = river dried out). Source base map: Esri, USGS. Source data: HydroSHEDS database from © World Wildlife Fund, Inc. (2006-2013), World Database of KBA and data collected by the authors.

The fish communities were composed of abundant populations of C. calderoni and A. arcasii and two other species, one native, i.e. Squalius carolitertii and one nonnative, Gobio lozanoi. No bivalves, odonates or crayfish species detected. The macroinvertebrate community exhibited very low diversity metrics possibly due to the low water quality and the high concentration of fish.

Species richness (Non-native/Threatened)

Species richness (Non-native/Threatened)	Sam	pling sites
Таха	IUCN12	IUCN13
🛞 Fish	1	4(<mark>1</mark> /2)
e Bivalves	x	×
Gastropods	1	1
Odonates	1	×
Crayfish	1	×
S Aquatic plants	-	-
TOTAL	1	5(<mark>1</mark> /2)
Macroinvertebrates Families Shannon-Weiner Diversity	×	8 0,34
Source: data collected by the authors.	- not sampled X no species for	ınd 🛛 💋 dried out rive

Habitat

The habitat quality of the river was very low with a single pool presenting water. The water quality was low and conductivity was high (Annex C).

	Samplin	g sites	
River Habitat Survey (RHS)	IUCN12	IUCN13	
Habitat Quality Assessment (HQA)	×	33	
Habitat Modification Score (HMS)	×	460	
Source: data collected by the authors.	- not sampled	💋 dried out river	

Threats

The river Adaja suffers from water extraction for agricultural purposes and is mostly dry during the summer months. The few permanent pools concentrate large abundance of fish. The pool numbers seem to be decreasing and the river will possibly dry completely in the summer over the following years.

Conservation guidance

The area is a Natura 2000 site and still holds important populations of threatened species, but is in need of urgent measures for protection. A water management plan should be implemented to keep the required ecological water level in the remaining pools sufficient for fish. Riparian buffers should be implemented around deeper pools to reduce evaporation.

4.4 **Río Eresma** potential KBA site


			Samplin	g sites
Trigger spe	cies presence and abundance	IST CEP	IUCN16	IUCN17
Fish	Cobitis calderoni	EN	×	×
Fish	Achondrostoma arcasii	vu	131	198

Source: data compiled by the authors with categories from IUCN Red List.

- not sampled 🗙 no species found 💋 dried out river

Description

The Rio Eresma region was adopted due to the reported presence of important populations of the fish *C. calderoni* and *A. arcasii* in this river. It is composed of a small intermittent Mediterranean climate river and its tributaries. The diversity of all taxa was low in both sites, except for fish, including one of the possible trigger species, *A. arcasii*, that was found in high abundances. No aquatic plants were surveyed.

= river dried out). Source base map: Esri, USGS. Source data: <u>HydroSHEDS database</u> from © World Wildlife Fund, Inc. (2006-2013), <u>World Database of KBA</u> and data collected by the authors.

5 IUCN16 Spain Portugal Trigger species in site: Investigated regions: KBA sites • Present Potential KBA (Máiz-Tomé et al., 2017) Not found Not investigated River dried out IUCN17 Figure 15. Map of Río Eresma, with the KBA site in green and the site identified as potential KBA by Máiz-Tomé et al. (2017) in orange. The coloured circles represent the sampling sites, with colour according to whether the trigger species was detected (green = present; red = not found; grey = not investigated; white

The fish communities were composed of abundant populations of A. arcasii, the common iberian barbel Luciobarbus bocagei, and the non-native species Gobio lozanoi. Two other species were detected at lower quantities, Pseudochondrostoma duriense (VU) and Squalius carolitertii. No bivalves were detected, except for the non-native asian clam Corbicula fluminea, found in high abundances. Only one common odonate species and no crayfish species were detected. The macroinvertebrate community exhibited very low diversity metrics.

Species richness (Non-native/Threatened)

Species richness (Non-native/Threatened)		Sampling sites			
Таха		IUCN16	IUCN17		
Fish		5(2)	5(2)		
Bivalves		1	×		
@ Gastropods		×	×		
Odonates		1	1		
Srayfish		×	×		
Aquatic plants		-	-		
TOTAL		7(<mark>1</mark> /2)	6(2)		
Macroinvertebrates Families Shannon-Weiner Diversity		6 1,14	13 1,64		
Source: data collected by the authors.	- not sampled	× no species found	💋 dried out river		

Habitat

The physical habitat quality of the river was good, but we observed a high siltation/sedimentation and increased conductivity that should be related with sediment inputs from agriculture fields (Annex C).

	Samplin	g sites
River Habitat Survey (RHS)	IUCN16	IUCN17
Habitat Quality Assessment (HQA)	54	57
Habitat Modification Score (HMS)	250	370
Source: data collected by the authors.	- not sampled	💋 dried out river

Threats

The Eresma river suffers from water shortage probably due to extraction for agriculture purposes. It is also affected by sediment inputs from agriculture activities.

> Non-native species: Asian clam (Corbicula fluminea) © Björn S., Wikimedia Commons, License CC BY-SA 2.0

Conservation guidance

A water management plan should be implemented to keep the required ecological water flow for the fish communities. Riparian buffers should be increased around the deeper pools to reduce evaporation and retain loose sediments from the surrounding fields.

Threats

5

here is quite a difference in the freshwater biodiversity found in the distinct investigated sites. Consequently, the necessary measures to conserve the threatened biodiversity can be quite different between regions.

An overview of identified threats can be found here:

- Agricultural and forestry effluents: Eutrophication happening as a consequence of agricultural activities.
- Droughts: mainly occurring in the tributaries in the middle part of the drainages (upper part in Portugal).
- Dams and water management/use: several dams have been built to regulate the water flow, generate hydroelectric power, and allow navigation through locks.
- Non-native species: several non-native fishes have invaded this river basin (*Lepomis* gibbosus, Gambusia holbrooki, Ameiurus melas, Sander lucioperca, Alburnus alburnus, Phoxinus bigerri and Barbatula barbatula).
- Housing and urban areas.
- Annual and perennial non-timber crops: the Spanish River Douro valley has great relevance from the point of view of agriculture with important cereal crops (wheat and barley), legumes, vineyards, sugar beets and alfalfa.
- Livestock farming and ranching: in the Spanish River Douro valley, livestock is an important resource. It includes the exploitation of extensive sheep, pigs and cows.
- Shipping lanes: the main Douro River in the Portuguese part, has a series of navigable locks, that impairs the river connectivity and has a severe impact on the migratory species populations (*Petromyzon marinus*, *Alosa* sp., *Anguilla anguilla*, *Salmo trutta*).
- Hunting terrestrial animals: Hunting is an important activity in the region of Castilla.

In general, the most common human-induced threats to the freshwater ecosystem are the effects from agricultural practices, namely sedimentation, euthrophication, and water usage causing water shortage and droughts. The large amount of dams negatively affect the water flow and are disruptive for potamodromous migratory fish. Finally, the increase of non-native species are outcompeting and causing harms to the native freshwater biodiversity. Several non-native species were detected, including four fish species (Barbatula barbatula, Phoxinus bigerri, Gobio lozanoi, Gambusia holbrooki), two crayfish species (Pacifastacus leniusculus, Procambarus clarkii) and a mollusc species (Corbicula fluminea). Non-native species were detected in almost all the investigated regions with the exception of the KBA sites Malcata, Sierra de Gredos y Candelario, Cañón del Río Lobos and potential KBA sites Río Corneja and Río Eresma. All of these regions are located in the southern part of the Douro river basin, with the exception of KBA Cañón del Río Lobos. The highest number of non-native species was detected in the northern regions, with KBA Fuentas Carriones exhibiting a higher number of non-native than native species.

The situation of the KBA sites in the northwestern part of the Douro river basin is particulary alarming, as besides the high number of non-native species, there was a low number of native species and no trigger species were detected in the five KBA sites in this part of the Douro river basin (Babia-Somiedo, Fuentes Carrionas, Sierras de Peña Labra y del Cordel, Sierras de Urbión, Cebollera y Neila, Cañón del Río Lobos). Many of the native fish populations seem to be isolated from the middle and lower sections of the Douro river basin due to the barriers built on the Douro main channel, causing the fish communities of the remaining river sub-basins to decline at an alarmingly fast rate and being replaced by non-native species. Furthermore, these KBA sites suffer from siltation and increased conductivity caused by eutrophication due to nutrients and sediment loads from agriculture practices.

The eastern part of the Douro river basin is equally alarming, not solely for the presence of non-native species but particularly for the high occurrence of freshwater threatened species. The northeastern KBA sites Serras de Montesinho e Nogueira and Sierra de la Cabrera are mostly threatened by the physical barriers that were built along the Spanish-Portuguese border, isolating freshwater species populations and making them more prone to genetic erosion and exposure to local extinction. In the southeastern KBA sites El Rebollar and Malcata, increased water usage and climate change have caused water shortage and droughts, and sedimentation caused by summer fires is negatively affecting the freshwater diversity in these sites. Finally, the southern KBA site Sierra de Gredos y Candelario and the southern potential KBA sites of Río Yeltes, Río Adaja, Río Corneja and Río Eresma exhibited high numbers of threatened species, with a relatively lower number of non-native species, except for some invertebrate species. Trigger species were found in all of the potential KBA sites. This part of the Douro river basin regions seem to be more affected by water shortage and sediment inputs from agriculture activities. Special attention should be given to the potential KBA site Río Adaja, that is mostly dry during the summer months, but the few permanent pools that remain, concentrate large abundances of fish. The pool numbers seem to be decreasing and the river will possibly dry completely over the course of the following years.

Conservation guidance

This study provided an overview of the status of freshwater biodiversity in the Douro river basin, and on the effectiveness of KBA sites in conserving the trigger species and other threatened freshwater species. In the majority of sampling sites the freshwater trigger species were not recorded, and in half of the KBA sites the freshwater trigger species were not detected at all. In contrast, trigger species were detected in all four potential KBA sites (Máiz-Tomé et al., 2017). A more detailed and comprehensive survey on trigger species is needed to detect and assess the abundance of these species for each KBA site. An update of the status of the KBA sites is necessary if the results show an absence or low abundance of the trigger species or any other threatened species. Furthermore, the investigated sites that were delineated as potential KBA (Máiz-Tomé et al., 2017) should be nominated as KBA sites to conserve the high number of threatened freshwater species present. Other threatened species found in the KBA sites should be added as additional trigger species during the updating. Additionally, the area for some KBA sites (Babia-Somiedo, Malcata, Serras de Motesinho e Nogueira) has to be extended to include locations where trigger species occur.

Further recognition of the high conservation importance of freshwater KBA sites is needed to strengthen the measures to preserve the freshwater biodiversity in the KBA sites. An intial step should be to include the KBA trigger species in the management plans of existing protected areas (Ramsar Sites, Natura 2000 sites, other national or regional protection schemes). It would be good to analyse the feasibility and convenience of including their monitoring as an indicator of conservation status of the site. KBA sites should also be included in the River Basin Management Plans, either as water bodies or as protected areas, to ensure that an appropriate planning of the basin is done and to ensure that enough water is allocated for the conservation of these sites and that no other measures in the plan harm these sites. One project in the Douro river basin already started with the protection and the recovery of native endemic fish populations: the Project Cipriver in the southwest

of Salamanca. By captive breeding and adaptation of the riverine habitat conditions, they aim to restore the natural populations of native endemic fish species.

Several conservation measures can be taken to improve the conditions of the freshwater biodiversity in the Douro river basin. One of the main threats are the non-native species that have been introduced in the river basin and are outcompeting the native endemic species. Management measures aiming to contain, control or even eradicate these non-native species should be implemented in order to conserve the native endemic species. Another threat are the large amount of dams and weirs that are obstructing the river connectivity. As many of the smaller dams and weirs are no longer in use, a survey should be undertaken to assess the removal of many obsolete barriers and the required measures to increase the riverine connectivity for the freshwater biodiversity in the existing dams. Particularly, in the KBA site Sierra de la Cabrera, special effort should be made to increase the connectivity of the river Tera to the Douro River, by selecting obsolete dams and barriers for decommissioning and building fish passages on barriers impermeable to fish. Finally, agricultural practices with high water consumption should be avoided to keep required ecological water levels high in the rivers and streams. A water management plan is needed to avoid part of river Ulcero within the KBA site Cañón del Río Lobos to dry out in the summer.

7 Conclusions

This study assessed the status of freshwater biodiversity in ten Key Biodiverisity Areas of the Douro river basin and four potential Key Biodiversity Areas (Máiz-Tomé et al., 2017). The findings paint a somber picture of the situation in the Douro river basin. The native and endemic species are being outcompeted by non-native species, and suffering from habitat eutrophication and sedimentation due to agricultural and forestry activities. High water consumption and climate change have caused water shortage and droughts, leaving several streams and pools dry during the summer months. Physical barriers and dams are blocking the migration of many endemic species, isolating freshwater species populations and making them more prone to genetic erosion and local extinction. No trigger species were found in 43% of all investigated sites. Especially, the situation of the KBA sites in the northwestern part of the Douro river basin is alarming and a further investigation is needed to assess trigger species abundance and to re-evaluate their status as KBA site. The southwestern part of the Douro basin is characterized by a high number of trigger and threatened species, and several investigated regions in this part of the Douro basin should be recognized as KBA site to protect the existing freshwater biodiversity. Freshwater KBA sites have a high conservation importance, but clear distribution data for the trigger species is necessary and active monitoring and coordination are needed to better conserve the present biodiversity.

References

Andresen, T., De Aguiar, F. B., & Curado, M. J. (2004). The Alto Douro wine region greenway. *Landscape and urban planning*, 68(2-3), 289-303. <u>https://doi.org/10.1016/S0169-2046(03)00156-7</u>

BirdLife International (2021). *The World Database of Key Biodiversity Areas*. Developed by the KBA Partnership: BirdLife International, International Union for the Conservation of Nature, Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Global Wildlife Conservation, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, Wildlife Conservation Society and World Wildlife Fund. Available at <u>www.keybiodiversityareas.org</u>

Bordalo, A. A., Teixeira, R., & Wiebe, W. J. (2006). A water quality index applied to an international shared river basin: the case of the Douro River. *Environmental Management*, 38(6), 910-920. https://doi.org/10.1007/s00267-004-0037-6

- Cortes, R. M., Peredo, A., Terêncio, D. P., Sanches Fernandes, L. F., Moura, J. P., Jesus, J. J., ... & Pacheco, F. A. (2019). Undamming the Douro River catchment: A stepwise approach for prioritizing dam removal. *Water*, 11(4), 693. <u>https://doi.org/10.3390/w11040693</u>
- Cummings, K. S., Jones, H. A., and Lopes-Lima, M. (2016). Rapid bioassessment methods for freshwater molluscs. *Core Standardized Methods*, 186.
- Darwall, W., Carrizo, S., Numa, C., Barrios, V., Freyhof, J. and Smith, K. (2014). Freshwater Key Biodiversity Areas in the Mediterranean Basin Hotspot: Informing species conservation and development planning in freshwater ecosystems. Cambridge, UK and Malaga, Spain: IUCN. x + 86pp. https://doi.org/10.2305/IUCN.CH.2014.SSC-OP.52.en

Instituto da Água (INAG), I.P. (2008) Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a Directiva Quadro da Água: protocolo de amostragem e análise para a fauna piscícola. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional.

 IUCN (2016). A Global Standard for the Identification of Key Biodiversity Areas, Version 1.0.
 First edition. Gland, Switzerland: IUCN.
 https://portals.iucn.org/library/node/46259

- Lourenço-Gomes, L., Pinto, L. M., & Rebelo, J. (2015). Wine and cultural heritage. The experience of the Alto Douro Wine Region. *Wine Economics and Policy*, 4(2), 78-87. <u>https://doi.org/10.1016/j.wep.2015.09.001</u>
- Máiz-Tomé, L., Darwall, W., Numa, C., Barrios, V. and Smith, K. G. (2017). Freshwater Key Biodiversity Areas in the north-western Mediterranean sub-region. Gland, Switzerland, Cambridge, UK and Málaga, Spain: IUCN. viii + 48 pp. https://doi.org/10.2305/IUCN.CH.2017.SSC-OP.64.en

Nogueira, J. G., Sousa, R., Benaissa, H., De Knijf, G., Ferreira, S., Ghamizi, M., ... & Lopes-Lima, M. (2021). Alarming decline of freshwater trigger species in western Mediterranean key biodiversity areas. *Conservation Biology*, 35(5), 1367-1379. <u>https://doi.org/10.1111/cobi.13810</u>

Raven, P. J., Holmes, N. T. H., Dawson, F. H., and Everard, M. (1998). Quality assessment using river habitat survey data. *Aquatic conservation: marine* and freshwater ecosystems, 8(4), 477-499. <u>https://doi.org/10.1002/(SICI)1099-</u> 0755(199807/08)8:4<477::AID-AQC299>3.0.CO;2-K

Raven, P.J., Fox, P.J.A., Everard, M., Holmes, N.T.H., and Dawson, F.H. (1997). 'River Habitat Survey: a new system for classifying rivers according to their habitat quality.' In Boon, P.J., and Howell, D.L. (ed.), *Freshwater Quality: Defining the Indefinable?*, pp. 215-234. Edinburgh: The Stationery Office.

Annexes

ANNEX A

Site location for the surveys of the distinct freshwater groups (Macroinvertebrates, Fish, Bivalves, Gastropods, Crayfish, Odonata, and Plants) and habitat assessments (River Habitat Survey – RHS), and water physical-chemical parameters. (✓ Sampled; -- Not Sampled)

							AS. BURLES OF ROOF OF AND R. P. ANS PHYSIC						
						AS.	, Š	.e.	30° 14	jh JÁ	IP AI	ANS .	c
SITE	DATE	HABITAT	LATITUDE	LONGITUDE	N. HANK	FISH	BIVALY	GAST	ORATE CRATE	ist oponé	PO.	PH	PHYS
KBA. BABI	A - SOMIEDO												
D515	04/06/2018	River Omaña	42.78925	-6.02739	~	~	~	V	~	~		~	~
D517	03/06/2018	River Luna	42.95090	-6.02674	~	×	~	v .	~	~		~	~
D518	04/06/2018	Acequia de la Fábrica de Luz	42.72932	-5.79437	~	~	~	~	~	~		~	~
D585	04/06/2018	River Órbigo	42.51045	-5.87351	~	~	~	~	~	~		~	~
D590	04/06/2018	River Omaña	42.71992	-5.92806	~	~	~	V	×	V		v	×
	ITES CARRIONAS												
D0524b	02/06/2018	River Carrión	42.93941	-4.65710	~	V	V	~	~	~		~	~
D0553	02/06/2018	River Pisuerga	42.96462	-4.49022	~	V	~	V	~	~		~	~
D2018	02/06/2018	River Rivera	42.90402	-4.49022	~	~	~	~	~	~		~	~
52010	02/00/2010		42.09003	-4.08400	*	*	*	*	*	*			
KBA. SIER	RA DE GREDOS Y	CANDELARIO											
IUCN10	01/06/2018	River Tormes	40.38515	-5.52018	×	×	×	v	~	~		~	× .
IUCN11	01/06/2018	River Tormes	40.34793	-5.29192	v	v	v	~	v	~		v	v
KBA. SIER	RAS DE PEÑA LAE	BRA Y DEL CORDEL											
D0569	04/06/2018	River Pisuerga	42.85484	-4.45881	~	~	~	~	~	~		~	~
D0570	04/06/2018	River Rubagon	42.84852	-4.25044	~	~	~	~	~	~		~	~
D0597	04/06/2018	River Camesa	42.80252	-4.21368	 	~	~	~	 	~		v .	~
KBA SIER	RAS DE URBIÓN.	CEBOLLERA Y NEILA											
D0543	10/06/2017	River Douro	41.91948	-2.85543	~	~	V	~	~	~		~	~
IUCN9	26/09/2019	River Razon	41.92206	-2.55628	~	~	V	~	~	~		~	~
10 0110	20,00,2010			2.00020									
KBA. CAÑO	ÓN DEL RÍO LOBO	s											
IUCN5	26/09/2019	River Ucero	41.72055	-3.04812	~	~	~	~	~	~		~	~
IUCN6	26/09/2019	River Lobos (DRY) 💋	41.74138	-3.05968									
	RAS DE MONTESIN												
D0019	27/06/2017	Tuela River	41.89905	-6.93740	~	~	~	~	~	~		 	
D0097	27/06/2017	River Mente	41.86599	-7.19390	×	 	~	v	~	~		~	× .
D0098	27/06/2017	River Rabacal	41.88178	-7.13948	×	 	~	~	~	~		~	×
IUCN1	28/06/2017	River Sabor	41.89626	-6.72739	×	×	×	×	×	×			
IUCN2	28/06/2017	River Sabor	41.90842	-6.75597	~	~	~	~	~	~			
IUCN3	28/06/2017	River Baceiro	41.93221	-6.84956	~	~	~	~	×	~			
IUCN4	28/06/2017	River Baceiro	41.83137	-6.94136	~	~	~	~	~	~			
MON1	25/09/2019	Ribeira de Santa Catarina	41.85338	-6.78891							× .		
MON2	24/09/2019	River Sabor	41.90336	-6.72938							~		

					N. M.	ATS.	BNALY	en castra	OPODS ORATE	ist opone	KA RO.P.	ANTS .	PHYSICAL
SITE	DATE	HABITAT	LATITUDE	LONGITUDE	1.	FISH	BINK	GAS	CRA.	000.	PO.	PH	PHAS
KBA. SIERF	RA DE LA CABRE	RA											
D0502	05/06/2018	River Tera	42.11138	-6.67414	~	~	~	~	~	~		~	v
D0587	05/06/2018	River Tera	42.12322	-6.74816	~	~	~	~	~	~		~	v .
SAN001	24/09/2019	River Tera	42.12430	-6.74805							v		
KBA. EL RE	BOLLAR												
Dou218	09/06/2017	River Agueda	40.30175	-6.81172	~	~	~	~	v	~		~	v
Dou221	09/06/2017	River Malavao	40.37512	-6.57641	~	~	~	~	v	~		~	v
REB001	26/09/2019	River Agueda	40.30180	-6.81124							v		
KBA. MALC	ATA												
D0038	22/06/2017	River Coa	40.48592	-6.99021	~	~	~	~	~	~	~	~	~
D0576	22/06/2017	River Coa	40.28811	-6.93500	~	~	~	~	~	v		v	
IUCN7	12/10/2019	River Coa	40.39023	-7.05460	4	•	4	v	v	~		~	v
RÍO CORN	EJA												
IUCN8	01/06/2018	River Corneja	40.49542	-5.30118	~	~	~	~	~	~	~	~	v
D0564	01/06/2018	River Corneja	40.46934	-5.43397	4	4	4	V	V	<i>v</i>		<i>v</i>	v
RÍO YELTE	S												
D0508	12/06/2017	River Yeltes	40.70091	-6.34474	~	~	~	~	~	~	~	~	
D0513	10/06/2017	River Morasverdes	40.64401	-6.30880	4	4	4	V	×	~		~	v
RÍO ADAJA	A												
IUCN12	27/09/2019	River Adaja (DRY) 🎽	40.55986	-5.05170									
IUCN13	27/09/2019	River Adaja	40.55750	-4.93099	•	v	~	4	v	~		~	v
RÍO ERESM	AN												
IUCN16	25/09/2019	River Eresma	41.35672	-4.68675	~	~	~	~	~	~		~	v
IUCN17	25/09/2019	River Eresma	41.22177	-4.52236	~	~	~	~	~	v .		×	

ANNEX B

Detected species presence and abundance per sampling site in the different (potential) KBA sites, including the Red List Category for each species. Green values corresponds to native species and red values to non-native species. (* Not species detected; - Not Sampled). IUCN Red List Categories:
Categor

KBA. BABIA			D515	D517	D518	D5
Fish	Cobitis calderoni	EN	×	×	×	
	Achondrostoma arcasii	<u></u>	×	×	×	
	Salmo trutta fario	LC	27	32	32	
	Barbatula barbatula	LC	×	×	51	
Gastropods	Ancylus fluviatilis	LC	×	×	1	
	Peregriana peregra	NE	18	12	8	
Crayfish	Pacifastacus leniusculus	LC	×	×	1	
Odonata	Calopteryx virgo	LC	1	×	×	
KBA. FUENT	ES CARRIONAS		D0524b	D2018	D0553	
Fish	Pseudochondrostoma duriense		×	×	×	
	Achondrostoma arcasii		×	3	×	
	Salmo trutta fario	LC	15	4	×	
	Phoxinus bigerri	LC	×	173	77	
	Gobio lozanoi	LC	×	35	1	
Crayfish	Pacifastacus leniusculus	LC	×	*	1	
	A DE GREDOS Y CANDELARIO		IUCN10	IUCN11		
Gastropods	Iberhoratia aurorae	DD	×	×		
Fish	Cobitis paludica		1	1		
	Pseudochondrostoma duriense		15	1		
	Squalius alburnoides	<u> </u>	12	×		
	Salmo trutta fario	LC	2	4		
	Squalius carolitertii	LC	2	×		
Gastropods	Ancylus fluviatilis	LC	7	×		
	Lymnaea peregra	LC	×	6		
Bivalves	Unio delphinus	LC	10	×		
	Pisidium casertanum	LC	×	16		
Odonata	Macromia splendens		1	×		
	Cordulegaster boltoni	LC	1	1		
	Gomphus simillimus	LC	3	×		
	Onychogomphus forcipatus	LC	4	×		
	Onychogomphus uncatus	LC	24	7		
KRA SIFRRA	AS DE PEÑA LABRA Y DEL CORDEL		D0569	D0570	D0597	
Fish	Pseudochondrostoma duriense		*	*	*	
	Achondrostoma arcasii		×	2	10	
	Salmo trutta fario	LC	3	×	×	
	Phoxinus bigerri	LC	51	1	35	
	Gobio lozanoi	LC	×	×	16	
Bivalves	Pisidium casertanum	LC	2	1	×	
Gastropods	Ancylus fluviatilis	LC	3	×	3	
	Lymnaea peregra	LC	1	×	×	
	Planorbidae sp.		1	×	×	
Crayfish	Pacifastacus leniusculus	LC	1	×	1	
-						
KBA. SIERRA	AS DE URBIÓN, CEBOLLERA Y NEIL	_	D0515	D0517	-	
Fish	Cobitis calderoni	EN	×	×		
	Achondrostoma arcasii		×	×		
	Pseudochondrostoma duriense	<u></u>	×	×		
	Salmo trutta fario	LC	10	23		
	Phoxinus bigerri	LC	93	×		
Bivalves	Pisidium casertanum	LC	×	1		
0	De elfente que la eluce culue		0			

Crayfish

Odonata

Pacifastacus leniusculus

Calopteryx virgo

2

5

KBA. CAÑÓN	DEL RÍO LOBOS		IUCN5	IUCN6
Fish	Achondrostoma arcasii		×	-
	Pseudochondrostoma duriense		×	-
	Salmo trutta	LC	32	-
Gastropods	Ancylus fluviatilis	LC	4	-

KBA. SERRAS	DE MONTESINHO E NOGUEIRA		D0019	D0097	D0098	IUCN1	IUCN2	IUCN3	IUCN4	MON1	MON2
Fish	Cobitis calderoni	EN	×	×	21	×	×	×	×	-	-
Bivalves	Margaritifera margaritifera	EN	51		188	×	×	×	×	-	-
Fish	Pseudochondrostoma duriense		18	39	27	1	×	×	4	-	-
	Luciobarbus bocagei	LC	2	×	×	×	×	×	×	-	-
	Salmo trutta fario	LC	28	55	38	10	7	82	12	-	-
	Squalius carolitertii	LC	30	6	18	55	6	×	×	-	-
Gastropods	Lymnaea peregra	LC	×	147	×	×	×	×	×	-	-
Crayfish	Pacifastacus leniusculus		×	6	1	×	×	×	×	-	-
Odonata	Boyeria irene	LC	2	1	1	×	×	×	×	-	-
	Platycnemididae sp.	LC	×	×	1	×	×	×	×	-	-
	Gomphidae sp.	LC	10	18	3	×	×	×	×	-	-
	Coenagrionidae sp.	LC	×	56		×	×	×	×	-	-
Aquatic plants	Agrostis stolonifera	LC	-	-	-	-	-	-	-	×	<0.1
	Apium nodiflorum	LC	-	-	-	-	-	-	-	1	×
	Athyrium filix-femina	LC	-	-	-	-	-	-	-	×	0.1-1
	Carex paniculata lusitanica	LC	-	-	-	-	-	-	-	20	×
	Cyperus longus	LC	-	-	-	-	-	-	-	7	×
	Epilobium hirsutum	LC	-	-	-	-	-	-	-	10	×
	Filipendula ulmaria	LC	-	-	-	-	-	-	-	0.1-1	×
	Fontinalis antipyretica	LC	-	-	-	-	-	-	-	0.1-1	0.1-1
	Fontinalis hypnoides	LC	-	-	-	-	-	-	-	×	0.1-1
	Fraxinus angustifolia	LC	-	-	-	-	-	-	-	10	×
	Juncus acutiflorus	LC	-	-	-	-	-	-	-	8	×
	Juncus inflexus	LC	-	-	-	-	-	-	-	10	×
	Lemna minor	LC	-	-	-	-	-	-	-	×	0.1-1
	Lycopus europaeus	LC	-	-	-	-	-	-	-	0.1-1	×
	Lythrum hyssopifolium	LC	-	-	-	-	-	-	-	<0.1	×
	Lythrum salicaria	LC	-	-	-	-	-	-	-	2	×
	Mentha pulegium	LC	-	-	-	-	-	_	-	0.1-1	×
	Mentha suaveolens	LC	-	-	-	-	-	-	-	<0.1	×
	Myosotis secunda	LC	-	-	-	-	-	-	-	*	<0.1
	Osmunda regalis	LC	-	-	-	-	-	-	-	×	<0.1
	Persicaria hydropiper	LC	-	-	-	-	-	-	-	×	<0.1
	Platyhypnidium riparioides	LC	-	-	-	-	-	-	-	*	0.1-1
	Ranunculus cf. peltatus	LC	-	-	-	-	-	-	-	*	3
	Ranunculus flammula	LC	-	-	-	-	-	-	-	<0.1	×
	Solanum dulcamara	LC	-	-	-	-	-	-	-	0.1-1	0.1-1
	Veronica catenata	LC	-	-	-	-	-	-	-	<0.1	*
	Callitriche sp.	LC	_	-	-	-	_	-	-	*	<0.1
	Carex sp.		_	_	-	_	_	_	_	×	1
	Gongrosira sp.	LC	-	-	-	-	-	-	-	*	5
	Salix sp.	LC	_	_	-	_	_	_	_	10	*
	Gain op.	LC	-	-	-	-	-	-	-	*	60

KBA. SIERRA	DE LA CABRERA		D0587	D0502	SAN001
Fish	Cobitis calderoni	EN	19	26	-
	Achondrostoma arcasii		42	×	-
	Anguilla anguilla	CR	2	×	-
	Pseudochondrostoma duriense		5	1	-
	Gobio lozanoi	LC	39	2	-
	Luciobarbus bocagei	LC	3	×	-
	Salmo trutta fario	LC	2	2	-
Odonata	Calopteryx virgo	LC	2	1	-
	Onychogomphus uncatus	LC	1	×	-
	Boyeria irene	LC	×	2	-
Aquatic plants	Baldellia repens	NT	-	-	5

KBA. SIERRA DE LA CABRERA (cont.)		D0587	D0502	SAN001
Agrostis canina	LC	-	-	0.1-1
Apium inundatum	LC	-	-	3
Calliergonella cuspidata	LC	-	-	<0.1
Callitriche brutia	LC	-	-	2
Carum verticillatum	LC	-	-	2
Galium palustre	LC	-	-	<0.1
Glyceria fluitans	LC	-	-	2
Juncus bulbosus	LC	-	-	4
Juncus effusus	LC	-	-	<0.1
Lythrum portula	LC	-	-	0.1-1
Mentha pulegium	LC	-	-	<0.1
Myosotis sicula	LC	-	-	0.1-1
Myriophyllum alterniflorum	LC	-	-	20
Pellia epiphylla	LC	-	-	<0.1
Ranunculus flammula	LC	-	-	3
Sphagnum denticulatum	LC	-	-	0.1-1
Veronica scutellata	LC	-	-	0.1-1
Hypericum undulatum	NE	-	-	<0.1
	-			

KBA. EL REBO	OLLAR		Dou218	Dou221	REB001
Fish	Cobitis vettonica	EN	×	14	-
	Cobitis paludica		×	3	-
	Pseudochondrostoma duriense		×	10	-
	Squalius alburnoides		×	64	-
	Luciobarbus bocagei	LC	×	4	-
	Salmo trutta fario	LC	51	7	-
Odonata	Calopteryx virgo	LC	1	×	-
Crayfish	Procambarus clarkii	LC	×	5	-
Aquatic plants	Apium nodiflorum	LC	-	-	3
	Bryum pseudotriquetrum	LC	-	-	<0.1
	Fontinalis antipyretica	LC	-	-	0.1-1
	Juncus effususu	LC	-	-	<0.1
	Mentha suaveolens	LC	-	-	<0.1
	Oenanthe crocata	LC	-	-	2
	Persicaria hydropiper	LC	-	-	<0.1
	Cratoneruon filicinum	NE	-	-	<0.1
	Scapania sp.		-	-	<0.1

KBA. MALCAT	A		D0038	D0576	IUCN7
Aquatic plants	Eryngium viviparum	EN	×	-	-
Fish	Cobitis paludica		38	×	×
	Pseudochondostroma duriense		4	×	73
	Squalius alburnoides		163	1	15
	Luciobarbus bocagei	LC	19	×	×
	Salmo trutta fario	LC	×	5	4
	Squalius carolitertii	LC	13	×	7
Gastropods	Physella acuta	LC	36	×	×
Bivalves	Unio delphinus	NT	137	×	×
	Anodonta anatina	LC	54	×	×
Odonata	Boyeria irene	LC	2	4	×
	Calopteryx virgo	LC	×	4	×
	Cercion lindeni	LC	5	×	×
	Coenagrion puella	LC	13	1	×
	Cordulegaster boltoni	LC	×	2	×
	Gomphus simillimus	LC	2	×	×
	Onychogomphus forcipatus	LC	7	×	×
	Cordulegaster boltoni	LC	×	2	×
Crayfish	Procambarus clarkii	LC	10	×	×
Aquatic Plants	Alisma plantago-aquatica	LC	<0.1	-	-
	Alnus glutinosa	LC	0.1-1	-	-
	Apium nodiflorum	LC	1	-	-
	Bidens cernua	LC	<0.1	-	-

KBA. MALCATA (cont.)		D0038	D0576	IUCN7
Bidens frondosa	LC	<0.1	-	-
Cyperus longus	LC	<0.1	-	-
Eleocharis palustris	LC	3	-	-
Galium palustre	LC	<0.1	-	-
Juncus articulatus	LC	<0.1	-	-
Lemna gibba	LC	0.1-1	-	-
Lemna minor	LC	<0.1	-	-
Leptodictyum riparium	LC	0.1-1	-	-
Ludwigia palustris	LC	0.1-1	-	-
Lunularia cruciata	LC	<0.1	-	-
Lycopus europaeus	LC	<0.1	-	-
Myriophyllum alterniflorum	LC	<0.1	-	-
Oenanthe crocata	LC	<0.1	-	-
Paspalum distichum	LC	5	-	-
Potamogeton berchtoldii/pusillus	LC	<0.1	-	-
Ranunculus penicillatus	LC	0.1-1	-	-
Sparganium erectum ssp. oocarpum	LC	1	-	-
Typha latifolia	LC	0.1-1	-	-
Veronica catenata	LC	0.1-1	-	-
Veronica × lackschewitzii	-	<0.1	-	-
Azolla sp.		<0.1	-	-
Callitriche sp.		0.1-1	-	-
Stigeoclonium sp.		<0.1	-	-
Vaucheria sp.		<0.1	-	-

RÍO CORNEJ	Α		IUCN8	D0564
Fish	Achondrostoma arcasii		14	4
	Pseudochondrostoma duriense		×	1
	Squalius alburnoides		×	3
Gastropods	Planorbidae sp.	LC	×	1
Aq. plants	Alisma lanceolatum	LC	<0.1	-
	Corrigiola litoralis	LC	<0.1	-
	Eleocharis palustris	LC	<0.1	-
	Gnaphalium uliginosum	LC	<0.1	-
	Juncus effusus	LC	<0.1	-
	Lythrum portula	LC	<0.1	-
	Scirpoides holoschoenus	LC	<0.1	-
	Veronica catenata	LC	<0.1	-
	Sysimbrella aspera	NE	<0.1	-
	Ranunculus Sect. Batrachium sp.		<0.1	-

Cobitis paludica32Pseudochondrostoma duriense29Squalius alburnoides70Salmo trutta10Squalius carolitertii147Luciobarbus bocagei5Gambusia holbrooki1GastropodsAncylus fluviatilisCalopteryx virgo1Gomphidae sp.1	RÍO YELTES			D0508	D0513
Pseudochondrostoma duriense1Squalius alburnoides1Salmo trutta1Salmo trutta4Squalius carolitertii147Luciobarbus bocagei5Gambusia holbrooki1GastropodsAncylus fluviatilis3OdonataCalopteryx virgo1Gomphidae sp.1CrayfishProcambarus clarkii1AquaticCyperus longus01-1PlantsEpilobium hirsutum01-1Equisetum ramosissimum01-1-Hypericum undulatum01-1-Juncus articulatus01-1-Lucus effusus01-1-Lycopus europaeus01-1-Lycopus europaeus </td <td>Fish</td> <td>Achondrostoma salmantinum</td> <td>EN</td> <td>17</td> <td>35</td>	Fish	Achondrostoma salmantinum	EN	17	35
Squalius alburnoides1Salmo trutta1Salmo trutta4Squalius carolitertii147Luciobarbus bocagei5Gambusia holbrooki1GastropodsAncylus fluviatilis1Gaorphidae sp.1CrayfishProcambarus clarkii1Gourphidae sp.1Epilobium hirsutum1Equisetum ramosissimum01-1Galium palustre01-1Juncus articulatus1Juncus effusus01-1Lycopus europaeus01-1Colonata01-1Colonata01-1Colonata01-1CayfishProcambarus clarkiiImage: Colonata01-1Cyperus longus1Image: Colonata01-1Epilobium hirsutum1Image: Colonata01-1Image: Colonata1Image: Colonata1 </td <td></td> <td>Cobitis paludica</td> <td></td> <td>32</td> <td>1</td>		Cobitis paludica		32	1
Salmo truttaLo41Squalius carolitertii1479Luciobarbus bocagei5*Gambusia holbrooki1*GastropodsAncylus fluviatilis35OdonataCalopteryx virgo*1Gomphidae sp.*1CrayfishProcambarus clarkii1020AquaticCyperus longus1001-1-Epilobium hirsutum1001-1-Equisetum ramosissimum1001-1-Galium palustre1001-1-Juncus articulatus1001-1-Lycopus europaeus1001-1-Lycopus europ		Pseudochondrostoma duriense		29	×
Squalius carolitertii1479Luciobarbus bocagei5*Gambusia holbrooki1*GastropodsAncylus fluviatilis1*GastropodsAncylus fluviatilis35OdonataCalopteryx virgo1*1Gomphidae sp.*11CrayfishProcambarus clarkii1020*AquaticCyperus longus1001-1-Epilobium hirsutum1001-1-Equisetum ramosissimum1001-1-Galium palustre1001-1-Juncus articulatus1001-1-Juncus effusus1001-1-Lycopus europaeus1001-1-Lycopus europaeus1001-1-		Squalius alburnoides		1	×
Luciobarbus bocagei 1 5 * Gambusia holbrooki 1 * Gastropods Ancylus fluviatilis 1 * Gomphidae sp. * 1 * Crayfish Procambarus clarkii 1 20 * Aquatic Cyperus longus 1 - * 1 Plants Epilobium hirsutum 1 01-1 - Equisetum ramosissimum 1 01-1 - Galium palustre 1 01-1 - Juncus articulatus 1 01-1 - Juncus effusus 1 - - Lycopus europaeus 1 - -		Salmo trutta	LC	4	1
Gambusia holbrooki 1 * Gastropods Ancylus fluviatilis 0 3 5 Odonata Calopteryx virgo 0 * 1 Gomphidae sp. * 1 1 * Crayfish Procambarus clarkii 10 20 * Aquatic Cyperus longus 10 01-1 - Plants Epilobium hirsutum 10 01-1 - Equisetum ramosissimum 10 01-1 - Galium palustre 10 01-1 - Hypericum undulatum 10 <0.1		Squalius carolitertii	LC	147	9
Gastropods Ancylus fluviatilis 1c 3 5 Odonata Calopteryx virgo 1c 1 Gomphidae sp. 1 1 Craylish Procambarus clarkii 1c 20 Aquatic Cyperus longus 1c 01-1 - Plants Epilobium hirsutum 1c 01-1 - Equisetum ramosissimum 1c 01-1 - Galium palustre 1c 01-1 - Hypericum undulatum 1c <0.1		Luciobarbus bocagei	LC	5	×
Odonata Calopteryx virgo to * 1 Gomphidae sp. * 1 Crayfish Procambarus clarkii to 20 * Aquatic Cyperus longus to 01-1 - Plants Epilobium hirsutum to 01-1 - Equisetum ramosissimum to 01-1 - Galium palustre to 01-1 - Hypericum undulatum to <0.1		Gambusia holbrooki	LC	1	×
Gomphidae sp. * 1 Crayfish Procambarus clarkii 10 20 * Aquatic Cyperus longus 10 01-1 - Epilobium hirsutum 10 01-1 - Equisetum ramosissimum 10 01-1 - Galium palustre 10 01-1 - Hypericum undulatum 10 <0.1	Gastropods	Ancylus fluviatilis	LC	3	5
Crayfish Procambarus clarkii Lo 20 X Aquatic Cyperus longus 01-1 - Plants Epilobium hirsutum 0.01-1 - Equisetum ramosissimum 0.01-1 - Galium palustre 0.01-1 - Hypericum undulatum 0.01-1 - Juncus articulatus 0.01-1 - Lycopus europaeus 0.0.1 -	Odonata	Calopteryx virgo	LC	×	1
Aquatic Cyperus longus 01-1 - Plants Epilobium hirsutum 0.0.1-1 - Equisetum ramosissimum 0.0.1-1 - Galium palustre 0.0.1-1 - Hypericum undulatum 0.0.1 - Juncus articulatus 0.0.1 - Lycopus europaeus 0.0.1 -		Gomphidae sp.		×	1
Plants Cyperus longus Co 01-1 - Epilobium hirsutum Ico 01-1 - Equisetum ramosissimum Ico 01-1 - Galium palustre Ico 01-1 - Hypericum undulatum Ico <0.1	Crayfish	Procambarus clarkii	LC	20	×
Epilobium hirsutum Co 01-1 - Equisetum ramosissimum Co 01-1 - Galium palustre Co 01-1 - Hypericum undulatum co - - Juncus articulatus Co 01-1 - Juncus effusus co 01-1 - Lycopus europaeus Co 01-1 -		Cyperus longus	LC	01-1	-
Galium palustre 01-1 - Hypericum undulatum 01-1 - Juncus articulatus 01-1 - Juncus effusus 01-1 - Lycopus europaeus 01-1 -		Epilobium hirsutum	LC	01-1	-
Hypericum undulatum Lec <0.1 - Juncus articulatus Lec 01-1 - Juncus effusus Co <0.1		Equisetum ramosissimum	LC	01-1	-
Juncus articulatusue01-1-Juncus effususco<0.1		Galium palustre	LC	01-1	-
Juncus effususco<0.1-Lycopus europaeusco01-1-		Hypericum undulatum	LC	<0.1	-
Lycopus europaeus 01-1 -		Juncus articulatus	LC	01-1	-
		Juncus effusus	LC	<0.1	-
Mentha pulegium CC <0.1 -		Lycopus europaeus	LC	01-1	-
		Mentha pulegium	LC	<0.1	-

RÍO YELTES	(cont.)		D0038	D0576	IUCN
	Mentha suaveolens	LC	<0.1	-	
	Persicaria salicifolia	LC	01-1	-	
	Scirpoides holoschoenus	LC	<0.1	-	
	Typha angustifolia	LC	<0.1	-	
	Veronica catenata	LC	<0.1	-	
	Filago lutescens	NE	<0.1	-	
	Hypericum undulatum	NE	<0.1	-	
	<i>Salix</i> sp.		30	-	
RÍO ADAJA			IUCN12	IUCN13	
Fish	Cobitis paludica		-	181	
	Achondrostoma arcasii		-	119	
	Squalius carolitertii	LC	-	19	
	Gobio lozanoi	LC	-	17	
Gastropods	Lymnaea peregra	LC	-	2	
RÍO ADAJA			IUCN16	IUCN17	
Fish	Cobitis calderoni	EN	×	×	
	Achondrostoma arcasii		131	198	
	Pseudochondrostoma duriense		2	9	
	Luciobarbus bocagei	LC	11	42	
	Squalius carolitertii	LC	3	2	
	Gobio lozanoi	LC	136	162	
Bivalves	Corbicula fluminea	LC	44	×	

Source: data compiled by the authors with categories from <u>IUCN Red List</u>.

ANNEX C

Habitat parameters measured per sampling site in the different (potential) KBA sites. (- Not sampled).

SITE	River Habitat Survey (RHS)		Macroinvertebrates		Physical-Chemical			
	Habitat Quality Assessment (HQA)	Habitat Modifica- tion Score (HMS)	Biotic Index (IBMWP)	% of Individuals - EPT	Dissolved Oxygen (mg/L)	рН	Conductivity (µS)	Temperature (°C
KBA. BABIA -	SOMIEDO							
D515	33	460	145	89.81	10.58	7.81	65	8.7
D517	38	990	103	88.54	13.32	8.19	204	10.8
D518	55	530	127	79.63	9.04	7.83	239	9.9
D585	41	940	97	25.25	10.06	8.02	173	12.2
D590	48	190	134	82.99	10.48	7.8	62	10.2
KBA. FUENTE	SCARRIONAS							
D0524b	41	100	151	54	12.5	7.59	48	11.2
D0553	50	260	104	25.16	13.04	8.08	256	11.8
D2018	38	560	147	89.61	12.7	7.77	128	13.2
KBA. SIERRA	DE GREDOS Y CAND	ELARIO						
IUCN10	65	100	156	33.11	7.89	6.34	17.5	12.6
IUCN11	72	1280	199	50.11	7.21	6.49	22.8	13.5
KBA. SIERRA	S DE PEÑA LABRA Y	DEL CORDEL						
D0569	54	610	141	57.68	7.68	7.57	140.2	12.2
D0570	62	1890	62	17.61	10.58	7.81	65	8.7
D0597	49	1130	106	11.08	7.30	7.51	220.1	13.5
KBA. SIERRA	S DE URBIÓN, CEBOI	LLERA Y NEILA						
D0543	55	0	93	23.35	6.38	-	47	16.6
IUCN9	43	270	86	16.01	6.86	-	86.9	14.3
KBA. CAÑÓN	DEL RÍO LOBOS							
IUCN5	53	100	108	28.82	7.48	-	434	11.8
IUCN6	-	-	-	-	-	-	-	-

SITE	River Habitat Survey (RHS)		Macroinvertebrates		Physical-Chemical			
	Habitat Quality Assessment (HQA)	Habitat Modifica- tion Score (HMS)	Biotic Index (IBMWP)	% of Individuals - EPT	Dissolved Oxygen (mg/L)	рН	Conductivity (µS)	Temperature (°C)
KBA. SERRAS I	DE MONTESINHO E	NOGUEIRA						
D0019	59	135	154	64.92	6.83	6.25	57.6	18.9
D0097	59	465	197	41.23	6.84	6.4	48.2	19.6
D0098	60	100	203	62.75	7.05	6.44	38	20.5
IUCN1	-	-	117	59.26	-	-	-	-
IUCN2	-	-	233	23.03	-	-	-	-
IUCN3	-	-	126	54.67	-	-	-	-
IUCN4	-	-	126	81.56	-	-	-	-
MON1	-	-	-	-	-	-	-	-
MON2	-	-	-	-	-	-	-	-
KBA. SIERRA D	E LA CABRERA							
D0502	41	360	147	48.03	9.92	7.4	14	11.4
D0587	39	10	149	31.08	9.89	7.41	15	12.9
SAN001	-	-	-	-	-	-	-	-
KBA. EL REBOL	LLAR							
Dou218	73	1580	187	35.73	8.59	-	18.9	12.6
Dou221	84	420	235	56.2	8.46	-	16.6	17.9
REB001	-	-	-	-	-	-	-	-
KBA. MALCATA	1							
D0038	60	2200	159	45.53	-	6.63	48.9	27.6
D0576	63	1130	263	48.55	-	5.50	17.5	16.5
IUCN7	-	-	114	45.83	-	-	-	-
RÍO CORNEJA								
IUCN8	65	340	110	48.61	7.14	6.78	83.9	14.3
D0564	67	1330	40	47.3	7.35	7.20	108	13.4
RÍO YELTES								
D0508	78	710	121	85.04	8.23	5.95	71.7	24.5
D0513	81	1400	140	56.12	7.67	-	25.5	20.9
RÍO ADAJA								
IUCN12	-	-	-	_	-	_	_	-
IUCN13	33	460	21	0	13.29	-	530	17.1
		055			0.15			
IUCN16	54	250	23	3.38	9.10	-	466	17.6
IUCN17	57	370	64	30.86	10.32	-	432	16.4

Source: data compiled by the authors.

INTERNATIONAL UNION FOR CONSERVATION OF NATURE

Centre for Mediterranean Cooperation of IUCN Calle Marie Curie 22 29590, Campanillas Málaga, Spain mail@iucn.org Tel +41 22 999 0000 Fax +41 22 999 0002

www.iucn.org/mediterranean www.iucn.org/resources/publications

Core support for the IUCN Centre for Mediterranean Cooperation is provided by:

