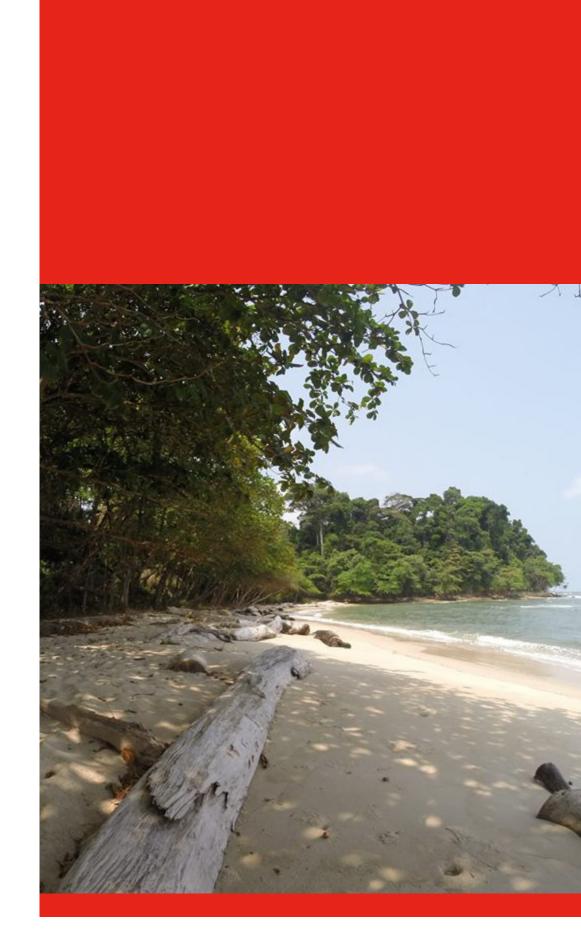


RED LIST OF MARINE BONY FISHES OF THE EASTERN CENTRAL ATLANTIC


Beth Polidoro, Gina Ralph, Kyle Strongin, Michael Harvey, Kent Carpenter, Titus Ayo Adeofe, Rachel Arnold, Paul Bannerman, Jean Noel Bibang Bi Nguema, Jack Buchanan, Khairdine Mohamed Abdallahi Camara, Youssouf Hawa Camara, Kadiatou Cissoko, Bruce B. Collette, Mia T. Comeros-Raynal, Godefroy De Bruyne, Madeleine Diouf, Roger Djiman, Mathieu Ducrocq, Ofer Gon, Antony S. Harold, Heather Harwell, Craig Hilton-Taylor, Andrew Hines, P. Alexander Hulley, Tomio Iwamoto, Steen Knudsen, Jean De Dieu Lewembe, Christi Linardich, Ken Lindeman, Ebou Mass Mbye, Jean Egard Mikolo, Vanda Monteiro, Jean Bernard Mougoussi, Thomas Munroe, Jean Hervé Mve Beh, Francis K. E. Nunoo, Caroline Pollock, Stuart Poss, Richmond Quartey, Barry Russell, Alphonse Sagna, Catherine Sayer, Aboubacar Sidibe, William Smith-Vaniz, Emilie Stump, Mor Sylla, Luis Tito De Morais, Jean-Christophe Vié and Akanbi Williams

The IUCN Red List of Threatened Species ™

THE IUCN RED LIST OF THREATENED SPECIES[™]

IUCN Rue Mauverney 26 CH 1196 Gland Switzerland Tel: +41 22 999 0000 Fax: + 41 22 999 0015 www.iucn.org/redlist www.iucnredlist.org

RED LIST OF MARINE BONY FISHES OF THE EASTERN CENTRAL ATLANTIC

Beth Polidoro, Gina Ralph, Kyle Strongin, Michael Harvey, Kent Carpenter, Titus Ayo Adeofe, Rachel Arnold, Paul Bannerman, Jean Noel Bibang Bi Nguema, Jack Buchanan, Khairdine Mohamed Abdallahi Camara, Youssouf Hawa Camara, Kadiatou Cissoko, Bruce B. Collette, Mia T. Comeros-Raynal, Godefroy De Bruyne, Madeleine Diouf, Roger Djiman, Mathieu Ducrocq, Ofer Gon, Antony S. Harold, Heather Harwell, Craig Hilton-Taylor, Andrew Hines, P. Alexander Hulley, Tomio Iwamoto, Steen Knudsen, Jean De Dieu Lewembe, Christi Linardich, Ken Lindeman, Ebou Mass Mbye, Jean Egard Mikolo, Vanda Monteiro, Jean Bernard Mougoussi, Thomas Munroe, Jean Hervé Mve Beh, Francis K. E. Nunoo, Caroline Pollock, Stuart Poss, Richmond Quartey, Barry Russell, Alphonse Sagna, Catherine Sayer, Aboubacar Sidibe, William Smith-Vaniz, Emilie Stump, Mor Sylla, Luis Tito De Morais, Jean-Christophe Vié and Akanbi Williams

Published and prepared by IUCN (International Union for Conservation of Nature)

The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organisations concerning the legal status of any country, territory or area, or of its authorities, or concerning the delimination of its frontiers or boundaries.

The views expressed in this publication do not necessarily reflect those of the IUCN or other participanting organisiations.

This publication has been made possible in part by funding from MAVA Fondation pour la Nature.

Published by:	IUCN, Gland, Switzerland	
Copyright:	© 2016 International Union for Conservation of Nature and Natural Resources	
	Reproduction of this publication for educational or other non-commerical purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged.	
	Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission from the copyright holder.	
Citation:	Beth Polidoro, Gina M. Ralph, Kyle Strongin, Michael Harvey, Kent E. Carpenter, Titus Ayo Adeofe, Rachel Arnold, Paul Bannerman, Jean Noel Bibang Bi Nguema, Jack R. Buchanan, Khairdine Mohamed Abdallahi Camara, Youssouf Hawa Camara, Kadiatou Cissoko, Bruce B. Collette, Mia T. Comeros-Raynal, Godefroy De Bruyne, Madeleine Diouf, Roger Djiman, Mathieu Ducrocq, Ofer Gon, Antony S. Harold, Heather Harwell, Craig Hilton-Taylor, Andrew Hines, P. Alexander Hulley, Tomio Iwamoto, Steen Knudsen, Jean De Dieu Lewembe, Christi Linardich, Ken Lindeman, Ebou Mass Mbye, Jean Egard Mikolo, Vanda Monteiro, Jean Bernard Mougoussi, Thomas Munroe, Jean Hervé Mve Beh, Francis K. E. Nunoo, Caroline Pollock, Stuart Poss, Richmond Quartey, Barry Russell, Alphonse Sagna, Catherine Sayer, Aboubacar Sidibe, William Smith-Vaniz, Emilie Stump, Mor Sylla, Luis Tito De Morais, Jean-Christophe Vié and Akanbi Williams (2016). <i>Red List of Marine Bony Fishes of the Eastern Central Atlantic</i> . Gland, Switzerland: IUCN. viii + 80 pp.	
ISBN:	978-2-8317-1795-1	
DOI:	http://dx.doi.org/10.2305/IUCN.CH.2016.04.en	
Cover photo:	© B. Polidoro. Front: Fishing village in Dakar, Senegal. Back: Gabonese Beach.	
All photographs used in this publication remain the property of the original convright holder (see individent contions for details)		

All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder.

Layout by: Emilie Stump and Gina Ralph

Printed by: Colley Avenue Copies & Graphics, Inc.

Available from: www.iucn.org/resources/publications

More information on the IUCN Red List is available on the Internet (www.iucnredlist.org).

The text of this book is printed on paper made from wood fibre from well-managed forests certified in accordance with the rules of the Forest Stewardship Council (FSC).

Table of contents

Acknowledgements				
Exe	ecutive	Summary	vii	
1.	Back	ground	1	
	1.1	The Eastern Central Atlantic	1	
	1.2	Diversity and Endemism	3	
	1.3	Importance of Marine Fishes	3	
	1.4	Assessment of Species Extinction Risk	7	
	1.5	Objectives of the Assessment	9	
2.	Asses	ssment Methodology	10	
	2.1	Geographic Scope	10	
	2.2	Taxonomic Scope	10	
	2.3	Regional IUCN Red List Assessment Workshops	11	
	2.4	IUCN Red List Assessment Protocol	12	
	2.5	Methodology for Spatial Analyses	12	
3.	Resu	lts	13	
	3.1	Threat Status	13	
	3.2	Status by Taxonomic Group	16	
	3.3	Spatial Distribution of Species	22	
	3.4	Major Threats to Marine Fishes in the ECA		
	3.5	Population Trends		
	3.6	Gaps in Knowledge		
4.	Cons	ervation Measures	31	
	4.1	Conservation of Marine Fish		
	4.2	Marine Protected Areas	36	
	4.3	IUCN Red List versus Priority for Conservation Action		
5.	Reco	mmendations	40	
	5.1	Recommendations for Management and Policy	40	
	5.2	Recommendations for Marine Protected Areas and Conservation Action	40	
	5.3	Recommendations for Research and Training	41	
	5.4	The Future: IUCN Red List Assessments and Key Biodiversity Areas	42	
Ref	erence	S	43	
Ap	pendix	1	49	
Ap	pendix	2	78	

Acknowledgements

This project was funded primarily by the MAVA Foundation. In particular, we would like to thank Thierry Renaud (MAVA) for his support of this project and Roger McManus and Jean-Christophe Vié for their undying encouragement of the Global Marine Species Assessment. The preliminary results were presented at the Forum of the Regional Marine and Coastal Conservation Programme for West Africa (PRCM) in 2013 by Mathieu Ducrocq (IUCN) and in 2015 by Idriss Deffry (IUCN).

We thank the following organizations for logistical support during the three workshops: IUCN Regional Marine and Coastal Programme for Central and West Africa (IUCN MACO), IUCN Senegal Programme Office, the Centre de Recherches Océanographiques Dakar (CRODT), IUCN Programme for West and Central Africa (IUCN PACO), IUCN Ghana Project Office, the Department of Marine & Fisheries

E. Abdulgader R. Abesamis A. Acero T. Bousso A. Adams P. Afonso J. Brenner S. Alam G. Allen J. Brown H. Alnazry D. Buddo A. Amorim C. Buxton W. Anderson K. Antony Aiken R. Arnold P. Auster T. Avo Adeofe A. Azeroual S. Chang A.B. Williams N.L. Chao P. Bannermann A. Chenery M. Bariche W. Chiang F. Barthelat H. Choat S. Bartnik K. Cissoko A. Beresford T.A. Clarke A.A. Bertoncini B. Collen R. Betancur M. Bilecenoglu J. Bishop R. Cook

C. Bizsel J. Bouchereau A. Boustany M. Brick Peres T. Camarena-Luhrs K. Can Bizsel C. Canales Ramirez G. Cardenas K. Carpenter B.B. Collette M. C.Biscoito

Science of the University of Ghana, the Ghana Marine Fisheries Research Division of the Fisheries Commission, Agence Nationale du Parcs Nationaux (ANPN), Gabon Bleu and the Direction General de la Peches et d' l'Agriculture (DGPA). We also thank the following for their support during these workshops: Alain Nkoghe Nze (ANPN), Andrew Rodrigues (IUCN), Massal Fall (CRODT), Michael Vakily (Sub-Regional Fisheries Commission), Pablo Chavance (IUCN), and Philippe Tous (Sub-Regional Fisheries Commission).

About 1,000 species were assessed during the three West African workshops, while about 300 species were assessed during previous taxonomic and regional initiatives. This project could not have been completed without the experts who assessed these species, including:

B. Ferreira C.E. Ferreira A. Florin W. Fox R. Francini-Filho P. Francour K. David Clements T. Fraser F. Fredou N. deOliveira Leite Jr. J. Freyhof R. Fricke R. Fritzsche L. Gil de Sola J. Gil Herrera G. Gilmore A. G. Guzman-Mora M. Entsua-Mensah D. Golani M. Erdi Lazuardi O. Gon M. González Castro M. E. Vega-Cendejas J.D.M. Gordon M. Goren J. Graves K. Guindon G. Hardy M. Harmelin-Vivien A. Ferreira Amorim A. Harold

K. Hartel S. Hartmann K. Hassan-Al-Khalf Y. Hawa Camara F. Hazin P.C. Heemstra D. Herdson J. Herler M. Hichem Kara M. Hinton F. Hissa Viera Hazin W. Holleman A. Horodysky J. Howard Choat P. Hulley G. Huntsman T. Iwamoto Y. Iwatsuki R. Jardim Albieri A. Jassim Kawari L. Jing M. Jose Costa M. Jose Juan Jorda O. Kada M.H. Kara

A. Cornish

M. Craig

M. Curtis

A. Cuttelod

C. Czembor

L. da Costa

G. de Bruyne

A. Di Natale

R. Djiman

J. Dooley

A. Edwards

W. Eschmeyer

P. Eurico Pires

F. Travassos

C.V. Feitosa

S. Fennessy

P. Fernandes

K. Dine Camara

D. Die

E. Karmovskaya	S. Marques	J. Nelson	R. Quartey	D. Smith
F. Kaymaram	E. Mass Mbye	R. Nelson	J. Quignard	W. Smith-Vaniz
Ç. Keskin	E. Massuti	J. Nielsen	P. Rahardjo	W.C. Starnes
R. Kishore	E. Masuti	N. Noemi Fadré	G. Ralph	D. Stein
S. Kobyliansky	K. Matsuura	A. Nouar	M. Ram	B. Stockwell
M. Kottelat	R. McBride	F.K. Nunoo	V. Restrepo	C. Sun
M. Kovacic	J.E. McCosker	B.D. Olaosebikan	N. Richman	M. Sylla
P. Lalèyè	J. McEachran	H. Oxenford	A. Rijnsdorp	C. Thierry
H. Larson	J. McIlwain	B. Padovani Ferreira	C. Roberts	K. Tighe
J. Leis	E. Mendonca	J. Paes Vieira	R. Robertson	L. Tito de Morais
N. Leite	G. Milagrosa	A. Palmeri	R. Robins	L. Tornabene
R. Lessa	Bustamante	C. Papaconstantinou	E. Robinson	P. Tous Travasso
K. Lindeman	C. Minte Vera	S. Pardede	L. Rocha	J. Tyler
M. Liu	N. Miyabe	R. P. Teixeira Lessa	B. Russell	F. Uiblein
S. Livingstone	T. Moelants	J.R. Paxton	Y. Sadovy	Y. Uozumi
P. Lorance	R. Montano Cruz	P. Pearce-Kelly	C. Safina	J. Van Tassell
F. Lucena Fredou	V. Montiero	F. Pezold	A. Sagna	L. Villwock de
J. Luiz Nascimento	J. Moore	F. Pina Amargos	E. Salas	Miranda
T. MacDonald	S.K. Morgan	A. Pires Marceniuk	M. Samoilys	A. Vincent
B. Mann	H. Motomura	A. Polanco Fernandez	C. Sampaio	R. Ward
F. Marcante	R. Moura	B. Polidoro	K. Schaefer	S. W. Knudsen
Santana da Silva	A. Muljadi	D. Pollard	J. Schratwieser	I. Williams
L.M. Grijalba	T.A. Munroe	R. Pollom	R. Serra	J. Williams
Bendeck	E. Murdy	S. Poss	K. Shao	L. Woodall
J. Marechal	R. Myers	I.G. Priede	J. Shenker	E. Yanez
A.M. Torres	C. Nanola	A. Punt	A. Sidibé	B. Yokes
Rodrigues	K. Nedreaas	R. Pyle	S. Singh-Renton	G. Zapfe

In addition, the scientists who contributed to the updated chapters on marine bony fishes in the forthcoming Food and Agriculture Organization Living Marine Resources of the Eastern Central Atlantic were an essential source of data and information for these assessments and distribution maps, including: A. Acero-P., M.E. Anderon, W.D. Anderson, N. Bailly, R. Bentacur-R., M.G. Bradbury, J.C. Briggs, A. Brito, R. Britz, K.E. Carpenter, J.H. Caruso, B. Chanet, N.L. Chao, D.M. Cohen, B.B. Collette, M. Desoutter-M., J.K. Dooley, A. Edwards, C.J. Ferraris Jr., R. Fricke, R. Fritzsche, D. Golani, O. Gon, D.W. Greenfield, R.L. Haedrich, A.S. Harold, I.J. Harrison, K.E. Hartel, P.C. Heemstra, P.A. Hulley, W. Ivantsoff, T. Iwamoto, Y. Iwatsuki, G.D. Johnson, R.K. Johnson, C.P. Kenaley, L.W. Knapp, J.M. Leis, D. Lloris, J. Matallanas, K. Matsuura, J.E. McCoskre, J.D. McEachran, R.J. McKay, G.C. Miller, P.J. Miller, J.A. Moore, H. Motomura, T.A. Munroe,

E.O. Murdy, T. Nakabo, I. Nakamura, J.S. Nelson, J.G. Nielsen, J.E. Olney, T.M. Orrell, N.V. Parin, J.R. Paxton, T.W. Pietsch, S.G. Poss, W.J. Richards, C.D. Roberts, T.R. Roberts, L.A. Rocha, B.C. Russell, K. Sakai, I.B. Shakhovskoy, D.G. Smith, W.L. Smith, W.F. Smith-Vaniz, V.G. Springer, W.C. Starnes, D. Stein, D.E. Stevenson, M. Sylla, C.E. Thacker, B.A. Thompson, T. Trnski, M.W. Westneat, J.T. Williams and N. Yagishita. We gratefully acknowledge the editorial support provided by M. Kautenberger-Longo, E. D'Antoni, N. De Angelis, E. Biesak and B. Polidoro, without whom the guide would not exist.

Finally, we thank the many individuals involved in the data collection, initial map generation and postworkshop clean-up, including A. Bubnash, B. Corley, A. Goodpaster, C. Gorman, N. Muniz, B. Pogue, C. Radtke, A. Santa Cruz, D. Slater, S. Smith, S. Soto, C. Twiford and S. Weller.

Executive Summary

The Red List of Marine Bony Fishes of the Eastern Central Atlantic (ECA) is a review of the conservation status of all native marine bony fishes in ECA according to the global Categories and Criteria of the IUCN Red List of Threatened Species. It identifies those species that are threatened with extinction at the global level and occur within the ECA region. This comprehensive assessment, which is the first of its kind in the ECA, aims to provide improved knowledge of species presence and extinction risk status for the purposes of guiding conservation actions and improved policies for these species both globally and regionally.

Scope

All currently described marine bony fishes native to the Eastern Central Atlantic (a total of 1,288 species), have been assessed in this Red List. The geographic scope encompasses all marine areas extending from Mauritania to Angola, including the offshore islands of Cape Verde, Saint Helena and Ascension, and Bioko, São Tomé and Príncipe and Annobón in the Gulf of Guinea. Of the 1,288 species assessed, approximately 18% (231 species) are considered endemic to the Eastern Central Atlantic region.

Status assessment

All species were assessed using the IUCN Red List Categories and Criteria, which is the most widely accepted system for measuring extinction risk. Species data were compiled based on data and knowledge from a network of leading regional and international experts on marine fishes. Species assessments were primarily completed and reviewed at three large workshops held in Dakar, Senegal; Accra, Ghana; and Libreville, Gabon; as well as through email correspondence with relevant experts. More than 65 experts participated in the assessment workshops in the region, and more than 250 experts overall contributed data, expertise, and time to the review process for these fishes. All species global assessments and final results were made available on the IUCN Red List of Threatened Species in November 2015.

Results

Approximately 3% (37 species) of the 1,288 marine bony fishes present in the Eastern Central Atlantic are classified in threatened categories (i.e. Critically Endangered, Endangered or Vulnerable). A further 1.1 % (14 species) are considered Near Threatened. However, for 13% (164 species) there were insufficient data available to evaluate risk of extinction and thus these species were classified as Data Deficient. When more data become available, some of these species may qualify for a threatened category. The major threats to marine bony fish species in the ECA are overfishing, habitat degradation, pollution, climate change, and invasive and problematic species.

Current population trends for the vast majority of species in the ECA are largely unknown, especially as many of the marine fishes present are deep-sea species that are only known from a few specimens or have unresolved taxonomic questions. The majority of species with known population declines are species that are directly targeted by fisheries, or have been indirectly affected as by-catch.

In the ECA, the diversity of marine bony fishes is highest around the Cape Verde Islands and off the coast of Senegal, with a maximum of 757 species of marine fish per 100 km². The diversity of fishes in oceanic waters is substantially lower than that of coastal waters, except for the area surrounding St. Helena and Ascension. The top 10% of endemic species diversity (116-128 species per 100 km²) occurs from Sierra Leone to Gabon, including Bioko (Equatorial Guinea) in the Gulf of Guinea.

Recommendations

Although a number of local, national and regional conservation measures and management bodies exist, this comprehensive Red List assessment of all marine fishes in the ECA has reinforced several recommendations to improve marine resource management and conservation.

- In many countries, limited surveillance and enforcement capacity leads to illegal fishing and overfishing, which imperils national and regional management efforts. Perhaps the greatest need in the region is to strengthen governance, including increased capacity, training and resources, in order to improve management and reduce illegal and unregulated fishing activities.
- Research capacity to conduct stock assessments or assess population trends in much of the region is limited. There is a great need to increase capacity, training and resources for local and national fisheries management agencies to better quantify the impacts of local, national and regional fishery efforts on targeted and non-targeted species.
- Of particular importance is the need to train more key scientists and middle level practitioners on taxonomic identification techniques, and to disaggregate fisheries data reported by family or genus. In many cases, fishes being recorded in landings, fish markets, academic surveys and other instances are incorrectly identified, compounding the difficulties of understanding species distributions and population trends.
- Although a number of marine and coastal protected areas have been established in the region to limit overharvesting of coastal resources and ensure their sustainable utilization, many are in need of increased capacity, funding, infrastructure and governance for effective enforcement and conservation.

- Many nations are still lacking in adequate marine or coastal protected areas. In addition to the creation of more marine and coastal protected areas, there is a need to identify, and include within protected areas, critical habitats and spawning sites.
- As in many regions around the world with a large number of governments, ethnic groups and languages, and management goals, there is a need for improved transboundary collaboration on shared fish stocks, regional data management and the creation of marine protected area networks.
- With increased capacity, training and resources, there is a need to improve collection of fisheriesdependent data of commercial fisheries, in particular data on catch composition, by-catch, landings, discards, and catch per unit effort, and to establish monitoring schemes for the vast number of small scale artisanal fisheries.
- Increased resources need to be directed to increase fisheries-independent data collection and monitoring throughout the region, and to ensure that data are made available to all countries and regional scientific bodies and Regional Fisheries Management Organizations (e.g., ICCAT, FAO, etc.).
- With the completion of this first comprehensive Red List of marine fishes in the ECA, an essential next step is to identify marine Key Biodiversity Areas (KBAs) to more effectively prioritize local conservation action towards the mitigation, regulation, or cessation of threats impacting marine species.

1.Background

1.1 The Eastern Central Atlantic

Central Atlantic (ECA). The Eastern also known as the Eastern Tropical Atlantic, can be biogeographically defined as the marine zone from Mauritania to Angola, including the offshore islands of Ascension, Cape Verde and Saint Helena, and Bioko, São Tomé and Príncipe and Annobón in the Gulf of Guinea (Spalding et al. 2007; Figure 1). The West African coast can be divided into 3 coastal segments: the semi-arid coast from Morocco to Senegal, which is characterized by the cool Canary Current; the humid tropical coast from Cape Verde to the Congo River, which is dominated by the Guinea Current; and the sub-humid coast south to Angola, which is influenced by the cooler Benguela Current and coastal upwelling (Schwartz 2006). Although variable across the region, the continental shelf is generally narrow, extending 15-90 km offshore, and breaking at depths of approximately 100-120 m. It is the smallest tropical shelf area of the 4 tropical regions of the world (Briggs 1974).

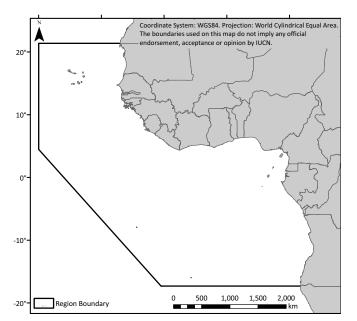


Figure 1: Limits of the Eastern Central Atlanitc as defined for this project (following Spalding et al. 2007).

The dominant coastal features in the ECA are the Gulf of Guinea and the influence of the Guinea Current. There are no coral reefs in this region, although some limited coral communities exist in the southern Gulf of Guinea, mixed with rocky reef (Spalding et al. 2001). Mangroves, coastal lagoons and large estuarine areas from the drainage of major rivers, including the Niger, Volta, Gambia and Congo, all serve as important reservoirs for biological diversity (Ajao et al. 2009). Mangrove forests and swamps are the most biologically significant coastal ecosystems in the Gulf of Guinea region and collectively represent 15% of the world's mangrove area (Schwartz 2006). The mangrove regions of the ECA provide critical breeding grounds for many fish and shrimp species, and essential habitats for a variety of other coastal species, including mammals, reptiles and birds. Seven species of mangrove are native to the ECA, though most of the mangrove forests are dominated primarily by stands of Rhizophora racemosa (Polidoro et al. 2010).

The most important mangrove stands are the Niger Delta communities in Nigeria and Yawri Bay in Sierra Leone (FAO 2007). Mangrove stands of the Niger Delta are considered to be the largest in Africa, and the third largest in the world (Ukwe et al. 2001).

Mangrove stand in Libreville, Gabon. © B. Polidoro.

About 40% of the region's human populations live in coastal areas and are dependent on the lagoons, estuaries, creeks and inshore waters for their sustenance and socio-economic well-being (GCLME 2008). Although poorly developed, rivers and lagoons are important waterways for the transportation of goods and people. Presently, local fish and shellfish constitute a major source of animal protein in coastal communities. Despite the rich endowment in natural resources and recent improvements in economic growth, the majority of the population lives in conditions of widespread poverty due to huge imbalances in the production and distribution of goods and services and socio-political issues, among other concerns (GCLME 2008).

The status of marine fishes, especially coastal and pelagic fishes, is of great concern in the ECA due to overharvesting of marine resources (unsustainable gathering, fishing and hunting); conversion of mangrove swamps (rice, shrimp, fish culture and salt production); oil exploration, drilling and production; coastal erosion and habitat degradation; urban and tourism development; pollution; sedimentation and

Local fishing vessels in Accra, Ghana. © B. Polidoro

siltation; changes to the hydrological cycle; potential impending changes due to sea-level rise; and inadequate policy responses, legislation and enforcement. Destructive fishing practices include intensive inshore and offshore trawling with associated consequences of unwanted bycatch, the use of explosives and chemicals in inshore areas, and the use of small-sized beach and purse seine nets in offshore regions (GCLME 2008) and in juvenile nursery habitats.

Species diversity and fish size for many important commercial species have markedly declined over the past few decades, and several reviews report that many artisanal and commercial fish stocks are now considered to be overexploited (Ajayi 1994, FAO 2000, Mensah and Quaatey 2002, Srinivasan et al. 2012). With the human population in this region expected to double in the next 20-25 years, this first assessment of all marine bony fishes in the ECA aims to provide comprehensive information about species inhabiting this region that will transform the current capacity to identify and enact marine conservation priorities.

1.2 Diversity and Endemism

The 1,288 marine fishes present in this complete assessment of all known bony fishes found in the ECA collectively represent a wide diversity of deep-water, pelagic and near-shore species in 32 orders and more than 200 families (Table 1). This list is currently the most up-to-date, complete taxonomic list of all marine bony fishes in the ECA biogeographic region.

Until now, the most authoritative sources for complete lists of all marine fishes included the *Check-list of the Fishes of the Eastern Tropical Atlantic* (Quéro et al. 1990) and *A Revision of Irvine's Marine Fishes of Tropical West Africa* (Edwards et al. 2001), both of which were, in part, based on the currently out-of-date version of the Food and Agriculture Organization of the United Nation (FAO) Living Marine Resources *of the Eastern Central Atlantic* (Fischer et al. 1981).

The complete list of marine bony fishes presented here is based on the soon to be published and significantly updated version of the FAO Living Marine Resources of the Eastern Central Atlantic (Carpenter and De Angelis 2014, Carpenter and De Angelis in press). However, there are some differences in the definitions of the region that impact the species included in this report. The FAO Fishing Areas 34 and 47 are defined by latitude, and include the eastern Atlantic Ocean from the Strait of Gibraltar to the eastern coast of South Africa. The FAO Living Marine Resources of the Eastern Central Atlantic defined the ECA as the eastern portion of FAO fishing area 34 and the northern part of fishing area 47. We took a more restrictive, biogeographic definition for this project (Spalding et al. 2007; Figure 2).

Many species present in the ECA have geographic ranges that extend across the Atlantic to the Caribbean Sea (e.g., Joyeux et al. 2001, Floeter et al. 2008), spill northward into Moroccan waters and into the Mediterranean Sea, or extend southward into waters of northern Namibia. A large proportion of the deepwater species included in the assessment have ranges that are thought to be circumglobal, based

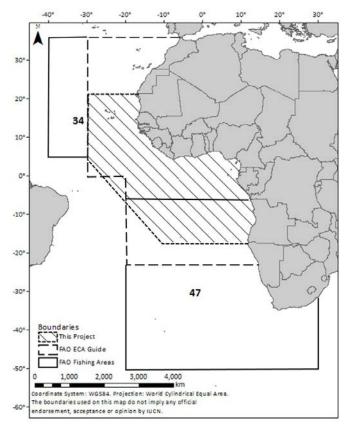


Figure 2: Boundaries of the various political and biogeographic definitions of the Eastern Central Atlantic. The two FAO fishing areas included within the definitions of the ECA are 34 - Eastern Central Atlantic and 47 - Southeast Atlantic.

on currently known taxonomy and relatively few records. For these reasons, endemism in the ECA is relatively low, with less than 20% of all marine bony fishes considered endemic to this biogeographic region.

1.3 Importance of Marine Fishes

Marine resources form the foundation for food security and coastal livelihoods for the nearly 400 million people that inhabit western and central African countries with a marine coastline. The ECA supports some of the most productive fisheries in the world, and industrialized, artisanal and subsistence fisheries are critical to food security, household income and national economies. Unfortunately, marine resources are under immense pressures from various threats, including: overfishing, destructive fishing practices, pollution, coastal and urban development and habitat modification. These threats are compounded by

	Number of	Number of	Number of	Percentage of
Order	families	species	endemic species	endemic species
Albuliformes	1	1	0	0.0%
Anguilliformes	13	100	29	29.0%
Ateleopodiformes	1	2	0	0.0%
Atheriniformes	1	3	1	33.3%
Aulopiformes	13	64	4	6.3%
Batrachoidiformes	1	4	1	25.0%
Beloniformes	4	28	1	3.6%
Beryciformes	5	14	1	7.1%
Cetomimiformes	3	10	0	0.0%
Clupeiformes	3	9	4	44.4%
Elopiformes	2	3	2	66.7%
Gadiformes	7	56	7	12.5%
Gobiesociformes	1	8	2	25.0%
Gonorynchiformes	1	1	0	0.0%
Lampriformes	6	9	0	0.0%
Lophiiformes	14	66	5	7.6%
Mugiliformes	1	10	5	50.0%
Myctophiformes	2	82	0	0.0%
Notacanthiformes	2	11	0	0.0%
Ophidiiformes	5	36	5	13.9%
Osmeriformes	7	68	0	0.0%
Perciformes	69	404	118	29.2%
Pleuronectiformes	6	51	19	37.3%
Polymixiiformes	1	1	0	0.0%
Saccopharyngiformes	4	7	2	28.6%
Scorpaeniformes	9	45	12	26.7%
Siluriformes	1	3	3	100.0%
Stephanoberyciformes	2	18	1	5.6%
Stomiiformes	4	130	5	3.8%
Syngnathiformes	4	11	3	27.3%
Tetraodontiformes	6	25	1	4.0%
Zeiformes	5	8	0	0.0%

Table 1: Richness of marine bony fish species present in the Eastern Central Atlantic, including the number of nominal species and families in each order, as well as the number and percentage of endemic species in each order.

the challenge of managing shared stocks across a culturally, politically and geographically diverse landscape.

In 2011, nearly 500,000 metric tonnes of seafood was exported from the 21 countries in the region, and these resources were valued at approximately US\$972 million (FAO 2016). Although the largest fishery production reported in 2005 occurred in Nigeria, followed by Senegal, Ghana and Mauritania (Neiland 2006), more recently Mauritania and Angola have surpassed Nigeria (FAO 2016). Throughout the region, the artisanal sector dominates fishing employment and the fishing industry in West Africa with 70% of the total fishery production estimated to come from small-scale artisanal fisheries (GCLME 2008, De Graaf and Garibaldi 2014). However, it is estimated that high levels of illegal and unreported fishing are providing little benefit to national economies, and fisheries are underperforming and overexploited due to poor governance and

Local fishing vessels in Accra, Ghana. © B. Polidoro

unregulated, open-access policies. For example, it is estimated that illegal catches represent more than 40% of the reported legal catch (Pauly and Zeller 2016) in many countries. In some countries, few local fishing companies are in operation, whereas a large number of local agents are engaged in joint ventures with foreign fleets, which results in few fish actually landed locally.

In the ECA, industrial fishing is conducted in the offshore waters of maritime countries. It often relies on non-African trawlers and fleets and has limited direct economic and employment benefit to West African countries. Typically, artisanal fishermen use traditional wooden boats, sometimes motorized, with a variety of gear types, including nets, lines and seines. Aquaculture is rudimentary in most of the region, although it has recently received higher levels of governmental and private support (Davies et al. 2014). Inland fisheries exist in many countries and frequently provide subsistence incomes.

Pagellus bellottii (Red Pandora) from a fish market in Accra, Ghana. © F.K.E. Nunoo

Throughout the region, women are responsible for artisanal processing and assuring transport of fish to urban areas and inland. Traditional processing methods include smoking, drying, and salting and curing. Industrial processing—including canning, filleting and peeling—exists in some countries. In many countries, inaccessibility of cold storage facilities inhibits the growth of a value-added industry.

At a regional scale, fishery management in the ECA is overseen by the FAO Fishery Commission for the Eastern Central Atlantic (CECAF). Composed of members from each of the nations in the region, this regional fishery body is responsible for all living marine resources within the area (which is defined by the FAO as extending from approximately the Straits of Gibraltar and northern Morocco to northern Angola). The CECAF committee produces reports on the status of exploited fish stocks in the region, including small pelagic and demersal fishes. The CECAF commission includes three sub-regional fisheries commissions, the Sub-Regional Fisheries Commission (SRFC) that covers Mauritania to Sierra Leone, including Cape Verde; the Fishery Committee of the West Central Gulf of Guinea (FCWC), which extends from Liberia to Nigeria; and the Regional Fisheries Committee for the Gulf of Guinea (COREP), which covers the area from Cameroon to northern Angola, including the island nation of São Tomé and Príncipe. The International Commission for the Conservation of Atlantic Tunas (ICCAT), a

regional fisheries organization, manages all species of Atlantic tunas and their relatives (https://www. iccat.int/en/); most, but not all, of the countries in the ECA as defined herein are contracting parties to ICCAT.

Other sources of regional marine biodiversity data include species catch data from fisheries-independent scientific surveys. The Danish Atlantide expedition (1945-1946) to tropical West Africa took 170 samples along the West African coast from the Canary Islands south to Angola (Bruun 1950). Another vital dataset is the Guinean Trawling Survey (1963-1964); during two phases, each with two French trawlers, eight transects off the West African coast were conducted at depths ranging from about 15-20 m to 400-600 m (Williams 1968). The species collected were identified, including potential commercial fishes, and some samples were preserved for future analyses. More recently, surveys have been conducted by the RV Dr. Fridtjof Nansen, in collaboration with the FAO and funded by the Norwegian Agency for Development Cooperation (NORAD). Since the early 1990s, the Nansen Programme has expanded on its original scope of undertaking national and regional marine biodiversity surveys to also include capacity building in fisheries research and management (institutional strengthening in partner countries), and organization of post-survey meetings to provide fisheries administrations with results of surveys. Other sources of marine species information in the region include national fisheries stock assessments and catch data, and independent academic surveys.

Key marine conservation and fisheries management programs in the region include the Programme Régional de Conservation de la Zone Côtière et Marine en Afrique de l'Ouest or PRCM, a joint initiative between IUCN, WWF, Wetlands International and the Fondation Internationale du Banc d'Arguin (FIBA, recently merged with MAVA Fondation pour la Nature), in partnership with the Sub-Regional Fisheries Commission (SRFC). The PRCM covers seven countries: Mauritania, Senegal, Gambia, Guinea Bissau, Guinea, Sierra Leone and Cape Verde. The goal of the PRCM is to coordinate the efforts of institutions and individuals to strengthen the conservation of the coastline in the coastal countries in the sub-region.

1.4 Assessment of Species Extinction Risk

The conservation status of plants, animals and fungi is one of the most widely used indicators for assessing the condition of ecosystems and their biodiversity. The IUCN Red List Categories and Criteria (IUCN 2001) are the most widely accepted system for classifying extinction risk at the species level (e.g., Butchart et al. 2005, de Grammont and Cuarón 2006, Rodrigues et al. 2006, Hoffmann et al. 2008). The IUCN Red List process consolidates the most current and highest quality data available, and ensures peerreviewed scientific consensus on the probability of extinction for each species (Regan et al. 2005). All species data and results of Red List assessments for the ECA were published on the IUCN Red List of Threatened Species in November 2015.

The IUCN Red List Categories (Figure 3) are based on a set of quantitative criteria linked to population trends, size and structure, and species' geographic ranges. The IUCN Red List Categories are nine different levels of extinction risk: Extinct (EX), Extinct in the Wild (EW), Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT), Least Concern (LC), Data Deficient (DD) and Not Evaluated (NE). A species qualifies for one of the three threatened categories (CR, EN, or VU) by meeting or exceeding the threshold for that category in one of the five different available criteria (A-E: Table 1). These different criteria are based on extinction risk theory (Mace et al. 2008) and

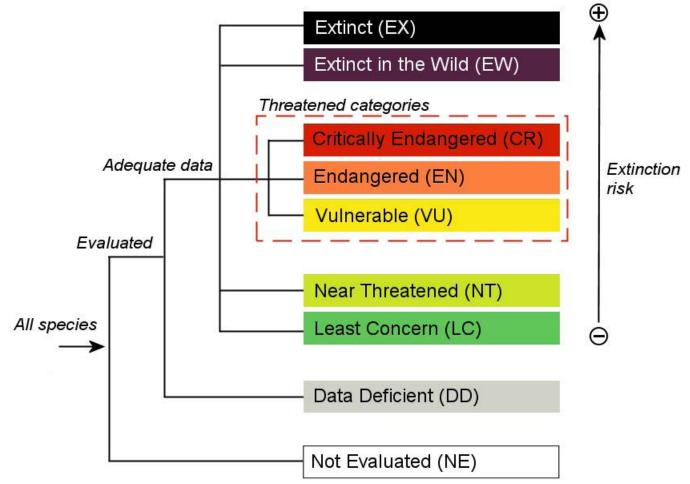


Figure 3: The nine IUCN Red List categories used to classify species based on symptoms of extinction risk (IUCN 2011).

form the real strength of the IUCN Red List as they provide a standardized methodology that is applied consistently to any species from any taxonomic group (e.g., Stuart et al. 2004, Butchart et al. 2004, Dulvy et al. 2005).

Table 2: Summary of the IUCN criteria for listing a species in a threatened category (Vulnerable, Endangered, or Critically Endangered).

Criterion	Description		
	The population has declined, is		
А	declining, or will decline over the past		
	three generations.		
	The range is small AND two of		
	the three sub-criteria related to (i)		
В	fragmentation, small number of threat-		
D	based locations, (ii) continuing declines		
	in range or mature individuals, and (iii)		
	extreme fluctuations.		
	The number of mature individuals		
C	is small and the population has		
C	experienced, is experiencing, or will		
	experience a continuing decline.		
D	The number of mature individuals is		
D	very small or the range is very small.		
	A quantitative population analysis		
E	indicates that the probability of		
	extinction in the wild is high.		

For the ECA Red List Assessment, the marine bony fishes in the ECA were assessed for extinction risk based on their entire global population and range, using the IUCN Red List Global Categories and Criteria. By contrast, many regional or national assessments assess only the status of the species in that region, using the IUCN Red List Regional Guidelines (IUCN 2012a), which include two additional categories: Regionally Extinct (RE) and Not Applicable (NA). Regional assessments also account for species population connectivity outside the region of interest to consider the impact of immigration on the regional population. As the extinction risk of a species can be assessed at global, regional or national levels, one species can have different Red List Categories in the global Red List than in the regional Red List.

For example, a species that is common worldwide and classed as Least Concern (LC) in the global Red List could face a high level of threat in a particular region and therefore be listed as Endangered (EN) in the regional Red List. Logically, an endemic species should have the same category at regional and global levels, as it is not present in any other part of the world.

The majority of marine fishes in the ECA that qualified for a threatened category were assessed under Criterion A, which measures the rate of decline over the longer time frame of three generation lengths or ten years. Generation length, defined as the average age of the current cohort of reproducing individuals, can be calculated in several different ways, depending on the data available (IUCN Guidelines 2014). For these analyses, fishes with stock assessments and age class data, including estimates of numbers of individuals and mortality rates in each age class, were used to determine generation length. For fishes without age class data, the average age of reproducing adults was calculated as the median age between age of first reproduction and historical maximum longevity. In some cases, calculation of generation length using both methods for the same species can yield different values, resulting in an overestimation or underestimation of generation length depending on the method chosen.

Mola mola (Ocean Sunfish) assessed as Vulnerable. © A. Hines

In these cases, decline was calculated over the range of generation lengths values, with the final Red List Category classification based on supporting data and information within the range of population decline under Criterion A.

Some marine fishes with relatively small range sizes qualified for a threatened category under Criterion B, which measures extinction risk based on a small geographic range size (extent of occurrence < 20,000 km^2 or area of occupancy < 2,000 km^2 to meet the lowest threshold for Vulnerable), combined with a small number of locations, and/or continued decline and habitat fragmentation. The majority of marine fishes assessed under Criterion B, for example, were island endemics with an area of occupancy estimated to be less than 2,000 km² due to very specific habitat requirements. Although not used to assess marine fishes in this study, Criterion C is applied to species with small population sizes estimated to be less than 10,000 mature individuals, Criterion D is applied to species with less than 1,000 mature individuals or those with an area of occupancy of less than 20 km², and Criterion E is applied to species with extensive population information that allows for population declines to be appropriately modelled over time. A category of Near Threatened was assigned to species that come close to, but do not fully meet, all of the thresholds or conditions required for a threatened category under Criterion A, B, C, D or E.

1.5 Objectives of the Assessment

The main objective of the ECA assessment was to assess the global population and conservation status of all marine bony fishes present in the ECA biogeographic region using the IUCN Red List Categories and Criteria. A number of other important objectives and goals were fulfilled, including:

1) development of a network of regional experts to enable species assessments to be continually updated as new information is discovered and to provide expert opinion on policy and management recommendations in the region;

2) support of regional marine and coastal planning initiatives and policy development in the ECA for the conservation and sustainable management of marine fishes by providing comprehensive reports to inform the current status of species and regions;

3) provisioning of a comprehensive marine fishes species database stored within the IUCN Species Survival Commission's (SSC) data management system, the Species Information Service (SIS), which contains information on distribution, population, habitat preference, major threats, conservation measures and key literature for each marine fish species assessed as a baseline dataset and in a format suitable for use by scientists, stakeholders and decision makers;

4) publication of this information on the IUCN Red List of Threatened Species, in a regional report, and in a peer-reviewed publication, to make the data and analyses widely available throughout the region;

and 5) provision of increased capacity, facilitation and improved species data to complete the much needed revision of the FAO *Living Marine Resources of the Eastern Central Atlantic*.

The main outputs presented in this report are: a comprehensive species list of all native marine bony fishes present in the ECA biogeographic region (not including the vagrant, introduced or diadromous species); an IUCN Red List categorization of each species; a summary of the main threats affecting the threatened fishes; and recommendations for regional conservation of marine fishes and their habitats.

The IUCN Global Species Programme's Marine Biodiversity Unit will facilitate wide dissemination of this document to concerned decision-makers, scientists and non-governmental organizations in order to mobilize marine fish conservation action at the local, national and regional levels.

2.Assessment Methodology

2.1 Geographic Scope

This ECA assessment includes all valid bony marine fishes with a current, known global distribution that overlaps the marine zone from Mauritania to Angola, including the offshore islands of Ascension, Cape Verde and Saint Helena, and Bioko, São Tomé and Príncipe and Annobón in the Gulf of Guinea. The updated version of the FAO Living Marine Resources of the Eastern Central Atlantic (Carpenter and De Angelis 2014, Carpenter and De Angelis in press) includes significantly more species than this assessment for several reasons. Firstly, the FAO Living Marine Resources of the Eastern Central Atlantic includes most of the FAO Fishing Area 34 and the northern part of Fishing Area 47 (see Figure 2) in the ECA, which is a political rather than biogeographic region. The guide therefore includes species that can be found in Morocco, many of which are primarily known from more temperate zones to the north (including the Mediterranean Sea), and those found in northern Namibia, many of which are primarily found in the southern temperate region around South Africa. Secondly, many deeper-water or poorly-known species reported in the FAO Living Marine Resources of the Eastern Central Atlantic are assumed to be circumglobal, but may not yet have published records in the biogeographic ECA region. For the latter group, if a species was reported in the FAO publication, but no reported occurences could be found as to allow a reasonable distribution map to be drawn that included the ECA biogeographic region, then that species was not included in this assessment.

2.2 Taxonomic Scope

The list of 1,288 marine fishes compiled for this assessment (see Appendix I) is currently the most updated, complete taxonomic list of marine teleost fishes in the ECA biogeographic region, excluding

vagrant, introduced or diadromous species. The taxonomy primarily follows Nelson (2006); however, the Argeniformes are here included within the Osmeriformes. In addition, recent molecular analyses suggest that the Girellinae should be elevated to a family within the Perciformes (Knudsen and Clements 2013), but it is here considered a subfamily of the Kyphosidae. The species-level taxonomy follows the Catalog of Fishes (Eschmeyer et al. 2016).

All described, valid bony marine fishes with a drawn distribution map that overlapped the biogeographic delineation of the ECA were included in this assessment. As a group, the 1,288 marine bony fishes in this region represent a wide diversity of deepwater, pelagic, dermersal and near-shore species from 32 orders and more than 200 families. A number of deep water species, such as many of the species of Stomiiformes and Myctophiformes, were known only from a few individuals from trawl surveys or by-catch in the region, but were still included in the assessment.

The commercially important Orange Roughy (*Hoplostethus atlanticus*) was not included in the assessment, as its distribution is primarily anti-tropical, and no reliable catch records exist for this species in the ECA as defined herein. Additionally, species that were newly described or had reported range extensions into the ECA after the workshop assessment process was completed, such as *Malacoctenus carrowi* (Labrisomidae, newly described from Cape Verde, Wirtz 2014) and *Liopropoma emanueli* (Serranidae, newly described from Cape Verde and Senegal, Wirtz and Schliewen 2012) were not included. Finally, this initiatve assessed the global status of currently valid species, so no subspecies assessements were included.

Particpants at the first West African regional IUCN Red List assessment workshop in Dakar, Senegal, July 2012. © B. Polidoro and M. Comeros-Raynal

Particpants at the second West African regional IUCN Red List assessment workshop in Accra, Ghana, May 2013. © B. Polidoro and M. Comeros-Raynal

Particpants at the third West African regional IUCN Red List assessment workshop in Libreville, Gabon, July 2014. © B. Polidoro and M. Comeros-Raynal

2.3 Regional IUCN Red List Assessment Workshops

Of the 1,288 marine bony fishes assessed in the ECA, approximately 250 species were globally assessed during prior IUCN Red List initiatives. These include tunas and billfishes (Collette et al. 2011), surgeonfishes (Comeros-Raynal et al. 2012), groupers (Sadovy et al. 2013) bonefishes (Adams et al. 2014), blennioids (Polidoro et al. 2014), porgies (Comeros-Raynal et al. in review), puffers (Stump et al. in prep), wrasses and eels, among others. The remaining ~1,000 species were assessed during three workshops held in West Africa over the course of three years (January 2012-December 2014) with generous funding from the MAVA Foundation.

IUCN Red List assessment workshops in the ECA involved more than 65 leading scientific experts, including fisheries biologists, ecologists, taxonomists, government officials, and conservation practitioners from 14 countries, including Australia, Benin, Cape Verde, Denmark, France, Gambia, Gabon, Guinea, Ghana, Mauritania, Nigeria, Senegal, South Africa and the United States (see Appendix II for a list of participants at each of the three regional assessment workshops). Approximately 350 marine fishes were assessed during the first workshop in Dakar, Senegal (9-13 July 2012) with logistical support from IUCN MACO, IUCN Senegal Mission, and the Centre de Recherches Océanographiques Dakar (CRODT). Approximately 350 marine fishes were assessed during the second workshop in Accra, Ghana (5-9 May 2013) with logistical support from IUCN MACO, IUCN PACO, IUCN Ghana Office, the Department of Marine & Fisheries Science of the University of Ghana, and the Marine Fisheries Research Division of Ghana's Fisheries Commission. Approximately 300 marine fishes were assessed during the third workshop in Libreville, Gabon (7-11 July 2014) with logistical support from IUCN MACO, Agence Nationale du Parcs Nationaux (ANPN), Gabon Bleu and the Direction Génerale de la Pêches et de l'Agriculture (DGPA).

2.4 IUCN Red List Assessment Protocol

2.4.1 Pre-workshop data collection

The IUCN Red List assessments are data driven, and involve initial data collection and compilation of information and range maps for draft assessments, to be used at Red List workshops. During this process, all species data are entered into the IUCN Species Information System (SIS), and draft digital range maps are created for each species. Data collected include information on each species' taxonomy, distribution, population status and trends, habitat, ecology, use and trade, major threats and current conservation measures. Data collection is often conducted with the assistance of the participating West African fish experts. The draft species accounts and maps are made available to the experts for review prior to the workshops.

2.4.2 Expert review and evaluation

Three 5-day IUCN Red List Workshops were conducted in the region between 2012 and 2014. Each workshop hosted leading experts on the relevant West African marine fishes. The workshops were facilitated by IUCN MBU staff in collaboration with representatives from a number of local organizations and regional IUCN programme staff. The first day of each Red List assessment workshop was reserved for the provision of an overview of the project; initial training on the IUCN Red List assessment process and the application of the IUCN Categories and Criteria; and to consolidate a network of marine scientists with IUCN Red List experience for future collaboration and marine conservation activities.

2.4.3 Post-workshop editing, consistency check and external review

Following each workshop, additional scientific consultations continued by e-mail to finalize editing for each species' assessment and digital distribution

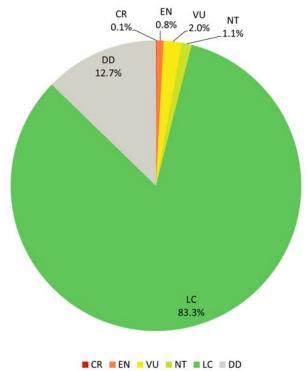
map. Each species assessment also went through a peer-review evaluation process by outside reviewers, and an internal consistency check for application of the Red List Criteria before they were considered final and ready to be published on the Red List of Threatened Species.

2.4.4 Submission of the data to the IUCN Red List of Threatened Species

The final peer-reviewed species assessments were submitted to IUCN Red List Unit in Cambridge, UK in August 2015 and published on the IUCN Red List of Threatened Species (IUCN 2015) in November 2015.

2.5 Methodology for Spatial Analyses

Digital generalized distribution maps were generated for each species in ArcGIS 10.1, following accepted IUCN Red List spatial protocols (IUCN 2012b). The maps for coastal species, defined as those species found to depths of less than 200 m, were generated using a basemap that followed either the 200 m bathyline or 100 km from shore, while the maps for pelagic and deep sea species were digitized by hand, following known and inferred occurrences. Regardless of the ecological preferences, the maps for species known from very few localities (typically less than 10) were created by adding a 50 km buffer to each known point of occurrence.


For all richness analyses, the species' distributions were restricted to the ECA region as defined for this project (Figure 2). Individual species' polygons were converted to 10 km by 10 km raster grids by assigning a value of "1" to cells that overlapped with the species polygon and a value of "0" to all other cells. The number of species in each cell was then calculated by adding the raster grids together. This was completed for all species as well as for specific subsets of species, including the endemic species, threatened species and Data Deficient species.

3. Results

3.1 Threat Status

Overall, 37 of the 1,288 ECA marine bony fish species assessed against the IUCN Red List Categories and Criteria were listed as threatened (Table 3, Figure 4): 1 Critically Endangered, 10 Endangered and 26 Vulnerable; the species assessed as globally

Figure 4: Proportion of Eastern Central Atlantic marine bony fish species assessed in the IUCN Red List Categories: CR - Critically Endangered; EN - Endangered; VU - Vulnerable; NT - Near Threatened; LC - Least Concern; DD - Data Deficient.

threatened are listed in Table 4. Approximately 50%, 22 species, were listed based on population declines (Criterion A), while 35% (13 species) and 5% (2 species) were listed based on small geographic ranges (Criterion B and D2, respectively). Another 14 were listed as Near Threatened; these species were close to meeting, but did not quite meet, the thresholds for inclusion in a threatened category. To date, no species in the ECA are known to be Extinct or Extinct in the Wild.

The vast majority of marine bony fish species, 83.3%, were listed as Least Concern. This category encompasses species that are: widespread and abundant; currently stable; or declining at a rate unlikely to lead to extinction in the near future. For example, Damselfish (*Chromis chromis*) is widely distributed in the eastern Atlantic Ocean, and can be common in parts of its range.

Chromis chromis (Linneaus, 1758) assessed as Least Concern. © Albert Kok.

Table 3: Summary of the number of Eastern Central Atlantic species listed in each of the IUCN Red List global categories for all species and endemic species only. No species were assessed as Extinct (EX) or Extinct in the Wild (EW).

Red List Category	Number of	Proportion of	Number of	Proportion of
Red List Category	species	species	endemic species	endemic species
Critically Endangered (CR)	1	0.1%	0	0.0%
Endangered (EN)	10	0.8%	5	2.2%
Vulnerable (VU)	26	2.0%	10	4.3%
Near Threatened (NT)	14	1.1%	2	0.9%
Least Concern (LC)	1073	83.3%	145	62.8%
Data Deficient (DD)	164	12.7%	69	29.9%
TOTAL	1288		231	

Table 4: Eastern Central Atlantic marine bony fish species assessed as threatened (Critically Endangered - CR, Endangered - EN, or Vulnerable - VU) based on the IUCN Red List methodology. *Recent molecular analyses suggest that the Girellinae should be elevated to a family (Knudsen and Clements 2013), but it is here considered a subfamily of the Kyphosidae.

Order	Family	Species	RL Category
Perciformes	Epinephelidae	Epinephelus itajara	CR
Gadiformes	Merlucciidae	Merluccius senegalensis	EN
Perciformes	Cirrhitidae	Amblycirrhitus earnshawi	EN
Perciformes	Epinephelidae	Epinephelus marginatus	EN
Perciformes	Epinephelidae	Mycteroperca fusca	EN
Perciformes	Gobiidae	Bathygobius burtoni	EN
Perciformes	Gobiidae	Priolepis ascensionis	EN
Perciformes	Sciaenidae	Pseudotolithus senegalensis	EN
Perciformes	Scombridae	Thunnus thynnus	EN
Scorpaeniformes	Scorpaenidae	Scorpaena ascensionis	EN
Scorpaeniformes	Scorpaenidae	Scorpaena mellissii	EN
Clupeiformes	Clupeidae	Sardinella maderensis	VU
Elopiformes	Megalopidae	Megalops atlanticus	VU
Gobiesociformes	Gobiesocidae	Apletodon barbatus	VU
Perciformes	Blenniidae	Scartella nuchifilis	VU
Perciformes	Blenniidae	Scartella springeri	VU
Perciformes	Carangidae	Trachurus trachurus	VU
Perciformes	Gobiidae	Corcyrogobius lubbocki	VU
Perciformes	Gobiidae	Didogobius amicuscaridis	VU
Perciformes	Gobiidae	Gobius tetrophthalmus	VU
Perciformes	Gobiidae	Gorogobius stevcici	VU
Perciformes	Istiophoridae	Kajikia albida	VU
Perciformes	Istiophoridae	Makaira nigricans	VU
Perciformes	Kyphosidae*	Girella zonata	VU
Perciformes	Labridae	Bodianus scrofa	VU
Perciformes	Mullidae	Pseudupeneus prayensis	VU
Perciformes	Polynemidae	Pentanemus quinquarius	VU
Perciformes	Pomatomidae	Pomatomus saltatrix	VU
Perciformes	Sciaenidae	Atractoscion aequidens	VU
Perciformes	Sciaenidae	Pseudotolithus senegallus	VU
Perciformes	Scombridae	Thunnus obesus	VU
Perciformes	Sparidae	Dentex dentex	VU
Perciformes	Sparidae	Rhabdosargus globiceps	VU
Syngnathiformes	Syngnathidae	Hippocampus algiricus	VU
Tetraodontiformes	Balistidae	Balistes capriscus	VU
Tetraodontiformes	Balistidae	Balistes punctatus	VU
Tetraodontiformes	Molidae	Mola mola	VU

Lepidopus caudatus (Euphrasen, 1788) assessed as Data Deficient in an Italian fish market. © G. Dall'Orto

Approximately 13%, 164 species, were listed as Data Deficient. Species were assessed as Data Deficient for two main reasons. Some species, such as Young Whalefish (*Danacetichthys galathenus*), are known from very few museum specimens, which creates uncertainty as to the true distribution and population size of the species. Other species, such as Silver Scabbardfish (*Lepidopus caudatus*), were assessed as Data Deficient because there were indications of population declines caused by overfishing, but the data were insufficient to calculate population declines over three generation lengths.

The best estimate of the percentage of threatened marine bony fishes in the ECA is the mid-point, 3.3%, which assumes that the Data Deficient species are equally as threatened as the species for which sufficient data were available to assess. Accounting for the uncertainty surrounding the Data Deficient species results in estimates of the percentage threatened ranging from 2.9%, if none of the Data Deficient species are threatened, to 15.6%, if all the Data Deficient species are threatened (Table 5).

Table 5: Range of percentage of threatened marine bony fishes in the Eastern Central Atlantic, using the estimators recommended in IUCN (2011).

Estimator	Percentage	
Estimator	Threatened	
Lower bound	2 000/	
(CR+EN+VU)/(assessed-EX)	2.90%	
Mid-point	2 200/	
(CR+EN+VU)/(assessed-EX-DD)	3.30%	
Upper bound	15 (00)	
(CR+EN+VU+DD)/(assessed-EX)	15.60%	

Of the 1,288 species that occur in the ECA, the best available data suggest that 231 (~18%) are endemic. A larger percentage of endemic species were assessed as threatened (6.5-36.4%, with a midpoint of 9.2%) than the pandemic species (2.1-11.1%, with a midpoint of 2.3%). The threatened endemic species were primarily restricted-range species, such as White Hawkfish (*Amblycirrhitus earnshawi*), known only from Ascension Island; 13 of the 15 threatened endemics were listed based on small geographic ranges (Criterion B), and only two were listed based on population declines.

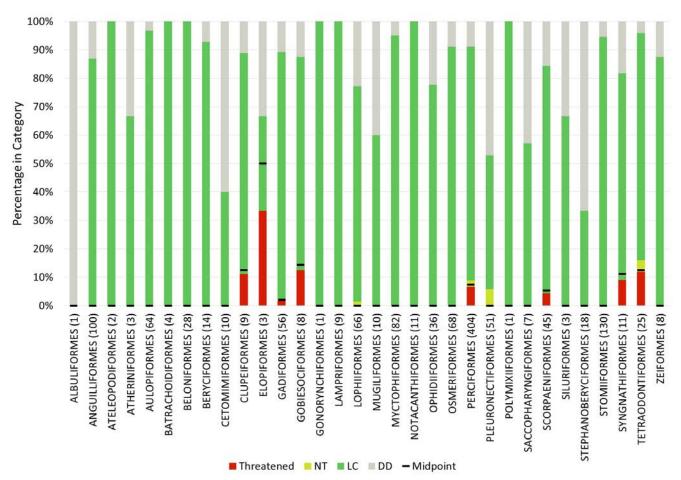


Figure 5: Percentage of species in each order assessed as threatened (CR, EN or VU), Near Threatened (NT), Least Concern (LC) and Data Deficient, with the number of species in each order in parentheses. The midpoint represents the best estimate for the percentage threatened, and was calculated as: threatened species/(all species - DD species).

3.2 Status by Taxonomic Group

The marine bony fishes of the ECA represent 32 orders and over 200 families, with a maximum species richness of 404 (in the order Perciformes) and 92 (in the family Stomiidae). Three orders are currently represented by only one species in the ECA, including the shallow-water bonefishes (order Albuliformes), as well as the milkfishes (order Gonorynchiformes) and the deep-water beardfish (order Polymixiiformes).

The majority of the orders contained species assessed as either LC or DD, while all of the threatened bony fish species occurred in 8 of the orders (Figure 5). The midpoint estimate for the percentage of threatened species in each order ranged from 2 to 50%. The largest number of threatened species occurs in the Perciformes, representing approximately 7% of this diverse order.

Euthynnus alletteratus (Little Tunny) assessed as Least Concern. © F.K.E. Nunoo

Sardines in the Eastern Central Atlantic

The family Clupeidae consists of many important commercial species. Sardines, sometimes called pilchards, depending on size, are typically caught in both artisanal and commercial fisheries within the ECA with the use of purse or beach seines, and gill nets. Sardines also provide a staple food source, typically being marketed fresh, frozen, smoked, canned or dried (Whitehead 1985) and are often used as bait in fisheries.

Seven common species of sardine are found in the ECA: *Ethmalosa fimbriata*, *Pellonula leonensis*, *P. vorax*, *Sardina pilchardus*, *Sardinella aurita*, *Sardinella maderensis* and *Sardinella rouxi*. *Ethmalosa fimbriata*, *Sardina pilchardus* and *Sardinella maderensis* are the three most important clupeid commercial species in the region. Their schooling nature and relative proximity to shore during certain periods allow for easy harvesting.

Pellonula leonensis and *Ethmalosa fimbriata* occur in fresh and estuarine waters within their ranges. *Pellonula leonensis* is known from the Congo system (Gourène and Teugels 1991), where its preferred habitats make it common in artisanal fisheries. A small population of *E. fimbriata* occurs in large concentrations in lagoons and estuaries, and is also known from Lake Nokoué, Benin.

ECA sardine populations are wide ranging and, depending on the species, can be found from Iceland south to the Democratic Republic of Congo. However, the exact geographic extent of these species is not clear because reported landings of sardines are often contain multiple species and therefore underreported for a particular species.

Overfishing has caused many previous stock collapses (Worm et. al 2009), and the recent collapses of Pacific sardine (*Sardinops sagax*) stocks emphasize the importance of monitoring population size and structure (Zwolinski and Demer 2012). This project has highlighted the need for additional population

assessments in the region. Ethmalosa fimbriata, Sardinella maderensis and Sardina pilchardus are all considered overfished within the ECA. Landings reported to the FAO have gradually increased for sardine species over the last 60 years (FAO 2011). However, the effect of the increased effort on stocks is difficult to estimate due to the mixed landings. Clupeids are dependent on high levels of recruitment to maintain current stock levels and climate variability increases recruitment uncertainty (Failler 2014). Since these species are commonly found in mixed catches, it is difficult to estimate true population size, or overall effect of exploitation on individual species. These mixed landings have created a knowledge gap regarding the population of Sardinella rouxi. This species is currently thought to be the least abundant sardine species in the region, but more research is necessary to better define its current population status.

Mixed sardine landings. © D. Ventura

The population status of these clupeids is further complicated by the overlapping Mediterranean and European ranges of many similar commercial species, in addition to the ECA sardine populations. Fishing pressure from European and Mediterranean fleets along with inconsistent reporting of mixed landings between the two regions have complicated

efforts to clearly define the current population status and larger effects of fishing pressures.

Several conservation measures have been put into place in an attempt to conserve populations, following the management advice provided by the permanent FAO Working Group on the Assessment of Small Pelagic Fish off Northwest Africa (FAO 2013). These measures include catch limits, freezing investments in canning factories and fishing, and recommendations of a reduction in fishing effort. This latter item was suggested because fishing efforts in the region have steadily increased and juveniles of *Sardinella maderensis* are currently being harvested, while observed adult size is decreasing (FAO 2013). These data, combined with an estimated minimum 30% decline in population over the last 10 years, have resulted in *Sardinella maderensis* being listed as Vulnerable. Moving forward, it will be necessary to monitor these populations individually. The data gaps created by mixed landings of sardine species have made it difficult to fully understand the effects of increased fishing pressure on each of these species. Although *Ethmalosa fimbriata, Sardina pilchardus* and *Sardinella maderensis* face the greatest commercial pressure, *Sardinella rouxi* was listed as Data Deficient partially due to lack of separate catch statistics.

School of sardines. © A. Duci

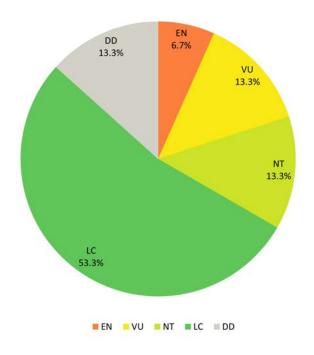
Status of Croakers (Sciaenidae) in the Eastern Central Atlantic

Throughout much of the ECA, sciaenids are highly sought during seasonal occurrences inshore or in estuaries. Many species are found in schools or spawning aggregations, making them easy targets for both artisanal and commercial fisheries. Geographic ranges for these species extend from off the coast of Norway in the north to off the coast of Namibia in the south. Many species also occur in the Mediterranean Sea.

Croakers or drums get their name from the characteristic "croaking" sound they produce. The sound, which is produced by specialized muscles vibrating against the swim bladder, is used as a means of communication either for mates, warnings or understanding surroundings in turbid water (Ramcharitar et al 2006). Depending on the species, males and females are both capable of producing sounds, though some species are only able to do so on a seasonal basis.

Many West African countries are considered traditional fishing countries, and fish provide a large portion of the dietary intake of protein. In addition to being a staple food item for local populations, many countries also depend on these fishes as an important economic resource. The largest West African combined commercial and artisanal fishing fleets occur in Nigeria, Senegal, Cameroon, and Ghana. Stocks in these areas are easily overfished because near-shore trawlers and traditional artisanal fisheries are occurring in similar geographic areas. The recent increase in recreational fishing in the region has further exacerbated the problem of overfishing on these stocks (Belhabib et al. 2014).

Reported landings for numerous species have shown a steady increase over the last several decades (FAO 2006), though the stocks of several species including *Atractoscion aequidens*, *Pseudotolithus mbizi*, and *Pseudotolithus senegalensis* are in decline


Sciaena umbra Linnaeus 1758 assessed as Near Threatened. © A. Abadie

(Hutton et al. 2001, Gaffer 1994). Increases in landings can most likely be attributed to changes in gear. Many fishermen have switched from gill nets to trawling. This, in conjunction with increased issuance of permits, has resulted in increased fishing effort in the region. *RV Nansen* sciaenid surveys conducted from 2000-2006 show an overall estimated reduction in biomass from 1,046 tonnes to 664 tonnes, representing a 37% decline in stocks. The increase in landings and decrease in population size has also led to an observed decrease in mean body size. This decline in body size is most likely due to the use of smaller mesh sizes in many fisheries, which results subsequently in an increase in catches of juveniles.

These declines have resulted in one species, *Pseudotolithus senegalensis*, to be listed as Endangered, two species, *Atractoscion aequidens* and *Pseudotolithus senegallus*, to be listed as Vulnerable, and two species, *Pentheroscion mbizi* and *Sciaena umbra*, to be listed as Near Threatened. Each of these species has experienced significant declines in population size in the last few decades, which can be directly attributed to the increased fishing pressure and overfishing currently seen in the ECA region.

Figure 6: IUCN Red List status of the 15 sciaenid species in the Eastern Central Atlantic.

The overall decline in sciaenid stocks highlights the importance of further conservation actions focused on this group. Currently, there are few conservation measures in place for sciaenids (Argyrosomus regius, Atractoscion aequidens, Miracorvina angolensis, Pentheroscion mbizi, Pseudotolithus elongatus, Pseudotolithus epipercus, Pseudotolithus moorii, Pseudotolithus senegalensis, Pseudotolithus senegallus, Pseudotolithus typus, Pteroscion peli, Sciaena umbra, Umbrina canariensis, Umbrina ronchus and Umbrina steindachneri) in the ECA. Several species' ranges may overlap with marine protected areas (MPAs). However, it is unknown if these are effective in stabilizing or increasing local sciaenid populations because regulations in the region are lax regarding demersal and pelagic fisheries. Catch and size limits for A. aequidens have been enforced in South Africa for both recreational and commercial fisheries. Recent South African surveys have shown that to address declining stocks, a 70% reduction in commercial effort, in addition to recreational regulations, will be needed in order to allow stocks to recover.

As is common with many species, more research is necessary to better understand the life history of sciaenid species. The effect of increased fishing pressure, especially on juveniles, is not fully understood. While improvements in gear types continue and fishing regulations are slow to catch up, these species, and others like them, are more likely to face declines in stock size. It is important to emphasize that this group of fishes is especially important to near-shore, artisanal fishers, who will be most negatively affected by stock declines. With improved research and regulations, such as those seen in South Africa, it may be possible to see long term improvements in sciaenid stocks in the ECA.

Mudskippers and Mangroves in the Eastern Central Atlantic

In the ECA, only a single species of mudskipper (Family Gobiidae, subfamily Oxudercinae) is present: *Periophthalmus barbarus*. Although heavily exploited in parts of its range, and also subject to habitat threat and pollution, this species is listed as Least Concern as it is widespread and considered to be relatively common. It can be found in fresh, marine and brackish waters in exposed intertidal mudflats of mangrove swamps, coastal lagoons and estuaries from Senegal to Angola, including Sáo Tomé and Príncipe Islands (Stiassny et al. 2007).

In the Niger Delta region, *P. barbarus* is harvested in subsistence fisheries and targeted for the commercial aquarium trade. Although little data are available on the volume and value of ornamental fish traded in Nigeria, *P. barbarus* was exported at approximately US\$1 per fish in 2006-2007 (Ukaonu et al. 2011). In the Imo River Estuary, in southeast Nigeria, the stock

Local fishermen utilizing mangrove habitats in Libreville, Gabon. © B. Polidoro

of *P. barbarus* is now considered to be over-exploited, with 79% of the available stock being fished annually (Udoh et al. 2013). In general, mudskipper fisheries, along with other tropical artisanal fisheries in the region, are considered to be poorly-managed (Udoh et al. 2013).

Mangrove habitat across Africa has on average declined by about 14% since 1980 (FAO 2007), with the highest losses occurring in western central Africa, where more than 60% of mangrove habitat has been lost along the coasts of the Congo, Cote d'Ivoire, and Liberia. In West Africa, a 35% decline in overall mangrove coverage was observed by remote sensing between 1986 and 2010 (Carney et al. 2014). In western central Africa, mangrove areas are very important for fisheries and as a source of timber and fuelwood (Feka 2015, Feka and Ajonina 2011).

Widespread mangrove losses have also occurred due to conversion to urban or agricultural lands. Oil and gas extraction in the Bight of Biafra, which extends from the Niger River Delta to Gabon, has severely degraded mangrove areas, drinking water and fish stocks. Oil exploration and extraction activities in this area, including dredging of channels, digging new canals, clearance for platforms, pipelines and seismic surveys have severally changed water flows, salinities and siltation rates (Spalding et al. 2010). Direct pollution incidents from oil spills are a regular occurrence, with more than 2000 incidents recorded from 1997-2001 (Nwilo and Badejo 2006). In the Niger Delta region, total hydrocarbons measured in sediment, surface water and mudskippers exceeded the national permissible limit for inland waters and seafood (Clinton et al. 2009).

3.3 Spatial Distribution of Species

3.3.1 Species richness

In the ECA, the maximum species riches is 757 species per 100 km². Diversity of marine bony fishes is highest around the Cape Verde Islands and off the coast of Senegal (Figure 7). The remaining coast of West Africa, including the offshore islands in the Gulf of Guinea (Bioko, São Tomé and Príncipe and

Annobón), is also home to a large diversity of bony fishes. As expected, the diversity of fishes in oceanic waters is substantially lower than that of coastal waters, except for the area surrounding the islands of St. Helena and Ascension.

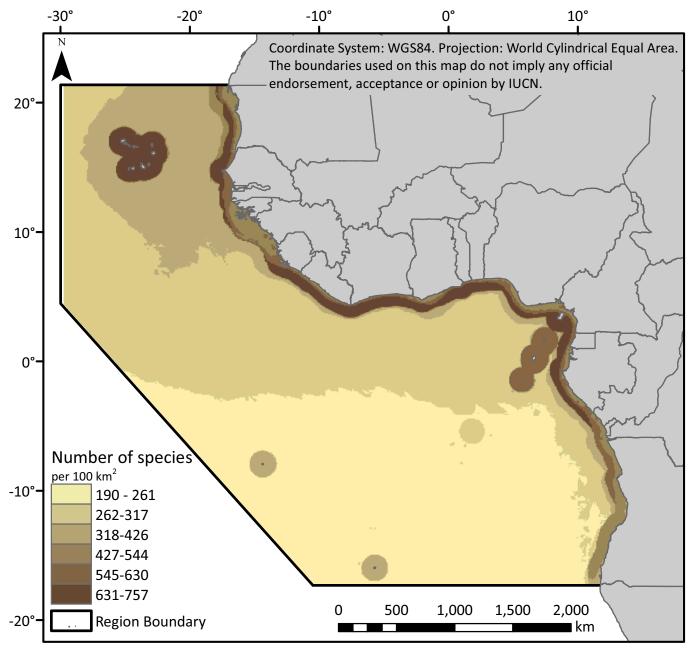


Figure 7: Distribution of the 1,288 marine bony fish species in the Eastern Central Atlantic.

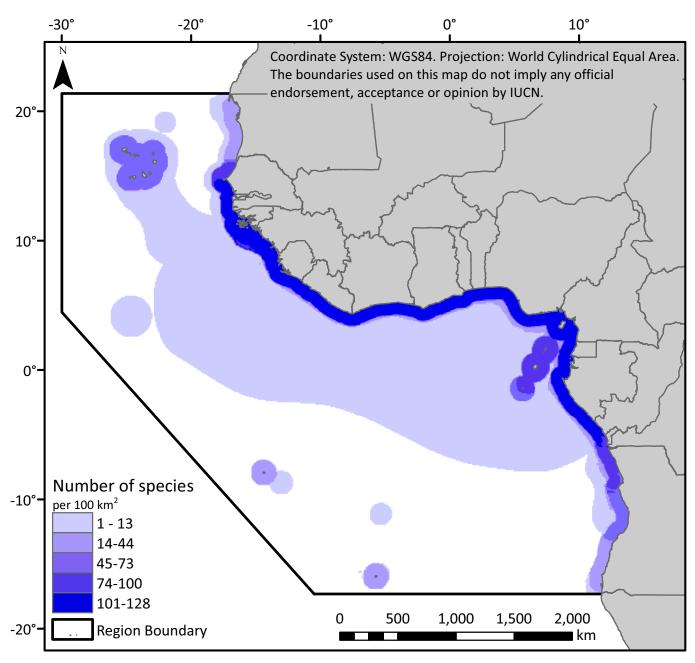


Figure 8: Distribution of the 231 endemic marine bony fish species in the Eastern Central Atlantic.

3.3.2 Endemic species richness

In general, the highest density of endemic species occurs along the African coast from Senegal to Angola (Figure 8). The top 10% of endemic species diversity (116-128 species per 100 km²) occurs from Sierra Leone to Gabon, including Bioko (Equatorial Guinea) in the Gulf of Guinea. The offshore islands of Cape Verde and São Tomé and Príncipe are also home to substantial numbers of endemic species. Very few endemic species are found offshore, except when associated with the oceanic islands of St. Helena and Ascenscion.

3.3.3 Distribution of threatened species

threatened species occur in the offshore waters, less than 4 species per 100 km².

The distribution of threatened species primarily follows that of the overall species richness, with the highest numbers of threatened species (16-18 species per 100 km²) occurring around the islands of Cape Verde, Bioko (Equatorial Guinea) and Sao Tome, as well as along the coasts of Senegal and eastern Gabon (Figure 9). The remaining coast of West Africa and offshore islands have fewer threatened species (8-15 species per 100 km²). Low numbers of

The relatively low variability in richness of threatened species along the coast appears to be driven by the overexploited species that are distributed along much of West Africa. For example, *Epinephelus itajara*, the Atlantic Goliath Grouper, is found from Senegal to Gabon in the east Atlantic, and was assessed as Critically Endangered due to estimated declines of >80% over the past three generation

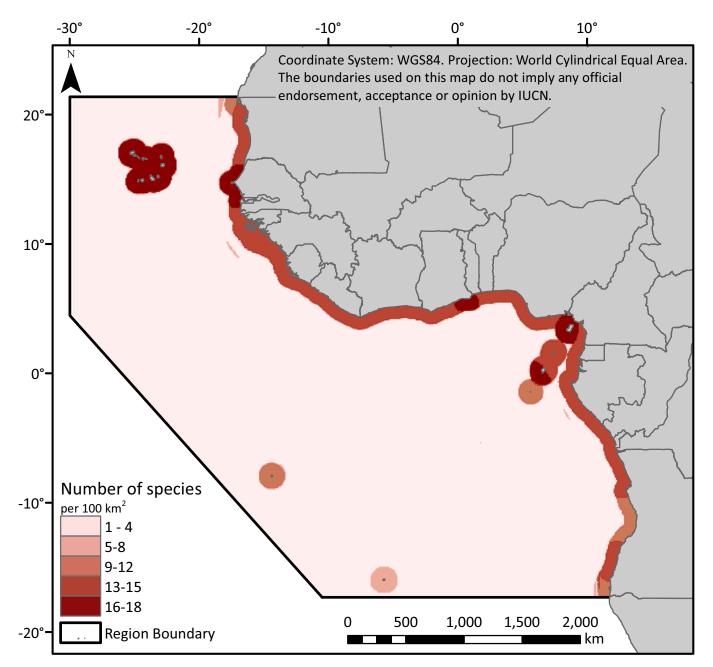


Figure 9: Distribution of the 37 threatened marine bony fish species in the Eastern Central Atlantic (i.e., those assessed as Critically Endangered, Endangered, or Vulnerable)..

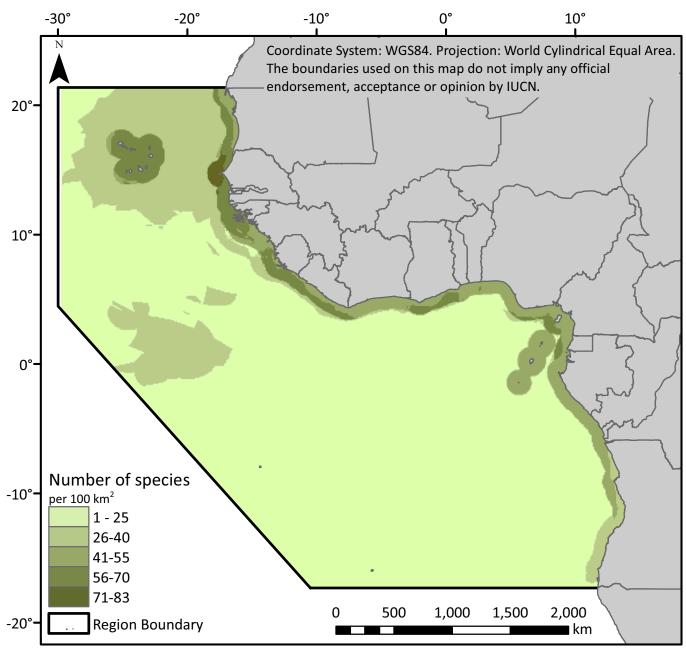


Figure 10: Distribution of the 164 marine bony fish species in the Eastern Central Atlantic assessed as Data Deficient.

lengths (Craig 2011). However, the richness around the offshore islands is more a function of restricted range endemics, such as *Priolepis ascensionis*, an endangered goby known only from St. Helena and Ascension islands (Carpenter et al. 2015).

3.3.4 Distribution of Data Deficient species

The concentration of species assessed as Data Deficient is highest off Dakar, Senegal, representing the top 10% of species richness, 75-83 species per 100 km² (Figure 10). Another large region of high

richness of Data Deficient species is at the Cape Verde Islands, with up to 64 species per 100 km². The offshore zone along parts of West Africa, especially from Mauritania to Liberia and Ghana, also stand out as having a relatively high richness of species assessed as Data Deficient.

3.4 Major Threats to Marine Fishes in the ECA

Major threats were reviewed for the 51 species assessed as threatened (Critically Endangered, Endangered or Vulnerable) and Near Threatened. The major threats to marine bony fish species in the ECA were overfishing , habitat degradation, pollution, climate change and invasive and problematic species (Figure 11). Almost 40% (19 species) of species assessed as threatened or Near Threatened are negatively affected by more than one major threat.

3.4.1 Overfishing

The biggest threat facing marine fishes, globally, is overfishing (Roberts and Hawkins 1999, Dulvy et al. 2009, Harnick et al. 2012), and prolonged overfishing renders recovery improbable for the majority of the world's depleted stocks (Neubauer et al. 2013). Overfishing is also a major threat in the ECA as well, with 39 of the 51 threatened and Near Threatened species negatively affected by overfishing, including both direct and indirect effects.

Many West African nations rely heavily on fish and fishing as a source of food, income and employment to varying degrees. Traditionally, fishers manually propelled dugout canoes with simple fishing gears such as hook and line, gill nets and beach seines. Over the past 50 years, these labor-intensive methods were replaced by larger, fuel-propelled vessels and more sophisticated gears, increasing the efficiency and expanding fishing ranges of the fishers (see Atta-Mills et al. 2004 for a history of West African fisheries). A number of African countries have commercial vessels that fish all year round with huge trawls and purse seine gears that are non-selective resulting in capture of juveniles, breeding fishes, as well as remarkable amounts of discards. However, some West African countries have lacked the monetary means to acquire and operate commercialcapacity fishing vessels, and have often sold licenses to European Union (EU) and other non-African countries so that these countries can harvest fish in the EEZs of the licensing countries. These licenses are often purchased at prices well below the monetary value of the marine resources exploited by licensed fishing vessels, which, in turn, exacerbates and

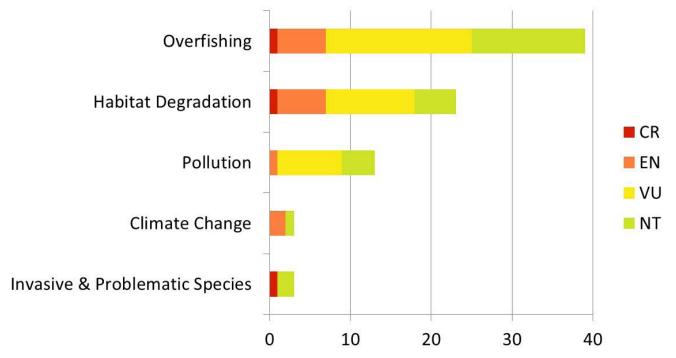


Figure 11: Major threats to marine bony fishes assessed globally as threatened (Critically Endangered – CR, Endangered – EN, or Vulnerable – VU) and Near Threatened (NT) in the Eastern Central Atlantic (n=51), listed in order of the number of species impacted.

perpetuates the financial instability of the region and destabilizes the economic and nutritional sovereignty of West Africa countries.

With these increases in capacity in both the artisanal and commercial sector, as well as illegal, unreported and unregulated (IUU) fishing, effort has risen sharply, concomitant with declining fish catches in many West African nations. Species diversity and fish size for many important species have also markedly declined over the past few decades, and many stocks are characterized as overexploited (Ajayi 1994, Mensah and Quaatey 2002).

3.4.2 Habitat degradation

Habitat degradation is another major threat facing marine species globally. In the ECA, almost half (23 species) of the threatened and Near Threatened species were negatively affected by habitat degradation. Some species are affected by the destruction of juvenile habitats, such as mangroves and seagrasses. For example, juveniles of the Critically Endangered *Epinephelus itajara* may rely on mangrove areas (Sadovy and Eklund 1999), which have declined by 35% or more in some locations along the West African coast (Carney et al. 2014).

Fishing vessels in Accra, Ghana © F.K.E. Nunoo

3.4.3 Pollution

Local declines in water quality resulting from land and sea based pollution are another major concern in the ECA (Ukwe et al. 2006). Industries and populations of large coastal cities are often limited in waste-water treatment capabilities, causing widespread eutrophication, dead zones and contamination of sediments and organisms (Ukwe et al. 2006). Pollution from oil and gas exploration and extraction, including tar balls, can be a major issue in oil producing countries such as Nigeria (Ukwe and Ibe 2010). Another issue of increasing concern is marine debris, including plastic waste from anthropogenic sources, which has been found in all marine habitats (Wang et al. 2016). However, the direct and indirect impacts, such as smothering sessile species and hindering essential life processes (e.g., feeding, respiration and reproduction) of mobile species, on marine bony fishes are often hard to quantify at the population level. Pollution was indicated as a major threat for only 13 of the 51 threatened and Near Threatened species.

3.4.4 Climate change

Although global climate change has and will continue to affect marine fishes and fisheries, the long-term changes to the extinction risk of marine fishes are uncertain. Northward distributional shifts and relative changes in abundance are expected in response to increasing seawater temperatures (Perry et al. 2005, Pinsky et al. 2013, Rutterford et al. 2015). When physical barriers prevent individuals from migrating to preferred temperature regimes, marine species may be driven towards extinction (e.g., in the Mediterranean Sea: Ben Rais Lasram et al. 2010). The open nature of the ECA marine zone may limit effects of climate change on the ichthyofauna, at least in the near future, as physical barriers to the expected poleward migration are lacking. However, other intrinsic and extrinsic factors, such as the pelagic larval duration, population density and swimming ability, will likely also impact which species can successful migrate poleward in response to climate change (e.g., Feary et al. 2014). Further, the long term effects of climate change and ocean acidification on the ecology of marine systems, including changes in predation rates (e.g., Ferrari et al. 2015), have not been well studied to date. The long-term implications of these changes for the extinction risk of marine bony fishes is poorly understood. Thus, climate change is only indicated as a major threat for three of the 51 threatened and Near Threatened species: Pagellus bogaraveo and Merluccius senegalensis are thought to be negatively impacted by changes to atmospheric oscillations (Meiners et al. 2010, Báez et al. 2014) and Pseudotolithus senegalensis by increased sea

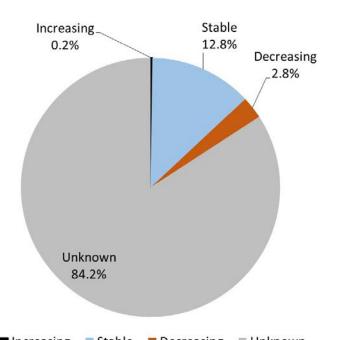
Marine debris washed onshore at a fishing beach in Dakar, Senegal. © B. Polidoro

surface temperatures and reduced upwelling (Nunoo and Nascimento 2015).

3.4.5 Invasive and problematic species

The negative effects of invasive and problematic species are currently limited in the ECA, with this category of threats being indicated for only three species. Two species listed as Near Threatened globally are impacted by invasive species. Although the primary threat to Balistes vetula, the Queen Triggerfish, is overfishing, it has also been found in the diet of the invasive lionfish (Pterois volitans) in the western Atlantic (Bejarano et al. 2015). While the impact to *B. vetula* is currently thought to be limited, the introduction of P. volitans and P. miles to the Caribbean has caused dramatic adverse impacts on fisheries and conservation efforts (Schofield 2009, Bejarano et al. 2015). Fortunately, to date, lionfishes have yet to spread into the eastern Atlantic. Replacement of native mangroves by an exotic palm (Nypa fruticans) in Nigeria may be affecting the juveniles of Galeoides decadactylus, which rely on the three-dimensional structure provided by native

Nypa fruticans stand © B. Dupont


mangroves (Moses 2000). Unlike most mangroves, the trunk of *N. fruticans* grows underground, limiting the available structural refuge for juveniles.

Harmful algal blooms (HABs) have been implicated in fish kills of Epinephelus itajara (e.g., in the Gulf of Mexico: Smith 1976). HABs can produce large fish kills and short term recruitment declines, but the long-term impacts on populations are currently unknown. In the ECA, harmful algal species have been documented in the upwelling systems in both the Benguela and Canary current regions; of the 29 common algal species responsible for HABs, 20 occur in high-biomass blooms in the Benguela Current region and 11 in the Canary Current region (Trainer et al. 2010). Further, algal species known to cause marine mortalities, including Heterosigma akashiwo, Karlodinium micrum and Karenia cristata, occur in high-desnity blooms in the Benguela Current region (Trainer et al. 2010).

3.5 Population Trends

In the ECA, the current population trend for the vast majority of species is unknown (Figure 12). Many of these are poorly known deep-sea species with ongoing taxonomic problems. For example, it was recently determined that different life history stages of the flabby whalefishes, family Cetomimidae, had been described as belonging to three different deepsea families (Johnson et al. 2009); the six species in the family Cetomimidae found in the region were assessed as Data Deficient with unknown current population trends. However, this large proportion of species in the ECA with unknown population status reflects the relatively poor state of knowledge, in general, regarding the living marine resources of the region.

Currently, the populations of 36 species are decreasing, including 27 of the 51 species listed as threatened or Near Threatened. The majority of these are exploited species. For example, populations of the four heavily exploited *Thunnus* species present

■ Increasing ■ Stable ■ Decreasing ■ Unknown Figure 12: Current population trend of the 1,288 marine bony fish species of the Eastern Central Atlantic.

in the ECA (*T. alalunga*, *T. albacares*, *T. obesus* and *T. thunnus*) are decreasing and the majority of the stocks are overfished (ISSF 2015).

3.6 Gaps in Knowledge

Overall, aspects of the taxonomy, ecology, life history and population dynamics of the marine fish fauna of the ECA are poorly known, despite the long history of marine resource exploitation in the region. Taxonomy of the marine bony fishes remains a major challenge. Taxonomic training and identification are sorely lacking by regional scientists, resulting in limited species-specific data for nearly all species in the region. This lack of taxonomic resolution hampers effective conservation of the marine resources, as landings data are often grouped at the genus or even family level. In addition, it results in an underestimate of the true biodiversity in the region. For example, the commercially and recreationally important Caranx hippos complex was recently found to include two species in the eastern Atlantic: C. hippos and C. fischeri (Smith-Vaniz and Carpenter 2007).

Additionally, there is a lack of support for the development and maintenance of scientific collections of specimens. Very few, if any, institutional natural history collections exist in West African countries. The collection of specimens assembled by Dr. J. Cadenat of l'Institut Francais d'Afrique Noire in Goree, Senegal, has been neglected for decades and many of the specimens have since been damaged, destroyed or lost. Rigorous natural history collections provide essential information for a variety of research and conservation needs, including IUCN Red List assessments (Rocha et al. 2014). Given the potential of this collection to serve vital research and training needs of the regional scientific community, immediate priority should be given to the curation and improvement of this collection before this valuable research resource is lost.

Collection of specimens assembled by Dr. J. Cadenat of l'Institut Francais d'Afrique Noire in Goree, Senegal. © B. Polidoro.

4. Conservation Measures

4.1 Conservation of Marine Fish

Countries in West Africa increasingly rely on marine resources for economic, social and nutritional stability. Recently, there have been significant efforts, independently as well as cooperatively in regional agreements, to more actively pursue an agenda for the reclamation of the marine resources within West African EEZs, as well as to formulate and execute sustainable fishing practices and management of the fisheries in the ECA. However, most legislation and regulation in the region relates to elasmobranchs rather than bony fishes.

Hippocampus hippocampus (Short-snouted Seahorse) assessed as Data Deficient. © L. Rooman-Guylian

4.1.1 International conservation measures

Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES)

CITES is an international trade treaty signed in 1963 at a meeting of members of the International Union for Conservation of Nature (IUCN) aimed at ensuring that the international trade of wild biota is not conducted in a fashion that threatens the survival of the species in the wild. Species considered at risk are listed in one of three appendices.

Appendix I lists species threatened with extinction; wild-caught species listed in this appendix are banned from international trade. Appendix II lists species that have not yet been formally declared endangered, but are threatened to the degree that necessitates control of trade in wild individuals in order to ensure the sustained survival of the species in question. Appendix III is reserved for species in which one member country requests other member countries to assist in the control of trade of a species, mostly of which may be locally threatened but not necessarily globally threatened (CITES 1973). Only two marine bony fishes in the region (Hippocampus algiricus and H. hippocampus) are listed in CITES Appedix II, though two sharks (*Cetorhinus maximus* and *Rhincodon typus*) are also listed (Table 6).

Table 6: Marine fishes occurring the Eastern Central Atlantic that are listed in CITES Appendix II.

Species	Common	Red List
Species	Name	Status
Hippocampus algiricus	West African	VU
The pocumpus algiricus	seahorse	۷U
Hippocampus	Short snouted	DD
hippocampus	seahorse	עע
Cetorhinus maximus	Basking shark	VU
Rhincodon typus	Whale shark	VU

United Nations Convention on the Law of the Sea (UNCLOS)

Since 1994, UNCLOS has provided a framework for establishing environmental and managerial responsibilities of nations regarding the equitable use and conservation of marine natural resources. The convention sets standards for responsible management of fisheries in both international waters and those within the Exclusive Economic Zones (EEZs) of independent nation states. UNCLOS balances the rights of nations to exploit marine environments and biota of the oceans and seas with the responsibilities to preserve them by resolving continental shelf jurisdiction disputes, regulating deep seabed mining operations and identifying key scientific research initiatives (Kimball 2003). The UN recently completed The First Global Integrated Marine Assessment, providing a global framework for the assessment of the status of the marine environment, with the intention of periodic status (http://www.worldoceanassessment. reevaluations org/).

International Commission for the Conservation of Atlantic Tunas (ICCAT)

ICCAT is an inter-governmental organization designed to protect and conserve approximately 30 species of tuna and tuna-like species in the Atlantic Ocean and adjacent water bodies, of which 16 occur in the ECA (Table 7). Its primary concern is to monitor the status of tunas by compiling fisheries statistics from its members, coordinating research on the conservation status of the species and the development of scientifically sound management advice on the exploitation of tunas, derived from conducting stock assessments and other relevant studies.

Thunnus thynnus (Atlantic Bluefin Tuna) assessed as Endangered. © OCEANA/K. Ellenbogen.

Family	Species	Common Name	RL Status
Scombridae	Acanthocybium solandri	Wahoo	LC
Scombridae	Auxis rochei	Bullet Tuna	LC
Scombridae	Auxis thazard	Frigate Tuna	LC
Scombridae	Euthynnus alletteratus	Little Tunny	LC
Scombridae	Katsuwonus pelamis	Skipjack Tuna	LC
Scombridae	Orcynopsis unicolor	Plain Bonito	LC
Scombridae	Sarda sarda	Atlantic Bonito	LC
Scombridae	Scomber colias	Atlantic Chub Mackerel	LC
Scombridae	Scomberomorus tritor	West African Spanish Macker	elLC
Scombridae	Thunnus alalunga	Albacore	NT
Scombridae	Thunnus albacares	Yellowfin Tuna	NT
Scombridae	Thunnus obesus	Bigeye Tuna	VU
Scombridae	Thunnus thynnus	Atlantic Bluefin Tuna	EN
Istiophoridae	Istiophorus platypterus	Sailfish	LC
Istiophoridae	Makaira nigricans	Blue Marlin	VU
Xiphiidae	Xiphias gladius	Swordfish	LC

Table 7: Tunas and relatives managed by the International Commission for the Conservation of Atlantic Tunas (ICCAT) present in the Eastern Central Atlantic, with common names and Red List status.

Local fishing vessels at the Elmina Fish Market in Accra, Ghana. © C. Linardich

In addition, ICCAT is also deeply involved in reducing bycatch in tuna fisheries, particularly of sharks. The diversity of non-teleost bycatch species caught and reported is vast: 12 skates and rays, 57 sharks, 37 seabirds, 5 sea turtles and 26 marine mammals. Low rates of bycatch can have disproportionate impacts on these species, as they typically have slow replacement rates.

Fishery Committee for the Eastern Central Atlantic (CECAF)

CECAF, the FAO regional fishery body responsible for Fishing Area 34, promotes a more sustainable utilization of marine resources by managing and developing fisheries within its jurisdiction, as well as directing research efforts that will promote the conservation of living marine organisms. The CECAF is responsible for providing advice for controlling surveillance measures, an important responsibility in combating IUU fishing practices that are prevalent in the region. The CECAF also attempts to encourage and facilitate the communication and exchange of information regarding fishing restrictions, rules and regulations between the sovereign nations of West Africa. Specifically, it guides the member countries in the selection of appropriate fishing gear and vessels for specific species and populations of fishes, as well as in selecting seasonal closures of fishing for certain species, including the provision of regulations for adopting and implementing regulatory measures as is necessary.

4.1.2 Local and regional conservation measures

Convention for Co-Operation in the Protection and Development of the Marine and Coastal Environment of the West and Central African Region (Abidjan Convention 1981)

This convention addresses the protection and management of the marine environment, coastal zones and inland waters of western Africa, from Mauritania to Namibia, and protects these areas from the deleterious effect of pollution to marine resources occurring within the geographic confines of the participating countries. This convention aims to reduce anthropogenic impacts to marine resources and activities, focusing on pollution and overfishing.

New Partnership for Africa's Development (NEPAD)

In 2001, a group of African country leaders established the NEPAD to address concerns about mutual accountability and coherence to policy decisions regarding the economic development of the continent. In 2005 at the Fish for All summit in Abuja, Nigeria, the NEPAD introduced the "NEPAD Action Plan for the Development of African Fisheries and Aquaculture" (NEPAD 2005a). This plan seeks to promote the reduction of poverty and increase food security and environmental sustainability of Africa's marine resources (as declared by the Abuja Declaration at the Fish for All Summit: NEPAD 2005b) by identifying, defining and supporting policies that will strengthen Africa's potential to implement responsible and functioning amendments in the governance and execution of fisheries reforms and international trade practices. One of the main ways the NEPAD deploys these implementations is by engaging with and including local fishing communities and private sector, non-governmental organization agencies (NGOs) in the policy inception and implementation phases of restructuring the fisheries and trade policies of localities, states and regions. The NEPAD also recognizes the need for long-term consideration and regulation regarding the licensure of foreign fishing vessels and fleets, as African fish stocks are finite and are undergoing rapid depletion due to over-fishing and IUU practices. The NEPAD has successfully begun to change the way the licenses to foreign vessels are sold and distributed by including the prohibition of fishing at certain times of the year, by limiting overall catch and by instituting mandatory compliance with surveillance and enforcement programs (NEPAD 2005a).

Partnership for African Fisheries (PAF)

Born of the NEPAD, the Partnership for African Fisheries (PAF) working groups (composed of African

citizens from fishing communities, industry analysts, technology experts and educational and governmental institutions) utilize a "think-tank" approach to encourage the transparent exchange of ideas and solutions for economic and environmentally-sound growth of African fisheries and international trade policies. Partnered with the World Bank's Global Program on Fisheries (PROFISH), the PAF is actively fostering the "Currents of Change" program in order to define comprehensive reform policies regarding African fisheries that reduces licensing of foreign fishing vessels in African EEZs and increases access to grants and loans for African countries to exploit ECA marine resources responsibly and sustainably.

Ministerial Conference on Fisheries Cooperation among African States Bordering the Atlantic (COMHAFAT-ATLAFCO)

ATLAFCO, better known by its French acronym COMHAFAT, is an inter-governmental organization founded in 1989. The coastal countries from Morocco to Namibia, excluding Western Sahara, form the 22 Member States. The principal purpose of this organization is to improve the conservation and sustainable development of fisheries in the region by encouraging cooperation between Member States. In particular, focus is on training, research and regulations to promote responsible fishing.

Sub-regional Fisheries Commission (SRFC)

The SRFC is an inter-governmental organization created in 1985, consisting of the countries: Cape Verde, Gambia, Guinea, Guinea Bissau, Mauritania, Senegal and Sierra Leone. The main objective of the SRFC is to facilitate and reinforce communication and cooperation between the member States regarding the exploitation and conservation of marine resources in the sub-region, to adopt scientifically sound and enforceable management practices of these resources, to increase the prevalence and effectiveness of tracing, controls and surveillance of IUU fishing vessels in the sub-region and to direct the development of fisheries research at the sub-regional

level. The SRFC strives to incorporate stakeholder involvement by strengthening and homogenizing fisheries policies and legislation at the sub-region level. The SRFC also provides leadership in program development and policy construction in the areas of access to fishing zones and traditional fishing grounds and the management of marine resource utilization in the sub-regional area. The SRFC strives to promote and require coherence to sectoral fisheries policies aimed at sustainable development and management of fisheries, as well as policies concerning trade, economic development and environmental protection. The SRFC also ensures that sub-regional adherence to international policies and conventions concerning safety at sea and resource utilization is kept to the best degree possible.

Fishery Committee of the West Central Gulf of Guinea (FCWC)

The Fishery Committee for the West Central Gulf of Guinea (FCWC) is comprised of the member states of Benin, Cote D'Ivoire, Ghana, Liberia, Nigeria and Togo. As in other sub-regional committees, the FCWC provides a forum for member states for discussion on all fishery initiatives, including the harmonization of legislation and regulations; cooperation in monitoring, control, surveillance and enforcement; and development of research capabilities and data standards. The FCWC is especially committed to the development of smallscale fishers capacity and management frameworks that ensure sustainable harvest of all living marine resources.

Regional Fisheries Commission of the Gulf of Guinea (COREP)

COREP is another inter-governmental organization established in 1984 aimed at improving coorperative management of marine (Gulf of Guinea) and inland waters of parties. In 2008 COREP was designed as a specialized agency of the Economic Community of Central African States (ECCAS). There are five Member States (Cameroon, Congo, Democratic Republic of the Congo, Gabon and São Tomé and Príncipe) and two Observer States (Angola and Equatorial Guinea). The overall objective is to assist Member States to protect and develop, sustainable, fisheries resources and to promote the development of aquaculture, with a view to maximize the use of the potentialities of aquatic environments and ensure the welfare of the greatest number of people.

4.2 Marine Protected Areas (MPAs) in West Africa

4.2.1 Regional MPAs

As of 2007, the Regional Network of MPAs in West Africa (RAMPAO) consists of 23 MPAs in six countries, including ten national parks and four reserves. RAMPAO serves to conserve representative samples of critical habitat while protecting threatened and endangered species by working in conjunction with fisheries and resource managers in the region to responsibly and coherently utilize the abundant resources of the region, while simultaneously preserving the vast and exquisite biodiversity in the ECA (Wells et al. 2008).

The Western Africa Regional Seas Programme (WARSP) has 22 participating States, of which the SRFC countries were selected in 2002 for the development of a regional strategy to put together a system of connected marine protected areas (MPAs) in the region (Wells et al. 2008). With the support of the IUCN, the Fondation Internationale du Banc d'Arguin (FIBA), the World Wildlife Fund (WWF) and Wetlands International, a system of interconnected, ecologically representative MPAs were designed in accordance with the WWF West

Elmira fish market, Accra, Ghana. © C. Linardich

Africa Ecoregion's (WAMER) mission of building "an effective network of MPAs in West Africa with participatory management, led by strong institutions contributing to the sustainable development of the region by enhancing natural and cultural diversity." The three main ecosystems targeted for protection were upwelling areas off Senegal and Mauritania, rocky island coastlines of Cape Verde and estuarinemangrove areas in Guinea and Guinea-Bissau.

of With the help 53 governmental and nongovernmental organizations agencies, and including the IUCN, WWF, FIBA, UNESCO and SRFC/CSRP, a five-year, Regional Conservation Programme for the Coastal and Marine Zone of West Africa (PRCM) strategy for the implementation of the MPA network was designed and initiated. The EU funded a project called Coherence of Conservation and Development Policies on Coastal and Marine Protected Areas (CONSDEV), which worked closely with SRFC countries to integrate local, State and regional polices with international policies to better improve the integration and connectivity of the MPAs, incorporated a means by which stakeholders could apply for the right to responsibly use resources within some of the protected areas and encouraging ecotourism that minimized damage to the MPAs.

4.2.2 National MPAs

In addition to the regional strategies for instituting MPAs in West Africa, nationally established MPAs, devised and implemented by individual countries in the ECA, are critical to the local conservation of vital marine resources. They augment existing fisheries regulations through the establishment of no-take zones and the enforcement of seasonal fishing closures activities, and they shelter vital marine habitats, such as nurseries, migration routes, spawning areas and coral reefs, amongst others. National MPAs help bolster cultural and social values in the communities around them, as the protection of natural marine resources is crucial to the livelihoods of many of the inhabitants of West Africa (PRCM 2005).

Mauritania:

The Cap Blanc Satellite Reserve was initially conceived to protect the endangered monk seals that are found there, but it is also home to a diverse collection of marine flora and cetaceans. Post-breeding migration and nesting of sea birds, especially *Sterna* spp. and *Chlidonias* spp. occurs in the reserve, and there is a high density of *Mugil* spp. and *Morone* spp. Cap Blanc Satellite Reserve has a terrestrial and marine component; the marine extent of this reserve is 4.2 km along the coast, situated between Porta Ilia in the west and Cap Blanc beach in the east.

The Banc d'Arguin National Park is 1.17 million ha, of which roughly 6,245 km² is marine. It includes 450 km² of intertidal mudflats consisting of *Zostera noltii* and *Cymodocea nodosa* seagrass beds and an abundance of marine fauna, including over 140 temperate and tropical fish species, crustaceans, molluscs, *Tursiops truncatus*, *Sousa teuszii* and *Orcinus orca*, several species of sea turtles. It is also home to one of the world's largest concentration of wintering waders, approximately 2.5 million birds. The key objectives of the Banc d'Arguin National Park are: to protect critical habitats, such as fish nurseries and spawning grounds; to preserve biological and cultural heritage and diversity; and to protect major scientific and archeological sites.

In order to protect and restore the lower Mauritanian delta ecosystems, Mauritania set up the Diawling National Park and the Chat T'Boul Reserve. This park and reserve hosts a variety of freshwater and estuarine fish species and protects vast areas of marine nursery areas and estuaries.

Senegal:

Langue de Barbarie National Park is a 2,000 ha area, located 25 km south of the town of Saint-Louis and stretching to the mouth of the Senegal River. It is composed of a barrier spit and a marine zone with fixed sand dunes on the seaward side. The Park functions mainly as a nesting site for populations of colonial birds, but it is also a nesting site for sea turtles. In a few areas of the park, there are small stands of *Avicennia* mangroves.

The Magdalen Islands National Park is found in the uninhabited islands a few km west of Dakar, with a surface area of 15 ha. It has rocky volcanic islets and steep cliffs along the shores of the islands and boasts a diverse collection of marine life. Demersal species, such as groupers (*Epinephelus* spp.), and pelagic species of barracuda proliferate the waters, and nesting birds, such as the very rare *Phaeton aethereus*, as well as *Corvus albus*, *Milvus migrans* and *Euplectes* spp. are found on the islands.

Poponguine Nature Reserve is mostly a terrestrial reserve, but it also contains a strip of marine habitat approximately one nautical mile wide. Where the terrestrial and marine areas converge, a rocky, shallow-water area provides breeding habitat for numerous marine species. Migratory marine birds also frequent the reserve between November and February.

The Saloum Delta National Park (59,934 ha) and Biosphere Reserve (222,062 ha) were initiated to protect the delta systems, restore ecosystems and preserve biological diversity. The area consists of a coastal and marine fringe, which includes sand bars and several small islands. Near the continent are tannes and mangrove stands. Between the Park and Reserve, 114 fish species from 52 families reside there, in addition to crustaceans and molluscs. Sea turtles are also present, as well as manatees, dolphins and the African clawless otter. The dominant vegetation type is mangroves.

The Gambia:

The Nuimi National Park, centered on the north bank of the River Gambia, extends from Barra Point at the mouth of the river north to the boarder and east to the upper limit of the saline intrusion. The park contains the island of Jinack and the Niji Bolon. Fishes caught in a beach seine at Labadi Beach, Ghana. © C. Linardich

The island contains extensive coastal dune areas, saltwater marshes and mangrove stands. The West African manatee (*Trichechus senegalensis*) is found there, as well as the Atlantic humpbacked dolphin, green turtles, and nearly 300 species of birds.

The Bijol Islands (the only offshore islands of Gambia) and Tanji River Bird Reserve have a total area of 612 ha. They are situated along the Atlantic coast and encompass the Tanji River and its estuary, including mangrove stands. Natural marine features include shallow, rocky reef areas and a lagoon system that changes dynamically during rain storms. The cape and lagoons provide vital feeding and roosting grounds for gulls, terns and waders. Additionally, the Bijol Islands provide the only known breeding site in the country for *Sterna caspia, Sterna maxima* and gulls at the present time. Monk seals, Atlantic humpbacked dolphins and sea turtles frequent the

islands and reserves. There is a wide variety of habitat types in the protected area for marine, estuarine and freshwater species.

The Tanbi Wetland Complex is 6,000 ha and is located on the southern bank of the River Gambia. It includes wetlands, estuaries and fringe mangrove stands. The entire southern portion of the River Gambia estuary is encompassed by this protected area and serves as a fish breeding ground for a number of species. Mangrove forests dominate the landscape.

Located on the north bank of the River Gambia, the Boa Bolon Wetland Reserve covers approximately 22,000 ha and extends from the River Gambia north to the Senegalese boarder and along the Boa Bolon tributary. The African manatee and the African clawless otter reside there, as well as tilapia and mullets. The high mangroves, permanent saltmarshes and bare tannes provide suitable habitat for a plethora of marine wildlife.

Guinea-Bissau:

The Rio Cacheu Mangrove Park is an 88,615 ha protected area, of which 68% is covered with mangrove trees. The vast mangrove area is an ideal habitat for large numbers of migratory birds during the winter months, and it provides excellent breeding and nursery grounds for numerous marine animals.

The Bolama Bijagos Archipelago Biosphere Reserve provides protection to 88 islands and islets that have a combined surface area of over 1 million ha. The seaward side is comprised of vast extenses of sandymuddy intertidal flats and channels which are fringed by mangrove forests. The archipelago is home to a wide variety of mammals, reptiles, birds and fish and is the largest nesting site on the Atlantic coast for Green sea turtles (over 7,000 nests annually). Also, the Reserve hosts nearly 800,000 wintering Palearctic waders and other colonial birds.

Orango National Park is located on the southern portion of the Bijagos archipelago, covering over 150,000 ha, including 5 large islands and 3 small ones, and having a maximum depth of 30 m throughout the entire marine area. The Park hosts and extensive mangrove forest exceeding 16,000 ha. It is responsible for a multitude of primary ocean resource production and provided critical breeding areas for numerous fish and shellfish species. Five sea turtle species occur in the park., and it also has a rich fish and invertebrate fauna. The African clawless otter, African manatee, the Atlantic humpbacked dolphin and the Bottlenose dolphin are all found there.

João Vieira-Poilão Islands Marine National Park is a 49,500 ha protected area that mainly consists of 4 main islands and 3 small islands. There are mangrove forests in the intertidal zone, and the island beaches are ideal for nesting sea turtles, such as the green turtle, Atlantic hawksbill turtle and the Olive Ridley turtle. The fish fauna in the Park is also abundant and diverse, and it is the breeding ground for a large fisheating bird community.

Nigeria:

Established in 1991 by the Federal Government of Nigeria, the Cross River National Park is a 1,000 km² protected area. It consists primarily of terrestrial rain forests, but the southern portion of the park also protects mangrove swamps and coastal fringes (Ezebilo and Mattsson 2010).

Gabon:

In late 2014, Gabonese President Ali Bongo Ondimba announced that Gabon is in the process of designating 46,000 km² as a marine protected area. This constitutes nearly 25% of Gabon's EEZ within which no commercial fishing will be allowed. This new MPA will protect threatened species such as hammerhead sharks, tiger sharks, manta rays, whale sharks, humpback dolphin, humpback whales and four species of marine turtles.

4.3 IUCN Red List versus Priority for Conservation Action

The results of this IUCN Red List initiative in the ECA should inform future conservation actions in the region, but should not be used in place of a regional conservation prioritization process. IUCN Red List assessments consider only one of a number of important variables for setting conservation priorities: relative extinction risk. How these other variables, including economic, social, political, and cultural factors, are used to supplement the information provided by IUCN Red List assessments to define conservation priorities is for the local and regional management authorities to determine.

5. Recommendations

5.1 Recommendations for Management and Policy

Fishery and marine resource management in West Africa is complicated due to the number of governments, languages and ministries involved. The jurisdictional landscape differs by country, and coordinating management goals and policies is challenging. In many countries, limited surveillance and enforcement capacity leads to illegal fishing and overfishing, which imperils regional management efforts. National management capacities are also constrained by their inability to limit entry of national and international fleets into fisheries and to control the type of fishing gear used. Overall, great needs exist for strengthening governance and increasing capacity, for training and resources for improved management and for the reduction of illegal and unregulated fishing activities.

5.2 Recommendations for Marine Protected Areas and Conservation Action

A number of marine and coastal protected areas have been established in the region to limit harvesting of coastal resources and ensure their sustainable utilization. Many of these sites were established to conserve biodiversity by providing refuge for marine fauna and flora and undisturbed sites for research, monitoring, education and tourism. Many of these protected areas lack capacity, funding, infrastructure and governance for effective enforcement and conservation. A number of Ramsar and World Heritage sites have also been designated or proposed for protection of these resources. However, many regions are still lacking in marine or coastal projected areas. For example, 71 priority biodiversity areas have been identified in the region, many of which have not been formally designated

Ophioblennius atlanticus (Redlip Blenny) assessed as Least Concern. © Q. Muñoz

(Armah 2006). As is increasingly occurring in other regions, the creation of spawning reserves and other spatial tools to protect species with aggregating spawners from highly concentrated overfishing is recommended.

Equally as important as strengthening local and national efforts to improve marine protected area designation and management, is the need for improved transboundary collaboration on shared fish stocks, regional data management and the creation of marine protected area networks.

5.3 Recommendations for Research and Training

Research capacity in much of the region is so limited as to be unable to conduct stock assessments

or report on trends. There is a great research need to better quantify the impacts of local, national and regional fishery efforts on targeted and nontargeted species, including the identification of important spawning aggregations and spawning grounds by enhanced outreach with fishers (e.g., Lindeman et al. 2000, Heyman and Kjerfve 2008). Industrial challenges in West Africa that could benefit from research to implement affordable, culturally-appropriate and sustainable solutions include: the lack of access to credit and financing, weak cold storage infrastructure, poor transportation infrastructure, inefficient and outdated equipment, lack of knowledge about export standards and weak industrial organization. Additionally, taxonomic expertise as well as museums and other educational or scientific depositories of marine biodiversity are very few or non-existent in most countries.

Drying fishes at the Elmina fish market in Accra, Ghana. © C. Lindardich

Of particular importance is the need to train more key scientists and middle level practitioners on taxonomic identification techniques. Although availability of the updated FAO Living Marine Resources of the Eastern Central Atlantic will greatly aid in providing an updated taxonomic indentification guide, fishery biologists and practitioners in the region need additional training to be able to use identification keys correctly and understand taxonomic limitations. In many cases, fishes being recorded in landings, fish markets, academic surveys and other instances are incorrectly identified, compounding the difficulties of understanding species distributions and population trends. Similarly, the vast majority of fishery landings are reported by family or genus, which does not easily allow for adequately quantifying the impacts of threats on individual species.

5.4 The future: IUCN Red List Assessments and Key Biodiversity Areas

Our initiative in the ECA is part of a broader program, the Global Marine Species Assessment (http://sci.odu. edu/gmsa/), to increase the representation of marine species on the IUCN Red List of Threatened Species. The program's primary goal is to assess 20,000 marine species against the IUCN Red List Categories and Criteria with the objective of substantially improving global marine biodiversity conservation. To date, over 11,000 marine species assessments are publicly available at www.iucnredlist.org, including the nearly 1,300 marine bony fishes present in West Africa.

An essential next step in the ECA is the identification of Key Biodiversity Areas (KBAs). KBAs produce a science-based method of effectively prioritizing spatial conservation action towards the mitigation, regulation, or cessation of threats impacting marine species (Edgar et al. 2008b). Building upon the concepts formalized by BirdLife International to identify site-scale conservation targets as Important Bird Areas (IBAs), KBAs can be designated as targets needing conservation action to protect biodiversity with a larger taxonomic scope (Eken et al. 2004). The process relies on the ability to quantify the irreplaceability and vulnerability of each species. The IUCN Red List assessments completed during this project would provide essential information for both essential components: the accumulated data on species distributions will inform the irreplaceability and the IUCN Red List category will identify species that are globally threatened (Eken et al. 2004). Despite widespread recognition of increasing threats in the marine realm, very few marine KBA analyses have been conducted to date, specifically in the Philippines (Ambal et al. 2012), Melanesia (Bass et al. 2011) and the Eastern Tropical Pacific (Edgar et al. 2008a); although these KBA analyses represent a wide geographic coverage, there have been limited taxonomic and region-wide coverage in these analyses (Foster et al. 2012). Through the assessment of the diverse bony fishes in the region, data on all marine vertebrates, as well as habitatforming plants (mangroves and seagrasses), reefforming corals and important invertebrates (e.g., cephalopods and lobsters) are now available to inform the identification of regional KBAs and enhance marine spatial planning.

Traditional West African cuisine provided during the Red List assessment workshop in Libreville, Gabon. © B. Polidoro

5. References

- Adams, A.J., Horodysky, A.Z., McBride, R.S., Guindon, K., Shenker, J., MacDonald, T.C., Harwell, H.D., Ward, R. and Carpenter, K., 2014. Global conservation status and research needs for tarpons (Megalopidae), ladyfishes (Elopidae) and bonefishes (Albulidae). Fish and Fisheries, 15(2), pp.280-311. doi: http://dx.doi.org/10.1111/ faf.12017.
- Ajao, E., Awosika, L., Diop, S., Koranteng,
 K., Soumare, A., & Snoussi, M. 2009. AoA
 Region: Western African Seas in UNEP and the
 Intergovernmental Oceanographic Commission of
 UNESCO/Dewa regional reports. An Assessment
 of Assessments, Findings of the Group of Experts.
 Start-up Phase of a Regular Process for Global
 Reporting and Assessment of the State of the
 Marine Environment including Socio-economic
 Aspects, pp.217–230.
- Ajay, T.O. 1994. The status of marine fisheries resources of the Gulf of Guinea. In: Proc. 10th Session FAO, CECAF, Accra, Ghana, 10-13 October 1994, pp.10-13.
- Ambal, R.G.R., Duya, M.V., Cruz, M.A., Coroza, O.G., Vergara, S.G., De Silva, N., Molinyawe, N. and Tabaranza, B., 2012. Key biodiversity areas in the Philippines: priorities for conservation. Journal of Threatened Taxa, 4(8), pp.2788-2796. doi: http://dx.doi.org/10.11609/JoTT.o2995.2788-96.
- Armah, A. K. (2006): Biodiversity status of the Guinea Current Large Marine Ecosystem, 54 pp.
- Atta-Mills, J., Alder, J. and Rashid Sumaila, U., 2004. The decline of a regional fishing nation: the case of Ghana and West Africa. Natural Resources Forum, 28(1), pp.13-21. doi: http://dx.doi. org/10.1111/j.0165-0203.2004.00068.x.
- Báez, J.C., Macías, D., García-Barcelona, S. and Real, R., 2014. Interannual differences for sea turtles bycatch in Spanish longliners from Western Mediterranean Sea. The Scientific World Journal, 2014(1), pp.1-7. doi: http://dx.doi. org/10.1155/2014/861396.
- Bass, D., Anderson, P. and De Silva, N., 2011. Applying thresholds to identify key biodiversity areas for marine turtles in Melanesia. Animal Conservation, 14(1), pp.1-11. doi: http://dx.doi. org/10.1111/j.1469-1795.2010.00385.x.
- Bejarano, S., Lohr, K., Hamilton, S. and Manfrino, C., 2015. Relationships of invasive lionfish with topographic complexity, groupers, and native prey fishes in Little Cayman. Marine Biology, 162(2),

pp.253-266. doi: http://dx.doi.org/10.1007/ s00227-014-2595-3.

- Belhabib, D., Koutob, V., Sall, A., Lam, V.W.Y. and Pauly, D., 2014. Fisheries catch misreporting and its implications: The case of Senegal. Fisheries Research, 151(1), pp. 1–11. doi: http://dx.doi. org/10.1016/j.fishres.2013.12.006.
- Ben Rais Lasram, F.R.I.D.A., Guilhaumon, F., Albouy, C., Somot, S., Thuiller, W. and Mouillot, D., 2010. The Mediterranean Sea as a 'cul-desac' for endemic fishes facing climate change. Global Change Biology, 16(12), pp.3233-3245. doi: http://dx.doi.org/10.1111/j.1365-2486.2010.02224.x
- Briggs, J.C., 1974. Marine zoogeography. the University of California. McGraw-Hill. New York. 475 pp.
- Bruun, A.F. Scientific Results of the Danish Expedition to the Coasts of Tropical West Africa 1945—46. Atlantide-Report, No. 1, 247 pp., 86 figs. Published on behalf of the University of Copenhagen and the British Museum (Natural History), London. Danish Science Press, Ltd., Copenhagen, 1950.
- Butchart, S.H., Stattersfield, A.J., Bennun, L.A., Shutes, S.M., Akçakaya, H.R., Baillie, J.E., Stuart, S.N., Hilton-Taylor, C. and Mace, G.M., 2004. Measuring global trends in the status of biodiversity: Red List Indices for birds. PLoS Biol, 2(12), p.e383. doi: http://dx.doi.org/10.1371/ journal.pbio.0020383.
- Butchart, S.H., Stattersfield, A.J., Baillie, J., Bennun, L.A., Stuart, S.N., Akçakaya, H.R., Hilton-Taylor, C. and Mace, G.M., 2005. Using Red List Indices to measure progress towards the 2010 target and beyond. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1454), pp.255-268. doi: http://dx.doi.org/10.1098/rstb.2004.1583.
- Carpenter, K. and De Angelis, N., in press. The living marine resources of the Eastern Central Atlantic. FAO species identification guide for fishery purposes. (Vol 2-4). Rome. FAO.
- Carpenter, K. and De Angelis, N., 2014. The living marine resources of the Eastern Central Atlantic. FAO species identification guide for fishery purposes. (Vol 1). Rome. FAO. 680 p.
- Carpenter, K.E., Smith-Vaniz, W.F., de Bruyne, G. and de Morais, L., 2015. *Priolepis ascensionis*. The IUCN Red List of Threatened Species 2015: e.T60482909A60789986. doi: http://

dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS. T60482909A60789986.en.

- Carney, J., Gillespie, T.W. and Rosomoff, R., 2014. Assessing forest change in a priority West African mangrove ecosystem: 1986–2010. Geoforum, 53. pp. 126–135. doi: http://dx.doi.org/10.1016/j. geoforum.2014.02.013.
- CITES., 1973. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). URL: https://www.cites.org/eng/app/ appendices.php
- Clinton, H.I., Ujagwung, G.U. and Horsfall, M., 2009. Evaluation of total hydrocarbon levels in some aquatic media in an oil polluted mangrove wetland in the Niger Delta. Applied Ecology and Environmental Research, 7(2), pp.111-120. doi: http://dx.doi.org/10.15666/aeer/0702_111120
- Collette, B.B., Carpenter, K.E., Polidoro, B.A., Juan-Jordá, M.J., Boustany, A., Die, D.J., Elfes, C., Fox, W., Graves, J., Harrison, L.R. and McManus, R., 2011. High value and long life double jeopardy for tunas and billfishes. Science, 333(6040), pp.291-292. doi: http://dx.doi. org/10.1126/science.1208730.
- Comeros-Raynal M., Polidoro B., Broatch J., Mann B, Gorman C., Buxton C., Goodpaster A., Iwatsuki Y., McDonald T., Pollard D., Russell B., Carpenter K., In Review. Predictors, Patterns and Processes of Extinction Risk in Porgies. Biological Conservation.
- Comeros-Raynal, M.T., Choat, J.H., Polidoro, B.A., Clements, K.D., Abesamis, R., Craig, M.T., Lazuardi, M.E., McIlwain, J., Muljadi, A., Myers, R.F. and Nañola Jr, C.L., 2012. The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes. PLoS One, 7, p.e39825. doi: http:// dx.doi.org/10.1371/journal.pone.0039825.g006.
- Craig, M.T. 2011. Epinephelus itajara. The IUCN Red List of Threatened Species 2011: e.T195409A8961414. http://www.iucnredlist.org/ details/195409/0.
- Davies, S., Hjort, A., Boyer, H. and Sheridan, S., 2014. Gap analysis of national and regional fisheries and aquaculture priorities and initiatives in Western and Central Africa in respect to climate change and disasters. FAO Fisheries and Aquaculture Circular. 1094. Rome, FAO. 122 p.
- de Grammont, P.C. and Cuarón, A.D., 2006. An evaluation of threatened species categorization systems used on the American continent. Conservation Biology, 20(1), pp.14-27. doi: http:// dx.doi.org/10.1111/j.1523-1739.2006.00352.x.

- Dulvy, N.K., Jennings, S., Goodwin, N.B., Grant, A. and Reynolds, J.D., 2005. Comparison of threat and exploitation status in North-East Atlantic marine populations. Journal of Applied Ecology, 42(5), pp.883-891. doi: http://dx.doi.org/10.1111/ j.1365-2664.2005.01063.x.
- Dulvy, N.K., Pinnegar, J.K. and Reynolds, J.D., 2009. Holocene extinctions in the sea. In Holocene extinctions. Oxford University Press. Oxford, England. pp.129-150. doi: http://dx.doi.org/10.1093/acprof:o so/9780199535095.003.0006.
- Edgar, G.J., Banks, S., Bensted-Smith, R., Calvopiña, M., Chiriboga, A., Garske, L.E., Henderson, S., Miller, K.A. and Salazar, S., 2008a. Conservation of threatened species in the Galapagos Marine Reserve through identification and protection of marine key biodiversity areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(6), pp.955-968. doi: http://dx.doi. org/10.1002/aqc.901.
- Edgar, G.J., Langhammer, P.F., Allen, G., Brooks, T.M., Brodie, J., Crosse, W., De Silva, N., Fishpool, L.D., Foster, M.N., Knox, D.H. and Mccosker, J.E., 2008b. Key biodiversity areas as globally significant target sites for the conservation of marine biological diversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(6), pp.969-983. doi: http://dx.doi. org/10.1002/aqc.902.
- Edwards, A.J., Gill, A. and Abohweyere, P.O., 2001. A revision of Irvine's marine fishes of tropical West Africa. Darwin Initiative Report, 2, 157 p.
- Eken, G., Bennun, L., Brooks, T.M., Darwall, W., Fishpool, L.D., Foster, M., Knox, D., Langhammer, P., Matiku, P., Radford, E. and Salaman, P., 2004. Key biodiversity areas as site conservation targets. BioScience, 54(12), pp.1110-1118. doi: http://dx.doi.org/10.1641/0006-3568(2004)054[1110:KBAASC]2.0.CO;2.
- Ezebilo, E.E. and Mattsson, L., 2010. Socioeconomic benefits of protected areas as perceived by local people around Cross River National Park, Nigeria. Forest Policy and Economics, 12(3), pp.189-193. doi: http://dx.doi.org/10.1016/j. forpol.2009.09.019.
- Failler, P. 2014. Climate Variability and Food Security in Africa: The Case of Small Pelagic Fish in West Africa. Journal of Fisheries & Livestock Production 02(02). pp. 1-7. doi:10.4172/2332-2608.1000122.
- FAO, 2000. State of the World's Fisheries and Aquaculture. Fisheries and Aquaculture Department, Rome, FAO. 158 p.

FAO, 2006. Programa de Información de Especies Acuáticas. In: FAO (ed.), Fisheries and Aquaculture Department, Rome.

FAO, 2007. The World's Mangroves 1980–2005. FAO Forestry Paper 153, Rome, FAO. 89 p.

FAO, 2011. The Fishery Committee for the Eastern Central Atlantic, Report of the Sixth Session of the Scientific Sub-Committee. FAO Fisheries and Aquaculture Report, No. 985. FAO, Accra, Ghana. 7-9 September 2011. 90 p.

FAO, 2013. FAO Working Group on the Assessment of Small Pelagic Fish off Northwest Africa. FAO Fisheries and Aquaculture, Report No. 1036. FAO, Dakar, Senegal. 21-25 May 2012. p. 256.

Feary, D.A., Pratchett, M.S., J Emslie, M., Fowler, A.M., Figueira, W.F., Luiz, O.J., Nakamura, Y. and Booth, D.J., 2014. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish and Fisheries, 15(4), pp.593-615. doi: http://dx.doi.org/10.1111/faf.12036.

Feka, Z.N., 2015. Sustainable management of mangrove forests in West Africa: A new policy perspective?. Ocean & Coastal Management, 116, pp.341-352. doi: 10.1016/j. ocecoaman.2015.08.006.

Feka, N.Z. and Ajonina, G.N., 2011. Drivers causing decline of mangrove in West-Central Africa: a review. International Journal of Biodiversity Science, Ecosystem Services & Management, 7(3), pp.217-230. doi: http://dx.doi. org/10.1016/j.ocecoaman.2015.08.006.

Ferrari, M., Munday, P.L., Rummer, J.L., McCormick, M.I., Corkill, K., Watson, S.A., Allan, B.J., Meekan, M.G. and Chivers, D.P., 2015. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Global change biology, 21(5), pp.1848-1855. doi: http://dx.doi.org/10.1111/gcb.12818.

Fischer, W., Bianchi, G. & Scott, W.B., eds. 1981. FAO Species identification guide for fishery purposes. Eastern Central Atlantic (Fishing Areas 34 and 47; in part). Canada Funds-in-Trust. Ottawa, Department of Fisheries and Oceans, Canada, by arrangement with the Food and Agriculture Organization of the United Nations. Vol. 1–7.

Floeter, S.R., Rocha, L.A., Robertson, D.R., Joyeux, J.C., Smith-Vaniz, W.F., Wirtz, P., Edwards, A.J., Barreiros, J.P., Ferreira, C.E.L., Gasparini, J.L. and Brito, A., 2008. Atlantic reef fish biogeography and evolution. Journal of Biogeography, 35(1), pp.22-47. doi: http://dx.doi. org/10.1111/j.1365-2699.2007.01790.x. Foster, M.N., Brooks, T.M., Cuttelod, A., De Silva, N., Fishpool, L.D., Radford, E.A. and Woodley, S., 2012. The identification of sites of biodiversity conservation significance: progress with the application of a global standard. Journal of Threatened Taxa, 4(8), pp.2733-2744. doi: http:// dx.doi.org/10.11609/JoTT.o3079.2733-44.

Gaffer, J.A., 1994. Fish production and the Nigerian environment, status, opportunities, threats. A keynote address presented at the 11th Annual Conference of Fisheries Society of Nigeria, Lagos, 22-24 February 1994.

GCLME, 2008. Strategic Action Programme: Guinea Current Large Marine Ecosystem Programme. Guinea Current Commission. 76 p.

Gourène, G. and Teugels, G.G. 1991., Rèvision du genre Pellonula des eaux douces africaines (Pisces: Clupeidae). Ichthyological Exploration of Freshwaters, 2(3), pp. 213-225.

Harnik, P.G., Lotze, H.K., Anderson, S.C., Finkel, Z.V., Finnegan, S., Lindberg, D.R., Liow, L.H., Lockwood, R., McClain, C.R., McGuire, J.L. and O'Dea, A., 2012. Extinctions in ancient and modern seas. Trends in Ecology and Evolution, 27(11), pp.608-617. doi: http://dx.doi. org/10.1016/j.tree.2012.07.010.

Heyman, W.D. and Kjerfve, B., 2008. Characterization of transient multi-species reef fish spawning aggregations at Gladden Spit, Belize. Bulletin of Marine Science, 83(3), pp.531-551.

Hoffmann, M., Brooks, T.M., da Fonseca, G.A., Gascon, C., Hawkins, A.F.A., James, R.E., Langhammer, P., Mittermeier, R.A., Pilgrim, J.D., Rodrigues, A.S.L. and Silva, J.M.C., 2008. Conservation planning and the IUCN Red List. Endangered Species Research, 6(2), pp.113-125. doi: http://dx.doi.org/10.3354/esr00087.

Hutton, T., Griffiths, M.H., Sumaila, U.R. and Pitcher, T.J., 2001. Cooperative versus noncooperative management of shared linefish stocks in South Africa: an assessment of alternative management strategies for geelbek (Atractoscion aequidens). Fisheries research, 51(1), pp.53-68. doi: http://dx.doi.org/10.1016/S0165-7836(00)00231-9.

ISSF, 2015. ISSF Tuna Stock Status Update, 2015: Status of the world fisheries for tuna. ISSF Technical Report 2015-03A, International Seafood Sustainability Foundation, Washington, DC, USA.

IUCN, 2001. Species Survival Commission. IUCN Red List categories and criteria. International Union for Conservation of Nature. IUCN, 2011. Guidelines for appropriate uses of IUCN Red List Data, Version 2. International Union for Conservation of Nature.

IUCN, 2012a. Guidelines for application of IUCN Red List criteria at regional and national levels, Version 4.0. International Union for Conservation of Nature.

IUCN, 2012b. Metadata: Digital Distribution Maps on The IUCN Red List of Threatened Species[™], Version 4. International Union for Conservation of Nature

IUCN 2015. The IUCN Red List of Threatened Species. Version 2015-4. http://www.iucnredlist.org. International Union for Conservation of Nature.

IUCN, 2014. Species Survival Commission. Guidelines for Using the IUCN Red List Categories and Criteria. International Union for Conservation of Nature.

Johnson, G.D., Paxton, J.R., Sutton, T.T., Satoh, T.P., Sado, T., Nishida, M. and Miya, M., 2009. Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families. Biology Letters, 5(2), pp.235-239. doi: http://dx.doi.org/10.1098/ rsbl.2008.0722.

Joyeux, J.-C., Floeter, S.R., Ferreira, C.E.L. and Gasparini, J.L., 2001. Biogeography of tropical reef fishes: the South Atlantic puzzle. Journal of Biogeography 28, pp.831–841. doi: http://dx.doi. org/10.1046/j.1365-2699.2001.00602.x.

Kimball, L.A., 2003. International ocean governance: using international law and organizations to manage marine resources sustainably. IUCN, Gland, Switzerland and Cambridge, UK, pp. xii + 124.

Knudsen, S.W. and Clements, K. 2013. Revision of the family Kyphosidae (Teleostei, Perciformes). Zootaxa, 3751, pp1-101. doi: http://dx.doi. org/10.11646/zootaxa.3751.1.1.

Lindeman, K.C., Pugliese, R., Waugh, G.T. and Ault, J.S., 2000. Developmental patterns within a multispecies reef fishery: management applications for essential fish habitats and protected areas. Bulletin of Marine Science, 66(3), pp.929-956.

Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Tyaylor, C., Akçakaya, H.R., Leader-Williams, N., Milner-Gulland, E.J. and Stuart, S.N., 2008. Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology, 22(6), pp.1424-1442. doi: http://dx.doi. org/10.1111/j.1523-1739.2008.01044.x. Meiners, C., Fernández, L., Salmerón, F. and Ramos, A., 2010. Climate variability and fisheries of black hakes (Merluccius polli and Merluccius senegalensis) in NW Africa: A first approach. Journal of Marine Systems, 80(3), pp.243-247. doi: http://dx.doi.org/10.1016/j. jmarsys.2009.10.013.

Mensah, M.A. and Quaatey, S.N.K., 2002. 17 An overview of the fishery resources and fishery research in the gulf of guinea. Large Marine Ecosystems, 11, pp. 227- 239. doi: http://dx.doi. org/10.1016/S1570-0461(02)80039-8.

Moses, B.S., 2000. A review of artisanal marine and brackishwater fisheries of south-eastern Nigeria. Fisheries research, 47(1), pp.81-92. doi: http:// dx.doi.org/10.1016/S0165-7836(99)00133-2.

Neiland, A.E., 2006. Contribution of fish trade to development, livelihoods and food security in West Africa: Key issues for future policy debate. Portsmouth, UK: IDDRA Ltd.

Nelson, J.S. 2006. Fishes of the World. New Jersey: John Wiley & Sons, Inc. pp. 601

NEPAD, 2005a. The NEPAD Action Plan for the Development of African Fisheries and Aquaculture. 23 August 2005. The New Partnership for Africa's Development. p. 30.

NEPAD, 2005b. Abuja Declaration on Sustainable Fisheries and Aquaculture in Africa. Fish for All Summit. Abuja, Nigeria. 25 August 2005. New Partnership for Africa's Development. p. 3.

Neubauer, P., Jensen, O.P., Hutchings, J.A., and Baum, J.K. 2013. Resilience and Recovery of Overexploited Marine Populations. Science 340(6130), pp.347–349. doi: http://dx.doi. org/10.1126/science.1230441.

Nunoo, F. & Nascimento, J., 2015. Pseudotolithus senegalensis. The IUCN Red List of Threatened Species 2015: e.T49217798A49222499. doi: http://dx.doi.org/10.2305/IUCN.UK.2015-4. RLTS.T49217798A49222499.en.

Nwilo, P.C. and Badejo, O.T., 2006. Impacts and management of oil spill pollution along the Nigerian coastal areas. Administering Marine Spaces: International Issues, 119, p. 15.

Pauly, D. and Zeller, D., 2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature communications, 7(10244). p. 9. doi: http://dx.doi.org/10.1038/ncomms10244.

Perry, A.L., Low, P.J., Ellis, J.R. and Reynolds, J.D., 2005. Climate change and distribution shifts in marine fishes. Science, 308(5730), pp.1912-1915. doi: http://dx.doi.org/10.1126/science.1111322.

Pinsky, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L. and Levin, S.A., 2013. Marine taxa track local climate velocities. Science, 341(6151), pp.1239-1242. doi: http://dx.doi.org/10.1126/science.1239352.

Polidoro, B.A., Carpenter, K.E., Collins, L., Duke, N.C., Ellison, A.M., Ellison, J.C., Farnsworth, E.J., Fernando, E.S., Kathiresan, K., Koedam, N.E. and Livingstone, S.R., 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. PloS one, 5(4), p.e10095. doi: http://dx.doi.org/10.1371/journal. pone.0010095.

Polidoro, B. A., J. Williams, W. Smith-Vaniz and K. E. Carpenter. 2014. Potential impact of climate change on the world's blenniods. Poster presented at the International Marine Conservation Congress, 14-18 August 2014, Glasglow, Scotland.

PRCM, 2005. A Regional Strategy for Marine Protected Areas in West Africa. Regional Partnership for Coastal and Marine Conservation in Western Africa. 75 p.

Quéro, J.C., Hureau, J.C., Karrer, C., Post, A. and Saldana, L. (eds.), 1990. Check-list of the fishes of the eastern tropical Atlantic: Catalogue des poissons de l'Atlantique oriental tropical: Clofeta. Unesco.

Ramcharitar, J., Gannon, D.P. and Popper, A.N., 2006. Bioacoustics of fishes of the family Sciaenidae (croakers and drums). Transactions of the American Fisheries Society, 135(5), pp.1409-1431. doi: http://dx.doi.org/10.1577/T05-207.1.

Regan, T.J., Burgman, M.A., McCarthy, M.A., Master, L.L., Keith, D.A., Mace, G.M. and Andelman, S.J., 2005. The consistency of extinction risk classification protocols. Conservation Biology, 19(6), pp.1969-1977. doi: 10.1111/j.1523-1739.2005.00235.x.

Roberts, C.M. and Hawkins, J.P., 1999. Extinction risk in the sea. Trends in Ecology and Evolution, 14(6), pp.241-246. doi: http://dx.doi.org/10.1016/ S0169-5347(98)01584-5.

Rocha, L.A., Aleixo, A., Allen, G., Almeda, F., Baldwin, C.C., Barclay, M.V., Bates, J.M., Bauer, A.M., Benzoni, F., Berns, C.M. and Berumen, M.L., 2014. Specimen collection: an essential tool, Science, 344(6186), p.814-815. doi: http:// dx.doi.org/10.1126/science.344.6186.814.

Rodrigues, A.S., Pilgrim, J.D., Lamoreux, J.F., Hoffmann, M. and Brooks, T.M., 2006. The value of the IUCN Red List for conservation. Trends in Ecology and Evolution, 21(2), pp.71-76. doi: http://dx.doi.org/10.1016/j.tree.2005.10.010. Rutterford, L.A., Simpson, S.D., Jennings, S., Johnson, M.P., Blanchard, J.L., Schön, P.J., Sims, D.W., Tinker, J. and Genner, M.J., 2015. Future fish distributions constrained by depth in warming seas. Nature Climate Change, 5(6), pp.569-573. doi: http://dx.doi.org/10.1038/nclimate2607.

Sadovy, Y. and Eklund, A.M., 1999. Synopsis of biological data on the Nassau grouper, *Epinephelus striatus* (Bloch, 1792), and the jewfish, *E. itajara* (Lichenstein, 1822), NOAA Technical Report NMFS 146, A technical report of the Fishery Bulletin, FAO Fisheries Synopsis 157, p. 68.

Sadovy de Mitcheson, Y., Craig, M.T., Bertoncini, A.A., Carpenter, K.E., Cheung, W.W., Choat, J.H., Cornish, A.S., Fennessy, S.T., Ferreira, B.P., Heemstra, P.C. and Liu, M., 2013. Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish and fisheries, 14(2), pp.119-136. doi: http://dx.doi.org/10.1111/j.1467-2979.2011.00455.x.

Schofield, P.J., 2009. Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea. Aquatic Invasions, 4(3), pp.473-479. doi: 10.3391/ai.2009.4.3. doi: http://dx.doi. org/10.3391/ai.2009.4.3.

Schwartz, M.T. (ed.). 2006. Encyclopedia of Coastal Science, Springer. Springer Netherlands. Dordrecht, Netherlands, p. 1213.

Smith, G.B., 1976. The impact of fish-killing phytoplankton blooms upon mideastern Gulf of Mexico reeffish communities. Reprinted from the Proceedings of Colloquium on Snapper-Grouper Fishery Resources of the Western Central Atlantic Ocean (Bullis, H. and Jones, A. (eds.), Florida Sea Grant College Program, No. 17, Nov. 1976. p. 8.

Smith, W.L. and Craig, M.T. 2007. Casting the Percomorph new widely: the importance of broad taxonomic sampling in the search for the placement of serranid and percid fishes. Copeia 2007(1), pp. 35-55. doi: http://dx.doi. org/10.1643/0045-8511(2007)7[35:CTPNWT]2.0 .CO;2.

Smith-Vaniz, W.F. and Carpenter, K.E., 2007. Review of the crevalle jacks, Caranx hippos complex (Teleostei: Carangidae), with a description of a new species from West Africa. Fishery Bulletin, 105(2), pp. 207-233.

Spalding, M., Ravilious, C. and Green, E.P., 2001. World atlas of coral reefs. Univ of California Press, Berkley and Los Angeles, CA; London, England, p. 428. Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M.A.X., Halpern, B.S., Jorge, M.A., Lombana, A.L., Lourie, S.A. and Martin, K.D., 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57(7), pp.573-583. doi: http:// dx.doi.org/10.1641/B570707.

Spalding, M., Kainuma, M. and Collins, L., 2010. World Atlas of Mangroves. Earthscan, London, UK. p. 319.

Srinivasan, U.T., Watson, R. and Sumaila, U.R., 2012. Global fisheries losses at the exclusive economic zone level, 1950 to present. Marine Policy, 36(2), pp.544-549. doi: http://dx.doi.org/10.1016/j.marpol.2011.10.001.

Stiassny, M., Teugels, G. and Hopkins, C., 2007. Fresh and Brackish Water Fishes of Lower Guinea, West-Central Africa. Vol. 42. Institut de recherche pour le développement, Cornell Universiy. p. 800.

Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L. and Waller, R.W., 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), pp.1783-1786. doi: http://dx.doi. org/10.1126/science.1103538.

Trainer, V.L., Pitcher, G.C., Reguera, B. and Smayda, T.J., 2010. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Progress in Oceanography, 85(1), pp.33-52. doi: http://dx.doi. org/10.1016/j.pocean.2010.02.003.

Udoh, J.P., Brownson, I., Udo, M.T. and Ofor, C., 2013. Population dynamics of mudskipper, Periophthalmus barbarus (Linneaus 1766) (Teleostei: Gobiidae) in the artisanal fishery of Imo river estuary, southeast Nigeria. Journal of Fisheries and Aquaculture, 4(3), pp.148-153.

Ukaonu, S.U., Mbawuike, B.C., Oluwajoba, E.O. and Williams, A.B., 2011. Volume and value of ornamental fishes in the Nigerian export trade. Agriculture and Biology Journal of North America, 2(4), pp.661-664. doi: http://dx.doi. org/10.5251/abjna.2011.2.4.661.664.

Ukwe, C.N., Isebor, C.E. and Alo, B.I., 2001, July. Improving the quality of Coastal waters in the Gulf of Guinea large marine ecosystem through mangrove restoration. In Proceedings of the 12th Biennial Coastal Zone Conference, Cleveland, Ohio. 15-19 July, p. 6.

Ukwe, C.N., Ibe, C.A., Nwilo, P.C. and Huidobro, P.A., 2006. Contributing to the WSSD targets on oceans and coasts in west and central Africa: The Guinea Current large marine ecosystem project. International Journal of Oceans and Oceanography, 1(1), pp.21-44.

Ukwe, C.N. and Ibe, C.A., 2010. A regional collaborative approach in transboundary pollution management in the Guinea Current region of western Africa. Ocean & Coastal Management, 53(9), pp.493-506. doi: http://dx.doi. org/10.1016/j.ocecoaman.2010.06.021.

Wang, J., Kiho, K., Ofiara, D., Zhao, Y., Bera, A., Lohmann, R. and Baker, M.C., 2016. Chapter 25: Marine Debris. Pp. 698–731 in Global Reporting and Assessment of the State of the Marine Environment, United Nations Division for Ocean Affairs and the Law of the Sea.

Wells, S., Sheppard, V., Van Lavieren, H., Barnard, N., Kershaw, F., Corrigan, C., Teleki, K., Stock, P. and Adler, E., 2008. UNEP-WCMC. National and regional networks of marine protected areas: a review of progress. Master Evaluation for the UN Effort. World Conservation Monitoring Centre, Cambridge, UK. p. 156.

Whitehead, P.J.P. 1985. FAO species catalogue.
Vol. 7. Clupeoid fishes of the world (suborder Clupeioidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings.
British Museum of Natural History. FAO Fishery Synopsis, p. 303.

Williams, F. 1968. Report on the Guinean Trawling Survey, Lagos. 3 volumes. Vol. I, General Report, p. 828; vol. II, Environmental Charts, p. 529; vol. III, Data Report, p. 551. Organization of African Unity, Scientific, Technical and Research Commission.

Wirtz, P. and Schliewen, U.K., 2012. A new species of Liopropoma Gill, 1862 from the Cape Verde Islands, Eastern Atlantic. Spixiana, 35(1), pp.149-154.

Wirtz, P., 2014. A new species of Malacoctenus from the Cape Verde Islands, eastern Atlantic (Pisces Teleostei, Labrisomidae). Arquipélago. Life and Marine Science, 31, pp.15-20.

Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S., Costello, C., Fogarty, M.J., Fulton, E.A., Hutchings, J.A., Jennings, S. and Jensen, O.P., 2009. Rebuilding global fisheries. Science, 325(5940), pp.578-585. doi: 10.1126/ science.1173146. Zwolinski, J.P. and Demer, D.A., 2012. A cold oceanographic regime with high exploitation rates in the Northeast Pacific forecasts a collapse of the sardine stock. Proceedings of the National Academy of Sciences, 109(11), pp.4175-4180. doi :http://dx.doi. org/10.1126/science.1173146.

Appendix 1. Red List status of Eastern Central Atlantic marine fishes

Table A1.1 Red List status of marine fishes (listed alphabetically by Order, Family, and Species). Cat = Red List category and Crit = Red List criteria. Note that Crit is only applicable to species listed as threatened (i.e., Critically Endangered, Endangered, or Vulnerable).

Order	Family	Species	Cat Crit	Endemic
Albuliformes	Albulidae	Pterothrissus belloci	DD	No
Anguilliformes	Chlopsidae	Chlopsis bicolor	LC	No
Anguilliformes	Chlopsidae	Chlopsis olokun	LC	Yes
Anguilliformes	Colocongridae	Coloconger cadenati	LC	Yes
Anguilliformes	Congridae	Ariosoma anale	LC	No
Anguilliformes	Congridae	Ariosoma balearicum	LC	No
Anguilliformes	Congridae	Ariosoma mellissii	DD	Yes
Anguilliformes	Congridae	Bathycongrus bertini	LC	Yes
Anguilliformes	Congridae	Bathyuroconger vicinus	LC	No
Anguilliformes	Congridae	Conger conger	LC	No
Anguilliformes	Congridae	Heteroconger longissimus	LC	No
Anguilliformes	Congridae	Japonoconger africanus	LC	Yes
Anguilliformes	Congridae	Paraconger notialis	LC	Yes
Anguilliformes	Congridae	Promyllantor atlanticus	DD	Yes
Anguilliformes	Congridae	Pseudophichthys splendens	LC	No
Anguilliformes	Congridae	Uroconger drachi	DD	Yes
Anguilliformes	Congridae	Uroconger syringinus	LC	No
Anguilliformes	Congridae	Xenomystax congroides	LC	No
Anguilliformes	Derichthyidae	Derichthys serpentinus	LC	No
Anguilliformes	Derichthyidae	Nessorhamphus danae	LC	No
Anguilliformes	Derichthyidae	Nessorhamphus ingolfianus	LC	No
Anguilliformes	Heterenchelyidae	Panturichthys isognathus	LC	Yes
Anguilliformes	Heterenchelyidae	Panturichthys longus	LC	Yes
Anguilliformes	Heterenchelyidae	Panturichthys mauritanicus	LC	No
Anguilliformes	Muraenesocidae	Cynoponticus ferox	LC	No
Anguilliformes	Muraenidae	Anarchias longicauda	LC	No
Anguilliformes	Muraenidae	Channomuraena vittata	LC	No
Anguilliformes	Muraenidae	Echidna catenata	LC	No
Anguilliformes	Muraenidae	Echidna peli	LC	Yes
Anguilliformes	Muraenidae	Enchelycore anatina	LC	No

Order	Family	Species	Cat Crit	Endemic
Anguilliformes	Muraenidae	Enchelycore carychroa	LC	No
Anguilliformes	Muraenidae	Enchelycore nigricans	LC	No
Anguilliformes	Muraenidae	Gymnothorax afer	LC	No
Anguilliformes	Muraenidae	Gymnothorax bacalladoi	DD	No
Anguilliformes	Muraenidae	Gymnothorax maderensis	LC	No
Anguilliformes	Muraenidae	Gymnothorax mareei	LC	Yes
Anguilliformes	Muraenidae	Gymnothorax miliaris	LC	No
Anguilliformes	Muraenidae	Gymnothorax moringa	LC	No
Anguilliformes	Muraenidae	Gymnothorax polygonius	LC	No
Anguilliformes	Muraenidae	Gymnothorax unicolor	LC	No
Anguilliformes	Muraenidae	Gymnothorax vicinus	LC	No
Anguilliformes	Muraenidae	Monopenchelys acuta	LC	No
Anguilliformes	Muraenidae	Muraena augusti	LC	No
Anguilliformes	Muraenidae	Muraena helena	LC	No
Anguilliformes	Muraenidae	Muraena melanotis	LC	No
Anguilliformes	Muraenidae	Muraena pavonina	LC	No
Anguilliformes	Muraenidae	Muraena robusta	LC	No
Anguilliformes	Muraenidae	Uropterygius macularius	LC	No
Anguilliformes	Muraenidae	Uropterygius wheeleri	LC	Yes
Anguilliformes	Myrocongridae	Myroconger compressus	DD	Yes
Anguilliformes	Nemichthyidae	Avocettina infans	LC	No
Anguilliformes	Nemichthyidae	Nemichthys curvirostris	LC	No
Anguilliformes	Nemichthyidae	Nemichthys scolopaceus	LC	No
Anguilliformes	Nettastomatidae	Hoplunnis punctata	LC	No
Anguilliformes	Nettastomatidae	Nettastoma melanurum	LC	No
Anguilliformes	Nettastomatidae	Venefica proboscidea	LC	No
Anguilliformes	Ophichthidae	Apterichtus anguiformis	LC	No
Anguilliformes	Ophichthidae	Apterichtus caecus	LC	No
Anguilliformes	Ophichthidae	Apterichtus gracilis	DD	Yes
Anguilliformes	Ophichthidae	Apterichtus kendalli	LC	No
Anguilliformes	Ophichthidae	Apterichtus monodi	LC	Yes
Anguilliformes	Ophichthidae	Bascanichthys ceciliae	LC	Yes
Anguilliformes	Ophichthidae	Bascanichthys paulensis	LC	No
Anguilliformes	Ophichthidae	Brachysomophis atlanticus	LC	Yes
Anguilliformes	Ophichthidae	Callechelys bilinearis	LC	No
Anguilliformes	Ophichthidae	Callechelys guineensis	LC	No
Anguilliformes	Ophichthidae	Callechelys leucoptera	LC	Yes
Anguilliformes	Ophichthidae	Dalophis boulengeri	LC	Yes
Anguilliformes	Ophichthidae	Dalophis cephalopeltis	LC	Yes
Anguilliformes	Ophichthidae	Dalophis multidentatus	DD	Yes
Anguilliformes	Ophichthidae	Dalophis obtusirostris	DD	Yes
Anguilliformes	Ophichthidae	Echelus myrus	LC	No
Anguilliformes	Ophichthidae	Echelus pachyrhynchus	LC	No
Anguilliformes	Ophichthidae	Echiophis punctifer	LC	No
Anguilliformes	Ophichthidae	Hemerorhinus opici	DD	Yes

Order	Family	Species	Cat Crit	Endemic
Anguilliformes	Ophichthidae	Herpetoichthys regius	DD	No
Anguilliformes	Ophichthidae	Ichthyapus insularis	DD	Yes
Anguilliformes	Ophichthidae	Ichthyapus ophioneus	LC	No
Anguilliformes	Ophichthidae	Myrichthys pardalis	LC	No
Anguilliformes	Ophichthidae	Myrophis plumbeus	LC	No
Anguilliformes	Ophichthidae	Mystriophis crosnieri	LC	No
Anguilliformes	Ophichthidae	Mystriophis rostellatus	LC	No
Anguilliformes	Ophichthidae	Ophichthus leonensis	DD	Yes
Anguilliformes	Ophichthidae	Ophichthus ophis	LC	No
Anguilliformes	Ophichthidae	Ophichthus pullus	LC	Yes
Anguilliformes	Ophichthidae	Ophisurus serpens	LC	No
Anguilliformes	Ophichthidae	Phaenomonas longissima	LC	No
Anguilliformes	Ophichthidae	Pisodonophis semicinctus	LC	No
Anguilliformes	Ophichthidae	Pseudomyrophis atlanticus	LC	Yes
Anguilliformes	Ophichthidae	Pseudomyrophis nimius	LC	No
Anguilliformes	Ophichthidae	Quassiremus ascensionis	LC	No
Anguilliformes	Ophichthidae	- Xyrias guineensis	DD	Yes
Anguilliformes	Serrivomeridae	Serrivomer beanii	LC	No
Anguilliformes	Serrivomeridae	Serrivomer lanceolatoides	LC	No
Anguilliformes	Serrivomeridae	Stemonidium hypomelas	LC	No
Anguilliformes	Synaphobranchidae	Dysomma brevirostre	LC	No
Anguilliformes	Synaphobranchidae	Haptenchelys texis	LC	No
Anguilliformes	Synaphobranchidae	Ilyophis brunneus	LC	No
Anguilliformes	Synaphobranchidae	Simenchelys parasitica	LC	No
Anguilliformes	Synaphobranchidae	Synaphobranchus affinis	LC	No
Anguilliformes	Synaphobranchidae	Synaphobranchus kaupii	LC	No
Ateleopodiformes	Ateleopodidae	Guentherus altivela	LC	No
Ateleopodiformes	Ateleopodidae	Ijimaia loppei	LC	No
Atheriniformes	Atherinidae	Atherina boyeri	LC	No
Atheriniformes	Atherinidae	Atherina lopeziana	DD	Yes
Atheriniformes	Atherinidae	Atherina presbyter	LC	No
Aulopiformes	Alepisauridae	Alepisaurus brevirostris	LC	No
Aulopiformes	Alepisauridae	Alepisaurus ferox	LC	No
Aulopiformes	Anotopteridae	Anotopterus pharao	LC	No
Aulopiformes	Aulopidae	Aulopus cadenati	LC	Yes
Aulopiformes	Aulopidae	Aulopus filamentosus	LC	No
Aulopiformes	Bathysauridae	Bathysaurus ferox	LC	No
Aulopiformes	Bathysauridae	Bathysaurus mollis	LC	No
Aulopiformes	Chlorophthalmidae	Chlorophthalmus agassizi	LC	No
Aulopiformes	Chlorophthalmidae	Parasudis fraserbrunneri	LC	No
Aulopiformes	Evermannellidae	Coccorella atlantica	LC	No
Aulopiformes	Evermannellidae	Evermannella balbo	LC	No
Aulopiformes	Evermannellidae	Evermannella melanoderma	LC	No
Aulopiformes	Evermannellidae	Odontostomops normalops	LC	No
Aulopiformes	Giganturidae	Gigantura chuni	LC	No

Order	Family	Species	Cat Crit	Endemic
Aulopiformes	Giganturidae	Gigantura indica	LC	No
Aulopiformes	Ipnopidae	Bathymicrops regis	LC	No
Aulopiformes	Ipnopidae	Bathypterois atricolor	LC	Yes
Aulopiformes	Ipnopidae	Bathypterois dubius	LC	No
Aulopiformes	Ipnopidae	Bathypterois grallator	LC	No
Aulopiformes	Ipnopidae	Bathypterois longipes	LC	No
Aulopiformes	Ipnopidae	Bathypterois phenax	LC	No
Aulopiformes	Ipnopidae	Bathypterois quadrifilis	LC	No
Aulopiformes	Ipnopidae	Bathypterois viridensis	LC	No
Aulopiformes	Ipnopidae	Bathytyphlops marionae	LC	No
Aulopiformes	Ipnopidae	Bathytyphlops sewelli	LC	No
Aulopiformes	Ipnopidae	Ipnops agassizii	LC	No
Aulopiformes	Notosudidae	Ahliesaurus berryi	LC	No
Aulopiformes	Notosudidae	Luciosudis normani	LC	No
Aulopiformes	Notosudidae	Scopelosaurus argenteus	LC	No
Aulopiformes	Notosudidae	Scopelosaurus lepidus	LC	No
Aulopiformes	Notosudidae	Scopelosaurus meadi	LC	No
Aulopiformes	Notosudidae	Scopelosaurus smithii	LC	No
Aulopiformes	Omosudidae	Omosudis lowii	LC	No
Aulopiformes	Paralepididae	Arctozenus risso	LC	No
Aulopiformes	Paralepididae	Dolichosudis fuliginosa	LC	No
Aulopiformes	Paralepididae	Lestidiops affinis	LC	No
Aulopiformes	Paralepididae	Lestidiops cadenati	LC	Yes
Aulopiformes	Paralepididae	Lestidiops distans	LC	Yes
Aulopiformes	Paralepididae	Lestidiops jayakari	LC	No
Aulopiformes	Paralepididae	Lestidiops similis	LC	No
Aulopiformes	Paralepididae	Lestidiops sphyrenoides	LC	No
Aulopiformes	Paralepididae	Lestidium atlanticum	LC	No
Aulopiformes	Paralepididae	Lestrolepis intermedia	LC	No
Aulopiformes	Paralepididae	Macroparalepis affinis	LC	No
Aulopiformes	Paralepididae	Macroparalepis brevis	LC	No
Aulopiformes	Paralepididae	Magnisudis atlantica	LC	No
Aulopiformes	Paralepididae	Paralepis elongata	LC	No
Aulopiformes	Paralepididae	Stemonosudis gracilis	LC	No
Aulopiformes	Paralepididae	Stemonosudis intermedia	LC	No
Aulopiformes	Paralepididae	Stemonosudis siliquiventer	LC	No
Aulopiformes	Paralepididae	Sudis atrox	LC	No
Aulopiformes	Paralepididae	Sudis hyalina	DD	No
Aulopiformes	Paralepididae	Uncisudis longirostra	DD	No
Aulopiformes	Paralepididae	Uncisudis quadrimaculata	LC	No
Aulopiformes	Scopelarchidae	Benthalbella infans	LC	No
Aulopiformes	Scopelarchidae	Rosenblattichthys hubbsi	LC	No
Aulopiformes	Scopelarchidae	Scopelarchoides danae	LC	No
Aulopiformes	Scopelarchidae	Scopelarchus analis	LC	No
Aulopiformes	Scopelarchidae	Scopelarchus guentheri	LC	No

Order	Family	Species	Cat Crit	Endemic
Aulopiformes	Scopelarchidae	Scopelarchus michaelsarsi	LC	No
Aulopiformes	Synodontidae	Saurida brasiliensis	LC	No
Aulopiformes	Synodontidae	Synodus saurus	LC	No
Aulopiformes	Synodontidae	Synodus synodus	LC	No
Aulopiformes	Synodontidae	Trachinocephalus myops	LC	No
Batrachoidiformes	Batrachoididae	Batrachoides liberiensis	LC	Yes
Batrachoidiformes	Batrachoididae	Halobatrachus didactylus	LC	No
Batrachoidiformes	Batrachoididae	Perulibatrachus elminensis	LC	No
Batrachoidiformes	Batrachoididae	Perulibatrachus rossignoli	LC	No
Beloniformes	Belonidae	Ablennes hians	LC	No
Beloniformes	Belonidae	Belone belone	LC	No
Beloniformes	Belonidae	Platybelone argalus	LC	No
Beloniformes	Belonidae	Strongylura senegalensis	LC	Yes
Beloniformes	Belonidae	Tylosurus acus	LC	No
Beloniformes	Belonidae	Tylosurus crocodilus	LC	No
Beloniformes	Exocoetidae	Cheilopogon cyanopterus	LC	No
Beloniformes	Exocoetidae	Cheilopogon exsiliens	LC	No
Beloniformes	Exocoetidae	Cheilopogon furcatus	LC	No
Beloniformes	Exocoetidae	Cheilopogon heterurus	LC	No
Beloniformes	Exocoetidae	Cheilopogon melanurus	LC	No
Beloniformes	Exocoetidae	Cheilopogon milleri	LC	No
Beloniformes	Exocoetidae	Cheilopogon nigricans	LC	No
Beloniformes	Exocoetidae	Cheilopogon pinnatibarbatus	LC	No
Beloniformes	Exocoetidae	Exocoetus obtusirostris	LC	No
Beloniformes	Exocoetidae	Exocoetus volitans	LC	No
Beloniformes	Exocoetidae	Fodiator acutus	LC	No
Beloniformes	Exocoetidae	Hirundichthys affinis	LC	No
Beloniformes	Exocoetidae	Hirundichthys speculiger	LC	No
Beloniformes	Exocoetidae	Parexocoetus hillianus	LC	No
Beloniformes	Exocoetidae	Prognichthys gibbifrons	LC	No
Beloniformes	Exocoetidae	Prognichthys glaphyrae	LC	No
Beloniformes	Hemiramphidae	Euleptorhamphus velox	LC	No
Beloniformes	Hemiramphidae	Hemiramphus balao	LC	No
Beloniformes	Hemiramphidae	Hemiramphus brasiliensis	LC	No
Beloniformes	Hemiramphidae	Hyporhamphus picarti	LC	No
Beloniformes	Hemiramphidae	Oxyporhamphus similis	LC	No
Beloniformes	Scomberesocidae	Scomberesox simulans	LC	No
Beryciformes	Anoplogastridae	Anoplogaster cornuta	LC	No
Beryciformes	Berycidae	Beryx decadactylus	LC	No
Beryciformes	Berycidae	Beryx splendens	LC	No
Beryciformes	Diretmidae	Diretmichthys parini	LC	No
Beryciformes	Diretmidae	Diretmoides pauciradiatus	LC	No
Beryciformes	Diretmidae	Diretmus argenteus	LC	No
Beryciformes	Holocentridae	Corniger spinosus	LC	No
Beryciformes	Holocentridae	Holocentrus adscensionis	LC	No

Order	Family	Species	Cat	Crit	Endemic
Beryciformes	Holocentridae	Myripristis jacobus	LC		No
Beryciformes	Holocentridae	Sargocentron hastatum	LC		No
Beryciformes	Trachichthyidae	Gephyroberyx darwinii	LC		No
Beryciformes	Trachichthyidae	Hoplostethus cadenati	LC		No
Beryciformes	Trachichthyidae	Hoplostethus mediterraneus	LC		No
Beryciformes	Trachichthyidae	Hoplostethus vniro	DD		Yes
Cetomimiformes	Barbourisiidae	Barbourisia rufa	LC		No
Cetomimiformes	Cetomimidae	Cetomimus compunctus	DD		No
Cetomimiformes	Cetomimidae	Cetomimus gillii	DD		No
Cetomimiformes	Cetomimidae	Cetostoma regani	DD		No
Cetomimiformes	Cetomimidae	Danacetichthys galathenus	DD		No
Cetomimiformes	Cetomimidae	Ditropichthys storeri	DD		No
Cetomimiformes	Cetomimidae	Gyrinomimus myersi	DD		No
Cetomimiformes	Cetomimidae	Rhamphocetichthys savagei	LC		No
Cetomimiformes	Rondeletiidae	Rondeletia bicolor	LC		No
Cetomimiformes	Rondeletiidae	Rondeletia loricata	LC		No
Clupeiformes	Clupeidae	Ethmalosa fimbriata	LC		No
Clupeiformes	Clupeidae	Pellonula leonensis	LC		Yes
Clupeiformes	Clupeidae	Pellonula vorax	LC		Yes
Clupeiformes	Clupeidae	Sardina pilchardus	LC		No
Clupeiformes	Clupeidae	Sardinella aurita	LC		No
Clupeiformes	Clupeidae	Sardinella maderensis	VU	A2d	No
Clupeiformes	Clupeidae	Sardinella rouxi	DD		Yes
Clupeiformes	Engraulidae	Engraulis encrasicolus	LC		No
Clupeiformes	Pristigasteridae	Ilisha africana	LC		Yes
Elopiformes	Elopidae	Elops lacerta	LC		Yes
Elopiformes	Elopidae	Elops senegalensis	DD		Yes
Elopiformes	Megalopidae	Megalops atlanticus	VU	A2bd	No
Gadiformes	Bregmacerotidae	Bregmaceros atlanticus	LC		No
Gadiformes	Bregmacerotidae	Bregmaceros nectabanus	LC		No
Gadiformes	Lotidae	Enchelyopus cimbrius	LC		No
Gadiformes	Macrouridae	Bathygadus favosus	LC		No
Gadiformes	Macrouridae	Bathygadus macrops	LC		No
Gadiformes	Macrouridae	Bathygadus melanobranchus	LC		No
Gadiformes	Macrouridae	Cetonurus globiceps	LC		No
Gadiformes	Macrouridae	Coelorinchus caelorhincus	LC		No
Gadiformes	Macrouridae	Coelorinchus geronimo	LC		Yes
Gadiformes	Macrouridae	Coelorinchus labiatus	LC		No
Gadiformes	Macrouridae	Coelorinchus polli	LC		No
Gadiformes	Macrouridae	Coryphaenoides armatus	LC		No
Gadiformes	Macrouridae	Coryphaenoides guentheri	LC		No
Gadiformes	Macrouridae	Coryphaenoides leptolepis	LC		No
Gadiformes	Macrouridae	Coryphaenoides marshalli	LC		Yes
Gadiformes	Macrouridae	Coryphaenoides mediterraneus	LC		No
Gadiformes	Macrouridae	Coryphaenoides paramarshalli	LC		No

Order	Family	Species	Cat	Crit	Endemic
Gadiformes	Macrouridae	Coryphaenoides rudis	LC		No
Gadiformes	Macrouridae	Coryphaenoides zaniophorus	LC		No
Gadiformes	Macrouridae	Gadomus arcuatus	LC		No
Gadiformes	Macrouridae	Gadomus longifilis	LC		No
Gadiformes	Macrouridae	Hymenocephalus italicus	LC		No
Gadiformes	Macrouridae	Hymenogadus gracilis	DD		No
Gadiformes	Macrouridae	Macrouroides inflaticeps	LC		No
Gadiformes	Macrouridae	Malacocephalus laevis	LC		No
Gadiformes	Macrouridae	Malacocephalus occidentalis	LC		No
Gadiformes	Macrouridae	Mesobius berryi	LC		No
Gadiformes	Macrouridae	Nezumia aequalis	LC		No
Gadiformes	Macrouridae	Nezumia africana	LC		No
Gadiformes	Macrouridae	Nezumia duodecim	LC		No
Gadiformes	Macrouridae	Nezumia micronychodon	LC		No
Gadiformes	Macrouridae	Nezumia milleri	LC		Yes
Gadiformes	Macrouridae	Nezumia sclerorhynchus	LC		No
Gadiformes	Macrouridae	Odontomacrurus murrayi	LC		No
Gadiformes	Macrouridae	Sphagemacrurus hirundo	LC		No
Gadiformes	Macrouridae	Squalogadus modificatus	LC		No
Gadiformes	Macrouridae	Trachyrincus scabrus	LC		No
Gadiformes	Melanonidae	Melanonus zugmayeri	LC		No
Gadiformes	Merlucciidae	Merluccius capensis	LC		No
Gadiformes	Merlucciidae	Merluccius merluccius	LC		No
Gadiformes	Merlucciidae	Merluccius polli	LC		No
Gadiformes	Merlucciidae	Merluccius senegalensis	EN	A2bd	No
Gadiformes	Moridae	Antimora rostrata	LC		No
Gadiformes	Moridae	Gadella imberbis	LC		No
Gadiformes	Moridae	Laemonema laureysi	LC		No
Gadiformes	Moridae	Laemonema robustum	DD		No
Gadiformes	Moridae	Laemonema yarrellii	LC		No
Gadiformes	Moridae	Mora moro	LC		No
Gadiformes	Moridae	Physiculus cyanostrophus	LC		Yes
Gadiformes	Moridae	Physiculus dalwigki	LC		No
Gadiformes	Moridae	Physiculus helenaensis	DD		Yes
Gadiformes	Moridae	Physiculus huloti	LC		Yes
Gadiformes	Moridae	Physiculus karrerae	DD		No
Gadiformes	Moridae	Physiculus maslowskii	DD		No
Gadiformes	Moridae	Physiculus microbarbata	DD		Yes
Gadiformes	Phycidae	Phycis phycis	LC		No
Gobiesociformes	Gobiesocidae	Apletodon barbatus	VU	B2ab(iii)	Yes
Gobiesociformes	Gobiesocidae	Apletodon pellegrini	LC	()	No
Gobiesociformes	Gobiesocidae	Apletodon wirtzi	LC		Yes
Gobiesociformes	Gobiesocidae	Diplecogaster bimaculata	LC		No
Gobiesociformes	Gobiesocidae	Diplecogaster ctenocrypta	LC		No
Gobiesociformes	Gobiesocidae	Lecanogaster chrysea	LC		No

Order	Family	Species	Cat Crit	Endemic
Gobiesociformes	Gobiesocidae	Lepadogaster purpurea	LC	No
Gobiesociformes	Gobiesocidae	Opeatogenys cadenati	DD	No
Gonorynchiformes	Gonorynchidae	Gonorynchus gonorynchus	LC	No
Lampriformes	Lampridae	Lampris guttatus	LC	No
Lampriformes	Lophotidae	Eumecichthys fiski	LC	No
Lampriformes	Radiicephalidae	Radiicephalus elongatus	LC	No
Lampriformes	Regalecidae	Regalecus glesne	LC	No
Lampriformes	Regalecidae	Regalecus russelii	LC	No
Lampriformes	Stylephoridae	Stylephorus chordatus	LC	No
Lampriformes	Trachipteridae	Desmodema polystictum	LC	No
Lampriformes	Trachipteridae	Trachipterus trachypterus	LC	No
Lampriformes	Trachipteridae	Zu cristatus	LC	No
Lophiiformes	Antennariidae	Antennarius pardalis	LC	No
Lophiiformes	Antennariidae	Antennarius striatus	LC	No
Lophiiformes	Antennariidae	Antennatus nummifer	LC	No
Lophiiformes	Antennariidae	Fowlerichthys senegalensis	LC	No
Lophiiformes	Antennariidae	Histrio histrio	LC	No
Lophiiformes	Caulophrynidae	Caulophryne jordani	LC	No
Lophiiformes	Caulophrynidae	Caulophryne pelagica	DD	No
Lophiiformes	Caulophrynidae	Caulophryne polynema	LC	No
Lophiiformes	Centrophrynidae	Centrophryne spinulosa	LC	No
Lophiiformes	Ceratiidae	Ceratias holboelli	LC	No
Lophiiformes	Ceratiidae	Ceratias uranoscopus	LC	No
Lophiiformes	Ceratiidae	Cryptopsaras couesii	LC	No
Lophiiformes	Chaunacidae	Chaunax pictus	LC	No
Lophiiformes	Chaunacidae	Chaunax suttkusi	LC	No
Lophiiformes	Diceratiidae	Bufoceratias wedli	LC	No
Lophiiformes	Diceratiidae	Diceratias pileatus	LC	No
Lophiiformes	Gigantactinidae	Gigantactis elsmani	LC	No
Lophiiformes	Gigantactinidae	Gigantactis gibbsi	LC	No
Lophiiformes	Gigantactinidae	Gigantactis golovani	LC	No
Lophiiformes	Gigantactinidae	Gigantactis gracilicauda	DD	No
Lophiiformes	Gigantactinidae	Gigantactis longicirra	LC	No
Lophiiformes	Gigantactinidae	Gigantactis vanhoeffeni	DD	No
Lophiiformes	Gigantactinidae	Gigantactis watermani	DD	No
Lophiiformes	Gigantactinidae	Rhynchactis macrothrix	DD	No
Lophiiformes	Himantolophidae	<i>Himantolophus albinares</i>	DD	No
Lophiiformes	Himantolophidae	Himantolophus brevirostris	DD	No
Lophiiformes	Himantolophidae	Himantolophus cornifer	LC	No
Lophiiformes	Himantolophidae	Himantolophus crinitus	LC	Yes
Lophiiformes	Himantolophidae	Himantolophus groenlandicus	LC	No
Lophiiformes	Himantolophidae	Himantolophus macroceras	DD	No
Lophiiformes	Himantolophidae	Himantolophus macroceratoides	DD	No
Lophiiformes	Himantolophidae	Himantolophus multifurcatus	DD	Yes
Lophiiformes	Himantolophidae	Himantolophus paucifilosus	LC	No

Order	Family	Species	Cat Crit	Endemic
Lophiiformes	Himantolophidae	Himantolophus rostratus	DD	No
Lophiiformes	Linophrynidae	Haplophryne mollis	LC	No
Lophiiformes	Linophrynidae	Linophryne arborifera	LC	No
Lophiiformes	Linophrynidae	Linophryne pennibarbata	LC	No
Lophiiformes	Linophrynidae	Photocorynus spiniceps	LC	No
Lophiiformes	Lophiidae	Lophiodes kempi	DD	Yes
Lophiiformes	Lophiidae	Lophius budegassa	DD	No
Lophiiformes	Lophiidae	Lophius piscatorius	LC	No
Lophiiformes	Lophiidae	Lophius vomerinus	NT	No
Lophiiformes	Melanocetidae	Melanocetus johnsonii	LC	No
Lophiiformes	Melanocetidae	Melanocetus murrayi	LC	No
Lophiiformes	Neoceratiidae	Neoceratias spinifer	LC	No
Lophiiformes	Ogcocephalidae	Dibranchus atlanticus	LC	No
Lophiiformes	Ogcocephalidae	Dibranchus tremendus	LC	No
Lophiiformes	Oneirodidae	Chaenophryne draco	LC	No
Lophiiformes	Oneirodidae	Chaenophryne longiceps	LC	No
Lophiiformes	Oneirodidae	Chaenophryne ramifera	LC	No
Lophiiformes	Oneirodidae	Dolopichthys allector	LC	No
Lophiiformes	Oneirodidae	Dolopichthys danae	LC	No
Lophiiformes	Oneirodidae	Dolopichthys dinema	LC	Yes
Lophiiformes	Oneirodidae	Dolopichthys jubatus	DD	No
Lophiiformes	Oneirodidae	Dolopichthys longicornis	LC	No
Lophiiformes	Oneirodidae	Dolopichthys pullatus	DD	No
Lophiiformes	Oneirodidae	Lophodolos acanthognathus	LC	No
Lophiiformes	Oneirodidae	Lophodolos indicus	LC	No
Lophiiformes	Oneirodidae	Microlophichthys microlophus	LC	No
Lophiiformes	Oneirodidae	Oneirodes carlsbergi	LC	No
Lophiiformes	Oneirodidae	Oneirodes eschrichtii	LC	No
Lophiiformes	Oneirodidae	Oneirodes macrosteus	LC	No
Lophiiformes	Oneirodidae	Oneirodes theodoritissieri	LC	Yes
Lophiiformes	Oneirodidae	Pentherichthys atratus	LC	No
Lophiiformes	Oneirodidae	Spiniphryne gladisfenae	LC	No
Lophiiformes	Thaumatichthyidae	Lasiognathus saccostoma	LC	No
Mugiliformes	Mugilidae	Chelon bispinosus	LC	Yes
Mugiliformes	Mugilidae	Chelon labrosus	LC	No
Mugiliformes	Mugilidae	Liza bandialensis	DD	Yes
Mugiliformes	Mugilidae	Liza dumerili	DD	No
Mugiliformes	Mugilidae	Liza falcipinnis	DD	Yes
Mugiliformes	Mugilidae	Liza grandisquamis	DD	Yes
Mugiliformes	Mugilidae	Mugil bananensis	LC	Yes
Mugiliformes	Mugilidae	Mugil capurrii	LC	No
Mugiliformes	Mugilidae	Mugil cephalus	LC	No
Mugiliformes	Mugilidae	Mugil curema	LC	No
Myctophiformes	Myctophidae	Benthosema glaciale	LC	No
Myctophiformes	Myctophidae	Benthosema suborbitale	LC	No

Order	Family	Species	Cat Crit	Endemic
Myctophiformes	Myctophidae	Bolinichthys distofax	LC	No
Myctophiformes	Myctophidae	Bolinichthys indicus	LC	No
Myctophiformes	Myctophidae	Bolinichthys photothorax	LC	No
Myctophiformes	Myctophidae	Bolinichthys supralateralis	LC	No
Myctophiformes	Myctophidae	Centrobranchus nigroocellatus	LC	No
Myctophiformes	Myctophidae	Ceratoscopelus maderensis	LC	No
Myctophiformes	Myctophidae	Ceratoscopelus warmingii	LC	No
Myctophiformes	Myctophidae	Diaphus anderseni	LC	No
Myctophiformes	Myctophidae	Diaphus bertelseni	LC	No
Myctophiformes	Myctophidae	Diaphus brachycephalus	LC	No
Myctophiformes	Myctophidae	Diaphus dumerilii	DD	No
Myctophiformes	Myctophidae	Diaphus effulgens	LC	No
Myctophiformes	Myctophidae	Diaphus fragilis	LC	No
Myctophiformes	Myctophidae	Diaphus garmani	LC	No
Myctophiformes	Myctophidae	Diaphus holti	LC	No
Myctophiformes	Myctophidae	Diaphus lucidus	LC	No
Myctophiformes	Myctophidae	Diaphus luetkeni	LC	No
Myctophiformes	Myctophidae	Diaphus metopoclampus	LC	No
Myctophiformes	Myctophidae	Diaphus mollis	LC	No
Myctophiformes	Myctophidae	Diaphus perspicillatus	LC	No
Myctophiformes	Myctophidae	Diaphus problematicus	LC	No
Myctophiformes	Myctophidae	Diaphus rafinesquii	LC	No
Myctophiformes	Myctophidae	Diaphus splendidus	LC	No
Myctophiformes	Myctophidae	Diaphus subtilis	DD	No
Myctophiformes	Myctophidae	Diaphus taaningi	DD	No
Myctophiformes	Myctophidae	Diaphus termophilus	LC	No
Myctophiformes	Myctophidae	Diaphus vanhoeffeni	LC	No
Myctophiformes	Myctophidae	Diogenichthys atlanticus	LC	No
Myctophiformes	Myctophidae	Electrona risso	LC	No
Myctophiformes	Myctophidae	Gonichthys cocco	LC	No
Myctophiformes	Myctophidae	Hygophum benoiti	LC	No
Myctophiformes	Myctophidae	Hygophum hygomii	LC	No
Myctophiformes	Myctophidae	Hygophum macrochir	LC	No
Myctophiformes	Myctophidae	Hygophum reinhardtii	LC	No
Myctophiformes	Myctophidae	Hygophum taaningi	LC	No
Myctophiformes	Myctophidae	Lampadena anomala	DD	No
Myctophiformes	Myctophidae	Lampadena chavesi	LC	No
Myctophiformes	Myctophidae	Lampadena luminosa	LC	No
Myctophiformes	Myctophidae	Lampadena pontifex	LC	No
Myctophiformes	Myctophidae	Lampadena speculigera	LC	No
Myctophiformes	Myctophidae	Lampanyctus alatus	LC	No
Myctophiformes	Myctophidae	Lampanyctus australis	LC	No
Myctophiformes	Myctophidae	Lampanyctus crocodilus	LC	No
Myctophiformes	Myctophidae	Lampanyctus festivus	LC	No
Myctophiformes	Myctophidae	Lampanyctus intricarius	LC	No

Order	Family	Species	Cat Crit	Endemic
Myctophiformes	Myctophidae	Lampanyctus macdonaldi	LC	No
Myctophiformes	Myctophidae	Lampanyctus nobilis	LC	No
Myctophiformes	Myctophidae	Lampanyctus photonotus	LC	No
Myctophiformes	Myctophidae	Lampanyctus pusillus	LC	No
Myctophiformes	Myctophidae	Lampanyctus tenuiformis	LC	No
Myctophiformes	Myctophidae	Lampanyctus vadulus	LC	No
Myctophiformes	Myctophidae	Lepidophanes gaussi	LC	No
Myctophiformes	Myctophidae	Lepidophanes guentheri	LC	No
Myctophiformes	Myctophidae	Lobianchia dofleini	LC	No
Myctophiformes	Myctophidae	Lobianchia gemellarii	LC	No
Myctophiformes	Myctophidae	Loweina rara	LC	No
Myctophiformes	Myctophidae	Myctophum affine	LC	No
Myctophiformes	Myctophidae	Myctophum asperum	LC	No
Myctophiformes	Myctophidae	Myctophum nitidulum	LC	No
Myctophiformes	Myctophidae	Myctophum obtusirostre	LC	No
Myctophiformes	Myctophidae	Myctophum phengodes	LC	No
Myctophiformes	Myctophidae	Myctophum punctatum	LC	No
Myctophiformes	Myctophidae	Myctophum selenops	LC	No
Myctophiformes	Myctophidae	Nannobrachium atrum	LC	No
Myctophiformes	Myctophidae	Nannobrachium cuprarium	LC	No
Myctophiformes	Myctophidae	Nannobrachium isaacsi	LC	No
Myctophiformes	Myctophidae	Nannobrachium lineatum	LC	No
Myctophiformes	Myctophidae	Notolychnus valdiviae	LC	No
Myctophiformes	Myctophidae	Notoscopelus bolini	LC	No
Myctophiformes	Myctophidae	Notoscopelus caudispinosus	LC	No
Myctophiformes	Myctophidae	Notoscopelus resplendens	LC	No
Myctophiformes	Myctophidae	Scopelopsis multipunctatus	LC	No
Myctophiformes	Myctophidae	Symbolophorus kreffti	LC	No
Myctophiformes	Myctophidae	Symbolophorus rufinus	LC	No
Myctophiformes	Myctophidae	Symbolophorus veranyi	LC	No
Myctophiformes	Myctophidae	Taaningichthys bathyphilus	LC	No
Myctophiformes	Myctophidae	Taaningichthys minimus	LC	No
Myctophiformes	Myctophidae	Taaningichthys paurolychnus	LC	No
Myctophiformes	Neoscopelidae	Neoscopelus macrolepidotus	LC	No
Myctophiformes	Neoscopelidae	Scopelengys tristis	LC	No
Notacanthiformes	Halosauridae	Aldrovandia gracilis	LC	No
Notacanthiformes	Halosauridae	Aldrovandia oleosa	LC	No
Notacanthiformes	Halosauridae	Aldrovandia phalacra	LC	No
Notacanthiformes	Halosauridae	Aldrovandia rostrata	LC	No
Notacanthiformes	Halosauridae	Halosauropsis macrochir	LC	No
Notacanthiformes	Halosauridae	Halosaurus attenuatus	LC	No
Notacanthiformes	Halosauridae	Halosaurus guentheri	LC	No
Notacanthiformes	Halosauridae	Halosaurus johnsonianus	LC	No
Notacanthiformes	Halosauridae	Halosaurus ovenii	LC	No
Notacanthiformes	Notacanthidae	Notacanthus chemnitzii	LC	No

Order	Family	Species	Cat Crit	Endemic
Notacanthiformes	Notacanthidae	Polyacanthonotus challengeri	LC	No
Ophidiiformes	Aphyonidae	Aphyonus rassi	DD	No
Ophidiiformes	Aphyonidae	Nybelinella erikssoni	DD	No
Ophidiiformes	Aphyonidae	Sciadonus jonassoni	DD	No
Ophidiiformes	Bythitidae	Cataetyx bruuni	LC	Yes
Ophidiiformes	Bythitidae	Cataetyx laticeps	LC	No
Ophidiiformes	Bythitidae	Grammonus longhursti	LC	Yes
Ophidiiformes	Carapidae	Carapus acus	LC	No
Ophidiiformes	Carapidae	Echiodon dentatus	LC	No
Ophidiiformes	Carapidae	Snyderidia canina	LC	No
Ophidiiformes	Ophidiidae	Abyssobrotula galatheae	LC	No
Ophidiiformes	Ophidiidae	Acanthonus armatus	LC	No
Ophidiiformes	Ophidiidae	Apagesoma delosommatus	LC	No
Ophidiiformes	Ophidiidae	Barathrites iris	LC	No
Ophidiiformes	Ophidiidae	Bassozetus compressus	LC	No
Ophidiiformes	Ophidiidae	Bassozetus levistomatus	LC	No
Ophidiiformes	Ophidiidae	Bassozetus normalis	LC	No
Ophidiiformes	Ophidiidae	Bassozetus oncerocephalus	DD	Yes
Ophidiiformes	Ophidiidae	Bassozetus taenia	LC	No
Ophidiiformes	Ophidiidae	Bathyonus laticeps	DD	No
Ophidiiformes	Ophidiidae	Brotula barbata	LC	No
Ophidiiformes	Ophidiidae	Dicrolene introniger	LC	No
Ophidiiformes	Ophidiidae	Holcomycteronus squamosus	LC	No
Ophidiiformes	Ophidiidae	Lamprogrammus brunswigi	LC	No
Ophidiiformes	Ophidiidae	Lamprogrammus exutus	LC	No
Ophidiiformes	Ophidiidae	Lamprogrammus niger	LC	No
Ophidiiformes	Ophidiidae	Luciobrotula corethromycter	LC	No
Ophidiiformes	Ophidiidae	Luciobrotula nolfi	LC	No
Ophidiiformes	Ophidiidae	Monomitopus metriostoma	LC	No
Ophidiiformes	Ophidiidae	Penopus microphthalmus	LC	No
Ophidiiformes	Ophidiidae	Porogadus abyssalis	DD	No
Ophidiiformes	Ophidiidae	Porogadus miles	LC	No
Ophidiiformes	Ophidiidae	Porogadus nudus	DD	Yes
Ophidiiformes	Ophidiidae	Porogadus subarmatus	DD	Yes
Ophidiiformes	Ophidiidae	Selachophidium guentheri	LC	No
Ophidiiformes	Ophidiidae	Spectrunculus grandis	LC	No
Ophidiiformes	Parabrotulidae	Parabrotula plagiophthalma	LC	No
Osmeriformes	Alepocephalidae	Alepocephalus agassizii	LC	No
Osmeriformes	Alepocephalidae	Alepocephalus australis	LC	No
Osmeriformes	Alepocephalidae	Alepocephalus bairdii	DD	No
Osmeriformes	Alepocephalidae	Alepocephalus rostratus	LC	No
Osmeriformes	Alepocephalidae	Asquamiceps caeruleus	LC	No
Osmeriformes	Alepocephalidae	Asquamiceps hjorti	LC	No
Osmeriformes	Alepocephalidae	Bajacalifornia arcylepis	DD	No
Osmeriformes	Alepocephalidae	Bajacalifornia calcarata	LC	No

Order	Family	Species	Cat C	Crit Endemic
Osmeriformes	Alepocephalidae	Bajacalifornia megalops	LC	No
Osmeriformes	Alepocephalidae	Bathylaco nigricans	LC	No
Osmeriformes	Alepocephalidae	Bathytroctes macrolepis	LC	No
Osmeriformes	Alepocephalidae	Bathytroctes michaelsarsi	LC	No
Osmeriformes	Alepocephalidae	Bathytroctes microlepis	LC	No
Osmeriformes	Alepocephalidae	Bathytroctes squamosus	LC	No
Osmeriformes	Alepocephalidae	Conocara macropterum	LC	No
Osmeriformes	Alepocephalidae	Conocara salmoneum	LC	No
Osmeriformes	Alepocephalidae	Einara edentula	LC	No
Osmeriformes	Alepocephalidae	Einara macrolepis	LC	No
Osmeriformes	Alepocephalidae	Herwigia kreffti	LC	No
Osmeriformes	Alepocephalidae	Leptoderma macrops	LC	No
Osmeriformes	Alepocephalidae	Narcetes erimelas	LC	No
Osmeriformes	Alepocephalidae	Narcetes stomias	LC	No
Osmeriformes	Alepocephalidae	Photostylus pycnopterus	LC	No
Osmeriformes	Alepocephalidae	Rinoctes nasutus	LC	No
Osmeriformes	Alepocephalidae	Rouleina attrita	LC	No
Osmeriformes	Alepocephalidae	Rouleina maderensis	LC	No
Osmeriformes	Alepocephalidae	Talismania antillarum	LC	No
Osmeriformes	Alepocephalidae	Talismania homoptera	LC	No
Osmeriformes	Alepocephalidae	Talismania longifilis	LC	No
Osmeriformes	Alepocephalidae	Talismania mekistonema	LC	No
Osmeriformes	Alepocephalidae	Xenodermichthys copei	LC	No
Osmeriformes	Argentinidae	Glossanodon leioglossus	LC	No
Osmeriformes	Argentinidae	Glossanodon polli	LC	No
Osmeriformes	Bathylagidae	Bathylagichthys greyae	LC	No
Osmeriformes	Bathylagidae	Bathylagoides argyrogaster	LC	No
Osmeriformes	Bathylagidae	Dolicholagus longirostris	LC	No
Osmeriformes	Bathylagidae	Melanolagus bericoides	LC	No
Osmeriformes	Leptochilichthyidae	Leptochilichthys agassizii	LC	No
Osmeriformes	Microstomatidae	Microstoma microstoma	LC	No
Osmeriformes	Microstomatidae	Nansenia atlantica	LC	No
Osmeriformes	Microstomatidae	Nansenia megalopa	DD	No
Osmeriformes	Microstomatidae	Nansenia pelagica	DD	No
Osmeriformes	Microstomatidae	Xenophthalmichthys danae	LC	No
Osmeriformes	Opisthoproctidae	Bathylychnops brachyrhynchus	DD	No
Osmeriformes	Opisthoproctidae	Dolichopteroides binocularis	LC	No
Osmeriformes	Opisthoproctidae	Dolichopteryx longipes	LC	No
Osmeriformes	Opisthoproctidae	Opisthoproctus grimaldii	LC	No
Osmeriformes	Opisthoproctidae	<i>Opisthoproctus soleatus</i>	LC	No
Osmeriformes	Opisthoproctidae	<i>Rhynchohyalus natalensis</i>	LC	No
Osmeriformes	Opisthoproctidae	Winteria telescopa	LC	No
Osmeriformes	Platytroctidae	Barbantus curvifrons	LC	No
Osmeriformes	Platytroctidae	Barbantus elongatus	DD	No
Osmeriformes	Platytroctidae	Holtbyrnia anomala	LC	No

Order	Family	Species	Cat Crit	Endemic
Osmeriformes	Platytroctidae	Holtbyrnia cyanocephala	LC	No
Osmeriformes	Platytroctidae	Holtbyrnia innesi	LC	No
Osmeriformes	Platytroctidae	Holtbyrnia macrops	LC	No
Osmeriformes	Platytroctidae	Maulisia argipalla	LC	No
Osmeriformes	Platytroctidae	Maulisia mauli	LC	No
Osmeriformes	Platytroctidae	Maulisia microlepis	LC	No
Osmeriformes	Platytroctidae	Mentodus facilis	LC	No
Osmeriformes	Platytroctidae	Mentodus longirostris	LC	No
Osmeriformes	Platytroctidae	Mentodus mesalirus	LC	No
Osmeriformes	Platytroctidae	Mentodus perforatus	LC	No
Osmeriformes	Platytroctidae	Mentodus rostratus	LC	No
Osmeriformes	Platytroctidae	Normichthys operosus	LC	No
Osmeriformes	Platytroctidae	Platytroctes apus	LC	No
Osmeriformes	Platytroctidae	Sagamichthys schnakenbecki	LC	No
Osmeriformes	Platytroctidae	Searsia koefoedi	LC	No
Perciformes	Acanthuridae	Acanthurus bahianus	LC	No
Perciformes	Acanthuridae	Acanthurus chirurgus	LC	No
Perciformes	Acanthuridae	Acanthurus coeruleus	LC	No
Perciformes	Acanthuridae	Acanthurus monroviae	LC	No
Perciformes	Acanthuridae	Prionurus biafraensis	LC	Yes
Perciformes	Acropomatidae	Synagrops japonicus	LC	No
Perciformes	Acropomatidae	Synagrops microlepis	LC	No
Perciformes	Ammodytidae	<i>Gymnammodytes capensis</i>	LC	No
Perciformes	Ammodytidae	<i>Gymnammodytes cicerelus</i>	LC	No
Perciformes	Apogonidae	Apogon axillaris	LC	No
Perciformes	Apogonidae	Apogon imberbis	LC	No
Perciformes	Apogonidae	Apogon pseudomaculatus	LC	No
Perciformes	Apogonidae	Paroncheilus affinis	LC	No
Perciformes	Apogonidae	Phaeoptyx pigmentaria	LC	No
Perciformes	Ariommatidae	Ariomma bondi	LC	No
Perciformes	Ariommatidae	Ariomma melanum	LC	No
Perciformes	Blenniidae	Bathyblennius antholops	DD	Yes
Perciformes	Blenniidae	Blennius normani	LC	Yes
Perciformes	Blenniidae	Entomacrodus cadenati	LC	Yes
Perciformes	Blenniidae	Entomacrodus textilis	LC	Yes
Perciformes	Blenniidae	Hypleurochilus aequipinnis	LC	Yes
Perciformes	Blenniidae	Hypleurochilus bananensis	LC	No
Perciformes	Blenniidae	Hypleurochilus langi	LC	Yes
Perciformes	Blenniidae	Lipophrys pholis	LC	No
Perciformes	Blenniidae	Microlipophrys bauchotae	DD	Yes
Perciformes	Blenniidae	Microlipophrys caboverdensis	LC	Yes
Perciformes	Blenniidae	Microlipophrys velifer	LC	Yes
Perciformes	Blenniidae	<i>Ophioblennius atlanticus</i>	LC	Yes
Perciformes	Blenniidae	Parablennius dialloi	LC	Yes
Perciformes	Blenniidae	Parablennius goreensis	LC	100

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Blenniidae	Parablennius incognitus	LC		No
Perciformes	Blenniidae	Parablennius parvicornis	LC		No
Perciformes	Blenniidae	Parablennius pilicornis	LC		No
Perciformes	Blenniidae	Parablennius salensis	LC		Yes
Perciformes	Blenniidae	Parablennius sierraensis	LC		Yes
Perciformes	Blenniidae	Parablennius tentacularis	LC		No
Perciformes	Blenniidae	Parablennius verryckeni	DD		Yes
Perciformes	Blenniidae	Scartella caboverdiana	LC		Yes
Perciformes	Blenniidae	Scartella cristata	LC		No
Perciformes	Blenniidae	Scartella nuchifilis	VU	D2	Yes
Perciformes	Blenniidae	Scartella springeri	VU	D2	Yes
Perciformes	Blenniidae	Spaniblennius clandestinus	DD		Yes
Perciformes	Blenniidae	Spaniblennius riodourensis	DD		No
Perciformes	Bramidae	Brama brama	LC		No
Perciformes	Bramidae	Brama dussumieri	LC		No
Perciformes	Bramidae	Pterycombus brama	LC		No
Perciformes	Bramidae	Taractes rubescens	LC		No
Perciformes	Bramidae	Taractichthys longipinnis	LC		No
Perciformes	Callanthiidae	Callanthias ruber	LC		No
Perciformes	Callionymidae	Callionymus bairdi	LC		No
Perciformes	Callionymidae	Callionymus lyra	LC		No
Perciformes	Callionymidae	Callionymus maculatus	LC		No
Perciformes	Callionymidae	Draculo shango	LC		Yes
Perciformes	Callionymidae	Synchiropus phaeton	LC		No
Perciformes	Caproidae	Antigonia capros	LC		No
Perciformes	Caproidae	Capros aper	LC		No
Perciformes	Carangidae	Alectis alexandrina	LC		No
Perciformes	Carangidae	Alectis ciliaris	LC		No
Perciformes	Carangidae	Campogramma glaycos	LC		No
Perciformes	Carangidae	Caranx bartholomaei	LC		No
Perciformes	Carangidae	Caranx crysos	LC		No
Perciformes	Carangidae	Caranx fischeri	LC		No
Perciformes	Carangidae	Caranx hippos	LC		No
Perciformes	Carangidae	Caranx latus	LC		No
Perciformes	Carangidae	Caranx lugubris	LC		No
Perciformes	Carangidae	Caranx rhonchus	LC		No
Perciformes	Carangidae	Caranx ruber	LC		No
Perciformes	Carangidae	Caranx senegallus	LC		No
Perciformes	Carangidae	Chloroscombrus chrysurus	LC		No
Perciformes	Carangidae	Decapterus macarellus	LC		No
Perciformes	Carangidae	Decapterus muroadsi	LC		No
Perciformes	Carangidae	Decapterus punctatus	LC		No
Perciformes	Carangidae	Decapterus tabl	LC		No
Perciformes	Carangidae	Elagatis bipinnulata	LC		No
Perciformes	Carangidae	Hemicaranx bicolor	LC		Yes

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Carangidae	Lichia amia	LC		No
Perciformes	Carangidae	Naucrates ductor	LC		No
Perciformes	Carangidae	Pseudocaranx dentex	LC		No
Perciformes	Carangidae	Selar crumenophthalmus	LC		No
Perciformes	Carangidae	Selene dorsalis	LC		No
Perciformes	Carangidae	Seriola carpenteri	LC		No
Perciformes	Carangidae	Seriola dumerili	LC		No
Perciformes	Carangidae	Seriola fasciata	LC		No
Perciformes	Carangidae	Seriola lalandi	LC		No
Perciformes	Carangidae	Seriola rivoliana	LC		No
Perciformes	Carangidae	Trachinotus goreensis	LC		Yes
Perciformes	Carangidae	Trachinotus maxillosus	LC		No
Perciformes	Carangidae	Trachinotus ovatus	LC		No
Perciformes	Carangidae	Trachinotus teraia	LC		No
Perciformes	Carangidae	Trachurus mediterraneus	LC		No
Perciformes	Carangidae	Trachurus picturatus	LC		No
Perciformes	Carangidae	Trachurus trachurus	VU	A2bd	No
Perciformes	Carangidae	Trachurus trecae	LC		No
Perciformes	Carangidae	Uraspis helvola	LC		No
Perciformes	Carangidae	Uraspis secunda	LC		No
Perciformes	Caristiidae	Paracaristius aquilus	LC		No
Perciformes	Caristiidae	Paracaristius nemorosus	LC		Yes
Perciformes	Caristiidae	Paracaristius nudarcus	DD		Yes
Perciformes	Caristiidae	Platyberyx andriashevi	DD		No
Perciformes	Caristiidae	Platyberyx opalescens	LC		No
Perciformes	Centracanthidae	Centracanthus cirrus	LC		No
Perciformes	Centracanthidae	Spicara alta	LC		Yes
Perciformes	Centracanthidae	Spicara melanurus	LC		No
Perciformes	Centrolophidae	Centrolophus niger	LC		No
Perciformes	Centrolophidae	Schedophilus pemarco	LC		No
Perciformes	Centrolophidae	Schedophilus velaini	LC		No
Perciformes	Cepolidae	Cepola macrophthalma	LC		No
Perciformes	Cepolidae	Cepola pauciradiata	DD		Yes
Perciformes	Chaetodontidae	Chaetodon hoefleri	LC		No
Perciformes	Chaetodontidae	Chaetodon robustus	LC		Yes
Perciformes	Chaetodontidae	Chaetodon sanctaehelenae	LC		Yes
Perciformes	Chaetodontidae	Prognathodes dichrous	LC		Yes
Perciformes	Chaetodontidae	Prognathodes marcellae	LC		Yes
Perciformes	Chiasmodontidae	Chiasmodon braueri	LC		No
Perciformes	Chiasmodontidae	Chiasmodon niger	LC		No
Perciformes	Chiasmodontidae	Dysalotus alcocki	LC		No
Perciformes	Chiasmodontidae	Dysalotus oligoscolus	LC		No
Perciformes	Chiasmodontidae	Kali indica	LC		No
Perciformes	Chiasmodontidae	Kali kerberti	LC		No
Perciformes	Chiasmodontidae	Kali macrodon	LC		No

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Chiasmodontidae	Kali macrura	LC		No
Perciformes	Chiasmodontidae	Kali parri	LC		No
Perciformes	Chiasmodontidae	Pseudoscopelus altipinnis	LC		No
Perciformes	Chiasmodontidae	Pseudoscopelus scriptus	LC		No
Perciformes	Chiasmodontidae	Pseudoscopelus scutatus	LC		No
Perciformes	Cirrhitidae	Amblycirrhitus earnshawi	EN	B2ab(iii)	Yes
Perciformes	Cirrhitidae	Amblycirrhitus pinos	LC		No
Perciformes	Cirrhitidae	Cirrhitus atlanticus	LC		Yes
Perciformes	Coryphaenidae	Coryphaena equiselis	LC		No
Perciformes	Coryphaenidae	Coryphaena hippurus	LC		No
Perciformes	Dinopercidae	Centrarchops chapini	LC		Yes
Perciformes	Drepaneidae	Drepane africana	LC		Yes
Perciformes	Echeneidae	Echeneis naucrates	LC		No
Perciformes	Echeneidae	Phtheirichthys lineatus	LC		No
Perciformes	Echeneidae	Remora albescens	LC		No
Perciformes	Echeneidae	Remora australis	LC		No
Perciformes	Echeneidae	Remora brachyptera	LC		No
Perciformes	Echeneidae	Remora osteochir	LC		No
Perciformes	Echeneidae	Remora remora	LC		No
Perciformes	Eleotridae	Eleotris vittata	LC		No
Perciformes	Emmelichthyidae	Emmelichthys ruber	LC		No
Perciformes	Emmelichthyidae	Erythrocles monodi	LC		No
Perciformes	Ephippidae	Chaetodipterus lippei	LC		No
Perciformes	Ephippidae	Ephippus goreensis	LC		Yes
Perciformes	Epigonidae	Epigonus affinis	LC		Yes
Perciformes	Epigonidae	Epigonus constanciae	LC		No
Perciformes	Epigonidae	Epigonus denticulatus	LC		No
Perciformes	Epigonidae	Epigonus pandionis	LC		No
Perciformes	Epigonidae	Epigonus telescopus	LC		No
Perciformes	Epinephelidae	Alphestes afer	LC		No
Perciformes	Epinephelidae	Cephalopholis nigri	LC		No
Perciformes	Epinephelidae	Cephalopholis taeniops	DD		No
Perciformes	Epinephelidae	Epinephelus adscensionis	LC		No
Perciformes	Epinephelidae	Epinephelus aeneus	NT		No
Perciformes	Epinephelidae	Epinephelus caninus	DD		No
Perciformes	Epinephelidae	Epinephelus costae	DD		No
Perciformes	Epinephelidae	Epinephelus goreensis	DD		Yes
Perciformes	Epinephelidae	Epinephelus itajara	CR	A2d	No
Perciformes	Epinephelidae	Epinephelus marginatus	EN	A2d	No
Perciformes	Epinephelidae	Hyporthodus haifensis	DD		No
Perciformes	Epinephelidae	Mycteroperca fusca	EN	B1ab(v)	No
Perciformes	Epinephelidae	Mycteroperca rubra	LC	2100(1)	No
Perciformes	Epinephelidae	Paranthias furcifer	LC		No
Perciformes	Gempylidae	Diplospinus multistriatus	LC		No
Perciformes	Gempylidae	Gempylus serpens	LC		No

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Gempylidae	Lepidocybium flavobrunneum	LC		No
Perciformes	Gempylidae	Nealotus tripes	LC		No
Perciformes	Gempylidae	Nesiarchus nasutus	LC		No
Perciformes	Gempylidae	Promethichthys prometheus	LC		No
Perciformes	Gempylidae	Ruvettus pretiosus	LC		No
Perciformes	Gerreidae	Eucinostomus melanopterus	LC		No
Perciformes	Gerreidae	Gerres nigri	LC		Yes
Perciformes	Gobiidae	Bathygobius burtoni	EN	B2ab(iii)	Yes
Perciformes	Gobiidae	Bathygobius casamancus	LC		Yes
Perciformes	Gobiidae	Bathygobius soporator	LC		No
Perciformes	Gobiidae	Corcyrogobius lubbocki	VU	B2ab(iii)	Yes
Perciformes	Gobiidae	Ctenogobius lepturus	LC		Yes
Perciformes	Gobiidae	Didogobius amicuscaridis	VU	B2ab(iii)	Yes
Perciformes	Gobiidae	Didogobius kochi	LC		No
Perciformes	Gobiidae	Didogobius wirtzi	LC		Yes
Perciformes	Gobiidae	Gnatholepis thompsoni	LC		No
Perciformes	Gobiidae	Gobioides africanus	LC		Yes
Perciformes	Gobiidae	Gobioides sagitta	LC		Yes
Perciformes	Gobiidae	Gobionellus occidentalis	LC		Yes
Perciformes	Gobiidae	Gobius ateriformis	LC		Yes
Perciformes	Gobiidae	Gobius cruentatus	LC		No
Perciformes	Gobiidae	Gobius niger	LC		No
Perciformes	Gobiidae	Gobius paganellus	LC		No
Perciformes	Gobiidae	Gobius rubropunctatus	LC		Yes
Perciformes	Gobiidae	Gobius senegambiensis	LC		No
Perciformes	Gobiidae	Gobius tetrophthalmus	VU	B2ab(iii)	Yes
Perciformes	Gobiidae	Gorogobius nigricinctus	LC		Yes
Perciformes	Gobiidae	Gorogobius stevcici	VU	B2ab(iii)	Yes
Perciformes	Gobiidae	Lesueurigobius friesii	LC		No
Perciformes	Gobiidae	Lesueurigobius koumansi	LC		Yes
Perciformes	Gobiidae	Lesueurigobius sanzi	LC		No
Perciformes	Gobiidae	Mauligobius nigri	LC		Yes
Perciformes	Gobiidae	Nematogobius brachynemus	LC		Yes
Perciformes	Gobiidae	Pomatoschistus microps	LC		No
Perciformes	Gobiidae	Priolepis ascensionis	EN	B2ab(iii)	Yes
Perciformes	Gobiidae	Thorogobius angolensis	LC		Yes
Perciformes	Gobiidae	Thorogobius rofeni	LC		No
Perciformes	Gobiidae	Vanneaugobius canariensis	LC		No
Perciformes	Gobiidae	Wheelerigobius maltzani	LC		Yes
Perciformes	Gobiidae	Wheelerigobius wirtzi	LC		Yes
Perciformes	Haemulidae	Brachydeuterus auritus	NT		No
Perciformes	Haemulidae	Parakuhlia macrophthalmus	DD		Yes
Perciformes	Haemulidae	Parapristipoma humile	LC		No
Perciformes	Haemulidae	Parapristipoma octolineatum	LC		No
Perciformes	Haemulidae	Plectorhinchus macrolepis	LC		No

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Haemulidae	Plectorhinchus mediterraneus	DD		No
Perciformes	Haemulidae	Pomadasys incisus	LC		No
Perciformes	Haemulidae	Pomadasys jubelini	LC		Yes
Perciformes	Haemulidae	Pomadasys perotaei	LC		Yes
Perciformes	Haemulidae	Pomadasys rogerii	LC		Yes
Perciformes	Howellidae	Howella atlantica	LC		No
Perciformes	Istiophoridae	Istiophorus platypterus	LC		No
Perciformes	Istiophoridae	Kajikia albida	VU	A2bd	No
Perciformes	Istiophoridae	Makaira nigricans	VU	A2bd	No
Perciformes	Istiophoridae	Tetrapturus georgii	DD		No
Perciformes	Istiophoridae	Tetrapturus pfluegeri	LC		No
Perciformes	Kyphosidae	Girella zonata	VU	B2ab(iii)	Yes
Perciformes	Kyphosidae	Kyphosus sectatrix	LC		No
Perciformes	Kyphosidae	Kyphosus vaigiensis	LC		No
Perciformes	Labridae	Acantholabrus palloni	LC		No
Perciformes	Labridae	Bodianus insularis	LC		No
Perciformes	Labridae	Bodianus scrofa	VU	B2ab(iv,v)	No
Perciformes	Labridae	Bodianus speciosus	DD		No
Perciformes	Labridae	Coris atlantica	LC		No
Perciformes	Labridae	Doratonotus megalepis	LC		No
Perciformes	Labridae	Labrus mixtus	LC		No
Perciformes	Labridae	Lappanella guineensis	DD		Yes
Perciformes	Labridae	Nicholsina collettei	LC		Yes
Perciformes	Labridae	Scarus hoefleri	LC		Yes
Perciformes	Labridae	Sparisoma cretense	LC		No
Perciformes	Labridae	Symphodus bailloni	LC		No
Perciformes	Labridae	Thalassoma pavo	LC		No
Perciformes	Labridae	Xyrichtys novacula	LC		No
Perciformes	Labrisomidae	Malacoctenus africanus	DD		Yes
Perciformes	Lethrinidae	Lethrinus atlanticus	LC		Yes
Perciformes	Lobotidae	Lobotes surinamensis	LC		No
Perciformes	Lutjanidae	Apsilus fuscus	LC		No
Perciformes	Lutjanidae	Lutjanus agennes	DD		Yes
Perciformes	Lutjanidae	Lutjanus dentatus	DD		Yes
Perciformes	Lutjanidae	Lutjanus endecacanthus	DD		Yes
Perciformes	Lutjanidae	Lutjanus fulgens	LC		Yes
Perciformes	Lutjanidae	Lutjanus goreensis	DD		Yes
Perciformes	Luvaridae	Luvarus imperialis	LC		No
Perciformes	Malacanthidae	Branchiostegus semifasciatus	LC		No
Perciformes	Malacanthidae	Malacanthus plumieri	LC		No
Perciformes	Microdesmidae	Microdesmus aethiopicus	LC		Yes
Perciformes	Microdesmidae	Microdesmus africanus	DD		Yes
Perciformes	Moronidae	Dicentrarchus labrax	LC		No
Perciformes	Moronidae	Dicentrarchus punctatus	LC		No
Perciformes	Mullidae	Mulloidichthys martinicus	LC		No

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Mullidae	Mullus barbatus	LC		No
Perciformes	Mullidae	Mullus surmuletus	LC		No
Perciformes	Mullidae	Pseudupeneus prayensis	VU	A2ad	No
Perciformes	Nomeidae	Cubiceps caeruleus	LC		No
Perciformes	Nomeidae	Cubiceps capensis	LC		No
Perciformes	Nomeidae	Cubiceps gracilis	LC		No
Perciformes	Nomeidae	Cubiceps pauciradiatus	LC		No
Perciformes	Nomeidae	Nomeus gronovii	LC		No
Perciformes	Nomeidae	Psenes arafurensis	LC		No
Perciformes	Nomeidae	Psenes cyanophrys	LC		No
Perciformes	Nomeidae	Psenes pellucidus	LC		No
Perciformes	Percophidae	Bembrops cadenati	LC		Yes
Perciformes	Percophidae	Bembrops greyi	LC		Yes
Perciformes	Percophidae	Bembrops heterurus	LC		No
Perciformes	Pinguipedidae	Parapercis atlantica	DD		Yes
Perciformes	Polynemidae	Galeoides decadactylus	NT		No
Perciformes	Polynemidae	Pentanemus quinquarius	VU	A2bd	Yes
Perciformes	Polynemidae	Polydactylus quadrifilis	LC		Yes
Perciformes	Polyprionidae	Polyprion americanus	DD		No
Perciformes	Pomacanthidae	Centropyge resplendens	LC		Yes
Perciformes	Pomacanthidae	Holacanthus africanus	LC		Yes
Perciformes	Pomacanthidae	Pomacanthus paru	LC		No
Perciformes	Pomacentridae	Abudefduf hoefleri	DD		Yes
Perciformes	Pomacentridae	Abudefduf luridus	LC		No
Perciformes	Pomacentridae	Abudefduf saxatilis	LC		No
Perciformes	Pomacentridae	Abudefduf taurus	LC		No
Perciformes	Pomacentridae	Chromis cadenati	LC		Yes
Perciformes	Pomacentridae	Chromis chromis	LC		No
Perciformes	Pomacentridae	Chromis limbata	LC		No
Perciformes	Pomacentridae	Chromis lubbocki	LC		Yes
Perciformes	Pomacentridae	Chromis multilineata	LC		No
Perciformes	Pomacentridae	Chromis sanctaehelenae	LC		Yes
Perciformes	Pomacentridae	Chrysiptera unimaculata	LC		No
Perciformes	Pomacentridae	Microspathodon frontatus	LC		Yes
Perciformes	Pomacentridae	Stegastes imbricatus	LC		Yes
Perciformes	Pomacentridae	Stegastes lubbocki	LC		Yes
Perciformes	Pomacentridae	Stegastes sanctaehelenae	LC		Yes
Perciformes	Pomatomidae	Pomatomus saltatrix	VU	A2bd	No
Perciformes	Priacanthidae	Heteropriacanthus cruentatus	LC		No
Perciformes	Priacanthidae	Priacanthus arenatus	LC		No
Perciformes	Rachycentridae	Rachycentron canadum	LC		No
Perciformes	Sciaenidae	Argyrosomus regius	LC		No
Perciformes	Sciaenidae	Atractoscion aequidens	VU	A2bd	No
Perciformes	Sciaenidae	Miracorvina angolensis	LC		Yes
Perciformes	Sciaenidae	Pentheroscion mbizi	NT		No

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Sciaenidae	Pseudotolithus elongatus	LC		No
Perciformes	Sciaenidae	Pseudotolithus epipercus	LC		Yes
Perciformes	Sciaenidae	Pseudotolithus moorii	LC		Yes
Perciformes	Sciaenidae	Pseudotolithus senegalensis	EN	A2bd	No
Perciformes	Sciaenidae	Pseudotolithus senegallus	VU	A2bd	No
Perciformes	Sciaenidae	Pseudotolithus typus	LC		Yes
Perciformes	Sciaenidae	Pteroscion peli	LC		Yes
Perciformes	Sciaenidae	Sciaena umbra	NT		No
Perciformes	Sciaenidae	Umbrina canariensis	LC		No
Perciformes	Sciaenidae	Umbrina ronchus	DD		No
Perciformes	Sciaenidae	Umbrina steindachneri	DD		Yes
Perciformes	Scombridae	Acanthocybium solandri	LC		No
Perciformes	Scombridae	Auxis rochei	LC		No
Perciformes	Scombridae	Auxis thazard	LC		No
Perciformes	Scombridae	Euthynnus alletteratus	LC		No
Perciformes	Scombridae	Katsuwonus pelamis	LC		No
Perciformes	Scombridae	Orcynopsis unicolor	LC		No
Perciformes	Scombridae	Sarda sarda	LC		No
Perciformes	Scombridae	Scomber colias	LC		No
Perciformes	Scombridae	Scomberomorus tritor	LC		No
Perciformes	Scombridae	Thunnus alalunga	NT		No
Perciformes	Scombridae	Thunnus albacares	NT		No
Perciformes	Scombridae	Thunnus obesus	VU	A2bd	No
Perciformes	Scombridae	Thunnus thynnus	EN	A2bd	No
Perciformes	Scombrolabracidae	Scombrolabrax heterolepis	LC		No
Perciformes	Serranidae	Anthias anthias	LC		No
Perciformes	Serranidae	Anthias cyprinoides	DD		Yes
Perciformes	Serranidae	Anthias helenensis	DD		Yes
Perciformes	Serranidae	Holanthias caudalis	DD		Yes
Perciformes	Serranidae	Holanthias fronticinctus	DD		Yes
Perciformes	Serranidae	Meganthias carpenteri	DD		Yes
Perciformes	Serranidae	Pseudogramma gregoryi	LC		No
Perciformes	Serranidae	Pseudogramma guineensis	LC		Yes
Perciformes	Serranidae	Rypticus saponaceus	LC		No
Perciformes	Serranidae	Rypticus subbifrenatus	LC		No
Perciformes	Serranidae	Serranus accraensis	LC		Yes
Perciformes	Serranidae	Serranus africanus	LC		Yes
Perciformes	Serranidae	Serranus cabrilla	LC		No
Perciformes	Serranidae	Serranus hepatus	LC		No
Perciformes	Serranidae	Serranus heterurus	LC		Yes
Perciformes	Serranidae	Serranus sanctaehelenae	LC		No
Perciformes	Serranidae	Serranus scriba	LC		No
Perciformes	Sparidae	Boops boops	LC		No
Perciformes	Sparidae	Dentex angolensis	NT		No
Perciformes	Sparidae	Dentex barnardi	LC		No

Order	Family	Species	Cat	Crit	Endemic
Perciformes	Sparidae	Dentex canariensis	LC		No
Perciformes	Sparidae	Dentex congoensis	LC		Yes
Perciformes	Sparidae	Dentex dentex	VU	A2bd	No
Perciformes	Sparidae	Dentex gibbosus	LC		No
Perciformes	Sparidae	Dentex macrophthalmus	LC		No
Perciformes	Sparidae	Dentex maroccanus	LC		No
Perciformes	Sparidae	Diplodus bellottii	LC		No
Perciformes	Sparidae	Diplodus cervinus	LC		No
Perciformes	Sparidae	Diplodus fasciatus	LC		Yes
Perciformes	Sparidae	Diplodus prayensis	LC		Yes
Perciformes	Sparidae	Diplodus puntazzo	LC		No
Perciformes	Sparidae	Diplodus sargus	LC		No
Perciformes	Sparidae	Diplodus vulgaris	LC		No
Perciformes	Sparidae	Lithognathus mormyrus	LC		No
Perciformes	Sparidae	Oblada melanura	LC		No
Perciformes	Sparidae	Pachymetopon blochii	LC		No
Perciformes	Sparidae	Pagellus acarne	LC		No
Perciformes	Sparidae	Pagellus bellottii	LC		No
Perciformes	Sparidae	Pagellus bogaraveo	NT		No
Perciformes	Sparidae	Pagellus erythrinus	LC		No
Perciformes	Sparidae	Pagrus auriga	LC		No
Perciformes	Sparidae	Pagrus caeruleostictus	LC		No
Perciformes	Sparidae	Rhabdosargus globiceps	VU	A2bd	No
Perciformes	Sparidae	Sarpa salpa	LC		No
Perciformes	Sparidae	Sparus aurata	LC		No
Perciformes	Sparidae	Spondyliosoma cantharus	LC		No
Perciformes	Sparidae	Virididentex acromegalus	LC		Yes
Perciformes	Sphyraenidae	Sphyraena afra	LC		No
Perciformes	Sphyraenidae	Sphyraena barracuda	LC		No
Perciformes	Sphyraenidae	Sphyraena guachancho	LC		No
Perciformes	Sphyraenidae	Sphyraena sphyraena	LC		No
Perciformes	Sphyraenidae	Sphyraena viridensis	LC		No
Perciformes	Stromateidae	Stromateus fiatola	LC		No
Perciformes	Symphysanodontidae	Symphysanodon berryi	LC		No
Perciformes	Tetragonuridae	Tetragonurus atlanticus	LC		No
Perciformes	Tetragonuridae	Tetragonurus cuvieri	LC		No
Perciformes	Trachinidae	Trachinus araneus	LC		No
Perciformes	Trachinidae	Trachinus armatus	LC		No
Perciformes	Trachinidae	Trachinus collignoni	DD		Yes
Perciformes	Trachinidae	Trachinus draco	LC		No
Perciformes	Trachinidae	Trachinus lineolatus	LC		No
Perciformes	Trachinidae	Trachinus pellegrini	LC		No
Perciformes	Trachinidae	Trachinus radiatus	LC		No
Perciformes	Trichiuridae	Aphanopus intermedius	LC		No
Perciformes	Trichiuridae	Benthodesmus tenuis	LC		No

Order	Family	Species	Cat Crit	Endemic
Perciformes	Trichiuridae	Lepidopus caudatus	DD	No
Perciformes	Trichiuridae	Lepidopus dubius	LC	Yes
Perciformes	Trichiuridae	Trichiurus lepturus	LC	No
Perciformes	Tripterygiidae	Helcogramma ascensionis	LC	Yes
Perciformes	Tripterygiidae	Tripterygion delaisi	LC	No
Perciformes	Uranoscopidae	Uranoscopus albesca	LC	Yes
Perciformes	Uranoscopidae	Uranoscopus cadenati	LC	Yes
Perciformes	Uranoscopidae	Uranoscopus polli	LC	Yes
Perciformes	Uranoscopidae	Uranoscopus scaber	LC	No
Perciformes	Xiphiidae	Xiphias gladius	LC	No
Perciformes	Zoarcidae	Melanostigma atlanticum	LC	No
Perciformes	Zoarcidae	Pachycara bulbiceps	LC	No
Perciformes	Zoarcidae	Pachycara crassiceps	LC	No
Perciformes	Zoarcidae	Pachycara crossacanthum	LC	Yes
Pleuronectiformes	Bothidae	Arnoglossus capensis	LC	No
Pleuronectiformes	Bothidae	Arnoglossus imperialis	LC	No
Pleuronectiformes	Bothidae	Arnoglossus laterna	LC	No
Pleuronectiformes	Bothidae	Arnoglossus thori	DD	No
Pleuronectiformes	Bothidae	Bothus guibei	DD	Yes
Pleuronectiformes	Bothidae	Bothus lunatus	LC	No
Pleuronectiformes	Bothidae	Bothus mellissi	LC	Yes
Pleuronectiformes	Bothidae	Bothus podas	LC	No
Pleuronectiformes	Bothidae	Chascanopsetta lugubris	LC	No
Pleuronectiformes	Bothidae	Monolene helenensis	DD	Yes
Pleuronectiformes	Bothidae	Monolene mertensi	LC	Yes
Pleuronectiformes	Bothidae	Monolene microstoma	LC	No
Pleuronectiformes	Citharidae	Citharus linguatula	LC	No
Pleuronectiformes	Cynoglossidae	Cynoglossus browni	DD	Yes
Pleuronectiformes	Cynoglossidae	Cynoglossus cadenati	DD	Yes
Pleuronectiformes	Cynoglossidae	Cynoglossus canariensis	NT	No
Pleuronectiformes	Cynoglossidae	Cynoglossus monodi	NT	Yes
Pleuronectiformes	Cynoglossidae	Cynoglossus senegalensis	NT	Yes
Pleuronectiformes	Cynoglossidae	Symphurus insularis	LC	No
Pleuronectiformes	Cynoglossidae	Symphurus ligulatus	LC	No
Pleuronectiformes	Cynoglossidae	Symphurus lubbocki	DD	Yes
Pleuronectiformes	Cynoglossidae	Symphurus nigrescens	LC	No
Pleuronectiformes	Cynoglossidae	Symphurus normani	LC	Yes
Pleuronectiformes	Cynoglossidae	Symphurus reticulatus	DD	Yes
Pleuronectiformes	Cynoglossidae	Symphurus vanmelleae	LC	Yes
leuronectiformes	Paralichthyidae	Citharichthys stampflii	LC	Yes
Pleuronectiformes	Paralichthyidae	Syacium guineensis	LC	No
Pleuronectiformes	Psettodidae	Psettodes belcheri	DD	No
Pleuronectiformes	Psettodidae	Psettodes bennettii	DD	No
Pleuronectiformes	Soleidae	Bathysolea lactea	DD	Yes
Pleuronectiformes	Soleidae	Bathysolea polli		105

Order	Family	Species	Cat	Crit	Endemic
Pleuronectiformes	Soleidae	Bathysolea profundicola	LC		No
Pleuronectiformes	Soleidae	Dagetichthys lusitanica	DD		No
Pleuronectiformes	Soleidae	Dicologlossa cuneata	LC		No
Pleuronectiformes	Soleidae	Dicologlossa hexophthalma	LC		No
Pleuronectiformes	Soleidae	Heteromycteris proboscideus	DD		No
Pleuronectiformes	Soleidae	Microchirus azevia	DD		No
Pleuronectiformes	Soleidae	Microchirus boscanion	DD		No
Pleuronectiformes	Soleidae	Microchirus frechkopi	DD		Yes
Pleuronectiformes	Soleidae	Microchirus ocellatus	DD		No
Pleuronectiformes	Soleidae	Microchirus theophila	DD		No
Pleuronectiformes	Soleidae	Microchirus variegatus	LC		No
Pleuronectiformes	Soleidae	Microchirus wittei	LC		No
Pleuronectiformes	Soleidae	Monochirus atlanticus	DD		No
Pleuronectiformes	Soleidae	Pegusa cadenati	DD		Yes
Pleuronectiformes	Soleidae	Pegusa lascaris	LC		No
Pleuronectiformes	Soleidae	Solea senegalensis	DD		No
Pleuronectiformes	Soleidae	Solea solea	DD		No
Pleuronectiformes	Soleidae	Solea triophthalma	DD		Yes
Pleuronectiformes	Soleidae	Synapturichthys kleinii	DD		No
Pleuronectiformes	Soleidae	Vanstraelenia chirophthalma	DD		Yes
Polymixiiformes	Polymixiidae	Polymixia nobilis	LC		No
Saccopharyngiformes	Cyematidae	Cyema atrum	LC		No
Saccopharyngiformes	Eurypharyngidae	Eurypharynx pelecanoides	LC		No
Saccopharyngiformes	Monognathidae	Monognathus jesperseni	DD		Yes
Saccopharyngiformes	Monognathidae	Monognathus nigeli	DD		No
Saccopharyngiformes	Monognathidae	Monognathus taningi	DD		Yes
Saccopharyngiformes	Saccopharyngidae	Saccopharynx ampullaceus	LC		No
Saccopharyngiformes	Saccopharyngidae	Saccopharynx ramosus	LC		No
Scorpaeniformes	Dactylopteridae	Dactylopterus volitans	LC		No
Scorpaeniformes	Liparidae	Careproctus albescens	LC		No
Scorpaeniformes	Liparidae	Paraliparis copei	DD		No
Scorpaeniformes	Peristediidae	Peristedion cataphractum	LC		No
Scorpaeniformes	Platycephalidae	Solitas gruveli	LC		Yes
Scorpaeniformes	Psychrolutidae	Cottunculus thomsonii	LC		No
Scorpaeniformes	Psychrolutidae	Ebinania costaecanariae	LC		No
Scorpaeniformes	Psychrolutidae	Psychrolutes inermis	LC		No
Scorpaeniformes	Scorpaenidae	Idiastion kyphos	LC		No
Scorpaeniformes	Scorpaenidae	Neomerinthe folgori	DD		No
Scorpaeniformes	Scorpaenidae	Pontinus accraensis	LC		Yes
Scorpaeniformes	Scorpaenidae	Pontinus kuhlii	DD		No
Scorpaeniformes	Scorpaenidae	Pontinus leda	LC		No
Scorpaeniformes	Scorpaenidae	Pontinus nigropunctatus	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena angolensis	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena annobonae	DD		Yes
Scorpaeniformes	Scorpaenidae	Scorpaena ascensionis	EN	B2ab(iii)	Yes

Order	Family	Species	Cat	Crit	Endemic
Scorpaeniformes	Scorpaenidae	Scorpaena elongata	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena laevis	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena loppei	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena maderensis	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena mellissii	EN	B2ab(iii)	Yes
Scorpaeniformes	Scorpaenidae	Scorpaena normani	LC		Yes
Scorpaeniformes	Scorpaenidae	Scorpaena notata	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena plumieri	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena scrofa	LC		No
Scorpaeniformes	Scorpaenidae	Scorpaena stephanica	LC		Yes
Scorpaeniformes	Scorpaenidae	Scorpaenodes africanus	DD		Yes
Scorpaeniformes	Scorpaenidae	Scorpaenodes elongatus	DD		Yes
Scorpaeniformes	Scorpaenidae	Scorpaenodes insularis	LC		No
Scorpaeniformes	Sebastidae	Helicolenus dactylopterus	LC		No
Scorpaeniformes	Sebastidae	Trachyscorpia cristulata	LC		No
Scorpaeniformes	Setarchidae	Ectreposebastes imus	LC		No
Scorpaeniformes	Setarchidae	Setarches guentheri	LC		No
Scorpaeniformes	Triglidae	Chelidonichthys cuculus	LC		No
Scorpaeniformes	Triglidae	Chelidonichthys gabonensis	LC		Yes
Scorpaeniformes	Triglidae	Chelidonichthys lastoviza	LC		No
Scorpaeniformes	Triglidae	Chelidonichthys lucerna	LC		No
Scorpaeniformes	Triglidae	Chelidonichthys obscurus	LC		No
Scorpaeniformes	Triglidae	Lepidotrigla cadmani	LC		No
Scorpaeniformes	Triglidae	Lepidotrigla carolae	LC		Yes
Scorpaeniformes	Triglidae	Lepidotrigla dieuzeidei	LC		No
Scorpaeniformes	Triglidae	Trigla lyra	LC		No
Scorpaeniformes	Triglidae	Trigla macrodactylus	DD		Yes
Scorpaeniformes	Triglidae	Trigloporus lastoviza	LC		No
Siluriformes	Ariidae	Carlarius heudelotii	LC		Yes
Siluriformes	Ariidae	Carlarius latiscutatus	DD		Yes
Siluriformes	Ariidae	Carlarius parkii	LC		Yes
Stephanoberyciformes	Melamphaidae	Melamphaes ebelingi	DD		No
Stephanoberyciformes	Melamphaidae	Melamphaes eulepis	LC		No
Stephanoberyciformes	Melamphaidae	Melamphaes hubbsi	DD		No
Stephanoberyciformes	Melamphaidae	Melamphaes leprus	LC		Yes
Stephanoberyciformes	Melamphaidae	Melamphaes longivelis	DD		No
Stephanoberyciformes	Melamphaidae	Melamphaes polylepis	DD		No
Stephanoberyciformes	Melamphaidae	Melamphaes pumilus	DD		No
Stephanoberyciformes	Melamphaidae	Melamphaes simus	LC		No
Stephanoberyciformes	Melamphaidae	Melamphaes suborbitalis	DD		No
Stephanoberyciformes	Melamphaidae	Melamphaes typhlops	DD		No
Stephanoberyciformes	Melamphaidae	Poromitra capito	DD		No
Stephanoberyciformes	Melamphaidae	Poromitra crassiceps	LC		No
Stephanoberyciformes	Melamphaidae	Poromitra megalops	DD		No
Stephanoberyciformes	Melamphaidae	Scopeloberyx opisthopterus	LC		No

Order	Family	Species	Cat	Crit Endemic
Stephanoberyciformes	Melamphaidae	Scopeloberyx robustus	DD	No
Stephanoberyciformes	Melamphaidae	Scopelogadus beanii	DD	No
Stephanoberyciformes	Melamphaidae	Scopelogadus mizolepis	LC	No
Stephanoberyciformes	Stephanoberycidae	Abyssoberyx levisquamosus	DD	No
Stomiiformes	Gonostomatidae	Bonapartia pedaliota	LC	No
Stomiiformes	Gonostomatidae	Cyclothone acclinidens	LC	No
Stomiiformes	Gonostomatidae	Cyclothone alba	LC	No
Stomiiformes	Gonostomatidae	Cyclothone braueri	LC	No
Stomiiformes	Gonostomatidae	Cyclothone livida	LC	No
Stomiiformes	Gonostomatidae	Cyclothone microdon	LC	No
Stomiiformes	Gonostomatidae	Cyclothone obscura	LC	No
Stomiiformes	Gonostomatidae	Cyclothone pallida	LC	No
Stomiiformes	Gonostomatidae	Cyclothone parapallida	LC	No
Stomiiformes	Gonostomatidae	Cyclothone pseudopallida	LC	No
Stomiiformes	Gonostomatidae	Diplophos taenia	LC	No
Stomiiformes	Gonostomatidae	Gonostoma atlanticum	LC	No
Stomiiformes	Gonostomatidae	Gonostoma denudatum	LC	No
Stomiiformes	Gonostomatidae	Gonostoma elongatum	LC	No
Stomiiformes	Gonostomatidae	Manducus maderensis	DD	No
Stomiiformes	Gonostomatidae	Sigmops bathyphilus	LC	No
Stomiiformes	Gonostomatidae	Triplophos hemingi	LC	No
Stomiiformes	Phosichthyidae	Ichthyococcus ovatus	LC	No
Stomiiformes	Phosichthyidae	Ichthyococcus polli	LC	No
Stomiiformes	Phosichthyidae	Phosichthys argenteus	LC	No
Stomiiformes	Phosichthyidae	Pollichthys mauli	LC	No
Stomiiformes	Phosichthyidae	Polymetme thaeocoryla	LC	No
Stomiiformes	Phosichthyidae	Vinciguerria attenuata	LC	No
Stomiiformes	Phosichthyidae	Vinciguerria nimbaria	LC	No
Stomiiformes	Phosichthyidae	Vinciguerria poweriae	LC	No
Stomiiformes	Phosichthyidae	Yarrella blackfordi	LC	No
Stomiiformes	Sternoptychidae	Argyropelecus aculeatus	LC	No
Stomiiformes	Sternoptychidae	Argyropelecus affinis	LC	No
Stomiiformes	Sternoptychidae	Argyropelecus gigas	LC	No
Stomiiformes	Sternoptychidae	Argyropelecus hemigymnus	LC	No
Stomiiformes	Sternoptychidae	Argyropelecus sladeni	LC	No
Stomiiformes	Sternoptychidae	Maurolicus walvisensis	LC	No
Stomiiformes	Sternoptychidae	Maurolicus weitzmani	LC	No
Stomiiformes	Sternoptychidae	Polyipnus polli	LC	No
Stomiiformes	Sternoptychidae	Sternoptyx diaphana	LC	No
Stomiiformes	Sternoptychidae	Sternoptyx pseudobscura	LC	No
Stomiiformes	Sternoptychidae	Sternoptyx pseudodiaphana	LC	No
Stomiiformes	Sternoptychidae	Valenciennellus tripunctulatus	LC	No
Stomiiformes	Stomiidae	Aristostomias lunifer	LC	No
Stomiiformes	Stomiidae	Aristostomias polydactylus	LC	No
Stomiiformes	Stomiidae	Aristostomias tittmanni	20	110

Order	Family	Species	Cat Crit	Endemic
Stomiiformes	Stomiidae	Aristostomias xenostoma	LC	No
Stomiiformes	Stomiidae	Astronesthes atlanticus	LC	No
Stomiiformes	Stomiidae	Astronesthes caulophorus	LC	No
Stomiiformes	Stomiidae	Astronesthes decoratus	LC	No
Stomiiformes	Stomiidae	Astronesthes gemmifer	DD	No
Stomiiformes	Stomiidae	Astronesthes haplophos	LC	No
Stomiiformes	Stomiidae	Astronesthes indicus	LC	No
Stomiiformes	Stomiidae	Astronesthes karsteni	LC	Yes
Stomiiformes	Stomiidae	Astronesthes leucopogon	LC	No
Stomiiformes	Stomiidae	Astronesthes macropogon	LC	No
Stomiiformes	Stomiidae	Astronesthes micropogon	LC	No
Stomiiformes	Stomiidae	Astronesthes niger	LC	No
Stomiiformes	Stomiidae	Astronesthes richardsoni	LC	No
Stomiiformes	Stomiidae	Bathophilus brevis	LC	No
Stomiiformes	Stomiidae	Bathophilus digitatus	LC	No
Stomiiformes	Stomiidae	Bathophilus longipinnis	LC	No
Stomiiformes	Stomiidae	Bathophilus metallicus	LC	No
Stomiiformes	Stomiidae	Bathophilus nigerrimus	LC	No
Stomiiformes	Stomiidae	Bathophilus pawneei	LC	No
Stomiiformes	Stomiidae	Bathophilus schizochirus	LC	No
Stomiiformes	Stomiidae	Bathophilus vaillanti	LC	No
Stomiiformes	Stomiidae	Borostomias antarcticus	LC	No
Stomiiformes	Stomiidae	Borostomias elucens	LC	No
Stomiiformes	Stomiidae	Borostomias mononema	LC	No
Stomiiformes	Stomiidae	Chauliodus danae	LC	No
Stomiiformes	Stomiidae	Chauliodus minimus	LC	No
Stomiiformes	Stomiidae	Chauliodus schmidti	LC	No
Stomiiformes	Stomiidae	Chauliodus sloani	LC	No
Stomiiformes	Stomiidae	Echiostoma barbatum	LC	No
Stomiiformes	Stomiidae	Eustomias acinosus	DD	No
Stomiiformes	Stomiidae	Eustomias aequatorialis	LC	No
Stomiiformes	Stomiidae	Eustomias arborifer	LC	No
Stomiiformes	Stomiidae	Eustomias bigelowi	LC	No
Stomiiformes	Stomiidae	Eustomias enbarbatus	LC	No
Stomiiformes	Stomiidae	Eustomias fissibarbis	LC	No
Stomiiformes	Stomiidae	Eustomias furcifer	LC	No
Stomiiformes	Stomiidae	Eustomias insularum	DD	Yes
Stomiiformes	Stomiidae	Eustomias intermedius	LC	No
Stomiiformes	Stomiidae	Eustomias kreffti	LC	No
Stomiiformes	Stomiidae	Eustomias lanceolatus	LC	No
Stomiiformes	Stomiidae	Eustomias longibarba	LC	No
Stomiiformes	Stomiidae	Eustomias macrurus	LC	No
Stomiiformes	Stomiidae	Eustomias melanonema	LC	No
Stomiiformes	Stomiidae	Eustomias melanostigma	LC	No
Stomiiformes	Stomiidae	Eustomias monoclonoides	DD	Yes

Order	Family	Species	Cat Crit	Endemic
Stomiiformes	Stomiidae	Eustomias obscurus	LC	No
Stomiiformes	Stomiidae	Eustomias patulus	DD	No
Stomiiformes	Stomiidae	Eustomias satterleei	LC	No
Stomiiformes	Stomiidae	Eustomias simplex	LC	No
Stomiiformes	Stomiidae	Eustomias spherulifer	LC	No
Stomiiformes	Stomiidae	Eustomias tenisoni	DD	No
Stomiiformes	Stomiidae	Eustomias triramis	LC	No
Stomiiformes	Stomiidae	Flagellostomias boureei	LC	No
Stomiiformes	Stomiidae	Grammatostomias dentatus	LC	No
Stomiiformes	Stomiidae	Heterophotus ophistoma	LC	No
Stomiiformes	Stomiidae	Idiacanthus fasciola	LC	No
Stomiiformes	Stomiidae	Leptostomias gladiator	LC	No
Stomiiformes	Stomiidae	Leptostomias gracilis	LC	No
Stomiiformes	Stomiidae	Leptostomias longibarba	LC	No
Stomiiformes	Stomiidae	Malacosteus niger	LC	No
Stomiiformes	Stomiidae	Melanostomias bartonbeani	LC	No
Stomiiformes	Stomiidae	Melanostomias biseriatus	LC	No
Stomiiformes	Stomiidae	Melanostomias melanops	LC	No
Stomiiformes	Stomiidae	Melanostomias paucilaternatus	LC	No
Stomiiformes	Stomiidae	Melanostomias spilorhynchus	LC	No
Stomiiformes	Stomiidae	Melanostomias tentaculatus	LC	No
Stomiiformes	Stomiidae	Melanostomias valdiviae	LC	No
Stomiiformes	Stomiidae	Neonesthes capensis	LC	No
Stomiiformes	Stomiidae	Neonesthes microcephalus	LC	No
Stomiiformes	Stomiidae	Odontostomias masticopogon	LC	Yes
Stomiiformes	Stomiidae	Odontostomias micropogon	LC	No
Stomiiformes	Stomiidae	Pachystomias microdon	LC	No
Stomiiformes	Stomiidae	Photonectes braueri	LC	No
Stomiiformes	Stomiidae	Photonectes caerulescens	LC	No
Stomiiformes	Stomiidae	Photonectes margarita	LC	No
Stomiiformes	Stomiidae	Photonectes mirabilis	LC	No
Stomiiformes	Stomiidae	Photonectes parvimanus	LC	No
Stomiiformes	Stomiidae	Photonectes phyllopogon	LC	No
Stomiiformes	Stomiidae	Photostomias atrox	LC	No
Stomiiformes	Stomiidae	Photostomias goodyeari	LC	No
Stomiiformes	Stomiidae	Photostomias guernei	LC	No
Stomiiformes	Stomiidae	Rhadinesthes decimus	LC	No
Stomiiformes	Stomiidae	Stomias affinis	LC	No
Stomiiformes	Stomiidae	Stomias boa	LC	No
Stomiiformes	Stomiidae	Stomias brevibarbatus	LC	No
Stomiiformes	Stomiidae	Stomias lampropeltis	LC	Yes
Stomiiformes	Stomiidae	Stomias lampropents Stomias longibarbatus	LC	No
Stomiiformes	Stomiidae	Thysanactis dentex	LC	No
Stomiiformes	Stomiidae	Trigonolampa miriceps	LC	No
Stonmonics	Stonnuae	11 izonoiumpu miriceps		110

Order	Family	Species	Cat	Crit	Endemic
Syngnathiformes	Centriscidae	Macroramphosus scolopax	LC		No
Syngnathiformes	Fistulariidae	Fistularia petimba	LC		No
Syngnathiformes	Fistulariidae	Fistularia tabacaria	LC		No
Syngnathiformes	Syngnathidae	Cosmocampus retropinnis	DD		No
Syngnathiformes	Syngnathidae	Enneacampus ansorgii	LC		No
Syngnathiformes	Syngnathidae	Enneacampus kaupi	LC		Yes
Syngnathiformes	Syngnathidae	Hippocampus algiricus	VU	A2cd+4cd	Yes
Syngnathiformes	Syngnathidae	Hippocampus hippocampus	DD		No
Syngnathiformes	Syngnathidae	Microphis brachyurus	LC		Yes
Syngnathiformes	Syngnathidae	Syngnathus acus	LC		No
Tetraodontiformes	Balistidae	Balistes capriscus	VU	A2bd	No
Tetraodontiformes	Balistidae	Balistes punctatus	VU	A2bd	No
Tetraodontiformes	Balistidae	Balistes vetula	NT		No
Tetraodontiformes	Balistidae	Canthidermis maculata	LC		No
Tetraodontiformes	Balistidae	Melichthys niger	LC		No
Tetraodontiformes	Diodontidae	Chilomycterus reticulatus	LC		No
Tetraodontiformes	Diodontidae	Chilomycterus spinosus	LC		No
Tetraodontiformes	Diodontidae	Diodon eydouxii	LC		No
Tetraodontiformes	Diodontidae	Diodon holocanthus	LC		No
Fetraodontiformes	Diodontidae	Diodon hystrix	LC		No
Fetraodontiformes	Molidae	Masturus lanceolatus	LC		No
Fetraodontiformes	Molidae	Mola mola	VU	A4bd	No
Fetraodontiformes	Molidae	Ranzania laevis	LC		No
Fetraodontiformes	Monacanthidae	Aluterus monoceros	LC		No
Fetraodontiformes	Monacanthidae	Aluterus schoepfii	LC		No
Fetraodontiformes	Monacanthidae	Aluterus scriptus	LC		No
Fetraodontiformes	Monacanthidae	Cantherhines pullus	LC		No
Tetraodontiformes	Monacanthidae	Stephanolepis hispidus	LC		No
Tetraodontiformes	Ostraciidae	Acanthostracion guineensis	LC		Yes
Tetraodontiformes	Ostraciidae	Acanthostracion notacanthus	DD		No
Tetraodontiformes	Tetraodontidae	Ephippion guttifer	LC		No
Tetraodontiformes	Tetraodontidae	Lagocephalus laevigatus	LC		No
Tetraodontiformes	Tetraodontidae	Lagocephalus lagocephalus	LC		No
Tetraodontiformes	Tetraodontidae	Sphoeroides marmoratus	LC		No
Tetraodontiformes	Tetraodontidae	Sphoeroides pachygaster	LC		No
Zeiformes	Grammicolepididae	Grammicolepis brachiusculus	LC		No
Zeiformes	Grammicolepididae	Xenolepidichthys dalgleishi	LC		No
Zeiformes	Oreosomatidae	Allocyttus guineensis	LC		No
Zeiformes	Oreosomatidae	Allocyttus verrucosus	LC		No
Zeiformes	Parazenidae	Cyttopsis rosea	LC		No
Zeiformes	Zeidae	Zenopsis conchifer	LC		No
Zeiformes	Zeidae	Zeus faber	DD		No
Zeiformes	Zenionidae	Zenion hololepis	LC		No

Appendix 2: Workshop Participants

Table A2.1 Participants at the first IUCN Red List workshop in Dakar, Senegal, 9-14 July 2012, with institutional affiliations and country of residence, organized alphabetically by family name.

Participant Name	Institution	Country
Titus Ayo Adeofe	Department of Fisheries	Nigeria
Paul Bannerman	Department of Fisheries	Ghana
Khairdine Mahamed		
Abdallahi Camara	Mauritanian Institute of Oceanographic Research and Fisheries (IMROP)	Mauritania
Youssouf Hawa Camara	Direction Générale du Centre National des Sciences Halieutiques de	
	Bossoura	Guinea
Pablo Chavance	IUCN Mauritania Programme Office	Mauritania
Kadiatou Cissoko	Direction Générale du CNSHB	Guinea
Bruce B. Collette	National Marine Fisheries Service Systematics Laboratory	USA
Madeleine Diouf	IUCN Programme Marin et Cotier (MACO)	Senegal
Roger Djiman	Department of Fisheries	Benin
Mathieu Ducrocq	Gabon National Parks (ANPN)	Gabon
Massal Fall	Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT)	Senegal
Ofer Gon	South African Museum	South Africa
Heather Harwell	IUCN Marine Biodiversity Unit and Christopher Newport University	USA
Andrew Hines	IUCN Marine Biodiversity Unit and National Oceanographic and	
	Atmospheric Administration	USA
P. Alexander Hulley	Iziko-South African Museum	South Africa
Tomio Iwamoto	California Academy of Science	USA
Ebou Mass Mbye	Department of Fisheries	Gambia
Thomas Munroe	National Marine Fisheries Service	USA
Francis K. E. Nunoo	Department of Marine & Fisheries Science, University of Ghana	Ghana
Beth Polidoro	IUCN Marine Biodiversity Unit and Arizona State University	USA
Stuart Poss	California Academy of Science	USA
Andrew Rodrigues	IUCN Headquarters	Switzerland
Barry Russell	Museum & Art Gallery of the Northern Territory	Australia
Alphonse Sagna	Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT)	Senegal
Aboubacar Sidibe	Independent Consultant	Senegal
Emilie Stump	IUCN Marine Biodiversity Unit and University of British Columbia	Canada
Mor Sylla	Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT)	Senegal
Luis Tito De Morais	Institut de Recherche pour le Développement (IRD)	France
Philippe Tous	Sub-Regional Fisheries Commission (CSRP)	Senegal
Michael Vakily	Sub-Regional Fisheries Commission (CSRP)	Senegal

Table A2.2 Participants at the second IUCN Red List workshop in Accra, Ghana, 4-9 May 2013, with institutional affiliations and country of residence, organized alphabetically by family name.

Participant Name	Institution	Country
Rachel Arnold	Northwest Indian College	USA
Jack Buchanan	IUCN Marine Biodiveristy Unit and Old Dominion University	USA
Khairdine Mahamed		
Abdallahi Camara	Mauritanian Institute of Oceanographic Research and Fisheries (IMROP)	Mauritania
Kent Carpenter	IUCN Marine Biodiveristy Unit and Old Dominion University	USA
Mia T. Comeros-Raynal	IUCN Marine Biodiveristy Unit and American Samoa Environmental	
	Protection Agency	USA
Roger Djiman	Centre de Recherches Halieutiques et Océanologiques du Bénin	Benin
Antony S. Harold	Grice Marine Lab, College of Charleston	USA
Tomio Iwamoto	California Academy of Sciences	USA
Christi Linardich	IUCN Marine Biodiveristy Unit and Old Dominion University	USA
Ken Lindeman	Florida Institute of Technology	USA
Vanda Monteiro	Instituto Nacional de Desenvolvimento das Pescas - Cabo Verde	Cape Verde
Francis K. E. Nunoo	Department of Marine & Fisheries Science, University of Ghana	Ghana
Beth Polidoro	IUCN Marine Biodiversity Unit and Arizona State University	USA
Richmond Quartey	Marine Fisheries Research Division	Ghana
Alphonse Sagna	Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT)	Senegal
Aboubacar Sidibe	Independent Consultant	Senegal
William Smith-Vaniz	Florida Museum of Natural History, University of Florida	USA
Emilie Stump	IUCN Marine Biodiversity Unit and University of British Columbia	Canada
Mor Sylla	Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT)	Senegal
Luis Tito De Morais	Institut de Recherche pour le Développement (IRD)	France
Akanbi Williams	Nigerian Institute for Oceanography and Marine Research	Nigeria

Table A2.3 Participants at the third IUCN Red List workshop in Libreville, Gabon 7-11 July 2014, with institutional affiliations and country of residence, organized alphabetically by family name.

Participant Name	Institution	Country
Jean Noel Bibang Po Ngue	ba Direction General de la Peches et d l'Agriculture (DGPA) and Centre	
	National de la Recherche Scientifique et Technique (CENAREST)	Gabon
Kent Carpenter	IUCN Marine Biodiveristy Unit and Old Dominion University	USA
Mia T. Comeros-Raynal	IUCN Marine Biodiveristy Unit and American Samoa Environmental	
	Protection Agency	USA
Godefroy de Bruyne	Wildlife Conservation Society (WCS)	France
Mathieu Ducrocq	Gabon National Parks (ANPN)	Gabon
Antony S. Harold	Grice Marine Lab, College of Charleston	USA
Steen Knudsen	Natural History Museum of Denmark, University of Copenhagen	Denmark
Jean de Diem Lewembe	Direction General de la Peches et d l'Agriculture (DGPA)	Gabon
Jean Edgard Mikolo	Direction General de la Peches et d l'Agriculture (DGPA)	Gabon
Jean Bernard Mougoussi	Direction General de la Peches et d l'Agriculture (DGPA)	Gabon
Jean Herve Mve Beh	Centre National de la Recherche Scientifique et Technique (CENAREST)	Gabon
Alain Nkoghe Nze	Agence Nationale du Parcs Nationaux (ANPN)	Gabon
Beth Polidoro	IUCN Marine Biodiversity Unit and Arizona State University	USA
William Smith-Vaniz	Florida Museum of Natural History, University of Florida	USA
Emilie Stump	IUCN Marine Biodiversity Unit and University of British Columbia	Canada
Luis Tito De Morais	Institut de Recherche pour le Développement (IRD)	France