The Cerebellum

Cerebellum

- Located below tentorium cerebelli within posterior cranial fossa.
- Formed of 2 hemispheres connected by the vermis in midline.
- Gray matter is external.
- White matter is internal, contain several deep nuclei with the largest is the dentate nucleus.

Functions of Cerebellum

- Maintains muscle tone.
- Coordinates voluntary motor action.

Cerebellum

Three lobes

- 1. Anterior lobe
- 2. Posterior lobe
- 3. flocculonodular lobe

Two main fissures:

- ➤ The primary fissure separates the posterior lobe from the anterior lobe
- The posterolateral fissure (uvulonodular fissures) separates the flocculonodular lobe from the posterior lobe

- >Anterior and Posterior notchs
- >Primary fissure: separates the anterior & posterior lobes.
- ➤ Horizontal fissure: Extends between the middle cerebellar peduncles
- **▶Posterolateral fissure:** Separates the flocculus and nodule from the rest of the cerebellum.
- **Cerebellar tonsil:** on either sides of uvula
- >Retrotonsillar fissure: separates tonsil from the rest of cerebellum

Superior view of an "unrolled" cerebellum

Cortex = organized into groups of folia = 10 lobules and 3 lobes,

Major anatomical divisions (reflecting functional regions

- 1. vermis
- 2. intermediate zone
- 3. lateral hemispheres

In the intermediate zone and the lateral hemisphere that are visible from a gross specimen.

Vermis: influences the movements of the long axis of the body (neck, shoulders, thorax, abdomen and hips)

Intermediate zone: control muscles of the distal parts of the limbs (hand and feet)

Lateral zone: concerned with planning of sequential movements of the entire body

The cerebellum is composed of an outer covering of gray matter called the **cortex** and inner white matter Embedded in the white matter of each hemisphere three masses of gray matter forming the **intracerebellar nuclei**

Each ridge or gyrus in cerebellar cortex is called a **folium**, with a branched appearance called the **arbor vitae** (white matter)

Deep cerebellar Nuclei

Structure of cerebellar cortex

1- molecular layer

- stellate cell
- -basket cell
- -consisting of axons of granule cells (parallel fibers) and dendrites of Purkinje cells
- 2- Purkinje cell layer

large neuronal cell bodies (Purkinje cells) Flask shaped cells

3- granular layer

- -small neurons called granular cells
- Golgi cells: (Inhibitory)

Cerebellar cortical mechanisms

Input to the cerebellar cortex:

1- Climbing fibers: terminal fibers of the

olivocerebellar tracts

2- Mossy fibers:

terminal fibers of all other cerebellar afferent tracts

Both are **excitatory** to purkinje cells

Cerebellar cortical mechanisms

➤a single purkinje neuron makes synaptic contact with only one climbing fiber

one climbing fiber makes contact with one to ten purkinje neurons

a single mossy fiber may stimulate thousands of purkinje cells through the granule cells

Granule cells receive input from mossy fibers and project to the Purkinje cells

Cerebellar cortical mechanisms

- 1. Purkinje Cells the only output neuron from the cortex utilizes GABA to inhibit neurons in deep cerebellar nuclei
- 2. Granule Cells- intrinsic cells of cerebellar cortex; use glutamate as an excitatory transmitter; excites Purkinje cells via axonal branches called "parallel fibers"
- 3. Basket Cells and stellate cells- inhibitory interneuron; utilizes GABA to inhibit Purkinje cells

Functional anatomy

- A. Spinocerebellum
- B. Cerebrocerebellum
- C. Vestibulocerebellum

Vestibulocerebellum

Archicerebellum

mall flocculonodular cerebellar lobes and adjacent portions of the vermis

Spinocerebellum

Paleocerebellum

most of the vermis of the posterior and anterior cerebellum plus the adjacent intermediate zones on both sides of the vermis.

Cerebrocerebellum

>neocerebellum

Anteral zones of the cerebellar hemispheres, lateral to the intermediate zones

Spinocerebellum

- > comprises the vermis + intermediate hemisphere of the cerebellar cortex, as well as the **fastigial** and **interposed nuclei**.
- projects through fastigial and interposed nuclei.
- has a somatotropic organization.
- it receives major inputs from the spinocerebellar tracts.
- Its output projects to rubrospinal, vestibulospinal, and reticulospinal tracts
- ➤ It is involved in the integration of sensory input with motor commands to produce adaptive motor coordination
- controls posture and movement of trunk and limbs.

Spinocerebellum

the **vermis** will send efferents through fastigial n.

Inferior cerebellar peduncles

Medial descending pathways: (Anterior column)

A-fastigial vestibular pathway (vestibulospinal tract)

B-fastigial reticular pathway *(reticulospinal tract)*

1° motor ctx descends

Medial (anterior)
Corticospinal tract

Spinocerebellum

The **intermediate hemisphere** will send efferents through interposed n. Superior cerebellar peduncle VL Red nucleus 1° motor ctx Globose-emboliform-rubral pathway descends (Rubrospinal tract)

Lateral cortico-

spinal tract

Cerebrocerebellum

- participates in the planning of movement
- located in the lateral hemisphere
- > projects to the dentate nucleus
- From its extensive connections with the cerebral cortex, via the pontine nuclei (afferents) and the VL thalamus (efferents). It is involved in the planning and timing of movements.
- -- Afferent input: from entire contralateral cerebral cortex
- -- Efferent pathway: thalamus

comprising the **lateral hemispheres** and the **dentate nuclei**

Vestibulocerebellum

- ➤ functions in maintaining balance and controlling head and eye movements.
- located in flocculonodular lobe.
- > projects to vestibular nuclei.
- it is involved in vestibular reflexes (such as the vestibuloocular reflex) and in postural maintenance.

Afferent input:

vestibular nerve and vestibular nuclei.

Efferent path

vestibular nuclei

comprises the **flocculonodular lobe** and its connections with the **lateral vestibular nuclei**

Vestibulocerebellum

Vestibular cerebellar
Cortex (flocculonodular lobe)

Vestibular nuclei

VS tract

Med
longitud
Fasciculus
(eyes, head)

Forth ventricle

- Anteriorly: pons and the superior half of the medulla oblongata
- Posteriorly: cerebellum

Forth ventricle

- Lateral Boundaries:
 - Superiorly:
 Superior
 cerebellar
 peduncle
 - Inferiorly:
 Inferior
 cerebellar
 peduncle

Forth ventricle: Roof or posterior wall

- Superiorly: two superior cerebellar peduncles and superior medullary velum (connecting sheet of white matter)
- Inferiorly: Inferior medullary velum
- median aperture (foramen of Magendie)
- foramina of Luschka: lateral openings of the fourth ventricle

- Interventricular foramina narrow, oval openings, between the two lateral ventricles and the third ventricle.
- Aqueduct of the midbrain (cerebral aqueduct) passes CSF from third ventricle through the midbrain, into the fourth ventricle.
- CSF enters the subarachnoid space through three openings in the roof of the fourth ventricle: a single median aperture (Foramen of Magendie) and paired lateral apertures (Foramina of Luschka)

(b) Anterior view of brain

Forth ventricle: Floor or Rhomboid Fossa

- Diamond-shaped
- Formed by posterior surface of the pons and the cranial half of the medulla oblongata

- Median sulcus
- Sulcus limitans
- Medial eminence
 - Facial colliculus: overlies nucleus of abducent n. and genu of facial nerve
 - Hypoglossal triangle
- Vestibular area ~
 overlies vestibular nuclei
- Acoustic tubercle overlying dorsal cochlear nucleus
- Inferior fovea (Vagal triangle)

