

Scientific Framework

State of the art

Coastal waters host the world's most productive ecosystems, providing:

- 30% of the global primary production;
- 80% of the organic matter burial;
- ~30% of atmospheric CO₂ sink (6% -11% anthropogenic CO₂ sink).

(Borges et al., 2011, Hardison et al., 2017)

Benthic activity play an important role in determining the pelagic biogeochemical characteristics of coastal waters (*Soetaert et al., 2000, Griffiths et al., 2017*).

The physically mediated exchanges structuring the BPC are constituted by the sinking and resuspension fluxes of particulate organic matter and by the diffusion of inorganic nutrients

- Limited knowledge about the exchange rates between the two habitats (*Griffiths et al., 2017*)
- Availability of data (Soetaert et al., 2000, Griffiths et al., 2017)
- Benthic-pelagic fluxes neglected or approximated to a simple closure term (*Soetaert et al., 2000*)

Scientific Goals

To implement and test a numerical model addressing benthic dynamics and BPC processes

To assess the skills of one-dimensional coupled physical-biogeochemical models in simulating the BPC

Evaluate ecosystem dynamics in three marine areas with different climatic and ecological

U^{General} 2020

characteristics

Methodological approach

1-D configuration

Benthic-Pelagic Sub-model

$$\boxed{\frac{\mathrm{d}\mathbf{Q}_{\mathbf{j}}^{(\mathbf{1},\mathbf{6})}}{\mathrm{d}\mathbf{t}}}_{\mathbf{P}_{\mathbf{j}}^{(\mathbf{1},\mathbf{4})},\mathbf{R}_{\mathbf{j}}^{(\mathbf{1},\mathbf{6})}} = -\omega_{\mathbf{bur}} \left[\mathbf{R}_{\mathbf{j}}^{(\mathbf{1},\mathbf{6})} + (\xi_{\mathbf{j}},\mathbf{1}-\xi_{\mathbf{j}})\sum_{\mathbf{i}=\mathbf{1},\mathbf{4}}\mathbf{P}_{(\mathbf{j})}\right]_{\mathbf{z}=\mathbf{z}_{\mathbf{b}}}}$$

ω, μ	Burial and remineralization parameters	
ξ _j	Partitioning coefficient	
$R_{j^{(1)}}$	Pelagic dissolved organic matter	where j= C, N, P
$R_{j}^{(6)}$	Pelagic particulate organic matter	where $j = C, N, P, S$
P _j	Phytoplankton	where j= Diatoms, Large phytoplankton
Q _j ⁽¹⁾	Benthic dissolved matter	where j= C, N, P

Gulf of Trieste (MA21)

Study Area

Physical and Biogeochemical dynamic

- Well-mixed conditions during winter and vertical thermal stratification in summer
- Homogeneous primary production condition in winter and deep phytoplankton production in summer

** Study Area figure and Chlorophyll Hovmöller from Mussap et al., 2016. Temperature monthly data from ARPA-FVG,OGS (2000-2011,2013)

Seasonal Normalized (in z) Mean Bias

Mean Seasonal Vertical Profiles

- NMB in NO-RM > NMB in BPC- RETURN (exception of O_2)
- BPC-RETURN: Inorganic nutrients (at depth) improvements lead amelioration of the simulated Chl-a dynamic (green arrows).

NO-RM

JAS

JAS

OND

OND

BPC-RETURN

St.Helena Bay (SHB)

Study Area

Physical and Biogeochemical dynamic

- Embedded in the Benguela Current Large Marine Ecosystem
- South-easterly trade winds driven **upwelling between Sep.t-Apr.** (Vertical diffusivity [m²s⁻¹] = 5.0e-5)
- Peaks of primary production occurring during the upwelling period (maxima in April and September) Shannon et al.,1996.

** Monthly data (2000-2017) from BENEFIT (Benguela Environment and Fisheries Interactions and Training) program of the Department of Environmental Affairs of South Africa

Seasonal Normalized (in z) Mean Bias

Mean Seasonal Vertical Profiles

Bias NO-RM > BPC- RETURN

 Inorganic Nutrients seasonal improvements positively affect Chl-a dynamic seasonality (AMJ-JAS)

NO-RM

BPC-RETURN

Svynøy Fyr (SFyr)

Study Area

Physical and Biogeochemical dynamic

- Cold and deep mixed dynamic
- No Sea Ice formation (Norwegian Coastal Current)
- Phytoplankton peaks in no light limited seasons.

Ibrahim et al., 2014

** Monthly data from the Institute of Marine Research - Norwegian Marine Data Centre (INR- NMD) (1995-2015)

Seasonal Normalized (in z) Mean Bias

Mean Seasonal Vertical Profiles

- Bias NO-RM > BPC- RETURN
- No sensible Chl-a growth in winter (light limited primary production)
- Spring-summer **nutrients consumption** attributable to **Phytoplankton** dynamic

NO-RM

JAS

JAS

OND

OND

BPC-RETURN

Overall goals

- 1. Find the 'best' setup of BPC parameterizations among a range of site specific values
- 2. Evaluate the role of BPC in determining the pelagic biogeochemical cycling

Analysis Procedure

Explore Remin and Burial ranges to find minimum error metric for PO₄, NO₃, Chla

(Annual mean vertical profile)

Summary Diagrams (Taylor et al., 2001, Joliff et al., 2009)

Normalized Root Mean Square Error (Mentaschi et al., 2013)

Site	Burial [m d ⁻¹]	Remineralizatio n [d ⁻¹]
MA21	ref = 0.5 (0.35 - 0.65)	ref=0.0025 (0.00175- 0.00325)
SHB	ref=1.0 (0.60 - 1.20)	ref=(0.0025) (0.00175- 0.00325)
SFyr	ref=1.0 (0.10 - 1.50)	ref= (0.0050) 0.00350-0.00800

EXP -30% -20% -10% 0 +10% +20% +30%

NRMSE

- **Effect of BPC processes on pelagic** dynamics Max NRMSE spread (Worse – Best) Experiment MA21 17 5 SHB SFYR 15.0 12.5 10.0 7.5 5.0 2.5 0.0 PO4 NO3 CHL ErrCum
- MA21 and SFyr: small variations of inorganic nutrients affect primary production
- SHB: Nutrients variation does not affect primary production dynamic

Remineralization-grouped

Role of BPC processes on pelagic dynamics **SLIDE 3/4**

Final setup of BPC parameters

Site	Depth [m]	Bur [m d⁻¹]	Remin [d ⁻¹]
MA21	16	0.35	0.00 325
SHB	78	0.60	0.00 175
SFyr	150	0.10	0.00 800

Estimate of benthic-pelagic fluxes

Site	Depth [m]	POC-Burial [mg C m ⁻² d ⁻¹]	N-Remin [mmol N m ⁻³ d ⁻¹]	P-Remin [mmol p m ⁻³ d ⁻¹]
MA21	16	-0.1344	0.910	0.050
SHB	78	-0.0021	1.027	0.068
SFyr	150	-0.0636	0.336	0.016

Dependency between station depth and BP fluxes intensity

[Suess et al., 1980]

SHB, SFyr widespread improvements

MA21 improvements with exception of PO4

EGU^{General} Assembly 2020

SLIDE 4/4

 $(\mathbf{\hat{I}})$

BY

(cc

- The benthic-pelagic dynamic processes were successfully implemented for the three different sites;
- The intercomparison between the BPC-RETURN and the NO-RM experiment allowed to asses the model improvements in reproducing B-P fluxes;
- The extensive sensitivity analysis showed different sedimentationremineralization scenarios where the shallower sites were more sensitive to the BPC parameterization.
- MA21 and SHB areas were characterized by a more active benthic nutrients regeneration while SFyr and MA21 were characterized by the highest rates of deposition.
- The agreement between the used pattern statistics successfully allowed to individuate the Best Experiments (Final setup).

Thank you

Citations

[1]Borges, A. V. (2011). Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change. In Oceans and the atmospheric carbon content (pp. 47-77). Springer, Dordrecht.

[2] Hardison, A. K., McTigue, N. D., Gardner, W. S., & Dunton, K. H. (2017). Arctic shelves as platforms for biogeochemical activity: Nitrogen and carbon transformations in the Chukchi Sea, Alaska. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 78-91.

[3] Soetaert, K., Middelburg, J. J., Herman, P. M., & Buis, K. (2000). On the coupling of benthic and pelagic biogeochemical models. Earth-Science Reviews, 51(1-4), 173-201.

[4] Griffiths, J. R., Kadin, M., Nascimento, F. J., Tamelander, T., Törnroos, A., Bonaglia, S., Kotta, J. (2017). The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. *Global change biology*, 23(6), 2179-2196.

[5] Mussap, G., Zavatarelli, M., Pinardi, N., & Celio, M. (2016). A management oriented 1-D ecosystem model: Implementation in the Gulf of Trieste (Adriatic Sea). Regional Studies in Marine Science, 6, 109-123.

[6]Shannon, L. V., & Nelson, G. (1996). The Benguela: large scale features and processes and system variability. In *The south atlantic* (pp. 163-210). Springer, Berlin, Heidelberg. [7] Ibrahim, A., Olsen, A., Lauvset, S., & Rey, F. (2014). Seasonal variations of the surface nutrients and hydrography in the Norwegian Sea. *International Journal of Environmental Science and Development*, *5*(5), 496.

[8] Mentaschi, L., Besio, G., Cassola, F., & Mazzino, A. (2013). Problems in RMSE-based wave model validations. Ocean Modelling, 72, 53-58.

[9] Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.

[10] Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A., Helber, R., & Arnone, R. A. (2009). Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. *Journal of Marine Systems*, 76(1-2), 64-82.

[11] Gregg, W. W., Friedrichs, M. A., Robinson, A. R., Rose, K. A., Schlitzer, R., Thompson, K. R., & Doney, S. C. (2009). Skill assessment in ocean biological data assimilation. *Journal of Marine Systems*, 76(1-2), 16-33.

[12] Suess E. "Particulate organic carbon flux in the oceans: Surface and oxygen utilization". In: Nature (Jan. 1980).

Supplementary slides

BPC Implementation (NO-RM vs BPC_RETURN exps)

NO-RM vs BPC_RETURN Results

Sensitivity Analysis Scheme

Sensitivity Experiment Matrix

Remineralization rates (CTRL Exp: rmn Q6*=0.0025, rmn Q6s = 0.0015 [d⁻¹])

Mean NRMSE (Sensitivity analysis variables)

Sensitivity Analysis Best Exp Identification

MA21: Identification of "Best Experiment"

Clouds of experiments grouped by Remineralization sets

²⁰²⁰ **SHB** Identification of "Best Experiment"

Clouds of experiments grouped by Remineralization sets

(i)

(CC

Clouds of experiments grouped by Remineralization sets

Agreement between used pattern statistics

	S	HB	
Variable	RMSD	Taylor diagram	Target diagram
Phosphate	B -30% R -30%	R -30%	R -30%
Nitrate	B -10% R -25%	R -30%	R -30% / R -25%
Chlorophyll	$\rm B$ +20% R -30%	R -30%	R -30%
Avg RMSD	B -40% R -30%		
	S	Fyr	
Variable	RMSD	Taylor diagram	Target diagram
Phosphate	B -90% R +60%	not clear	R $+60\%$
Nitrate	B -90% R +60%	not clear	R $+60\%$
Chlorophyll	B -90% R +60%	R +60%	R $+60\%$
Avg RMSD	B -90% R +60%		
	Μ	A21	-02
Variable	NRMSD	Taylor diagram	Target diagram
Phosphate	B -30% R -10%	R -30%	R -10%
Nitrate	B -30% R +30%	R +30%	R $+30\%$
Chlorophyll	B -30% R +30%	R -30%/R -20%	R $+30\%$
Avg RMSD	B -30% R +30%		

Sensitivity Analysis Best Exp Vertical Profiles

Mean Absolute Error (MAE) Best Guess-Obs vs First Guess-Obs

SHB

MA21

SFyr