
OpenShape: Scaling Up 3D Shape Representation
Towards Open-World Understanding

Minghua Liu1∗ Ruoxi Shi2∗ Kaiming Kuang1∗ Yinhao Zhu3 Xuanlin Li1
Shizhong Han3 Hong Cai3 Fatih Porikli3

Hao Su1

1 UC San Diego 2 Shanghai Jiao Tong University 3 Qualcomm AI Research†

Project Website: https://colin97.github.io/OpenShape/

Abstract

We introduce OpenShape, a method for learning multi-modal joint representations
of text, image, and point clouds. We adopt the commonly used multi-modal con-
trastive learning framework for representation alignment, but with a specific focus
on scaling up 3D representations to enable open-world 3D shape understanding.
To achieve this, we scale up training data by ensembling multiple 3D datasets and
propose several strategies to automatically filter and enrich noisy text descriptions.
We also explore and compare strategies for scaling 3D backbone networks and
introduce a novel hard negative mining module for more efficient training. We
evaluate OpenShape on zero-shot 3D classification benchmarks and demonstrate its
superior capabilities for open-world recognition. Specifically, OpenShape achieves
a zero-shot accuracy of 46.8% on the 1,156-category Objaverse-LVIS benchmark,
compared to less than 10% for existing methods. OpenShape also achieves an accu-
racy of 85.3% on ModelNet40, outperforming previous zero-shot baseline methods
by 20% and performing on par with some fully-supervised methods. Furthermore,
we show that our learned embeddings encode a wide range of visual and semantic
concepts (e.g., subcategories, color, shape, style) and facilitate fine-grained text-
3D and image-3D interactions. Due to their alignment with CLIP embeddings,
our learned shape representations can also be integrated with off-the-shelf CLIP-
based models for various applications, such as point cloud captioning and point
cloud-conditioned image generation.

1 Introduction

3D shape understanding has recently garnered a surge of interest driven by the growing demands in
real-world applications, such as augmented/virtual reality, autonomous driving, and robotics. Despite
significant advancements in 3D recognition and analysis, existing data-driven approaches are still
greatly limited by the scale of 3D training datasets and tend to exhibit poor generalization when facing
unseen shape categories, hindering the deployment of existing models in real-world applications.

Note that 3D shapes and 2D images can be easily linked through rendering, and the dataset scale issue
of 2D images has been remarkably addressed, as shown in recent works such as CLIP [55]. Therefore,
many recent studies aim to utilize pre-trained 2D image-language models [55, 59] to assist 3D tasks,
such as 3D generation [22, 26, 45, 63, 33, 7, 38, 67] and 3D scene-level segmentation [18, 27, 14, 79,

∗Equal Contribution
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://colin97.github.io/OpenShape/

+

+

+

+

Figure 1: Left: Zero-shot shape classification on the Objaverse-LVIS (1,156 categories) and Model-
Net40 datasets. OpenShape outperforms previous methods by a large margin. We exclude shapes in
Objaverse-LVIS during training, and we also retrain ULIP [78] on our ensembled training shapes
for fair comparison. Right: Our shape representations encode a broad range of semantic and visual
concepts. We input two 3D shapes and use their shape embeddings to retrieve the top three shapes
whose embeddings are simultaneously closest to both inputs. See Section. 4.4 for more details.

41, 49]. Regarding 3D shape-level understanding, a straightforward idea is to project 3D data to the
2D domain through rendering and use CLIP to analyze the 2D images, thereby enabling zero-shot
3D shape classification [86, 88]. However, these methods suffer from occlusion and information
loss during projection, and unnecessary latency due to point cloud rendering and multiple CLIP
inferences.

To overcome the limitations caused by projection, it is necessary to train a 3D-native model by
distilling knowledge from pretrained 2D models. However, training a 3D-native model requires a set
of 3D shapes, and the amount of knowledge that can be distilled is determined by the size of the 3D
dataset. For example, ULIP [78] aims to learn a joint representation space between language, 2D
images, and 3D shapes, but uses a small-scale 3D dataset ShapeNetCore [8] for knowledge distillation.
Specifically, ULIP fixes the 2D CLIP text and image encoders and trains a dedicated 3D-native point
cloud encoder to extract 3D shape representations. The 3D encoder strives to align the 3D shape
embedding space with the CLIP image and language embedding spaces by utilizing contrastive
learning across all three modalities. However, since ULIP is only trained on 52K shapes of 55 object
categories, it still struggles with out-of-distribution shape categories and fails to demonstrate an
impressive open-world understanding of 3D shapes.

In this work, we propose a novel method called OpenShape, which follows a similar paradigm as
ULIP but aims to achieve a more generalized and scalable joint representation space encompassing
language, 2D images, and 3D shapes. Our focus mainly lies on scaling up representation learning
and addressing corresponding challenges. In OpenShape, we emphasize four key factors during the
training process: (a) data scale: we significantly increase the scale of 3D training data by combining
four public 3D shape datasets, resulting in 876k 3D shapes covering much more diverse categories;
(b) text quality: the 3D shapes from our main dataset, Objaverse [12], is dominated with inaccurate
or uninformative text descriptions. Given the data scale, we propose three strategies to automatically
filter and enrich the text descriptions; (c) 3D backbone scaling: since most existing 3D backbones
target small datasets, we find that it’s important but non-trivial to scale up the 3D backbones; and (d)
data resampling: since the ensembled dataset is highly unbalanced, we utilize hard negative mining
to improve the model’s discriminative ability.

We first evaluate OpenShape on the zero-shot 3D shape classification task. As shown in Figure 1,
OpenShape outperforms previous zero-shot approaches on the ModelNet40 dataset by at least 20%.
Moreover, OpenShape excels at handling long-tail categories. On the challenging Objaverse-LVIS
dataset, which contains 1,156 categories, OpenShape achieves a 46.8% accuracy, significantly
surpassing previous methods. Notably, this performance gap remains even when ULIP is retrained on
our ensembled datasets, highlighting the superiority of our text enrichment and training strategies.

2

Besides zero-shot classification, we present demos that showcase the wide range of visual and
semantic concepts learned by OpenShape. For example, in Figure 1-right, we take two 3D shapes as
input and use their OpenShape embeddings to retrieve the top three shapes whose embeddings are
simultaneously closest to both inputs from our ensembled dataset. The retrieved shapes exhibit an
interesting combination of the semantic and geometric elements from both input shapes. Furthermore,
since we align our 3D shape embedding space with the CLIP language and image embedding space,
we demonstrate that OpenShape embeddings can be easily integrated with other CLIP-based models
to perform cross-modality tasks such as point cloud captioning and point cloud-conditioned image
generation.

2 Related Work

2.1 CLIP for 3D Learning

Image-language models like CLIP have achieved remarkable performance through large-scale image-
text pretraining [55, 29, 35, 84, 4, 56, 61, 36]. As these models excel at capturing rich visual concepts
and possess impressive zero-shot capabilities, they have been applied to various 3D vision tasks. For
instance, numerous recent works utilize CLIP to facilitate zero-shot text-to-3D generation [22, 26,
45, 63, 33, 7, 32, 5, 28, 77, 40, 83], typically through CLIP-guided per-scene optimization. From a
recognition perspective, some works focus on scene-level representation, aiming to leverage CLIP
priors for zero-shot 3D segmentation or detection in both indoor [18, 27, 14, 79, 41, 49, 82, 23, 60, 85,
31] and outdoor scenes [9, 21]. Meanwhile, another line of work focuses on shape-level understanding,
targeting zero-shot shape classification [86, 88, 53, 78, 19] and part segmentation [39, 1]. There are
two primary working paradigms for these methods. The first [86, 88, 24] involves using images as a
medium representation, projecting 3D point clouds into 2D and employing 2D CLIP for inference.
However, these methods typically suffer from occlusion and information loss during projection, along
with unnecessary latency due to point cloud rendering and multiple 2D CLIP inferences. The second
paradigm involves training a 3D-native encoder attempting to distill or fuse CLIP features into 3D
representations. Our paper follows this paradigm.

2.2 3D Shape Representation Learning

Various works have studied self-supervised pretraining for point clouds by designing pretext tasks [15,
69, 50, 2, 66] such as self-reconstruction [57, 13, 3, 72], masked auto-encoding [48, 80, 20], distortion
reconstruction [64, 44, 68], normal estimation [57], and contrastive learning [87, 62, 76]. These tasks
enhance models’ shape representations and improve their performance on downstream applications,
although they do not involve multimodal semantic alignments during pretraining.

Recently, some works [53, 78, 19], exemplified by ULIP [78], have explored learning multimodal joint
representations for 3D shapes. They train 3D-native shape encoders by aligning 3D shape embeddings
with CLIP’s language and/or image embeddings through multimodal contrastive learning. Works like
ReCon [53] further combines cross-modal contrastive learning with masked auto-encoding for added
enhancement. While these methods allow for zero-shot 3D classification through the computation of
3D-text similarity, the amount of distilled knowledge and their model capability are heavily limited
by the small-scale training datasets used. Our work follows this paradigm but aims to learn more
generalizable and scalable representations to enable open-world 3D shape understanding.

3 Method

We propose a novel method, OpenShape, for learning generalizable and scalable multi-modal joint
representation between language, 2D images, and 3D shapes, as shown in Figure 2. We first
introduce the multi-modal contrastive learning framework we used for aligning representations of
three modalities in Section 3.1. We then elaborate how we create our training sets and enrich our text
data in Sections 3.2 and 3.3. In Section 3.4, we present how we scale up our 3D backbone models.
Finally, we propose a hard negative mining strategy to enhance contrastive learning in Section 3.5.

3

catalog images

high-resolution geometry & texture

physically-based renderings

ShapeNet
(52.5k)

3D-FUTURE
(16.6k)

ABO
(8.0k)

(a) Ensemble Datasets (b) Text Filtering & Enrichment

Zero-Shot
Classification

Text-to-3D
(Retrieval)

3D-to-Text
(Captioning)

Image-to-3D
(Retrieval)

3D-to-Image
(Generation)

(c) Cross-Modal Alignment (d) Cross-Modal Applications

Objaverse
(798.8k)

original
texts

filtered
textsGPT4

2D
renderings

Image
Caption

Image
Retrieval

captions

retrieved
texts

Enriched Texts

XXL

Hard Negative
Mining

Te
xt

En

co
de

r
Im

ag
e

En
co

de
r

PointCloud
Encoder

Figure 2: (a) We ensemble four public 3D shape datasets, resulting in 876k shapes that encompass
diverse categories and concepts. (b) We propose three strategies to automatically filter and enrich
the noisy texts in the original datasets. (c) We train a 3D point cloud encoder to align the 3D shape
embedding space with the CLIP’s text and image embedding spaces. We perform cross-modal
contrastive learning with scaled 3D backbones and hard negative mining. (d) OpenShape embeddings
can be easily integrated with other CLIP-based models, enabling various cross-modality tasks.

3.1 Multi-Modal Representation Alignment

We aim to learn 3D shape representations that are aligned with pretrained CLIP embedding spaces
of language and image. As shown in Figure 2 (c), we train a 3D native encoder fP that takes a 3D
point cloud as input and extracts 3D shape feature. Following previous works [53, 78, 19], such as
ULIP [78], we utilize multi-modal contrastive learning for representation alignment. Since CLIP is
pretrained on a much larger scale data, we freeze both its text encoder fT and its image encoder f I

during feature alignment to preserve CLIP’s feature priors and avoid model collapse. Specifically,
given a sampled batch of triplets {(Pi, Ti, Ii)}, where Pi denotes a point cloud of a 3D shape, Ti and
Ii denote corresponding text and image, the contrastive loss is calculated as:

−
1

4n

∑
i

(
log

exp(hP
i · hT

i /τ)∑
j exp(hP

i · hT
j /τ)

+ log
exp(hT

i · hP
i /τ)∑

j exp(hT
i · hP

j /τ)
+ log

exp(hP
i · hI

i /τ)∑
j exp(hP

i · hI
j/τ)

+ log
exp(hI

i · hP
i /τ)∑

j exp(hI
i · hP

j /τ)

)
(1)

where n is the number of shapes in a batch; τ is a learnable temperature; hP
i = fP (Pi)/|fP (Pi)|,

hT
i = gT (fT (Ti))/|gT (fT (Ti))|, and hI

i = gI(f I(Ii))/|gI(f I(Ii))| denote normalized projected
features of Pi, Ti, and Ii, where gT and gI are two learnable linear projections. Since fT and f I are
frozen, we extract all fT (Ti) and f I(Ii) before training and cache them for acceleration. In most of
our experiments, we utilize OpenCLIP ViT-bigG-14 [25] as the pretrained CLIP model.

3.2 Ensembling 3D Datasets

Since the scale and diversity of training triplets play a crucial role in learning scalable shape represen-
tations, we ensemble four currently-largest public 3D datasets for training as shown in Figure 2 (a), re-
sulting in 876k training shapes. Among these four datasets, ShapeNetCore [8], 3D-FUTURE [16] and
ABO [11] are three popular datasets used by prior works. They contain human-verified high-quality
3D shapes, but only cover a limited number of shapes and dozens of categories. The Objaverse [12]
dataset is a more recent dataset, containing many more 3D shapes and covering significantly more
diverse categories. However, shapes in Objaverse are mainly uploaded by web users and not verified
by experts, and thus have uneven quality and exhibit highly unbalanced distributions, necessitating
further processing.

To create triplets for training, for each shape, we sample 10,000 points from the mesh surface and
interpolate the point colors according to the mesh textures. We also render 12 color images from the
preset camera poses that uniformly cover the whole shape. For datasets providing thumbnails, we
include them as part of image candidates, since they typically capture the shape from a better camera
view. For the Objaverse dataset, we use the model name as the raw text for each shape. For other
datasets, we utilize provided metadata to create raw texts (see supplementary for details). During
each pretraining iteration, we randomly sample one rendered image or thumbnail for each shape, and
apply standard augmentation to the point clouds [78].

3.3 Text Filtering and Enrichment

We find that only applying contrastive learning between 3D shapes and 2D images is insufficient to
fuel zero-shot 3D classification, even when training on large-scale datasets. We conjecture that this is

4

name: “homework xyz detailing”
GPT4: Remove

“Steampunk Goggles by MonoFlow on …”
“Steampunk Goggles Made from hand ...”

azure: “a pair of steampunk goggles”
blip: “steampunk goggles 3d model”

name: “Tue, 09 Oct 2018 17:12:39”
GPT4: Remove

“armchair”
“some of the other props done Chair10”

azure: “a blue plastic chair on a pink ...”
blip: “a 3d model of a blue shaped object”

name: “DOG A - 1of6 - for free …”
GPT4: Keep

“Black Labrador in front of a white …”
“Black Labrador puppy Vinyl Wall Mural”

azure: “a black dog sitting on a blue...”
blip: “a black dog sitting on a blue...”

name: “untitled”
GPT4: Remove “Nike AirMax 1 (Red/White)”

azure: “a close up of a shoe”
blip: “nike air max 1 - white / red”

“nike air max red and white”

Figure 3: Text Filtering & Enrichment Examples In each example, the left section features the
thumbnail, model name, and GPT-4 filtering results. The upper right section shows image captions
from two captioning models, while the lower right section displays retrieved images and their
corresponding texts.

caused by the inherent domain gap in CLIP’s language and image embedding spaces, which is also
observed by previous studies [37, 70]. Consequently, 3D-text alignment is not guaranteed even if we
obtain good 3D-image alignments via contrastive learning. Therefore, we need to explicitly align 3D
shapes with text. Along this process, to facilitate better 3D-text alignment, we introduce 3 techniques
to improve the text quality: filtering, captioning, and image retrieval, as shown in Figure 2 (b).

Filtering. As shown in Figure 3, the 3D shapes from our main dataset, Objaverse, is dominated
with noisy text descriptions (“names”) uploaded by web users. Many of the problematic texts can be
identified from the text itself without seeing the corresponding 3D shape. We thus leverage a powerful
large language model, GPT-4 [47], to filter out inaccurate or uninformative text descriptions. We
find that GPT-4 excels at recognizing irrelevant contents, such as timestamps, pure model numbers,
incomprehensible descriptions, random filenames (e.g., new project), and random characters. Through
GPT-4, we filter out about 30% of raw user texts. Note that we only filter the texts, and still keep all
shapes for training. More details, such as the prompts we used, are presented in the supplementary.

Captioning. We utilize BLIP [34] and the Azure cognition services to caption the 2D thumbnails (if
present, or images rendered from a fixed frontal view) of the 3D models, obtaining two texts for each
shape. As shown in Figure 3, the captioning models can usually produce meaningful and descriptive
captions that either enhance user-uploaded texts or replace low-quality ones. We also notice that the
two caption models complement each other, leading to better performance.

Image Retrieval. In addition to image captioning, we also perform image retrieval to obtain additional
descriptions of 3D models. We retrieve k-NN images of shape renderings from the LAION-5B dataset
[65] using the CLIP ViT-L retrieval index [6]. We then take the captions of the k-NN images as the
retrieved texts for our 3D models. Compared with captioning model generations, retrieved texts cover
a wider range of text styles. They can also include more fine-grained semantics than both the user
texts and the generated captions (e.g., “Labrador” in Figure 3).

In each iteration of pretraining, for each shape, we first randomly sample a text source category
among the raw text (if unfiltered), the captions, and the retrieved texts. We then select a text candidate
from the selected category. We also apply the template-based prompt engineering technique used in
ULIP [78] to both training texts and test-time category names. Specifically, we extend a word or a
phrase to a collection of templated simple sentences and take their average embedding.

3.4 Scaling Up 3D Point Cloud Backbones

Previous works on 3D point cloud learning have primarily focused on smaller-scale datasets like
ShapeNet. These techniques may not be directly applicable to our larger-scale ensembled dataset and
need to be scaled up accordingly. We find that different 3D backbones may exhibit distinct behavior
and scalability when trained on datasets with varying sizes. Specifically, we compare six popular

5

Table 1: Comparison of different 3D backbones before scal-
ing up their parameters. Models are trained on ShapeNet [8]
or our ensembled dataset excluding Objaverse-LVIS [12].
Zero-shot classification performance are evaluated on Model-
Net40 [75] and Objaverse-LVIS [12].

Model #Param.
Train on ShapeNet [8] Train on Ens-no-LVIS

MNet40 O-LVIS MNet40 O-LVIS

PointNet [51] 1.3M 67.0 9.3 74.9 24.4
DGCNN [73] 2.3M 67.8 9.0 74.2 24.8

PointMLP [42] 9.3M 73.5 12.9 82.9 36.6
PointNeXt [54] 2.8M 72.6 12.2 81.6 33.8
PointBERT [81] 5.1M 70.3 10.8 84.5 37.0
SparseConv [10] 5.3M 70.7 10.6 78.8 31.7

std. dev. 2.3 1.4 3.9 5.1

1M 4M 16M 48M
Parameters

25

30

35

O
-L

VI
S

Ac
c.

 (%
)

DGCNN
PointNet
PointNeXt
PointBERT
SparseConv

Figure 4: Accuracy on Objaverse-
LVIS [12] when scaling up the pa-
rameters of different models.

backbones trained on ShapeNet or our ensembled dataset by evaluating their zero-shot classification
performance on ModelNet40 [75] and Objaverse-LVIS datasets (for now, these backbones are trained
with their original configurations and without scaling up model sizes). Objaverse-LVIS is a subset of
Objaverse dataset with human-verified category labels. With 1,156 categories, it serves as a suitable
dataset for evaluating zero-shot long-tail classification, and we exclude all shapes of Objaverse-
LVIS from this experiment. Results are shown in Table 1. We find that when trained on ShapeNet,
all backbones share similar performances. However, when trained on our ensembled dataset, the
performance gap between backbones increases significantly. This suggests that while the original
versions of these backbones share a similar number of parameters, some may have been saturated
when trained on small datasets, while others do not.

We also explore the performance and scalability of these backbones when scaling up the model sizes
and training on our ensembled dataset. Please refer to the supplementary for details on how we scale
up each model. As shown in Figure 4, we observe that all 3D backbones benefit significantly from
model scaling. However, traditional backbones without a shrinking hierarchical structure, such as
DGCNN and PointNet, require operating completely on dense points or modeling the relationships
(e.g., through kNN) between dense points. As a result, they become more time-consuming and
memory-intensive when scaled up compared to more modern backbones. We therefore select
PointBERT [81] (Transformer-based) and SparseConv [10] (convolution-based) as our 3D backbones
for the remaining experiments, as they exhibit strong performance and scalability.

3.5 Hard Negative Mining

Our ensembled dataset exhibits a high degree of class imbalance. Certain common categories, such
as building, may occupy tens of thousands of shapes, while many other categories, such as walrus
and wallet, are underrepresented with only a few dozen or even fewer shapes. Consequently, when
randomly constructing batches, it is unlikely that shapes from two confusing categories (e.g., apples
and cherries) will be contrasted within the same batch. Inspired by some previous works [58, 30], we
propose an offline hard negative mining strategy for improving the training efficiency and performance.
Specifically, in the first round of training, we train our model with random batches until it is about
to converge. We then compute the kNN for each shape in the learned 3D embedding space. In the
second round of training, for each iteration, we randomly select s seed shapes and then obtain m
neighbors from the kNN results of each seed shape, resulting s×m shapes per batch. In this way,
confusing pairs are more likely to be selected in a single batch. However, this may also introduce
false negative pairs (e.g., two apples) into contrastive learning. To mitigate this issue, we leverage
image and text embeddings to filter out pairs sharing similar texts when calculating the contrastive
loss. Specifically, for two shapes i and j selected from the same seed shape, if hT

j · hI
i + δ > hT

i · hI
i ,

where hT and hI are text and image embeddings, and δ is a small threshold, we believe that the text
embeddings of i and j are very close to each other, and we remove j from i’s negative examples
when calculating contrastive loss. By employing this strategy to construct batches, we observe faster
and better model learning.

6

Table 2: Zero-shot classification on Objaverse-LVIS [12], ModelNet40 [75], and ScanObjectNN [70].

Method
training shape Objaverse-LVIS [12] ModelNet40 [75] ScanObjectNN [71]

source Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

PointCLIP [86] 2D inferences,
no 3D training

1.9 4.1 5.8 19.3 28.6 34.8 10.5 20.8 30.6
PointCLIP v2 [88] 4.7 9.5 12.9 63.6 77.9 85.0 42.2 63.3 74.5

ReCon [53]

ShapeNet

1.1 2.7 3.7 61.2 73.9 78.1 42.3 62.5 75.6
CG3D [19] 5.0 9.5 11.6 48.7 60.7 66.5 42.5 57.3 60.8

CLIP2Point [24] 2.7 5.8 7.9 49.5 71.3 81.2 25.5 44.6 59.4
ULIP-PointBERT (Official) [78] 6.2 13.6 17.9 60.4 79.0 84.4 51.5 71.1 80.2

OpenShape-SparseConv 11.6 21.8 27.1 72.9 87.2 93.0 52.7 72.7 83.6
OpenShape-PointBERT 10.8 20.2 25.0 70.3 86.9 91.3 51.3 69.4 78.4

ULIP-PointBERT (Retrained)
Ensembled

21.4 38.1 46.0 71.4 84.4 89.2 46.0 66.1 76.4
OpenShape-SparseConv

(no LVIS)
37.0 58.4 66.9 82.6 95.0 97.5 54.9 76.8 87.0

OpenShape-PointBERT 39.1 60.8 68.9 85.3 96.2 97.4 47.2 72.4 84.7

ULIP-PointBERT (Retrained)
Ensembled

26.8 44.8 52.6 75.1 88.1 93.2 51.6 72.5 82.3
OpenShape-SparseConv 43.4 64.8 72.4 83.4 95.6 97.8 56.7 78.9 88.6
OpenShape-PointBERT 46.8 69.1 77.0 84.4 96.5 98.0 52.2 79.7 88.7

4 Experiments

4.1 Zero-Shot Shape Classification

We evaluate the zero-shot classification performances of our models on three benchmarks: the
traditional ModelNet40 [75] and ScanObjectNN [71], as well as a new benchmark, Objaverse-
LVIS [12]. ModelNet40 and ScanObjacetNN consist of 40 and 15 common categories, respectively.
Objaverse-LVIS is an annotated subset of Objaverse [12] and comprises 46,832 shapes among 1,156
LVIS [17] categories. With a much larger base of classes than other benchmarks, Objaverse-LVIS
presents a challenging long-tailed distribution, making it a better reflection on models’ performance
in open-world scenarios. We compare OpenShape with existing zero-shot approaches, including
PointCLIP [86], PointCLIPv2 [88], ReCon [53], CG3D [19], CLIP2Point [24], and ULIP [78].
Among them, PointCLIP [86] and PointCLIPv2 [88] project point clouds into 2D images and
directly utilize 2D CLIP for inference, while other methods leverage the CLIP embedding spaces for
alignment and require 3D shapes for training. We report results on these baselines using their released
checkpoints. To better analyze the source of our performance gains, we also retrain the baseline
ULIP [78] on our ensembled shape dataset, but we use the original texts in the four constituent
datasets along with the official codebase without backbone scaling. We train OpenShape and ULIP
on three different sets of training shapes: “Ensembled” denotes using all shapes from the four
datasets; “Ensembled (no LVIS)” is the same but excludes all shapes from the Objavserse-LVIS
subset; “ShapeNet” only includes shapes from the ShapeNet [8] dataset. Note that even when LVIS
shapes are included in the training shapes (i.e., the “Ensembled” dataset), their test-time category
labels are probably not included in their training texts. Please refer to the supplementary for more
training and evaluation details.

Table 2 shows the results. We observe that OpenShape consistently outperforms prior approaches,
even when trained only on ShapeNet. When models are trained on our larger-scale ensembled dataset,
they receive a significant performance boost. In this case, OpenShape still surpasses retrained ULIP
by a significant margin, demonstrating the advantages of our text enrichment, backbone scaling, and
other training strategies. Specifically, OpenShape greatly improves the classification accuracy on the
long tail categories in Objaverse-LVIS from a dull < 10% to 46.8%, outperforming the retrained
ULIP by about 20 points and reaching a decent top-5 accuracy of 77.0%. These results demonstrate
OpenShape’s capability to recognize open-world objects effectively. As for ModelNet40, OpenShape
achieves a 85.3% accuracy, surpassing previous methods by a substantial margin of at least 20 percent.
OpenShape also achieves impressive top-3 and top-5 accuracies of 96.5% and 98.0%. To the best
of our knowledge, this is the first time zero-shot methods have matched the performance of a fully-
supervised 3D learning method on ModelNet40, where OpenShape outperforms fully-supervised
3D ShapeNets [75] and VoxNet [43]. In addition, on ScanObjectNN, which contains challenging
real scans with noise and occlusion, OpenShape exhibits decent sim-to-real transfer capabilities. To
contextualize, OpenShape-SparseConv achieves 56.7% zero-shot accuracy on ScanObjectNN without
specific sim-to-real training, which surpasses 52.7% reported by SKPConv [74], a recent method
specially designed for sim-to-real transfer in point cloud classification tasks.

7

Objaverse-LVIS ModelNet40 ScanObjectNN

10
20
30

40
50

50

60

70

80

90

30
40
50
60
70
80

PointCLIP V2 ULIP-Official ULIP-Retrained OpenShape-PointBERT

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16
of labeled training samples per class

To
p-

1
Ac

c.
 (%

)

Figure 5: Few-shot linear probing on Objaverse-LVIS [12], ModelNet40 [75], and ScanOb-
jectNN [70]. We report the average performance over 10 random seeds.

Table 3: Ablation study. Top 1 zero-
shot accuracies on ModelNet40 [75] and
Objaverse-LVIS [12] are shown.

Variant O-LVIS MNet40

No Objaverse shapes 13.9 75.5
Only Objaverse shapes 41.6 79.2
No backbone scale up 31.7 78.7

No caption & retrieval 37.0 82.9
No text filtering 41.4 82.9

No point rgb, only xyz 39.6 83.6
No text contras. learning 23.3 67.4

No image contras. learning 41.0 81.0

Full 42.0 83.1
Full + hard mining 43.4 83.4

1% 5% 25
%

50
%

75
%

10
0%

15

20

25

30

35

40

45

O
-L

VI
S

Ac
c.

 (%
)

61

65

69

73

77

81

85

M
od

el
N

et
40

 A
cc

. (
%

)

Figure 6: Ablation study on
using different ratios of train-
ing data.

Base + Cap. + Retr. Full
30

35

40

45

50

O
-L

VI
S

Ac
c.

 (%
)

PointBERT
SparseConv

Figure 7: Ablation study
on different text enrichment
strategies.

4.2 Few-Shot Linear Probing

In the literature, linear probing is a common way to assess the representation learning capabilities of
a model. To perform linear probing, we gather and freeze the representation vectors from all samples
in a dataset. Subsequently, we train a linear classifier using these fixed vectors and few-shot class
labels. We evaluate the accuracy of the linear classifier on three benchmarks: Objaverse-LVIS [12],
ModelNet40 [75], and ScanObjectNN [71]. Figure 5 summarizes the performance of OpenShape
in comparison with ULIP [78] (official release and our retrained versions) and PointCLIPv2 [88].
On the most challenging Objaverse-LVIS benchmark, OpenShape outperforms all other methods by
a large margin. Notably, zero-shot OpenShape beats few-shot linear probes of other methods. On
ModelNet40 and ScanObjectNN, we do not see a large performance margin between OpenShape and
retrained ULIP. We hypothesize that for few-shot ModelNet40, the error is dominated by in-category
sample bias rather than the representation quality; while for ScanObjectNN, the domain gap plays a
major role. Since both OpenShape and retrained ULIP are exposed to the same source domain of
training objects, their few-shot out-of-domain generalization performances tend to be similar.

4.3 Ablation Study

We perform various ablations by training a scaled version of SparseConv [10] on the ensembled
dataset and then evaluate it on the Objaverse-LVIS [12] and ModelNet40 [75] zero-shot classification
benchmarks, unless otherwise specified. The results are shown in Table 3 and Figures 6 and 7.

Data and Model Scaling. We investigate the impact of training data by ablating (1) without or with
only Objaverse shapes (Tab. 3) and (2) with different ratios of our ensembled dataset (Fig. 6). We
observe that training with 1% of our ensembled dataset (about 8.8k shapes) achieves similar or better
zero-shot performance than training without Objaverse shapes (about 77.1k shapes), indicating that
the diversity of training data is sometimes more crucial than the scale. In addition, we compare the
performances between scaled-up and non-scaled-up backbones. From Tab. 3, we demonstrate that
model scaling plays an essential role when training on our large-scale ensembled dataset (also Fig. 4).

8

Figure 8: 3D shape retrieval from image (left, mid) and point cloud (right).

Figure 9: Text-input 3D shape retrieval. In each row, we show input texts on the left and two
retrieved shapes for each text on the right. OpenShape embedding encodes a wide range of visual
and semantic concepts and enables (a) retrieval of fine-grained subcategories (first two rows), and (b)
control of attributes (e.g., color, shape, style) and their combinations (last two rows).

Text Filtering and Enrichment. As shown in Tab. 3, both text filtering and text enrichment are
beneficial for performance. We also investigate the specific text enrichment strategies to use for the
SparseConv and PointBERT backbones. In Fig. 7, we observe that both image captioning and text
retrieval are helpful, and including both yield the best results. Notably, PointBERT improves more
than 10 points from text enrichment, highlighting the significance of enhancing text quality.

Other Aspects. We also conduct additional ablation studies on color information, contrastive loss
components, and our hard-negative mining strategy in Tab. 3. We observe that OpenShape performs
well with only xyz coordinates as input and no RGB color. While 3D-image contrastive loss is also
helpful, we observe that 3D shape-text alignment plays a very essential role for model zero-shot
generalization, which necessitates our text filtering and text enrichment strategies that significantly
enhance text quality. Lastly, by employing our hard negative mining strategy, OpenShape effectively
addresses the issue of unbalanced data distribution, leading to further improvements in performance.

4.4 Cross-Modal Applications

Multi-modal 3D Shape Retrieval. Through OpenShape multi-modal representations, we can index
and retrieve 3D shapes from images, texts, or point clouds. In this section, we retrieve 3D shapes
from our ensembled dataset by calculating the cosine similarity between input embedding(s) and 3D
shape embeddings and performing kNN. As shown in Figure 8, OpenShape is capable of retrieving
visually or semantically similar shapes from a single image or point cloud input. OpenShape
embeddings encode a wide range of visual and semantic concepts. In Figure 9, we show that
OpenShape supports retrieving 3D shapes from detailed text descriptions, which include fine-grained
subcategories, attributes, and their combinations. Note that these input texts are typically not present
in the raw texts of the retrieved shapes, indicating that OpenShape effectively learns generalizable
concepts across shapes. In Figure 1, we provide a demo which takes two 3D shapes as inputs
and retrieves the shapes that are simultaneously closest to both inputs. This is achieved by finding
argmaxi min(hP

i · hP
a , h

P
i · hP

b), where hP
a and hP

b denote normalized shape embeddings of the
two input shapes. We can see that the retrieved shapes integrate visual or semantic elements in an
interesting manner, highlighting the rich concepts and priors encoded in OpenShape embeddings.

9

+ “in a large desert”

+ “in the woods”

1. 2.

3. 4.

Cap�ons:
1. The chair in the style of the 1920s.
2. The ladder to the second floor.
3. Goldfish in the sea - photo #.
4. The car of the day.

(a) (b)

Figure 10: (a) Point cloud captioning. (b) Point cloud-conditioned image generation. Our
learned 3D shape embeddings can be integrated with off-the-shelf pretrained CLIP-based models
(e.g., captioning and image generation models) to support various cross-modal applications.

Shape-Conditioned Multimodal Generation. As OpenShape’s 3D shape representations are aligned
with CLIP’s image and text embedding spaces, they can serve as inputs into other CLIP-based models
to facilitate various multimodal generation applications. For example, we show that by feeding
our 3D shape embeddings into ClipCap [46], an off-the-shelf image captioning model, along with
Stable unCLIP [56], a text-to-image diffusion model, we can perform point cloud captioning and
point cloud-conditioned image generation (optional text prompt supported) without extra training or
finetuning. Qualitative results are shown in Figure 10. Please refer to the supplementary for more
results and details.

5 Limitation and Conclusion

We introduce OpenShape, a novel approach for learning scalable and generalizable multi-modal
joint representations for 3D shapes. OpenShape representations effectively capture a wide range of
semantic and visual concepts, enabling superior capabilities for open-world 3D shape recognition.
By aligning OpenShape with CLIP’s embedding space, our shape embeddings can be integrated with
off-the-shelf CLIP-based models for various cross-modality applications. Moving forward, there are
several directions worth further exploration: (a) More 3D data. While we utilized 876k 3D shapes
during training, this is still quite limited compared to the 2D counterparts. We hope that our work
inspires future investments in more resources to build even more powerful 3D representations. (b)
Part-level information. Our current shape representations mainly focus on global semantic and visual
features, and it would be beneficial to add more part-level supervision during training. (c) Sim-to-real
domain gap. Our model is mainly trained on synthetic data, and it’s challenging but crucial to explore
explicit designs for reducing the domain gap with real-world shapes.

Acknowledgments

This work is supported in part by gifts from Qualcomm.

10

References

[1] Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov, and Peter Wonka. Satr: Zero-shot
semantic segmentation of 3d shapes. arXiv preprint arXiv:2304.04909, 2023.

[2] Idan Achituve, Haggai Maron, and Gal Chechik. Self-supervised learning for domain adaptation
on point clouds. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pages 123–133, 2021.

[3] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning repre-
sentations and generative models for 3d point clouds. In International conference on machine
learning, pages 40–49. PMLR, 2018.

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.

[5] Shivangi Aneja, Justus Thies, Angela Dai, and Matthias Nießner. Clipface: Text-guided editing
of textured 3d morphable models. arXiv preprint arXiv:2212.01406, 2022.

[6] Romain Beaumont. Clip retrieval: Easily compute clip embeddings and build a clip retrieval
system with them. https://github.com/rom1504/clip-retrieval, 2022.

[7] Zehranaz Canfes, M Furkan Atasoy, Alara Dirik, and Pinar Yanardag. Text and image guided
3d avatar generation and manipulation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 4421–4431, 2023.

[8] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

[9] Runnan Chen, Youquan Liu, Lingdong Kong, Xinge Zhu, Yuexin Ma, Yikang Li, Yuenan Hou,
Yu Qiao, and Wenping Wang. Clip2scene: Towards label-efficient 3d scene understanding by
clip. arXiv preprint arXiv:2301.04926, 2023.

[10] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3075–3084, 2019.

[11] Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset
and benchmarks for real-world 3d object understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21126–21136, 2022.

[12] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. arXiv preprint arXiv:2212.08051, 2022.

[13] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet: Unsupervised learning of rotation
invariant 3d local descriptors. In Proceedings of the European conference on computer vision
(ECCV), pages 602–618, 2018.

[14] Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Language-
driven open-vocabulary 3d scene understanding. arXiv preprint arXiv:2211.16312, 2022.

[15] Benjamin Eckart, Wentao Yuan, Chao Liu, and Jan Kautz. Self-supervised learning on 3d point
clouds by learning discrete generative models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8248–8257, 2021.

[16] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng
Tao. 3d-future: 3d furniture shape with texture. International Journal of Computer Vision,
129:3313–3337, 2021.

[17] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5356–5364, 2019.

[18] Huy Ha and Shuran Song. Semantic abstraction: Open-world 3d scene understanding from 2d
vision-language models. In Conference on Robot Learning, 2022.

[19] Deepti Hegde, Jeya Maria Jose Valanarasu, and Vishal M Patel. Clip goes 3d: Leveraging
prompt tuning for language grounded 3d recognition. arXiv preprint arXiv:2303.11313, 2023.

[20] Georg Hess, Johan Jaxing, Elias Svensson, David Hagerman, Christoffer Petersson, and Lennart
Svensson. Masked autoencoder for self-supervised pre-training on lidar point clouds. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
350–359, 2023.

11

https://github.com/rom1504/clip-retrieval

[21] Georg Hess, Adam Tonderski, Christoffer Petersson, Lennart Svensson, and Kalle Åström.
Lidarclip or: How i learned to talk to point clouds. arXiv preprint arXiv:2212.06858, 2022.

[22] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei Liu.
Avatarclip: Zero-shot text-driven generation and animation of 3d avatars. arXiv preprint
arXiv:2205.08535, 2022.

[23] Rui Huang, Xuran Pan, Henry Zheng, Haojun Jiang, Zhifeng Xie, Shiji Song, and Gao Huang.
Joint representation learning for text and 3d point cloud. arXiv preprint arXiv:2301.07584,
2023.

[24] Tianyu Huang, Bowen Dong, Yunhan Yang, Xiaoshui Huang, Rynson WH Lau, Wanli Ouyang,
and Wangmeng Zuo. Clip2point: Transfer clip to point cloud classification with image-depth
pre-training. arXiv preprint arXiv:2210.01055, 2022.

[25] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. If you use this software, please cite it
as below.

[26] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. Zero-shot
text-guided object generation with dream fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 867–876, 2022.

[27] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen,
Shuang Li, Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, et al. Conceptfusion:
Open-set multimodal 3d mapping. arXiv preprint arXiv:2302.07241, 2023.

[28] Nikolay Jetchev. Clipmatrix: Text-controlled creation of 3d textured meshes. arXiv preprint
arXiv:2109.12922, 2021.

[29] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In International Conference on Machine Learning, pages
4904–4916. PMLR, 2021.

[30] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus.
Hard negative mixing for contrastive learning. Advances in Neural Information Processing
Systems, 33:21798–21809, 2020.

[31] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf:
Language embedded radiance fields. arXiv preprint arXiv:2303.09553, 2023.

[32] Nasir Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. Text to mesh without 3d
supervision using limit subdivision. arXiv preprint arXiv:2203.13333, 2022.

[33] Han-Hung Lee and Angel X Chang. Understanding pure clip guidance for voxel grid nerf
models. arXiv preprint arXiv:2209.15172, 2022.

[34] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, pages 12888–12900. PMLR, 2022.

[35] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu
Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image
pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10965–10975, 2022.

[36] Xuanlin Li, Yunhao Fang, Minghua Liu, Zhan Ling, Zhuowen Tu, and Hao Su. Distilling
large vision-language model with out-of-distribution generalizability. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2492–2503, 2023.

[37] Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind
the gap: Understanding the modality gap in multi-modal contrastive representation learning.
Advances in Neural Information Processing Systems, 35:17612–17625, 2022.

[38] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexiang Xu, Hao Su, et al. One-2-3-45:
Any single image to 3d mesh in 45 seconds without per-shape optimization. arXiv preprint
arXiv:2306.16928, 2023.

[39] Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su.
Partslip: Low-shot part segmentation for 3d point clouds via pretrained image-language models.
arXiv preprint arXiv:2212.01558, 2022.

[40] Zhengzhe Liu, Peng Dai, Ruihui Li, Xiaojuan Qi, and Chi-Wing Fu. Iss: Image as stetting stone
for text-guided 3d shape generation. arXiv preprint arXiv:2209.04145, 2022.

12

[41] Yuheng Lu, Chenfeng Xu, Xiaobao Wei, Xiaodong Xie, Masayoshi Tomizuka, Kurt Keutzer,
and Shanghang Zhang. Open-vocabulary point-cloud object detection without 3d annotation.
arXiv preprint arXiv:2304.00788, 2023.

[42] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. arXiv preprint arXiv:2202.07123,
2022.

[43] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-
time object recognition. In 2015 IEEE/RSJ international conference on intelligent robots and
systems (IROS), pages 922–928. IEEE, 2015.

[44] Benedikt Mersch, Xieyuanli Chen, Jens Behley, and Cyrill Stachniss. Self-supervised point
cloud prediction using 3d spatio-temporal convolutional networks. In Conference on Robot
Learning, pages 1444–1454. PMLR, 2022.

[45] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. Text2mesh: Text-
driven neural stylization for meshes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13492–13502, 2022.

[46] Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning.
arXiv preprint arXiv:2111.09734, 2021.

[47] OpenAI. Gpt-4 technical report, 2023.
[48] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked

autoencoders for point cloud self-supervised learning. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pages
604–621. Springer, 2022.

[49] Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
Funkhouser, et al. Openscene: 3d scene understanding with open vocabularies. arXiv preprint
arXiv:2211.15654, 2022.

[50] Omid Poursaeed, Tianxing Jiang, Han Qiao, Nayun Xu, and Vladimir G Kim. Self-supervised
learning of point clouds via orientation estimation. In 2020 International Conference on 3D
Vision (3DV), pages 1018–1028. IEEE, 2020.

[51] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[52] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in neural information processing
systems, 30, 2017.

[53] Zekun Qi, Runpei Dong, Guofan Fan, Zheng Ge, Xiangyu Zhang, Kaisheng Ma, and Li
Yi. Contrast with reconstruct: Contrastive 3d representation learning guided by generative
pretraining. arXiv preprint arXiv:2302.02318, 2023.

[54] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny,
and Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling
strategies. arXiv:2206.04670, 2022.

[55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[56] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[57] Yongming Rao, Jiwen Lu, and Jie Zhou. Global-local bidirectional reasoning for unsupervised
representation learning of 3d point clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5376–5385, 2020.

[58] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning
with hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

[59] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[60] David Rozenberszki, Or Litany, and Angela Dai. Language-grounded indoor 3d semantic
segmentation in the wild. arXiv preprint arXiv:2204.07761, 2022.

[61] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.

13

Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[62] Aditya Sanghi. Info3d: Representation learning on 3d objects using mutual information
maximization and contrastive learning. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16, pages 626–642.
Springer, 2020.

[63] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang, Chin-Yi Cheng, Marco Fumero,
and Kamal Rahimi Malekshan. Clip-forge: Towards zero-shot text-to-shape generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18603–18613, 2022.

[64] Jonathan Sauder and Bjarne Sievers. Self-supervised deep learning on point clouds by recon-
structing space. Advances in Neural Information Processing Systems, 32, 2019.

[65] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. arXiv preprint
arXiv:2210.08402, 2022.

[66] Charu Sharma and Manohar Kaul. Self-supervised few-shot learning on point clouds. Advances
in Neural Information Processing Systems, 33:7212–7221, 2020.

[67] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao
Chen, Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion
base model, 2023.

[68] Chao Sun, Zhedong Zheng, Xiaohan Wang, Mingliang Xu, and Yi Yang. Point cloud pre-training
by mixing and disentangling. arXiv e-prints, pages arXiv–2109, 2021.

[69] Ali Thabet, Humam Alwassel, and Bernard Ghanem. Self-supervised learning of local features
in 3d point clouds. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 938–939, 2020.

[70] Vishaal Udandarao. Understanding and fixing the modality gap in vision-language models.
Master’s thesis, University of Cambridge, 2022.

[71] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung.
Revisiting point cloud classification: A new benchmark dataset and classification model on
real-world data. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 1588–1597, 2019.

[72] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J Kusner. Unsupervised point
cloud pre-training via occlusion completion. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 9782–9792, 2021.

[73] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics
(tog), 38(5):1–12, 2019.

[74] Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. Sim2real 3d object classification
using spherical kernel point convolution and a deep center voting scheme. arXiv preprint
arXiv:2103.06134, 2021.

[75] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

[76] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany. Pointcontrast:
Unsupervised pre-training for 3d point cloud understanding. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages
574–591. Springer, 2020.

[77] Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying Shan, Xiaohu Qie, and Shenghua
Gao. Dream3d: Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion
models. arXiv preprint arXiv:2212.14704, 2022.

[78] Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning unified representation of language,
image and point cloud for 3d understanding. arXiv preprint arXiv:2212.05171, 2022.

[79] Jihan Yang, Runyu Ding, Zhe Wang, and Xiaojuan Qi. Regionplc: Regional point-language
contrastive learning for open-world 3d scene understanding. arXiv preprint arXiv:2304.00962,
2023.

14

[80] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
Pre-training 3d point cloud transformers with masked point modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19313–19322, 2022.

[81] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
Pre-training 3d point cloud transformers with masked point modeling. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[82] Yihan Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chaoqiang Ye, Qingqiu Huang, Dit-Yan
Yeung, Zhen Yang, Xiaodan Liang, and Hang Xu. Clipˆ 2: Contrastive language-image-point
pretraining from real-world point cloud data. arXiv preprint arXiv:2303.12417, 2023.

[83] Yihan Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chaoqiang Ye, Qingqiu Huang, Dit-Yan
Yeung, Zhen Yang, Xiaodan Liang, and Hang Xu. Clip2: Contrastive language-image-point
pretraining from real-world point cloud data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 15244–15253, 2023.

[84] Haotian Zhang, Pengchuan Zhang, Xiaowei Hu, Yen-Chun Chen, Liunian Harold Li, Xiyang
Dai, Lijuan Wang, Lu Yuan, Jenq-Neng Hwang, and Jianfeng Gao. Glipv2: Unifying localization
and vision-language understanding. arXiv preprint arXiv:2206.05836, 2022.

[85] Junbo Zhang, Runpei Dong, and Kaisheng Ma. Clip-fo3d: Learning free open-world 3d scene
representations from 2d dense clip. arXiv preprint arXiv:2303.04748, 2023.

[86] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng
Gao, and Hongsheng Li. Pointclip: Point cloud understanding by clip. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8552–8562, 2022.

[87] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pretraining of
3d features on any point-cloud. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10252–10263, 2021.

[88] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng, Shanghang Zhang, and Peng Gao. Point-
clip v2: Adapting clip for powerful 3d open-world learning. arXiv preprint arXiv:2211.11682,
2022.

15

A More Examples of Multi-Modal 3D Shape Retrieval

In Figures 11 and 12, we showcase more examples of multi-modal 3D shape retrieval.

Figure 11: Image-input 3D shape retrieval. In each triplet, we present the input image and two 3D
shapes retrieved using OpenShape embeddings from the Objaverse [12] dataset. Input images are
from unsplash.com.

Figure 12: Point cloud-input 3D shape retrieval. In each triplet, we present the input point cloud
and two 3D shapes retrieved using OpenShape embeddings from the Objaverse [12] dataset.

B More Examples of Shape-Conditioned Multimodal Generation

In Figure 13 and Figure 14, we showcase more examples of point cloud captioning and point
cloud-conditioned image generation.

C Details on Raw Text Generation and Filtering

C.1 Raw Text Generation

We leverage the metadata from the four datasets to generate the raw texts. Although the original
datasets may contain numerous attributes for each shape, we carefully choose the most informative
ones to compose the text, ensuring its quality and relevance.

Objaverse:We utilize the name associated with each shape to serve as the text.

ShapeNetCore: For each shape, we generate three types of texts: (a) the name, (b) the category
name (with a total of 55 categories), and (c) the concatenation of the sub-category names (with a
total of 336 sub-categories), separated by commas.

16

unsplash.com

Figure 13: Point cloud captioning. In each row, we show the input point clouds on the left and the
generated captions on the right.

Figure 14: Point cloud-conditioned image generation. Each row shows three examples (input point
clouds and generated images).

3DFuture: For each shape, we generate two types of texts: (a) the category, and (b) the concatena-
tion of category, style, theme, and material, separated by commas.

ABO: For each shape, we generate two types of texts: (a) the item_name, and (b) the product_type.

In this way, we generate one or more raw texts for each shape.

17

C.2 Raw Text Filtering

I am analyzing a 3D dataset with various text descriptions for the 3D models.
However, many of these texts are inaccurate or uninformative, and therefore,
not suitable as descriptions for 3D models. I need your help to identify such
incorrect texts. Specifically, if a text primarily consists of irrelevant or unin-
formative content, such as timestamps, model numbers, incomprehensible
descriptions, random filenames (e.g., "my project"), random characters, etc.,
please respond with "N". If a text contains a clear noun (or noun phrase)
that could potentially describe a 3D object, please respond with "Y". You
will find a list of texts below, and each line contains a three-digit ID and
associated text. For each text, please respond with "Y" or "N", following the
ID number (e.g., "001 Y" or "002 N"). Please evaluate all 256 texts.
000 New project (19)
001 3December - Chemestry
002 Fake Brand Soda Can
003 Spartan Shild
004 Apple3d
005 Landmine
006 FaunveinB-S
007 FIGURA 5
008 Sphero Blue
009 Sofa
010 Maddox
011 A3 Complete
012 Suspension Bridge
013 Maung
014 Captain-americas-shield
015 sphorb4
......

000 N
001 Y
002 Y
003 Y
004 Y
005 Y
006 N
007 N
008 Y
009 Y
010 N
011 N
012 Y
013 N
014 Y
015 N
......

We employ GPT-4 [47] to filter out uninformative raw texts. To accomplish this, we divide all the raw
texts into batches, each containing 256 entries, and process each batch independently using GPT-4.
Here is an example illustrating the prompt we used and the corresponding response generated by
GPT-4.

Afterwards, we combine all the responses to create the final filtering results, effectively removing
approximately 30% of the raw texts.

D Details on the Backbone Scaling Experiment

In Figure 4 of the main paper, we investigate the performance and scalability of various backbones
when scaling up their model sizes. For this experiment, we employ a default resolution of 10,000
points for input point clouds, a batch size of 200, and conduct the experiment on a single A100 GPU.
In general, if instructions are given in the original paper of a backbone, we scale up the model as
instructed. Otherwise, we scale up the model by expanding width or depth (i.e., stacking blocks or
layers). Specifically, we scale up each backbone as follow:

PointBERT [81] The scaling parameters are shown in Table 4. We scaled PointBERT to 72.1M
parameters beyond the 32.3M version reported in Figure 4 of the main paper. However, at this scale,
the model dramatically overfits on the training data and performs worse on all benchmarks than the
32.3M version.

SparseConv [10] The smallest version (5.3M parameters) of the model is adapted from the
MinkowskiFCNN model by adjusting the width of the final convolution and linear layers. The
remaining three models are adaptations of MinkowskiResNet, each varying in the number of basic
ResNet blocks used. See Table 5 for the specific scaling parameters.

18

Table 4: Hyperparameters for scaling up PointBERT [81].

Parameters # Layers Width # Heads MLP Dim # Patches Patch Embed Dim

5.1M 6 256 4 1024 64 96
13.3M 6 512 8 1024 64 128
32.3M 12 512 8 1536 384 256
72.1M 12 768 12 2304 512 256

Table 5: Hyperparameters for scaling up SparseConv [10].

Parameters # Convolution Layers # Linear Layers

5.3M 7 4
29.0M 18 3
33.7M 26 3
41.3M 42 3

PointNeXt [54] PointNeXt is proposed as a scalable version of PointNet++ [52], and includes
S/B/L/XL variants in the original paper. We simply adopt these official configurations.

DGCNN [73] and PointNet [51] For these two backbones without a hierarchical structure, we
increase the width of each layer proportionally to scale up to 4xPointNet and 2xDGCNN before we
hit the GPU memory limit. As the models operate completely on dense points, it is impractical to use
the default 10k-point resolution. We thus reduce the input resolution for the two backbones, resulting
in 1k points for DGCNN and 4k points for PointNet.

E Details on Training and Evaluation

Training Details We freeze the CLIP text and image encoders and train the 3D encoder and two
projection heads on our ensembled dataset using the cross-modal contrastive loss. We train the
model on a single A100 GPU with a batch size of 200. Since we precache the text and image CLIP
embeddings of all shapes, the training is greatly accelerated and takes about 300 A100 hours for
convergence. We utilize an exponential learning rate schedule, and employ an range test to find the
initial learning rate. For 32.3M version of PointBERT, we utilize a learning rate of 5e− 4; for 72.1M
version of PointBERT, we utilize a learning rate of 4e− 4; and for other models, we utilize a learning
rate of 1e− 3. For hard-negative mining, the number of seed shapes s is set to 40, and the number of
neighbors m is set to 5 per shape, and the threshold δ is set to 0.1.

Fine-tuning CLIP Text and Image Encoders? After training OpenShape-PointBERT, we con-
ducted experiments to unfreeze and finetune the CLIP text encoder for a single epoch. However, the
results obtained did not demonstrate any noticeable improvement on the benchmarks. Moreover,
we observed that finetuning the CLIP text encoder could potentially undermine the generalization
capabilities of CLIP and hinder the integration of OpenShape embeddings into existing CLIP-based
models. As a result, we choose to freeze the CLIP encoders throughout the entire training process.

Evaluation Details We evaluated all baselines using their publicly released pretrained checkpoints.
Additionally, we retrained ULIP [78] on our ensembled training shapes using their official code
base and backbone networks. Note that the retrained ULIP model utilized the original raw texts
from the four datasets during training (prompt engineering is also applied), rather than our filtered
and enriched texts. For ModelNet40 [75], the evaluation is conducted on the test split with 2,468
shapes. Regarding ScanObjectNN [71], we follow ULIP [78] to evaluate on the OBJ_ONLY version,
which contains 581 test shapes. For Objaverse-LVIS [12], the input is 10,000 sampled points
with point colors. For ModelNet40 [75], the input is 10,000 sampled points without color. For
ScanObjectNN [71], we utilize the official 2,048 points without color as input. All methods use the
same input during evaluation. The forward inference time on an A100 GPU for a 10,000-point point
cloud is approximately 0.9ms for OpenShape-SparseConv and 3.8ms for OpenShape-PointBERT.

19

F Details on Shape-Conditioned Multimodal Generation

Point Cloud Captioning CLIPCap [46] utilizes a 10-token prefix generated from CLIP image
embeddings to enable GPT-2 for captioning. In order to align with the off-the-shelf CLIPCap model,
we trained a variant of OpenShape-PointBERT that employs CLIP ViT-B/32 embeddings instead
of OpenCLIP ViT-G/14 used in other experiments. Consequently, we directly input the point cloud
encoding, without normalization, into CLIPCap for captioning.

Point Cloud Conditioned Image Generation We take the Stable Diffusion v2.1 unCLIP
model [56] for image generation and replace the CLIP image condition encoder with our OpenShape
encoder to perform image generation conditioned on point clouds (and optionally text prompts).
The unCLIP model takes CLIP ViT-L/14 embeddings without normalization as input. To match the
embedding space, we trained a variant of OpenShape-PointBERT with CLIP ViT-L/14 embeddings.
Additionally, we noticed a significant mismatching of scales (L2-norm of embedding vectors) be-
tween ViT-L/14 image embeddings and OpenShape embeddings. To mitigate this issue, we perform
a re-normalization on OpenShape embeddings to a L2-norm of 1

2

√
768, which is our observed mean

L2-norm of ViT-L/14 image embeddings. We use 50 diffusion steps. The guidance scale can be tuned
freely.

20

	Introduction
	Related Work
	CLIP for 3D Learning
	3D Shape Representation Learning

	Method
	Multi-Modal Representation Alignment
	Ensembling 3D Datasets
	Text Filtering and Enrichment
	Scaling Up 3D Point Cloud Backbones
	Hard Negative Mining

	Experiments
	Zero-Shot Shape Classification
	Few-Shot Linear Probing
	Ablation Study
	Cross-Modal Applications

	Limitation and Conclusion
	More Examples of Multi-Modal 3D Shape Retrieval
	More Examples of Shape-Conditioned Multimodal Generation
	Details on Raw Text Generation and Filtering
	Raw Text Generation
	Raw Text Filtering

	Details on the Backbone Scaling Experiment
	Details on Training and Evaluation
	Details on Shape-Conditioned Multimodal Generation

