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Shigefumi Mori has been one of the most influential mathematicians
of the past three decades. A proper survey of his achievements and
influence—showing how his work fits in with that of his contemporaries
and detailing the results proved by other mathematicians following the
paths he laid out—would be a complete history of higher dimensional
birational geometry, and thus far beyond the scope of this short sum-
mary.

The following overview groups his works according to themes rather
than focusing on his main theorems, with the aim of laying out the
fundamental ideas more clearly. However, this approach does result in
some seemingly odd choices: one of the main topics (Mori’s program)
does not correspond to any of his publications and several important
papers are omitted or mentioned only in passing.

I have had the privilege of knowing and working with Shigefumi Mori
since 1983. This collaboration has been a fundamental influence on my
mathematical point of view and development, thus I cannot pretend to
offer an unbiased survey of Mori’s contributions to algebraic geometry.
Those who prefer to form their own opinion would be well-rewarded by
reading his papers, especially [1] and [2]. These fundamentally important
and enjoyable works illustrate the depth and originality of his ideas, as
well as the clarity and precision of his writing.

§ Bend-and-break

It is a rare pleasure in mathematics to be surprised by a theorem
whose proof is simple, yet its applications are profound. Bend-and-break
is among them. The proof consists of three observations.

(i) Let C be a smooth, projective curve and ft : C → X a 1-
parameter family of non-constant morphisms. If the genus of C is ≥ 1
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and ft(c) stays fixed for some point c ∈ C, then a suitable limit of the
1-cycles ft(C) becomes reducible and acquires a rational component.

(ii) If C ∼= P1, then one gets a reducible limit cycle if ft(ci) stays
fixed for at least 2 points c1, c2 ∈ C.

(iii) If deg f∗
0TX > 0, then one can construct such deformations

in positive characteristic, reduce the degree of the resulting rational
curves using (ii) and then lift the low-degree rational curves back to
characteristic 0.

The bend-and-break method has several applications. The first,
given in [1], characterizes the projective space Pn as the unique n-
dimensional smooth, projective variety whose tangent bundle is ample.
This solved conjectures of Frankel and Hartshorne.

Since we assume that the tangent bundle is ample, the condition
deg f∗

0TX > 0 is automatic and the resulting rational curves turn out to
be the lines in Pn. Once we have the lines, the rest is relatively straight-
forward. These ideas have been used repeatedly to describe varieties
whose tangent bundle is close to being ample; the conditions becoming
more general every year.

A subsequent paper [9] shows that one can get low-degree rational
curves by one application of a variant of (i) and (iii), making it possible
to use the method for many singular varieties.

Another application, presented in [2] shows that the cone of curves
of a Fano variety is polyhedral. This led to a classification of smooth,
3-dimensional Fano varieties [3, 4, 21] and is the cornerstone of most
results on higher-dimensional Fano varieties.

§ The cone of curves and extremal rays

Let X be a projective variety, for simplicity over C. Every algebraic
curve C ⊂ X has a homology class [C] ∈ H2(X,R). The cone of curves
NE(X) is the closure of the cone generated by them. This cone was
studied by Hironaka and Kleiman, but it was Mori who realized that
if X is smooth, then the part of the cone lying in the open half-space
where the intersection number with the canonical class is negative is
locally finitely generated [2]. These generators are called the extremal
rays of X or of NE(X).

Mori used bend-and-break to show that every extremal ray is spanned
by (the homology class of) a rational curve. Then he showed, in dimen-
sion 3, that for every extremal ray R ⊂ NE(X) there is a unique mor-
phism gR : X → Z, called the contraction of R such that an irreducible
curve C ⊂ X is mapped to a point by gR iff [C] ∈ R. He also gave a
complete description of all possible contractions.
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This resulted in a completely different way of thinking about mor-
phisms of varieties. Before [2], people were thinking in terms of linear
systems; since then everyone imagines an extremal ray or face of a cone.

Later, cohomological methods were used to extend the existence
results to all dimensions and to log terminal varieties and pairs, but the
basic picture established by Mori remains unchanged.

An even more important consequence of [2] is that, as we discuss
next, it led to a whole new approach to algebraic varieties.

§ Mori’s program

Mori is, and probably will remain, best known for developing what is
now known as Mori’s program, Mori theory or minimal model program.
Interestingly, he never wrote down the program and there is no published
reference that one can point to.

It was obvious to experts that [2] gave the beginning steps of a
program, but the continuation was not immediately clear. It seems that
Mori had the whole plan by 1980 but he did not write it down; thus Reid
and Tsunoda both discovered various parts independently. By 1982 the
details were well-known to a rapidly growing group of researchers.

The program provides a recipe that allows one to write any bi-
rational contraction as a composite of two types of elementary maps:
divisorial contractions and flips. As an end result, every smooth projec-
tive variety is birational either to a variety (with terminal singularities)
whose canonical class is nef or to the total space of a family of Fano vari-
eties. More generally, for many questions, the program allows us to find
a birational model whose global and local geometry match optimally.

This viewpoint was new even for surfaces and it led to predictions
about higher dimensions that were not even contemplated before. It
determined the main direction of research in birational geometry for
decades.

After a few years, two basic approaches started to diverge rapidly
from each other. The schools of Kawamata and of Shokurov aimed at
establishing methods that would work in all dimensions, culminating
in the results of Hacon and McKernan. These results give existence
theorems but rarely produce explicit descriptions of flips or of minimal
models.

Mori’s aim was to develop a deep and complete understanding of the
3-dimensional situation. As a consequence of his work, now we see that
for 3-folds it is possible to understand and control every detail of the
minimal model program; we discuss some of it next. By contrast, even
the classification of 4-dimensional terminal singularities seems unlikely.
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§ Extremal curve neighborhoods

As [2] showed, the contraction of an extremal ray of a smooth 3-fold
sometimes results in a singular 3-fold. In order to continue with Mori’s
program, it was necessary to extend the theory of [2] to 3-folds with
terminal singularities.

At the beginning the most important part was to understand flip-
ping contractions. For later applications the key class turned out to be
extremal contractions of 3-folds f : X → Y whose fiber dimension is ≤ 1.
If X has terminal singularities and C ⊂ X is a fiber, its neighborhood
(formal or analytic) is called an extremal curve neighborhood.

Mori’s greatest technical achievement was the development of a
method to understand extremal curve neighborhoods. The full method—
which should give a complete classification of extremal curve
neighborhoods—was never written down; it exists only in his head and
in thousands of pages of hand-written notes. The classification is ex-
ceedingly lengthy and it is not clear that every detail of it is needed
in applications. Thus the published parts of the method give partial
results, stopping when enough knowledge is assembled for the question
at hand. This project, started in 1980, is still unfinished.

The paper [7] is preliminary; it gives a classification of terminal
3-fold singularities. The first, and most important, application of the
method is the proof of the existence of 3-fold flips given in [10], com-
pleting the minimal model program in dimension 3.

Later uses of the method include the classification of 3-dimensional,
irreducible, flipping curve neighborhoods [15, 20] and a (hopefully soon
to be complete) classification of divisorial contractions with 1-dimensional
fibers and Q-conic bundles [22, 23, 24, 25].

§ Rationally connected varieties

Rational curves are the simplest among algebraic curves and rational
surfaces form the simplest class among algebraic surfaces. Max Noether
knew that rational 3-folds are too special and for over a century there was
no agreement, nor even a sensible candidate, for what should constitute
the correct class of “simplest varieties.”

In characteristic 0, the definition of this class, called rationally con-
nected varieties, was given in [14], together with numerous characteriza-
tions and good properties. Roughly speaking, a variety X is rationally
connected if it has as many rational curves as rational varieties have, but
we do not assume anything about the existence of rational surfaces onX.
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Other papers of the same series [12, 13, 19] prove that smooth (and cer-
tain singular) Fano varieties are rationally connected. As a byproduct,
they establish boundedness theorems for Fano varieties.

Since then the study of rationally connected varieties became a sig-
nificant subfield of birational geometry. Most geometric questions have
been solved in characteristic 0 but there are many open problems con-
cerning the arithmetic of rationally connected varieties.

§ Miscellanea

The study of Fano 3-folds is intimately connected with the study of
their hyperplane sections, which are K3 surfaces. Understanding curves
on K3 surfaces turned out to be useful in proving the unirationality of
the moduli of curves of genus 11 and in understanding space curves [5, 6].

One of the problems of dealing with minimal models is that many of
the invariants that are positive integers for smooth varieties end up being
positive rational numbers. In applications it is important to know that
these are bounded away from 0 or, more generally, that they satisfy the
descending chain condition. By now many existence results are known
but [18] remains almost the only known effective estimate in this area.

The paper [16] shows that the geometric quotient of an algebraic
space by a groupoid with finite stabilizer is again an algebraic space.
This finished a problem that has been investigated since the sixties.

§ Books and surveys

For many of the younger generation, their introduction to Mori’s
works came through his books [11, 17] or his survey paper [8]. These
still are the best introductions to higher dimensional birational geometry.
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