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Abstract: Applying a decision theoretic approach to multiple comparisons
very similar to that described by Lehmann [Ann. Math. Statist. 21 (1950) 1–
26; Ann. Math. Statist. 28 (1975a) 1–25; Ann. Math. Statist. 28 (1975b) 547–
572], we introduce a loss function based on the concept of the false discovery
rate (FDR). We derive a Bayes rule for this loss function and show that it is
very closely related to a Bayesian version of the original multiple comparisons
procedure proposed by Benjamini and Hochberg [J. Roy. Statist. Soc. Ser.
B 57 (1995) 289–300] to control the sampling theory FDR. We provide the
results of a Monte Carlo simulation that illustrates the very similar sampling
behavior of our Bayes rule and Benjamini and Hochberg’s procedure when
applied to making all pair-wise comparisons in a one-way fixed effects analysis
of variance setup with 10 and with 20 means.
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1. Introduction

A previous paper by the authors [8] considered the application of Bayesian decision
theory to the multiple comparisons problem for random effects designs, following
the earlier work of Shaffer [10], Duncan [3], and Waller and Duncan [12]. In our
paper, we demonstrated that the Bayes rule for a per-comparison “0-1” loss function
controls a random effects version of the false discovery rate (FDR), thus supporting
and extending Shaffer’s [10] results.

A recent paper by Sarkar and Zhou [9] adopts a random effects setup very similar
to that of our earlier paper. Rather than considering Bayes rules, they introduce
a procedure that controls the random effects FDR discussed by us while maximiz-
ing the random effects per-comparison power rate that we had considered. This
approach produces substantial power gains over other procedures (including ours),
but it “declares even small differences significant when τ [the between-groups stan-
dard deviation] is large, thereby achieving [even] greater power than the unadjusted
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(per-comparison) procedure for large values of τ” (Sarkar & Zhou [9], p. 692). We
view this as a weakness, rather than a strength, of their method, as it seems to
ignore the basic principle behind multiple comparisons procedures, namely that
making multiple inferences calls for increased conservatism relative to making a
single inference.

The present study considers a more general setting for making multiple compar-
isons and introduces a new loss function that is more directly tied to the FDR. We
derive a Bayes rule for this loss function and show that it is very closely related
to a Bayesian version of the original multiple comparisons procedure proposed by
Benjamini and Hochberg [1] to control the sampling theory FDR. We provide the
results of a Monte Carlo simulation that illustrates the very similar sampling be-
havior of our Bayes rule and Benjamini and Hochberg’s procedure when applied
to testing all pairwise comparisons for a one-way fixed effects analysis of variance
setup with 10 and with 20 means.

2. Setup

We start with a general likelihood p(y|θ), prior p(θ), and resulting posterior p(θ|y).
Let ψ = f(θ) be a vector of m “contrasts” among the elements of θ. Suppose our
goal is to identify the sign of each of the elements of ψ, given y. In the language of
decision theory, for each ψi, i = 1, . . . , m, we will take action ai, with ai = +1 used
to indicate that we declare ψi to be positive, ai = −1 indicating that we declare ψi

to be negative, and ai = 0 used to indicate that we are unable to determine sign of
ψi. Although directly inspired by Williams, Jones and Tukey [13], and Jones and
Tukey [4], this approach to (multiple) hypothesis testing has its origins in the much
earlier work of Lehmann [5–7].

To continue, we introduce two component loss functions: L1(ψi, ai) = 1 if the
signs of ψi and ai disagree, and L1 = 0 otherwise (used to count the number of
incorrect sign declarations); L2(ψi, ai) = 1 if ai = 0, and L2 = 0 otherwise (used
to count the signs not declared). These actions and losses are very similar to those
given by Lehmann ([7], p. 549). They differ from conventional treatments of hy-
pothesis testing in the sense that they focus on identifying the sign of each contrast
and do not formally consider the possibility that the value of the contrast could
be (exactly) 0. The reasonableness of this approach, compared with conventional
point hypothesis testing is emphasized by Jones and Tukey [4], among others.

We now propose a loss function that combines L1 and L2 as follows:

(1) LDFDR (ψ,a) =
∑m

i=1 L1(ψi, ai)
max{1, m −

∑m
i=1 L2(ψi, ai)} +

(α

2

) ∑m
i=1 L2(ψi, ai)

m
,

for a fixed choice of 0 < α < 1 (such as α = 0.05). Here, DFDR (in notation
introduced by Shaffer [11]) stands for Directional False Discovery Rate. The first
term in equation (1) is the sample value of the DFDR for a given ψ and a vector
of actions a, namely the number of incorrect sign declarations, divided by the total
number of signs declared (or divided by 1 if no signs are declared by a).

The second term in equation (1) is α/2 times the sample proportion of signs
not declared. This term may be interpreted as a sample per-comparison Type II
error rate, weighted by a relative importance factor of α/2. Using a per-comparison
formulation, as well as assigning this loss component a small weight, serves to
emphasize that failure to declare a sign is considered to be much less serious than
declaring that sign incorrectly. This emphasis is in keeping with the concern about
controlling Type I errors (at the expense of making Type II errors) in traditional
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treatments of the multiple comparisons problem. The Bayes decision rule for the
complete loss function in equation (1) minimizes its posterior expected value, in this
sense balancing the two types of losses against each other, with the major focus
being on reducing the DFDR.

3. Bayes Decision Rule

To identify the actions that minimize the posterior expected value of the loss func-
tion given in equation (1), we begin by introducing some notation.

If Pr(ψi > 0|y) > 0.5, define a∗
i = +1 and pi = Pr(ψi < 0|y); if Pr(ψi > 0|y) ≤

0.5, define a∗
i = −1 and pi = Pr(ψi > 0|y). Note that a∗

i and pi are related by the
following result: Eθ|y[L1(ψi, a

∗
i )|y] = pi. Now order the pi so that p(1) ≤ · · · ≤ p(m).

Define a(k) for k = 1, . . . , m as a
(k)
(i) = a∗

(i), for i = 1, . . . , k, and a
(k)
(i) = 0, for i =

k + 1, . . . , m. For k = 0, take a
(0)
(i) = 0, for i = 1, . . . , m.

The posterior expected loss for a(k) is given by

(2) Eθ|y
[
LDFDR

(
ψ,a(k)

)
|y

]
=

∑k
i=1 p(i)

max {1, k} +
(α

2

) (
1 − k

m

)
.

Clearly, a(k) minimizes the posterior expected loss among all action vectors a that
declare exactly k signs. Let kDFDR be the value of k for which the posterior expected
loss given in equation (2) is minimized. (The value of kDFDR in a given setting would
normally be determined by an exhaustive search over all values of k = 0, . . . , m.)
The Bayes decision rule for this problem is given by δDFDR(y) = a(kDF DR), and
the corresponding Bayes risk is

(3)
r (δDFDR) = Eθ,y [LDFDR (ψ, δDFDR (y))]

= Ey

[ ∑kDF DR

i=1 p(i)

max {1, kDFDR} +
(

α

2

)(
1 − kDFDR

m

)]
.

The latter expectation in equation (3) is taken with respect to the predictive dis-
tribution of y, and it should be noted that the p(i) and, consequently, kDFDR all
depend on y.

Since Eθ|y[LDFDR(ψ,a(0))|y] = α/2 for all y, it follows that r(δDFDR) ≤ α/2.
Consequently,

(4) Eθ,y

[ ∑m
i=1 L1(ψi, δDFDR,i(y))

max{1, m −
∑m

i=1 L2(ψi, δDFDR,i(y))}

]
≤ α

2
.

Equation (4) says that a Bayesian version of the DFDR is bounded by α/2 when the
Bayes rule δDFDR is used. It may be worth observing that these results apply to a
very general class of multiple comparison problems. Essentially the only restriction
is that the set of contrasts be finite. Indeed, these do not even have to be contrasts in
the usual sense of that term. They could also, for example, be a set of independent
parameters that formed a family of interest.

4. A Bayesian Version of Benjamini & Hochberg’s Procedure

Next, we consider the multiple comparisons procedure proposed by Benjamini and
Hochberg [1] and modified for directional testing by Williams, Jones and Tukey
[13].
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However, we will translate the procedure into our Bayesian framework. Define
kDB & H to be the largest value of k = 1, . . . , m, such that

p(k) ≤
(

α

2

)(
k

m

)
,

with kDB & H = 0 if no such value of k exists. Define δDB & H(y) = a(kDB & H).
If kDB & H = 0, then the posterior expected loss for a(kDB & H) is equal to α/2.

If kDB & H > 0, the posterior expected loss for a(kDB & H) is given by equation (2)
as

(5) Eθ|y
[
LDFDR

(
ψ,a(kDB & H)

)
|y

]
=

∑kDB & H

i=1 p(i)

kDB & H
+

(α

2

) (
1 − kDB & H

m

)
.

From the definition of kDB & H , it follows that

(6) p(i) ≤
(α

2

) (
kDB & H

m

)
for i = 1, . . . , kDB & H .

Consequently, applying inequality (6) to equation (5), it follows that

Eθ|y
[
LDFDR

(
ψ,a(kDB & H)

)
|y

]
≤

(α

2

)(
kDB & H

m

)
+

(α

2

) (
1 − kDB & H

m

)
=

α

2
.

Since this inequality holds for all y, it implies that r(δDB & H) ≤ α/2, and so, just
as with δDFDR,

(7) Eθ,y

[ ∑m
i=1 L1(ψi, δDB & H,i(y))

max{1, m −
∑m

i=1 L2(ψi, δDB & H,i(y))}

]
≤ α

2
.

Equation 7 says that δDB & H also controls our Bayesian DFDR.
This seems like an appropriate place to note that what has just been estab-

lished (namely the fact that δDB & H controls the DFDR for an arbitrary set of
contrasts) is a Bayesian, rather than a sampling theory result. Indeed, Benjamini
and Hochberg’s [1] sampling theory procedure has only been shown to control the
sampling theory FDR in special circumstances, such as the case of independent
tests. In particular, it has not been shown to provide sampling theory control of the
FDR when making all pairwise comparisons among a set of means in a one-way,
fixed effects analysis of variance setup.

Since δDFDR is a Bayes decision rule, it must be the case that r(δDFDR) ≤
r(δDB & H). Moreover, it is also possible to show that kDFDR ≥ kDB & H for all
y. To see this, suppose the contrary: kDB & H = kDFDR + d with d > 0. By the
definition of kDFDR, we must have

∑kDF DR

i=1 p(i)

max{1, kDFDR} +
(α

2

) (
1 − kDFDR

m

)
<

∑kDB & H

i=1 p(i)

kDB & H
+

(α

2

) (
1 − kDB & H

m

)

or
∑kDF DR

i=1 p(i)

max{1, kDFDR} +
(α

2

) (
1 − kDFDR

m

)
<

∑kDF DR

i=1 p(i) +
∑kDF DR+d

i=kDF DR+1 p(i)

kDFDR + d

+
(α

2

) (
1 − kDFDR + d

m

)
.(8)
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Note that a strict inequality has been used here, implying that, in case of ties,
kDFDR would be chosen to be the largest value of k that minimizes the posterior
expected loss. To continue, using the definition of kDB & H ,

(9)
kDF DR+d∑

i=kDF DR+1

p(i) ≤ d
(α

2

) (
kDFDR + d

m

)
.

Combining inequalities (8) and (9) gives

∑kDF DR

i=1 p(i)

max {1, kDFDR} +
(α

2

) (
1 − kDFDR

m

)
<

∑kDF DR

i=1 p(i)

kDFDR + d

+
(α

2

) (
d

m

)
+

(α

2

)(
1 − kDFDR + d

m

)

or

(10)
∑kDF DR

i=1 p(i)

max {1, kDFDR} <

∑kDF DR

i=1 p(i)

kDFDR + d
.

If kDFDR > 0, inequality (10) implies that d = 0, contrary to our initial assumption.
If kDFDR = 0, both sides of inequality (10) would be 0, contradicting the strict
inequality. Thus, we have demonstrated that kDFDR ≥ kDB & H for all y. In other
words, the Bayes rule δDFDR will always declare at least as many signs as δDB & H .

5. Simulation Results

It is important to recall that the procedure actually proposed by Benjamini and
Hochberg [1] uses sampling theory p-values (one-tailed values in Williams, Jones
and Tukey’s [13] version), rather than posterior tail probabilities and controls the
sampling theory version of the FDR (or DFDR in Willams et al.’s version). Now
consider a standard multiple comparisons problem: the one-way, fixed effects analy-
sis of variance setup, with the ψi chosen to be all pair-wise differences among the
group means. In this case, the relevant sampling theory and Bayesian (based on
a vague prior for all parameters) p-values are identical tail probabilities from the
appropriate Student’s t-distribution (see, for instance, Box & Tiao, [2], p. 140).

Tables 1 and 2 give the results of sampling theory simulations (based on 25,000
replications for each condition) of one-way, fixed effects ANOVA setups, considering
all pair-wise differences for 10 evenly spaced means, and for 25 evenly spaced means.
In these simulations, the within-group variance was set at 3.0 with n = 3 sample

Table 1

Sampling theory DFDR for all pair-wise comparisons made using our Bayes rule and
Benjamini & Hochberg’s procedure

τ : Spread
of Means

10 Means 25 Means

δDFDR δDB & H δDFDR δDB & H

0.00+ 0.0204 0.0171 0.0206 0.0176
0.721 0.0062 0.0044 0.0067 0.0046
3.606 0.0005 0.0005 0.0013 0.0012
5.408 0.0001 0.0001 0.0006 0.0006
7.211 0.0000 0.0000 0.0003 0.0003

14.422 0.0000 0.0000 0.0000 0.0000
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Table 2

Sampling theory average power for all pair-wise comparisons made using our Bayes rule and
Benjamini & Hochberg’s procedure

τ : Spread
of Means

10 Means 25 Means

δDFDR δDB & H δDFDR δDB & H

0.00+ 0.002 0.002 0.001 0.000
0.721 0.022 0.016 0.012 0.007
3.606 0.634 0.621 0.604 0.594
5.408 0.783 0.778 0.741 0.737
7.211 0.860 0.857 0.813 0.811

14.422 0.984 0.984 0.924 0.924
Note: 25,000 replications for each condition, n = 3 observations per group, within degrees of
freedom ν = 20 for 10 means and ν = 50 for 25 means, within variance σ2 = 3.0, α/2 = 0.025.

observations per group (so the sampling variances of the sample means are all equal
to 1.0 and the within-group degrees of freedom equals 20 in the first case and 50 in
the second case). In addition, we chose α = 0.05, with the intention of controlling
the sampling theory DFDR at α/2 = 0.025, although we emphasize again that
there is no theory to support that control for pair-wise comparisons.

The DFDR values in Table 1 are sampling theory averages of the sample DFDR
used as the first term of our loss function for the two rules with two numbers of
means, and a range of spacings among the means. To make the results comparable
across the two setups, we used the population standard deviation (denoted here by
τ) to index the spread of the means. The average power values in Table 2 are sam-
pling theory averages of the sample per-comparison correct sign declaration rate.
All four quantities for a given number of means are computed from the same 25,000
replications at each spread of the means. Note that the spread is effectively given
in units equal to the standard errors of the sample means. For the spread labeled
“0.00+” all population mean values were set equal, and an arbitrary ordering was
chosen to evaluate the “wrong sign” errors. Both procedures conservatively control
the DFDR for all conditions considered. The Bayes rule procedure provides slightly
greater per-comparison power than that of Benjamini and Hochberg in these con-
ditions, but the actual differences are trivial.

6. Conclusions

The decision rule δDFDR has been shown to be optimal (from a Bayesian perspec-
tive) relative to the loss function LDFDR for a wide class of multiple comparison
problems involving sign declarations. It has also been shown to control a Bayesian
version of the directional false discovery rate (DFDR), as has a Bayesian version of
the procedure proposed by Benjamini and Hochberg (δDB & H). There is no guar-
antee that δDFDR or δDB & H will control a sampling theory DFDR for the case
of pair-wise comparisons, although that appears to occur in the ANOVA examples
given, where the two rules behave very similarly.
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