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Abstract. The study of the generalization of the Bernstein and Bernstein–
Durrmeyer polynomials attached to a continuous function f : [0, 1] → R and
based on the Polya distribution were considered in some recent publications.
The aim of the present note is to study the approximation properties of the
complex version of these Durrmeyer-type operators, attached to analytic func-
tions in a disk DR = {z ∈ C; |z| < R} with R > 1.

1. Introduction

Stancu in [14] introduced a sequence of positive linear operators P
(α)
n : C[0, 1] →

C[0, 1], depending on a nonnegative parameter α given by

P (α)
n (f, x) =

n∑
k=0

f
(k
n

)
p
(α)
n,k(x)

(1.1)

=
n∑

i=0

(
n

i

)
z(z + α)× · · · × (z + (i− 1)α)

(1 + α)× · · · × (1 + (i− 1)α)
∆i

1/nf(0),
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where ∆i
(1/n)f(0) is the finite difference of order i, with the step 1/n,

∆i
(1/n)f(0) =

i∑
ν=0

(−1)ν
(
i

ν

)
f
(i− ν

n

)
,

and where p
(α)
n,k(x) is the Polya distribution with density function given by

p
(α)
n,k(x) =

(
n

k

)∏k−1
ν=0(x+ να)

∏n−k−1
µ=0 (1− x+ µα)∏n−1

λ=0(1 + λα)
, x ∈ [0, 1],

and where the fraction in the last sum in (1.1) is by convention equal to 1 for
i = 0.

In the case where α = 0, these operators reduce to the classical Bernstein
polynomials. For α = 1/n, a special case of the operators (1.1) was considered by
Lupaş and Lupaş in [6], which can be represented in an alternate form as

P (1/n)
n (f, x) =

2(n!)

(2n)!

n∑
k=0

(
n

k

)
f
(k
n

)
(nx)k(n− nx)n−k, (1.2)

where the rising factorial is given as (x)n = x(x + 1)(x + 2) · · · (x + n − 1) and
(x)0 = 1. Recently, Gupta and Rassias in [5] proposed the Durrmeyer-type inte-
gral modification of the operators (1.2), which in the complex domain is defined
as

D(1/n)
n (f, z) = (n+ 1)

n∑
k=0

p
(1/n)
n,k (z)

∫ 1

0

pn,k(t)f(t) dt, (1.3)

where

p
(1/n)
n,k (z) =

2(n!)

(2n)!

(
n

k

)
(nz)k(n− nz)n−k

and

pn,k(t) =

(
n

k

)
tk(1− t)n−k.

Recent quantitative estimates for the usual Durrmeyer-type operators and their
variants in complex domain have been discussed in, for example, [8], [12], [3,
Chapter 1], and [4, Chapter 6]. For detailed studies on other operators, we mention
the papers [1], [7], [9]–[16] and the recent books [2], [3], and [4].

Here, we study the complex Lupaş–Durrmeyer polynomials, which are based on
Polya distribution. Upper-estimate, Voronovskaja-type asymptotic formula and
exact order are obtained for the approximation of analytic functions in a disk
DR = {z ∈ C; |z| < R} with R > 1.

2. Auxiliary results

We start this section with the following useful lemmas, which will be used later
in the paper.
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Lemma 2.1. If we denote the mth-order moment as

Tn,m(z) = (n+ 1)
n∑

k=0

p
(1/n)
n,k (z)

∫ 1

0

pn,k(t)t
m dt,

then we have

Tn,m+1(z) =
[n(n−m)z + (n+m)(2m+ 1) + nm]

(m+ n)(m+ n+ 2)
Tn,m(z)

− m2(m+ 2n− nz)

(n+m)(n+m+ 1)(m+ n+ 2)
Tn,m−1(z).

Remark 2.2. By simple computation, we have∫ 1

0

pn,k(t)t
r dt =

(
n

k

)∫ 1

0

tk+r(1− t)n−k dt

=

(
n

k

)
B(k + r + 1, n− k + 1)

=
n!(k + r)!

k!(n+ r + 1)!
.

Hence with ek(z) = zk, k = 0, 1, 2, . . . , we have

D(1/n)
n (e0, z) = 1, D(1/n)

n (e1, z) =
nz + 1

n+ 2

and

D(1/n)
n (e2, z) =

n3z2 + 5n2z − n2z2 + 3nz + 2n+ 2

(n+ 1)(n+ 2)(n+ 3)
.

Remark 2.3. By simple applications of Lemma 2.1, we have

D(1/n)
n (t− z, z) =

nz + 1

n+ 2
− z =

1− 2z

n+ 2

and

D(1/n)
n

(
(t− z)2, z

)
=

(z − z2)(3n2 − 5n− 6) + 2(n+ 1)

(n+ 1)(n+ 2)(n+ 3)
.

Throughout the present article, we denote Fm(u) =
∏m

j=1(u + j), m ∈ N and

F0(u) = 1.

Lemma 2.4.

(i) For all n ∈ N and m ∈ N ∪ {0}, we have D
(1/n)
n (em, 1) ≤ 1.

(ii) For all n ∈ N, m ∈ N ∪ {0} and z ∈ C, we have

D(1/n)
n (em, z) =

(n+ 1)!

(n+m+ 1)!

n∑
k=0

p
(1/n)
n,k (z)Fm(k).
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Proof. (i) For m = 0, we have D
(1/n)
n (e0, 1) = 1. Let m ≥ 1. By definition, we

have

D(1/n)
n (em, z) = (n+ 1)

n∑
k=0

p
(1/n)
n,k (z)

∫ 1

0

pn,k(t)t
m dt

=
n∑

k=0

p
(1/n)
n,k (z)

(n+ 1)!(k +m)!

k!(n+m+ 1)!

=
n∑

k=0

(
n

k

)∏k−1
ν=0(z + ν/n)

∏n−k−1
µ=0 (1− z + µ/n)∏n−1

λ=0(1 + λ/n)

(n+ 1)!(k +m)!

n!(n+m+ 1)!
.

Thus, when denoting Fn,k(z) =
∏n−k−1

µ=0 (1 − z + µ/n), we have Fn,k(1) = 0 for

1 ≤ k ≤ n− 1 and Fn,n(1) = 1; it follows that the above sum reduces to the term

for k = n, which immediately implies that D
(1/n)
n (em, 1) =

n+1
n+m+1

≤ 1.
(ii) By using Remark 2.2, we get∫ 1

0

pn,k(t)t
m dt =

n!(k +m)!

k!(n+m+ 1)!
=

n!

(n+m+ 1)!
Fm(k),

where Fm(u) = (u+ 1)m. Therefore,

D(1/n)
n (em, z) =

(n+ 1)!

(n+m+ 1)!

n∑
k=0

p
(1/n)
n,k (z)Fm(k).

Note that obviously ∆k
1Fm(0) ≥ 0 for all k and m. �

3. Main results

The first main result refers to upper estimates.

Theorem 3.1. Let r ≥ 1.

(i) For all m ∈ N ∪ {0} and |z| ≤ r, we have |D(1/n)
n (em, z)| ≤ rm.

(ii) Let f(z) =
∑∞

k=0 ckz
k for all |z| < R and take 1 ≤ r < R. For all |z| ≤ r

and n ∈ N, we have∣∣D(1/n)
n (f, z)− f(z)

∣∣ ≤ Cr(f)

n
,

where Cr(f) = 4
∑∞

p=1 |cp|p2rp < ∞.

Proof. (i) By using the second equality in (1.1) and Lemma 2.4, it follows that

D(1/n)
n (em, z) =

(n+ 1)!

(n+m+ 1)!
(3.1)

×
min{n,m}∑

k=0

(
n

k

)
z(z + 1/n)× · · · × (z + (k − 1)/n)

(1 + 1/n)× · · · × (1 + (k − 1)/n)
∆k

1Fm(0)
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and

D(1/n)
n (em, 1) =

(n+ 1)!

(n+m+ 1)!

n∑
k=0

(
n

k

)
∆k

1Fm(0) ≤ 1.

By taking into account that for |z| ≤ r we evidently have∣∣∣z(z + 1/n)× · · · × (z + (k − 1)/n)

(1 + 1/n)× · · · × (1 + (k − 1)/n)

∣∣∣ ≤ r(r + 1/n)× · · · × (r + (k − 1)/n)

(1 + 1/n)× · · · × (1 + (k − 1)/n)
≤ rk,

we immediately get∣∣D(1/n)
n (em, z)

∣∣ ≤ (n+ 1)!

(n+m+ 1)!

n∑
k=0

(
n

k

)
∆k

1Fm(0)r
k ≤ rm.

(ii) First we prove that D
(1/n)
n (f, z) =

∑∞
k=0 ckD

(1/n)
n (ek, z). Indeed, denoting

fm(z) =
∑m

j=0 cjz
j, |z| ≤ r with m ∈ N, by the linearity of D

(1/n)
n we have

D(1/n)
n (fm, z) =

m∑
k=0

ckD
(1/n)
n (ek, z),

and it is sufficient to show that, for any fixed n ∈ N and |z| ≤ r with r ≥ 1, we have

limm→∞ D
(1/n)
n (fm, z) = D

(1/n)
n (f, z). But this is immediate from limm→∞ ‖fm −

f‖r = 0, the norm being defined as ‖f‖r = max{|f(z)| : |z| ≤ r}, and from the
inequality∣∣D(1/n)

n (fm, z)−D(1/n)
n (f, z)

∣∣ ≤ (n+ 1)
n∑

k=0

∣∣p(1/n)n,k (z)
∣∣ ∫ 1

0

pn,k(t)
∣∣fm(t)− f(t)

∣∣ dt
≤ Cr,n‖fm − f‖r,

valid for all |z| ≤ r. Therefore, we get

∣∣D(1/n)
n (f, z)− f(z)

∣∣ ≤ ∞∑
m=1

|cm| ×
∣∣D(1/n)

n (em, z)− em(z)
∣∣,

as D
(1/n)
n (e0, z) = e0(z) = 1.

We have these two cases: (a) 1 ≤ m ≤ n, and (b) m > n.

Case (a): Let us denote En,m(z) =
z(z+1/n)×···×(z+(m−1)/n)
(1+1/n)×···×(1+(m−1)/n)

and

Gn,m(z) =
(n+ 1)!

(n+m+ 1)!

(
n

m

)
∆m

1 Fm(0).

By the formula (3.1) in the proof of Theorem 3.1(i), we have

D(1/n)
n (em, z)− em(z) = En,m(z)×

[
Gn,m(z)− 1

]
+
[
En,m(z)− zm

]
+

(n+ 1)!

(n+m+ 1)!

m−1∑
k=0

(
n

k

)
∆k

1Fm(0)z
k,
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and therefore we get∣∣D(1/n)
n (em, z)− em(z)

∣∣
≤ rm

∣∣1−Gn,m(z)
∣∣+ rm

∣∣1−Gn,m(z)
∣∣+ ∣∣En,m(z)− zm

∣∣
= 2rm

[
1−Gn,m(z)

]
+
∣∣En,m(z)− zm

∣∣.
But by mathematical induction after m ∈ N, we get∣∣En,m(z)− zm

∣∣ ≤ 2(m− 1)2rm

n
.

Now, by the obvious formula

En,m+1(z)− zm+1 =
z +m/n

1 +m/n
·
[
En,m(z)− zm

]
+ zm

[z +m/n

1 +m/n
− z

]
,

for all |z| ≤ r it follows that∣∣En,m+1(z)− zm+1
∣∣ ≤ r +m/n

1 +m/n

∣∣En,m(z)− zm
∣∣+ 2rm+1m

n+m

≤ r ·
∣∣En,m(z)− zm

∣∣+ 2rm+1m

n+m
.

Since En,1(z) − z = 0 for all z and n, taking in the above recurrence inequality
step by step m = 1, 2, . . . , we easily arrive at

∣∣En,m(z)− zm
∣∣ ≤ 2rm ·

m−1∑
j=1

j

n+ j
≤ 2(m− 1)2rm

n
.

Also, we can write

(n+ 1)!

(n+m+ 1)!

(
n

m

)
∆m

1 Fm(0) =
(n+ 1)!

(n+m+ 1)!

(
n

m

)
m! =

m∏
j=1

n+ j −m

n+ j + 1
.

By using the formula

1−
k∏

j=1

xj ≤
k∑

j=1

(1− xj), 0 ≤ xj ≤ 1, j = 1, 2, . . . , k,

with xj =
n+j−m
n+j+1

and k = m, we obtain

1−
m∏
j=1

n+ j −m

n+ j + 1
≤

m∑
j=1

(
1− n+ j −m

n+ j + 1

)
= (m+ 1)

m∑
j=1

1

n+ j + 1

≤ m(m+ 1)

n
.

Therefore it follows that∣∣D(1/n)
n (em, z)− em(z)

∣∣ ≤ 2m(m+ 1)rm

n
+

2(m− 1)2rm

n
≤ 4m2rm

n
.
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Case (b): By (i) and for m > n ≥ 1, we obtain∣∣D(1/n)
n (em, z)− em(z)

∣∣ ≤ ∣∣D(1/n)
n (em, z)

∣∣+ ∣∣em(z)∣∣ ≤ 2rm < 2
mrm

n
≤ 2m2rm

n
.

By the cases (a) and (b), we conclude that, for all m,n ∈ N, one has∣∣D(1/n)
n (em, z)− em(z)

∣∣ ≤ 4m2rm

n
.

Hence, we get ∣∣D(1/n)
n (f, z)− f(z)

∣∣ ≤ 4

n

∞∑
m=1

|cm|m2rm,

which proves the theorem. �

The following Voronovskaja-type result with a quantitative estimate holds.

Theorem 3.2. Let ρ0 = 1+
√
5

2
be the golden ratio, ρ > 5 and R > (ρ + 1)ρ0.

Suppose that f : DR → C is analytic in DR = {z ∈ C : |z| < R}; that is, we can
write f(z) =

∑∞
k=0 ckz

k for all z ∈ DR. For any fixed r ∈ [1,min{ρ−2
3
, R
ρ0

− ρ})
and for all n ∈ N, |z| ≤ r, we have∣∣∣D(1/n)

n (f, z)− f(z)− 1.5z(1− z)f ′′(z) + (1− 2z)f ′(z)

n

∣∣∣ ≤ Mr(f)

n2
,

where Mr(f) =
2√
5
·
∑∞

k=1 |ck| · [1 + kAk,r] · [(r + ρ)ρ0]
k and where

Ak,r = r3(3k4 + 10k3 + 8k2 + k + 2) + r2(8k3 + 7k2 + 10k + 8)

+ r(3k4 + 4k3 + 10k2 + 19k + 4) + (6k4 + 38k3 + 86k2 + 82k + 28).

Proof. We denote πk,n(z) = D
(1/n)
n (ek, z). By the proof of Theorem 3.1(ii), we can

write D
(1/n)
n (f, z) =

∑∞
k=0 ckπk,n(z). Also since

3z(1− z)f ′′(z) + (2− 4z)f ′(z)

2n

=
3z(1− z)

2n

∞∑
k=2

ckk(k − 1)zk−2 +
2− 4z

2n

∞∑
k=1

ckkz
k−1

=
1

2n

∞∑
k=1

ckk
[
(3k − 1)− (3k + 1)z

]
zk−1.

Thus ∣∣∣D(1/n)
n (f, z)− f(z)− 1.5z(1− z)f ′′(z) + (1− 2z)f ′(z)

n

∣∣∣
≤

∞∑
k=1

|ck|
∣∣∣πk,n(z)− ek(z)−

k[(3k − 1)− (3k + 1)z]zk−1

2n

∣∣∣,
for all z ∈ DR, n ∈ N.



216 S. G. GAL and V. GUPTA

By Lemma 2.1, for all n ∈ N, z ∈ C, and k = 0, 1, 2, . . . , we have

πn,k+1(z) =
[n(n− k)z + (n+ k)(2k + 1) + nk]

(k + n)(k + n+ 2)
πn,k(z)

+
k2(nz − k − 2n)

(n+ k)(n+ k + 1)(k + n+ 2)
πn,k−1(z).

If we denote

Hk,n(z) = πk,n(z)− ek(z)−
k[(3k − 1)− (3k + 1)z]zk−1

2n
,

then it is obvious that Hk,n(z) is a polynomial of degree less than or equal to k
and by simple computation and the use of the above recurrence relation, we are
led to

Hk,n(z) =
n(n− k + 1)z + (n+ k − 1)(2k − 1) + n(k − 1)

(n+ k − 1)(n+ k + 1)
Hk−1,n(z)

+
(k − 1)2(nz − k + 1− 2n)

(n+ k − 1)(n+ k)(n+ k + 1)
Hk−2,n(z) +Xk,n(z),

where after simple computation, we have

Xk,n(z) = zk
[ 9k3 − 5k2 + 2k + 2

2(n+ k − 1)(n+ k + 1)
+

3k4 + k3 − 3k2 − k

2n(n+ k − 1)(n+ k + 1)

]
+ zk−1

[
−k(k + 1)(3k − 1)

2n(n+ k + 1)
− 3k(k − 1)

2(n+ k + 1)(n+ k − 1)

− (2k − 1)(3k − 2)

2n(n+ k + 1)
+

(k − 1)2

(n+ k)(n+ k + 1)

− (k − 1)2(5k − 7)

2(n+ k)(n+ k − 1)(n+ k + 1)

]
+ zk−2

[(2k − 1)(k − 1)(3k − 4)

2(n+ k + 1)n
+

(k − 1)2(3k − 4)

2(n+ k − 1)(n+ k + 1)

− 4(k − 1)

(n+ k)(n+ k + 1)
+

k(k − 1)2(3k − 7)

(n+ k − 1)(n+ k)(n+ k + 1)

+
(k − 1)2(k − 2)(3k − 5)

2n(n+ k)(n+ k + 1)

]
+ zk−3

[(k − 1)2(k − 2)(3k − 7)

2(n+ k)(n+ k + 1)n
+

(k − 1)2(k − 2)(3k − 7)

2(n+ k − 1)(n+ k)(n+ k + 1)

]
for all k ≥ 1, n ∈ N, and |z| ≥ r.

Using the estimate in the proof of Theorem 3.1(ii), we have∣∣πk,n(z)− ek(z)
∣∣ ≤ 4k2rk

n
,

for all k, n ∈ N, |z| ≤ r, with 1 ≤ r.
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For all k, n ∈ N, k ≥ 1, and |z| ≤ r, it follows that∣∣Hk,n(z)
∣∣ ≤ (r + 3)

∣∣Hk−1,n(z)
∣∣+ (r + 2)

∣∣Hk−2,n(z)
∣∣+ ∣∣Xk,n(z)

∣∣
≤ (r + ρ)

∣∣Hk−1,n(z)
∣∣+ (r + ρ)

∣∣Hk−2,n(z)
∣∣+ ∣∣Xk,n(z)

∣∣,
where∣∣Xk,n(z)

∣∣ ≤ rk−3

n2

[
r3(3k4 + 10k3 + 8k2 + k + 2) + r2(8k3 + 7k2 + 10k + 8)

+ r(3k4 + 4k3 + 10k2 + 19k + 4) + (6k4 + 38k3 + 86k2 + 82k + 28)
]

≤ rk

n2
Ak,r ≤

(r + ρ)k

n2
Ak,r,

for all |z| ≤ r, k ≥ 1, n ∈ N, with

Ak,r = r3(3k4 + 10k3 + 8k2 + k + 2) + r2(8k3 + 7k2 + 10k + 8)

+ r(3k4 + 4k3 + 10k2 + 19k + 4) + (6k4 + 38k3 + 86k2 + 82k + 28).

Thus for all |z| ≤ r, k ≥ 1, n ∈ N, we have∣∣Hk,n(z)
∣∣ ≤ (r + ρ)

∣∣Hk−1,n(z)
∣∣+ (r + ρ)

∣∣Hk−2,n(z)
∣∣+ (r + ρ)k

n2
Ak,r,

where Ak,r is a polynomial of degree 4 in k.
Consider the Fibonacci numbers F0 = F1 = 1, Fn = Fn−1+Fn−2, for all n ∈ N,

n ≥ 2.
We have H0,n(z) = 0, for any z ∈ C, and since 4r + 2 < r + ρ for ρ > 5 and

r < (ρ− 2)/3, it follows that∣∣H1,n(z)
∣∣ = ∣∣∣nz + 1

n+ 2
− z − 1− 2z

n

∣∣∣ = ∣∣∣ 4z − 2

n(n+ 2)

∣∣∣ ≤ 4r + 2

n2
<

r + ρ

n2
.

Now, by writing the last inequality for k = 2, 3, . . . , we easily obtain step by step
the following estimates:

• for k = 2,∣∣H2,n(z)
∣∣ ≤ (r + ρ)2

n2
+

(r + ρ)2

n2
A2,r =

(r + ρ)2

n2
[1 + A2,r];

• for k = 3,∣∣H3,n(z)
∣∣ ≤ (r + ρ)3

n2
[1 + A2,r] +

(r + ρ)2

n2
+

(r + ρ)3

n2
A3,r

≤ (r + ρ)3

n2

[
2 + 1 · (A2,r + A3,r)

]
=

(r + ρ)3

n2

[
F2 + F1(A2,r + A3,r)

]
;

• for k = 4,∣∣H4,n(z)
∣∣ ≤ (r + ρ)4

n2

[
F3 + F2(A2,r + A3,r + A4,n)

]
;
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• for k = 5,∣∣H5,n(z)
∣∣ ≤ (r + ρ)5

n2

[
F4 + F3(A2,r + A3,r + A4,r + A5,r)

]
;

• and in general for k > 5 we obtain∣∣Hk,n(z)
∣∣ ≤ (r + ρ)k

n2

[
Fk−1 + Fk−2(A2,r + A3,r + A4,r + A5,r + · · ·+ Ak,r)

]
,

for all k ∈ N, k ≥ 2.

But from the well-known Binet’s formula for the Fibonacci numbers (see, e.g.,
[17]), we have

Fk =
1√
5

(
ρk0 − (1− ρ0)

k
)
≤ 2√

5
ρk0, k = 1, 2, . . . ,

where ρ0 =
1+

√
5

2
= 1.6180 . . . is the golden ratio.

Therefore, we obtain

∣∣Hk,n(z)
∣∣ ≤ 2√

5
· [(r + ρ)ρ0]

k

n2

[
1 +

k∑
j=2

Aj,r

]
≤ 2√

5
· [(r + ρ)ρ0]

k

n2
[1 + k · Ak,r],

taking into account that Aj,r is evidently strictly increasing with respect to j.
We conclude that∣∣∣D(1/n)

n (f, z)− f(z)− 1.5z(1− z)f ′′(z) + (1− 2z)f ′(z)

n

∣∣∣
≤

∞∑
k=1

|ck| · |Hk,n|

≤ 1

n2
· 2√

5
·

∞∑
k=1

|ck|[1 + kAk,r] ·
[
(r + ρ)ρ0

]k
.

As f (5)(z) =
∑∞

k=5 ckk(k−1)(k−2)(k−3)(k−4)zk−5 and the series is absolutely
convergent in |z| ≤ (r+ρ)ρ0 < R, it easily follows that

∑∞
k=5 |ck|k(k−1)(k−2)(k−

3)(k − 4)[(r + ρ)ρ0]
k−5 < ∞, which implies that

∑∞
k=1 |ck|kAk,r[(r + ρ)ρ0]

k < ∞.
This completes the proof of theorem. �

In the following, we will obtain below the exact order in approximation by this
type of complex operator.

Theorem 3.3. Under the hypothesis in Theorem 3.2, if f is not a constant
function, then for any r ∈ [1,min{ρ−2

3
, R
ρ0

− ρ}), we have

∥∥D(1/n)
n (f, ·)− f

∥∥
r
≥ Cr(f)

n
, n ∈ N,

where Cr(f) depends only on f and r.
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Proof. For all f ∈ Dr and n ∈ N, we have

D(1/n)
n (f, z)− f(z)

=
1

n

[
1.5z(1− z)f ′′(z) + (1− 2z)f ′(z)

+
1

n

{
n2
(
D(1/n)

n (f, z)− f(z)− 1.5z(1− z)f ′′(z) + (1− 2z)f ′(z)

n

)}]
.

Also, we have

‖F +G‖r ≥
∣∣‖F‖r − ‖G‖r

∣∣ ≥ ‖F‖r − ‖G‖r.

It follows that∥∥D(1/n)
n (f, ·)− f

∥∥
r

≥ 1

n

[∥∥1.5e1(1− e1)f
′′ + (1− 2e1)f

′∥∥
r

− 1

n

{
n2
∥∥∥D(1/n)

n (f, ·)− f − 1.5e1(1− e1)f
′′ + (1− 2e1)f

′

n

∥∥∥
r

}]
.

Taking into account that by hypothesis f is not a constant function in DR, we
get ‖3e1(1− e1)f

′′ + (2− 4e1)f
′‖r > 0.

Indeed, supposing the contrary, it follows that 3z(1−z)f ′′(z)+(2−4z)f ′(z) = 0
for all |z| ≤ r. The last equality easily implies that f ′(z) = C · (z(1− z))(−2/3) for
all |z| ≤ r, with C a constant.

But since f is analytic inDr and r ≥ 1, we necessarily have C = 0 (contrariwise,
we would get that f ′(z) is not differentiable at z = 0 and z = 1, which is
impossible because f ′(z) too is analytic on Dr, with r ≥ 1), which implies that
f ′(z) = 0 and f(z) = c for all z ∈ Dr, a contradiction with the hypothesis.

Now by Theorem 3.2, we have

n2
∥∥∥D(1/n)

n (f, z)− f(z)− 1.5z(1− z)f ′′(z) + (1− 2z)f ′(z)

n

∥∥∥
r
≤ Mr(f).

Therefore there exists an index n0 depending only on f and r such that, for all
n ≥ n0, we have∥∥1.5e1(1− e1)f

′′ + (1− 2e1)f
′∥∥

r

− 1

n

{
n2
∥∥∥D(1/n)

n (f, z)− f(z)− 1.5z(1− z)f ′′(z) + (1− 2z)f ′(z)

n

∥∥∥
r

}
≥ 1

2

∥∥1.5e1(1− e1)f
′′ + (1− 2e1)f

′∥∥
r
,

which immediately implies that∥∥D(1/n)
n (f, ·)− f

∥∥
r
≥ 1

2n

∥∥1.5e1(1− e1)f
′′ + (1− 2e1)f

′∥∥
r
, ∀n ≥ n0.

For n ∈ {1, 2, . . . , n0 − 1} we obviously have ‖D(1/n)
n (f, ·) − f‖r ≥ Mr,n(f)

n
with

Mr,n(f) = n‖D(1/n)
n (f, ·) − f‖r > 0. Indeed, if we should have ‖D(1/n)

n (f, ·) −
f‖r = 0, then it would follow that D

(1/n)
n (f, z) = f(z) for all |z| ≤ r, which is
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valid only for f a constant function, contracting the hypothesis on f . Therefore,

finally, we obtain ‖D(1/n)
n (f, ·)− f‖r ≥ Cr(f)

n
for all n, where

Cr(f) = min
{
Mr,1(f),Mr,2(f), . . . ,Mr,n0−1(f),

1

2

∥∥1.5e1(1−e1)f
′′+(1−2e1)f

′∥∥
r

}
,

which completes the proof. �

As a consequence of Theorem 3.1 and Theorem 3.3, we have the following.

Corollary 3.4. Under the hypothesis in Theorem 3.2, if f is not a constant
function, then for any r ∈ [1,min{ρ−2

3
, R
ρ0

− ρ}), we have∥∥D(1/n)
n (f, ·)− f

∥∥
r
∼ 1

n
, n → ∞,

where the constants in the equivalence depend only on f and r.
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