HOMOLOGY THEORIES OF FUNCTORS ${ }^{1}$

BY

L. Demers

Functor here means a functor from the category of pointed functionally Hausdorff Kelley spaces to itself. D. B. Fuks has defined a duality theory on these functors, in order to give a firm foundation to Eckmann-Hilton duality [2], [3]. Here we will develop further aspects of this duality by defining homology and cohomology theories of functors and show that they are dual to each other in the sense that

$$
\tilde{H}_{n}(D F ; \mathbf{A}) \simeq \tilde{H}^{-n}(F ; \mathbf{A})
$$

where \mathbf{A} is a spectrum of coefficients and $D F$ is the dual of F. We will also define a slant and a cup product involving the composition of functors. Naturally, all these notions are nothing but the usual one when we restrict outselves to "spaces", i.e. functors of the form Σ_{x}, where X is a space.

Most of these results come from my doctoral thesis at Cornell University. I wish to thank Professor P. J. Hilton who suggested this problem and whose encouragement helped me to complete this work.

1. Duality of functors

We will deal with functors from the category of pointed functionally Hausdorff Kelley spaces to itself. As these terms require some explanation, we state the following definitions:

Definition 1 [2, p. 8]. A Hausdorff topological space X is called a Kelley space if a subset $Y \subset X$ is closed if and only if its intersection with each compact subset of X is closed.

Definition $2[2$, p. 8$]$. A space X is said to be functionally Hausdorff if for any two distinct points $x, y \in X$, there is a continuous map $f: X \rightarrow I=[0,1]$ such that $f(\mathrm{x})=0$ and $f(y)=1$.

Any Hausdorff space X can be made a Kelley space X^{*} by defining a new topology on it as follows: a closed set of X^{*} is any subset Y of X such that its intersection with each compact subset of X is closed.

For two spaces X and Y, let Y^{X} be the set of continuous maps from X to Y with the compact open topology; if X and Y are Kelley spaces, we define (X, Y) as $\left(Y^{X}\right)^{*}$.

Let us pass now to pointed Kelley spaces. In this category $\mathcal{K},(X, Y)$ will consist only of base point preserving maps. We can then define for each

[^0]space X of \Re, a functor $\Omega_{X}: K \rightarrow \nVdash$ as $\Omega_{X}(Y)=(X, Y)$. Moreover, we have now a smashed product $X \wedge Y=X \times Y / X \vee Y$, which gives us another functor Σ_{X} defined as $\Sigma_{X}(\mathrm{Y})=X \wedge Y$.

The important thing is that in this category Σ_{X} is left adjoint to Ω_{X} for any space X. The same thing is valid for the category \mathfrak{C} of pointed functionally Hausdorff Kelley spaces.

If $F: \mathfrak{C} \rightarrow \mathbb{C}$ is a functor, we define the dual $D F$ of F as follows: $D F(X)=$ set of natural transformations $F \rightarrow \Sigma_{X}$ with the following topology: A subbase for the topology of n.t. (F, Σ_{X}) consists of all inverse images of open sets of ($F Y, X \wedge Y$) under the maps

$$
e_{y}: \text { n.t. }\left(F, \Sigma_{X}\right) \rightarrow(F Y, X \wedge \mathrm{Y})
$$

where Y runs through all the objects of \mathfrak{C} and e_{μ} is the evaluation of a natural transformation at the space Y.

The fact that $D F(X)$ is indeed a set has been proved in [2] and more generally in [6]. In order to show this, a cogenerator is needed in the category, and that is why we take only functionally Hausdorff spaces. The unit interval I is then a cogenerator.

We will write $D F(X)=\left(F, \Sigma_{x}\right)$. The operator D is left adjoint to itself, in the sense that $(F, D G) \simeq(G, D F)$ naturally in F and G (the parentheses denote natural transformations).

A functor $F: \mathfrak{C} \rightarrow \mathfrak{C}$ will be called strong if the obvious map

$$
(X, Y) \rightarrow(F X, F Y)
$$

is continuous. The category of functors from \mathfrak{C} to \mathfrak{C} will be denoted by ($\mathfrak{C}, \mathfrak{C}$) and that of strong functors by $(\mathbb{C}, \mathfrak{C})_{s}$.

It will be noted that $D\left(\Sigma_{X}\right) \simeq \Omega_{X}$, so that we have a full and faithful embedding $X \rightarrow \Sigma_{X}$ of \mathfrak{C} into ($\mathfrak{C}, \mathfrak{C}$) (and even ($\left.\mathfrak{C}, \mathfrak{C}\right)_{s}$ since Σ_{X} is strong).

2. Spectra

Let $\mathbf{A}=\left\{A_{n}, \alpha_{n}: \Sigma A_{n} \rightarrow A_{n+1}\right\}$ be a spectrum. Then given a functor F and a natural transformation $\varphi: \Sigma \circ F \rightarrow F \circ \Sigma$, we can define a spectrum $(F, \varphi)(\mathbf{A})$ as follows: $(F, \varphi)(\mathbf{A})_{n}=F\left(A_{n}\right)$ and the maps

$$
\Sigma \circ F\left(A_{n}\right) \rightarrow F\left(A_{n+1}\right)
$$

are the compositions

$$
\Sigma \circ F\left(A_{n}\right) \xrightarrow{\varphi\left(A_{n}\right)} F\left(\Sigma A_{n}\right) \xrightarrow{F\left(\alpha_{n}\right)} F\left(A_{n+1}\right) .
$$

Two examples will be particularly important.
Example 1. The natural transformation $\varphi: \Sigma \circ D(F) \rightarrow D(F) \circ \Sigma$. For an arbitrary functor F, we define $\varphi_{X}: \Sigma \circ D(F)(X) \rightarrow D(F)(\Sigma X)$ as follows: let $T: F \rightarrow \Sigma_{X}$ be an element of $D F(X)$ and $t \in S^{1}$. Then $\varphi_{X}(t, T): F \rightarrow \Sigma_{\Sigma X}$ is given by the formula

$$
\left(\varphi_{X}(t, T)\right)_{Y}(y)=\left(t, T_{Y}(y)\right) \in \Sigma(X \wedge Y)
$$

where Y is an arbitrary space and y an arbitrary point of $F(Y)$.

Thus for any functor F and spectrum A, there is a well-defined spectrum $(D, \varphi)(\mathbf{A})$ which will be simply denoted by $D F(\mathbf{A})$.

Example 2. The case of reflexive functors. The self adjointness properties of the operator D provides us with a natural transformation $\Phi: F \rightarrow D^{2} F$ of each F. Explicitly this is defined as follows: Let X be a space and $x \in F X$. Then

$$
D^{2} F X=D(D F)(X)=\text { space of natural transformations } D F \rightarrow \Sigma_{X}
$$

Thus $\Phi(x)$ must be such a natural transformation. Given a space Y and an element $T \in D F(Y)$ (i.e. $T: F \rightarrow \Sigma_{X}$ is a natural transformation), we define $\Phi(x)_{Y}(T)=T_{X}(x) \epsilon X \wedge Y$.

A functor F is called reflexive if $\Phi: F \rightarrow D^{2} F$ is an equivalence of functors.
Given a reflexive functor F we define $\Psi: \Sigma \circ F \rightarrow F \circ \Sigma$ as the composition

$$
\Sigma \circ F \xrightarrow{\Sigma * \Phi} \Sigma \circ D^{2} F \xrightarrow{\varphi} D^{2} F \circ \Sigma \xrightarrow{\Phi^{-1} * \Sigma} F
$$

where φ is the natural transformation of Example 1.
Thus for each reflexive functor F and spectrum \mathbf{A}, we obtain a spectrum $(F, \Psi)(\mathbf{A})$ which will be denoted by $F(\mathbf{A})$.

3. Cohomology theories

Cohomology theories are easier to deal with than homology theories. Moreover, their "domain of definition" can be given as the category ($\mathfrak{C}, \mathfrak{C})_{s}$ which is not so simple for homology, as we shall see later.

Definition 3.1. The n-th reduced cohomology group of a strong functor F with coefficients in a spectrum A is the group

$$
\tilde{H}^{n}(F ; \mathbf{A})=\pi_{-n}(D F(\mathbf{A}))=\lim \pi_{q-n}\left(D F\left(A_{q}\right)\right)
$$

Note that

$$
\pi_{q-n}\left(D F\left(A_{q}\right)\right)=\left[S^{q-n}, D F\left(A_{q}\right)\right]=\left[S^{q-n},\left(F, \Sigma_{A q}\right)\right]=\left[\Sigma^{q-n} F, \Sigma_{A q}\right]
$$

Thus if we make the sequence $\Sigma_{A_{q}}$ a "spectrum of functors" via natural transformations

$$
\Sigma \circ \Sigma_{A_{q}} \simeq \Sigma_{\Sigma_{A_{q}}} \xrightarrow{\Sigma\left(\alpha_{q}\right)} \Sigma_{A q+1}
$$

we see that the above definition of cohomology groups is precisely the analogue of G. W. Whitehead's definition of the cohomology of a space with coefficients in a spectrum. It is then easy to show that we have even defined a cohomology theory in the following sense (see [8, p. 252)).
(1) We have a sequence of contravariant functors $\tilde{H}^{n}(; \mathbf{A}) \rightarrow$ abelian groups.
(2) If $f_{0}, f_{1}: F \rightarrow G$ are homotopic natural transformations (see [12],
[4]) the induced maps

$$
f_{0}^{*}: \tilde{H}^{n}(G ; \mathbf{A}) \rightarrow \tilde{H}^{n}(F ; \mathbf{A}) \quad \text { and } \quad f_{1}^{*}: H^{n}(C ; \mathbf{A}) \rightarrow \tilde{H}^{n}(F \mathbf{A})
$$

are the same.
(3) For each n, there is a natural transformation

$$
\sigma^{n}: \widetilde{H}^{n+1}(\quad ; A) \circ \Sigma \rightarrow \widetilde{H}^{n}(\quad ; A)
$$

such that for all functors $F, \sigma^{n}(F)$ is an isomorphism.
(4) If $f: F \rightarrow G$ is a natural transformation and if C_{f} is the mapping cone of f (see [2]), and $i: G \rightarrow C_{f}$ is the inclusion, then the sequence

$$
\widetilde{H}^{n}\left(C_{f} ; \mathbf{A}\right) \xrightarrow{i^{*}} \widetilde{H}^{n}(G ; \mathbf{A}) \xrightarrow{f^{*}} \widetilde{H}^{n}(F ; \mathbf{A})
$$

is exact for all n.
The proof goes as in the case of spaces (see [8]). For the exactness in (4), note that we have a cofibration sequence of functors $F \rightarrow M_{f} \rightarrow C_{f}$, where M_{f} is the mapping cylinder of f. Then $\left(F, \Sigma_{A_{q}}\right) \leftarrow\left(M_{f}, \Sigma_{\Lambda_{q}}\right) \leftarrow\left(C_{f}, \Sigma_{\Lambda_{q}}\right)$ is a fibration and hence induces a homotopy exact sequence.

4. Homology theories

(a) The category $(\mathbb{C}, \mathfrak{C})_{s, \varphi}$. We have seen that if F is a strong functor and $\varphi: \Sigma \circ F \rightarrow F \circ \Sigma$ is a natural transformation, then for any spectrum A, we can define a spectrum $(F, \varphi)(\mathbf{A})$.

We will then define ($(\mathcal{C}, \mathfrak{C})_{s, \varphi}$ as follows: An object of this category is a pair (F, φ) where F is a strong functor and $\varphi: \Sigma \circ F \rightarrow F \circ \Sigma$ is a natural transformation. A morphism $f:(F, \varphi) \rightarrow(G, \psi)$ between two object of $(\mathbb{C}, \mathfrak{C})_{s \varphi}$ is a natural transformation $f: F \rightarrow G$ such that the diagram

is commutative
(b) Mapping cones in $(\mathbb{C}, \mathfrak{C})_{s, \varphi}$. If $f:(F, \varphi) \rightarrow(G, \psi)$ is a morphism of $(\mathbb{C}, \mathfrak{e})_{s \varphi}$, let C_{f} be the unreduced mapping cone of f, i.e. $C_{f}(X)=$ mapping cone of $f_{x}: F(X) \rightarrow G(X)$.

Then C_{f} can be made an object of ($(\mathcal{C}, \mathfrak{C})_{s, \varphi}$ as follows.
We have a commutative diagram
(*)

by taking the adjoint of φ and ψ, we obtain

Now by definition of the mapping cone of a transformation it is clear that $C_{f^{*}}=C_{f} \circ \Sigma$. If $i: G \rightarrow C_{f}$ is the inclusion in the base of the cone, we have that

$$
(\Omega * i * \Sigma) \circ \tilde{\varphi} \circ f
$$

is homotopic to zero.
Hence there is a natural transformation $\tilde{\chi}: C_{f} \rightarrow \Omega C_{f} \circ \Sigma$ such that $(\Omega * i * \Sigma) \circ \tilde{\varphi}=\tilde{\chi} \circ i$. Taking the adjoint of $\tilde{\chi}$, we obtain a map

$$
\chi: \Sigma \circ C_{f} \rightarrow C_{f} \circ \Sigma
$$

such that $(i * \Sigma) \circ \psi=\chi \circ i$ and this implies that $\Sigma \circ C_{f}$ is naturally equivalent to $C_{\Sigma * f}$. It remains thus to construct a map $\chi: C_{\Sigma *_{f}} \rightarrow C_{f} \circ \Sigma=C_{f * \Sigma}$. But this map is easily given by the commutative diagram (*)
(c) Homotopy in (e, $\mathfrak{C})_{s}$. Let I^{\prime} be the disjoint union of I and a point * serving as the base point. Then $\Sigma_{I^{\prime}}(X)=I^{\prime} \wedge X=I \times Y / I \times\left\{x_{0}\right\}$ where x_{0} is the base-point of X. There are then two natural transformations $\varepsilon_{0}, \varepsilon_{1}$: identity $\rightarrow \Sigma_{I^{\prime}}$ defined by sending x to ($0, x$) and ($1, x$) respectively.

If $f, g: F \rightarrow G$ are two natural transformations, a homotopy between them is a map $h: \Sigma_{I^{\prime}} \circ F \rightarrow G$ such that $h \circ \varepsilon_{0} * F=f$ and $h \circ \varepsilon_{1} * F=g$. Since Σ_{I}, commutes with Σ, it is clear that if $f, g:(F, \varphi) \rightarrow(G, \psi)$ are two maps of $(\mathbb{C}, \mathfrak{C})_{s, \varphi}$ which are homotopic as maps of $(\mathbb{C}, \mathfrak{C})_{s}$, then $\Sigma_{I} \circ F$ can be made an object of $(\mathbb{C}, \mathfrak{C})_{s, \varphi}$ and the homotopy be can be made a map of $(\mathbb{C}, \mathbb{C})_{s, \varphi}$.
(d) Homology theories in ($\mathfrak{C}, \mathfrak{e})_{s, \varphi}$.

Definition 4.1. If (F, φ) is an object of $(\mathbb{C}, \mathfrak{C})_{s, \varphi}$ and \mathbf{A} is a spectrum, the n-th homology group of (F, φ) with coefficients in \mathbf{A} is defined as

$$
\tilde{H}_{n}(F, \varphi ; A)=\pi_{n}((F, \varphi)(\mathbf{A}))=\lim _{q} \pi_{n+q}\left(F\left(A_{q}\right)\right)
$$

It is clear that if $f_{0}, f_{1}:(F, \varphi) \rightarrow(G, \psi)$ are homotopic, then the maps

$$
f_{0^{*}}, f_{1^{*}}: \widetilde{H}_{n}(F, \varphi ; \mathbf{A}) \rightarrow \widetilde{H}_{n}(C, \psi ; \mathbf{A})
$$

coincide for all n. Moreover, there are natural transformations

$$
\sigma_{n}: \tilde{H}_{n}(\quad ; \mathbf{A}) \rightarrow \tilde{H}_{n+1}(\Sigma(\quad) ; \mathbf{A})
$$

inducing isomorphisms for all (F, φ).
Thus we will have obtained a bona fide homology theory once we have
proved the exactness of the sequences

$$
\tilde{H}_{n}(F, \varphi ; \mathbf{A}) \xrightarrow{f_{*}} \tilde{H}_{n}(G, \varphi ; \mathbf{A}) \xrightarrow{i_{*}} \tilde{H}_{n}\left(C_{f}, \chi ; \mathbf{A}\right) .
$$

This will occupy the rest of the section.
If

$$
\mathbf{A}=\left\{A_{n}, \alpha_{n}: \Sigma A_{n} \rightarrow A_{n+1}\right\} \text { and } \mathbf{B}=\left\{B_{n}, \beta_{n}: \Sigma B_{n} \rightarrow B_{n+1}\right\}
$$

are spectra, a map $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$ is a sequence of maps $f_{n}: A_{n} \rightarrow B_{n}$ such that

$$
\beta_{n} \circ \Sigma f_{n}=f_{n+1} \circ \alpha_{n}
$$

for all n . We can define the mapping cone $\mathbf{C}=\left\{C_{n}, \gamma_{n}: \Sigma C_{n} \rightarrow C_{n+1}\right\}$ of such a map: $C_{n}=C_{f n}$ and γ_{n} is given by the fact that $\Sigma C_{f n}=C_{\Sigma f n}$ and that $f_{n+1} \circ \alpha_{n}=\beta_{n} \circ \Sigma f_{n}$.

What we will show is that for all maps $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$ and all n, we have an exact sequence

$$
\pi_{n}(\mathbf{A}) \rightarrow \pi_{n}(\mathbf{B}) \rightarrow \pi_{n}(\mathbf{C})
$$

Definition 4.2 (see [8, p. 242)). A spectrum \mathbf{A} is said to be convergent if and only if there is an integer N such that A_{N+i} is i-connected for all $i \geq 0$.

Lemma 4.1. Let $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$, and let N be an integer. Then there exist spectra $\mathbf{A}^{\prime}, \mathbf{B}^{\prime}$ and maps $\mathbf{f}^{\prime}: \mathbf{A}^{\prime} \rightarrow \mathbf{B}^{\prime}, \boldsymbol{\varepsilon}: \mathbf{A}^{\prime} \rightarrow \mathbf{A}$ and $\boldsymbol{n}: \mathbf{B}^{\prime} \rightarrow \mathbf{B}$ such that:

is commutative for all n.
(2) $A_{i}^{\prime}=A_{i}$ and ε_{i} is the identity for all $i \leq N . \quad B_{i}^{\prime}=B_{i}$ and η_{i} is the identity for all $i \leq N$.
(3) A_{N+i}^{\prime} and B_{N+i}^{\prime} are $(i-1)$-connected for all $i \geq 0$.
(4) $\varepsilon_{i^{*}}: \pi_{j}\left(A_{i}^{\prime}\right) \rightarrow \pi_{j}\left(A_{i}\right)$ and $\eta_{i^{*}}: \pi_{j}\left(B_{i}^{\prime}\right) \rightarrow \pi_{j}\left(\bar{B}_{i}\right)$ are isomorphisms for all $i \geq N+1$ and $j \geq i-N$.

Proof. The proof is adapted from a particular case in [8, Lemma 4.1, p, 242]. Assume that A_{i} and B_{i} are 0 -connected for $i \geq N+1$. (If not, we will do the following construction only on the path-components of their base point.) First construct A_{i}^{*} and B_{i}^{*} as spaces containing A_{i} and B_{i} respectively and such that:
(1) There exist maps $f_{i}^{*}: A_{i}^{*} \rightarrow B_{i}^{*}$ making commutative diagrams

$$
\begin{array}{ccc}
A_{i} \xrightarrow{f_{i}} & B_{i} \\
\cap & & \cap \\
A_{i}^{*} \xrightarrow{f_{i}^{*}} & B_{i}^{*} .
\end{array}
$$

(2) The inclusion maps induced isomorphisms

$$
\pi_{j}\left(A_{i}\right) \rightarrow \pi_{j}\left(A_{i}^{*}\right) \quad \text { and } \quad \pi_{j}\left(B_{i}\right) \rightarrow \pi_{j}\left(B_{i}^{*}\right) \quad \text { for } j \leq i-N
$$

(3) $\pi_{j}\left(A_{i}^{*}\right)=\pi_{j}\left(B_{i}^{*}\right)=0$ for $j \geq i-N+1$.

These conditions can be realized simultaneously as follows. First kill $\pi_{i-N+1}\left(A_{i}\right)$ (resp. $\left.\pi_{i-N+1}\left(B_{i}\right)\right)$ by attaching cells to $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$ via all maps $S^{i-N+1} \rightarrow A_{i}\left(\operatorname{resp} . B_{i}\right)$. Let $A_{i}(i-N+1)$ and $B_{i}(i-N+1)$ be the spaces so obtained. From the function

$$
\left(S^{i-N+1}, f_{i}\right):\left(S^{i-N+1}, A_{i}\right) \rightarrow\left(S^{i-N+1}, B_{i}\right),
$$

we obtain a map $A_{i}(i-N+1) \rightarrow B_{i}(i-N+1)$ making the following diagram commutative:

$$
\begin{aligned}
& A_{i} \subset A_{i}(i-N+1) \\
& \mid f_{i} \\
& B_{i} \subset B_{i}(i-N+1) .
\end{aligned}
$$

We then repeat this process to kill

$$
\pi_{i-N+1}\left(A_{i}(i-N+1)\right) \quad \text { and } \quad \pi_{i-N+1}\left(B_{i}(i-N+1)\right) .
$$

We obtain a commutative ladder

Call the direct limits A_{i}^{*} and B_{i}^{*} respectively and let $f_{i}^{*}: A_{i}^{*} \rightarrow B_{i}^{*}$ be the map induced by the above diagram.

Now let $A_{i}^{\prime}\left(\operatorname{resp} . B_{i}^{\prime}\right)$ be the spaces of paths in $A_{i}^{*}\left(\right.$ resp. $\left.B_{i}^{*}\right)$ which start at the base point and end in $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$. Since

is commutative, we clearly obtain a map $f_{i}^{\prime}: A_{i}^{\prime} \rightarrow B_{i}^{\prime}$. We then define

$$
\varepsilon_{i}: A_{i}^{\prime} \rightarrow A_{i} \quad \text { and } \quad \eta_{i}: B_{i}^{\prime} \rightarrow B_{i}
$$

as the end point maps.
Clearly

is commutative for all i.
A_{i}^{\prime} is in fact the fibre of the inclusion $A_{i} \subset A_{i}^{*}$ transformed into a fibration. Thus we have an exact sequence

$$
\pi_{j}\left(A_{i}\right) \rightarrow \pi_{j+1}\left(A_{i}^{*}\right) \rightarrow \pi_{j}\left(A_{i}^{\prime}\right) \rightarrow \pi_{j}\left(A_{i}\right) \rightarrow \pi_{j}\left(A_{i}^{*}\right)
$$

Because of [2], $\pi_{j}\left(A_{i}^{\prime}\right)=0$ for $j \leq i-N-1$ and because of (3), $\pi_{j}\left(A_{i}^{\prime}\right) \simeq$ $\pi_{j}\left(A_{i}\right)$ for $j \leq i-N$

Thus in particular $\pi_{j}\left(A_{N+i}^{\prime}\right)=0$ for $j \leq N+i-N-2=i-2$.
The same is obviously true with B instead of A.
The spaces A_{i}^{\prime} and B_{i}^{\prime} thus satisfy conditions (1)-(4) of the lemma. It remains only to define maps $\alpha_{i}^{\prime}: \Sigma A_{i}^{\prime} \rightarrow A_{i+1}^{\prime}$ and $\beta_{i}: B_{i}^{\prime} \rightarrow B_{i+1}^{\prime}$ making the following diagrams commutative:

Define first canonical maps

$$
\Sigma A_{i}^{*} \xrightarrow{\alpha_{i}^{*}} A_{i}^{*}
$$

as follows. $\quad A_{i}^{*}$ is the direct limit of a sequence $A_{i} \subset A_{i}(i-N+1) \subset \cdots$. Since Σ commutes with direct limits, ΣA_{1}^{*} is the direct limit of the sequence $\Sigma A_{i} \subset A_{i}(i-N+1) \subset \cdots$.

We will then define α_{i}^{*} step by step.
We have

$$
\begin{aligned}
& \Sigma A_{i} \subset \Sigma A_{i}(i-N+1) \\
& \alpha_{i} \|^{\downarrow} \\
& A_{i+1} \subset A_{i+1}(i-N+2)
\end{aligned}
$$

To extend α_{i} to a map $\Sigma A_{i}(i-N+1) \rightarrow A_{i+1}(i-N+2)$, let $f: S^{i-N+1} \rightarrow A_{i}$ be a map. Then

$$
\Sigma f: S^{i-N+2} \rightarrow \Sigma A_{i} \quad \text { and } \quad \Sigma A_{i} \mathbf{U}_{\Sigma f} e^{i-N+3}=\Sigma\left(A_{i} \mathbf{U}_{f} e^{i-N+2}\right)
$$

Then we simply extend to $\Sigma\left(\mathrm{A}_{i} \mathbf{U}_{f} e^{i-N+2}\right)$ by coning. We do the same thing for all maps $S^{i-N+1} \rightarrow A_{i}$ and obtain

$$
\alpha_{i}(i-N+1): \Sigma A_{i}(i-N+1) \rightarrow A_{i+1}(i-N+2) .
$$

We can then repeat the process to obtain finally a map $\alpha_{i}^{*}: \Sigma A_{i}^{*} \rightarrow A_{i+1}^{*}$ of the direct limits.

The same thing can be done for \mathbf{B} instead of \mathbf{A} to obtain $\beta_{i}^{*}: \Sigma B_{i}^{*} \rightarrow B_{i+1}^{*}$. Finally, it is clear that the following diagrams are commutative.

Taking the adjoint of α_{i} and α_{i}^{*} we obtain a commutative diagram

Let $A_{i}^{\prime}=$ space of paths in A_{i}^{*} starting at the base point and ending in $A_{i}, A_{i+1}^{\prime}=$ space of paths in A_{i+1}^{*} starting at the base point and ending in A_{i+1}.

Define $\tilde{\alpha}_{i}^{\prime}: A_{i}^{\prime} \rightarrow \Omega A_{i+1}^{\prime}$ as follows. Let λ be a path in A_{i}^{*} starting at $*$ and ending in A_{i}. Then $\alpha_{i}^{\prime}(\lambda)(t)=\alpha_{i}^{*}(\lambda())(t)$. In other words,

$$
\left(\tilde{\alpha}_{i}^{\prime}(\lambda)(t)\right)(s)=\alpha_{i}^{*}(\lambda(s))(t)
$$

It is easy to verify that $\tilde{\alpha}_{i}^{\prime}$ is really a map $A_{i}^{\prime} \rightarrow \Omega A_{i+1}^{\prime}$. Taking the adjoint of $\tilde{\alpha}_{i}$ we obtain $\alpha_{i}^{\prime}: \Sigma A_{i}^{\prime} \rightarrow A_{i+1}^{\prime}$ which has all the properties we want.

This concludes the proof of Lemma 4.1.
Proposition 4.2. Let $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$ be a map of spectra and let \mathbf{C} be the mapping cone of \mathbf{f}. Then for all n, we have an exact sequence

$$
\pi_{n}(\mathbf{A}) \rightarrow \pi_{n}(\mathbf{B}) \rightarrow \pi_{n}(\mathbf{C})
$$

Proof. In this proof, we will assume that \mathbf{B} has been replaced by the mapping cylinder of f and f by the inclusion of \mathbf{A} as the top of the cylinder.

Suppose first that A and B are convergent, and choose N large enough so that A_{N+i} and B_{N+i} are both i-connected for $i>0$, and assume that $n+N \geq 2$ (n is here a fixed integer). Then the pair (B_{N+i}, A_{N+i}) is also i-connected, by the relative Hurewicz isomorphism Theorem. Consider the diagram

$$
\begin{equation*}
\pi_{n+k}\left(A_{k}\right) \xrightarrow{f_{*}} \pi_{n+k}\left(\text { B }_{k}\right) \xrightarrow{j_{*}} \pi_{n+k}\left(B_{k}, A_{k}\right) \tag{*}
\end{equation*}
$$

From the Blakers-Marsey theorem (see [1]), it follows that p_{*}^{\prime} is an isomorphism for $n+k=j \leq 2 i$, where $k=N+i$. Suppose that $k \geq n+2 N$ (i.e. $i \geq n+N$). Then A_{k} is $(k-N)$-connected and $(k-N) \geq n+N \geq 2$. Hence $n+k \leq 2(k-N)=2 i$, and p_{*}^{\prime} is an isomorphism for $i=k-N$, $j=n+k$. Thus in the diagram (*), $\operatorname{ker} p_{*}=\operatorname{im} f_{*}$ for k large enough. Since
a direct limit of exact sequences is exact, the sequence

$$
\pi_{n}(\mathbf{A}) \rightarrow \pi_{n}(\mathbf{B}) \rightarrow \pi_{n}(\mathbf{C})
$$

is exact provided both \mathbf{A} and \mathbf{B} are convergent.
Now suppose that they are not convergent, and let $\alpha \in \operatorname{ker} \mathbf{p}_{*}$, where $\mathbf{p}_{*}: \pi_{n}(\mathbf{B}) \rightarrow \pi_{n}(\mathbf{C})$. Choose a representative $\alpha^{\prime} \in \pi_{n+k}\left(B_{k}\right)$ of α. Increasing k if necessary, we may assume that α^{\prime} is in tee kernel of

$$
p_{*}: \pi_{n+k}\left(B_{k}\right) \rightarrow \pi_{n+k}\left(C_{k}\right) .
$$

By the preceding lemma, there are convergent spectra $\mathbf{A}^{\prime}, \mathbf{B}^{\prime}$ and maps

$$
\varepsilon: A^{\prime} \rightarrow \mathbf{A}, \quad \mathbf{n}: \mathbf{B} \rightarrow \mathbf{B}, \quad \mathbf{f}^{\prime}: \mathbf{A}^{\prime} \rightarrow \mathbf{B}^{\prime}
$$

such that $\mathbf{n} \circ \mathbf{f}^{\prime}=\mathbf{f} \circ \mathbf{\varepsilon}$. Moreover, $A_{i}=A_{i}, B_{i}^{\prime}=B_{i}$ and ε_{i} and η_{i} are identity maps for $i \leq k$. Let $\mathbf{C}^{\prime}=$ mapping cone of \mathbf{f}^{\prime}. Then we have a commutative diagram

Since $A_{i}^{\prime}=A_{i}$ and $B_{i}^{\prime}=B_{i}$ for $i \leq k$, we have in particular that $\varepsilon_{k}, \eta_{k}$ and γ_{k} are identity maps.

Let $\alpha^{\prime \prime} \epsilon \pi_{n+k}\left(B_{k}^{\prime}\right)$ be $\eta_{k^{*}}^{-1}\left(\alpha^{\prime}\right)$. Then $p_{k^{*}} \alpha^{\prime}=0$ implies that $p_{k^{*}}^{\prime \prime} \alpha^{\prime \prime}=0$ so that $\alpha^{\prime \prime}$ represents an element $\alpha^{*} \epsilon \pi_{n}\left(\mathbf{B}^{\prime}\right)$ such that $\mathbf{n}_{*}\left(\alpha^{*}\right)=\alpha$ and $\mathbf{p}_{*}^{\prime \prime}\left(\alpha^{*}\right)=0$.

Since \mathbf{A}^{\prime} and \mathbf{B}^{\prime} are both convergent, the sequences for this, pair is exact so that there exists $\beta \in \pi_{n}\left(\mathbf{A}^{\prime}\right)$ such that $\mathbf{f}_{*}^{\prime} \beta=\alpha^{*}$. Then $\mathbf{n}_{*}^{\prime} \mathbf{f}^{\prime}(\beta)=\alpha=$ $f_{*} \varepsilon_{*}(\beta)$ and α is in the image of \mathbf{f}_{*}, Q.E.D.

This concludes the proof that the functors $\tilde{H}_{n}(; \mathbf{A})$ define a homology theory.

5. Duality between homology and cohomology

Let F be a functor and $\varphi: \Sigma \circ D F \rightarrow D F \circ \Sigma$ the natural transformation defined in §2, Example 1. Then

$$
\left.\tilde{H}_{n}(D F, \varphi ; \mathbf{A})=\pi_{n}(D F, \varphi)(\mathbf{A})\right)=\pi_{n}(D F(\mathbf{A}))=\tilde{H}^{-n}(F ; \mathbf{A})
$$

Since the transformation $\varphi: \Sigma \circ D F \rightarrow D F \circ \Sigma$ is the standard one associated with a functor of the form $D F$, we can state in short $\tilde{H}_{n}(D F ; \mathbf{A})=\tilde{H}^{-n}(F ; \mathbf{A})$.

If F is a reflexive functor, we also have

$$
\widetilde{H}_{n}(F ; \mathbf{A})=\pi_{n}(F(\mathbf{A})) \cong \pi_{n}(D(D F)(\mathbf{A}))=\tilde{H}^{-n}(D F ; \mathbf{A})
$$

6. Relation with homology and cohomology theories of spaces

Suppose that $F=\Sigma_{\boldsymbol{X}}$ for some space $X \in \mathbb{C}$. Then

$$
\begin{aligned}
\widetilde{H}^{n}(F ; \mathbf{A})=\pi_{-n}(D F(\mathbf{A}))=\pi_{-n}\left(\Omega_{X}(\mathbf{A})\right)= & \lim _{q} \pi_{q-n}\left(\left(X, A_{q}\right)\right) \\
& =\lim _{q}\left[S^{q-n} X, A_{q}\right]=\tilde{H}^{n}(X ; \mathbf{A})
\end{aligned}
$$

in the sense of G. W. Whitehead (see [8]).

Similarly since F is a reflexive functor, we have

$$
\tilde{H}_{n}(F ; \mathbf{A})=\pi_{n}(F(\mathbf{A}))=\pi_{n}(X \wedge \mathbf{A})=\tilde{H}_{n}(X ; \mathbf{A})
$$

Thus the homology and cohomology theories of functors are a good generalization of that of spaces.

7. Some examples of computations

(a) Functors of the form $\Sigma \circ F$ and $\Omega \circ F$. We know that

$$
\widetilde{H}_{n+1}(\Sigma \circ F ; \mathbf{A}) \simeq \widetilde{H}_{n}(F ; \mathbf{A}) \quad \text { and } \quad \tilde{H}^{n+1}(\Sigma \circ F ; \mathbf{A}) \simeq \widetilde{H}^{n}(F ; \mathbf{A})
$$

But if F is reflexive, $D(\Omega \circ F) \simeq \Sigma \circ D F$ (see [4]).
Thus

$$
\widetilde{H}_{n}(\Omega \circ F ; \mathbf{A}) \simeq \tilde{H}^{-n}(\Sigma \circ D F ; \mathbf{A}) \simeq \tilde{H}^{-n-1}(D F ; \mathbf{A}) \simeq \tilde{H}_{n+1}(F ; \mathbf{A})
$$

and

$$
\tilde{H}^{n}(\Omega \circ F ; \mathbf{A}) \simeq \tilde{H}_{-n}(\mathbf{\Sigma} \circ D F ; \mathbf{A}) \simeq \tilde{H}_{-n-1}(D F ; \mathbf{A}) \simeq \tilde{H}^{n+1}(F ; \mathbf{A})
$$

(b) The functors $J(X)=X * X=$ reduced join of X with X and $K(X)=$ $D J(X)=$ space of paths in $X \vee X$ starting in the left summand and ending in the right summand. Suppose that \mathbf{A} is a spectrum of Eilenberg Mac-Lane spaces $K(A, n)$. (We will write A instead of \mathbf{A} for the coefficients in this case.) Then

$$
\tilde{H}_{n}(J ; A)=\lim _{k} \pi_{n+k}\left(J\left(A_{k}\right)\right)=\lim _{k} \pi_{n+k}(K(A, k) * K(A, k)) .
$$

Now the space $K(A, k) * K(A, k)$ is $2 k$-connected and if k increases $2 k>n+k$. Thus $\tilde{H}_{n}(J ; A)=0$ for all n, and by duality $\tilde{H}^{n}(K ; A)=0$ for all n.

To compute $\tilde{H}_{n}(K ; A)$, note that we have a functorial fibration

$$
\Omega(X \vee X) \rightarrow K(X) \rightarrow X \times X \quad(\text { see }[5, \mathrm{p} .122))
$$

We will denote the functors $X \rightarrow X \vee X$ and $X \rightarrow X \times X$ by W and P respectively. Then we have a fibration

$$
\Omega \circ W \rightarrow K \rightarrow P
$$

which induces an exact sequence

$$
\rightarrow \pi_{n}(\Omega \circ W(A)) \rightarrow \pi_{n}(K(A)) \rightarrow \pi_{n}(P(A)) \rightarrow \pi_{n-1}(\Omega \circ W(A) \rightarrow
$$

and this is nothing but the sequence

$$
\begin{equation*}
\rightarrow \tilde{H}_{n}(\Omega \circ W ; \mathrm{A}) \rightarrow \tilde{H}_{n}(K: A) \rightarrow \tilde{H}_{n}(P ; A) \rightarrow \cdots \tag{*}
\end{equation*}
$$

Now if I^{\bullet} is a space with only two points, W is the functor $\Sigma_{(I \cdot \vee I \cdot)}$ and $P=D W=\Omega_{(r \cdot \vee r \cdot)}$.

Thus $\tilde{H}_{n}(\Omega W ; A) \simeq \tilde{H}_{n+1}(W ; A) \simeq \tilde{H}_{n+1}\left(I^{\bullet} \vee I^{\bullet} ; A\right)=0$ unless $n+1=0$ and $\tilde{H}_{0}\left(I^{\bullet} \vee I^{\bullet} ; A\right)=A \oplus A$.

Similarly, $\widetilde{H}_{n}(P ; A) \simeq \tilde{H}^{-n}(W ; A) \simeq \tilde{H}^{-n}\left(I^{\bullet} \vee I^{\bullet} ; A\right)=0$ unless $n=0$ amd $\widetilde{H}^{0}\left(I^{\bullet} \vee I^{\bullet} ; A\right)=A \oplus A$.

We are thus left with the exact sequence
$(* *) \quad 0 \rightarrow \tilde{H}_{0}(K ; A) \rightarrow A \oplus A \rightarrow A \oplus A \rightarrow \tilde{H}_{-1}(K ; \mathrm{A}) \rightarrow 0$.
Now by [5 p .122], the inclusion $\Omega \circ W \rightarrow K$ has an inverse.
Thus we have, for all n, split short exact sequences
(***)

$$
0 \rightarrow \widetilde{H}_{n+1}(P ; \mathrm{A}) \rightarrow \tilde{H}_{n}(\Omega W ; A) \rightarrow \tilde{H}_{n}(K ; A) \rightarrow 0
$$

This and $\left({ }^{* *}\right)$ imply that $\tilde{H}_{n}(K ; A)=0$ for all n. By duality, $\tilde{H}^{n}(J ; A)=0$ for all n.

8. The slant product

Given a pairing of spectra $\mathbf{f}:(\mathbf{A}, \mathbf{B}) \rightarrow \mathbf{C}$ (see definition below) there is defined, for all spaces X and Y a slant product

$$
\tilde{H}^{n}(X \wedge Y ; \mathbf{A}) \otimes \tilde{H}_{q}(Y ; \mathbf{B}) \rightarrow \tilde{H}^{n-q}(X ; \mathbf{C})
$$

We want to define the analogue for functors, with the condition that it agrees with the usual slant product when we consider functors of the form Σ_{X} and Σ_{Y}. Since $\Sigma_{X \wedge Y}=\Sigma_{X} \circ \Sigma_{Y}$, the generalized slant product will involve the composition of functors, and not their "smashed product".

We will assume then that we have three spectra:

$$
\begin{gathered}
\mathbf{A}=\left\{A_{p}, \alpha_{p}: \Sigma A_{p} \rightarrow A_{p+1}\right\}, \quad \mathbf{B}=\left\{B_{q}, \beta_{q}: \Sigma B_{q} \rightarrow B_{q+1}\right\} \\
\mathbf{C}=\left\{C_{r}, \gamma_{r}: \Sigma C_{r} \rightarrow C_{r+1}\right\}
\end{gathered}
$$

and a pairing $\mathrm{f}:(\mathbf{A}, \mathbf{B}) \rightarrow \mathbf{C}$. This is defined (see $[8, \mathrm{p} .254-255])$ as a family of maps $f_{p, q}: A_{p} \wedge B_{q} \rightarrow C_{p+q}$ such that for each pair (p, q) we have a diagram

with the following property. Let $f_{p+1, q} \circ\left(\alpha_{p} \wedge 1\right) \circ \lambda=\theta^{\prime}, \quad \gamma_{p+q} \circ \Sigma f_{p, q}=\theta, \quad f_{p, q+1} \circ\left(1 \wedge \beta_{q}\right) \circ \mu=\theta^{\prime \prime}$.
Then in the group [$\left.\Sigma\left(A_{p} \wedge B_{q}\right), C_{p+q+1}\right], \theta^{\prime}=\theta$ and $\theta=(-1)^{p} \theta^{\prime \prime}$.
From now on, we will assume that all functors are reflexive. Our aim is to
define a pairing

$$
(D(F \circ G)(\mathbf{A}), G(\mathbf{B})) \rightarrow D F(\mathbf{C})
$$

but since F and G are reflexive and hence satisfy $D(F \circ G)=D F \circ D G$ (see [4]), this is equivalent to defining a pairing

$$
\varphi:(D F \circ G(\mathbf{A}), D G(\mathbf{B})) \rightarrow D F(\mathbf{C})
$$

We will define φ as follows: Let $T: F \rightarrow \Sigma_{G\left(A_{p}\right)}$ be an element of $D F\left(G\left(A_{p}\right)\right)$ and $T^{\prime}: G \rightarrow \Sigma_{B q}$ an element of $D G\left(B_{q}\right)$. Then $\varphi_{p, q}\left(T, T^{\prime}\right)$ is defined as the composition

$$
F \xrightarrow{T} \Sigma_{G\left(A_{p}\right)} \xrightarrow{\Sigma\left(T_{A p}^{\prime}\right)} \Sigma_{A_{p} \wedge B_{q}} \xrightarrow{\Sigma\left(f_{p, q}\right)} \Sigma_{C_{p+q}}
$$

To prove that φ is a pairing, we will break it into the composition of two pairings easier to handle.
(a) Given a pairing $\mathbf{f}:\left(\mathbf{A}^{\prime}, \mathbf{B}^{\prime}\right) \rightarrow \mathbf{C}^{\prime}$ and a functor F, define a pairing

$$
\boldsymbol{\psi}:\left(D F\left(\mathbf{A}^{\prime}\right), \mathbf{B}^{\prime}\right) \rightarrow D F\left(\mathbf{C}^{\prime}\right)
$$

as follows. Let $T: F \rightarrow \Sigma_{A_{p^{\prime}}}$ be an element of $D F\left(A_{p}^{\prime}\right)$ and $b_{q} \in B_{q}^{\prime}$. Let $\tilde{b}_{q}: I^{\bullet} \rightarrow B_{q}^{\prime}$ be the map such that $\tilde{b}_{q}(1)=b_{q}$. We define then $\psi_{p, q}\left(T ; b_{q}\right)$ as the composition

$$
F=\Sigma_{I} \circ F \xrightarrow{\Sigma_{I} * T} \Sigma_{I} \circ \Sigma_{A_{p^{\prime}}} \xrightarrow{\Sigma\left(\tilde{b}_{q}\right) * \Sigma_{A p}} \Sigma_{B_{q^{\prime}} \circ \Sigma_{A_{p^{\prime}}} \simeq \Sigma_{A_{p^{\prime}} \wedge B_{q^{\prime}}} \xrightarrow{\Sigma\left(f_{p, q}\right)} \Sigma_{C_{p+q^{\prime}}}}
$$

Explicitly, let X be a space, $x \in F X$ and let $T_{X}(x)=\left(a_{p}, x^{\prime}\right) \in A_{p}^{\prime} \wedge X$. Then $\psi_{p, q}\left(T, b_{q}\right)_{X}(x)=\left(f_{p, q}\left(a_{p}, b_{q}\right), x^{\prime}\right) \in C_{p+q}^{\prime} \wedge X$.
(b) Given a pairing f: $\mathbf{A}, \mathbf{B}) \rightarrow \mathbf{C}$ define

$$
\chi:(G(\mathbf{A}), D G(\mathbf{B})) \rightarrow \mathbf{C}
$$

as follows. Let $a_{p} \in G\left(A_{p}\right), T: G \rightarrow \Sigma_{B q}^{\prime \prime}$.
Then

$$
\chi_{p, q}\left(a_{p}, T\right)=f_{p, q} T_{A_{p}}\left(a_{p}\right)
$$

Assume for the moment that ψ and χ are pairings. We will then prove that φ is a pairing.

In case (a), replace \mathbf{A}^{\prime} by $G(\mathbf{A}), \mathbf{B}^{\prime}$ by $D G(\mathbf{B})$ and f by x the latter being obtained from (b). We obtain then a pairing

$$
\Psi:(D F \circ G(\mathbf{A}), D G(\mathbf{B})) \rightarrow D F(\mathbf{C})
$$

defined as follows. Let $T: F \rightarrow \Sigma_{G\left(A_{p}\right)}, T^{\prime}: G \rightarrow \Sigma_{B_{q}}$, let X be a space, $x \in F X$ and $T_{X}(x)=\left(a, x^{\prime}\right) \in G\left(A_{p}\right) \wedge X$. Then

$$
\psi_{p, q}\left(T, T^{\prime}\right)_{x}(x)=\left(f_{p, q} \circ T_{A_{p}}^{\prime}(a), x^{\prime}\right)
$$

On the other hand,

$$
\varphi_{p, q}\left(T, T^{\prime}\right)_{X}=\Sigma\left(f_{p, q}\right)_{\mathbf{x}} \circ \Sigma\left(T_{A_{p}}^{\prime}\right)_{\mathbf{X}} \circ T_{X}(x)=\left(f_{p, q} \circ T_{A_{p}}^{\prime}(a), x^{\prime}\right)
$$

Thus $\psi_{p, q}=\varphi_{p, q}$ so that $\varphi_{p, q}$ is a pairing if both ψ and χ are pairings.
The proof that ψ and χ are pairings is long but straightforward. In fact, only the reflexivity of G is needed.

Thus we obtain a slant product

$$
\tilde{H}^{n}(F \circ G ; \mathbf{A}) \otimes \tilde{H}_{p}(G ; \mathbf{B}) \rightarrow \tilde{H}^{n-p}(F ; \mathbf{C})
$$

It is easy to check that if $F=\Sigma_{X}$ and $G=\Sigma_{Y}$ this slant product coincides up to sign with the usual one.

9. The cross-product and the cup product

We can define a cross-product

$$
\widetilde{H}^{p}(F ; \mathbf{A}) \otimes H^{q}(G ; \mathbf{B}) \rightarrow \tilde{H}^{p+q}(F \circ G ; \mathbf{C})
$$

via a pairing

$$
\psi:(D F(\mathbf{A}), D G(\mathbf{B})) \rightarrow D(F \circ G)(\mathbf{C})
$$

given by the following formula. Let $T: F \rightarrow \Sigma_{A_{p}}, T^{\prime}: G \rightarrow \Sigma_{B_{q}}$. Then

$$
\psi_{p, q}\left(T, T^{\prime}\right): F \circ G \rightarrow \Sigma_{c_{p+q}}
$$

is the composition

$$
F \circ G \xrightarrow{T * G} \Sigma_{A_{p}} \circ G \xrightarrow{\Sigma_{A p} * T^{\prime}} \Sigma_{A_{p}} \circ \Sigma_{B_{q}} \simeq \Sigma_{A_{p} \wedge B_{q}} \xrightarrow{\Sigma_{\left(f_{p, q}\right)}} \Sigma_{C_{p+q}}
$$

As for the slant product, this cross-product coincides up to sign with the usual one when $F=\Sigma_{X}$ and $G=\Sigma_{Y}$.

Moreover, if $\mathbf{B}=\mathbf{C}=\mathbf{A}$, i.e. if we have a pairing $\mathbf{f}:(\mathbf{A}, \mathbf{A}) \rightarrow \mathbf{A}$ and if we have a natural transformation $\sigma: F \rightarrow F \circ F$, we can define a cup product as the composition

$$
\widetilde{H}^{p}(F ; \mathbf{A}) \otimes \widetilde{H}^{q}(F ; \mathbf{A}) \rightarrow \widetilde{H}^{p+q}(F \circ F ; \mathbf{A}) \xrightarrow{\sigma^{*}} \widetilde{H}^{p+q}(F ; \mathbf{A})
$$

Then we have the following result: If \mathbf{A} is a spectrum of Eilenberg Mac Lane spaces $K(A, n)$ (or any spectrum which behaves like a ring with unit) where A is a ring with unit and if F is a cotriple, then the cup product makes $\tilde{H}^{*}(F ; \mathbf{A})$ a graded ring with unit.

10. Relations with Spanier-Whitehead duality

An n-duality map between two connected polyhedra X and Y has been defined by Spanier as a continuous map $u: X \wedge Y \rightarrow S^{n}$ such that the slant product $u^{*} S_{n} / H_{q}(X) \rightarrow H^{n-q}(Y)$ is an isomorphism, S_{n} being a generator of $H^{n}\left(S^{n}\right)$ (see [7, p. 338]). Moreover, G. W. Whitehead has shown that if u is such a duality map, then for any spectrum A,

$$
u^{*} s / H_{q}(X ; \mathbf{A}) \rightarrow H^{n-q}(Y ; \mathbf{A})
$$

is an isomorphism, where s is a generator of $H^{n}\left(S^{n} ; \mathbf{S}\right)$ and \mathbf{S} is the spectrum of spheres (see [8, p. 281, Corollary 8.2]).

Now the map $u: X \wedge U \rightarrow S^{n}$ induces a natural transformation

$$
\Sigma(u): \Sigma_{X} \circ \Sigma_{Y} \rightarrow \Sigma_{S^{n}}=\Sigma^{n}
$$

Call $\omega: \Sigma_{Y} \rightarrow \Omega_{X} \circ \Sigma^{n}$ the adjoint natural transformation.
Then we can show the following: u is an n-duality map if and only if ω induces an isomorphism in homology and cohomology for all spectra of coefficients.

References

1. A. L. Blakers and W. S. Massey, On the homotopy groups of a triad II, Ann. of Math., vol. 55 (1952), pp. 192-201.
2. D. B. Fuks, Eckmann-Hilton duality and the theory of functors in the category of topological spaces, Russian Math. Surveys (2), vol. 21, (1966), pp. 1-33.
. - , Natural maps of functors in the category of topological spaces, Math. Sb. vol. 62 (1963), pp. 160-179.
3. D. B. Fuks and A. S. Švarc, On the homotopy theory of functors in the category of topological spaces, Soviet Math. Dokl. vol. 3 (1962), p. 144.
4. P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965.
5. F. E. J. Linton, Autonomous categories and duality of functors, J. Algebra, vol. 2 (1965), pp. 315-249.
6. E. Spanier, Function spaces and duality, Ann. of Math., vol. 70 (1959), pp. 338-378.
7. G. W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc., vol. 102 (1962), pp. 227-283.

University of Ottawa
Ottawa, Canada

[^0]: Received December 15, 1968.
 ${ }^{1}$ The author was supported by a Hydro-Quebec graduate fellowship.

