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MAPS ON NONCOMMUTATIVE ORLICZ SPACES

LOUIS E. LABUSCHAGNE AND W�LADYS�LAW A. MAJEWSKI

Abstract. A generalization of the Pistone–Sempi argument,
demonstrating the utility of noncommutative Orlicz spaces, is

presented. In particular, regular quantum statistical systems are

described. The question of lifting positive maps defined on von

Neumann algebra to maps on corresponding noncommutative Or-
licz spaces is discussed. In particular, we describe those Jor-
dan ∗-morphisms on semifinite von Neumann algebras which in

a canonical way induce quantum composition operators on non-
commutative Orlicz spaces. Consequently, it is proved that the

framework of noncommutative Orlicz spaces is well suited for an

analysis of a large class of interesting noncommutative dynamical
systems.

1. Introduction

This article is devoted to a study of maps on noncommutative Orlicz spaces.
Noncommutative Orlicz spaces can be defined either in a very algebraic way
(see [Kun], [ARZ]) or employing Banach space geometry (see [DDdP1]). The
second approach based on the concept of Banach Function Spaces, among
other properties, readily indicates similarities with the classical origins as well
as clarifies why Orlicz spaces, being a special case of rearrangement-invariant
spaces, are well suited for interpolation techniques. As these features are
important for our analysis, the second approach is taken.

Section 2 consists of some preliminaries and is expository. In Section 3,
noncommutative regular statistical models are defined and a noncommutative
generalization of the Pistone–Sempi theorem is proved. Composition opera-
tors are introduced in Section 4. Section 5 is devoted to detailed analysis
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of positive maps on von Neumann algebras. We prove that unital pure CP
maps and a large class of Jordan morphisms induce bounded maps on non-
commutative Orlicz spaces. A characterization of Jordan morphisms which
induce composition operators is given in Section 6. Since the described maps
can be considered as archetypes of dynamical maps for noncommutative reg-
ular statistical models both Sections, 5 and 6, can be treated as the first step
towards the foundation of the theory of noncommutative dynamical systems
associated with regular statistical models. On the other hand, the main re-
sult of Section 6 (see Theorem 6.1) can be considered as a highly nontrivial
noncommutative counterpart of the Banach–Lamperti theorem.

2. Preliminaries

General von Neumann algebraic notation will be based on that of [BrR],
[Tak] with M denoting a von Neumann algebra and 1 the identity element
thereof. As regards Lp-spaces we will use [Tp] and [FK] as basic references for
the noncommutative context. In this paper, we will restrict attention to the
case of semifinite von Neumann algebras. The fns trace of such an algebra M
will be denoted by τM = τ . The projection lattice of a von Neumann algebra

M will be denoted by P(M).
By the term an Orlicz function we understand a convex function ϕ : [0,

∞) → [0, ∞] satisfying ϕ(0) = 0 and limu→∞ ϕ(u) = ∞, which is neither iden-
tically zero nor infinite valued on all of (0, ∞), and which is left continuous
at bϕ = sup{u > 0 : ϕ(u) < ∞}. The constant aϕ = inf{u > 0 : ϕ(u) > 0} also
plays an important role in studying Orlicz functions. It is worth pointing out
that any Orlicz function must also be increasing, and continuous on [0, bϕ].

Each such function induces a complementary Orlicz function ϕ∗ which is
defined by ϕ∗(u) = supv>0(uv − ϕ(v)). The formal “inverse” ϕ−1 : [0, ∞) →
[0, ∞] of an Orlicz function is defined by the formula

ϕ−1(t) = sup
{
s : ϕ(s) ≤ t

}
.

Denoting this function by ϕ−1 is of course just a notational convention for
Orlicz functions. It is only really in the case where aϕ = 0 and bϕ = ∞ that
it is an inverse function in the true sense of the word. (See also Lemma 6.7.)

Let L0(X,Σ,m) be the space of measurable functions on some σ-finite
measure space (X,Σ,m). The Orlicz space Lϕ(X,Σ,m) associated with ϕ is
defined to be the set

Lϕ =
{
f ∈ L0 : ϕ

(
λ|f |

)
∈ L1 for some λ = λ(f) > 0

}
.

This space turns out to be a linear subspace of L0 which becomes a Banach
space when equipped with the so-called Luxemburg–Nakano norm

‖f ‖ϕ = inf
{
λ > 0 :

∥∥ϕ
(

|f |/λ
)∥∥

1
≤ 1

}
.
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An equivalent norm (the Orlicz norm in Amemiya form) is given by

‖f ‖0
ϕ = inf

k>0

(
1 +

∥∥ϕ
(
k|f |

)∥∥
1

)
/k.

We say that ϕ satisfies Δ2 for all u if there exists a positive constant K
such that ϕ(2u) ≤ Kϕ(u) for all u > 0. In such a case(

Lϕ, ‖ · ‖ϕ

)∗ =
(
Lϕ∗

, ‖ · ‖0
ϕ∗

)
and

(
Lϕ, ‖ · ‖0

ϕ

)∗ =
(
Lϕ∗

, ‖ · ‖ϕ∗
)
.

Let ϕ be a given Orlicz function. In the context of semifinite von Neumann
algebras M equipped with an fns trace τ , the space of all τ -measurable op-
erators M̃ (equipped with the topology of convergence in measure) plays the
role of L0. In the specific case where ϕ is a so-called Young’s function (i.e.,
a map ϕ : R → [0, ∞] having the properties of Orlicz function with additional
symmetry ϕ(x) = ϕ(−x)), Kunze [Kun] used this identification to define the
associated noncommutative Orlicz space to be

Lϕ(M, τ) =
∞⋃

n=1

n
{
f ∈ M̃ : τ

(
ϕ
(

|f |
))

≤ 1
}

and showed that this too is a linear space which becomes a Banach space
when equipped with the Luxemburg–Nakano norm

‖f ‖ϕ = inf
{
λ > 0 : τ

(
ϕ
(

|f |/λ
))

≤ 1
}
.

Using the linearity it is not hard to see that

Lϕ(M, τ) =
{
f ∈ M̃ : τ

(
ϕ
(
λ|f |

))
< ∞ for some λ = λ(f) > 0

}
.

Thus there is a clear analogy with the commutative case.
Given an element f ∈ M̃ and t ∈ [0, ∞), the generalised singular value

μt(f) is defined by μt(f) = inf{s ≥ 0 : τ(1 − es(|f |)) ≤ t} where es(|f |), s ∈ R,
is the spectral resolution of |f |. The function t → μt(f) will generally be
denoted by μ(f). For details on the generalised singular value, see [FK].
(This directly extends classical notions where for any f ∈ L∞(X,Σ,m), the
function (0, ∞) → [0, ∞] : t → μt(f) is known as the decreasing rearrangement
of f .) We proceed to briefly review the concept of a Banach Function Space of
measurable functions on (0, ∞) (see [DDdP1]). A function norm ρ on L0(0, ∞)
is defined to be a mapping ρ : L0

+ → [0, ∞] satisfying
• ρ(f) = 0 iff f = 0 a.e.
• ρ(λf) = λρ(f) for all f ∈ L0

+, λ > 0.
• ρ(f + g) ≤ ρ(f) + ρ(g) for all f, g ∈ L0

+.
• f ≤ g implies ρ(f) ≤ ρ(g) for all f, g ∈ L0

+.
Such a ρ may be extended to all of L0 by setting ρ(f) = ρ(|f |), in which case
we may then define Lρ(0, ∞) = {f ∈ L0(0, ∞) : ρ(f) < ∞}. If now Lρ(0, ∞)
turns out to be a Banach space when equipped with the norm ρ(·), we refer
to it as a Banach Function Space. If ρ(f) ≤ lim infn ρ(fn) whenever (fn) ⊂ L0

converges almost everywhere to f ∈ L0, we say that ρ has the Fatou Property.
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(This is equivalent to the requirement that ρ(fn) ↑ ρ(f) whenever 0 ≤ fn ↑ f
a.e. [AB, Theorem 11.4].) If less generally this implication only holds for
(fn) ∪ {f } ⊂ Lρ, we say that ρ is lower semi-continuous. If further the situation
f ∈ Lρ, g ∈ L0 and μt(f) = μt(g) for all t > 0, forces g ∈ Lρ and ρ(g) = ρ(f),
we call Lρ rearrangement invariant (or symmetric). (The concept of a Banach
function norm can of course in a similar fashion equally well be defined for
L0(X,Σ, ν), where (X,Σ, ν) is an arbitrary measure space.)

Using the above context Dodds, Dodds and de Pagter [DDdP1] formally
defined the noncommutative space Lρ(M̃) to be

Lρ(M̃) =
{
f ∈ M̃ : μ(f) ∈ Lρ(0, ∞)

}
and showed that if ρ is lower semicontinuous and Lρ(0, ∞) rearrangement-
invariant, Lρ(M̃) is a Banach space when equipped with the norm ‖f ‖ρ =
ρ(μ(f)). The space Lρ(M̃) is said to be fully symmetric if for any f ∈ Lρ(M̃)
and g ∈ M̃ the property∫ α

0

μt

(
|g|

)
dt ≤

∫ α

0

μt

(
|f |

)
dt for all α > 0

ensures that g ∈ Lρ(M̃) with ρ(g) ≤ ρ(f). Now for any Orlicz function ϕ,
the Orlicz space Lϕ(0, ∞) is known to be a rearrangement invariant Banach
Function space with the norm having the Fatou Property [BS, Theorem 4.8.9].
Thus on selecting ρ to be one of ‖ · ‖ϕ or ‖ · ‖0

ϕ, the very general framework
of Dodds, Dodds and de Pagter presents us with an alternative approach to
realising noncommutative Orlicz spaces. We pause to show that this approach
canonically contains the spaces of Kunze [Kun]. Recall that any Orlicz func-
tion is in fact continuous, nonnegative and increasing on [0, bϕ). So if (as is
the case in [Kun]) we assume that bϕ = ∞, then for any λ > 0 and any f ∈ M̃,
we always have that

τ

(
ϕ

(
1
λ

|f |
))

=
∫ ∞

0

ϕ

(
1
λ

μt

(
|f |

))
dt

by [FK, Corollary 2.8]. The equivalence of the two approaches in this setting,
is a trivial consequence of this equality.

However in the case where bϕ < ∞, the equivalence of the two approaches
is not immediately obvious. If bϕ < ∞, then for any f ∈ M̃, we can always
give meaning to ϕ(μt(f)). However ϕ(|f |) may not even exist as an element
of M̃! We proceed to show that even here, the two approaches yield identical
spaces.

Lemma 2.1. Let ϕ be an Orlicz function and f ∈ M̃ a τ -measurable element
for which ϕ(|f |) is again τ -measurable. Extend ϕ to a function on [0, ∞] by
setting ϕ(∞) = ∞. Then ϕ(μt(f)) = μt(ϕ(|f |)) for any t ≥ 0. Moreover,
τ(ϕ(|f |)) =

∫ ∞
0

ϕ(μt(|f |))dt.



MAPS ON NONCOMMUTATIVE ORLICZ SPACES 1057

Proof. The second claim will follow from the first by an application of [FK,
Proposition 2.7]. To prove the first claim, we may replace M by a maximal
Abelian von Neumann subalgebra M0 to which both |f | and ϕ(|f |) are affil-
iated (see [FK, Remark 2.3(1)]). Let e be any projection in this subalgebra.
Now notice that σ(|f |) ⊂ [0, ∞).

First, suppose that ϕ is bounded on σ(|f |e). (By the Borel functional
calculus ϕ(|f |e) will then of course be bounded.) Since limu→∞ ϕ(u) = ∞,
we must then have that σ(|f |e) itself is a bounded subset of [0, ∞). Thus,
|f |e must be bounded. By spectral theory for positive elements, we now have
that ‖|f |e‖ = max{λ : λ ∈ σ(|f |e)}. Since ϕ is increasing and nonnegative on
[0, ∞), the Borel functional calculus also ensures that

ϕ
(∥∥|f |e

∥∥)
= max

{
ϕ(λ) : λ ∈ σ

(
|f |e

)}
=

∥∥ϕ
(

|f |e
)∥∥.

If ϕ is not bounded on σ(|f |e), then ‖ϕ(|f |e)‖ = sup{ϕ(λ) : λ ∈ σ(|f |e)} =
∞. We proceed to show that then ϕ(‖ |f |e‖) = ∞. If now σ(|f |e) was an
unbounded subset of [0, ∞), we would already have ‖|f |e‖ = ∞, and hence
ϕ(‖|f |e‖) = ∞ as required. Thus, let σ(|f |e) be a bounded subset of [0, ∞).
As noted previously, this forces ‖ |f |e‖ = max{λ : λ ∈ σ(|f |e)}. Since ϕ is
increasing on [0, ∞] with ϕ(0) = 0, we must have ϕ(‖|f |e‖) ≥ ϕ(λ) ≥ 0 for
any λ ∈ σ(|f |e). The fact that ϕ is unbounded on σ(|f |e) therefore forces
ϕ(‖|f |e‖) = ∞ as required. The rest follows from (cf. [FK, Remark 2.3(1),
and Lemma 2.5(iv)]): μt(g) = inf{ ‖ge‖; e ∈ M0 with τ(1 − e) ≤ t}. �

Proposition 2.2. Let ϕ be an Orlicz function and let f ∈ M̃ be given.
There exists some α > 0 so that

∫ ∞
0

ϕ(αμt(|f |))dt < ∞ if and only if there
exists β > 0 so that ϕ(β|f |) ∈ M̃ and τ(ϕ(β|f |)) < ∞. Moreover,∥∥μ(f)

∥∥
ϕ

= inf
{

λ > 0 : ϕ

(
1
λ

|f |
)

∈ M̃, τ

(
ϕ

(
1
λ

|f |
))

≤ 1
}

.

Proof. The validity of this result for the case bϕ = ∞, was noted in the
discussion preceding the lemma. Hence, let bϕ < ∞. If now there exists β > 0
so that ϕ(β|f |) ∈ M̃, then by the lemma

τ
(
ϕ
(
β|f |

))
=

∫ ∞

0

ϕ
(
βμt

(
|f |

))
dt.

The “only if” part of the first claim therefore follows. To see the converse,
suppose that

∫ ∞
0

ϕ(αμt(|f |))dt < ∞ for some α > 0. If for some t0 > 0 we had
αμt0(f) > bϕ, then of course αμt(f) ≥ αμt0(f) > bϕ for all 0 ≤ t ≤ t0, which
would force∫ ∞

0

ϕ
(
αμt

(
|f |

))
dt ≥

∫ t0

0

ϕ
(
αμt

(
|f |

))
dt =

∫ t0

0

∞ dt = ∞.

Thus, we must have αμt(f) ≤ bϕ for all 0 < t. Since t → μt(f) is right-
continuous, this means that α‖f ‖ ∞ = limt→0+ αμt(f) ≤ bϕ < ∞. So in this
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case we clearly have that f ∈ M, with ϕ( α
1+εf) ∈ M ⊂ M̃. On applying the

lemma, we conclude that

τ

(
ϕ

(
α

1 + ε
f

))
=

∫ ∞

0

ϕ

(
α

1 + ε
μt

(
|f |

))
dt(2.1)

≤
∫ ∞

0

ϕ
(
αμt

(
|f |

))
dt < ∞

as required.
To see the second claim, observe that the lemma ensures that{

λ > 0 : ϕ

(
1
λ

|f |
)

∈ M̃, τ

(
ϕ

(
1
λ

|f |
))

≤ 1
}

⊂
{

λ > 0 :
∫ ∞

0

ϕ

(
1
λ

μt

(
|f |

))
dt ≤ 1

}
.

Hence,

∥∥μ(f)
∥∥

ϕ
= inf

{
λ > 0 :

∫ ∞

0

ϕ

(
1
λ

μt

(
|f |

))
dt ≤ 1

}

≤ inf
{

λ > 0 : ϕ

(
1
λ

|f |
)

∈ M̃, τ

(
ϕ

(
1
λ

|f |
))

≤ 1
}

.

To see that equality holds, let ε > 0 be given, and select λ0 > 0 so that

∥∥μ(f)
∥∥

ϕ
≤ λ0 ≤ (1 + ε)

∥∥μ(f)
∥∥

ϕ
and

∫ ∞

0

ϕ

(
1
λ0

μt

(
|f |

))
dt ≤ 1.

But then by formula (2.1), we have that ϕ( 1
(1+ε)λ0

f) ∈ M̃, with

τ

(
ϕ

(
1

(1 + ε)λ0
f

))
≤

∫ ∞

0

ϕ

(
1
λ0

μt

(
|f |

))
dt ≤ 1.

So

inf
{

λ > 0 : ϕ

(
1
λ

|f |
)

∈ M̃, τ

(
ϕ

(
1
λ

|f |
))

< 1
}

≤ (1+ε)λ0 ≤ (1+ε)2
∥∥μ(f)

∥∥
ϕ
.

Since ε > 0 was arbitrary, we have

inf
{

λ > 0 : ϕ

(
1
λ

|f |
)

∈ M̃, τ

(
ϕ

(
1
λ

|f |
))

≤ 1
}

≤
∥∥μ(f)

∥∥
ϕ

as required. �

We close this section by formulating one more fact regarding Orlicz spaces
that will prove to be useful later on. (This is a special case of known results
in [DDdP3].)
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Proposition 2.3. Let ϕ be an Orlicz function and ϕ∗ its complementary
function. Then Lϕ∗

(M̃) equipped with the norm ‖ · ‖0
ϕ∗ defined by

‖f ‖0
ϕ∗ = sup

{
τ
(

|fg|
)

: g ∈ Lϕ(M̃), ‖g‖ϕ ≤ 1
}
, f ∈ Lϕ∗

(M̃)

is the Köthe dual of Lϕ(M̃). That is

Lϕ∗
(M̃) =

{
f ∈ M̃ : fg ∈ L1(M, τ) for all g ∈ Lϕ(M̃)

}
.

Consequently∣∣τ(fg)
∣∣ ≤ ‖f ‖0

ϕ∗ · ‖g‖ϕ for all f ∈ Lϕ∗
(M̃), g ∈ Lϕ(M̃).

Proof. It is clear from the discussion following Corollary 2.7 of [DDdP2]
that Lϕ(M̃) is fully symmetric in the sense defined there. But by [DDdP2,
Corollary 2.6], Lϕ(M̃) is then properly symmetric in the sense defined on
p. 737 of [DDdP3]. The claims therefore follow from [BS, Corollary 4.8.15]
and [DDdP3, Theorem 5.6]. �

3. Noncommutative regular statistical models

We begin with the definition of the classical regular model (cf. [PS]). Let
{Ω,Σ, ν} be a measure space; ν will be called the reference measure. The set
of densities of all the probability measures equivalent to ν will be called the
state space Sν , that is,

(3.1) Sν =
{
f ∈ L1(ν) : f > 0 ν-a.s.,E1(f) = 1

}
,

where, in general, Eg(f) ≡
∫

f · g dν.

Definition 3.1. The classical statistical model consists of the measure
space {Ω,Σ, ν}, state space Sν , and the set of measurable functions L0(Ω,
Σ, ν).

As a next step, we wish to select regular random variables, i.e. random vari-
ables having all finite moments. To this end, we define the moment generating
functions as follows: fix f ∈ Sν , take a real random variable u on (Ω,Σ, f dν)
and define:

(3.2) ûf (t) =
∫

exp(tu)f dν, t ∈ R.

In the sequel, we will need the following properties of û (for details, see
Widder, [Wid]):

(1) û is analytic in the interior of its domain,
(2) its derivatives are obtained by differentiating under the integral sign.
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Now the following definition is clear:

Definition 3.2. The set of all random variables such that
(1) ûf is well defined in a neighborhood of the origin 0,
(2) the expectation of u is zero,
will be denoted by Lf and called the regular random variables.

We emphasize that all the moments of every u ∈ Lf exist and they are
the values at 0 of the derivatives of ûf . In other words, we have selected all
random variables such that for each u, any moment Ef (un) is well defined.
The set of regular random variables having zero expectation is characterized
by:

Theorem 3.3 (Pistone–Sempi, [PS]). Lf is the closed subspace of the Or-
licz space Lcosh −1(f · ν) of zero expectation random variables.

Before proceeding with the noncommutative generalization of regular ran-
dom variables, we want to make two remarks. Firstly, the above result says
that classical Orlicz spaces are well motivated in the context of probability
calculus. Secondly, we kept the condition “the expectation of u is zero” only
to follow the original Pistone–Sempi argument.

Now, we turn to the noncommutative counterpart of the presented scheme.
Let (M, τ) be a pair consisting of a semifinite von Neumann algebra and fns
trace. Define (see [Tak], vol. I):
(1) nτ = {x ∈ M : τ(x∗x) < +∞}.
(2) (definition ideal of the trace τ ) mτ = {xy : x, y ∈ nτ }.
(3) ωx(y) = τ(xy), x ≥ 0.

One has (for details see Takesaki, [Tak], vol. I)
(1) if x ∈ mτ , and x ≥ 0, then ωx ∈ M+

∗ .
(2) If L1(M, τ) stands for the completion of (mτ , ‖ · ‖1), then L1(M, τ) is

isometrically isomorphic to M ∗.
(3) M ∗,0 ≡ {ωx : x ∈ mτ } is norm dense in M ∗.

Finally, denote by M+,1
∗ (M+,1

∗,0 ) the set of all normalized normal positive
functionals in M ∗ (in M ∗,0 respectively). Now, performing a “quantization”
of Definition 3.1 we arrive at

Definition 3.4. The noncommutative statistical model consists of a quan-
tum measure space (M, τ), “quantum densities with respect to τ” in the form
of M+,1

∗,0 , and the set of τ -measurable operators M̃.

In the framework of the noncommutative statistical model the regular (non-
commutative) random variables can be defined in the following way:

Definition 3.5.

(3.3) Lquant
x =

{
g ∈ M̃ : 0 ∈ D

(
μ̂g

x(t)
)0

, x ∈ m+
τ

}
,
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where D(·)0 stands for the interior of the domain D(·) and

(3.4) μ̂g
x(t) =

∫
exp

(
tμs(g)

)
μs(x)ds, t ∈ R.

(Notice that the requirement that 0 ∈ D(μ̂g
x(t))0, presupposes that the trans-

form μ̂g
x(t) is well-defined in a neighbourhood of the origin.)

We remind that above and in the sequel μ(g) (μ(x)) stands for the function
[0, ∞) � t → μt(g) ∈ [0, ∞] ([0, ∞) � t → μt(x) ∈ [0, ∞] respectively).

To comment on Definition 3.5, we should firstly clarify the role of μ(x). To
this end we note that for y ∈ M, y ≥ 0, and x ∈ mτ , x ≥ 0, one has

(3.5) ωx(y) ≡ τ(xy) =
∫ ∞

0

μt(xy)dt ≤
∫ ∞

0

μt(x)μt(y)dt

and

(3.6) ωx

(
yn

)
≡ τ

(
xyn

)
≤

∫ ∞

0

μt

(
yn

)
μt(x)dt ≤

∫ ∞

0

μt(y)nμt(x)dt,

where we have used the Fack–Kosaki results [FK] (Lemma 2.5, Theorem 4.2)
on generalized singular values.

Moreover, [0, ∞) � t → μt(x) is a positive function such that μt(x) −→ ‖x‖
as t ↓ 0, and for x ∈ m+

τ corresponding to a state, one has

(3.7)
∫ ∞

0

μt(x)dt = τ(x) ≡ τ(x1) ≡ ωx(1) = 1.

Therefore, the function [0, ∞) � t → μt(x) ∈ [0, ∞) plays the role of a density
of a probability measure.

Secondly, let us turn to the role of the Laplace transform. It is an easy
observation that the properties of the Laplace transform offers the existence
of

∫
μt(y)nμt(x)dt for any n ∈ N. The Fack–Kosaki results [FK], Lemma 2.5

and Theorem 4.2, further lead to

ωx

(
yn

)
= τ

(
xyn

)
≤ τ

(∣∣xyn
∣∣)

=
∫ ∞

0

μt

(
xyn

)
dt

≤
∫ ∞

0

μt

(
yn

)
μt(x)dt

≤
∫ ∞

0

μt(y)nμt(x)dt

< ∞.

But this gives the existence of the moments of the noncommutative random
variable y.
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Definition 3.6. Let x ∈ L1
+(M, τ) and let ρ be a Banach function norm

on L0((0, ∞), μt(x)dt). In the spirit of [DDdP1], we then formally define the
weighted noncommutative Banach function space Lρ

x(M̃) to be the collection
of all f ∈ M̃ for which μ(f) belongs to Lρ((0, ∞), μt(x)dt). For any such f,
we write ‖f ‖ρ = ρ(μ(f)).

Theorem 3.7. Let x ∈ L1
+(M, τ). Let ρ be a rearrangement-invariant Ba-

nach function norm on L0((0, ∞), μt(x)dt) which satisfies the Fatou property
and properties (P4) and (P5) on p. 2 of [BS]. Then Lρ

x(M̃) is a linear space
and ‖ · ‖ρ a norm. Equipped with the norm ‖ · ‖ρ, Lρ

x(M̃) is a Banach space
which injects continuously into M̃.

In the context of L0((0, ∞), μt(x)dt), properties (P4) and (P5) of [BS]
require that for each Borel subset E of (0, ∞), we must have ρ(χE) < ∞,
and that there exists a constant CE,ρ such that

∫
E

fμt(x)dt ≤ CE,ρρ(f) for
all L0((0, ∞), μt(x)dt). The addition of these fairly natural restrictions are
in part what enables one to obtain a very tight theory of Banach Function
Spaces in more general settings than just L0(0, ∞). (See the discussion at the
top of page 2 of [BS].)

Proof of Theorem 3.7. We will not give a detailed proof, but only indicate
how the argument in Section 4 of [DDdP1] may be adapted to the present
context. For the sake of convenience, we will assume that τ(x) = 1.

Since t → μt(x) is decreasing, right-continuous on [0, ∞), and finite-valued
on (0, ∞), it is actually Riemann-integrable on any bounded sub-interval of
(0, ∞), and zero-valued on [tx, ∞) where tx = inf{t > 0 : μt(x) = 0}. These
facts enable us to conclude that the function

Fx(t) =
∫ t

0

μs(x)ds, t ≥ 0

is continuous and strictly increasing on [0, tx), and constant on [tx, ∞). So
Fx is actually a homeomorphism from [0, tx) onto [0,1). For any measurable
function g : [0, ∞) → R and any t > 0, we therefore have∫ Fx(t)

0

g(s)ds =
∫ t

0

g
(
Fx(s)

)
μs(x)ds

by the change of variables formula (see for example p. 155 of [Tay]).
For ease of notation, we write νx for the Borel measure

νx(E) =
∫

χE(t)μt(x)dt.

Since μ(x) is nonzero on [0, tx), it is a simple matter to conclude that on
[0, tx), νx � λ and λ � νx (here λ denotes Lebesgue measure). Since νx is
a finite measure, it is in fact ε − δ absolutely continuous with respect to λ.
Using these facts, one is now able to show that νx is nonatomic. (If νx(E) �= 0,
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then so too λ(E) �= 0. Now set ε = 1
2νx(E), and select F ⊂ E ∩ [0, tx) with

0 < λ(F ) ≤ δ(ε) to see that νx is nonatomic.) Thus by [BS, Theorem 2.2.7],
νx is a resonant measure.

In view of the fact that μ(x) is decreasing, we have that Fx(t) = νx([0, t]) ≥
νx([s, s + t]) for any s, t > 0. More generally by approximating with intervals,
one can show that for any t > 0 and any Borel set E in [0, ∞) with λ(E) = t,
we have that νx(E) ≤ νx([0, t]) = Fx(t). Given some measurable function f
on [0, ∞), these facts ensure that

inf
{

‖fχE ‖ ∞ : λ
(
Ec

)
≤ t

}
≥ inf

{
‖fχE ‖ ∞ : νx

(
Ec

)
≤ Fx(t)

}
.

In other words

μ̃t(f,λ) ≥ μ̃Fx(t)(f, νx).

(The centered expressions above respectively denote the decreasing rearrange-
ment of f computed using λ and νx.)

Now if h is decreasing and right-continuous on [0, ∞), and finite valued
on (0, ∞), then more can be said. It is an exercise to see that in this case
inf{‖hχE ‖ ∞ : λ(Ec) ≤ t} = ‖hχ(t,∞)‖ ∞. (To see that “≤” holds is trivial. For
the converse note that if λ(E ∩ [0, t]) �= 0, then ‖hχE ‖ ∞ ≥ ‖hχ(t,∞)‖ ∞ by the
fact that h is decreasing.) The right-continuity of h combined with the fact
that it is decreasing, ensures that ‖hχ(t,∞)‖ ∞ = h(t). A similar argument to
the above shows that for any 0 < t < tx, we have that inf{‖hχE ‖ ∞ : νx(Ec) ≤
Fx(t)} = ‖hχ(t,∞)‖ ∞. For functions such as these, we therefore have

h(t) = μ̃t(h,λ) = μ̃Fx(t)(h, νx) for all 0 < t < tx.

Finally let a, b ∈ Lρ
x(M̃) be given. We first show that then a + b ∈ Lρ

x(M̃),
and hence that Lρ

x(M̃) is linear, before going on to conclude that ‖ · ‖ρ is a
norm. By Theorem 3.4 of [DDdP1], we have that∫ t

0

μ̃s

(
μ(a + b) − μ(b), λ

)
ds ≤

∫ t

0

μ̃s

(
μ(a), λ

)
ds =

∫ t

0

μt(a)ds

for any t > 0. If now we apply Hardy’s lemma [BS, Proposition 2.3.6] to the
decreasing function μ(x)χ[0,t], we may conclude that∫ t

0

μ̃s

(
μ(a + b) − μ(b), λ

)
μs(x)ds ≤

∫ t

0

μs(a)μs(x)ds

for any t > 0. Next, use the facts that μs(a) = μ̃Fx(s)(μ(a), νx) for all 0 < s <
tx, and μ̃s(μ(a + b) − μ(b), λ) ≥ μ̃Fx(s)(μ(a + b) − μ(b), νx), to get∫ t

0

μ̃Fx(s)

(
μ(a + b) − μ(b), νx

)
μs(x)ds ≤

∫ t

0

μ̃Fx(s)

(
μ(a), νx

)
μs(x)ds
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for any tx ≥ t > 0. Since Fx is a homeomorphism from [0, tx) to [0,1), the
change of variables formula now ensures that∫ r

0

μ̃s

(
μ(a + b) − μ(b), νx

)
ds ≤

∫ r

0

μ̃s

(
μ(a), νx

)
ds

for any 1 > r > 0. (Simply let Fx(t) = r.) Since νx is a probability mea-
sure, we in fact have that μ̃s(μ(a + b) − μ(b), νx) = μ̃s(μ(a), νx) = 0 for all
s ≥ 1. Hence the previous centered inequality actually holds for all r > 0.
We may now finally apply [BS, Theorem 2.4.6] to conclude that ρ(μ(a +
b) − μ(b)) ≤ ρ(μ(a)). But since μ(a), μ(b) ∈ Lρ((0, ∞), μt(x)dt), this inequal-
ity surely forces μ(a + b) − μ(b) ∈ Lρ((0, ∞), μt(x)dt), and hence μ(a + b) ∈
Lρ((0, ∞), μt(x)dt). Thus by definition a + b ∈ Lρ

x(M̃), ensuring that Lρ
x(M̃)

is linear. (The fact that αa ∈ Lρ
x(M̃) whenever a ∈ Lρ

x(M̃) is easy to ver-
ify.) But then this same inequality also ensures that ‖a + b‖ρ ≤ ‖a‖ρ + ‖b‖ρ,
and hence that ‖ · ‖ρ is a semi-norm on Lρ

x(M̃). Now observe that if ‖a‖ρ =
ρ(μ(a)) = 0, then μ(a) = 0 νx-a.e. But since we have that λ � νx on [0, tx),
this fact forces μt(a) = 0 for λ-almost every t in [0, tx). The right-continuity
of t → μt(a) then ensures that ‖a‖ = limt↓0 μt(a) = 0, and hence that a = 0.
Thus ‖ · ‖ρ is in fact a norm.

The rest of the proof runs along similar lines as the argument in Section 4
of [DDdP1]. �

Finally, we wish to prove a noncommutative version of the Pistone–Sempi
theorem.

Theorem 3.8. The set Lquant
x coincides with the closed subspace of the

weighted Orlicz space Lcosh −1
x (M̃) ≡ Lψ

x (M̃) (where ψ = cosh −1) of noncom-
mutative random variables with a fixed expectation.

In the above, the noncommutative space Lψ
x (M̃), is the Banach Function

space defined by f ∈ Lψ
x (M̃) ⇔ μ(f) ∈ Lψ((0, ∞), μt(x)dt). This space is a

quantization (in two steps) of the space Lcosh −1(f · ν) in the Pistone–Sempi
theorem, in the following sense: Proceeding from x ∈ mτ , we view the de-
creasing rearrangement t → μt(x) of x as some sort of density of a probability
measure, and use this density to produce the classical weighted Orlicz space
Lψ((0, ∞), μt(x)dt). By [BS, Theorem 4.8.9], the Luxemburg norm ‖ · ‖cosh −1

on this Orlicz space is a rearrangement invariant function norm satisfying
the Fatou Property. These facts can also be seen directly. For example to
see that the norm is rearrangement invariant, we may simply apply Proposi-
tion 2.2 to the von Neumann algebra L∞((0, ∞), νx) equipped with the fns
trace f →

∫ ∞
0

f(t)μt(x)dt. It is moreover easy to see that 0 ≤ fn ↑ f μt(x)dt-
a.e. if and only if 0 ≤ (cosh −1)(fn) ↑ (cosh −1)(f) μt(x)dt-a.e. The fact that
then ρ(fn) ↑ ρ(f), therefore follows from the usual monotone convergence the-
orem. Since this is a quantized version of a weighted Orlicz space on (0, ∞),
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results like Proposition 2.2 do not apply. (The extent to which this space
resembles spaces like Lψ(M̃), will be discussed at a later stage.)

The space Lψ
x (M̃) is then the noncommutative version of Lψ((0, ∞),

μt(x)dt), defined in the spirit of the prescription originally given in [DDdP1].
The fact that Lψ

x (M̃) is a concrete well-defined Banach space, follows from
Theorem 3.7. The primary difference between the space constructed here, and
the version discussed in [DDdP1], is that Lebesgue measure has been replaced
with the measure μt(x)dt.

Proof of Theorem 3.8. Assume g ∈ Lψ
x (M̃) with ψ ≡ cosh −1. Then μ(g)

belongs to Lψ((0, ∞), μt(x)dt). Hence, there exists a > 0 such that
Ex( 1

2 (exp(μ(g)
a ) + exp( −μ(g)

a )) − 1)) < ∞, where Ex(φ) ≡
∫ ∞
0

φ(t)μt(x)dt.
However, as Ex(−1) =

∫ ∞
0

(−1)μt(x))dt < ∞, we will then have that
Ex((exp(μ(g)

a ) + exp( −μ(g)
a ))) < ∞. But as ( −1

a , 1
a ) � t → etμ(g) is convex then

(3.8) eα( −1
a )μ(g)+(1−α) 1

a μ(g) ≤ αe
−μ(g)

a + (1 − α)e
μ(g)

a

with α ∈ [0,1]. Thus

(3.9)
∫ ∞

0

esμ(g)μt(x)dt < ∞

for s ∈ ( −1
a , 1

a ). Consequently, g ∈ Lquant
x .

Conversely, let g ∈ Lquant
x . Then, there exists s such that both s and −s

are in the domain of μ̂t(g). This means that

(3.10) Ex

(
esμ(g) + e−sμ(g)

)
< ∞.

Consequently

(3.11) μt(g) ∈ Lψ
(
R+, μt(x)dt

)
but this means g ∈ Lψ

x (M̃). �

Therefore, to get the noncommutative regular statistical model, in Def-
inition 3.4, one should restrict M̃ to {Lquant

x }. Furthermore, we have the
following corollary.

Corollary 3.9. There exists a quantum analog of the Pistone–Sempi the-
orem. Moreover, noncommutative Orlicz spaces are as well motivated for a
description of noncommutative regular statistical models as the classical Orlicz
spaces for classical regular statistical models.

We hasten to point out that the idea of the above noncommutative Pistone–
Sempi theorem is not to find a theorem from which the original can be exactly
recovered, but rather one which is similar in spirit, and which is suited to non-
commutative analysis. To illustrate the point, we pause for a minute to con-
sider the implications for the commutative case where say M = L∞(X,Σ, �).
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Let ηx be the measure defined by ηx(E) =
∫

χExd� on (X,Σ). Although both
spaces L1

x(M̃) and L1(X,Σ, ηx) are rearrangement invariant in the sense of
[BS], the weighted space L1

x(M̃) given by Theorem 3.7 has the added advan-
tage of also being rearrangement invariant with respect to the a priori given
measure �. This difference and its consequences stem from the fact that the
definition of L1

x(M̃) is directly based on the Dodds, Dodds, de Pagter scheme.
Such a quantization based on the DDdP approach seems to us to be a very
natural one.

To fully clarify the role of μt(x), we end this section with

Proposition 3.10. For any 0 �= x ∈ L1
+(M̃), the quantity

τx(f) =
∫ ∞

0

μt(f)μt(x)dt, f ∈ M+

(used implicitly in Theorem 3.8) is almost a normal finite faithful trace in the
sense that
• τx is subadditive, positive-homogeneous, and satisfies τx(a∗a) = τx(aa∗) for

every a ∈ M;
• τx(1) < ∞, and for any a ∈ M+ the situation τx(a) = 0 forces a = 0;
• supn τx(fn) = τx(f) for every sequence {fn} in M+ increasing to some

f ∈ M+.

Proof. Note that by [FK, Lemma 2.5], we have that μt(f ∗f) = μt(|f |)2 =
μt(f)2 = μt(f ∗)2 = μt(|f ∗ |)2 = μt(ff ∗) and also that μt(αf) = |α|μt(f) for
each t > 0. This is enough to ensure that τx is positive-homogeneous, and
satisfies the trace property τx(a∗a) = τx(aa∗). Next let a, b ∈ M+ be given.
From the proof of [DDdP1, Theorem 3.4], it is then clear that

∫ t

0
|μs(a + b) −

μs(a)| ds ≤
∫ t

0
μs(b)ds for any t > 0 (simply apply what is proved there to the

set T = [0, t]). In view of the fact that t → μt(x) is decreasing, we may then
apply Hardy’s lemma [BS, Theorem 2.3.6], to conclude that

τx(a + b) − τx(a) =
∫ ∞

0

(
μt(a + b) − μt(a)

)
μt(x)dt

≤
∫ ∞

0

∣∣μt(a + b) − μt(a)
∣∣μt(x)dt

≤
∫ ∞

0

μt(b)μt(x)dt

= τx(b).

Let α = τ(1). Using [FK, Lemma 2.6], the fact τx is finite, is then a simple
consequence of the observation that τx(1) =

∫ α

0
μt(1)μt(x)dt =

∫ α

0
μt(x)dt =

τ(x) < ∞.
Given any f ∈ M+, it is clear that if 0 = τx(f) =

∫ ∞
0

μt(f)μt(x)dt, then
μt(f)μt(x) = 0 for all t > 0. (Use the fact that t → μt(f)μt(x) is decreasing.)
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Since t → μt(x) is decreasing, we may conclude from the inequality 0 < τ(x) =∫ ∞
0

μt(x)dt, that there exists some δ > 0 so that 0 �= μt(x) for all 0 ≤ t < δ.
But then we must have 0 = μt(f) for all 0 < t < δ. The fact that t → μt(f)
is decreasing, ensures that μt(f) = 0 for all t > 0, and hence that ‖f ‖ =
limt→0+ μt(f) = 0.

It remains to verify the claim about increasing sequences. To this end,
suppose that we are given a sequence {fn} ⊂ M increasing to some f ∈ M.
Since μt(fn) ≤ μt(f) for each n and each t, it is a simple matter to conclude
from this that limsupn τx(fn) ≤ τx(f). On the other hand [DDdP3, Propo-
sition 1.7] ensures that μt(f) = lim infn μt(fn). By the usual Fatou’s lemma,
this in turn enables us to conclude that τx(f) =

∫ ∞
0

lim infn μt(fn)μt(x)dt ≤
lim infn

∫ ∞
0

μt(fn)μt(x)dt = lim infn τx(fn). We then clearly have that τx(f) =
limn τx(fn) = supn τx(fn). �

In the case where τx does happen to be a normal trace, we may use this
quantity to obtain an alternative description of the space Lcosh −1

x (M̃).

Remark 3.11. Let τx be as before, and suppose that τ is finite, and τx

a normal trace. Then the weighted noncommutative Banach Function space
Lcosh −1

x (M̃, τ) agrees up to isometry with the noncommutative Orlicz space
Lcosh −1(M̃, τx). (Here we have deliberately modified our usual notational
convention, to in each case clearly show which trace is being used in the
construction of the particular noncommutative space.)

Since both τx and τ are finite, it is clear that any operator affiliated to
M is both τ -measurable and τx-measurable (see [Tp, Proposition I.21(vi)]).
Hence, we will simply speak of measurable operators in the rest of this re-
mark. Moreover for the Orlicz function ψ = cosh −1, we have that aψ = 0
and bψ = ∞. From the discussion preceding Lemma 2.1, it is clear that for
any measurable element f , ψ(|f |) will again be measurable. By definition
(see [DDdP1]) such an f belongs to the noncommutative Banach Function
Space Lcosh −1

x (M̃, τ) if and only if t → μt(f, τ) belongs to the Orlicz space
Lcosh −1((0, ∞), μt(x)dt). But then by Proposition 2.2 and the definition of
τx,

f ∈ Lcosh −1(M, τx) ⇔ τx

(
ψ

(
α|f |

))
< ∞ for some α > 0

⇔
∫ ∞

0

μt

(
ψ

(
α|f |

))
μt(x)dt < ∞ for some α > 0

⇔
∫ ∞

0

ψ(α
(
μt(f)

)
μt(x)dt < ∞ for some α > 0

⇔ f ∈ Lcosh −1
x (M̃, τ),

where as before cosh −1 = ψ. Equality of the norms follows from the fact that
τx(ψ( 1

λ |f |)) =
∫ ∞
0

ψ( 1
λ (μt(f))μt(x)dt for each λ > 0.
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4. Defining composition operators

Before proceeding to a definition of composition operators on noncom-
mutative spaces, we briefly revise the conceptual framework in the classical
case. Given two topological vector spaces Fi(Xi) (i = 1,2) of functions defined
on sets X1 and X2 respectively, a continuous linear operator C : F1(X1) →
F2(X2) is called a composition operator if it is of the form

C(f) = f ◦ T f ∈ F1(X1)

for some transformation T : X2 → X1. In the various contexts, for example
C(p),Lp and Hp spaces, the theory of composition operators relates to the
study of differentiable, measurable, and analytic transformations respectively.
For an introduction to the general theory of composition operators see for
example [SM]. For a workable theory in a given context one should firstly be
able to distinguish those transformations which induce composition operators,
and secondly be able to distinguish those bounded linear operators which are
indeed composition operators. Subsequent to the definition of composition
operators on noncommutative spaces, we will look at the first of these issues.

Given Banach function spaces Lρi(Xi,Σi,mi) (i = 1,2) of measurable func-
tions on given measure spaces, a continuous linear operator

C : Lρ1(X1,Σ1,m1) → Lρ2(X2,Σ2,m2)

is called a (generalised) composition operator if for some Y ∈ Σ2 and some
measurable transformation T : Y → X1 (i.e. T −1(E) ∈ Σ2 whenever E ∈ Σ1)
C is of the form

C(f)(x) =
{

f ◦ T (x), x ∈ Y,
0, x ∈ X\Y,

f ∈ Lp(X1,Σ1,m1).

In this case, we will write C = CT .
In the context of von Neumann algebras, the noncommutative analogue

of a nonsingular measurable transformation is that of a normal Jordan ∗-
morphism J : M1 → M2. The following fact will be a useful tool in our quest
to define noncommutative composition operators:

Proposition 4.1 ([Lab, Proposition 4.7(i)]). Let M1, M2 be semifinite
von Neumann algebras and J : M1 → M2 a Jordan ∗-morphism. Then J

extends uniquely to a continuous Jordan ∗-morphism J̃ : M̃1 → M̃2 if and
only if τ2 ◦ J is ε − δ absolutely continuous with respect to τ1 on the projection
lattice of M1 (i.e. for any ε > 0 there exists δ > 0 such that for any projection
e ∈ P(M1) we have τ2(J(e)) < ε whenever τ1(e) < δ).

Definition 4.2. Let M1, M2 be semifinite von Neumann algebras, and
Lρ1(M̃1) and Lρ2(M̃2) two noncommutative symmetric Banach Function
spaces. Let J : M1 → M2 be a normal Jordan ∗-morphism, and τ2 ◦ J be ε − δ
absolutely continuous with respect to τ1 on the projection lattice P(M1). If
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the unique continuous extension J̃ : M̃1 → M̃2 maps Lρ1(M̃1) into Lρ2(M̃2),
we call the induced linear map Lρ1(M̃1) → Lρ2(M̃2) a composition operator
from Lρ1(M̃1) into Lρ2(M̃2), and will occasionally denote it by CJ (in def-
erence to the commutative practice).

We close this section with the observation that since Lρi(M̃i) injects con-
tinuously into M̃i [DDdP1, Lemma 4.4], the continuity of J̃ , coupled with
the closed graph theorem ensures that CJ is continuous.

5. Positive maps that induce bounded maps on Orlicz spaces

Our first theorem is a rather simple consequence of interpolation theory.

Theorem 5.1. Let M1, M2 be semifinite von Neumann algebras equipped
with fns traces τ1 and τ2 respectively, and let T : M1 → M2 be a positive map
satisfying τ2 ◦ T ≤ Cτ1 for some constant C > 0. Then for any fully symmetric
Banach function space Lρ(0, ∞), the restriction of T to M1 ∩ L1(M1, τ1)
canonically extends to a bounded map from Lρ(M̃1) to Lρ(M̃2).

Proof. Firstly note that Yeadon [Y] showed that under the conditions of
the hypothesis, the restriction of T to M1 ∩ L1(M1, τ1) canonically extends to
a bounded map from L1(M1, τ1) to L1(M2, τ2). (For a more recent version of
this result also valid for Haagerup Lp-spaces, the reader is referred to [HJX].)

The result now follows from the fact that in the language of [DDdP2], the
pair (Lρ(M̃1),Lρ(M̃2)) is an exact interpolation pair for the pair of Banach
couples ((M1,L

1(M1, τ1)), (M2,L
1(M2, τ2)). To see this let x ∈ Lρ(M̃1) and

y ∈ M2 + L1(M2, τ2) be given with y ≺≺ x. That is with∫ α

0

μt

(
|y|

)
dt ≤

∫ α

0

μt

(
|x|

)
dt for all α > 0.

Then from Corollary 2.6 of [DDdP2], it is clear that the following impli-
cations hold: x ∈ Lρ(M̃1), y ≺≺ x ⇔ μ(x) ∈ Lρ(0, ∞), μ(y) ≺≺ μ(x) ⇒ μ(y) ∈
Lρ(0, ∞) ⇔ y ∈ Lρ(M̃2). Thus, the claim follows from Corollary 2.5 of
[DDdP2]. �

Remark 5.2. From the discussion following Corollary 2.7 of [DDdP2], it is
clear that the above theorem applies in particular to noncommutative Orlicz
spaces.

By T : M → M ⊆ B(H) we denote a completely positive unital normal
map. Recall that any CP map T is of the form

(5.1) T (f) = W ∗π(f)W,

where π : M → B(L) is a ∗-normal representation of M in B(L), and W : H →
L is a linear bounded operator. It is worth pointing out that when T is
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unital, then W is an isometry. Following Arveson [A], we say that a com-
pletely positive map T : M → M is pure if, for every completely positive map
T ′ : M → M, the property T − T ′ is a completely positive map implies that
T ′ is a scalar multiple of T . It was shown by Arveson [A] that a nonzero pure
CP map T is of the form (5.1) with π being an irreducible representation. If
(as is the case here) T is a normal pure CP map, the irreducible representa-
tion π of M on B(L) will also be normal. But in this case π(M) will be both
irreducible and weak*-closed, whence π(M) = B(L).

We close this section by indicating the applicability of Theorem 5.1 to
Jordan ∗-morphisms and pure CP maps.

Proposition 5.3. Let T : M1 → M2 be a positive normal map and let B
be the weak*-closed subalgebra of M2 generated by T (M1). Then in either of
the following cases there exists an fns trace τT on M1 satisfying

τ2 ◦ T ≤ τT :

• T is a Jordan ∗-morphism for which the restriction of τ2 to T (M1) is
semifinite.

• M2 = B(H), and T is a unital pure CP map.

Proof. We first consider the case where T is a normal Jordan ∗-morphism.
Now let z be a central projection in B such that a → zT (a) is a *-homomor-
phism and a → (T (1) − z)T (a) a *-antihomomorphism. If T (a) = 0 for some
a ∈ M1, then T (ab) = zT (a)T (b) + (T (1) − z)T (b)T (a) = 0 and similarly
T (ba) = 0. Hence the kernel of T is a two-sided ideal, which is even weak*-
closed because of T ’s normality. Thus, there exists a central projection e such
that ker(T ) = eM1 (see Proposition II.3.12 of [Tak]). We now define τT on
M1 by

τT (a) = τ1(ea) + τ2

(
T

(
(1 − e)a

))
for all a ∈ M+

1 .

The centrality of e ensures that the restriction of τ1 to eM1 is an fns trace.
What remains to be done is to show that τ2(T ((1 − e)·)) is an fns trace on
(1 − e)M1. The faithfulness follows from the injectivity of T on (1 − e)M1,
whereas the normality is a consequence of the normality of both T and τ2. To
see that τ2(T ((1 − e)·)) is actually a trace, we note that for any a ∈ (1 − e)M1,

τ2

(
T

(
a∗a

))
= τ2

(
zT

(
a∗a

))
+ τ2

((
T (1) − z

)
T

(
a∗a

))
= τ2

(
zT

(
a∗)

T (a)
)
+ τ2

((
T (1) − z

)
T (a)T

(
a∗))

= τ2

(
zT (a)T

(
a∗))

+ τ2

((
T (1) − z

)
T

(
a∗)

T (a)
)

= τ2

(
zT

(
aa∗))

+ τ2

((
T (1) − z

)
T

(
aa∗))

= τ2

(
T

(
aa∗))

.

Now suppose that M2 = B(H), and that T is a normal unital pure CP map.
From the discussion preceding this proposition it is clear that T is of the form

T (f) = W ∗π(f)W,
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where π : M → B(L) is a normal ∗-homomorphism onto some B(L), and
W : H → L is an isometric injection. In the present context τT is then de-
fined by τT (a) = τ1(ea) + TrL(π((1 − e)a)) for all a ∈ M+

1 , where e is the
central projection e for which ker(T ) = eM1. If therefore, we can show that

TrH

(
W ∗ · W

)
≤ TrL(·),

the conclusion will follow from the case considered above. To this end, let
{xν } be an ONB for H. Using the fact that W ∗W = 1H, it is now an easy
exercise to show that {W (xν)} is an ONS in K ≡ W (H) ⊆ L. Hence for any
a ∈ B(L)+,

TrH

(
W ∗aW

)
=

∑
ν

〈
W ∗aW (xν), xν

〉
=

∑
ν

〈
aW (xν),W (xν)

〉
≤ TrL(a).

�

6. Describing Jordan ∗-morphisms which induce composition
operators

Given an Orlicz function ϕ and a projection e ∈ M with 0 < τ(e) < ∞, e

will then belong to Lϕ(M̃), and the Luxemburg–Nakano norm of e will be

‖e‖ϕ =
1

ϕ−1(1/τ(e))
.

To see this note that for any α > 0, ϕ(αe) = ϕ(α)e. Since for any 0 < α < bϕ,
we then have that

τ
(
ϕ(αe)

)
= ϕ(α)τ(e) < ∞,

it is clear that e ∈ Lϕ(M̃). For the claim regarding the norm estimate, we
may use Proposition 2.2 to see that

‖e‖ϕ = inf
{

λ > 0 : ϕ

(
1
λ

)
τ(e) ≤ 1

}

= inf
{

λ > 0 : ϕ

(
1
λ

)
≤ 1

τ(e)

}

=
[
sup

{
ν > 0 : ϕ(ν) ≤ 1

τ(e)

}]−1

=
1

ϕ−1(1/τ(e))
.

Throughout this section, M1, M2 will denote semifinite von Neumann al-
gebras respectively equipped with fns traces τ1, τ2. In addition J will denote
a normal Jordan ∗-morphism J : M1 → M2 for which τ2 ◦ J is a semifinite
weight on M1. (Since the modular automorphism group of τ1 is trivial, this
ensures the existence of the Radon–Nikodym derivative dτ2◦J

dτ1
as a positive

operator affiliated to M1 [PT, Theorem 5.12].) When studying those Jordan
morphisms which for a pair of Orlicz functions ϕ1, ϕ2 induce bounded linear
maps from Lϕ1(M̃1) to Lϕ2(M̃2), this restriction is entirely reasonable and
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natural. To see this, suppose for example that J was known to restrict to a
‖ · ‖ϕ1 − ‖ · ‖ϕ2 continuous map from M1 ∩ Lϕ1(M̃1) to M2 ∩ Lϕ2(M̃2) with
norm K. For any projection, e ∈ M1 with τ1(e) < ∞ and J(e) �= 0, we would
then have

0 <
1

ϕ2
−1(1/τ2(J(e)))

=
∥∥J(e)

∥∥
ϕ2

≤ K‖e‖ϕ1 < ∞.

In other words 0 < ϕ2
−1(1/τ2(J(e))) < ∞. In the case where aϕ2 = 0, bϕ2 = ∞,

an application of ϕ2 to this inequality would then yield τ2(J(e) < ∞. Thus
in this case for any projection e ∈ M1 we would then have that τ2(J(e)) < ∞
whenever τ1(e) < ∞. This is clearly sufficient to force the semifiniteness of
τ2 ◦ J . The previous centred equation can be reformulated as

1
ϕ2

−1(1/τ2(J(e)))
≤ K

1
ϕ1

−1(1/τ1(e))
.

In the case where aϕ1 = aϕ2 = 0, bϕ1 = bϕ2 = ∞, this inequality forces not just
the semifiniteness of τ2 ◦ J , but even ensures that τ2 ◦ J is ε − δ absolutely
continuous with respect to τ1.

When restricting attention to Jordan ∗-morphisms, the additional structure
we have to work with in this case, enables us to significantly sharpen the
results of the previous section for this class of maps. Our goal here is to
actually characterise those normal Jordan ∗-morphisms J : M1 → M2 which
for a given pair of “well-behaved” noncommutative Orlicz spaces Lϕ1(M̃1)
and Lϕ2(M̃2), yield composition operators from Lϕ1(M̃1) to Lϕ2(M̃2). We
point out that in the case where ϕ1 �= ϕ2, these results are new, even for
classical Orlicz spaces! In the case ϕ1 = ϕ2, the constraints on our main
theorem, are exactly the same as the results in the literature. (Compare the
second part of Theorem 2.2 of [CHKM] with the main theorem of this section.)

Theorem 6.1. Let ψ,ϕ1, ϕ2 be Orlicz functions for which ψ ◦ ϕ2 = ϕ1,
and let J : M1 → M2 be a normal Jordan ∗-morphism for which τ2 ◦ J is
semifinite on M1, and ε − δ absolutely continuous with respect to τ1.

Consider the following claims:

(1) fJ = dτ2◦J
dτ1

∈ Lψ∗
(M̃1);

(2) the canonical extension of J to a Jordan ∗-morphism from M̃1 to M̃2,
restricts to a bounded map CJ from Lϕ1(M̃1) to Lϕ2(M̃2).

The implication (1) ⇒ (2) holds in general. If ϕ2 satisfies Δ2 for all t, the two
statements are equivalent. If (1) does hold, then the norm of CJ restricted to
the self-adjoint portion of Lϕ1(M̃1), is majorised by max{1, ‖fJ ‖0

ψ∗ }.

Before proceeding with the proof of this theorem, we pause to make a
number of technical observations. Most of these are noncommutative versions
of known facts about Orlicz functions.
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Lemma 6.2. Let ϕ be an Orlicz function, and M a semifinite von Neumann
algebra with fns trace τ .

(1) If a ∈ M̃ with τ(ϕ(|a|)) < ∞, then for any β ≤ 1 we have that ϕ(β|a|) ∈ M̃
with τ(ϕ(β|a|)) ≤ τ(βϕ(|a|)). In particular given a ∈ Lϕ(M̃) with ‖a‖ϕ <

1, we have that ϕ(|a|) ∈ M̃ with τ(ϕ(|a|)) < 1.
(2) If aϕ > 0, then for any a ∈ M we have a ∈ Lϕ(M̃) with

aϕ‖a‖ϕ ≤ ‖a‖ ∞.

(3) If bϕ < ∞, then for any a ∈ Lϕ(M̃), we have a ∈ M with

bϕ‖a‖ϕ ≥ ‖a‖ ∞.

Proof.
(1) Firstly, let a ∈ M̃ be given with τ(ϕ(|a|)) < ∞. If bϕ = ∞, it is trivial

to see that then ϕ(β|a|) ∈ M̃ for any 0 ≤ β, since in that case the continuity
of ϕ on [0, ∞] and the fact that |a| ∈ M̃, is enough to force this conclusion.
If on the other hand bϕ < ∞, then we must have that bϕ ≥ ‖a‖ ∞. This may
be seen by suitably modifying the first part of the proof of Proposition 2.2.
Specifically by Lemma 2.1 we will have

τ
(
ϕ
(

|a|
))

=
∫ ∞

0

ϕ
(
μt

(
|a|

))
dt < ∞.

If for some t0 > 0, we had μt0(a) > bϕ, then of course μt(a) ≥ μt0(a) > bϕ for
all 0 ≤ t ≤ t0, which would force∫ ∞

0

ϕ
(
μt

(
|a|

))
dt ≥

∫ t0

0

ϕ
(
μt

(
|a|

))
dt =

∫ t0

0

∞ dt = ∞.

Thus, we must have μt(a) ≤ bϕ for all 0 < t. Since t → μt(f) is right-continu-
ous, this means that ‖a‖ ∞ = limt→0+ μt(a) ≤ bϕ < ∞. But then β‖a‖ ∞ < bϕ

for any β < 1. This means in particular that σ(β|a|) is contained in [0, bϕ).
The continuity of ϕ on [0, bϕ], then ensures that ϕ(β|a|) ∈ M. Thus in either
case, ϕ(β|a|) ∈ M̃ whenever 0 ≤ β < 1. If now we combine the convexity of ϕ
with the fact that ϕ(0) = 0, we see that ϕ(βt) ≤ βϕ(t) for any t ≥ 0 and any
β ≤ 1. Thus, ϕ(β|a|) ≤ βϕ(|a|). An application of the trace, now yields the
conclusion that

τ
(
ϕ
(
β|a|

))
≤ βτ

(
ϕ
(

|a|
))

< τ
(
ϕ
(

|a|
))

.

Now suppose we are given a ∈ Lϕ(M̃) with ‖a‖ϕ < 1. From the formula for
the Luxemburg–Nakano norm in Proposition 2.2, it follows that there exists
α > 1 so that ϕ(α|a|) ∈ M̃ with τ(ϕ(α|a|)) ≤ 1. It then follows from what we
have just proved that ϕ(|a|) ∈ M̃ with

1 ≥ τ
(
ϕ
(
α|a|

))
> τ

(
ϕ
(

|a|
))

.
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(2) Let aϕ > 0 and suppose that we are given b ∈ M with ‖b‖ ∞ = 1. In view
of the fact that ϕ vanishes on [0, aϕ] and that σ(aϕ|b|) ⊂ [0, aϕ], we have that
ϕ(aϕ|b|) = 0. We may now conclude from the formula for the Luxemburg–
Nakano norm in Proposition 2.2, that 1

aϕ
≥ ‖b‖ϕ. The claim follows on re-

placing b with 1
‖a‖ ∞

a.

(3) Let bϕ < ∞. Given ε > 0 and 0 �= a ∈ Lϕ(M̃), select ‖a‖ϕ ≤ α < ‖a‖ϕ +
ε so that ϕ( 1

α |a|) ∈ M̃ with τ(ϕ( 1
α |a|)) ≤ 1. Now recall that in the proof of

claim (1), we showed that when bϕ < ∞, then for any b ∈ M̃ with τ(ϕ(|b|)) <
∞, we will have bϕ ≥ ‖b‖∞. Applying this fact to 1

α |a|, yields the conclusion
that bϕ(‖a‖ϕ + ε) > bϕα ≥ ‖a‖ ∞. �

The following fact is a simple consequence of the above lemma.

Lemma 6.3. Let ϕ be an Orlicz function which satisfies Δ2 for all t, and let
M be a semifinite von Neumann algebra with fns trace τ . Then a ∈ Lϕ(M̃)
if and only if ϕ(|a|) ∈ M̃ and τ(ϕ(|a|)) < ∞.

Proof. The converse being trivial, assume that a ∈ Lϕ(M̃). If ‖a‖ϕ < 1, we
are done by Lemma 6.2. If ‖a‖ϕ ≥ 1, we may select α < 1 so that ‖α|a| ‖ϕ < 1.
Thus τ(ϕ(α|a|)) < 1 by Lemma 6.2. Since ϕ satisfies Δ2 for all t, there exists
a constant K > 0 so that ϕ(t) ≤ Kϕ(αt). Hence by the Borel functional
calculus ϕ(|a|) ≤ Kϕ(α|a|). Both Kϕ(α|a|) and ϕ(|a|) are affiliated to the
commutative von Neumann algebra generated by the spectral projections of
|a|. Given ε > 0, the τ -measurability of ϕ(α|a|) ensures that we may select
a projection e in this algebra with τ(1 − e) < ε and ϕ(α|a|)e ∈ M. But then
since 0 ≤ ϕ(|a|)e ≤ Kϕ(α|a|)e, we must have that ϕ(|a|)e ∈ M as well. Hence,
ϕ(|a|) ∈ M̃ with in addition τ(ϕ(|a|)) ≤ Kτ(ϕ(α|a|)) < ∞. �

Lemma 6.4. As before let ψ,ϕ1, ϕ2 be Orlicz functions for which ψ ◦ ϕ2 =
ϕ1. Then aϕ1 ≥ aϕ2 and bϕ1 ≤ bϕ2 .

Proof. In view of the equality ψ ◦ ϕ2 = ϕ1, we have that ϕ1(t) = 0 whenever
ϕ2(t) = 0, and also that ϕ1(t) = ∞ whenever ϕ2(t) = ∞. �

Remark 6.5. Let ψ,ϕ1, ϕ2 be Orlicz functions for which ψ ◦ ϕ2 = ϕ1, and
let J : M1 → M2 be a Jordan ∗-morphism. It is clear from the previous
two lemmas that in the case where 0 < aϕ2 ≤ bϕ2 < ∞, we must also have
0 < aϕ1 ≤ bϕ1 < ∞, which in turn ensures that the spaces Lϕ1(M̃1),Lϕ2(M̃2)
are just isomorphic copies of M1 and M2 respectively. Thus in this case J of
course trivially induces a “composition operator” from Lϕ1(M̃1) to Lϕ2(M̃2)
with no further restrictions on ϕ1 and ϕ2.

Lemma 6.6. Let ψ,ϕ1, ϕ2 be Orlicz functions for which ψ ◦ ϕ2 = ϕ1, and let
M be a semifinite von Neumann algebra with fns trace τ . For any a ∈ Lϕ1(M̃)
with ‖a‖ϕ1 < 1, we have that ϕ2(|a|) ∈ Lψ(M̃) and ‖ϕ2(|a|)‖ψ ≤ ‖a‖ϕ1 .
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Proof. Suppose that we are given a ∈ Lϕ1(M̃) and that for some α > 1 we
have that with ϕ1(α|a|) ∈ M̃, and τ(ϕ1(α|a|)) < ∞. By Lemma 2.1, this last
inequality can of course be written as∫ ∞

0

ψ
(
ϕ2

(
αμt

(
|a|

)))
dt =

∫ ∞

0

ϕ1

(
αμt

(
|a|

))
dt < ∞.

Similar observations to those employed in the proof of Lemma 6.2, suffice to
show that the above integral cannot be finite if ϕ2(αμt0(|a|)) = ∞ for some
t0 > 0. But if ϕ2(αμt(|a|)) < ∞ for every t > 0, then surely αμt(|a|) ≤ bϕ2 for
every t > 0. By the right continuity of t → μt(f), this means that α‖a‖ ∞ =
limt→0+ αμt(|a|) ≤ bϕ2 . Now if bϕ2 = ∞, ϕ2 is continuous on all of [0, ∞], thus
ensuring that ϕ2(|a|) ∈ M̃. If bϕ2 < ∞, then by the above inequality, we have
that ‖a‖∞ < α‖a‖∞ ≤ bϕ2 . The continuity of ϕ2 on all of [0, bϕ2 ] then ensures
that ϕ2 is both bounded and continuous on [0, ‖a‖∞]. Hence in this case also
ϕ2(|a|) ∈ M ⊂ M̃.

Next, note that both ψ(ϕ2(α|a|)) and ψ(αϕ2(|a|)) are affiliated to the com-
mutative von Neumann algebra generated by the spectral projections of |a|.
Moreover the convexity of ϕ2 combined with the fact that ϕ2(0) = 0, re-
veals that ϕ2(αt) ≥ αϕ2(t) for any t ≥ 0 (since α ≥ 1). Thus by the Borel
functional calculus for affiliated operators, it must follow that ψ(ϕ2(α|a|)) ≥
ψ(αϕ2(|a|)) ≥ 0. Using this inequality, we may now modify the argument
in Lemma 6.3 to show that since ψ(ϕ2(α|a|)) = ϕ1(α|a|) is τ -measurable,
ψ(αϕ2(|a|)) must also be τ -measurable. This inequality then also ensures
that τ(ψ(ϕ2(α|a|))) ≥ τ(ψ(αϕ2(|a|))).

What we have proved above ensures that{
1 > λ > 0 : ϕ1

(
1
λ

|a|
)

∈ M̃, τ

(
ϕ1

(
1
λ

|a|
))

≤ 1
}

⊂
{

λ > 0 : ψ

(
1
λ

ϕ2

(
|f |

))
∈ M̃, τ

(
ψ

(
1
λ

ϕ2

(
|f |

)))
≤ 1

}
.

If now we are given that ‖a‖ϕ1 < 1, then by the formula for the Luxemburg–
Nakano norm in Proposition 2.2, we must have that

‖a‖ϕ1 = inf
{

1 > λ > 0 : ϕ1

(
1
λ

|a|
)

∈ M̃, τ

(
ϕ1

(
1
λ

|a|
))

≤ 1
}

.

Combining this fact with the above inclusion, ensures that

‖a‖ϕ1 = inf
{

1 > λ > 0 : ϕ1

(
1
λ

|a|
)

∈ M̃, τ

(
ϕ1

(
1
λ

|a|
))

≤ 1
}

≥
{

λ > 0 : ψ

(
1
λ

ϕ2

(
|f |

))
∈ M̃, τ

(
ψ

(
1
λ

ϕ2

(
|f |

)))
≤ 1

}
=

∥∥ϕ2

(
|a|

)∥∥
ψ
. �



1076 L. E. LABUSCHAGNE AND W. A. MAJEWSKI

Lemma 6.7. Let ϕ be an Orlicz function with aϕ < bϕ, and let f : [0,
ϕ(bϕ)] → [aϕ, bϕ] be the (concave) inverse function of ϕ restricted to [aϕ, bϕ].
Then

ϕ−1(t) =
{

f(t) if 0 ≤ t ≤ ϕ(bϕ),
bϕ if t > ϕ(bϕ).

Thus

ϕ ◦ ϕ−1(t) =
{

t if 0 ≤ t ≤ ϕ(bϕ),
ϕ(bϕ) if t > ϕ(bϕ).

Proof. Exercise. �

We are now finally ready to prove our main theorem.

Proof of Theorem 6.1. By assumption τ2 ◦ J is ε − δ absolutely continu-
ous with respect to τ1. This ensures that J extends uniquely to a Jordan
∗-morphism from M̃1 to M̃2 which is continuous under the topology of con-
vergence in measure [Lab, Proposition 4.7]. We will consistently write J for
this extension.

First, suppose that fJ = dτ2◦J
dτ1

∈ Lψ∗
(M̃1), and let a ∈ Lϕ1(M̃1) be given

with a = a∗ and ‖a‖ϕ1 < 1. Our first task is to show that then J(a) ∈
Lϕ2(M̃2). Now if bϕ2 = ∞, the function ϕ2 will be continuous on all of [0, ∞].
By approximating with polynomials, we can show that then J(ϕ2(|a|)) =
ϕ2(J(|a|)). If on the other hand bϕ2 < ∞, then also bϕ1 < ∞ (Lemma 6.4).
So in this case a ∈ M1, with ‖J(|a|)‖ ∞ ≤ ‖a‖ ∞ < bϕ1 ≤ bϕ2 (Lemma 6.2).
Thus, σ(|a|), σ(J(|a|)) ⊂ [0, bϕ2). The continuity of ϕ2 on [0, bϕ2 ] therefore
ensures that ϕ2 will then be continuous and bounded on both σ(|a|) and
σ(J(|a|)). With this knowledge, we may once again approximate with poly-
nomials and use the functional calculus to conclude that in this case we also
have J(ϕ2(|a|)) = ϕ2(J(|a|)). Noting that |J(a)| = J(|a|) (since |J(a)|2 =
J(a2) = J(|a|)2), it therefore follows from Proposition 2.3 and Lemma 6.6
that

τ2

(
ϕ2

(∣∣J(a)
∣∣)) = τ2

(
ϕ2

(
J(|a|)

))
= τ2

(
J
(
ϕ2(|a|)

))
= τ1

(
f

1/2
J ϕ2

(
|a|

)
f

1/2
J

)
= τ1

(
fJϕ2

(
|a|

))
≤ ‖fJ ‖0

ψ∗
∥∥ϕ2

(
|a|

)∥∥
ψ

≤ ‖fJ ‖0
ψ∗ ‖a‖ϕ1

< ∞.

(The fourth equality in the above computation follows from [DDdP3, Propo-
sition 5.2].) Thus J maps the self-adjoint portion of Lϕ1(M̃1) (and hence all
of Lϕ1(M̃1)) into Lϕ2(M̃2). By the Closed Graph theorem, this is enough to
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ensure that J restricts to a bounded operator CJ from Lϕ1(M̃1) to Lϕ2(M̃2).
(If for some sequence {an} ⊂ Lϕ1(M̃1) we have that an → a and CJ(an) =
J(an) → b with respect to the ambient Orlicz topologies, then an → a and
J(an) → b with respect to the measure topologies as well [DDdP1]. The
fact that J acts continuously from M̃1 to M̃2 then ensures that J(a) =
b.)

We proceed to compute a more exact estimate of the norm of CJ restricted
to the self-adjoint portion of Lϕ1(M̃1). As before let a ∈ Lϕ1(M̃1) be given
with a = a∗ and ‖a‖ϕ1 < 1. For any μ ≥ max{1, ‖fJ ‖0

ψ∗ }, Lemma 6.2 ensures
that ϕ2( 1

μ |J(a)|) ∈ M̃2 with τ2(ϕ2( 1
μ |J(a)|)) ≤ τ2( 1

μϕ2(|J(a)|)). An applica-
tion of Proposition 2.3 and Lemma 6.6, then shows that

τ2

(
ϕ2

(
1
μ

∣∣J(a)
∣∣))

≤ τ2

(
1
μ

ϕ2

(∣∣J(a)
∣∣))

=
1
μ

τ2

(
ϕ2

(
J
(

|a|
)))

=
1
μ

τ2

(
J
(
ϕ2

(
|a|

)))
=

1
μ

τ1

(
fJϕ2

(
|a|

))
≤

‖fJ ‖0
ψ∗

μ
·
∥∥ϕ2

(
|a|

)∥∥
ψ

≤ 1 · ‖a‖ϕ1

< 1.

Thus, μ ∈ {λ > 0 : ϕ2( 1
λ |J(a)|) ∈ M̃2, τ2(ϕ2( 1

λ |J(a)|)) ≤ 1} whenever μ ≥
max{1, ‖fJ ‖0

ψ∗ }. From the formula for the norm in Proposition 2.2, this clearly
forces ‖CJ(a)‖ϕ2 = ‖J(a)‖ϕ2 ≤ max{1, ‖fJ ‖0

ψ∗ }. The claim follows.
Conversely assume that the canonical extension of J to a Jordan ∗-

morphism from M̃1 to M̃2, restricts to a bounded map CJ from Lϕ1(M̃1)
to Lϕ2(M̃2), and that ϕ2 satisfies Δ2 for all t. Then of course aϕ2 = 0 and
bϕ2 = ∞. By Lemma 6.7, this fact means in particular that ϕ2 and ϕ−1

2 are
proper inverses of each other which are continuous on all of [0, ∞]. Our task
is to show that the above conditions force fJ ∈ Lψ∗

(M̃1). By Proposition 2.3,
this will follow if we can show that fJ ∈ M̃1, and that fJa ∈ L1(M1, τ1) for
each a ∈ Lψ(M̃1).

The first step in verifying these facts, is to show that the canonical ex-
tension of J maps Lψ(M̃1) into L1(M̃2). To this end, let a ∈ Lψ(M̃1) be
given with a ≥ 0. By scaling a if necessary, we may assume without loss of
generality that ‖a‖ψ < 1. Since ϕ2 and ϕ−1

2 are continuous on all of [0, ∞], it
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is clear that ϕ−1
2 (a) ∈ M̃1 and ϕ−1

2 (J(a)) ∈ M̃2, with

ϕ−1
2

(
J(a)

)
= J

(
ϕ−1

2 (a)
)
, ϕ2

(
ϕ−1

2

(
J(a)

))
= J(a),

ϕ1

(
ϕ−1

2 (a)
)

= ψ
(
ϕ2 ◦ ϕ−1

2 (a)
)

= ψ(a)

by the Borel functional calculus. By Lemma 6.2, the assumption ‖a‖ψ <

1 ensures that τ1(ψ(a)) < 1. In other words τ1(ϕ1(ϕ−1
2 (a))) < 1. There-

fore, ϕ−1
2 (a) ∈ Lϕ1(M̃1). But then ϕ−1

2 (J(a)) = J(ϕ−1
2 (a)) = CJ(ϕ−1

2 (a)) ∈
Lϕ2(M̃2). By Lemma 6.3, this ensures that

τ2

(
J(a)

)
= τ2

(
ϕ2

(
ϕ−1

2

(
J(a)

)))
< ∞

and hence that J(a) ∈ L1(M2, τ2). Thus, the canonical extension of J maps
the positive part of Lψ(M̃1) into L1(M̃2). But since Lψ(M̃1)+ spans all of
Lψ(M̃1), it is trivial to conclude that J maps all of Lψ(M̃1) into L1(M̃2). As
before the fact that Lψ(M̃1) and L1(M̃2) respectively embed continuously
into M̃1 and M̃2, coupled with the fact J acts continuously from M̃1 to M̃2,
is enough to ensure that in its action from Lψ(M̃1) to L1(M̃2), the restriction
of J has a closed graph. Thus by the Closed Graph theorem, there must exist
a constant K > 0 so that

τ2

(∣∣J(a)
∣∣) ≤ K‖a‖ψ for all a ∈ Lψ(M̃1).

Let b ∈ M+
1 be given with τ1(b) < ∞. We want to show that then τ2(J(b)) <

∞. By suitably scaling b if necessary, we may assume that ‖b‖ ∞ < bψ . Since
ψ is continuous on [0, bψ], it is then both convex and bounded on [0, ‖b‖ ∞].
Thus, we may select k > 0 so that

ψ(t) ≤ kt for all 0 ≤ t ≤ ‖b‖ ∞.

(Any line-segment from the origin to a point (‖b‖∞, q) with ψ(‖b‖∞) < q will
do.) By the Borel functional calculus, we will then have that

0 ≤ ψ(b) ≤ kb,

which in turn ensures that

τ1

(
ψ(b)

)
≤ kτ1(b) < ∞.

Thus, b ∈ Lψ(M̃1). But since the canonical extension of J maps Lψ(M̃1) into
L1(M̃2), we must have

τ1

(
f

1/2
J bf

1/2
J

)
= τ2

(
J(b)

)
< ∞.

By Proposition 6.5 of [PT], this fact is sufficient to ensure that for any
spectral projection of fJ of the form e[λ,∞), we will have τ1(fJe[λ,∞)) <
∞ for λ > 0 large enough. But since λe[λ,∞) ≤ fJe[λ,∞), this in turn en-
sures that τ1(e[λ,∞)) < ∞ for λ > 0 large enough. In other words fJ is τ1-
measurable.
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Finally let b ∈ M1 ∩ L1(M1, τ1) be given with ‖b‖ψ ≤ 1, and let en = e[o,n]

be the spectral projection from the spectral resolution of fJ corresponding to
the interval [0, n]. Let v be the partial isometry in the polar decomposition
f

1/2
J enb = v|f1/2

J enb|. Then enbv∗en ∈ Lψ(M̃1) with ‖enbv∗en‖ψ ≤ ‖b‖ψ ≤ 1
(see the discussion following Definition 2.1 of [DDdP3]). Using the fact
that τ1(xy) = τ1(yx) for x ∈ M1, y ∈ M1 ∩ L1(M1, τ1), we may conclude
that

τ1

(
|fJenb|

)
= τ1

((
v∗f

1/2
J en

)(
f

1/2
J enb

))
= τ1

((
f

1/2
J enb

)(
v∗enf

1/2
J

))
= τ2

(
J
(
enbv∗en

))
≤ τ2

(∣∣J(
enbv∗en

)∣∣)
≤ K

∥∥enbv∗en

∥∥
ψ

≤ K.

So by Proposition 5.3(ii) of [DDdP3], we have that fJen ∈ Lψ∗
(M̃1), with

‖fJen‖0
ψ∗ ≤ K. But then ‖fJ ‖0

ψ∗ ≤ K by [DDdP3, Proposition 5.4(ii)]. Thus
as required, fJ ∈ Lψ∗

(M̃1) by [DDdP3, Proposition 5.3(ii)]. �

In closing, we make a final comment regarding the significance of the Δ2

condition in this context.

Remark 6.8. Let M be semifinite von Neumann algebra with fns trace τ ,
and let Lρ(0, ∞) be a classical Banach Function Space on [0, ∞). It is clear
from [BS, 1.3.8] that this space will have an absolutely continuous norm in
the sense of [BS] if and only if it has an order continuous norm in the sense
of [DDdP3]. Now consider the specific case where for some Orlicz function ϕ,
Lρ(0, ∞) = Lϕ(0, ∞) is the associated Orlicz space. If we combine the above
observation with the discussion on p. 96 of [KR], we see that (at least for the
case of Young’s functions) ϕ satisfies Δ2 for all t if and only if Lϕ(0, ∞) has
order continuous norm. But by [DDdP3, Proposition 3.6], Lϕ(M̃) will have
order continuous norm whenever Lϕ(0, ∞) has order continuous norm. Thus,
the Δ2 condition is intimately related to the question of whether Lϕ(M̃) has
order continuous norm.

The presence of an order continuous norm in turn puts us in a position
where we can try approximate each element of Lϕ(M̃) by “simple functions”.
Given some positive element a of Lϕ(M̃), the idea is to try and find a se-
quence {an} of Riemann sums of the form an =

∑m
k=1 λkek for which a − an

decreases to 0 in M̃. (For each an =
∑m

k=1 λkek, the ek’s are mutually orthog-
onal projections from the spectral resolution of a for which τ(ek) < ∞.) The
presence of an order continuous norm on Lϕ(M̃), then ensures that an → a
in the ‖ · ‖ϕ norm.
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