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Introduction.

Cartan subalgebras play an important part in the theory of Lie algebras.
Our main purpose in this paper is to find all Cartan subalgebras in real
semisimple Lie algebras up to conjugacy under the adjoint groups or the full
automorphism groups. The problem is very simple in complex semisimple
Lie algebras, because all Cartan subalgebras in a Lie algebra over an alge-
braicaHy closed field of chracteristic zero are mutually conjugate. This
conjugacy theorem does not hold for a Lie algebra over a field which is not
algebraically closed. For example, let $\mathfrak{g}=8I(2, R)$ be the Lie algebra of a1I
$2\times 2$ real matrices with trace zero, then $\mathfrak{g}$ has two Cartan subalgebras

$\mathfrak{h}_{1}=\{\left(\begin{array}{ll}t & 0\\0 & -t\end{array}\right)$ ; $t\in R\}$ and $\mathfrak{h}_{2}=\{$ ( $\theta 0$

‘

$\theta 0$) ; $\theta\in R\}$ .

$\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are not conjugate under an inner automorphism of $\mathfrak{g}$ , because $\mathfrak{h}_{t}$

generates a non compact group

$H_{1}=\{\left(\begin{array}{ll}e^{t} & 0\\0 & e^{-t}\end{array}\right)$ ; $t\in R\}$ ,

while $\mathfrak{h}_{2}$ generates a compact group

$H_{2}=\{\left(\begin{array}{ll}cos\theta & -sin\theta\\sin\theta & cos\theta\end{array}\right)$ ; $\theta\in R\}$ .

The conjugate classes of Cartan subalgebras in a Lie algebra over a
genera# field of characteristic zero were first treated by N. Iwahori and I.
Satake [8]. They proved the conjugacy of Cartan subalgebras for solvable
Lie algebras. Later, the conjugate classes of Cartan subalgebras (or sub-
groups) attracted the attention of mathematicians in connection with the
theory of unitary representations. I. M. Gelfand and M. I. Graev remarked
that the existence of $[n/2]+1$ different conjugate classes of Cartan sub-
group in $SL(n, R)$ is connected with the existence of $[n/2]+1$ different
principal non degenerate series of irreducible unitary representations of
$SL(n, R)$ . Harish-Chandra, interested also in this phenomenon, proved that
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every Cartan subalgebra in a real semismple Lie algebra $\mathfrak{g}$ is conjugate to a
standard one and there are only a finite number of conjugate classes of Cartan
subalgebras in $\mathfrak{g}$ (cf. [6]). A deeper study was made by B. Kostant [9]. He
gave an invariant of the conjugate class of Cartan subalgebras, by means of
which he could determine the conjugate classes of these subalgebras in real
simple Lie algebras. (He announced to give a list containing all these in-
formations, which is however not yet published.)

In the following, we shall first reestablish Harish-Chandra’s results,
generalizing a method of G. A. Hunt [7], and then give an invariant, which
is simpler than that of Kostant’s, of the conjugate class of Cartan subal-
gebras. In the final paragraphs, we shall give a complete list of conjugate
classes of Cartan subalgebras under the adjoint groups or under the full
automorphism groups for each type of classical or exceptional real simple
Lie algebras, which will enable us to determine also the conjugate classes
of Cartan subalgebras of real semisimple Lie algebras. More precisely, this
paper is divided into five paragraphs as follows.

In \S 1, the problem of conjugacy under the adjoint group is reduced to
the corresponding problem under the Weyl group. Our fundamental tool is
Theorem 1 which is a generalization of a lemma used by G. A. Hunt in [7].

Theorem 1 is useful not only for compact Lie groups but also for non com-
pact semisimple Lie groups, on account of the close connection between a
semisimple Lie group $G$ and the compact form $G_{u}$ of $G^{c}$ . By the repeated
use of Theorem 1, we obtain Theorems 2, 3 and 4 which state each step of
the reduction. Theorem 2 and Theorem 3 were obtained by Harish-Chandra
[6]. Theorems 2, 3 and 4 were also announced by B. Kostant [9].

In \S 2, we shall prove that there is a one to one correspondence between
conjugate classes of Cartan subalgebras in a real semisimple Lie algebra $\mathfrak{g}$

under the adjoint group and conjugate classes of the sets of roots which
satisfy certain conditions (admissible root systems, cf. Definition 9) under the
Weyl group (Theorem 6). This is our main theorem.

In \S 3 and \S 4, we give the number of conjugate classes and a represen-
tative of each class for every real form of complex simple Lie algebras.
The classical real simple Lie algebras are treated in \S 3, and the exceptional
simple algebras are treated in \S 4. As an application of our results, we prove
that the adjoint group $G$ of a real semisimple Lie algebra $\mathfrak{g}$ contains compact
Cartan subgroups if and only if $\mathfrak{g}$ is of the first category, $i$ . $e$ . $\mathfrak{g}$ is defined
by an involutive inner automorphism of the compact form $\mathfrak{g}_{u}$ (Theorem 8).

In \S 5, we determine the conjugate classes of Cartan subalgebras in a
real semisimple Lie algebra under the automorphism group $\tilde{G}$ instead of the
adjoint group $G$ . There exists a one to one correspondence between the
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conjugate classes of Cartan subalgebras under $\tilde{G}$ and conjugate classes of
the admissible root systems under the Cartan group $\tilde{W}$ (Theorem 10). The
conjugate classes under $G$ are also conjugate classes under $\tilde{G}$ in almost every
real simple Lie algebra, except in one type of simple algebras. These simple
Lie algebras are the Lie algebras of the type which we call (DIc). They
are the Lie algebras of the orthogonal groups with respect to the quadratic
froms with maximal indices over $4n$-dimensional real vector spaces (Theorem
11). By the knowledge of conjugate classes in simple Lie algebras, we can
easily find the conjugate classes of Cartan subalgebras in general semisimple
Lie algebras (Theorem 12).

The conjugate classes of Cartan subalgebras in real Lie algebras with
radicals can be determined by the method used in [8] and the results in
this paper. In particular, the number of conjugate classes of Cartan sub-
algebras in a real Lie algebra is always finite. These subjects will be treated
elsewhere.

The author expresses his hearty thanks to Prof. S. Iyanaga and N. Iwa-
hori for their kind advices.

\S 1. Standard Cartan subalgebras.

DEFINITION 1. A subalgebra $\mathfrak{h}$ of a semisimple Lie algebra $\mathfrak{g}$ over a field
of characteristic zero is called a Cartan subalgebra, if $\mathfrak{h}$ satisfies the following
two conditions:

1) $\mathfrak{h}$ is a maximal abelian subalgebra of $\mathfrak{g}$ .
2) For any $X\in \mathfrak{h}$ , ad $X$ is a semisimple linear transformation.
DEFINITION 2. A real subalgebra $\mathfrak{g}_{0}$ of a complex Lie algebra $\mathfrak{g}$ is called

a real form of $\mathfrak{g}$ , if the complexification $\mathfrak{g}_{0^{C}}=C\otimes \mathfrak{g}_{0}$ is isomorphic to $\mathfrak{g}$ by the
canonical mapping $a\otimes X\rightarrow aX,$ $i$ . $e$ . if $d_{RC}im\mathfrak{g}_{0}=\dim \mathfrak{g}$ .

Notations. Throughout this paper we shall use the following notations.
Lie groups are denoted by Latin capitals, and the Lie algebras are denoted
by corresponding small German letters.

$\mathfrak{g}$ : A real semisimple Lie algebra.
$\mathfrak{g}^{c}$ : The complexification of $!!$ .
$\theta$ : The conjugation of $\mathfrak{g}^{C}$ with respect to $\mathfrak{g}$ .

Every element $X$ of $\mathfrak{g}^{c}$ is uniquely expressed as

$X=Y+\sqrt{-1}Z$ , $Y,$ $Z\in \mathfrak{g}$ ,

then
$\theta X=Y-\sqrt{-1}Z$ .
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($;_{u}$ : The compact real form of $\mathfrak{g}^{c}$.
$G,$ $G^{c}$, and $G_{u}$ : the adjoint group of $\mathfrak{g},$

$\mathfrak{g}^{C}$ and $\mathfrak{g}_{m}$ respectively. Always we
regard $G\subset G^{C},$ $G_{u}\subset G^{c}$.

$B(X, Y)$ : The Killing form of $G$ , i. e. $B(X, Y)=TradXadY$.
For every linear form $\lambda$ on a Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ we denote by $H_{\lambda}$

the unique element of $\mathfrak{h}$ satisfying

$\lambda(H)=B(H_{\lambda}, H)$ for all $H\in \mathfrak{h}$ .
For every subset $\mathfrak{a}$ of $\mathfrak{g}$ , we denote the orthogonal complement of $\mathfrak{a}$ by

$\mathfrak{a}^{\perp},$
$i$ . $e$ .

$0^{\perp}=\{X\in \mathfrak{g};B(X, \mathfrak{a})=0\}$ .
Let $\sigma$ be an involution, $i$ . $e$ . an automorphism of order 2, of a real semi-

simple Lie algebra $\mathfrak{g}$ . We put

(1) $\mathfrak{k}=\{X\in \mathfrak{g} ; \sigma X=X\},$ $\mathfrak{p}=\{X\in \mathfrak{g};\sigma X=-X\}$ .
then we have
(2) $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ (direct sum)

and
(3) $[\mathfrak{k}, \mathfrak{k}]\subset f$ , $[\mathfrak{k}, \mathfrak{p}]\subset \mathfrak{p}$ , $[\mathfrak{p}, \mathfrak{p}]\subset \mathfrak{k}$ .
The last relation (3) shows that the subset

(4) $\mathfrak{g}_{u}=\mathfrak{k}+\sqrt{-1}\mathfrak{p}$

is a real form of $\mathfrak{g}^{c}$ .
In the following we shall always use the symbols $f,$ $p$ , and $\mathfrak{g}_{u}$ in this

sense. We shall denote the conjugation of $\mathfrak{g}^{c}$ with respect to $\mathfrak{g}$ (or $\mathfrak{g}_{u}$) by $\theta$

(or $\eta$ ). $\mathfrak{g}_{u}$ is invariant by $\theta$ as a whole, and $\eta$ is identical with $\sigma$ on $\mathfrak{g}$ .
Conversely if we can find a real form $\mathfrak{g}_{u}$ of $\mathfrak{g}^{c}$ invariant by $\theta$ , then the con-
jugation $\eta$ of $\mathfrak{g}_{u}$ induces an involution $\sigma$ on $\mathfrak{g}$ .

DEFINITION 3. An involution $\sigma$ is called compact if the real form $\mathfrak{g}_{u}$

defined by (4) is a compact real form of $\mathfrak{g}^{c}$. The decomposition (2) associated
with a compact involution $\sigma$ is called a Cartan decomposition of $\mathfrak{g}$ .

If $\mathfrak{g}$ admits a complex structure, then $\mathfrak{k}=\mathfrak{g}_{u}$ and $P=\sqrt{-1}\mathfrak{g}_{u}$ give a Cartan
decomposition of $\mathfrak{g}$ , where $\mathfrak{g}_{u}$ is a compact real form of $\mathfrak{g}$ .

E. Cartan proved that every real semisimple Lie algebra always admits
a Cartan decomposition (cf. E. Cartan [3], also G. D. Mostow [9]). He also
proved that any two such decompositions are “ conjugate to each other “ (E.

Cartan [3, p. 16]). This means that the following proposition holds. (We

shall give here this proposition with proof, in view of its importance in
what follows.)

PROPOSITION 1. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}=\mathfrak{k}^{\prime}+\mathfrak{p}^{\prime}$ be two Cartan decompositions of $\mathfrak{g}$ as-
socialed with involufions $\sigma$ and $\sigma^{\prime}$ . Then there exists an element $p$ in the adjoint
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group $G$ of $\mathfrak{g}$ , which transforms $\mathfrak{k}$ onto $\mathfrak{k}^{\prime}$ and $\mathfrak{p}$ onto $\mathfrak{p}^{\gamma}$ .
PROOF. Let $G_{0}=O(B)$ be the orthogonal group with respect to the Kil-

ling form $B(X, Y)$ of $\mathfrak{g}$ . Since $\sigma$ belongs to $G_{0}$ , we can define the inner
automorphism a of $G_{0}$ by means of $\sigma:\alpha(g)=\sigma g\sigma^{-}$ . Let $\mathfrak{g}_{0}=\mathfrak{k}_{0}+\mathfrak{p}_{0}$ be the
Cartan decomposition of $\mathfrak{g}_{0}$ associated with the involution $ d\alpha=Ad\sigma$ . Let $K_{0}$

be the analytic subgroup of $G_{0}$ generated by $\mathfrak{k}_{0}$ and $P_{0}=\{\exp X\in G_{0} ; X\in \mathfrak{p}_{0}\}$ .
Then every element $g\in G_{0}$ can be decomposed uniquely as $g=pk;p\in P_{0}$ ,

$k\in K_{0}$ . It is easily seen that for $p,$ $k\in G_{0}$ ,

(5) $p\in P_{0}\Leftrightarrow\alpha(p)=p^{-1}<>p\sigma=\sigma p^{-1}$ ,
and
(6) $k\in K_{0}\Leftrightarrow\alpha(k)=k\Leftrightarrow k\mathfrak{k}=\mathfrak{k}$ and $kp=p$ .
Now, owing to Sylvester’s law of inertia there exists an element $g\in G_{0}$ such
that

$g\mathfrak{k}=\mathfrak{k}^{\prime}$ , $g\mathfrak{p}=\mathfrak{p}^{\gamma}$ .

If we decompose this element $g$ as $g=pk;p\in P_{0},$ $k\in K_{0}$ , then we have

(7) $p\mathfrak{k}=\mathfrak{k}^{\prime},$ $p\mathfrak{p}=\mathfrak{p}^{\prime}$ .
For any $X\in \mathfrak{k},$ $Y\in \mathfrak{p},$ $pX$ belongs to $p\iota=\mathfrak{k}^{\prime}$ and $pY$ belongs to $p\mathfrak{p}=\mathfrak{p}^{\prime}$ , hence
we have

$\sigma^{\prime}p(X+Y)=\sigma^{\prime}(pX+pY)=pX-pY=p(X-Y)=p\sigma(X+Y),$ $i$ . $e$ .
(8) $\sigma^{\prime}p=p\sigma$ .
$p$ is represented by a positive definite symmetric matrix with respect to an
orthonormal base ( $i$ . $e$ . a base $(e_{i})$ which satisfies $B(e_{i},$ $e_{j})=\pm\delta_{ij}$) of $\mathfrak{g}$ . Hence
there exists a basis $(U_{i})$ of $\mathfrak{g}$ consisting of the eigenvectors of $p,$ $i$ . $e$ .

$pU_{i}=c_{i}U_{i}$ $(c_{i}>0)$ .

Let $\gamma_{ij^{k}}$ be the structure constants of $\mathfrak{g}$ with respect to the basis $(U_{i})$ , then
we have
(9) $[U_{i}, U_{j}]=\Sigma\gamma_{ij^{k}}U_{k}$ .
If we put $U_{i}^{\prime}=pU_{i}$ , then $(U_{i^{\prime}})$ is another basis of $\mathfrak{g}$ . Let $\gamma^{r_{ij^{lt}}}$ be the struc-
ture constant of $\mathfrak{g}$ with respect to $(U_{i}^{\prime})$ , then
(10) $[U_{i}^{\prime}, U_{j^{\prime}}]=\Sigma\gamma_{ij^{k}}^{\prime}U_{k}^{\prime}$ .
Replacing $U_{i}^{\prime}’ s$ in the equality (10) by $U_{i}^{\prime}=c_{i}U_{i}$ and comparing the so
obtained relations with (9), we have the relation

(11) $c_{i}c_{j}\gamma_{ij^{k}}=c_{k}\gamma_{ij^{k}}^{\prime}$ .
Let $V_{i}=\sigma U_{i}$ , then applying $\sigma$ to (9), we have

(12) $[V_{i}, V_{j}]=\Sigma\gamma_{ij^{k}}V_{k}$ .
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Let $V_{i}^{\prime}=pV_{i}$ , then by the relation (8), we have
$V_{i}^{\prime}=p\sigma U_{i}=\sigma^{\prime}pU_{i}=\sigma^{\prime}U_{i}^{\prime}$ .

Consequently, applying $\sigma^{\prime}$ to both sides of (10), we have

(13) $[V_{i}^{\prime}, V_{j^{\prime}}]=\Sigma\gamma_{tJ^{k}}^{\prime}V_{k}^{\prime}$ .
By the last equality in (5), we have

(14) $V_{i}^{\prime}=p\sigma U_{i}=\sigma p^{-1}U_{i}=c_{i^{-1}}V_{i}$ .
(12), (13) and (14) prove that
(15) $c_{i}c_{j}\gamma_{ij^{k}}^{\prime}=c_{k}\gamma_{ij^{k}}$ .
Comparing (11) and (15), we see that $\gamma_{ij^{k}}=0\Leftrightarrow\gamma_{ij^{k}}^{\prime}=0$ and $c_{i}c_{j}=c_{k}$ if $\gamma_{ij^{k}}\neq 0$ .
Hence

$\gamma_{ij^{k}}^{\prime}=\gamma_{ij^{k}}$ for all $i,$ $j,$ $k$ .
The last equalities prove that $p$ is an automorphism of $\mathfrak{g}$ . Let $p=\exp X$,
$X\in \mathfrak{p}_{0}$ , then the linear transformation $p^{t}=\exp tX$ has eigenvalues $c_{i^{t}}$ with
eigenvectors $U_{i}$ . If $t$ is real and $\gamma_{ij^{k}}\neq 0$ , then we have $c_{i^{t}}c_{j^{t}}=c_{k^{t}}$ . Let $\gamma_{ij^{k}}(t)$

be the structure constants of $\mathfrak{g}$ with respect to the basis $U_{i}(t)=p^{t}U_{i}$ , then
by the same argument as was used to prove (11) we have

$c_{i^{l}}c_{J^{t}}\gamma_{ij^{k}}=c_{k^{b}}\gamma_{ij^{k}}(t)$ .
Therefore we have $\gamma_{ij^{k}}(t)=\gamma_{ij^{k}}$ for any real parameter $t$ and for all $i,$ $j,$ $k$ .
This fact implies that $p^{t}(0\leqq t\leqq 1)$ are automorphisms of $\mathfrak{g}$ . Consequently $p$

belongs to the connected component of the identity in the full automorphism
group of $f\dagger$ . However this component is nothing but the adjoint group of $\mathfrak{g}$ .
Thus we have proved the conjugacy of two Cartan decompositions under
the action of the adjoint group.

For every Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ , we have the following two sub-
algebras.

$\mathfrak{h}^{+}=$ { $X\in \mathfrak{h}$ ; all eigenvalues of ad $X$ are purely imaginary},
$\mathfrak{h}^{-}=$ { $X\in \mathfrak{h}$ ; all eigenvalues of ad $X$ are real}.

The analytic subgroup of $G$ generated by $\mathfrak{h}^{+}$ is a toroidal group, and the one
generated by $\mathfrak{h}^{-}$ is a vector group.

DEFINITION 4. We call $\mathfrak{h}^{+}$ the toroidal part of $\mathfrak{h}$ and $\mathfrak{h}^{-}$ the vector part of $\mathfrak{h}$ .
When $\mathfrak{g}$ admits a complex structure, that is, when $\mathfrak{g}$ is obtained from a

complex semisimple Lie algebra by the restriction of the base field, it is
well known that
(16) $\mathfrak{h}^{+}=\sqrt{-1}\mathfrak{h}^{-}$

(17) $\mathfrak{h}^{-}=\sum_{\alpha.root}RH_{a}$ .
and
(18) $\mathfrak{h}=\mathfrak{h}^{+}+\mathfrak{h}^{-}$ (direct sum).
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$p_{ROPOSI^{\prime}\Gamma ION}2$ . Let $\mathfrak{h}$ be a Cartan subalgebra of a real semisimple Lie
algebra $\mathfrak{g}$ . Then we have the following two relations.

1) $\mathfrak{h}=\mathfrak{h}^{+}+\mathfrak{h}^{-}$ (direct sum),
2) $\mathfrak{h}^{+}=(\mathfrak{h}^{C})_{\cap}^{+}\mathfrak{h}$ , $\mathfrak{h}^{-}=(\mathfrak{h}^{C})_{\cap}^{-}\mathfrak{h}$ .
PROOF. It is clear that $\mathfrak{h}^{+}\cap \mathfrak{h}^{-}=0,$ $\mathfrak{h}^{+}\supset(\mathfrak{h}^{C})^{+}\cap \mathfrak{h}$ and $\mathfrak{h}^{-}\supset(\mathfrak{h}^{C})^{-}\cap \mathfrak{h}$ . There-

fore, to prove the proposition 2, it is sufficient to show that $\mathfrak{h}=((\{)^{C})_{\cap}^{+}\mathfrak{h})+$

$((\mathfrak{h}^{C})^{-}\cap \mathfrak{h})$ . The complexification $\mathfrak{h}^{C}$ of $\mathfrak{h}$ is a Cartan subalgebra of $\mathfrak{g}^{c}$. Let $X$

be any element in $\mathfrak{h}(\subset \mathfrak{h}^{C})$ . As $\mathfrak{h}^{C}$ is decomposed into the direct sum of $(\mathfrak{h}^{C})^{+}$

and $(I)^{C})^{-},$ $X$ is uniquely decomposed as follows.
(19) $X=Y+Z,$ $Y\in(\mathfrak{h}^{C})^{+},$ $Z\in(\mathfrak{h}^{C})^{-}$

We have
(20) $X=\theta X=\theta Y+\theta Z$ .
Let $\theta^{*}$ be the linear transformation of the dual space $(\mathfrak{h}^{C})^{*}$ of $\mathfrak{h}^{C}$ defined by
$(\theta^{*}\lambda)(H)=\overline{\lambda(\theta H)}$ , then $\theta^{*}$ induces a substitution of roots. Hence by (16) and
(17), we have
(21) $\theta(\mathfrak{h}^{C})^{-}=(\mathfrak{h}^{C})^{-}$ , $\theta(\mathfrak{h}^{C})^{+}=(\mathfrak{h}^{C})^{+}$ .
Therefore, comparing (19) and (20), we have
(22) $\theta Y=Y$, $\theta Z=Z$ ,

owing to the uniqueness of decomposition (19). (22) means
$Y\in \mathfrak{g}\cap(\mathfrak{h}^{C})^{+}=\mathfrak{h}\cap(\mathfrak{h}^{C})^{+}$ ,

(23)
$Z\in \mathfrak{g}\cap(\mathfrak{h}^{C})^{-}=\mathfrak{h}\cap(\mathfrak{h}^{C})^{-}$

Consequently we have
(24) $\mathfrak{h}=(\mathfrak{h}\cap(\mathfrak{h}^{C})^{+})+(\mathfrak{h}\cap(\mathfrak{h}^{C})^{-})$ .
(24) proves the proposition.

THEOREM 1. Let $\mathfrak{g}$ be a real semisimple Lie algebra and $G$ the adjoint group
of $\mathfrak{g}$ . Suppose two subalgebras $\mathfrak{n}_{1},$ $\mathfrak{n}_{2}$ of $\mathfrak{g}$ generate toroidal groups $N_{1},$ $N_{2}$ respec-
tively in G. If there exists a compact subgroup $L$ in $G$ , such that

(25) $[l\mathfrak{n}_{1}, \mathfrak{n}_{2}]\subset\downarrow$ for all $l\in L$

(I is the Lie algebra of $L$), then there exists an element $l_{0}$ in $L$ satisfying follou-
$ing$ two conditions:

1) Every element of $l_{0}N_{1}l_{0^{-1}}$ commutes with each element of $N_{2}$ .
2) $[l_{0}\mathfrak{n}_{1}, \mathfrak{n}_{2}]=0$ .
PROOF. First, we prove that for any $X\in \mathfrak{n}_{1},$ $Y\in \mathfrak{n}_{2}$ , there exists an $l_{0}$ in

$L$ such that $[l_{0}X, Y]=0$ .
As $f(l)=B(lX, Y)$ is a continuous function on $L,$ $f$ attains its maximal

value at some point $l_{0}$ in $L$ . We define the function $g(t)$ of real variable $t$

as $g(t)=B$(($\exp t$ ad $Z$ ) $l_{0}X,$ $Y$) for any $Z$ in I. Then $g(t)$ attains its maximum
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at $t=0$ . So we have

(26) $0=g^{\prime}(0)=B([Z, l_{0}X], Y)=B(Z, [l_{0}X, Y])$ .
The relations (25), (26) and the fact that $B$ is negative definite on I, prove the
equality $[l_{0}X, Y]=0$ . Now, there exists an $X_{i}$ in $\mathfrak{n}_{i}(i=1,2)$ such that one
parameter subgroup { $\exp$ ad $tX_{i}$ ; $-\infty<t<\infty$ } is everywhere dense in N..

For such $X_{1}$ and $X_{2}$ , we can apply the first part of this proof. There
exists an element $l_{0}$ in $L$ satisfying $[l_{0}X_{1}, X_{2}]=0$ . Consequently, for any two
real numbers $s$ and $t,$ $\exp$ ad $l_{0}tX_{1}=l_{0}$ ($\exp$ ad $tX_{1}$ ) $l_{0^{-1}}$ and $\exp$ ad $sX_{2}$ commute
with each other. This proves 1), and 2) is a direct consequence of 1).

$CoROLLARY$ . Any two Cartan subalgebras in a compact or complex semi-
simple Lie algebra $\mathfrak{g}$ are conjugate under the action of the adjoint group.

PROOF. Cartan subalgebra of a compact Lie algebra $\mathfrak{g}$ is identical with
a maximal abelian subalgebra in $\mathfrak{g}$ . So, when $\mathfrak{g}$ is compact semisimple,
Therom 1, 2) proves the conjugacy of any two Cartan subalgebras.

Next we shall consider the case when $\mathfrak{g}$ is complex semisimple. Let
$\mathfrak{h}_{1},$ $\mathfrak{h}_{2}$ be two Cartan subalgebras of $\mathfrak{g}$ . We can construct a compact real form
$\mathfrak{g}_{i}(i=1,2)$ of $\mathfrak{g}$ , containing $(\mathfrak{h}_{i})^{+}$ . By Proposition 1 there exists an element $g$

in $G$ such that
(27) $g\mathfrak{g}_{1}=\mathfrak{g}_{2}$ .
Since $g\mathfrak{h}_{1}^{+}$ is a Cartan subalgebra of the compact semisimple Lie algebra
$\mathfrak{g}_{2},$

$g\mathfrak{h}_{1}^{+}$ is conjugate to $\mathfrak{h}_{2}^{+}$ . Therefore $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate to each other.
DEFINITION 5. Let $\mathfrak{p}$ be the subspace of $\mathfrak{g}$ as defined (1). An abelian

subalgebra $\mathfrak{m}$ of $\mathfrak{g}$ satisfying the following two conditions 1), 2) is calld a
maximal abelian subalgebra in $\mathfrak{p}$ .

1) $\mathfrak{m}\subset \mathfrak{p}$ .
2) There exists no abelian subalgebra $\mathfrak{m}^{\prime}$ of $\mathfrak{g}$ , such that

$\mathfrak{p}\supset \mathfrak{m}^{\prime}\supsetneqq \mathfrak{m}$ .

PROPOSITION 3. Let $K$ be the analytic subgroup of $G$ generated by $\mathfrak{k}$ . Then,
any two maximal abelian subalgebras $\mathfrak{m}_{1},$ $\mathfrak{m}_{2}$ in $\mathfrak{p}$ are conjugate under the action
of $K$.

PROOF. We regard both $G$ and the adjoint group $G_{u}$ of $\mathfrak{g}_{u}$ as sub-
groups of the adjoint group $G^{c}$ of $\mathfrak{g}^{c}$. Then we have $K=G\cap G_{u}$ . Therefore
it is sufficient to prove the conjugacy of two subalgebras $\mathfrak{n}_{1}=\sqrt{-1}\mathfrak{m}_{\underline{1}}$ and
$\mathfrak{n}_{2}=\sqrt{-1}\mathfrak{m}_{2}$ in $\mathfrak{g}_{u}$ under $K$ in order to prove Proposition 3. First we prove
that $\mathfrak{n}_{i}$ generates a toroidal group $N_{i}$ in $G_{u}$ . Let $\tau$ be the automorphism 1
of $G_{u}$ whose differential $ d\tau$ is identical with $\theta$ on $\mathfrak{g}_{u}$ .

Let $\mathfrak{h}_{i}$ be a Cartan subalgebra containing $\mathfrak{n}_{i}$ and $H_{i}$ be the analytic sub-
group of $G_{u}$ generated by $\mathfrak{h}_{i}$ . Then we have
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(28) $N_{i}\subset\{h\in H_{i} ; \tau(h)=h^{-1}\}$ .

Therefore the closure $L_{i}=\overline{N_{i}}$ is contained in the right hand side of (28):

(29) $L_{i}\subset\{h\in H_{i} ; \tau(h)=h^{-1}\}$ .
Consequently $\tau(L_{i})=L_{i}$ and the Lie algebra $I_{i}$ of $L_{i}$ is invariant by $\theta=d\tau$

and $I_{i}$ is decomposed into direct sum $I_{i}=I_{i^{+}}+1_{i^{-}}$ where
$I_{i}^{+}=\{X\in I_{4} ; \theta(X)=X\}$ , $I_{i^{-}}=\{X\in I_{i};\theta X=-X\}$ .

If $X\in I_{i}^{+}$ , then
(30) $\tau(\exp X)=\exp\theta X=\exp X$ .
The relations (29) and (30) proves that the square of any element in the
analytic subgroup $L_{i^{+}}$ of $H_{i}$ generated by $I_{i^{+}}$ is the identity. On the other hand
the subgroup $\{k\in H_{i} ; k^{2}=e\}$ in the toroidal group $H_{i}$ is discrete. Conse-
quently $I_{i^{+}}=0$ and $I_{i}=I_{i^{-}}\subset\sqrt{-1}\mathfrak{p}$ . Therefore $I_{i}$ is an abelian subalgebra in
$\sqrt{-1}\mathfrak{p}$ and contains $\mathfrak{n}_{i}=\sqrt{-1}\mathfrak{m}_{i}$ . $I_{i}$ must coincide with $n_{i}$ . This proves
$L_{i}=\overline{N_{i}}=N_{i}$ . Thus $N_{i}$ is a connected, closed abelian subgroup of the compact
group $G_{u}$ . So $N_{f}$ is toroidal.

The toroidal subgroups $N_{1},$ $N_{2}$ and the compact subgroup $K$ of $G_{u}$ satisfy
the conditions of Theorem 1, because $[k\mathfrak{n}_{1}, \mathfrak{n}_{2}]\subset[\sqrt{-1}\mathfrak{p}, \sqrt{-1}\mathfrak{p}]\subset \mathfrak{k}$ . Hence
by Theorem 1, there exists an element $k$ in $K$ such that $[krt_{1}, \mathfrak{n}_{2}]=0$ . The
last equality implies $k\mathfrak{n}_{1}=\mathfrak{n}_{2}$ since $k\mathfrak{n}_{1}$ and $\mathfrak{n}_{2}$ are maximal abelian subalgebras
in $\sqrt{-1}\mathfrak{p}$ .

PROPOSITION 4. Let $t\mathfrak{n}$ be a maximal abelian subalgebra in $\mathfrak{p}$ . Then any
maximal abelian subalgebra $\mathfrak{h}_{0}$ in $\mathfrak{g}$ which contains $\mathfrak{m}$ , is a Cartan subalgebra of
$\mathfrak{g}$ , and $\mathfrak{h}_{0^{-}}=\mathfrak{m}=\mathfrak{h}_{0}\cap \mathfrak{p}$ and $\mathfrak{h}_{0^{+}}=\mathfrak{h}_{0}\cap \mathfrak{k}$ .

PROOF. Let $\eta$ be the conjugation of $\mathfrak{g}^{C}$ with respect to the compact real
form $\mathfrak{g}_{u}$ . Then for any $X\in \mathfrak{h}_{0}$ and $Y\in \mathfrak{m}$ , we have

$[\eta X_{\succ}Y]=-[\eta X, \eta Y]=-\eta([X, Y])=-\eta(0)=0$ .
Therefore we see that

(31) $[X-\eta X, Y]=0$ for all $Y\in \mathfrak{m}$ .
The element $Z=X-\eta X$ is in $\mathfrak{g}$ and satisfies $\eta Z=-Z$, hence $Z$ is contained

in $\mathfrak{p}$ . Therefore (31) proves that $Z=X-\eta X$ belongs to $\mathfrak{m}$, since $\mathfrak{m}$ is a maximal
abelian subalgebra in $\mathfrak{p}$ .

Consequently $X+\eta X=2X-(X-\eta X)$ belongs to $\mathfrak{k}\cap \mathfrak{h}_{0}$ . Thus any element
$X$ in $\mathfrak{h}_{0}$ can be represented as the sum $X=U+Z$, where $U=(X+\eta X)/2$ and
$Z=(X-\eta X)/2$ belong to $\mathfrak{k}$ and $\mathfrak{p}$ respectively. Therefore ad $U$ and ad $Z$ are
semisimple linear transformatons and commute with each other. It follows
that ad $X$ is semisimple. This proves that $\mathfrak{h}_{0}$ is a Cartan subalgebra of $\mathfrak{g}$ .
Moreover the fact that $U\in \mathfrak{k},$ $Z\in \mathfrak{m}$ proves $\mathfrak{h}_{0^{+}}=\mathfrak{h}_{0}\cap \mathfrak{k},$ $\mathfrak{h}_{0^{-}}=\mathfrak{h}_{0}\cap \mathfrak{p}=\mathfrak{m}$ .
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DEFINITION 6. Let $(f, p, m)$ be a triple consisting a subalgebra $\mathfrak{k}$ , a sub-
space $\mathfrak{p}$ and an abelian subalgebra $\mathfrak{m}$ of $\mathfrak{g}$ satisfying the following two condi-
tions: 1) $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ and this decomposition is a Cartan decomposition, 2) $\mathfrak{m}$ is
a maximal abeIian subalgebra in $\mathfrak{p}$ .

Such a triple is called a standard triple.
A Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ is called standard with respect to a standard

triple $(f, p, m)$ , if the conditions 1) $\mathfrak{h}^{-}\subset \mathfrak{m}$ and 2) $\mathfrak{h}^{+}\subset \mathfrak{k}$ are satisfied.
THEOREM 2. 1) Any Cartan subalgebra $\mathfrak{h}$ of a real semisimple Lie algebra

$\mathfrak{g}$ is standard with respect to a suitable standard triple $(\mathfrak{k}, \mathfrak{p}, \iota \mathfrak{n})$ .
2) Any Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ is conjugate under the adjoint group $G$ to

one that is standard with respect to a fixed standard triple $(\mathfrak{k}, \mathfrak{p}, \mathfrak{m})$ .
PROOF. 1) There exists a compact real form $\mathfrak{g}_{u}$ containing $(\mathfrak{h}^{C})^{+}$ and in-

variant by $\theta$ (conjugation of $\mathfrak{g}^{c}$ with respect to g). The restriction $\sigma$ of $\eta$

(conjugation of $\{\}^{C}$ with respect to $\mathfrak{g}_{u}$) to $\mathfrak{g}$ is a compact involution and defines
a Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ . Then we have by Proposition 2

$\mathfrak{h}^{+}=(\mathfrak{h}^{C})^{+}\cap \mathfrak{h}\subset \mathfrak{g}_{u}\cap \mathfrak{g}=\mathfrak{k}$

$\mathfrak{h}^{-}=(\mathfrak{h}^{C})_{\cap}^{-}\mathfrak{h}\subset\sqrt{-1}\mathfrak{g}_{u}\cap \mathfrak{g}=\mathfrak{p}$ .
Therefore $\mathfrak{h}$ is standard with respect to a standard triple $(\mathfrak{k}, \mathfrak{p}, \mathfrak{m})$ , where $\mathfrak{m}$

is an arbitrary maximal abelian subalgebra in $\mathfrak{p}$ containing $\mathfrak{h}^{-}$ .
2) Let $(f, p, m)$ be a fixed standard triple. A Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$

is standard with respect to a standard triple $(\mathfrak{k}^{\prime}, \mathfrak{p}^{\prime}, \mathfrak{m}^{\prime})$ . By Proposition 1
there exists a $g\in G$ such that

$g\mathfrak{k}^{\prime}=\mathfrak{k}$ , $g\mathfrak{p}^{\gamma}=\mathfrak{p}$

and we have
$g(\mathfrak{h}^{+})=g(\mathfrak{h}\cap \mathfrak{k}^{\prime})\subset g\mathfrak{k}^{\prime}=\mathfrak{k}$

$g(\mathfrak{h}^{-})=g(\mathfrak{h}\cap \mathfrak{p}^{\prime})$ cgp’ $=\mathfrak{p}$ .
Let $\mathfrak{m}^{\prime\prime}$ be a maximal abelian subalgebra in $\mathfrak{p}$ containing $g(\mathfrak{h}^{-})$ , then by Pro-
position 3 there exists $k\in K$ (analytic subgroup of $G$ generated by f) such
that

$k\mathfrak{m}^{\prime\prime}=\iota \mathfrak{n}$ .
Since $k$ leaves invariant $\mathfrak{k}$ and $\mathfrak{p}$ as a whole, the element $s=kg$ transforms $\mathfrak{h}$

to a Cartan subalgebra $s\mathfrak{h}$ which is standard with respect to $(\mathfrak{k}, \mathfrak{p}, \iota \mathfrak{n})$ .
Convention. 1) In the following we shall fix a standard triple $(f, p, m)$

and use the word “ standard ‘’ instead of “ standard with respect to $(\mathfrak{k}, \mathfrak{p}, \mathfrak{m})$ ‘’.
2) In the following we shall use the word “ conjugate “ always in the

meaning of “ conjugate under the action of the adjoint group “, unless speci-
fically noted.

PROPOSITION 5. Let $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ be two standard Cartan subalgebras of $\mathfrak{g}$
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satisfying
$\mathfrak{h}_{1}^{-}\subset \mathfrak{h}_{2}^{-}$

Then there exists an element $k\in K$ such that

$kH=H$ for all $H\in \mathfrak{h}_{1}^{-}$ and
$k\mathfrak{h}_{2}^{+}\subset \mathfrak{h}_{1}^{+}$ .

Especially when $\mathfrak{h}_{1}^{-}=\mathfrak{h}_{2}^{-}$ , this $k$ satisfies $k\mathfrak{h}_{2^{+}}=\mathfrak{h}_{1}^{+}$ .
PROOF. Let

$L=$ {$k\in K;kH=H$ for all $H\in \mathfrak{h}_{1}^{-}$ }.

Then $L$ is a compact subgroup of $G$ .
$\mathfrak{h}_{1}^{+},$ $\mathfrak{h}_{2}^{-}$ and $L$ satisfy the conditions of Theorem 1.
Let $H_{i^{+}}$ be the analytic subgroup generated by $\mathfrak{h}_{i^{+}}$ . Then $H_{i^{+}}\subset K_{\cap}H_{i}$

and $K_{\cap}H_{i}$ is closed, so we have $\overline{H_{i}}^{+}\subset K_{\cap}H_{i}$ . The last inclusion relation
and the equality $\mathfrak{h}_{i^{+}}=f\cap \mathfrak{h}_{i}$ prove that $\overline{H_{\iota^{+}}}=H_{i^{+}}$ . Therefore $H_{i}^{+}$ is a closed
connected abelian subgroup of compact Lie group $K$, consequently $H_{i^{+}}$ is a
toroidal group.

Next we prove
(32) $[l\mathfrak{h}_{2^{+}}, \mathfrak{h}_{1}^{+}]\subset I$ (for all $l\in L$).

Since $L\subset K$ and $\mathfrak{h}_{i^{+}}\subset \mathfrak{k}$ , we have by (3)

(33) $[l\mathfrak{h}_{2}^{+}, \mathfrak{h}_{1}^{+}]\subset t$ .

And by Jacobi identity, we have

(34) $[\mathfrak{h}_{1^{-}}, [l\mathfrak{h}_{2}^{+}, \mathfrak{h}_{1}^{+}]]=[[\mathfrak{h}_{\iota^{-}}, l\mathfrak{h}_{2^{+}}],$ $\mathfrak{h}_{1^{+}}$ ] $+[t\mathfrak{h}_{2^{+}}, [\mathfrak{h}_{1}^{-}, \mathfrak{h}_{1}^{+}]]$ .
The second term of right hand side of (34) is equal to zero, because $\mathfrak{h}_{1}$ is
abelian. And the first term is also equal to zero, because

$[\mathfrak{h}_{1}^{-}, l\mathfrak{h}_{2}^{+}]=l[l^{-1}\mathfrak{h}_{1}^{-}, \mathfrak{h}_{2}^{+}]=l[\mathfrak{h}_{1}^{-}, \mathfrak{h}_{2^{+}}]$

and $\mathfrak{h}_{1}^{-}\subset \mathfrak{h}_{2}^{-}$ and $\mathfrak{h}_{2}$ is abelian.
Therefore we have

(35) $[\mathfrak{h}_{1}^{-}, [l\mathfrak{h}_{2}^{+}, \mathfrak{h}_{1}^{+}]]=0$ .
The relations (33) and (35) prove (32) by the very definition of $L$ .

Thus we can apply Theorem 1 to $\mathfrak{h}_{1}^{+},$ $\mathfrak{h}_{2}^{+}$ and $L$ . There exists an element
$l\in L$ such that
(36) $[l\mathfrak{h}_{2^{+}}, \mathfrak{h}_{1}^{+}]=0$ .
On the other hand, by the assumption $\mathfrak{h}_{1}^{-}\subset I)_{2}^{-}$ , we have
(37) $[l\mathfrak{h}_{2^{+}}, \mathfrak{h}_{1}^{-}]=l[\mathfrak{h}_{2^{+}}, l^{-1}\mathfrak{h}_{1}^{-}]=l[\mathfrak{h}_{2^{+}}, \mathfrak{h}_{1}^{-}]=0$ .
(36) and (37) proves $[l\mathfrak{h}_{2}^{+}, \mathfrak{h}_{1}]=0$ consequently $l\mathfrak{h}_{2^{+}}\subset \mathfrak{h}_{1}$ . Since $l\mathfrak{h}_{2^{+}}\subset \mathfrak{k}$ , we have

$I\mathfrak{h}_{2^{+}}\subset \mathfrak{k}\cap \mathfrak{h}_{1}=\mathfrak{h}_{1}^{+}$
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which proves our Proposition 5.
We set now

$N=\{k\in K; km=\mathfrak{m}\}$ .
Let $k\in N$, then the restriction $\varphi(k)$ of $k$ to $\mathfrak{m}$ is a linear transformation on
$\mathfrak{m}$ . We denote the totality of $\varphi(k)$ by $W_{s}$ ; i. e.

$W_{s}=\{\varphi(k);k\in N\}$ .
The homogeneous space $M=G/K$ is the symmetric Riemannian space of
which the largest connected group of isometries is $G$ . The group It., coin-
cides with the Weyl group (groupe $(S)$) of $M$ defined by Cartan in [2, p. 356].

THEOREM 3. $Tu\cdot 0$ standard Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate under
the action of the adjoint group $G$ if and only if their vector parts $\mathfrak{h}_{1}^{-}$ and $\mathfrak{h}_{2}^{-}$

are conjugate zender the action of group $W_{s}$ .
PROOF. Sufficiency. Assume that there exists an element $k\in N$ such

that $k\mathfrak{h}_{1}^{-}=\mathfrak{h}_{2}^{-}$ . Then we can apply Proposition 5 to $\mathfrak{h}_{2}$ and $k\mathfrak{h}_{1}$ , and there
exists an element $k_{1}$ in $K$ such that

$k_{1}\mathfrak{h}_{2}^{-}=\mathfrak{h}_{2^{-}}$ , $k_{1}k\mathfrak{h}_{1}^{+}=\mathfrak{h}_{2}^{+}$ .
Therefore let $k$

)$\lrcorner=k_{1}k$ then $k_{2}\in K$ and $k_{2}\mathfrak{h}_{1}=\mathfrak{h}_{2}$ .
Necessity. Let $g$ be an element in $G$ which transforms $\mathfrak{h}_{1}$ onto $\mathfrak{h}_{2}$ . Then

$g$ can be decomposed uniquely as the product

$g=kp$ , $ p\in\exp$ ad $\mathfrak{p}$ , $k\in K$ .
First of a1X, we shall show that $pH=H$ for all $H\in \mathfrak{h}_{1}^{-}$ . Let $ p=\exp$ ad $X$,

$(X\in \mathfrak{p}),$ $ c=\cosh$ ad $X$ and $ s=\sinh$ ad $X$. Then $p\mathfrak{h}_{1}^{-}=k^{-1}\mathfrak{h}_{2^{-}}\subset \mathfrak{p},$ $c\mathfrak{p}\subset \mathfrak{p}$ and
$s\mathfrak{p}\subset \mathfrak{k}$ . Therefore
(38) $s\mathfrak{h}_{1}^{-}=(p-c)\mathfrak{h}_{1}^{-}\in f\cap \mathfrak{p}=\{0\}$ .
Since $s$ is a semisimple linear transformation and all the eigenvalues of ad $X$

are real, the kernel of $s$ coincides with that of ad $X$. Therefore (38) implies
that

(ad $X$ ) $\mathfrak{h}_{1}^{-}=0i$ . $e$ . $[X, \mathfrak{h}_{1}^{-}]=0$ .
Consequently $pH=H$ for all $H\in \mathfrak{h}_{1}^{-}$ and we have
(39) $k\mathfrak{h}_{1}^{-}=g\mathfrak{h}_{1}^{-}=\mathfrak{h}_{2}^{-}$

Next we shall prove that two subalgebras, $\mathfrak{n}_{1}=\sqrt{-1}\mathfrak{m}$ and $\mathfrak{n}_{2}=\sqrt{-1}$ km, and
the subgroup

$L=$ {$l\in K;lH=H$ for all $H\in \mathfrak{h}_{2^{-}}$ }

of the adjoint group $G_{u}$ of $\mathfrak{g}_{u}$ satisfy the conditions of Theorom 1.
$L$ is a compact subgroup of $G_{u}$ . $\mathfrak{n}_{i}$ is an abelian subalgegra of $\mathfrak{g}_{u}$ , and

$n_{i}$ generates a toroidal group $N_{i}$ in $G_{u}$ . To prove the last fact it is sufficient
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to prove that $N_{i}$ is closed. This fact is proved as in the proof of Proposi-
tion 3. Now we shall prove the relation
(40) $[l\mathfrak{n}_{i}, \mathfrak{n}_{2}]\subset I$ for all $l\in L$ .
By the Jacobi identity and the fact that $l$ is an automorphism of $\mathfrak{g}_{v}$ , we have

(41) $[[l\mathfrak{n}_{1}, \mathfrak{n}_{2}],$ $I)_{2}^{-}$] $=[[l\mathfrak{m}, \mathfrak{h}_{2}^{-}],$ $k\mathfrak{m}$] $+$ [$lm$, [km, $\mathfrak{h}_{2^{-}}]$].

The first term of right hand side of (41) is equal to zero, because
$[l\mathfrak{m}, \mathfrak{h}_{2}^{-}]=l[\mathfrak{m}, l^{-1}\mathfrak{h}_{2^{-}}]=l[\mathfrak{m}, \mathfrak{h}_{2^{-}}]\subset l[\mathfrak{m}, \mathfrak{m}]=0$ .

The second term is also equal to zero, because

[km, $\mathfrak{h}_{2^{-}}$] $=k[\mathfrak{m}, k^{-1}\mathfrak{h}_{2^{-}}]=k[\mathfrak{m}, \mathfrak{h}_{1}^{-}]\subset k[\mathfrak{m}, \mathfrak{m}]=0$ .
Therefore (40) is proved.

Thus the conditions of Theorem 1 are satisfied. So we can find an ele-
ment $l\in L$ such that

$[l\mathfrak{n}_{2}, \uparrow\tau_{1}]=[lk\mathfrak{m}, \mathfrak{m}]=0$ .
Since $lk\mathfrak{m}$ and $\mathfrak{m}$ are both maximal abelian subalgebras in $\mathfrak{p}$ , the last equality
means that $lk\mathfrak{m}=\mathfrak{m}$ .

Let $lk=a$, then $a\in K$ and we have
$a\mathfrak{h}_{1}^{-}=lk\mathfrak{h}_{1}^{-}=l\mathfrak{h}_{2}^{-}=\mathfrak{h}_{2^{-}}$ ,

am $=lk\mathfrak{m}=m$ .
Therefore $a$ belongs to the group $N$ and $\mathfrak{h}_{1}^{-}$ is transformed to $\mathfrak{h}_{2}^{-}$ by $\ell\gamma$ .

By Theorem 3 and Proposition 5, we have the following Corollary 1, 2 to
Theorem 3.

COROLLARY 1. Two standard Cartan subalgebras are conjugate under the
adjoint group $G$ if and only if they are conjugate under $K$.

COROLLARY 2. All Cartan subalgebras of which vector parts have maximal
possible dimension are mutually conjugate under $G$ .

The following lemma, which is obvious, is used in the proof of Theorem 4.
LEMMA 1. Let $X$ be an element in $\sqrt{-1}\mathfrak{p}$ , and $\mathfrak{g}(\lambda)$ be the eigenspace of

ad $X$ with eigenvalue $\lambda$ . Let $\lambda_{0},$ $\lambda_{1},\cdots,$ $\lambda_{n}$ be the eigenvalues of ad $X$ and $\lambda_{0}=0$ .
Then we have

$\mathfrak{g}^{C}=\sum_{i=0}^{n}\mathfrak{g}(\lambda_{i})$ (direct sum).

Let $\mathfrak{k}(\lambda)(or\mathfrak{p}(\lambda))$ be the projection of $\mathfrak{g}(\lambda)$ to $\mathfrak{k}^{C}$ (or $\mathfrak{p}^{c}$) by the direct sum
decomposition $\mathfrak{g}^{c}=\mathfrak{k}^{C}+\mathfrak{p}^{c}$. Then any element $Y\in \mathfrak{g}(\lambda)$ can be written as follows:

$Y=U+V$, $U\in \mathfrak{k}(\lambda),$ $V\in \mathfrak{p}(\lambda)$ .
And $U$ and $V$ satisfy the following equalities:

$[X, U]=\lambda V$ , $[X, V]=\lambda U$ .
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Finally we have
$\mathfrak{k}^{C}=\mathfrak{k}(0)+\mathfrak{k}(\lambda_{1})+\cdots+\mathfrak{k}(\lambda_{n})$ (direct sum) ,

$0^{c}=P(0)+0(\lambda_{1})+\cdots+\mathfrak{p}(\lambda_{n})$ (direct sum)

(cf. E. Cartan [2, $Ch$ . $I,$ $3]$).

THEOREM 4. Let $\mathfrak{h}_{i}(i=1,2)$ be two standard Cartan subalgebras of $\mathfrak{g}$ , and
$I_{i}=(\mathfrak{h}_{i^{-}})_{\cap}^{\perp}\mathfrak{m}=\{X\in \mathfrak{m};B(X, \mathfrak{h}_{i^{-}})=0\}$ .

Then $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate to each other if and only if $I_{1}$ and $I_{2}$ are coniugate
under the action of the Weyl group $W$ of $\mathfrak{g}^{c}$ with respect to the Cartan subalgebra
$\mathfrak{h}_{0^{C}}$. ( $\mathfrak{h}_{0}$ is a fixed Cartan subalgebra of $\mathfrak{g}$ containing $\mathfrak{m}$ . cf. Proposition 4.)

PROOF. 1) Necessity of the condition. Let bi and $\mathfrak{h}_{2}$ be conjugate, then
by Theorem 3, we can find an element $k\in K$ such that

$k\mathfrak{h}_{1}^{-}=\mathfrak{h}_{2}^{-}$ $km=\mathfrak{m}$ .
Let $L$ be the subgroup of $G_{u}$ defined as follows:

$L=$ { $l\in G_{u}$ ; $lH=H$ for all $H\in \mathfrak{m}$ }

and let $\mathfrak{h}_{u}=\mathfrak{h}_{0^{+}}+\sqrt{-1}\mathfrak{h}_{0^{-}},$ $\mathfrak{n}_{I}=k\mathfrak{h}_{u}$ and $\mathfrak{n}_{2}=\mathfrak{h}_{u}$ . Then, $L,$ $\mathfrak{n}_{I}$ and $\mathfrak{n}_{2}$ satisfy the
conditions of Theorem 1. It is clear that $L$ is a compact subgroup of $G_{u}$

and that $\mathfrak{n}_{f}$ generates a toroidal group in $G_{u}$ . We have
$[[ltt_{1}, )\tau_{2}],$ $m$] $=0$ for all $l\in L$ ,

as in the proof of Theorem 3. Therefore we have $[l\mathfrak{n}_{1}, \mathfrak{n}_{2}]\subset I$ . By Theorem
1, we can find an element $l\in L$ such that $[l\mathfrak{n}_{1}, \mathfrak{n}_{2}]=0$ . Consequently we have

$l\mathfrak{n}_{1}=\mathfrak{n}_{2}$ .
Since $lk\in G_{u}$ keeps $\mathfrak{h}_{u}$ invariant, the restriction $s$ of $lk$ to $(\mathfrak{h}_{u})^{C}=(\mathfrak{h}_{0})^{C}$ belongs
to the Weyl group $W$ of $\mathfrak{g}^{c}$ with respect to $(\mathfrak{h}_{0})^{C}$ . Moreover by the definition
of $s$ , we have

$s\mathfrak{m}=\mathfrak{m}$ and $s\mathfrak{h}_{1}^{-}=\mathfrak{h}_{2}^{-}$

Consequently we have $sl_{1}=I_{2}$ .
2) Sufficiency of the condition. Let $t$ be an element of $W$ such that

$tI_{1}=I_{2}$ . Then, there exists $g$ in $G_{u}$ , of which the restriction to $\mathfrak{h}_{u}$ coincides
with $t$. $g$ satisfies the following conditions

$g\in G_{u}$ , $g\mathfrak{h}_{0^{c}}=\mathfrak{h}_{0^{c}}$ , $gI_{1}=I_{2}$

$g$ is decomposed as the product of a rotation $k\in K$ and a transvection
$p\in\exp ad\sqrt{-1}\mathfrak{p}$ , $i$ . $e$ . $g=kp$ .

Let
$ p=\exp$ ad $X$, $x\in\sqrt{-1}\mathfrak{p},$ $ s=\sinh$ ad $X$ and $ c=\cosh$ ad $X$ .
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Then, as in the proof of Theorem 3, we have

(42) $sf_{1}=(p-c)I_{1}\in\sqrt{-1}\mathfrak{k}\cap \mathfrak{p}=\{0\}$ .
Let $\mathfrak{g}(\lambda)$ be the eigenspace of ad $X$ with eigenvalue $\lambda$ , then the eigenspace
of $s$ with eigenvalue $\rho$ is the direct sum of $\mathfrak{g}(\lambda)s$ , where $\sinh\lambda=\rho$ . Hence,
(42) implies that

$I_{1}\subset\sum_{n}\mathfrak{g}(\sqrt{-1}n\pi)$ .

Therefore any element $Y$ of $I_{1}$ can be represented as follows:

(43) $Y=\sum_{n}Y_{n}$ , $Y_{n}\in \mathfrak{g}(\sqrt{-1}n\pi)$ .
By Lemma 1, we have

(44) $Y_{n}=U_{n}+V_{n}$ , $U_{n}\in \mathfrak{k}(\sqrt{-1}n\pi)$ , $V_{n}\in \mathfrak{p}(\sqrt{-1}n\pi)$ ,
and
(45) [X, $U_{n}$] $=\sqrt{-1}n\pi V_{n}$ .
By (43) and (44), we have

(46) $Y-\sum_{n}V_{n}=\sum_{n}U_{n}\in \mathfrak{p}^{c}\cap f^{C}=\{0\}$ .

By Lemma 1, $\sum_{n}\mathfrak{k}(\sqrt{-1}n\pi)$ is a direct sum, hence, by (46) we have

(47) $U_{n}=0$ for all $n$ .
(45) and (47) prove that

(48) $V_{n}=0$ , if $n\neq 0$ .
(47) and (48) imply that

$Y=V_{0}\in \mathfrak{p}(0)$ .
As $Y$ is an arbitrary element of $I_{1}$ , we have [X, $I_{1}$ ] $=\{0\}$ , and consequently

$pY=Y$ for all $Y\in I_{1}$ .
Therefore we have
(49) $kI_{1}=1_{2}$ , $k\in K$ .
Let

$L=$ { $l\in G_{u}$ ; $lY=Y$ for all $Y\in I_{2}$ } , $\mathfrak{n}_{1}=km$ and $\mathfrak{n}_{2}=\mathfrak{m}$ ,

then $L,$ $\mathfrak{n}_{1}$ and $\mathfrak{n}_{2}$ satisfy the conditions of Theorem 1. Therefore we can
find an element $l\in L$ such that

$lkm=m$ .
Then we have

$lk\in N$ , $lkI_{1}=I_{2}$ ,
and consequently,
(50) $lk\in N$ , $lk\mathfrak{h}_{1}^{-}=\mathfrak{h}_{2}^{-}$
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By Theorem 3, (50) implies that $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate to each other.

\S 2. Vector parts of standard Cartan subalgebras.

In this section we give a necessary and sufficient condition that a sub-
space $\mathfrak{n}$ of $m$ is the vector part of a standard Cartan subalgebra $\mathfrak{h}$ . Nota-
tions: $(f, p, m)$ be a fixed standard triple of $\mathfrak{g}$ . We choose a maximal abelian
subalgebra $\mathfrak{h}_{0}$ in $\mathfrak{g}$ containing $m$ . Then, by Proposition 4, $\mathfrak{h}_{0}$ is a standard
Cartan subalgebra of $\mathfrak{g}$ , and $\mathfrak{h}_{0^{-}}=\mathfrak{m}$ .

Let $\mathfrak{h}_{0^{C}}$ be the complexification of $\mathfrak{h}_{0}$ in $\mathfrak{g}^{C}$. Then $\mathfrak{y}_{0^{C}}$ is a Cartan subalgebra
of $\mathfrak{g}^{c}$. A (non zero) root of $\mathfrak{g}^{c}$ with respect to $\mathfrak{h}_{0^{C}}$ is simply called a root.
The totality of roots is denoted by $R$ .

Let $\alpha$ be a root, then there exists an element $E_{\alpha}\neq 0$ in $\mathfrak{g}^{c}$, such that
$[H, E_{\alpha}]=\alpha(H)E_{\alpha}$ for all $H\in \mathfrak{h}_{0^{C}}$ .

$E_{\alpha}$ is unique up to scalar factors. Moreover we have
(51) $[E_{\alpha}, E_{\beta}]=N_{a.\beta}E_{a+\beta}$ ,

where $N_{\alpha,\beta}$ is a complex number and we have

(52) $N_{a,\beta}\left\{\begin{array}{l}=0 (if\alpha+\beta\not\in R)\\\neq 0 (if\alpha+\beta\in R).\end{array}\right.$

Let $\theta$ be the conjugation of $\mathfrak{g}^{c}$ with respect to $\mathfrak{g}$ , and let ${}^{t}\theta$ be the linear
transformation on the dual space $(\mathfrak{h}_{0}^{C})^{-*}$ of $(\mathfrak{h}_{0^{C}})^{-}$ defined by

$({}^{t}\theta\lambda)(H)=\lambda(\theta H)$ $(H\in(\mathfrak{h}_{0^{C}})^{-})$ .
Since ${}^{t}\theta$ induces a substitution of roots, there exists a complex number $\kappa_{a}$

for each roots $\alpha$ such that
(53) $\theta E_{a}=\kappa_{a}E^{c_{\theta\alpha}}$ .

It is well known that we can find a basis $H_{i}(1\leqq i\leqq n),$ $E_{\alpha}(\alpha\in R)$ of $\mathfrak{g}^{C}$

satisfying the following four conditions:

(54) $H_{i}\in(\mathfrak{h}_{0^{C}})^{-}$ ,
(55) $B(E_{\alpha}, E_{-\alpha})=-1$ ,
(56) $N_{\alpha,\beta}=N_{-\alpha,-\beta}=real$ number,
(57) $|\kappa_{a}|=1$

(cf. H. Weyl [13] and G. D. Mostow [10]).

Let H. and $E_{\alpha}$ be a basis satisfying the above four conditions, then
(58) $\mathfrak{g}_{u}=(\mathfrak{h}_{0^{C}})^{+}+\sum_{\alpha>0}R(E_{\alpha}+E_{-a})+\sum_{\alpha>0}R\sqrt{-1}(E_{\alpha}-E_{-\alpha})$

is a compact real form of $\mathfrak{h}^{C}$ and we have
(59) $\theta(\mathfrak{g}_{u})=\mathfrak{g}_{u}$ .
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We choose a basis $H_{i},$ $E_{\alpha}$ satisfying (54) $-(57)$ .
For any subspace I of $\mathfrak{m}$ , we define $R(I)$ by

(60) $R(I)=\{\alpha\in R;H_{\alpha}\in (\}$ ,

and we define the following five subspaces which play important parts in
the followings.

$f=\downarrow^{\perp}\cap \mathfrak{h}_{0}=\{X\in \mathfrak{h}_{0} ; B(X, I)=0\}$ ,

(61) $Z^{C}(\mathfrak{s})=\{X\in \mathfrak{g}^{c} ; [X, f]=0\}$ , $Z(f)=\mathfrak{g}\cap Z^{c}(f)$ ,

$\mathfrak{g}[1]=I^{c}+\sum_{\alpha\in R(I}C_{)}E_{\alpha}$ , and $\mathfrak{g}(I)=\mathfrak{g}\cap \mathfrak{g}[I]$ .

These five subspaces are subalgebras.
PROPOSITION 6. $Z^{c}(T)=\mathfrak{h}_{0^{C}}+\mathfrak{g}[I]$ $(f=I^{\perp}\cap \mathfrak{h}_{0})$ .
PROOF. Any element $X$ of $\mathfrak{g}^{c}$ is written as

$X=H_{0}+\sum_{a\in li}c_{\alpha}E_{\alpha}$ , $c_{\alpha}\in C,$ $H_{0}\in \mathfrak{h}_{0^{C}}$ .

Since
$[H, X]=\sum_{\alpha\in R}c_{\alpha}B(H, H_{\alpha})E_{\alpha}$ for all $H\in f$ ,

we have clearly $Z^{c}(\mathfrak{s})=\mathfrak{h}_{0^{C}}+\sum_{\alpha\in R(()}CE_{\alpha}$ .
DEFINITION 7. A subspace 1 of $m$ is called a root space if I is spanned by

roots $i$ . $e$ . $I=\sum_{a\in R(()}RH_{\alpha}$ .
PROPOSITION 7. If $\mathfrak{h}$ is a standard Cartan subalgebra, then

$I=\mathfrak{h}^{-\perp}\cap \mathfrak{m}=\{X\in \mathfrak{m};B(X, \mathfrak{h}^{-})=0\}$

is a root space.
PROOF. A standard Cartan subalgebra $\mathfrak{h}$ is called special if $\mathfrak{h}^{+}\supset \mathfrak{h}_{0^{+}}$ .

Proposition 5 proves that every standard Cartan subalgebra $\mathfrak{h}$ is conjugate
to a special standard Cartan subalgebra $\mathfrak{h}_{1}$ of which vector part $\mathfrak{h}_{1}^{-}$ coincides
with $\mathfrak{h}^{-}$ . Hence we may assume that $\mathfrak{h}^{+}\supset \mathfrak{h}_{0^{+}}$ . In this case, we have $t=\mathfrak{h}_{0}\cap$

$I^{\perp}=\mathfrak{h}_{0^{+}}+\mathfrak{h}^{-}$ and $Z^{C}(T)$ contains $\mathfrak{h}^{c}$ . Let I’ $=\sum_{a\in R(()}RH_{\alpha}$ and assume that I’ $\neq 1$ ,

then there exists a non zero element $H$ in I such that $B(H, H_{a})=0$ for all
$\alpha\in R(I)$ . As we have by Proposition 6

$[H, \mathfrak{h}]\subset[H, Z^{c}(f)]=\{0\}$ ,

$H$ belongs to $\mathfrak{h}\cap 1$) $=\mathfrak{h}^{-}$ which contradicts the facts that $H\in I$ and $H\neq 0$ .
PROPOSITION 8. If 1 is a root space in $\mathfrak{m}$, then $\mathfrak{g}[I]$ is a semisimple sub-

algebra of $\mathfrak{g}^{C}$ and $I^{C}$ is a Cartan subalgebra of $\mathfrak{g}[I]$ .
PROOF. Let $\mathfrak{b}$ be the subspace of $\mathfrak{g}^{c}$ defined by

$\mathfrak{b}=\iota^{c}+\sum_{\alpha\oplus R(\mathfrak{l})}CE_{a}$ , $(f=\downarrow^{\perp}\cap \mathfrak{h}_{0})$ ,

then we have
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(62) $\mathfrak{g}^{c}=\mathfrak{g}[I]+\mathfrak{b}$ (direct sum)

and
(63) $[\mathfrak{g}[1], \mathfrak{b}]\subset \mathfrak{b}$ ,

because if $\alpha\in R(I)$ and $\beta\not\in R(I)$ , then $\alpha+\beta\not\in R(I)$ . By a theorem of N.
Jacobson (cf. C. Chevalley [4, (b), p. 111]), we can conclude from (62) and (63)

that $\mathfrak{g}[I]$ is a reductive Lie algebra. Next we show that the centre 3 of $\mathfrak{g}[I]$

consists of zero only.
Let

$X=H_{0}+\sum_{a\in R(1)}a_{\alpha}E_{\alpha}$ , $H_{0}\in t^{c}$

be an arbitrary element of 3, then we have

$0=[H_{\beta}, X]=\sum_{\alpha\in R(()}a_{a}B(H_{\beta}, H_{\alpha})E_{\alpha}$ for all $\beta\in R(I)$ .

Since $B(H_{a}, H_{\alpha})\neq 0$ , we have $a_{\alpha}=0$ for all $\alpha\in R(1)$ , consequently $X=H_{0}$

$\in\downarrow c$. Therefore $\partial\subset I^{C}$. However, since I is spanned by some $H_{\alpha}’ s$ for $\alpha\in R(I)$ ,
for any non zero element $H\in I^{C}$, there exists a root $\alpha\in R(I)$ such that
$B(H_{\alpha}, H)=\alpha(H)\neq 0$ . Then we have

$[H, E_{\alpha}]\neq 0$ and $H\not\in \mathfrak{z}$ .
Thus we have proved that $\mathfrak{z}=\{0\}$ and $\mathfrak{g}[I]$ is semisimple. The above

argument has also proved that $I^{C}$ is a maximal abelian subalgebra of $\mathfrak{g}[I]$ .
Moreover let ad be the adjoint representation of $\mathfrak{g}[I]$ , then every ad(X) $(X\in I^{O})$

can be represented by a diagonal matrix. Therefore $\downarrow c$ is a Cartan subalgebra
of the semisimple Lie algebra $g[I]$ .

REMARK. If I is a root space in $\mathfrak{m}$ , then $R(I)$ is the root system of the
semisimple Lie algebra $\mathfrak{g}[I]$ with respect to the Cartan subalgebra $I^{C}$.

PROPOSITION 9. Let I be a root space in $\mathfrak{m}$ , then
1) $\mathfrak{g}(I)=\mathfrak{g}[I]\cap \mathfrak{g}$ is a real form of $\mathfrak{g}[I]$ .
2) $\mathfrak{g}(I)=(\mathfrak{g}(\{)\cap \mathfrak{k})+(\mathfrak{g}(I)\cap \mathfrak{p})$ is a Cartan decomposition of $\mathfrak{g}(I)$ .
3) $Z(f)\cap \mathfrak{k}=\mathfrak{h}_{0^{+}}+(\mathfrak{g}(1)\cap \mathfrak{k})$ , $(f=I^{\perp}\cap \mathfrak{h}_{0})$ .
PROOF. 1) To prove 1), it is sufficient to show that $\theta(\mathfrak{g}[I])=\mathfrak{g}[l]$ , where

$\theta$ is the conjugation of $\mathfrak{g}^{c}$ with respect to $\mathfrak{g}$ . As $H_{\alpha}\in I\subset \mathfrak{g}$ for all $\alpha\in R(I)$ ,
$\theta H_{\alpha}=H_{\alpha}$ for all $\alpha\in R(I)$

hence
${}^{t}\theta\alpha=\alpha$ for all $\alpha\in R(I)$ .

Therefore we have $\theta(\mathfrak{g}[I])=(;[I]$ (cf. (53) and (61)).
2) Let $\mathfrak{g}_{u}$ be the compact real form of $\mathfrak{g}^{c}$ defined by (58). Let $\eta$ be the

conjugation of $\mathfrak{g}^{c}$ with respect to $\mathfrak{g}_{u}$ :
Both $\theta\circ\eta$ and $\eta\circ\theta$ are automorphisms of $\mathfrak{g}^{C}$, and they coincide on the real

form $\mathfrak{g}$ , because if $X\in f,$ $Y\in \mathfrak{p}$ , then we have
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$(\eta\circ\theta)(X+Y)=\eta(X+Y)=X-Y=\theta X-\theta Y=(\theta\circ\eta)(X+Y)$ .
Therefore we have
(64) $\eta\circ\theta=\theta\circ\eta$ on $\mathfrak{g}^{c}$ .
Since $\eta H_{\alpha}=-H_{\alpha}$ for all $\alpha\in R(1)$ , we have $\eta(\mathfrak{g}[I])=\mathfrak{g}[I]$ and $\eta(\mathfrak{g}(1))=\mathfrak{g}(I)$ . Since

$\mathfrak{g}(I)\cap \mathfrak{k}=\{X\in \mathfrak{g}[I] ; \theta X=X, \eta X=X\}$ ,

$\mathfrak{g}(1)\cap \mathfrak{p}=\{X\in q[I] ; \theta X=X, \eta X=-X\}$

and

$X=\frac{1}{2}(X+\eta X)+\frac{1}{2}(X-\eta X)$ ,

we have
$\mathfrak{g}(1)=(\mathfrak{g}(I)\cap^{\xi})+(\mathfrak{g}(I)\cap 0)$ .

This decomposition is a Cartan decomposition of $\mathfrak{g}(I)$ , because

$(\mathfrak{g}(I)\cap f)+\sqrt{-1}(\mathfrak{g}(t)_{\cap}\mathfrak{p})\subset \mathfrak{k}+\sqrt{-1}\mathfrak{p}=\mathfrak{g}_{u}$ .
3) By Proposition 6 we have

$Z^{c}(t)=\iota^{c}+\mathfrak{g}[I]$ .
As $Z^{c}(f),$ $\iota^{c}$ and $\mathfrak{g}[I]$ are invariant by $\theta$ , we have

$Z(f)=Z^{C}(f)_{\cap}\mathfrak{g}=(f^{c}\cap \mathfrak{g})+(\mathfrak{g}[I]_{\cap}\mathfrak{g})=\mathfrak{s}+\mathfrak{g}(I)$ .
Since $f=\mathfrak{h}_{0^{+}}+(f\cap \mathfrak{p})$ (direct sum), we have

$\mathfrak{h}_{0^{+}}=f\cap \mathfrak{k}$ .
As $\eta$ keeps $f$ and $\mathfrak{g}(I)$ invariant as a whole we have

$z(\mathfrak{s})\cap^{\xi=(f\cap \mathfrak{k})+(\mathfrak{g}(I)_{\cap}\mathfrak{k})}$

$=\mathfrak{h}_{0^{+}}+(\mathfrak{g}(I)_{\cap}\mathfrak{k})$ .
Thus we have proved Proposition 9.
The above defined real semisimple Lie algebra $\mathfrak{g}(I)$ has a remarkable

property that its Cartan subalgebra [ has no toroidal part. As this property
is essential for our later investigation, we shall give a special name to such
a Lie algebra.

DEFINITION 8. A real semisimple Lie algebra $\mathfrak{g}$ is called normal if $\mathfrak{g}$ has
a Cartan subalgebra $\mathfrak{h}$ of which toroidal part is zero, $i$ . $e$ . $\mathfrak{h}=\mathfrak{h}^{-}$ .

PROPOSITION 10. The following two conditions for a real semisimple Lie
algebra $\mathfrak{g}$ are mutually equivalent.

1) $\mathfrak{g}$ is normal.

2) $\mathfrak{g}=$ $\{ \sum_{l-1}^{n}a_{i}H_{i}+\sum_{\alpha\in R}a_{\alpha}E_{\alpha} ; a_{i}, a_{a}\in R\}$

where $(H_{i}, E_{\alpha})$ is a basis of $\mathfrak{g}^{c}$ satisfying (54), (55) and (56).

PROOF. It is clear that 2) implies 1). Conversely let $\mathfrak{g}$ be a normal real
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form of $f!^{C}$ , and $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ such that $\mathfrak{h}^{-}=\mathfrak{h}$ . Then ad $H$

$(H\in \mathfrak{h})$ has only real eigenvalues. In view of this fact, we can easily obtain
a basis $(H_{i}, E_{\alpha})$ of $0^{c}$ as required, following the argument of Weyl [13] concern-
ing the construction of canonical base of a complex semisimple Lie algebra.

REMARK. 1) Proposition 10 proves that every complex semisimple Lie
algebra has the unique normal real form up to isomorphisms.

2) E. Cartan called a real semisimple Lie algebra $\mathfrak{g}$ normal when the
character $\delta$ of $\mathfrak{g}(\delta=\dim \mathfrak{p}-\dim \mathfrak{k})$ is equal to the rank of $\mathfrak{g}$ . Proposition 10
shows that our definition coincides with that of Cartan.

3) The normal real form of \S I(n, $C$) is @I(n, $R$).

The normal real form of $s\mathfrak{p}(n, C)$ is sp$(n, R)$ .
The normal real form of $o(n, C)$ is the Lie algebra of the orthogonal

group of a quadratic form with the maximal index over an n-dimensional
real vector space (cf. \S 3).

4) Propositions 7, 8 and 9 imply that for each standard Cartan subalgebra
$\mathfrak{h}$ of $\mathfrak{g}$, there corresponds a normal semisimple Lie algebra $\mathfrak{g}(I)$ where $I=$

$\mathfrak{h}^{-\perp}\cap \mathfrak{m}$ . If $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are two conjugate standard Cartan subalgebras, then
$g(I_{1})$ and $g(I_{2})$ are isomorphic because their root systems are congruent by
Theorem 4. The converse is in general not true.

For example, in the real simple Lie algebra $(GI)$ , there are two non
conjugate standard Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ (cf. \S 4) of which toroidal
parts are of dimension 1. However both $\mathfrak{g}(Y_{1})$ and $\mathfrak{g}(I_{2})$ are isomorphic to
$BI(2, R)$ .

PROPOSITION 11. Let $\mathfrak{g}$ be a normal real semisimple Lie algebra and let
$\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of $\mathfrak{g}$ .

Then the following two conditions are mutually equivalent.
1) rank $\mathfrak{k}=rank\mathfrak{g}$ .
2) There exist $n$ roots $\alpha_{1},\cdots,$ $\alpha_{n}$ such that

$\alpha_{i}\pm\alpha_{j}\not\in R$ and $\alpha_{i}\neq\pm\alpha_{j}$ if $i\neq j$ ,

where $n=rank\mathfrak{g}$.
PROOF. Let $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ such that $\mathfrak{h}^{-}=\mathfrak{h}$ . Using a

basis $H_{i}(1\leqq i\leqq n),$ $E_{\alpha}(\alpha\in R)$ satisfying (54), (55) and (56), we have

$\mathfrak{g}=$ $\{ \sum_{i\Leftarrow 1}^{n}a_{i}H_{i}+\sum_{\alpha\in R}a_{\alpha}E_{\alpha} ; a_{i}, a_{\alpha}\in R\}$

and

$t!u=\{\sqrt{-1}\sum_{i=1}^{n}a_{i}H_{i}+\sum_{\alpha>0}(a_{a}E_{a}+\overline{a}_{\alpha}E_{-\alpha}) ; a_{i}\in R, a_{\alpha}\in C\}$

where $\sum_{\alpha>0}$ means the sum extended over all positive roots (we fix a lexico-

graphic order in $(\mathfrak{h}^{-})^{*})$ .
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Then we have
(65) $\mathfrak{k}=\mathfrak{g}\cap \mathfrak{g}_{u}=$

$\{ \sum_{\alpha>i\}}a_{a}(E_{\alpha}+E_{-\alpha});a_{\alpha}\in R\}$ .
Let

$U_{\alpha}=E_{\alpha}+E_{-\alpha}(\alpha>0)$ ,
then we have
(66) $[U_{\alpha}, U_{\beta}]=N_{a,\beta}U_{a+\beta}+N_{\alpha.-\beta}U_{a-\beta}$ .
Since $\mathfrak{k}$ is isomorphic to a Lie algebra of a compact Lie group, every maximal
abelian subalgebra of $\mathfrak{k}$ is a Cartan subalgebra of $\mathfrak{k}$ . Therefore if there exist
$n$ roots $\alpha_{1},\cdots,$ $\alpha_{n}$ such that $\alpha_{i}\pm\alpha_{j}\not\in R,$ $\neq 0$ , then (66) proves that rank $\mathfrak{k}=n$ .

Thus 2) implies 1).

Now we shall prove the converse.
We define a proposition $(P_{k})$ for a positive integer $k$ as follows.
$(P_{k}):\mathfrak{g}^{c}$ has mutually different $k$ positive roots $\alpha_{1},\cdots,$ $\alpha_{k}$ such that

$\alpha_{i}\pm\alpha_{j}\not\in R$ $(1\leqq i, j\leqq k)$ .
We shall prove that if rank $\mathfrak{k}$ is not smaller than $k$ , then the proposition

$(P_{k})$ is valid for $\mathfrak{g}$ .
(P) is trivially valid. Next, we assume that $(P_{k-1})$ is valid for $\mathfrak{g}$ . Then

there exist $k-1$ positive roots $\alpha_{1},\cdots,$ $\alpha_{k-1}$ such that $\alpha_{i}\pm\alpha_{j}\not\in R$ . The equali-

ties (52) and (66) prove that $\sum_{i=1}^{k-1}RU_{\alpha_{i}}$ is an abelian subalgebra of $\mathfrak{k}$ .

Let $\mathfrak{h}_{1}$ be a Cartan subalgebra of $\mathfrak{k}$ containing $\sum_{i=1}^{k-1}R_{a:}$ . An arbitrary ele-

ment $X$ in $\mathfrak{h}_{1}$ can be represented as
(67)

$X=\sum_{\rho>0}a_{\beta}U_{\beta}$ .
Then we have

(68)
$0=[U_{\alpha_{i}}, X]=\sum_{\beta>0}a_{\beta}(N_{a_{i},\beta}U_{\alpha_{i}+\beta}+N_{\alpha_{i},-\beta}U_{\alpha_{i}-\beta})$

$(1\leqq i\leqq k-1)$ .

If rank $\mathfrak{k}=\dim \mathfrak{h}_{1}\geqq k$ , then there exists $X\in \mathfrak{h}_{1}$ such that $X\not\in\sum_{i=1}^{k-1}RU_{\alpha_{u}}$ . For

such an $X$ there exists at least one positive root $\beta\in R-\{\alpha_{1},\cdots, \alpha_{k-1}\}$ such
that the corresponding coefficient $a_{\beta}$ in (67) does not vanish. The identity
(68) proves that $N_{a_{i}},\beta=N_{\alpha i-\beta}=0(1\leqq i\leqq k-1)$ . This implies $\alpha_{i}\pm\beta\not\in R$

$(1\leqq i\leqq k-1)$ . If we put $\alpha_{k}=\beta$ , then the proposition $(P_{k})$ is valid for $\mathfrak{g}$ .
In this way we have proved that 1) implies 2).

REMARK. If two roots $\alpha_{i}\neq\pm\alpha_{j}$ satisfy the conditions $\alpha_{i}\pm\alpha_{j}\not\in R$ , then
$\alpha_{i}$ is orthogonal to $\alpha_{j}$ . Hence $n$ roots $\alpha_{1},\cdots,$ $\alpha_{n}$ in the condition 2) of Proposi-
tion 11 are linearly independent. Consequently, they form a basis of the
Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ , because $n=rank\mathfrak{g}$ .

THEOREM 5. Let $\mathfrak{g}$ be a real semisimple Lie algebra, and $(\mathfrak{k}, \mathfrak{p}, m)$ be a
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standard triple of $\mathfrak{g}$ , and let $\mathfrak{h}_{0}$ be a Cartan subalgebra of $\mathfrak{g}$ such thaf $\mathfrak{h}_{0^{-}}=\mathfrak{m}$ .
For any subspace $\mathfrak{n}$ of $\mathfrak{m}$ , we denote by ! the subspace of $\mathfrak{m}$ defined by

$I=\mathfrak{n}^{\perp}\cap m=\{X\in \mathfrak{m};B(X, \mathfrak{n})=0\}$ .
Then a subspace $\mathfrak{n}$ of $m$ becomes the vector part $\mathfrak{h}^{-}$ of a standard Cartan

subalgebra $\mathfrak{h}$ if and only if there exist $l$ roots $(l=\dim I)\alpha_{1},\cdots,$ $\alpha_{\iota}$ such that
1) $\alpha_{i}\pm\alpha_{j}\not\in R,$ $1\leqq i,j\leqq l$ and $\alpha_{i}\pm\alpha_{j}\neq 0$ if $i\neq j$,

2) $I=\sum_{i=1}^{\iota}RH_{a_{i}}$ .
PROOF. By Proposition 9 3), we have $Z(f)\cap \mathfrak{k}=\mathfrak{h}_{0^{+}}+(\mathfrak{g}(I)\cap f),$ $(\mathfrak{f}=I^{\perp}\cap \mathfrak{h}_{0})$

and $\mathfrak{h}_{0^{+}}$ is contained in the centre of $Z(f)$ . We have following equivalences
by Propositions 8, 9 and 11.

$n$ is the vector part of a standard Cartan subalgebra
$\Leftrightarrow \mathfrak{n}$ is the vector part of a special standard Cartan subalgebra
$\Leftrightarrow$ rank $(Z(f)\cap \mathfrak{k})=\dim \mathfrak{h}_{0^{+}}+\dim$ I
$\Leftrightarrow$ rank $(\mathfrak{g}(I)\cap \mathfrak{k})=\dim I=rank\mathfrak{g}(I)$

$\Leftrightarrow$ there exist $l$ roots $(l=\dim l)$ in $R(1)$ such that $\alpha_{i}\pm\alpha_{j}\not\in R(1\leqq i, j\leqq l)$ .
We remark that if the conditions in Theorem 5 are satisfied, any Cartan

subalgebra of $Z(f)\cap \mathfrak{k}$ gives the toroidal part of a standard Cartan subalgebra
of which vector part $\mathfrak{h}^{-}$ is equal to $\mathfrak{n}$ .

$CoROLLARY$ . The number of conjugate classes of Cartan subalgebras in a
real semisimple Lie algebra is always finite.

DEFINITION 9. A set of positive roots $F=\{\alpha l’\cdots, \alpha_{l}\}$ satisfying the condi-
tion 1) in Theorem 5 is called an admissible root system.

Two admissible root systems $F_{1}$ , and $F_{2}$ are called equivalent and denoted
by $F_{1}\equiv F_{2}$ if $F_{1}$ and $F_{2}$ span the same subspace I of $(\mathfrak{h}_{0^{C}})^{-};$ i. e.,

$\sum_{\alpha\in F_{1}}RH_{a}=\sum_{\beta\in F_{2}}RH_{\beta}$ .

Two admissible root systems $F_{1}$ and $F_{2}$ are called conjugate and denoted
by $F_{1}\approx F_{2}$ if there exists an element $s$ in the Weyl group of $\mathfrak{g}^{c}$ with respect
to $\mathfrak{h}_{0^{C}}$ such that $sF_{1}\equiv F_{2}$ .

The relations $‘‘\equiv’’$ and $‘‘\approx’’$ are equivalence relations.
Summing up the results of \S 1 and \S 2, we have the following Theorem

6 which is our main theorem.
THEOREM 6. There is $a$ one to one correspondence between conjugate classes

of Cartan subalgebras in a real semisimple Lie algebra $\mathfrak{g}$ and the conjugate classes
of admissible root systems contained in $R(m)$ .
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\S 3. Conjugate classes of Cartan subalgebras in classical real simple Lie
algebras.

For the classification of real simple Lie algebras, we refer to E. Cartan
[1], [3] and F. Gantmacher [5]. We denote real forms of complex simple
Lie algebras by the same notations as was used by E. Cartan for the cor-
responding symmetric Riemannian spaces.

Before entering into the study of each type of simple Lie algebra, we
give here some general remarks.

We use the classical linear Lie algebras as models of complex simple
Lie algebra of classical types: $i$ . $e$ . we realize the complex simple Lie algebras
of type $A,$ $B,$ $C$ and $D$ of rank $n$ by @I(n+l, $C$), $o(2n+1, C),$ Sp(n, $C$) and $o(2n, C)$

respectively. All of these Lie algebras $\mathfrak{g}^{c}$ are self-adjoint, $i$ . $e$ . if $X$ belongs
to $\mathfrak{g}^{c}$ , then ${}^{t}\overline{X}$ also belongs to $\mathfrak{c}_{1^{C}}$ . Therefore a compact real form $\mathfrak{g}_{u}$ of $\mathfrak{g}^{c}$ is
given as the intersection of $\mathfrak{g}^{C}$ and the Lie algebra of the unitary group with
the same degree.

If $\mathfrak{g}$ is a self-adjoint real form of $\mathfrak{g}^{c}$ , then $g=f+P$ is a Cartan decom-
position of $\mathfrak{g}$ , where $\mathfrak{k}=\{X\in \mathfrak{g};{}^{t}\overline{X}=-X\}$ and $\mathfrak{p}=\{X\in \mathfrak{g};{}^{t}\overline{X}=X\}$ .

In order to prove that a subset $\mathfrak{n}t$ is a maximal abelian subalgebra in $\mathfrak{p}$ ,

we shall use the following simple lemma.
LEMMA 2. Let $H$ be a $dia_{\Leftrightarrow}\sigma onal$ matrix of which diagonal elements are

$h_{1},\cdots,$ $h_{n}$ , and $A=(a_{\tau j})$ be a matrix of degree $n$ . If $h_{i}\neq h_{j}$ and $[H, A]=0$ , then
we have $a_{ij}=a_{ji}=0$ .

Notations.
$E_{m}$ : Identity $n^{\gamma_{\wedge}}atrix$ of degree $m$ .
$S(m, C)(S(m, R))$ : The set of all complex (real) symmetric matrices of

degree $m$ .
$o(m, C)(o(m))$ The set of all complex (real) skew symmetric matrices

of degree $m=the$ Lie algebra of $O(m, C)(O(m))$ .
$H(m)$ : The set of all Hermitian matrices of degree $m$ .
$u(m)$ : The set of all skew Hermitian matrices of degree $m$

$=the$ Lie algebra of $U(m)$ .
@ll(m) : The set of all skew Hermitian matrices of degree $m$ with

the trace $0=the$ Lie algebra of $SU(m)$ .
$\mathfrak{M}(n, m, C)(\mathfrak{M}(n, m, R))$ : The set of all complex (real) $n\times m$ matrices.
$D(a_{1},\cdots, a_{n})$ : Diagonal matrix with the diagonal elements $a_{1},\cdots,$ $a_{n}$ .
$N$ : The number of conjugate classes of Cartan subalgebra in

the given simple Lie algebra with rank $n$ .
$F$ : Admissible root system (cf. Definition 9).
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Type A

The real forms of SI$(n+1, C)$ are divided into three types (A I), (A II) and
(A III).

There exists only one real form of type (A I) and (A II) respectively

with the given rank up to isomorphisms. There exist $[\frac{n+1}{2}]+1$ non iso-
morphic real forms of type (A III) with the rank $n$ . The real form of type
(A IV) in Cartan’s notation is a particular real form contained in type (A III).

Type (A I).

$\mathfrak{g}=6I(n+1, R)=\{X\in \mathfrak{g}I(n+1, R);TrX=0\}$

is self-adjoint, and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is a Cartan decomposition of $\mathfrak{g}$ , where
$\mathfrak{k}=\{X\in \mathfrak{g};{}^{t}X=-X\}$ , and $\mathfrak{p}=\{X\in \mathfrak{g};{}^{t}X=X\}$ .

$\mathfrak{h}_{0}=\{D(h_{1},\cdots, h_{n+1});h_{i}\in R,\sum_{i=1}^{n+1}h_{i}=0\}$

is a Cartan subalgebra of $\mathfrak{g}$ contained in $\mathfrak{p}$ . Therefore $\mathfrak{g}$ is the normaI real
form of @I(n+l, $C$).

Let $e_{i}(1\leqq i\leqq n+1)$ be the linear form on $\mathfrak{h}_{0^{c}}$ defined by

$e_{i}(H)=h_{i}$ $(H=D(h_{1},\cdots, h_{n})\in \mathfrak{h}_{0^{C}})$ ,

then the root system $R$ of $\mathfrak{g}^{C}$ is expressed as follows:

(69) $R\subset\{\pm(e_{i}-e_{j});1\leqq i<i\leqq n+1\}$ .
The Weyl group $W$ of $\mathfrak{g}^{c}$ consists of all permutations of $e_{i}’ s$ .

Any admissible root system $F$ must be of the following type:

(70) $F=\{(e_{t_{1}}-e_{i_{2}}), \cdots, (e_{i_{2k-1}}-e_{i_{2k}})\},$ $i_{1}<i_{2},\cdots,$ $i_{2k-1}<i_{2k}$ .
where $i_{1},\cdots,$ $i_{2k}$ are different $2k$ integers contained in $\{1,2,\cdots, n+1\}$ . The
toroidal part of the corresponding Cartan subalgebra is of dimension $k$.
Since the Weyl group $W$ contains all permutations of $e_{i}’ s$ , every two k-
dimensional I spanned by $F$ of type (70) are conjugate under $W$

Consequently, by Theorem 4, every two Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{y}_{2}$ of
SI$(n+1, R)$ are conjugate if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2^{+}}$ .

Since the possible values of $k$ are $0,1,2,\cdots,$ $[\frac{n+1}{2}]$ , the number $N$ of con-

jugate classes of Cartan subalgebras in $e_{A}1(n+1, R)$ is equal to $[n+1/2]+1$ :

$N=[\frac{n+1}{2}]+1$ .
A representative $\mathfrak{h}$ of conjugate classes such that $\dim \mathfrak{h}^{+}=kf\iota^{is}$ given as
follows:
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$\mathfrak{h}=\{$ ; $h_{i}\in R$, Trace $=0\}$ .

Type (A II). $\mathfrak{g}=The$ Lie algebra of quaternion unimodular group. This
real form exists only if $n+1=2m$ is an even integer. $\mathfrak{g}$ is defined as follows:
Let

$J=\left(\begin{array}{ll}0 & E_{m}\\-E_{m} & 0\end{array}\right)$ and $\theta X=J\overline{X}J^{-1}$ ,

then we have
$\mathfrak{g}=\{X\in@I(n+1, C);\theta X=X\}$

$=\{(-\overline{B}A$ $\frac{B}{A}$) : $A,$ $B\in \mathfrak{g}I(m, C),$ $Tr(A+\overline{A})=0\}$ .
$\mathfrak{g}_{u}=@u(n+1)$ is a compact form of $\mathfrak{g}^{C}$ which is invariant under $\theta$ . We have

$\mathfrak{k}=\mathfrak{g}\cap \mathfrak{g}_{u}=\{(-\overline{B}A$ $\frac{B}{A}$) ; $A\in\iota\downarrow(m),$ $B\in S(m, C)\}$

and
$\mathfrak{p}=\mathfrak{g}\cap\sqrt{-1}\mathfrak{g}_{u}=\{(-\overline{B}A$ $\frac{B}{A}$); $A\in H(m),$ $TrA=0,$ $B\in o(m, C)\}$ .

$m=\{D(h_{1},\cdots, h_{m}, h_{1},\cdots, h_{m});h_{i}\in R,\sum_{l=1}^{m}h_{i}=0\}$

is a maximal abelian subalgebra in $\mathfrak{p}$ (cf. Lemma 2).

A Cartan subalgebra $\mathfrak{h}_{0}$ of $\mathfrak{g}$ containing $\mathfrak{m}$ is given as follows:

(71) $\mathfrak{h}_{0}=\{D(h_{1},\cdots, h_{m},\overline{h}_{1},\cdots,\overline{h}_{m});h_{i}\in C, \Re(\sum_{i=1}^{m}h_{i})=0\}$ .

As the root system $R$ of $\mathfrak{g}^{c}$ with respect to $\mathfrak{h}_{0^{C}}$ is defined by (69), and

$B(X, Y)=2(n+1)TrXY$ ,
we have

$H_{e_{i}-e_{j}}=\frac{1}{2(n+1)}(E_{ii}-E_{jj})$ .
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Therefore we see that

(72) $R(\mathfrak{m})=empty$.
(72) implies that the only possible I is $\{0\}$ . Consequently, the number $N$ of
conjugate classes of Cartan subalgebras in $\mathfrak{g}$ is equal to 1:

$N=1$ .
In other words, every Cartan subalgebra of $\mathfrak{g}$ is conjugate to $\mathfrak{h}_{0}$ defined

by (70).
$\mathfrak{g}$ is an example of non compact real simple Lie algebra, of which Cartan

subalgebras are mutually conjugate.

Type (A III). The Lie algebra of the type (A III) is the Lie algebra
$o(H)$ of special unitary group with respect to a (not necessarily definite)
Hermitian form $H$ on a $(n+1)$-dimensional complex vector space $V$. Let $H$

and $H^{\prime}$ be two Hermitian forms on $V$, then $o(H)\cong o(H^{\prime})$ if and only if index
of $H=index$ of $H^{\prime}$ .

Therefore, there are exactly $[\frac{n+1}{2}]+1$ non isomorphic real forms of the

type (A III) with the rank $n$ .
Let $H$ be of the index $m(0\leqq m\leqq[\frac{n+1}{2}])$ . Then $\mathfrak{g}_{m}=\mathfrak{o}(H)$ can be defined

as follows. Let

$H_{m}=\left(\begin{array}{ll}E_{m} & 0\\0 & -E_{l}\end{array}\right)$ ; $m+l=n+1,$ $(0\leqq m\leqq[\frac{n+1}{2}])$ ,

then we have
$\mathfrak{g}_{m}=$ {X\in @l(n+l, $C$) $;{}^{t}\overline{X}H_{m}+H_{m}X=0$ }

$=\{\left(\begin{array}{ll}A & B\\{}^{t}\overline{B} & D\end{array}\right)$ ;
$B\in \mathfrak{M}(m, l, C),$

$TrA+TrD=0\}$ .$A\in\iota\downarrow(m),$ $D\in u(l)$

$\mathfrak{g}_{m}$ is self-adjoint, hence $\mathfrak{g}_{u}=S\iota\downarrow(n+1)$ is a compact real form of $\mathfrak{g}_{m^{C}}$ which is
invariant under $\theta$ .

We have

$\mathfrak{k}=\mathfrak{g}_{m}\cap \mathfrak{g}_{u}=\{\left(\begin{array}{ll}A & 0\\0 & D\end{array}\right)$ ; $A\in n(m),$ $D\in \mathfrak{u}(l),$ $TrA+TrD=0\}$

and

$0=\mathfrak{g}\cap\sqrt{-1}\mathfrak{g}_{u}=\{$ ( $\iota^{\frac{0}{B}}$ $0B$); $B\in \mathfrak{M}(m, l, C)\}$ .
Then
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$\mathfrak{m}=\{$ : $h_{i}\in R\}$

is a maximal abelian subalgebra in $\mathfrak{p}$ , and

(73) ; $u_{i}\in\sqrt{-1}R,$
$h_{i}\in R,\}$

$TrH=0$

is a Cartan subalgebra containing $\mathfrak{m}$ . $\mathfrak{h}_{0^{C}}$ consists of matrices of the same
type as $H$ in (73) with complex elements $h_{i}$ and $u_{i}$ .

Let $e_{i}$ be the linear function on $\mathfrak{h}_{0^{C}}$ defined by

$e_{i}(H)=\left\{\begin{array}{l}-\sqrt{-1}u_{i}+h_{i}\\-\sqrt{-1}u_{i-m}-h_{i-m}\\-\sqrt{-1}u_{i}\end{array}\right.$

$(1\leqq i\leqq m)$ ,
$(m+1\leqq i\leqq 2m)$ ,
$(2m+1\leqq i\leqq n+1)$ .

Then
$R=\{\pm(e_{i}-e_{j}); (1\leqq i<j\leqq n+1)\}$

is the root system of $\mathfrak{g}^{c}$ with respect to $\mathfrak{h}_{0}^{c}$ .
Therefore we have

$R(m)=\{\pm(e_{i}-e_{i+m}); (1 \leqq i\leqq m)\}$ .
The possible types of the admissible root systems $F$ are as follows:

$F=\{(e_{i_{k}}-e_{i_{k}+m}); 1\leqq k\leqq l\}$ ,

where $i_{1},\cdots,$ $i_{\iota}$ are different $l$ integers from $\{$ 1, 2, $\cdots$ , $m\}$ .
Since the Weyl group $W$ contains all permutations of $e_{i}’ s$ , bi and $\mathfrak{h}_{2}$ are

conjugate if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2}^{+}$ . The possible values of $l$ are
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$0,1,2,\cdots,$ $m$ . Consequently the number $N$ of conjugate classes of Cartan sub-
algebras in $\mathfrak{g}_{m}$ is equal to $m+1$ :

$N=m+1$ .
It is remarkable that $N$ does not depend on the rank $n$ but depends on

the index $m$ only. A representative $\mathfrak{h}$ of the conjugate class with $\dim \mathfrak{h}^{-}=k$

is given as follows:

$\mathfrak{h}=\{H=$
; $h_{i}\in R,$

$u_{i}\in\sqrt{-1}R,\}$ .$TrH=0$

Types $B$ and $D$

$\mathfrak{g}^{\sigma}=\mathfrak{o}(s, C)$ .
Type $B_{n}:\mathfrak{g}^{C}=o(2n+1, C)$ has only one kind of real form (BI) which

contains $n+1$ non isomorphic real forms with the rank $n$ .
Type $D_{n}$ : The real forms of $g^{C}=D(2n, C)$ are divided into two types $(DI)$

and ( $D$ III). Type $(DI)$ contains $n+1$ non isomorphic real forms, type ( $D$ III)

contains only one real form with the given rank. The real form of type
(BD II) in Cartan’s notation is a particular real form contained in type
(BD I).

Type (BD I). $\mathfrak{g}$ is the Lie algebra $o(Q)$ of the orthogonal group with
respect to a quadratic form $Q$ on a real vector space $V$. Let

$s=\left\{\begin{array}{l}2n+1 if\mathfrak{g}^{c}isoftypeB_{n}\\2n if\mathfrak{g}^{c}isoftypeD_{n},\end{array}\right.$

then $\dim V=s$ .
$\mathfrak{d}(Q)\cong o(Q^{\prime})$ if and only if index of $Q=index$ of $Q^{\prime}$ .
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Therefore, there exist exactly $n+1$ non isomorphic real forms of the
type (BD I) with the rank $n$ .

Let $Q$ be of the index $m(0\leqq m\leqq n)$ , then $\mathfrak{g}_{m}=o(Q)$ can be defined as
follows: let

$B_{m}=\left(\begin{array}{lll}0 & E_{m} & 0\\E_{m} & 0 & 0\\0 & 0 & -E_{p}\end{array}\right)$ ; $(p+2m=s)$ ,

then we have
$\mathfrak{g}_{m}=\{X\in \mathfrak{g}I(s, R);{}^{t}XB_{m}+B_{m}X=0\}$

$=\{$ $\left(\begin{array}{lll}A & B & D\\C & -tA & F\\{}^{t}F & {}^{t}D & L\end{array}\right)$ ; $D,F\in \mathfrak{M}(m,p, R),L\in \mathfrak{o}(p)A\in \mathfrak{g}I(m,R),B,$$C\in o(m),\}$ ,

$Since_{-}\mathfrak{g}_{m}$ is self-adjoint, $\mathfrak{g}_{m}=f+\mathfrak{p}$ is a Cartan decomposition of $g_{m}$, where

$f=\{$ $\left(\begin{array}{lll}A & B & D\\B & -{}^{t}A & -D\\-{}^{t}D & {}^{t}D & L\end{array}\right)$ ; $D\in \mathfrak{M}(m,p,R)A,B\in \mathfrak{o}(m),L\in o(p),\}$

and

$\mathfrak{p}=\{$
$\left(\begin{array}{lll}A & B & D\\-B & -A & D\\{}^{t}D & {}^{t}D & 0\end{array}\right)$ ; $A\in S(m,R),B\in \mathfrak{o}(m)D\in \mathfrak{M}(m,p,R)\}$ .

$\mathfrak{m}=\{D(h_{1},\cdots, h_{m}, -h_{1},\cdots, -h_{m}, 0,\cdots, 0);h_{i}\in R\}$

is a maximal abelian subalgebra in $\mathfrak{p}$ (cf. Lemma 2), and

$\mathfrak{h}_{0}=\{H=$ ; $h_{i}\in R,$ $u_{i}\in R\}$
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is a Cartan subalgebra of $\mathfrak{g}_{m}$ containing $\mathfrak{m}$, where $t=[\frac{n-2m}{2}]$ . The last row
and column exist only for $\mathfrak{g}_{m}$ of the type B.

Let $e_{i}$ be the linear form on $\mathfrak{h}_{0}$ defined by

$e_{i}(H)=\{$ $h_{i}\sqrt{-1}u_{i-m}$

$(1\leqq i\leqq m)$ ,

$(m+1\leqq i\leqq n)$ ,

then the root system of $\mathfrak{g}_{m^{C}}$ is given as follows:
$R=\{\pm(e_{i}\pm e_{j}), (1\leqq i<j\leqq n)\}$

for $\mathfrak{g}_{\eta\eta}^{C}=D_{n}$ , and

$R=\{\pm(e_{i}\pm e_{j}), (1\leqq i<j\leqq n) ; \pm e_{i}, (1\leqq i\leqq n)\}$

for $\mathfrak{g}_{m^{C}}=B_{n}$ .
Therefore

$R(\mathfrak{m})=\{\pm(e_{i}\pm e_{j}), (1\leqq i<j\leqq m)\}$

for $\mathfrak{g}_{m}$ of type $(DI)$ and
$R(\mathfrak{m})=\{\pm(e_{i}\pm e_{j}), (1\leqq i<j\leqq m);\pm e_{i}(1\leqq i\leqq m)\}$

for $\mathfrak{g}_{m}$ of type $(BI)$ .
Now we investigate type $B$ and type $D$ separately.

Type $(DI)$ . The Weyl group $W$ of $\mathfrak{g}_{m^{C}}$ consists of all permutations of
$e_{i}’ s$ and change of signatures of an even number of $e_{i}’ s$ . Therefore any
admissible root system $F$ is conjugate to one of the followings:

$F(l, k)=\{e_{1}+e_{2},$ $e_{1}-e_{2},\cdots,$ $e_{2l-1}+e_{2l},$ $e_{2l-1}-e_{2l}$ ,
(74)

$e_{2l+1}-e_{2l+k+1},\cdots,$ $e_{2l+k}-e_{2l+2k}$ },

where two integers $l,$ $k$ satisfy the conditions:

(75) $0\leqq k,$ $0\leqq l$, $2(l+k)\leqq m$ .
If $m=n$ and $m$ is even, there exists another type of $F;i$ . $e$ .

(76) $F=\{F(O, m-2), e_{m-1}+e_{m}\}$

where $F(O, m-\underline{P})$ is defined by (74).

Two $F(l, k)s$ with different $(l, k)$ are not conjugate under $W$.
The number $m_{p}$ of lattice points on the straight line $x+y=p(p$ is a non

negative integer) in the first quadrant is equal to $p+1$ . Consequently,

$N=\left\{\begin{array}{l}[-]\sum_{p=0}^{m_{2}}m_{p}=\frac{1}{2}([\frac{m}{2}]+1)([-2m-]+2),\\\sum_{p=0}^{m/2}m_{p}+l=\frac{1}{2}(\frac{m}{2}+1)(\frac{m}{2}+2)+1,\end{array}\right.$ $m<norm=n=oddm=n=even$

.
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A representative $\mathfrak{h}$ of the conjugate class characterized by (74) is given as
follows:

(77) $\mathfrak{h}=\{$ ; $h_{i}\in R\}$ ,

where

(78)

$D_{4}=$

$h_{m}$

A representative of the conjugate class characterized by (75) is given
also by (77), except that $D_{5}$ should be replaced by $D_{5}’=D(h_{m-1}, -h_{m-1})$ . (In
this case, we have $l=0,$ $h=m$ , therefore $D_{1},$ $D_{2}$ and $D_{6}$ disappear.)
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Type $(BI)$ . As
$e_{i}\pm e_{j}\in R,$ $(i\neq j);(e_{i}\pm e_{j})\mp(e_{j}\pm e_{k})\in R,$ $(i\neq k)$ ;

$(e_{i}\pm e_{j})\mp e_{j}\in R$ ; $(e_{l}+e_{j})+(e_{j}-e_{k})\in R,$ $(i\neq k)$ ,

the pairs $\{e_{i}, e_{j}\},$ $\{e_{i}\pm e_{j}, e_{j}\pm e_{k}\},$ $\{e_{i}\pm e_{j}, e_{j}\}$ and $\{e_{i}+e_{j}, e_{j}-e_{k}\}$ can not be con-
tained in admissible root systems. On the other hand,

$(e_{i}+e_{j})\pm(e_{i}-e_{j})\not\in R$ $(i\neq j)$ ,

$(e_{i}\pm e_{j})\pm(e_{k}\pm e_{\iota})\not\in R$ ($i,j,$ $k,$ $l$ are mutually different),

$(e_{i}\pm e_{j})\pm e_{k}$ $\not\in R$

and the Weyl group $W$ consists of all permutations of $e_{i}’ s$ and changes of
signatures of $e_{i}’ s$ .

Therefore any admissible root system $F$ is conjugate to one of the sys-
tems listed in the following (79) and (79).

(79) $F(l, k)=\{e_{1}+e_{2},$ $e_{1}-e_{2},$ $\cdots$ , $e_{2l-1}+e_{2l},$ $e_{2l-1}-e_{2l}$ ,

$e_{2l+1}-e_{2l+k+1}$ , $\cdot$ .. $e_{2l+k}-e_{2l+2j}$ },

$0\leqq k,$ $0\leqq l$, $2(k+l)\leqq m$ .
(79)i $F^{\prime}(l, k)=\{e_{1}+e_{2},$ $e_{1}-e_{2},$ $\cdots,$ $e_{2l-1}+e_{2l},$ $e_{2l-1}-e_{2l}$ ,

$e_{2l+1}-e_{2l+k+1}$ , $\cdot$
.,

$e_{2l+k}-e_{2l+2k},$ $e_{2l+2k+1}$ }

$0\leqq k,$ $0\leqq l,$ $2(k+l)+1\leqq m$ .
$F(l, k)$ is not conjugate $toF^{\prime}(l^{\prime}, k^{\prime})$ under $W$. And two $F(l, k)s$ (or $F^{\prime}(l,$ $k)s$)

with different $(l, k)$ are not conjugate under $W$. Therefore the number $N$ of
conjugate classes of Cartan subalgebras is given as follows:

$N=\left\{\begin{array}{l}2\sum_{p=0}^{2}m_{p}+m_{m/2}=(-2m-+1)^{2}=\frac{(m+2)^{2}}{4}- m_{-- 1}m=even\\2[]p^{\frac{m}{\sum_{=0}^{2}}}m_{p}=([\frac{m}{2}]+1)([\frac{m}{2}]+2)=\frac{(m+1)(m+3)}{4},m=odd.\end{array}\right.$

( $m_{p}$ is the number of lattice points on the line $x+y=p$ in the first quadrant.)
A representative $\mathfrak{h}$ of the conjugate class associated with (79) is of the

same type as (77). (The last row and column consisting of zero should be
added.) A representative $\mathfrak{h}$ of the conjugate class associated with (79) is
given as follows:
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$h_{i}\in R\}$

where $D_{5}^{\prime}=D(O, h_{2(l+k+1)},\cdots, h_{m})$ and other $D_{i}’ s$ are same as in (78).

REMARK 1) The number $N$ of conjugate classes in a Lie algebra $\mathfrak{g}$ of
type (BD I) does not depend upon the rank of $\zeta${. $N$ depends upon the index
of the quadratic form $Q$ only.

2) There exist non-conjugate Cartan subalgebras of which toroidal parts
have the same dimension. For example, Cartan subalgebras which correspond
to $F=\{e_{l} e_{2}\}$ and $F=\{e_{1}\}$ respectively are not conjugate.

3) When the quadratic form $Q$ is of the maximal index, $i$ . $e$ . if $m=n$ ,

then $\mathfrak{m}$ coincides with $\mathfrak{h}_{0}$ . In other words, $\mathfrak{g}_{n}$ is the normal real form of $\mathfrak{g}^{C}$.
4) We divide the Lie algebras of type $(DI)$ into two classes (DI a) and

(DI b) according to $m$ is even or odd. We remark that a Lie algebra $\mathfrak{g}_{m}$ of
type $(DI)$ has an m-dimensional admissible root system if and only if $m$ is
even. This fact implies that $\mathfrak{g}_{m}$ has a Cartan subalgebra $\mathfrak{h}$ which satisfies
$\mathfrak{h}^{+}=\mathfrak{h}$ , if and only if $\mathfrak{g}_{m}$ is of the type (DI a) (cf. Theorem 8 in \S 4).

Type ($D$ III). $\mathfrak{g}$ is the Lie algebra of the group $G$ of linear transforma-
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tions in $2n$ complex variables which keep invariant the quadratic form
$z_{1}z_{n+1}+\cdots+z_{n}z_{2n}$ and Hermitian form $z_{1}\overline{z}_{1}+\cdots+z_{n}\overline{z}_{n}-\cdots-z_{2n}\overline{z}_{2n}$ . If we perform
the suitable transformation of variables, $G$ is transformed to the group which
keeps invariant $u_{1}u_{k+1}+\cdots+u_{3k}u_{4k}(+u_{2n-1}u_{2n})$ and $ u_{1}\overline{u}_{2k+1}+\cdots+u_{2k}\overline{u}_{4k}+\overline{u}_{1}u_{2k+1}+\cdots$

$+\overline{u}_{2k}u_{4k}(+u_{2n-1}\overline{u}_{2n-1}-u_{2n}\overline{u}_{2n})$ , where $k=[\frac{n}{2}]$ . The terms in parenthesis exist
only if $n$ is odd.

Let

and
$L=\overline{|_{-|_{-}^{-}|_{\overline{10}}^{-}|}^{-}E_{2k}E_{2k}0-1}$

(The last two rows and columns in $K$ and $L$ exist only if $n$ is odd. The
same remark holds in the following.)

We have

$\mathfrak{g}=\{X\in \mathfrak{g}I(2n, C);{}^{t}XK+KX=0,{}^{t}\overline{X}L+LX=0\}$

$=\{|_{-F_{1}{}^{t}G^{-}F^{A}}^{\underline{\vdash_{k}}}CF_{k}^{t}ADF_{k}B_{t}|_{-I^{D_{\overline{G}^{\overline{A}}}}}\underline{\overline{\overline{B}^{\overline{A}}-|_{t}^{\overline{C}|_{0-a}^{G_{F_{1}J_{\overline{0}}}}|^{;}}}}a^{F_{k}\overline{G}}C(k^{(k}C^{C),B_{)}\in o(k,C)}A\in \mathfrak{g}_{a^{\int}\in\sqrt{-1}^{D\in \mathfrak{u}(2k)}}G^{\in}\in^{0}\mathfrak{M}(2k^{)},2,C^{R}’\}$

where $F_{k}=\left(\begin{array}{ll}0 & E_{k}\\E_{k} & 0\end{array}\right)$ and $J=\left(\begin{array}{l}1 0\\0-1\end{array}\right)$ .
Since $\mathfrak{g}$ is self-adjoint, we get a Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ by
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$f=\{X\in \mathfrak{g};{}^{t}\overline{X}=-X\}$

$A\in u(k),$ $B\in o(k, C)$ ,

$D_{1}\in n(k),$ $D_{2}\in S(k, C)$ ,
$a\in\sqrt{-1}R,$ $F_{k}\overline{G}-F_{1}G=0$,
$G\in \mathfrak{M}(2k, 2, C)$

and
$\#=\{X\in \mathfrak{g};{}^{t}\overline{X}=X\}$

$r\mathfrak{n}=\{D(h_{1},\cdots, h_{k}, -h_{1},\cdots, -h_{k}, -h_{1},\cdots, -h_{k}, h_{1},\cdots, h_{k}, (0,0));h_{i}\in R\}$ is a maximal
abelian subalgebra in $\mathfrak{p}$ (cf. Lemma 2).

A Cartan subalgebra $\mathfrak{h}_{0}$ containing $\mathfrak{m}$ is given by
$\mathfrak{h}_{0}=\{D(h_{1}, \cdots, h_{k}, -h_{1}, \cdots, -h_{k}, -\overline{h}_{1}, \cdots, -\overline{h}_{k},\overline{h}_{1}, \cdots,\overline{h}_{k}, (a, -a))$ ;

$h_{i}\in C,$ $a\in\sqrt{-1}R$}.
Then

$\mathfrak{h}_{0^{\sigma}}=1H=D(h_{1},$
$\cdots,$

$h_{k},$ $-h_{1},$
$\cdots,$ $-h_{k},$ $h_{k+1},$

$\cdots,$
$h_{2k},$ $-h_{k+1},$

$\cdots,$ $-h_{2k}$ ,

$(h_{2k+1}, -h_{2k+1}));h_{i}\in C\}$

is a Cartan subalgebra of $\mathfrak{g}^{c}=\{X\in \mathfrak{g}\mathfrak{l}(2n, C);{}^{t}XK+KX=0\}$ .
Let $e_{i}$ be the linear form on $\mathfrak{h}_{0^{C}}$ defined by

$e_{i}(H)=h_{i}$ ,
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then we have
$R=\{\pm(e_{i}\pm e_{j}), (1\leqq i<j\leqq n)\}$ .

By the identity

$B(X, Y)=\frac{1}{2(n-1)}$ Tr $XY$ ,

we have
$R(\mathfrak{m})=\{\pm(e_{i}-e_{i+k}), (1\leqq i\leqq k)\}$ .

The Weyl group of $\mathfrak{g}^{C}$ contains all permutations of $e_{i}’ s$ . Therefore, two
Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ of which vector parts have the same dimension
are conjugate to each other.

The possible values of $\dim \mathfrak{h}^{-}$ are $k,$ $k-1,\cdots,$ $1,0$. Consequently the num-

ber $N$ of conjugate classes is equal to $k+1=[\frac{n}{2}]+1$ :

$N=[\frac{n}{2}]+1$ .
A representative $\mathfrak{h}$ of the conjugate class of which vector part has the
dimension $k-l$ is given as follows:
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Type $C$

The real forms of $\mathfrak{g}^{c}=s\mathfrak{p}(n, C)$ are divided into two types: $(CI)$ and ( $C$ II).

The type $(CI)$ consists of the only one real form and the tvpe ( $C$ II) contains
$[\frac{n}{2}]+1$ non isomorphic real forms with the rank $n$ .

Type $(CI)$ .
g=@p(n, $R$) $=\S \mathfrak{p}(n, C)\cap \mathfrak{g}Y(2n, R)$ .

Let

$J=\left(\begin{array}{ll}0 & E_{n}\\-E & 0\end{array}\right)$ ,

then
$\mathfrak{g}=\{X\in \mathfrak{g}I(2n, R);{}^{t}XJ+JX=0\}$

$=\{\left(\begin{array}{ll}A & B\\C & -{}^{t}A\end{array}\right)$ ; $A\in\{;Y(n, R), B, C\in S(n, R)\}$ .

$\mathfrak{g}$ is self-adjoint, hence $fi=\mathfrak{k}+\mathfrak{p}$ is a Cartan decomposition, where
$f=\{X\in \mathfrak{g};{}^{t}X=-X\}$

$=\{\left(\begin{array}{ll}A & B\\-B & A\end{array}\right)$ ; $A\in o(n),$ $B\in S(n, R)\}$ ,

$\mathfrak{p}=\{\left(\begin{array}{ll}A & B\\B & -A\end{array}\right)$ ; $A,$ $B\in S(n, R)\}$ .

$\mathfrak{h}_{0}=\{D(h_{1},\cdots, h_{n}, -h_{1},\cdots, -h_{n}) ; h_{i}\in R\}$

is a Cartan subalgebra of $\mathfrak{g}$ , and $\mathfrak{h}_{0}\subset \mathfrak{p}$ , therefore $\mathfrak{h}_{0}^{-}=\mathfrak{h}_{0}$ . Hence $\mathfrak{g}=s\mathfrak{p}(n, R)$

is the normal real form of @p(n, $C$).

Let $e_{i}$ be the linear form on $\mathfrak{h}_{0^{C}}$ defined by

$e_{i}(D(h_{1},\cdots, h_{n}, -h_{1},\cdots, -h_{n}))=h_{i}$ $(1 \leqq i\leqq n)$ ,

then
$R(\mathfrak{m})=R=\{\pm(e_{i}\pm e_{j}), (1\leqq i<j\leqq n);\pm 2e_{i}(1\leqq i\leqq n)\}$ .

The Weyl group $W$ of $\mathfrak{g}^{c}$ consists of all permutations of $e_{i}’ s$ and changes of
the signatures of $e_{i}’ s$ .

Let $\mathfrak{h}$ be a standard Cartan subalgebra of $\mathfrak{g}$ , and $I=\mathfrak{h}^{-\perp}\cap\iota \mathfrak{m}$ . By Theorem
4, any admissible root system $F$ is conjugate to one of the followings:

(80) $F(k, l)=(2e_{1},\cdots, 2e_{k}, e_{k+1}-e_{k+2},\cdots, e_{k+2l-1}-e_{k+2l})$ ,

where $k$ and $l$ satisfy

(81) $0\leqq k$ , $0\leqq l$, $k+2l\leqq n$ .
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Since $(2e_{i}, 2e_{i})\neq(e_{j}-e_{k}, e_{j}-e_{k})$ , the elements of the Weyl group $W$ can not
transform $2e_{i}$ to $e_{j}-e_{k}$ . Consequently each conjugate class is characterized
by two integers $(k, l)$ satisfying the condition (81). The number $m_{p}$ of lattice
points on the line $k+2l=p$ in the first quadrant is given as follows:

$m_{p}=\left\{\begin{array}{l}\frac{p}{2}+l\\\frac{p+l}{2}\end{array}\right.$ $p=oddp=even$

,

Therefore the number $N$ of conjugate classes is equal to

$N=\sum_{p=0}^{n}m_{p}=\left\{\begin{array}{l}(\frac{n}{2}+1)^{2}=\frac{(n+2)^{2}}{4},\\([\frac{n}{2}]+1)([\frac{n}{2}]+2)=(\frac{n+1)(n+3)}{4}\end{array}\right.$ $n=oddn=even$

,

A representative $\mathfrak{h}$ of the conjugate class with the characteristic $(k, l)$ is
given as follows:

$A_{i}=(_{h_{k}}:_{i}h_{k+l+i})$ ,

$h_{i}\in R$

Type ($C$ II). $\mathfrak{g}$ is the Lie algebra $\mathfrak{g}_{m}$ of the group of linear transfor-
mations in $2n$ complex variables which keep invariant the skew symmetric

bilinear form $\sum_{i\Leftarrow 1}^{n}$ $(z_{i}z_{i+n}‘-z_{i+n}z_{i^{\prime}})$ and the Hermitian form $\sum_{i=1}^{m}(z_{i}\overline{z}_{i}+z_{i+n}\overline{z}_{i+n})-$
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$\sum_{j=1}^{n-m}(z_{j+m}\overline{z}_{j+m}+z_{j+m+n}\overline{z}_{j+m+n})$ with index $m(0\leqq m\leqq[\frac{n}{2}])$ . As $\mathfrak{g}_{m_{1}}\cong \mathfrak{g}_{7n}$ , if and

only if $m_{1}=m_{2}$ , there are $[\frac{n}{2}]+1$ non isomorphic real forms of the type

( $C$ II) with the rank $n$ . Let

$J=\left(\begin{array}{ll}0 & E_{n}\\-E_{n} & 0\end{array}\right)$ and
$H=\left(\begin{array}{llll}E_{m} & & & \\ & -E_{n-m} & & \\ & & E_{m} & E\end{array}\right)-$

then
$\mathfrak{g}=\{X\in \mathfrak{g}I(2n, C);{}^{t}XJ+JX=0,{}^{t}\overline{X}H+HX=0\}$

A B D $F$

$=\{(-\iota^{\frac{}{F}}{}^{t}\overline{B}\frac{}{D}-\frac{C}{}\frac{F}{G}-{}^{t^{t}}BF\frac{}{A}-G_{\frac{\overline{B}}{C}})$

;
$D\in S(m,C),G\in S(n-m, C)A\in u(m),C\in \mathfrak{u}(n-m)B,F\in \mathfrak{M}(m,n-m,C),\}$ .

$\mathfrak{g}$ is self-adjoint, so we have a Cartan decomposition $\mathfrak{g}=f+0$ where
$f=\{X\in \mathfrak{g};{}^{t}\overline{X}=-X\}$

$=\{\left(\begin{array}{llll}A & 0 & D & 0\\0 & C & 0 & G\\-\overline{D} & 0 & & \overline{A} 0\\0 & -\overline{G} & 0 & \overline{C}\end{array}\right)$

; $D\in S(m,C),G\in S(n-m, C)A\in\iota\iota(m),C\in\iota\iota(n-m),\}$ ,

and
$0$ $B$ $0$ $F$

$\mathfrak{p}=\{(c^{\frac{0}{F}}{}^{t}\overline{B}\frac{0}{F,0}-{}^{t}B^{-}\iota_{0^{\frac{0}{B0}}}F)$

; $B,$ $F\in \mathfrak{M}(m, n-m, C)\}$ .

$r\mathfrak{n}=\{H^{-}=H^{-}(h_{1},\cdots, h_{m})=$ ; $h_{i}\in R\}$
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is a maximal abelian subalgebra in $\mathfrak{p}$ .
Let

$\mathfrak{b}=\{H^{+}=D(u_{1},\cdots,$ $u_{m},$ $u_{1},\cdots,$ $u_{m},$ $u_{2m+1},\cdots,$ $u_{n},$ $-u_{1},\cdots,$ $-u_{m}$ ,

$-u_{1},\cdots,-u_{m},$ $-u_{2m+1},\cdots,$ $-u_{n}$); $u_{i}\in\sqrt{-1}R$ }

then $b_{0}=b+m$ is a Cartan subalgebra of $\mathfrak{g}$ and $\mathfrak{h}_{0^{+}}=\mathfrak{b},$ $\mathfrak{h}_{0^{=}}=\mathfrak{m}$ .
If we define the linear form $e_{i}$ on $\mathfrak{h}_{0}$ as

$e_{\dot{\lambda}}(H^{+}+H^{-})=\left\{\begin{array}{l}-\sqrt{-1}u_{i-m}-h_{i-m}-\sqrt{-1}u_{\iota+h_{i}} 1\leqq i\leqq m,\\-\sqrt{-1}u_{i}\end{array}\right.$$m+1\leqq i\leqq 2m$ ,
$2m+1\leqq i\leqq m$ ,

and extension $e_{\dot{*}}$ as the linear form on $\mathfrak{h}_{0^{C}}$ , then

$R=\{\pm(e_{i}\pm e_{j}), (1\leqq i<i\leqq n);\pm 2e_{i}, (1\leqq i\leqq n)\}$

is the root system of $\mathfrak{g}^{c}$ with respect to $\mathfrak{h}_{0^{C}}$ .
Therefore we have

$R(m)=\{\pm(e_{i}-e_{i+m}), (1\leqq i\leqq m)\}$ .
The Weyl group of $\mathfrak{g}^{c}$ contains all permutations of $e_{i}’ s$ . Therefore two

Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate if and only if $\dim \mathfrak{h}_{\iota^{-}}=d_{\tilde{1}}m\mathfrak{h}_{2}^{-}$.
The possible values of $\dim \mathfrak{h}^{-}$ are $m,$ $m-1,\cdots,$ $1,0$ . Consequently the number
$N$ of conjugate classes is equal to $m+1$ :

$N=m+1$ .
A representative $\mathfrak{h}$ of the conjugate class of which vector part has the

dimension $k$ is given as follows:
$\mathfrak{h}=\{H^{-}(h_{1},\cdots, h_{k}, 0,\cdots, 0)+D(u_{1},\cdots,$ $u_{m},$ $u_{1},\cdots,$ $u_{k},$ $u_{m+k+1},\cdots,$ $u_{n}$ ,

$-u_{1},\cdots,$ $-u_{m},$ $-u_{1},\cdots,$ $-u_{k},$ $-u_{m+k+1},\cdots,$ $-u_{n}$);

$h_{i}\in R,$ $u_{i}\in\sqrt{-1}R$ }.

\S 4. Conjugate classes of Cartan subalgebras in exceptional real simple
Lie algebras.

Let $g=f+P$ be a Cartan decomposition of real semisimple Lie algebra $\mathfrak{g}$,

and $\mathfrak{g}_{u}=k+\sqrt{-1}\mathfrak{p}$ . Then the conjugation $\theta$ of $\mathfrak{g}^{c}$ with respect to $\mathfrak{g}$ induces
an involution $\tau$ of $\mathfrak{g}_{u}$ . Real semisimple Lie algebra $\mathfrak{g}$ is called of the first
category if $\tau$ is an inner automorphism of $\mathfrak{g}_{u},$

$i$ . $e$ . $\tau$ belongs to the component
of the identity $G_{u}$ of the full automorphism group of $\mathfrak{g}_{u}$ , otherwise $\mathfrak{g}$ is called
of the second category.

Complex semisimple Lie algebras regarded as Lie algebra over reals
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are always of the second category. Among the real forms of complex simple
Lie algebras, the algebras of type $(A_{n}I)(n\geqq 2)$ , (A II), ( $D_{n}$ Ib) $(n\geqq 3),$ $(EI)$ and
($E$ IV) are of the second category, other real forms are of the first category.

Let $\mathfrak{g}$ be of the first category, then $\tau$ belongs to a Cartan subgroup
(maximal torus) $H$ of $G_{u}$ . Therefore $\tau$ can be expressed as

$\tau=\exp$ ad $H_{0},$ $H_{0}\in \mathfrak{h}$ ,

where $\mathfrak{h}$ is the Lie algebra of $H$ Hence $\tau H=H$ for all $H\in \mathfrak{h}$ . So we have
$\mathfrak{h}\subset \mathfrak{k}=\{X\in \mathfrak{g}_{u} ; \tau X=X\}$ .

Now we shall call a Cartan subalgebra $\mathfrak{h}$ of a real semisimple Lie algebra
$\mathfrak{g}$ compact if $\mathfrak{h}^{+}=\mathfrak{h}$ . Then by the above argument we have the following
proposition which is important in what follows.

PROPOSITION 12. A real semisimple Lie algebra $\mathfrak{g}$ has compact Cartan sub-
algebras if $\mathfrak{g}$ is of the first category.

REMARK. We shall see that the converse of this proposition is also valid
(cf. Theorem 8).

Now let $R$ be the root system of $\mathfrak{g}^{c}=\mathfrak{g}_{u^{C}}$ with respect to the Cartan sub-
algebra $\mathfrak{h}^{C}$ contained in $f^{C}$, and let $E_{\alpha}(\alpha\in R)$ be non zero elements of $\mathfrak{g}^{c}$ satisfying
(51). As $[\mathfrak{h}^{C}, l^{C}]\subset \mathfrak{k}^{C},$ $[\mathfrak{h}^{C}, \mathfrak{p}^{c}]\subset \mathfrak{p}^{c},$ $E_{\alpha}$ belongs either to lc or to $\mathfrak{p}^{c}$ . We put

$R_{t}=\{\alpha\in R;E_{\alpha}\in f^{C}\}$ and $R_{\mathfrak{p}}=\{\alpha\in R;E_{\alpha}\in \mathfrak{p}^{c}\}$ .
A root $\alpha$ in $R$ is called compact or non compact according to $\alpha\in R_{\iota}$ or

$\alpha\in R_{\mathfrak{p}}$ .
Let $(H_{i}, E_{a})$ be a basis of $\mathfrak{g}^{c}$ satisfying the conditions (54), (55), (56) and

(57), then we may assume that $\mathfrak{g}_{m}$ is defined by (58). We introduce a fixed
lexicographic order in $R$ , and we put $R^{+}=\{\alpha>0;\alpha\in R\},$ $R_{t}^{+}=R^{+}\cap R$ } and
$R_{\mathfrak{p}^{+}}=R^{+}\cap R_{\mathfrak{p}}$ . Let

(82) $U_{a}=(E_{a}+E_{-\alpha})/(2(\alpha, \alpha))^{1/2}$ and $V_{a}=\sqrt{-1}(E_{\alpha}-E_{-a})/(2(\alpha, \alpha))^{1/2}$ ,

then we have

$\mathfrak{k}=\mathfrak{h}+\sum_{a\in R_{t}^{+}}(RU_{\alpha}+RV_{\alpha})$

,

$\mathfrak{p}=\sqrt{-1}\sum_{\mathfrak{p}^{+}}(RU_{\alpha}+RV_{\alpha})\alpha\in R$

For each root $\alpha$ , we denote by $H_{a}$ and $H_{\alpha^{0}}$ the unique elements which satisfy
the condition (83) and (84) respectively.

(83) $H_{a}\in \mathfrak{h}^{c}$, $B(H_{a}, H)=\alpha(H)$ for all $H\in \mathfrak{h}^{c}$ .
(84) $H_{\alpha^{0}}=\sqrt{-1}H_{\alpha}/(\alpha, \alpha)$ .
Let $\rho_{\alpha}$ be the automorphism $\rho_{\alpha}=\exp$ ad $V_{\alpha}$ of $\mathfrak{g}^{c}$, then we have
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(85) $\rho_{a}(H_{\alpha^{0}})=U_{\alpha}$ and $\rho_{\alpha}(U_{a})=-H_{a^{0}}$ .
Let $F=\{\alpha_{1},\cdots, \alpha_{\iota}\}$ be a maximal admissible root system in $R_{p^{+}},$ $i$ . $e$ . a set of
$\alpha_{t}’ s$ which satisfy the following three conditions.

a) $\alpha_{i}\in R_{\mathfrak{p}^{+}}(1\leqq i\leqq l)$ , b) $\alpha_{i}\pm\alpha_{j}\not\in R$ ,

c) $F$ is a maximal set having the properties a) and b).

Then
$\mathfrak{m}=\sqrt{-1}\sum_{i=1}^{\iota}RU_{\alpha_{i}}$

is a maximal abelian subalgebra in $\mathfrak{p}$ . Let

$\mathfrak{b}=\{X\in \mathfrak{h};[X, \mathfrak{m}]=0\}$ ,

then $\mathfrak{h}_{0}=\mathfrak{b}+m$ is a Cartan subalgebra of $\mathfrak{g}$ , and $\mathfrak{h}_{0^{+}}=\mathfrak{b}$ and $\zeta_{)_{0}^{-}}=t\mathfrak{m}$ . We put

$\rho=\rho_{\alpha_{1}}\rho_{a_{2}}\cdots\rho_{a_{l}}$

then $\rho$ is an automorphism of $\mathfrak{g}^{c}$ , and we have

$\rho(H)=H$ for all $H\in \mathfrak{b}$ .
As $\alpha_{i}\pm\alpha_{j}\not\in R$ and $(\alpha_{i}, \alpha_{j})=0$ if $i\neq j$ , we have $\rho_{a_{i}}(U_{\alpha_{j}})=U_{\alpha_{j}}$ and $\rho_{a_{i}}(H_{a_{j}})$

$=H_{a_{j}}$ , if $i\neq j$. Therefore we have by (85)

$\rho(H_{\alpha_{i}})=-\sqrt{-1}(\alpha_{i}, \alpha_{i})U_{a_{i}}$ $(1\leqq i\leqq l)$ .
Consequently the automorphism $\rho$ of $\mathfrak{g}^{c}$ transforms $\sum_{i=1}^{\iota}RH_{m}$ onto $\mathfrak{n}\iota$ , and

$\mathfrak{h}^{C}$ onto $\mathfrak{h}_{0^{C}}$.
Thus we have proved the following theorem.
THEOREM 7. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of a real semisimple

Lie algebra $\mathfrak{g}$ of the first category and $\mathfrak{h}$ a Cartan subalgebra of $\mathfrak{g}$ contained in
$\mathfrak{k}$ . Let $F=\{\alpha_{1},\cdots, \alpha_{l}\}$ be a maximal admissible root system in $R_{\mathfrak{p}}$ . Then there
exist an automorphism $\rho$ of $\mathfrak{g}^{C}$ and a Cartan subalgebra $\mathfrak{h}_{0}$ of $\mathfrak{g}$ which satisfy the
following conditions: l) $\rho$ transforms $\mathfrak{h}^{C}$ onto $\mathfrak{h}_{0^{C}},$ $2$) $\mathfrak{h}_{0^{=}}=\mathfrak{m}$ is a maximal abelian
subalgebra in $\mathfrak{p},$

$3$) $R^{\prime}=\{\alpha^{\prime}=^{t}\rho(\alpha);\alpha\in R\}$ is the root system $ uit1\iota$ respect to $\mathfrak{h}_{0}^{G}$

and $\{\alpha_{1}^{\prime},\cdots, \alpha_{\iota}^{\prime}\}$ spans $\mathfrak{h}_{0^{-}}$ .
Finally we give a proposition which is interesting in comparision with

Corollary 2 to Theorem 3. The proposition will be used in the followings.
PROPOSITION 13. In a real semisimple Lie algebra, all Cartan subalgebras of

which toroidal parts have maximal possible dimension are mutually conjugate.
PROOF. Let $\mathfrak{b}$ be a maximal abelian subalgebra of $\mathfrak{k}$ , then it is known

that there exists the unique Cartan subalgebra $\mathfrak{h}$ which contains $\mathfrak{b}$ and $\mathfrak{h}^{+}=\mathfrak{b}$

(cf. Murakami [11, p. 107]). Hence if $\mathfrak{h}$ is a Cartan subalgebra of $\mathfrak{g}$ of which
toroidal part $\mathfrak{h}^{+}$ has maximal dimension, then $\dim \mathfrak{h}^{+}=rank\mathfrak{k}$ .

Let $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ be two standard Cartan subalgebras which satisfy



416 M. SUGIURA

$\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2^{+}}=rankf$ , then $\mathfrak{h}_{1}^{+}$ and $\mathfrak{h}_{2^{+}}$ are two Cartan subalgebras of $\mathfrak{k}$ .
Hence there exists an element $k\in K$, which transforms $\mathfrak{h}_{1}^{+}$ onto $\mathfrak{h}_{2}^{+}$ . By the
uniqueness of Cartan subalgebra $\mathfrak{h}_{i}$ of $\mathfrak{g}$ containing $\mathfrak{h}_{i^{+}}$ , we have $k\mathfrak{h}_{1}=\mathfrak{h}_{2}$ .

Notations: We make now the following conventions for the sake of
brevity. We denote a root $\alpha^{\prime}={}^{t}\rho(\alpha)$ on $\mathfrak{h}_{0^{C}}$ by the same letter $\alpha$ which is a
root on $\mathfrak{h}^{c}$ . Hence $H_{\alpha}$ and $H_{a}$ is defined by the conditions.

$H_{\alpha}\in \mathfrak{h}^{c}$ , $B(H_{\alpha}, H)=\alpha(H)$ for all $H\in \mathfrak{h}^{c}$ ,

$H_{\alpha}’\in \mathfrak{h}_{0^{C}}$ , $B(H_{\alpha^{\prime}}, H)=\alpha(H)$ for all $H\in \mathfrak{h}_{0^{C}}$ .

We identify the dual space $(\mathfrak{h}_{0}^{c})^{*}$ of $\mathfrak{h}_{0^{c}}$ with $\mathfrak{h}_{0^{C}}$ by the use of Killing form
$B(X, Y)$ . So we often denote $H_{\alpha^{\prime}}$ by $\alpha$ .

We denote by $e_{1},$ $e_{2},$
$\cdots$ orthogonal vectors with the same length $\sqrt{c}$ in a

Euclidean vector space, and we define $e^{()}r$ by

$e^{()}r=e_{1}+e_{2}+\cdots+e_{r}$ .
We introduce a lexicographic order so as to $\Sigma m_{i}e_{i}>0$ if $m_{1}=\cdots=m_{r-1}$ =\’u’

and $m_{r}>0$ . We denote the reflection with respect to a root $\alpha$ by $S_{\alpha}i.e$ .
$S_{\alpha}(x)=x-2[(\alpha, x)/(\alpha, \alpha)]\alpha$ .

Type $E_{6}$

The root system $R$ of complex simple Lie algebra $E_{6}$ is

(86) $R=\{\pm(e_{i}-e_{j}), (1\leqq i<j\leqq 6), \pm 2^{1/2}e_{7}, \pm(2^{-1/2}e_{7}+2^{-1}e^{(6)}-e_{i}-e_{j}-e_{k})\}$

$(1\leqq i<j<k\leqq 6)$ .
Cf. Pontrjagin [12, p. 504],

$\pm(2^{-1/2}e_{7}+2^{-1}e^{(6)}-e_{i}-e_{j}-e_{k})$ is represented as $\pm 2^{=1/2}e_{7}+2^{-1}\sum_{i\equiv 1}^{6}\epsilon_{i}e_{i}$ . We
denote this root by $(\epsilon_{1},\cdots, \epsilon_{6}, \pm 1)$ or $(\epsilon, \pm 1)$ .

The operations of the generators of the Weyl group $W$ are as follows:

(87) $S_{e_{i}=e_{j}}=substitution$ of $e_{i}$ for $e_{j}$ .
(88) $S_{2^{1/2_{e,}}}=change$ of signature of $e_{7}$ .

(89) $S_{(\epsilon.1)}(e_{k}-e_{\iota})=\left\{\begin{array}{l}e_{k}-e_{\iota} (\epsilon_{k}=c_{l}),\\(\epsilon^{\prime},-1) (\epsilon_{k}=1,\epsilon_{\iota}=-1),\\(\epsilon,1) (\epsilon_{k}=-1,\epsilon_{l}=1),\end{array}\right.$

where $\epsilon_{i^{\prime}}=-\epsilon_{i}(i\neq k, l)$ and $\epsilon_{j^{\prime}}=\epsilon_{j}(j=k, l)$ .
(90) $S_{(\epsilon.I)}(2^{1/2}e_{7})=(\epsilon, -1)$ , $S_{(\epsilon,=1)}(2^{1/2}e,)=(\epsilon, 1)$ .
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(91) $S_{(\epsilon,1)}(\delta, 1)=\left\{\begin{array}{l}(-\delta,-1)\\2^{1/2}e_{7}\\e_{k}-e_{l}\\(\delta,1)\end{array}\right.$

$(\epsilon=\delta)$ ,
$(\epsilon=-\delta)$ ,
$(c_{i}\neq\delta_{i}, i=k, l;e_{j}=\delta_{j},j\neq k, l)$ ,
$((\epsilon, \delta)=0)$ .

We denote by $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ and $\alpha_{4}$ the following four positive roots.

(92) $\left\{\begin{array}{l}\alpha_{1}=(1,1,1,-1,-1,-1,1),\alpha_{2}=(1,-1,-1,-l,1,1,1),\\\alpha_{8}=(1,-1,1,-1,1,-1,-1),\alpha_{4}=(1,1,-1,-1,-1,1,-1).\end{array}\right.$

Complex simple Lie algebra $E_{6}$ has five types of real forms $(EI),$ ( $E$ II), ( $E$ III),
($E$ IV) and $(EX)$ .

$(EI)$ and ($E$ IV) are of the second category, other real forms are of the
first category.

Type $(EI)$ . $(EI)$ is the normal real form of $E_{6}$ , hence $R(\mathfrak{m})$ is equal to $R$

defined by (86). It is easily verified that $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\}$ defined by (92) is a
maximal admissible root system in $R$ . Therefore the possible values of
dimension of troidal parts of Cartan subalgebras are $0,1,2,3$ and 4. We
shall prove that two Cartan subalgebras of $(EI)$ which satisfy $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2}^{+}$

are mutually conjugate. In order to prove this fact, it is sufficient to show
that any admissible root system in $R$ is conjugate to one of the following
five systems $F_{0},$ $F_{1},$ $F_{2},$ $F_{3}$ and $F_{4}$ under the action of the Weyl group $W$.

(93) $\left\{\begin{array}{l}F_{0}=\emptyset(emptyset),F_{1}=\{\alpha_{1}\},F_{2}=\{\alpha_{1},\alpha_{2}\},\\F_{3}=\{\alpha_{1},\alpha_{2},\alpha_{3}\},F_{4}=\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\}.\end{array}\right.$

1’) All one dimensional $F’ s$ are mutually conjugate, because every root
is transformed to $\alpha_{1}$ by an element of $W$ The last fact is easily seen from
(87), (88), (89) and (90).

$2^{o})$ Every 2-dimensional admissible root system is equivalent to one of
the followings.

(1) $\{(\epsilon, 1), (\delta, 1)\}$ $(\epsilon, \delta)=0$ ,
(2) $\{e_{i}-e_{j}, e_{k}-e_{l}\}$ $i,$ $j,$ $k,$ $l$ are mutually different,
(3) $\{e_{i}-e_{j}, 2^{1/2}e_{7}\}$ .

Every $F’ s$ of type (2) are conjugate to $F_{5}=\{e_{1}-e_{2}, e_{8}-e_{4}\}$ , because all sub-
stitutions of $e_{i}’ s$ are contained in $W$ (cf. (87)). $F_{5}$ is transformed to one of
the type (1) by $S_{(1,1,-1,1,-1,1,1)}=$ (cf. (89)).

Every $F’ s$ of type (3) are conjugate to $F_{6}=\{e_{1}-e_{2},2^{1/2}e_{7}\}$ (cf. (87)). $F_{6}$ is
transforined to one of the type (1) by $S_{(-I,1.-I,=I,1.1.1)}$ (cf. (90)). As all permu-
tations of $e_{i}’ s$ are contained in $W$, we have

$\{(\epsilon, 1), (\delta, 1)\}\approx\{(\epsilon, 1), (\epsilon^{\prime}, 1)\}$ ,
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where $\epsilon_{i}^{\prime}=\epsilon_{i},$ $(i=2,6)$ and $\epsilon_{J^{\prime}}=-\epsilon_{j}(j\neq 2,6)$ and $(\epsilon_{2}, \epsilon_{6})$ must be either $(1, -1)$

or $(-1,1)$ , because if $(\epsilon_{2}, \epsilon_{6})=(1,1)$ or $(-1, -1)$ , the number of $\epsilon_{i}’ s$ (or $\epsilon_{i}^{\prime}’ s$)

which are equal to 1 can not be three. We may assume $(\epsilon_{2}, \epsilon_{b})=(1, -1)$ ,
because we can substitute $e_{2}$ for $e_{6}$ if necessary. In this case the possible
$(\epsilon_{1}, \epsilon_{3}, e_{4}, \epsilon_{5})$ are as follows:

$(1,1, -1,$ $-1)$ , $(1,$ -1,1, -1 $)$ , $(1,$ $-1,$ $-1,1)$ ,

$(-1,1,1, -1)$ , $(-1,1, -1,1)$ , $(-1, -1,1,1)$ .
The six $F’ s$ so obtained are transformed to $\{\alpha_{1}, \alpha_{2}\}$ by suitable permutations
of $e_{i}’ s$ .

Thus we have proved that every two dimensional admissible root system
is conjugate to $F_{2}$ .

3’) By the result in $2^{o}$ ), every 3-dimensional $F$ is conjugate to $\{\alpha_{1}, \alpha_{2}, \beta\}$ .
We may assume that $\beta$ is of the type $(\epsilon, 1)$ , because if $\beta=e_{i}-e_{j}$ , a suitable
element $S_{\delta}$ of $W$ transforms $\{\alpha_{1}, \alpha_{2}, e_{i}-e_{j}\}$ to $\{\alpha_{1}, \alpha_{2}, (\epsilon, 1)\}$ . As $\beta$ is orthogonal
to $\alpha_{1}$ and $\alpha_{2}$ , the possible positive roots $\beta$ are one of the followings: $\alpha_{3},$ $\alpha_{4}$ ,
$\beta_{1}=(1,1, -1, -1,1, -1, -1),$ $\beta_{2}=(1, -1,1, -1, -1,1, -1)$ . $\{\alpha_{1}, \alpha_{2}, \alpha_{4}\},$ $\{\alpha_{1}, \alpha_{2}, \beta_{1}\}$

and $\{\alpha_{1}, \alpha_{2}, \beta_{2}\}$ are transformed to $\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ by $S_{e_{2}=e_{3}}S_{e_{5}=e_{6}},$ $S_{e_{3}-e_{3}}$ and $S_{e_{5}-e_{6}}$

respectively.
Thus we have proved that every 3-dimensional $F$ is conjugate to $F_{3}=$

$\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ .
$4^{o})$ Every 4-dimensional $F$ is conjugate to $F_{4}$ . This fact is proved as

in 3’). However this fact is also a direct consequence of Proposition 13.
Thus we have proved that two Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ in $(EI)$ are

conjugate if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2^{+}}$ and every admissible root system
of $(EI)$ is conjugate to one of $F_{0},$ $F_{1},$ $F_{2},$ $F_{3}$ , and $F_{4}$ . Consequently the number
$N$ of conjugate classes of Cartan subalgebras in $(EI)$ is equal to five:

$N=5$ .

Type ($E$ II). The real form ( $E$ II) is defined by the involution

$\tau=\exp ad(\pi\sqrt{-1}H_{2^{1/2_{e_{7}}}}/c)$ .

The set $R_{\mathfrak{p}}$ of non compact roots is
$R_{\mathfrak{p}}=\{\pm(2^{-1/2}e_{7}+2^{-1}e^{(6)}-e_{i}-e_{j}-e_{k}) ; 1\leqq i<j<k\leqq 6\}$ .

The number of non compact roots is 40 and the character $\delta=2\dim \mathfrak{p}-\dim \mathfrak{g}$

$=2\times 40-78=2$ . The roots $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ and $\alpha_{4}$ defined in (92) are all non compact.
Hence a maximal abelian subalgebra $\mathfrak{m}$ in $\mathfrak{p}$ is defined by

$\mathfrak{m}=RH_{\alpha_{1}}^{\prime}+RH_{\alpha_{2}}^{\prime}+RH_{\alpha s}^{\prime}+RH_{\alpha}^{\prime}$ .
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Therefore $F_{0},$ $F_{1},$ $F_{2},$ $F_{3}$ and $F_{4}$ defined in (93) are all contained in $R(m)$ and
every admissible root system in $R(\mathfrak{m})$ is conjugate to one of these five systems.
Hence $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2^{+}}$ , and the num-
ber of conjugate classes are equal to five:

$N=5$ .

Type ($E$ III). The real form ( $E$ III) is defined by the involution

$\tau=\exp ad[\pi\sqrt{-1}(H_{e_{5}}-H_{e_{6}}-H_{e_{7}})/c]$ .
The set $R_{\mathfrak{p}}$ of non compact roots is

$R_{\mathfrak{p}}=\{\pm(e_{i}-e_{5}),$ $\pm(e_{i}-e_{6}),$ $\pm(2^{-1/2}e_{7}+2^{-1}e^{(6)}-e_{i}-e_{j}-e_{k})$ ,

$\pm(’$
where $i,$ $j,$ $k$ are mutually different integers from 1 to 4. The number of
non compact roots is equal to 32 and the character $\delta=2\times 32-78=-14$ .

Let $\alpha_{1}$ be the root defined in (92) and $\beta_{1}=e_{1}-e_{6}$ , then $\{\alpha_{1}, \beta_{1}\}$ is a maximal
admissible root system in $R_{\mathfrak{p}^{+}}$ . And we have

$R(\mathfrak{m})=\{\pm\alpha_{1}, \pm\beta_{1}\}$

by Theorem 7. As $\{\beta_{1}\}$ is conjugate to $\{\alpha_{1}\}$ under $W$ (cf. 1) in Type $(EI))$ ,
every admissible root system is conjugate to one of $\phi$ (empty set), $\{\alpha_{1}\}$ and
$\{\alpha_{1}, \beta_{1}\}$ . Therefore $\mathfrak{h}_{1}$ is conjugate to $\mathfrak{h}_{2}$ if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2^{+}}$ and
the number $N$ of conjugate classes is equal to three:

$N=3$ .
Type (EIV). The Lie algebra (EIV) is the real form of $E_{6}$ with the

character $\delta=-26$ . It is known that $\dim \mathfrak{m}=2$ and $f\cong F_{4}$ (cf. E. Cartan [2,

p. 422]). Hence every Cartan subalgebra $\mathfrak{h}$ of ( $E$ IV) must have 4-dimen-
sional toroidal part $\mathfrak{h}^{+}$ . By Proposition 13 (or by Corollary 2 to Theorem 3),

all Cartan subalgebras of ($E$ IV) are mutually conjugate. Thus, the number
$N$ of conjugate classes is equal to one:

$N=1$ .

Type $(EX)$ . The Lie algebra $(EX)$ is the compact real form of $E_{6}$ .
Therefore all Cartan subalgebras of $(EX)$ are mutually conjugate, and

$N=1$ .

Type $E_{7}$

The root system $R$ of complex simple Lie algebra $E_{7}$ is

(94) $R=\{e_{i}-e_{j}, 2^{-1}e^{(8)}-e_{i}-e_{j}-e_{k}-e_{l}\}$
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where $i,$ $j,$ $k,$ $l$ are mutually different integers from 1 to 8 (cf. $[12_{\rightarrow}^{\neg}$). We
denote $2^{-1}e^{(8)}-e_{i}-e_{j}-e_{k}-e_{\iota}=2^{-1}\sum_{i=1}^{8}\epsilon_{i}e_{i}$ by $(\epsilon_{1}, \epsilon_{2},\cdots, \epsilon_{8})$ or $\epsilon$.

The operations of Weyl group $W$ are as follows.

(95) $S_{e_{i-e_{j}}}=the$ substitution of $e_{i}$ for $e_{j}$ .

(96) $S_{\epsilon}(e_{k}-e_{\iota})=\left\{\begin{array}{l}\epsilon^{\prime} \epsilon_{k}=1,\\-\epsilon \epsilon_{k}=-1,\\e_{k}-e_{l} \epsilon_{k}=\epsilon_{\iota},\end{array}\right.$

$\epsilon=1\epsilon_{\iota^{l}}=-1$

,

where
(97) $\epsilon_{i^{\prime}}=-\epsilon_{i}(i\neq k, l)$ and $\epsilon_{j^{\prime}}=\epsilon_{j}(j=k, l)$ .

(98) $S_{\text{\’{e}}}(\delta)=\left\{\begin{array}{l}-\delta \delta=\pm\epsilon,\\\delta-\epsilon=\pm(e_{k}-e_{l}) \delta=-\epsilon^{\prime},\\\delta+\epsilon=\pm(e_{k}-e_{l}) \delta=\epsilon^{\prime},\\\delta (\epsilon,\delta)=0,\end{array}\right.$

where $\epsilon^{\prime}$ is defined by (97).

The complex simple Lie algebra $E_{7}$ has four different real forms $(EV)$,
( $E$ VI), ( $E$ VII) and ( $E$ XI).

Type (EV). The Lie algebra $(EV)$ is the normal real form of $E_{7}$ . Hence
$R(m)$ is identical with $R$ defined by (94).

Let $\alpha_{i}(1\leqq i\leqq 7)$ be seven roots defined as follows:

(99) $\left\{\begin{array}{l}\alpha_{1}=(1,l,1,-1,-1,-1,1,-1),\\\alpha_{3}=(1,-1,1,-1,1,-1,-1,1),\\\alpha_{6}=(1,-1,-1,-1,-1,1,1,1),\\\alpha_{7}=(1,1,-1,-1,1,1,-1,-1).\end{array}\right.$

$\alpha_{6}^{2}=(1,-1,1,1,-1,1,-1,-1)\alpha_{4}=(1,1,-1,1,-1,-1,-1,1)\alpha=(1,-1,-1, 1,1,-1,1,-1)$

,

Let

(100) $F_{i}=\{\alpha_{1}, \alpha_{2},\cdots, \alpha_{i}\}(0\leqq i\leqq 7)$ , $F_{8}=\{\alpha_{1}, \alpha_{2}, \alpha_{6}\},$ $F_{9}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}\}$ ,

($F_{0}=empty$ set), then every admissible root system is conjugate to one of
$these_{4}tenF_{i}’ s$ .

1’) A root $e_{k}-e_{l}$ is transformed by $S_{\epsilon}$ to a root $\epsilon^{\prime}=2^{-1}\sum\epsilon_{i^{\prime}}e_{i}$ , (cf. (96))

and a root $\epsilon=2^{=1}\Sigma\epsilon_{i}e_{i}$ is transformed to $\alpha_{1}$ by an element of $W$ (cf. (95)).

Hence every l-dimensional $F$ is conjugate to $\{\alpha_{1}\}$ .
2’) By the result in 1’), every 2-dimensional $F$ is conjugate to $\{\epsilon, \beta\}$ .

$\beta_{l}^{-}may$ be assumed to be of the type $\epsilon^{\prime}=2^{=1}\Sigma\epsilon_{i^{\prime}}e_{i}$ , because if $\beta=e_{i}-e_{j},$ $S_{8^{\prime\prime}}$

for a suitable $\epsilon^{\prime/}=2^{-1}\sum\epsilon_{i^{\prime\prime}}e_{i}$ transforms $\{\epsilon, e_{i}-e_{j}\}$ to $\{\epsilon, \delta\}$ (cf. (96), (97)).

Let
$\epsilon_{i_{1}}=\epsilon_{i_{2}}=\epsilon_{i_{3}}=\epsilon_{i_{4}}=-\epsilon_{i_{5}}=-\Xi_{i_{6}}=-\epsilon_{i_{7}}=-\epsilon_{i_{8}}=1$ ,

$\delta_{j_{1}}=\delta_{j_{2}}=\delta_{j_{3}}=\delta_{j_{4}}=-\delta_{j_{5}}=-\delta_{j_{6}}=-\delta_{j_{7}}=-\delta_{j_{8}}=1$ ,
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then every one of $(i_{1}, i_{2}, i_{3}, i_{4})\cap(j_{1},j_{2},j_{3},j_{4}),$ $(i_{1}, i_{2}, i_{3}, i_{4})_{\cap}(j_{5},j_{6},j,j_{8}),$ $(i_{5}, i_{6}, i_{7}, i_{8})_{\cap}$

$(j_{1},j_{2},j_{3},j_{4})$ and $(i_{5}, i_{6}, i_{7}, i_{8})\cap(j_{5},j_{6},j_{7},j_{8})$ consists of two elements. Let these
four set be $\{k_{1}, k_{2}\},$ $\{k_{3}, k_{4}\},$ $\{k_{5}, k_{6}\}$ and $\{k_{7}, k_{8}\}$ respectively, then the permu-
tatIon

$\left(\begin{array}{ll} & \\1 & 2\end{array}\right)$

transforms $\{\epsilon, \delta\}$ to $\{\alpha_{1}, \alpha_{2}\}$ .
Hence every 2-dimensional $F$ is conjugate to $\{\alpha_{1}, \alpha_{2}\}$ .
3’) By the result in 2’), every 3-dimensional $F$ is conjugate to $\{\alpha_{1}, \alpha_{2}, \beta\}$ .

$\beta$ may be assumed to be of the type $\epsilon=2^{-1}\sum\epsilon_{i}e_{i}$ , because if $\beta=e_{i}-e_{j},$ $S_{\delta}$ for
a suitable $\delta$ transforms $\{\alpha_{1}, \alpha_{2}, e_{i}-e_{j}\}$ to $\{\alpha_{1}, \alpha_{2}, \epsilon\}$ (cf. (96), (97)). The posi-
tive root $\epsilon$ must be orthogonal to $\alpha_{1}$ and $\alpha_{2}$ . Hence merely the following
nine vectors in (101) are possible as $\epsilon$ .

(101) $\left\{\begin{array}{l}\alpha_{3},\alpha_{4},\alpha_{5},\alpha_{6},\alpha_{7},\beta_{1}=(1,1,-1,1,-1,1,-1,-1),\\\beta_{2}=(1,-1,1,-1,1,1,-1,-1),\beta_{3}=(1,1,-1,-1,1,-1,-1,1),\\\beta_{4}=(1,-1,1,1,-1,-1,-1,1).\end{array}\right.$

Now
$\{\alpha_{1}, \alpha_{2}, \alpha_{4}\},$ $\{\alpha_{1}, \alpha_{2}, \alpha_{6}\},$ $\{\alpha_{1}, \alpha_{2}, \alpha_{7}\}$ ,

$\{\alpha_{1}, \alpha_{2}, \beta_{1}\},$ $\{\alpha_{1}, \alpha_{2}, \beta_{2}\},$ $\{\alpha_{1}, \alpha_{2}, \beta_{3}\}$ and $\{\alpha_{1}, \alpha_{2}, \beta_{4}\}$

are transformed to $\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ by (23)(45), (45)(68), (23)(68), (23)(45)(68), (68),

(23) and (45) respectively, where $(ij)$ represents the substitution of $e_{i}$ for $e_{j}$,
i. e. $(ij)=S_{e_{i}-e_{j}}$ .

Thus every 3-dimensional $F$ are conjugate either to $F_{3}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ or
to $F_{8}=\{\alpha_{1}, \alpha_{2}, \alpha_{5}\}$ and $F_{3}$ and $F_{8}$ are not conjugate.

$4^{o})$ Every 4-dimensional $F$ is conjugate to $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta\}$ or to $\{\alpha_{1},$
$\alpha_{2},$ $\alpha_{5}$ ,

$\gamma\}$ by the result in 3’). $\beta$ must be a positive root of type $2^{-1}\sum\epsilon_{i}e_{i}$ and
orthogonal to $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ , hence merely the following four vectors in (102) are
possible as $\beta$ :
(102) $\alpha_{4},$ $\alpha_{5},$ $\alpha_{6};\alpha_{7}$ .
$\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{6}\}$ , $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{7}\}$ are transformed to $F_{9}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}\}$ by
(37)(48) and (28)(57) respectively.

$\gamma$ must by one of $\alpha_{3},$ $\alpha_{4},$ $\alpha_{6},$ $\alpha_{7}$ . $\gamma=\alpha_{3}$ gives $F_{9}$ . $\gamma=\alpha_{4},$ $\alpha_{6}$ and $\alpha_{7}$ give
systems which are transformed to $F_{9}$ by (23)(45), (45)(68) and (23)(68) respec-
tively. Thus every 4-dimensional $F$ is conjugate either to $F_{4}$ or to $F_{9}$ .

The space $[F_{4}]$ spanned by the roots in $F_{4}$ contains 24 roots, but $[F_{9}]$

contains 8 roots. Therefore $F_{4}$ is not conjugate to $F_{9}$ .
5) The possible types of 5-dimensional $F’ s$ are $\{\epsilon^{(1)}, \epsilon^{(2)}, \epsilon^{(3)}, \epsilon^{(4)}, \epsilon^{(5)}\}$

where $\epsilon^{()}’ si$ are mutually orthogonal roots of type $2^{-1}\sum\epsilon_{i}e_{i}$ .
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By the results in 4’), $F$ is conjugate to one of $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta\}$ and $\{\alpha_{1}$ ,
$\alpha_{2},$ $\alpha_{3},$ $\alpha_{5},$ $\gamma$ }. As $\beta$ , merely one of $\alpha_{0}\ulcorner\alpha_{6}$ and $\alpha_{7}$ are possible.

$\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{6}\}$ and $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{7}\}$

are transformed to $F_{5}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{\text{\’{o}}}\}$ by (37)(48) and (27)(58). $\gamma$ must be
one of $\alpha_{4},$ $\alpha_{6}$ and $\alpha_{7}$ . $\gamma=\alpha_{4}$ gives $F_{5}$ . $\gamma=\alpha_{6}$ and $\alpha_{7}$ give systems which
are transformed to $F_{5}$ by (26)(38) and (46)(58) respectively.

Thus every 5-dimensional $F$ is conjugate to $F_{5}$ .
6’) The possible types of 6-dimensional $F’ s$ are $\{\epsilon^{(1)},\cdots, \epsilon^{(6)}\}$ . By the

results in 5’), $\{\epsilon^{(1)},\cdots, \epsilon^{(6)}\}$ is conjugate to $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \epsilon\}$ . As $\epsilon$ , merely
$\alpha_{6}$ and $\alpha_{7}$ are possible. $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{7}\}$ is transformed to $F_{6}=\{\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ ,
$\alpha_{4},$ $\alpha_{5},$ $\alpha_{6}$ } by (23)(54).

Thus every 6-dimensional $F$ is conjugate to $F_{6}$ .
7’) Every 7-dimensional $F$ is equivalent to $F_{7}$ defined in (100), because

the vectors in $F$ span $\mathfrak{h}$ .
Thus we have proved that every admissible root system is conjugate

to one of the ten systems defined in (100). And any ${}^{t}Y^{r_{O}}$ of these ten systems
are not conjugate. Therefore the number $N$ of conjugate classes is equal to
ten:

$N=10$ .

Type ($E$ VI). The real form ($E$ VI) is defined by the involution

$\tau=\exp ad(\pi\sqrt{-1}(H_{e_{7}}-H_{e_{8}})/c)$ .
The set $R_{\mathfrak{p}}$ of non compact roots is

$R_{\mathfrak{p}}=\{\pm(e_{i}-e_{7}),$ $\pm(e_{i}-e_{8}),$ $2^{-}e^{(8)}-e_{i}-e_{j}-e_{k}-e_{7}$ ,

$2^{-1}e^{(8)}-e_{i}-e_{j}-e_{k}-e_{8}\}$

where $i,$ $j,$ $k$ are mutually different integers from 1 to 6. The number of
non compact roots is 64 and the character $\delta=2\times 64-133=-5$ .

Let $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ and $\alpha_{4}$ be the roots defined in (99), then $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\}$ is a
maximal admissible root system in $R_{\mathfrak{p}}$ . Hence by Theorem 7,

$\mathfrak{m}=RH_{\alpha_{1}}^{\prime}+RH_{\alpha}^{\prime}+RH_{a*}^{\prime}+RH_{\alpha_{4}}^{\prime}$

$=\{xe_{1}+ye_{2}+ze_{3}-ze_{4}-ye_{5}-xe_{6}+we_{7}-we_{8} ; x,y, z, w\in R\}$

is a maximal abelian subalgebra in $\mathfrak{p}$ and we have

$R(m)=\{\pm\alpha_{1}, \pm\alpha_{2}, \pm\alpha_{3}, \pm\alpha_{4}, \pm(e_{1}-e_{6}), \pm(e_{2}-e_{5}), \pm(e_{3}-e_{4}), \pm(e_{7}-e_{8})\}$ .
By the results on the admissible root systems in the algebra of type $(EV)$ ,
every admissible root system in $R(m)$ is conjugate to one of $F_{0},$ $F_{1},$ $F_{2},$ $F_{3}$ ,
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and $F_{4}$ defined in (100). Therefore $\mathfrak{h}_{1}$ is conjugate to $\mathfrak{h}_{2}$ if and only if $\dim \mathfrak{h}_{1}^{+}$

$=\dim \mathfrak{h}_{2^{+}}$ . The number $N$ of conjugate classes is equal to five:

$N=5$ .
Type ( $E$ VII). The real form ( $E$ VII) of $E_{7}$ is defined by the involution

$\tau=\exp ad(\pi\sqrt{-1}(He_{1}+He_{2}+He_{3}+He_{4}+He_{5}+He_{6}-3He_{7}-3He_{8})/4c)$ .
The set $R_{\mathfrak{p}}$ of non compact roots is

$R_{0}=\{\pm(e_{i}-e_{7}),$ $\pm(e_{i}-e_{8}),$ $2^{-1}e^{(8)}-e_{i}-e_{j}-e_{7}-e_{8}$ ,

$2^{=1}e^{(8)}-e_{i}-e_{j}-e_{k}-e_{l}\}$

where $i,$ $j,$ $k,$ $l$ are mutually different integers from 1 to 6. The number of
non compact roots is equal to 54 and the character $\delta=2\times 54-133=-25$ .

Let $\alpha_{5},$ $\alpha_{6}$ and $\alpha_{7}$ be the roots defined in(99), then $\{\alpha_{\text{\’{o}}}, \alpha_{6}, \alpha_{7}\}$ is a maxi-
mal admissible root system in $R_{\mathfrak{p}}$ . Hence by Theorem 7,

$\iota)\iota=RH_{\alpha_{5}}^{\prime}+RH_{a_{6}}^{\prime}+RH_{\alpha_{7}}^{\prime}$

$=\{x(e_{1}+e_{6})+y(e_{2}+e_{5})+z(e_{3}+e_{4})-(x+y+z)(e_{7}+e_{8}) ; x, y, z\in R\}$

ls a maximal abelian subalgebra in $\mathfrak{p}$ . Therefore we have
$R(m)=\{\pm\alpha_{5}, \pm\alpha_{6}, \pm\alpha_{7}\}$ .

Bv the results on the admissible root system in $R$ (cf. type $(EV)$ ) every
fundamental root system in $R(m)$ is conjugate to one of $\phi,$ $\{\alpha_{5}\},$ $\{\alpha_{5}, \alpha_{6}\},$ $\{\alpha_{5}$ ,
$\alpha_{6},$ $\alpha_{7}$ }. Hence $\mathfrak{h}_{1}$ is conjugate to $\mathfrak{h}_{2}$ if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2^{+}}$ . The
number $N$ of conjugate classes is equal to four:

$N=4$ .

Type ($E$ XI). The algebra ( $E$ XI) is the compact real form of $E_{7}$ . Hence
all Cartan subalgebras in ($E$ XI) are mutually conjugate. Thus, the number
$N$ of conjugate classes is equal to one:

$N=1$ .

Type $E_{8}$

Complex simple Lie algebra $E_{8}$ is of rank 8 and of dimension 248. $E_{8}$

has three non isomorphic real forms ($E$ VIII), ( $E$ IX) and ( $E$ XII).
The root system of $E_{8}$ is

(103) $R=\{\pm e_{i}\pm e_{j}, \pm(2^{-1}e^{(8)}-e_{i}), \pm(2^{=1}e^{(8)}-e_{i}-e_{j}-e_{k})\}$ ,

where $i,$ $j,$ $k$ are mutually different integers from 1 to 8. We denote a root
$\alpha=2^{-1}\sum_{i=1}^{8}\epsilon_{i}e_{\dot{t}}$ by $(\epsilon_{1},\cdots, \epsilon_{8})$ or simply by $\epsilon$.

The operations of the Weyl group $W$ are as follows:
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(104) $S_{e_{i}-e_{j}}=the$ substitution of $e_{i}$ for $e_{j}$ .
(105) $S_{e_{i}-e_{j}}S_{e_{i}+e_{j}}=the$ changes of signatures of $e_{i}$ and $e_{j}$ .

(106) $S_{s}(e_{i}-e_{j})=\left\{\begin{array}{l}\epsilon^{\prime} (\epsilon_{i}=1,\epsilon_{j}=-1),\\-\epsilon^{\prime} (\epsilon_{i}=-1,\epsilon_{j}=1),\\e_{i}-e_{j} (\epsilon_{i}=\epsilon_{j}).\end{array}\right.$

(107) $S_{\epsilon}(e_{i}+e_{j})=\left\{\begin{array}{l}\epsilon^{\prime} (\epsilon_{i}=\epsilon_{j}=l),\\-\epsilon (\epsilon_{i}=\epsilon_{j}=-1),\\e_{i}-e_{j} (\epsilon_{i}\neq\epsilon_{j}).\end{array}\right.$

In (106) and (107) $\epsilon_{k}‘=\epsilon_{k}(k=i, j),$ $\epsilon_{k}^{\prime}=-\epsilon_{k}(k\neq i, j)$ .

(108) $S_{\epsilon}(\delta)=\left\{\begin{array}{l}-\delta (\delta=\pm\epsilon)\\\delta_{i}e_{l}+\delta_{j}e_{j} ((e,\delta)=1or-1)\\\delta ((\epsilon,\delta)=0).\end{array}\right.$

Type ($E$ VIII). The Lie algebra ( $E$ VIII) is the normal real form of $E_{8}$ .
Hence $R(m)$ is identical with $R$ defined by (103).

Now consider the following eight roots:

$\alpha_{1}=e_{1}+e_{7},$ $\alpha_{2}=e_{1}-e_{7},$ $\alpha_{3}=e_{2}+e_{8},$ $\alpha_{4}=e_{2}-e_{8}$ ,
(109)

$\alpha_{5}=e_{3}+e_{4},$ $\alpha_{6}=e_{3}-e_{4},$ $\alpha_{7}=e_{o}+e_{6},$ $\alpha_{8}=e_{5}-e_{6}$ .
We shall prove that every admissible root system in $R$ is conjugate to one
of the following ten systems from $F_{0}$ to $F_{9}$ .

$F_{0}=\emptyset,$ $F_{1}=\{\alpha_{1}\},$ $F_{2}=\{\alpha_{1}, \alpha_{2}\}$ ,

$F_{3}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}\},$ $F_{4}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\},$ $F_{5}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}\}$ ,
(110)

$F_{6}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\},$ $F_{7}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\}$ ,

$F_{8}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{\overline{o}}, \alpha_{6}, \alpha_{7}\},$ $F_{9}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}\}$ .
We shall use the following two systems $F_{10}$ and $F_{11}$ which are conjugate to
$F_{6}$ and $F_{7}$ respectively:

$F_{10}=\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{7}\},$ $F_{11}=\{\alpha_{1}, \alpha_{\underline{\cap}}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{7}\}$ .
1’) $\{\epsilon\}$ is conjugate to $\{e_{i}\pm e_{j}\}$ by (108) and $\{e_{i}\pm e_{j}\}$ is conjugate to $\{\alpha_{1}\}$

or $\{\alpha_{2}\}$ by (104). $\{\alpha_{1}\}$ is transformed to $\{\alpha_{2}\}$ by $S_{e_{6}-e_{7}}S_{e_{6}+e_{7}}$ (cf. (105)).

Thus every l-dimensional $F$ is conjugate to $\{\alpha_{1}\}$ .
2) The possible types of 2-dimensional $F$ are as follows:

(1) $\{e_{i}+e_{j}, e_{k}+e_{\iota}\}$ , (2) $\{e_{i}-e_{j}, e_{k}-e_{\iota}\}$ , (3) $\{\epsilon, \delta\},$ $(\epsilon, \delta)=0$ ,

(4) $\{e_{i}+e_{j}, e_{k}-e_{\iota}\}$ , (5) $\{e_{i}+e_{j}, \epsilon\},$ $6_{i}=-\epsilon_{j}$ , (6) $\{e_{i}-e_{j}, \epsilon\},$ $\epsilon_{i}=\epsilon_{j}$ ,

(7) $\{e_{\dot{t}}+e_{j}, e_{i}-e_{j}\}$ .
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(2) $\approx(1)$ and (4) $\approx(1)$ by (105). (6) is conjugate to one of the type (5) by (105).

(1) is transformed to one of the type (3) by $S_{\epsilon},$ ( $6_{i}=\epsilon_{j},$ $\epsilon_{k}=\epsilon_{\iota}$ , cf. (107)). (1)

is transformed to one of the type (5) by $S_{\delta}(\delta_{i}=-\delta_{j},$ $\delta_{k}=\delta_{\iota}$ , cf. (106) and
(107)). Every $F$ of type (1) is conjugate to $F_{12}=\{\alpha_{1}, \alpha_{3}\}$ by (104). Every $F$

of type (7) is conjugate to $F_{2}$ . $S_{(-1,1.1,1,1.1,J,1)}S_{(I,-1.1,1,1,1,-1.-1)}$ transforms $F_{2}$ to
$F_{12}$ . Thus we have proved that every two dimensional $F$ is conjugate to $F_{2}$ .

3) By the result in 2’), every 3-dimensional $F$ is conjugate to a system
of type $\{\alpha_{1}, \alpha_{2}, \beta\}$ , where $\beta$ is a positive root which is orthogonal to $\alpha_{1}$ and
$\alpha_{2}$ . Therefore $\beta$ must be one of the following roots: $e_{i}\pm e_{j}$ , $(i,j=2,3,4,5,6$ ,
8, $i<j$). $\{\alpha_{1}, \alpha_{2}, e_{i}+e_{j}\}\approx\{\alpha_{1}, \alpha_{2}, e_{i}-e_{j}\}$ by (105), $\{\alpha_{1}, \alpha_{2}, e_{i}+e_{j}\}\approx F_{3}$ by (104).

Therefore every 3-dimensional $F$ is conjugate to $F_{3}$ .
$4^{o})$ By the result in $3^{o}$ ), every 4-dimensional $F$ is conjugate to $\{\alpha_{1},$

$\alpha_{2}$ ,
$\alpha_{3},$ $\beta$ }. $\beta$ must be one of $e_{2}-e_{8},$ $e_{i}\pm e_{j}(i, j=3,4,5,6,8, i<J)$ . $\beta=e_{2}-e_{8}$ and
$\beta=e_{3}+e_{4}$ give $F_{4}$ and $F_{5}$ respectively. Any other $\beta’ s$ give the systems con-
jugate to $F_{5}$ . Thus every 3-dimensional $F$ is conjugate either to $F_{4}$ or to $F_{5}$ .
And $F_{4}$ can not be conjugate to $F_{5}$ , because the space $[F_{4}]$ spanned by the
vectors in $F_{4}$ contains 24 roots, but $[F_{5}]$ contains only 8 roots.

5) By the results in $4^{o}$ ), every 5-dimensional $F$ is conjugate to one of
the following systems:

(8) $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta\}$ , (9) $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}, \gamma\}$ .
As $\beta$ in (8), 4 roots, $e_{3}\pm e_{4},$ $e_{5}\pm e_{6}$ , are possible. All 4 systems so obtained are
conjugate to $F_{6}$ . As $\gamma$ in (9), 4 roots, $e_{2}-e_{8},$ $e_{3}-e_{4},$ $e_{o}\pm e_{6}$ , are possible. $\gamma=$

$e_{2}-e_{8}$ gives $F_{6}$ . $\gamma=e_{3}-e_{4}$ gives a system conjugate to $F_{6}$ . $\gamma=e_{\text{\’{o}}}+e_{6}$ gives
$F_{10}$ . $\gamma=e_{\overline{0}}-e_{6}$ gives a system conjugate to $F_{10}$ . $F_{6}$ is transformed to $F_{10}$ by
$S_{(-1.1.1,1.-1.-1.-1,-1)}S_{e_{2}=e_{7}}S_{(1.1,-1,-1,-1,=1,1_{*}-1)}S_{e_{2}+e_{8}}S_{e_{2}=e_{8}}$ . Therefore every 5-dimen-
sional $F$ is conjugate to $F_{6}$ .

6’) By the result in 5), every 6-dimensional $F$ is conjugate to one of
the following systems:

(10) $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \beta\}$ .

As $\beta$ in (10), $e_{3}-e_{4},$ $e_{5}\pm e_{6}$ are possible. $\beta=e_{3}-e_{\iota}$ gives $F_{7}$ . $\beta=e_{5}+e_{6}$ gives
$F_{11}$ . $\beta=e_{5}-e_{6}$ gives a system conjugate to $F_{11}$ . $F_{11}$ is conjugate to $F_{7}$ .
Hence every 6-dimensional $F$ is conjugate to $F_{7}$ .

$7^{o})$ By the results in 6), every 7-dimensional $F$ is conjugate to one of
the following systems

(11) $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \beta\}$ .

The possible $\beta’ s$ in (11) are $e_{5}+e_{6}$ and $e_{5}-e_{6}$ . $\beta=e_{5}+e_{6}$ gives $F_{8}$ . $\beta=e_{5}-e_{6}$

gives a system which is transformed to $F_{8}$ by $S_{e_{6}=e_{7}}S_{e_{6}+e_{7}}$ .
Hence every 7-dimensional $F$ is conjugate to $F_{8}$ .
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$8^{o})$ Every 8-dimensional $F$ spans $\mathfrak{h}=\mathfrak{h}^{-}$ , hence $F$ is equivalent to $F_{9}$ .
Thus we have proved that every fundamental root system in $R$ is con-

jugate to one of the ten systems defined in (110), and any two of these 1C
systems are not conjugate.

Therefore the number $N$ of conjugate classes of Cartan subalgebras in
($E$ VIII) is equal to ten:

$N=10$ .
Type ($E$ IX). ( $E$ IX) is the real form of $E_{8}$ defined by the involution

$\tau=\exp ad(\pi\sqrt{-1}(H_{e_{7}}+H_{e_{8}})/c)$ .
The set $R_{\mathfrak{p}}$ of non compact roots is
(111) $R_{\mathfrak{p}}=\{\pm(e_{i}\pm e_{7}),$ $\pm(e_{i}\pm e_{8}),$ $\pm(2^{-1}e^{(8)}-e_{i})$ ,

$\pm(2^{=1}e^{(8)}-e_{i}-e_{7}-e_{8}),$ $\pm(2^{-1}e^{(8)}-e_{i}-e_{j}-e_{k})$ },

where $i,$ $j,$ $k$ are different integers from 1 to 6.
The number of non compact roots is equal to 112, and the character

$\delta=2\times 112-248=-24$ .
Let $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ , and $\alpha_{4}$ be the four roots defined in (109), then $F_{4}=\{\alpha_{1},$ $\alpha_{2}$ ,

$\alpha_{3},$ $\alpha_{4}$ } is a maximal fundamental root system in $R_{\mathfrak{p}}$ . Hence by Theorem 7,

$m=RH_{a_{1}}^{\prime}+RH_{\alpha_{2}}^{\prime}+RH_{a*}^{\prime}+RH_{\alpha_{4}}^{\prime}$

$=\{xe_{1}+ye_{2}+ze_{3}+we_{8} ; x, y, z, w\in R\}$

is a maximal abelian subalgebra in $\mathfrak{p}$ . Therefore we have
(112) $R(\mathfrak{m})=\{\pm e_{i}\pm e_{j} ; i,j=1,2,7,8\}$ .
Every 4-dimensional $F$ in $R(m)$ spans $\mathfrak{m}$, and is equivalent to $F_{4}$ . By the
results on ($E$ VIII), every i-dimensional $F$ in $R(m)$ is conjugate to $F_{i}(\ddagger efined$

in (110) $(0\leqq i\leqq 3)$ . Therefore the number $N$ of conjugate classes of Cartan
subalgebras in ($E$ IX) is equal to five:

$N=5$ .

Type ($E$ XII). ( $E$ XII) is the compact real form of $E_{8}$ . Hence all Cartan
subalgebras in ($E$ XII) are mutually conjugate and we have

$N=1$ .

Type $F$

Complex simple Lie algebra $F_{4}$ is of rank 4 and of dimension 52. The
root system $R$ of complex simple Lie algebra $F_{4}$ is

(113) $R=\{\pm e_{i}, \pm e_{i}\pm e_{j}, 2^{-1}(\pm e_{1}\pm e_{2}\pm e_{3}\pm e_{1})\}$ ,



Conjugate classes of Cartan subalgebras in real semisimple Lie algebras. 427

where $i$ and $j$ are different integers from 1 to 4. We denote the root
$2^{=1}\sum_{i=1}^{4}\epsilon_{i}e_{i}$ by $(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4})$ or simply by $\epsilon$.

The operations of the Weyl group $W$ are as follows:

(114) $S_{e_{i}}=the$ change of signature of $e_{i}$ .
(115) $S_{e_{i}-e_{j}}=the$ substitution of $e_{i}$ for $e_{j}$ .
(116) $S_{e_{i}=e_{j}}S_{e_{i}+e_{j}}=the$ changes of signatures of $e_{i}$ and $e_{j}$ .

(117) $S_{\epsilon}(e_{i}-e_{j})=\left\{\begin{array}{l}-(\epsilon_{k}e_{k}+\epsilon_{\iota}e_{l}) \epsilon_{i}=-1,e_{j}=-1,\\\epsilon_{k}e_{k}+\epsilon_{l}e_{\iota} \epsilon_{i}=-1,\epsilon_{j}=1,\\e_{i}-e_{j} \epsilon_{i}=\epsilon_{j}.\end{array}\right.$

(118) $S_{\epsilon}(e_{i}+e_{j})=\{$ $-(\epsilon_{k}e_{k}+\epsilon_{\iota}e_{i}^{k}+^{k}e\epsilon e+_{j}\epsilon_{\iota}e_{l}^{e_{l})}$ $\epsilon_{i}^{i}\epsilon\epsilon_{i}=\epsilon^{j}=\epsilon_{j}\neq\epsilon_{j}=-1=1$

,
,

In (117) and (118), $\{i,j, k, l\}=\{1,2,3,4\}$ .

(119) $S_{\epsilon}(\delta)=\left\{\begin{array}{l}-\delta \epsilon=\pm\delta,\\\pm e_{i} (6,\delta)=2^{-1},\\\delta (\epsilon,\delta)=0.\end{array}\right.$

(120) $S_{\epsilon}(e_{i})=\epsilon^{()}i$

where $\epsilon_{J^{()}}i=-\epsilon_{j}(j\neq i)$ and $\epsilon_{i}^{()}i=1$ .
The complex simple Lie algebra $F_{4}$ has three different real forms $(FI)$

( $F$ II) and ( $F$ III).

Type (FI). (FI) is the normal real form of $F_{4}$ , hence $R(\iota \mathfrak{n})$ is equal to
$R$ defined in (113).

A complete system of representatives of conjugate classes of admissible
root system is given by (121).

$F_{0}=\emptyset,$ $F_{1}=\{e_{1}\},$ $F_{2}=\{e_{1}+e_{2}\}$ ,

$F_{3}=\{e_{1}+e_{2}, e_{I}-e_{2}\},$ $F_{4}=\{e_{1}+e_{2}, e_{3}\}$ ,
(121)

$F_{5}=\{e_{1}+e_{2}, e_{1}-e_{2}, e_{3}+e_{4}\},$ $F_{6}=\{e_{I}+e_{2}, e_{1}-e_{2}, e_{3}\}$ ,

$F_{7}=\{e_{1}+e_{2}, e_{1}-e_{2}, e_{3}+e_{4}, e_{3}-e_{4}\}$ .
1) The possible types of l-dimensional $F$ are as follows:

(1) $\{e_{i}\}$ , (2) $\{e_{i}+e_{j}\}$ , (3) $\{e_{i}-e_{j}\}$ , (4) $\{\epsilon\}$ .
(3) is conjugate to (2) by (114) and (4) is conjugate to (1) by (120). Every $F$

cf type (1) $((2))$ is conjugate to $F_{1}(F_{2})$ by (115). $F_{1}$ can not be conjugate to
$F_{2}$ , because $2(e_{1}, e_{1})=(e_{1}+e_{2}, e_{1}+e_{2})$ .

2’) The possible types of 2-dimensional $F$ are as follows:
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(5) $\{e_{i}, e_{j}\}$ , (6) $\{e_{i}+e_{j}, e_{k}+e_{l}\}$ , (7) $\{e_{i}-e_{j}, e_{k}-e_{p}\}$ ,

(8) $\{\epsilon, \delta\}$ , (9) $\{e_{i}, e_{k}+e_{l}\}$ , (10) $\{e_{i}, e_{k}-e_{l}\}$ ,

(11) $\{e_{i}+e_{j}, e_{i}-e_{j}\}$ , (12) $\{e_{i}+e_{j}, e_{k}-e_{l}\}$ , (13) $\{e_{i}+e_{j}, \epsilon\}$ ,

(14) $\{e_{i}-e_{j}, \epsilon\}$ .
There are certain relations among these systems. (5) $\equiv(11),$ (6) $\approx(7),$ (9) $\approx(10)$ ,

(6) $\approx(12)$ and (13) is conjugate to one of the type (14) by (114). (8) $\approx(5)$ bv
(120). (9) is conjugate to one of the type (13) by (118) and (120). Every $F$

of type (7) is conjugate to $F_{11}=\{e_{1}-e_{2}, e_{3}-e_{4}\}$ . $F_{11}$ is transformed to $F_{3}$ by
$S_{(1.1.-1,1)}$ (cf. (118)). Every $F$ of type (9) $((11))$ is conjugate to $F_{4}(F_{3})$ . Thus
we have proved that every two dimensional $F$ is conjugate either to $F_{3}$ or
to $F_{4}$ . $F_{3}$ and $F_{4}$ can not be conjugate, because the space $[F_{3}]$ spanned by
the vectors in $F_{3}$ contains eight roots $\{\pm e_{1}, \pm e_{2}, \pm(e_{1}\pm e_{2})\}$ and $[F_{4}]$ contains
only four roots $\{\pm(e_{1}+e_{2}), \pm e_{3}\}$ .

3’) By the result in $2^{o}$ ) every 3-dimensional $F$ is conjugate to one of
the following:

(15) $\{F_{3}, \alpha\}$ , (16) $\{F_{4}, \beta\}$ .
The positive root $\alpha$ in (15) is orthogonal to $e_{1}\pm e_{2}$ , hence $\alpha$ is one of $e_{3}\pm e_{4}$ ,
$e_{3},$ $e_{4}$ . Therefore every $F$ of type (15) is conjugate either to $F_{5}$ or to $F_{6}$ .
The possible positive root $\beta$ in (16) is $e_{1}-e_{2}$ . $\beta=e_{1}-e_{2}$ gives $F_{6}$ . Thus we
have proved that every 3-dimensional $F$ is conjugate to one of $F_{5}$ and $F_{6}$ . The
root system $R([F_{5}])$ (where $[F_{5}]$ is the space spanned by the vectors in $ F_{5}\rangle$

is of the type $C_{3}$ but $R([F_{6}])$ is of the type $B_{3}$ . Hence $F_{5}$ and $F_{6}$ can never
be conjugate.

4’) All 4-dimensional $F$ span $\mathfrak{h}=\mathfrak{y}=$ and they are mutually conjugate.
Thus we have proved that the eight admissible root systems in (121) make
a complete representative system of conjugate classes of the admissible root
systems in $R$ . Consequently, the number of conjugate classes of Cartan
subalgebras in $(FI)$ is equal to eight:

$N=8$ .

Type ( $F$ II). The real form ( $F$ II) is defined by the involution

$\tau=\exp ad(2\pi\sqrt{-1}H_{e_{4}}/c)$ .
The set $R_{\mathfrak{p}}$ of non compact roots is

$R_{0}=\{2^{-1}(\pm e_{1}\pm e_{2}\pm e_{3}\pm e_{4})\}$ .
The number of non compact roots is equal to 16, and the character $\delta=2\times 16$

$-52=-20$ . For any two roots $\alpha_{1}$ and $\alpha_{2}(\alpha_{1}\neq\pm\alpha_{2})$ in $R_{\mathfrak{p}}$ , either $\alpha_{1}+\alpha_{2}$ or
$\alpha_{1}-\alpha\urcorner$ is again a root in $R$ . Hence maximal admissible root systems are
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l-dimensional. It is clear by (104) that every l-dimensional admissible root
system is conjugate to $\{2^{-1}(e_{1}+e_{2}+e_{3}+e_{4})\}$ . Therefore the number $N$ of
conjugate classes of Cartan subalgebras in ( $F$ II) are equal to two:

$N=2$ .
$\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2}^{+}$ .

Type ( $F$ III). (FIII) is the compact real form of $F_{4}$ . All Cartan subaJgebras
are mutually conjugate:

$N=1$ \ddagger

Type $G$

Complex simple Lie algebra $\mathfrak{g}^{o}$ of type $G_{2}$ has two non-isomorphic real
forms. The one (type $(GI)$) is the normal real form of $\mathfrak{g}^{c}$ , and the other
(type ( $G$ II)) is the compact real form
of $\mathfrak{g}^{c}$ .

Type $(GI)$ . Since $\mathfrak{g}$ is normal, there
exists a Cartan subalgebra $\mathfrak{h}_{0}$ of $\mathfrak{g}$ of
which toroidal part $\mathfrak{h}_{0^{+}}$ is $\{0\}$ . Then we
have $\mathfrak{h}_{0}=\mathfrak{m}$ and $R(\mathfrak{m})=R$ . $R$ consists
of twelve vectors shown in Fig. 1.
Fig. 1 shows that two roots with the
same length can be transformed each
other by the action of the Weyl group
$W$. Therefore every admissible root
system in $R$ is conjugate to one of
the following four systems under the
action of $W$

Fig. 1

(1) $F_{0}=\{\phi\}$ , (2) $F_{1}=\{\alpha\}$ ,
(3) $F_{2}=\{\beta\}$ , (4) $F_{3}=\{\alpha, \beta\}$ .

$\{\alpha\}$ and $\{\beta\}$ are not conjugate under $W$, because $(\beta, \beta)=3(\alpha, \alpha)$ .
Consequently, the number $N$ of conjugate classes is equal to four:

$N=4$ .
Type (GII). (GII) is the compact real form of $G_{2}$ , therefore every two

Cartan subalgebras of ($G$ II) are conjugate to each other, $i$ . $e$ .
$N=1$ .

Finally we give a theorem.
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THEOREM 8. Real semisimple Lie algebra $\mathfrak{g}$ has a compact Cartan subalgebra

if and only if $\mathfrak{g}$ is of the first category.
PROOF. The “ If “ part of the theorem is proved in Proposition 13. To

prove the converse, it is sufficient to show that every real simple Lie algebra
of the second category has no compact Cartan subalgebra. A real simple
Lie algebra is either a real form of a complex simple Lie algebra or a
complex simple Lie algebra regarded as Lie algebra over reals. The simple
Lie algebras of the latter type are always of the second category, and they
have not compact Cartan subalgebras by (16) in \S 1. The real forms of the
second category of complex simple Lie algebras are algebras of types $(A_{n}I)$

$(n\geqq 2)$ , (AII), $(D_{n}Ib)(n\geqq 3)$ , (EI) and (EIV). The fact that Lie algebras of
these five types have no compact Cartan subalgebra is verified by the results
in \S 3 and \S 4.

\S 5. Conjugate classes under the automorphism group.

In this section, we study the conjugate classes of Cartan subalgebras
under the action of the automorphism group instead of the adjoint group.

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a fixed Cartan decomposition of a real semisimple Lie
algebra $\mathfrak{g}$ , and $\eta$ be the conjugation of $\mathfrak{g}^{c}$ with respect to the compact real
form $\mathfrak{g}_{u}=\mathfrak{k}+\sqrt{-1}\mathfrak{p}$ , then

\langle X, $ Y\rangle$ $=-B(X, \eta Y)$

is a positive definite Hermitian form on $\mathfrak{g}^{c}$ .
We denote the full automorphism group of $\mathfrak{g},$ $\mathfrak{g}_{u}$ and $\mathfrak{g}^{c}$ by $\tilde{G},$

$G_{u}$ and $\tilde{G}^{C}$

respectively. $\tilde{G}$ and $G_{u}$ are regarded as subgroups of $\tilde{G}^{c}$ . $\tilde{G}^{c}$ is an algebraic
group which is self-adjoint with respect to \langle X, $ Y\rangle$ . By a lemma due to
C. Chevally [4, (a), p. 201], every element $g$ of $\tilde{G}^{c}$ is decomposed uniquely
to the product

$g=kp$ , $k\in\tilde{G}_{u},$ $p\in\exp^{\sqrt{-1}}\mathfrak{g}_{u}$ .
If $g$ belongs to $\tilde{G}$ , then $k$ and $p$ also belong to $\tilde{G}$ . Hence every element $g$

of $\tilde{G}$ is decomposed to the product of an element $k$ of the maximal compact
subgroup $\tilde{K}=\tilde{G}\cap\tilde{G}_{u}$ and an element $p=\exp adX,$ $X\in \mathfrak{p}=\mathfrak{g}\cap\sqrt{-1}\mathfrak{g}_{u}$. We
remark that

$\tilde{K}=\{k\in\tilde{G};k\mathfrak{k}=\mathfrak{k}, k\mathfrak{p}=\mathfrak{p}\}$ .

Let $m$ be a maximal abelian subalgebra in $\mathfrak{p}$ , and
$\tilde{N}=\{k\in\tilde{K}; km=m\}$ and $W_{s}=\{\varphi(k);k\in N\}$ ,

where $\varphi(k)$ is the restriction of $k$ to $\mathfrak{m}$ .
Let $\mathfrak{h}_{0}$ be a Cartan subalgebra of $\mathfrak{g}$ containing nt, and 177 be the Cartan
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group of $\mathfrak{g}^{c}$ with respect to $\mathfrak{h}_{0^{C}}$ . $\tilde{W}$ is the group of all linear transformations
on $\mathfrak{h}_{0^{C}}$ which transform every root to another root. It is well known that
$\tilde{W}$ consists of all the restrictions of the automorphisms of $\mathfrak{g}^{c}$ which keep
invariant $\mathfrak{h}_{0^{O}}$ .

THEOREM 9. 1) Two standard Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are conjugate
under the automorphism group $\tilde{G}$ if and only if their vector parts $\mathfrak{h}_{1}^{-}$ and $\mathfrak{h}_{2^{=}}are$

conjugate under the group $\tilde{W}_{s}$ . 2) Two standard Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$

are conjugate if and only if $I_{1}$ and $I_{2}$ are conjugate under the Cartan group $\tilde{W}$,
where $1_{i}=\{X\in \mathfrak{m};B(X, \mathfrak{h}_{i^{-}})=0\}$ .

PROOF. The proofs of Theorem 3 and Theorem 4 are valid if we replace
$K,$ $N$, W. and $7V$ with $\tilde{K},\tilde{N},\tilde{W}_{s}$ and $\tilde{W}$.

DEFINITION 10. Two admissible root systems $F_{1}$ and $F_{2}$ are called con-
jugate under the Carlan group $\tilde{W}$ or W-conjugate if there exists an element
$s$ in $\tilde{W}$ such that $sF_{1}\equiv F_{2}$ .

By Theorem 5 and Theorem 9, 2), we have the following Theorem 10
which is fundamental for the problem of conjugacy under the automorphism
group $\tilde{G}$ .

THEOREM 10. There is $a$ one to one correspondence between the conjugale
classes of Cartan subalgebras in a real semisimple Lie algebra $\mathfrak{g}$ under the full
automorphism group $\tilde{G}$ and the W-conjugate classes of admissible root systems
in $R(m)$ .

Now, we determine explicitly the conjugate classes of Cartan subalgebras
under the automorphism group $\tilde{G}$ .

The normal real form of complex semisimple Lie algebra $D_{2n}$ is denoted
by $(D_{2n}Ic)$ . Lie algebra $(D_{2n}Ic)$ for a certain integer $n$ is called of the type
(DIc). Type (DIc) is a particular type of the type (DIa). Lie algebras of the
type (DIa) other than algebras of the type (DIc) are called of the type
(DId). There are five non isomorphic algebras of the type $(D_{4}I)$ . One of
them is $(D_{4}Ic)$ . Other four algebras are called of the type $(D_{4}Ie)$ .

The number of conjugate classes of Cartan subalgebras in a Lie algebra
$\mathfrak{g}$ under the adjoint group $G$ and under the full automorphism group $\tilde{G}$ are
denoted by $N(\mathfrak{g})$ and $\tilde{N}(\mathfrak{g})$ respectively.

THEOREM 11. 1) In all real simpte Lie algebras except algebras of type
(DIc), two Cartan subalgebras are conjugate under the automorphism group $\tilde{G}$ if
and only if they are conjugate under the adjoint group G. 2) In the Lie algebra
$(D_{2n}Ic),$ $n\geqq 3$ , the n-dimensional admissible root system defined by (76) is conjugate
to one of the systems defined in (74) under the Cartan group W. All other con-
$\int ugate$ classes under $W$ are also conjugate classes under W Hence we have

$\tilde{N}(D_{2n}Ic)=N(D_{2n}Ic)-1$ $(n\geqq 3)$ .
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3) In the Lie algebra $(D_{4}Ic)$ , there are three 2-dimensional conjugate classes
of admissible root systems under W All systems in these three classes are
mutually conjugate under W. All other conjugate classes under $W$ are also
conjugate classes under W. Hence we have

$\tilde{N}(D_{4}Ic)=N(D_{4}Ic)-2=5$ .
PROOF. 1), 2) Any real simple Lie algebra is either complex simple or a

real form of a complex simple Lie algebra. In every complex simple Lie
algebra, all Cartan subalgebras are mutually conjugate under $G$ , hence they
are also conjugate under $\tilde{G}$ . The Cartan group $\tilde{W}$ coincides with the Weyl
group $W$ in all complex simple Lie algebras except $A_{n},$ $D_{n}$ and $E_{6}$ . Hence
in all real forms of complex simple Lie algebras of types $B_{n},$ $C_{n},$ $E_{7},$ $E_{8},$ $F_{4}$ ,
and $G_{2}$ , the conjugacy of Cartan subalgebras under $\tilde{G}$ coincides with the
conjugacy under $G$ . In all real forms of $A_{n}$ and $E_{6}$ and the simple Lie
algebras of types ($D$ III) and $(D_{4}Ie)$ , two Cartan subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are
conjugate under $G$ if and only if $\dim \mathfrak{h}_{1}^{+}=\dim \mathfrak{h}_{2}^{+}$ (cf. \S 3 and \S 4), hence in
each real forms of $A_{n}$ and $E_{6}$ and the Lie algebras of types (DIII) and $(D_{4}Ie)$

conjugacy under $\tilde{G}$ coincides with the conjugacy under $G$ .
The Cartan group $\tilde{W}$ of $D_{n}(n>4)$ consists of all substitutions of $e_{i}’ s$

and changes of signatures of arbitrary number of $e_{i}’ s$ , hence any two different
systems in (74) are not conjugate under $\tilde{W}$ and the admissible root system
(76) is conjugate to a system in (74) under $\tilde{W}$. Thus we have proved that
$\tilde{N}$($D$ Ib) $=N$($D$ Ib), $\tilde{N}$( $D$ Id) $=N$( $D$ Id) and $\tilde{N}$( $D_{2n}$ Ic) $=N(D_{2n}Ic)-1$ if $2n\geqq 6$ .

3) In the Lie algebra $(D_{4}Ic)$ , there are three 2-dimensional admissible
root systems defined as follows:

$F_{1}=\{e_{1}+e_{2}, e_{1}-e_{2}\},$ $F_{2}=\{e_{1}+e_{2}, e_{3}+e_{4}\},$ $F_{3}=\{e_{1}+e_{2}, e_{3}-e_{4}\}$ .
Every 2-dimensional $F$ is conjugate to one of $F_{1},$ $F_{2}$ and $F_{3}$ , and any two

of $F_{1},$ $F_{2}$ and $F_{3}$ are not conjugate under the Weyl group $W$

However $F_{1},$ $F_{2}$ , and $F_{3}$ are mutually conjugate under the Cartan group
$\tilde{W}$. The Cartan group contains the subgroup
$P$ consisting of the linear transformations
which keep invariant the set $S$ of all simple
roots. An $S$ in $D_{4}$ is indicated in Fig. 2.
Hence $P\subset\tilde{W}$ contains an element $T$ defined
as follows:

$T(e_{1}-e_{2})=e_{8}+e_{4}$ , $T(e_{3}+e_{4})=e_{3}-e_{4}$ ,

$T(e_{3}-e_{4})=e_{1}-e_{2}$ , $T(e_{2}-e_{3})=e_{2}-e_{3}$ .
$T$ transforms $F_{1}$ and $F_{2}$ to $F_{d}$

) and $F_{3}$ respec-
tively.
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All four conjugate classes under $W$ other than $\{F_{1}\},$ $\{F_{2}\}$ and $\{F_{3}\}$ are
also conjugate classes under $\tilde{W}$. Thus we have completed the proof of
Theorem 11.

Now we have a complete knowledge on the conjugate classes of Cartan
subalgebras in real simple Lie algebras under the adjoint groups or under the
full automorphism groups. This suffices to determine the conjugate classes
of Cartan subalgebras in general real semisimple Lie algebras.

Indeed, let $\mathfrak{g}=\mathfrak{g}_{1}+\cdots+\mathfrak{g}_{r}$ be the decomposition of a semisimple Lie algebra
$\mathfrak{g}$ into the simple ideals $\mathfrak{g}_{i}$ , then every Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ is the direct
sum of the Cartan subalgebras $\mathfrak{h}_{i}$ of $\mathfrak{g}_{i}$ . Let $\mathfrak{h}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{r}$ and $\mathfrak{h}^{\prime}=\mathfrak{h}_{1}^{\prime}+\cdots+\mathfrak{h}_{r^{\prime}}$ ;
$\mathfrak{h}_{i},$ $\mathfrak{h}_{i^{\prime}}\subset \mathfrak{g}_{i}$ be two Cartan subalgebras in $\mathfrak{g}$ , then we have clearly the following
theorem.

THEOREM 12. 1) $\mathfrak{h}$ and $\mathfrak{h}^{\prime}$ are conjugate under the adjoint group $G$ of $\mathfrak{g}$ if
and only if $\mathfrak{h}_{i}$ and $\mathfrak{h}_{i^{\prime}}$ are conjugate under the adjoint group $G_{i}$ of $\mathfrak{g}_{i}$ . Hence
the number $N(\mathfrak{g})$ of conjugate classes of Cartan subalgebras in $\mathfrak{g}$ under the adjoint
group $G$ is the product of that of $\mathfrak{g}_{i},$

$i$. $e$ .

$N(\mathfrak{g})=\grave{\prod_{i=1}}N(\mathfrak{g}_{i})$ ,

where $N(g_{i})$ is the number of conjugate classes of Cartan subalgebras in simple
Lie algebras $\mathfrak{g}_{i}$ under $G_{i}$ . 2) Mutually isomorphic simple components $\mathfrak{g}_{i}$ are
identified to a fixed one among them. We divide the set $I=\{1,2,\cdots, r\}$ of indices

of $\mathfrak{g}_{i}’ s$ into $I_{k}(1\leqq k\leqq s)$ so that we have $I=\bigcup_{k=1}^{\epsilon}I_{k},$ $I_{k}\cap I_{\iota}=0(k\neq l)$ , and $\mathfrak{g}_{i}=\mathfrak{g}_{j}$

if $i$ and $j$ belong to the same $I_{k}$ and $\mathfrak{g}_{i}\not\cong \mathfrak{g}_{j}\iota fi\in I_{k},$ $j\in I_{\iota}$ and $k\neq l$. Then, $\mathfrak{h}$ is
conjugate to $\mathfrak{h}^{\prime}$ under the automorphism group $\tilde{G}$ of $\mathfrak{g}$ if and only if there exists
a permutation $\sigma$ of $\{$ 1, 2, $\cdots$ , $r\}$ which keeps each $I_{k}$ invariant and each $\mathfrak{h}_{\sigma(i)}$ is
conjugate to $\mathfrak{h}_{i^{\prime}}$ under the automorphism group $\tilde{G}_{i}$ of $\mathfrak{g}_{\iota}$ . Hence the number $\tilde{N}(\mathfrak{g})$

of conjugate classes of Cartan subalgebras in $\mathfrak{g}$ under the automorphism group
$\tilde{G}$ of $\mathfrak{g}$ is given as follows:

$\tilde{N}(\mathfrak{g})=\prod_{k=1}^{s}\left(\begin{array}{l}n_{k}+r_{k}-1\\l_{k}^{\prime}\end{array}\right)$

where $n_{k}=\tilde{N}(\mathfrak{g}_{i}),$ $i\in I_{k}i$ . $e$ . $n_{k}$ is the number of conjugate classes of Cartan sub-
algebras in $\mathfrak{g}_{i}$ under $\tilde{G}_{i}(i\in I_{k})$ , and $r_{k}$ is the number of integers contained in $I_{k}$ .

EXAMPLE. Let $\mathfrak{g}=\S 1(2, R)+\S I(2, R)$ . As $N(SI(2, R))=2$ (cf. \S 3), $\tilde{N}(Sl(2, R))$

$=2$ by Theorem 11. Hence we have $\tilde{N}(\mathfrak{g})=\left(\begin{array}{l}2+2-1\\2\end{array}\right)=3$ by Theorem 12. As

is well known $\mathfrak{g}$ is isomorphic to the Lie algebras $\mathfrak{g}_{1}$ of the orthogonal group
of the quadratic form $x_{1^{2}}+x_{2}^{2}-x_{3}^{2}-x_{4^{2}}$ (cf. [1, p. 353]). We know that $N(\mathfrak{g}_{1})=4$

in \S 3, therefore $\tilde{N}(\mathfrak{g}_{1})=3$ by Theorem 11.
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This result on $tJ_{1}$ is in accordance with the above result on $\mathfrak{g}$ .

Department of Mathematics
University of Tokyo.
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