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SOME PROPERTIES OF THE ENTIRE FUNCTIONS

EXTREMAL FOR DENJOY'S CONJECTURE

BY SHENG JIAN Wu AND SONG GUODONG

1. Introduction

In this paper we shall prove the following

THEOREM 1. Let F(Z) be an entire function extremal for Denjoy's Conjec-
ture (that is, F is entire of finite order λ and has k—2λ distinct finite asymptotic
values) and satisfy the condition limlogM(r, F)/rk/2<^, then F(Z) is right-prime.

THEOREM 2. Let F(Z) be an entire function extremal for Denjoy's Conjecture
and P(Z) a nonconstant polynomial whose zeros are distinct from zeros of F(Z),
then F(Z)/P(Z) is right-prime.

THEOREM 3. Let A(Z) be an entire function extremal for Denjoy's Conjecture
and /i, /2 two linear independent solutions of f"+Af=Q, then at least one of
/i, /2 has the property that the exponent of convergence of its zero-sequence is oo.

In 1907, A. Den joy [1] posed the following famous conjecture:
Let F(Z) be an entire function of finite order λ, if it has K distinct finite

asymptotic values, then K<2λ.
L. Ahlfors [2] confirmed the conjecture in 1930.
An entire function F(Z} is called to be extremal for Denjoy's conjecture

K^2λ if it is of finite order λ and has K=2λ distinct finite asymptotic values.
Since then, this kind of functions extremal for Denjoy's Conjecture was investi-
gated by many mathematicians such as L. Ahlfors [2] P. Kennedy [3] D. Drasin
[4] and Guang-hou Zhang [5], Here we consider some other properties of this
kind of functions.

2. Preliminary and lemmas

First, we introduce the notion of right-prime.
Let F be a meromorphic function on |Z|<oo, if F(Z) can be written as

(1)
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where g is entire and / meromorphic, then (1) is called a factorization of F.
If every factorization F(Z)=/(g(Z)) implies that g is linear whenever / is
transcendental, then F is called right-prime.

In order to prove our results, we need some known results :

LEMMA 1 [2], Let F be an entire function of finite order, if F has K
distinct finite asymptotic values, then limlogM(r, F)/rk/2>0, where M(r, F)=

max|F(Z)|.
\z\-r

LEMMA 2 [5]. Let F be extremal for Denjoy's Conjecture, a ί f az, ••• , ak its
distinct finite asymptotic values, Llf L2, ••• , Ik its asymptotic paths corresponding
with alf a2, ••• , ak. Dif (i= 1, 2, ••• , k) is the simply connected domain bounded
by Ll and Ll+ί (i=l, 2, ••• , k\ LA+1=L1), then

( i ) F(Z) has no finite deficient values',
(ii) There exists an unbounded domain ΩidDi such that if we denote

Oit — {Z', \Z\—t}Γ\Di and tθι(f) its linear measure, then there exists a constant
r0>0, such that

(ii) can be obtained from the proof of the Lemma 1 in [5].

LEMMA 3 [6]. Let f and g be both nonconstant entire functions, then there
exists a constant c (0<c<l), which is independent of r, such that for sufficiently
large r, we have

M(r, f(gy)>M(cM(^, g), /).

LEMMA 4 [7, p. 119]. Suppose that f is a meromorphic function of order

p, where Q^p<—, and that δ(a, /)>!—cosπp. Then there exists a sequence

rn—>oo (n—>oo), such that

f(rne
ίθ) —> a as n->oo uniformly for Q<ίθ^2π.

3. Proof of theorem 1

Let Lτ (ί'=l, 2, ••• , k) and aτ (i=l, 2, ••• , k) be as in Lemma 2. Suppose
that F(Z)=/(g(Z)) and we discuss three cases.

( i ) /, g are both transcendental entire functions.
By Polya's theorem [6] we see that / is of order zero. From Lemma 4

we can deduce that / is unbounded on any unbounded paths. So g is bounded
on LI (i=l, 2, ••• , k). Suppose that R is sufficiently large, such that g(Ll)d
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{£; !£!<#} and there is no zero of /(£)— α t on |£|=#. Since /(£)— flt has
only finitely many zeros in \ξ <R and limF(Z)=α l and g(Lt) is connected,

we see that g must tend to one of the zeros of f(ζ}—al in |f |<# as 2->co
along Lt, that is

limg(Z)=bi,
*ΓJ°

where 6* is a zero of f(ξ}—aτ.
Therefore, g has also k distinct finite asymptotic values bt (/—I, 2, ••• , k).

Since the order of g can not be greater than that of F, from Lemma 1 we
deduce that g(z) is of order λ.

Since /(£) is transcendental, we have

7^ logr

Using Lemma 3, we obtain

lim ,

log cM~, 5- r"°° log cM9

Since limlogM(r, F}/rk/2<co} there exists a sequence rn— »oo (n— >oo) such that
r->oo

limlogM(rn, F)/r//2=M<oo.
n-»oo

From Lemma 1, we have

0<limlogM(r, ^)/r*/8=lim log cM^,

logcM(r./2, g) logA/(r.,F) =Q

n~ logM(rn, F)

This indicates that ( i ) is impossible.
(ii) / is a transcendental entire function and g a polynomial.
Now suppose that L't=g(Ll), then L( is a continuous curve tending to

We can easily see that

fl, («=1, 2, •- , k)
?Γf T

So / has & distinct finite asymptotic values and / is of order λ, therefore
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J=iG5k*r<r, /(g))/logr=ϊa ^ff; f^ "g ' f '

So degg—1, that is, g(z) is linear.
(iii) / is a transcendental meromorphic function having at least one pole

and g transcendental entire, (it is obvious that g cannot be a polynomial)
In this case, we see that f(ξ)—(ξ—ξo)~nfι(ξ), where n is a positive integer,

/i a transcendental entire function such that /ι(£0)=£θ, and that g(z)—ξ0+ep(iz\
where P(z) is a polynomial.

By a theorem in [8], we know that / is of order zero. And from Lemma
4, / is unbounded on any unbounded paths. As in (i), we can prove that g
has k distinct finite asymptotic values. But it is obvious that δ(ξQ, g)=L This
contradicts Lemma 2 and so (iii) is impossible. The proof of theorem 1 is
complete.

COROLLARY 1. Let F be extremal for Denjoy's conjecture, if F is not right-
prime, then

HmlogA/Cr,

It is worth noting that from Lemma 1 we only know that

HmlogMXr, F)/r* / 2>0.
r-*oo

4. Proof of theorem 2.

Suppose that aτ, Llf Di} Ωτ, θit and θi(f) (/=!, 2, •••, y^) are defined as in
Lemma 2 and set F(z)/P(z)—f(g(z)}y we need only discuss two cases:

(i) / i s transcendental meromorphic and g transcendental entire.
In this case, noting that F(z)/P(z) has only finitely many poles, we have

where n is a positive integer, fl an entire function of order zero and
We also have

where pi and p2 are both nonconstant polynomials. For the convenience of the
proof, we may assume £o=0.

Using Lemma 4, as in the proof of theorem 1 (i), for each i we have
V\mg(z)=bit where bt is a zero of flt
ZL™

Now we prove that g is unbounded in Dt. If this is not true, from
Lindelof 's theorem, g is uniformly bounded in DI and g is uniformly convergent
to bi (=bi+1) as z tend to oo in Dt.
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From Lemma 2, noting that 0<θi(t)<2π, we can find a sequence rn->oo
(n->oo) such that lim θi(rn)=2π/k.

71-* oo

Let z—reίθ, we have

I *(*) I - 1 ί !(^2(2) I - 1 P 1(*)*«"»+*6»> m+/> s(*) I

where ps is a polynomial whose degree is at most m—1 (=deg/>2— 1) So the
plane UK + oo is divided into 2m distinct angular domains Ω(φjf φj+ι)=
{relθ φj<^θ<φj+1}, (/=!, 2, ••• , 2m, φ2m+1=φ1+2π), such that for sufficiently
small ε>0, g(z) is uniformly convergent to co (or 0) as z tends to oo in

Ω(ψj+ε, ψj+ι~~ s) Since lim θi(rn}—~ — , if we set ε0=-5τ — , then for suίfi--
ciently large n, there must exist zn—rne

ίθn^Θlrn, such that φj+ε0<θn<φj+ί— ε0

for some / (l^/^2m). Since there are only 2m distinct angular domains
£?(̂ ; -f ε0, ̂  +ι— ε0), we can choose a subsequence {znk} of {^re} such that
{znk}dΩ(φJo+εo, φjQ+i—εo), where j0 (l^/0^2m) is fixed. Since \\mg(z)—biφoo)

2^oo
Bi

g cannot be convergent to co in Ω(φjQ+ε0, φJo+ι — ε0), so we have bi=Q and
/1(0)=0. This contradicts the fact /i(0)^0. So ^ is unbounded in Dt.

Therefore, g has k distinct asymptotic paths Lτ and is unbounded in Dt.
Using the same method as in the proof of Lemma 1 and Lemma 2, we can
show that for g the conclusions of Lemma 1 and Lemma 2 remain valid. But
we also have δ(0, #)=1, so ( i ) is impossible.

(ii) / is transcendental meromorphic and g a polynomial.
In this case, we have /(£)=/ι(£)//>ι(ί), where fl is transcendental entire

and pl a polynomial such that fl and pl have no common zero. So we have

F(z) _ fteW

We see that F(z)=cfι(g(z)). As in the proof of theorem 1 (ii), we can also
deduce that g is linear. The proof of theorem 2 is complete.

5. Discussion of theorem 1

First we give an example to show that a nonprime entire function F(Z)
can satisfy the condition of theorem 1.

Example 1. Let

and G(Z)=(F(Z))2. Then G(Z) is of order 2 and has 4 asymptotic values:
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o r
J V f 1 O O / IN Λ Λ Γ Ί U i lθg M(r, G) .
dr\ („=! 2, 3, 4). We can easily show lim — - — ~ — — <oo.

/ F^ r

So G(Z) is only right-prime and not prime.

Now we give another example to show that the condition lim — - — rV —
τ^> rk/

<oo in theorem 1 is necessary.
Example 2. Let

^^flί1" exp(exp*))

Since
n(r, o, /)=0(log log r) (r->oo)

and
log M(r, /)=0((log r)(log log r)) , (r-»oo)

we see that f(z) is of order zero, and for any entire function g, we haxe

logM(r, /(g))< log M(M(r, g), /)=0(logM(r, ^)loglogM(r, g)).

So f ( g ) has the same order as g. Now we put g(z)=\ — - — dt, then f ( g ) has

order 1.
Since f(z) is transcendental, we have

HrnlogM(r, /)/logr— oo
r-*oo

and for any
logM(r, /)>y^logr (r-»oo)

so

k log M(r,
— hm
2 r^oo r

Since ^ can be arbitrarily large, we deduce

r-»oo T

On the other hand, we have

lim
r-*-oo

and
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£Λ= fr (ι π \± f j (ι\ π \=f(
 π\

, 2 / k=ι \ 2exρ(exp&) / *=ι V 2exρ(exρ&) / V 2 / "

So function f(g) is extremal for Denjoy's Conjecture but is not pseudo-prime.

6. Proo of theorem 3.

In this part, we shall prove theorem 3. First, we shall say something about
the linear differential equation fff+Af'=Q.

In recent years, there are many papers on the properties of the solutions
of differential equation fff+Af=Q where A(Z) is entire or meromorphic, a
major asspect of which is what conditions on A(Z) will guarantee that every
solution or one of the two linear independent ones of f"+Af=Q has the property
that the exponent of convergence of its zero-sequence is oo. We consider here
that A(Z) is an entire function extremal for Den joy's Conjecture and obtain the
interesting result which is stated in theorem 3.

In order to prove theorem 3, we need two lemmas.

LEMMA 5. Let A(Z) be an entire function extremal for Denjoy's conjecture
N

k—2λ and blf bz, •- , bN its zeros. Suppose H(z)=A(z)/Tl(z—bi), then we have

the following conclusions:
(a) limlogM(r, #)/r*/2>0; (6.1)

r-»oo

(b) H(z) has the same order as A(z)
(c) Zero is an asymptotic value of H(z), and H(z) has k distinct asymptotic

paths Lτ (/=!, 2, •••, k) which divide the plane \Z\<oo into k disjoint simply-
connected domains Dt (/=!, 2, ••• , k) (By suitable choice of the subscripts, we may
assume that Dt is bounded by Lτ and Ll+l, (l ̂ i^k, Lk+ι=L1))

(d) For each i (l^i<k), there exists a curve contained in Dl tending to
oo such that

lim & ' ,wι -=Λ. (6.2)
V» log 21
L I

Proof. From Lemma 1 and Lemma 2, (a), (b) and (c) are obvious.
From theorem 1 in [5(1)], we know that for each /, there exists a curve

contained in Dt tending to oo such that

limloglog |Λ(z)/log \z\=λ (ί=l, 2, - , fe)
zf?

From this we can easily deduce (d).

LEMMA 6 [9]. Let f(z) be an entire function and N>1 a given constant.
Put

D={z; \ f ( z ) \ > N } .



128 SHENG JIAN WU AND SONG GUODONG

// we define Ak(f) (k=l, 2, ••• , 72 (0) the arcs of \z\=t contained in D and tθk(ϊ)
their lengths, and

| 2 |=f contained in D

(β 3)
max θk(f)y otherwise,

Car /if
loglogM(r, /)>π 7^7τr + C(α, r0)

Jr0 tUf(t)

then for any 0<α<l, we have

(•«»• dt
ro

where 0<r0<ατ and c(a, r0) is a constant independent of r.

Proof of the theorem
Let /i, /2 be two linear independent solutions of fff+Af=0. Set /r=/J/2.

Bank and Laine [10, p. 354] deduced that the function satisfies the equation

(6.4)

where c is the constant Wronskian of fl and /2. Thus by applying the
Nevanlinna theory to (6.4), they obtained

as r—>oo outside a set of finite logarithmic measure.
If the order p of F is finite. From a Lemma [12], there exists a set

£c(0, oo) having finite logarithmic measure such that for \z\φE

From lemma 5(a), we know that A(z) must have infinitely many zeros,
[hi] say. Put

Now we have a contradition as follows, by the similar arguments to those
in the proof of theorem 1 in [5 (I)].

Let AΓ>max{l, $up\H(z)\} be a constant, where L— \J Lτ. To H(z) apply-
2GL 1 = 1

ing lemma 5(d), we know that there exist Zt<E.Dι (/—I, 2, •••, k) such that

\H(zτ}\~^2N. (6.7)
Write

r0=max{l, \ z l \ 9 \zz , ••• , \zk I } .

Since there exists 7V'e[7V, 2ΛΓ] such that there is no zero of H'(z) on the
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curves defined by \H(z)\=N' and there is no zero of F'(z) on the curve
defined by \F(z)\=N', the curves are analytic. We put

&={*; \F(z)\>N'} (6.8)

D2={z', \H(z)\>N'}, (6.9)

E*={z; z=reiθ, 0^0<2ττ, r<=E}

From (6.4) and (6.5), we deduce that if z^D^E*, then

±\A(z)\<\c\*+\z\*<^\P(z)\. (U|=r^r0) (6.10)

But for z^D2—E*, we have

4|4(*)|>|P(2)|. (6.11)

From (6.10) and (6.11), we see that (D.-E^ΓΛiz; \z\^rQ}r\(Dz-E*)=0.
Let Ωid.Dτ be the connected component of D2 containing ztί (i=l, 2, ••• , k).

From the maximum modulus principle, we deduce that each Ωτ (i=l, 2, ••• , k)
is an unbounded domain. Let θit (i=l, 2, ••• , k, rQ^t<oo) be the arc \z\=t
contained in Ωτ, and tθi(t) its linear measure, then we have

From Lemma 5(a), (b), we deduce that

loglogM(r, /ί)=|-logr+o(logr) (6.12)

By a theorem in [11, p. 116], we have

log \H(zJ\<logN'+9V~2exp(-π\r/* -^-)logM(r, H ) . (ι = l, 2, - , A?)
\ J2U ί | tt/i(t) '

Then we obtain

Σ

and we have

J2r 0

Since

we have

Σ VθiW/VOi®)*^ Σ »,
t=ι / \ t=ι / \ t = ι
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π k^

Hence we deduce from (6.12)

Γ 2 Σ ( ?, —y) —c (logr). (6.13)

For any 3>0, put

=\t ,±.

We see that if feE(δ), then Σ - — ̂ ^° From (6 13)^ we deduce that
1 = 1 \ Vi(t) Δ /

for any ε>0, there exsits ^>0 such that for r^R,

t f r / 2 £,/ π ^\ ^
εlogr> Σ(-z-7τ^ — -ό-)"T"

J2r0 t = ι \ Ui(t) L' t

dt
2J t

^ ~' π~δdt

rJt^Λ 0*(0

kδ ( dt

Therefore

dt
=0,

r-oo logr jEtf.n t

that is, the logarithmic dense of E(δ) is zero. If t£E(δ)\JE and t^r0, then

Let /?=[2ro, -ό-rl— (£(3)W£)). From Lemma 6, we have

loglogM(r, F)^π
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Since

, (6.14)v,r^oo logr J.7* t

we have

n JogJogM(^F) π
lim - : - ^~77i~ (6.15)r-»oo logr 2δ

As δ can be arbitrarily small, (6.15) contradicts the assumption that F is of
finite order. So F must be of infinite order.

Noting that A(z) is of finite order, then from (6.5) we deduce that

lim log Mr, — )/logr=oo, and this completes the proof.
r-»oo \ r'l

1. Application

In this section, we define λ(g) the exponent convergence of zero-sequence
of g.

Example 1. If /Ί, /2 are two linear independent solutions of

G 2 oi'n / m / 2 \
r£*-dt)f=0, (7.D

where m is a positive integer, then max{Λ(/Ί), Λ(/2)} = oo.

Example 2. In [13], Bank and Laine considered the differential equations:

/=0, (7.2)

)/=0. (7.3)

where q, p, m are positive integers. Under the additional condition q>2(m— 1),
they obtained that if /Ί, /2 are two linear independent solutions of (7.2) or (7.3),
then maxUCΛ), Λ(/a))>l+ro/2.

From our method used to prove the theorem, we can get some strong results
in more general cases. Now we consider the differential equation :

f"+pι(z)P($mzm/2/zm/z)f=Q (7.4)

where pι(z), P(w) (Φ const) are polynomials, and m is a positive integer. We
prove that if /Ί, /2 are two linear independent solutions of (7.4), then

First we note that A(z)=p1P(smzm/2/zm/2) is of finite order and m distinct

paths Ll from the oringin to oo : argz— - (^=1, 2, ••• , w) are the asymptotic

paths of A(z)/pι(z). In each angular domain Dτ bounded by Lτ and Ll+l
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(Igz'^ra, LTO+ι=L1), A(z)/pι(z) is unbounded.
It is worth noting that Lemma 5 is still true under the following conditions :
(1) A(z) is of finite order ra/2.
(2) There are m distinct paths L t from the oringin to oo (i=l, 2, ••• , nΐ)

and m distinct simply-connected domains Dt bounded by L t and Lί+l (l^i^m,

Lm + 1=Lι) such that A(z) is bounded on L—{JLt and unbounded in each Dt

(ι=l, 2, - , m).
Therefore, A(z)/pl(z) has infinitely many zeros. If we choose an integer q

such that #^degjί>ι, and (6.6) is also satisfied, and let Λf in Lemma 5 equal to
/ N

1+0. We deduce that A(z) / Tί(z—al}—H(z) has the properties of Lemma 5(a),
/ 1 = 1

(b), (c), (d). Thus, using the same method in the proof of the theorem, we can
prove the result mentioned above.

Applying the same method, we deduce that if f l f /2 are two linear inde-
pendent solutions of

a)/=0, (7.5)

where pι(z\ P(w} (^const) are polynomials, and m is a positive integer, then

Especially, if /Ί, /2 are two linear independent solutions of (7.2) (or (7.3)),
where p,m are positive integers, and q is a nonnegetive integer, then
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