SOME PROPERTIES OF THE ENTIRE FUNCTIONS EXTREMAL FOR DENJOY'S CONJECTURE

By Sheng Jian Wu and Song Guodong

1. Introduction

In this paper we shall prove the following
Theorem 1. Let $F(Z)$ be an entire function extremal for Denjoy's Conjecture (that is, F is entire of finite order λ and has $k=2 \lambda$ distinct finite asymptotic values) and satisfy the condition $\lim _{r \rightarrow \infty} \log M(r, F) / r^{k / 2}<\infty$, then $F(Z)$ is right-prime.

THEOREM 2. Let $F(Z)$ be an entire function extremal for Denjoy's Conjecture and $P(Z)$ a nonconstant polynomial whose zeros are distinct from zeros of $F(Z)$, then $F(Z) / P(Z)$ is right-prime.

THEOREM 3. Let $A(Z)$ be an entire function extremal for Denjoy's Conjecture and f_{1}, f_{2} two linear independent solutions of $f^{\prime \prime}+A f=0$, then at least one of f_{1}, f_{2} has the property that the exponent of convergence of its zero-sequence is ∞.

In 1907, A. Denjoy [1] posed the following famous conjecture:
Let $F(Z)$ be an entire function of finite order λ, if it has K distinct finite asymptotic values, then $K \leqq 2 \lambda$.
L. Ahlfors [2] confirmed the conjecture in 1930.

An entire function $F(Z)$ is called to be extremal for Denjoy's conjecture $K \leqq 2 \lambda$ if it is of finite order λ and has $K=2 \lambda$ distinct finite asymptotic values. Since then, this kind of functions extremal for Denjoy's Conjecture was investigated by many mathematicians such as L. Ahlfors [2] P. Kennedy [3] D. Drasin [4] and Guang-hou Zhang [5]. Here we consider some other properties of this kind of functions.

2. Preliminary and lemmas

First, we introduce the notion of right-prime.
Let F be a meromorphic function on $|Z|<\infty$, if $F(Z)$ can be written as

$$
\begin{equation*}
F(Z)=f(g(Z)) \tag{1}
\end{equation*}
$$

Received January 13, 1989 ; revised July 20, 1989
where g is entire and f meromorphic, then (1) is called a factorization of F. If every factorization $F(Z)=f(g(Z))$ implies that g is linear whenever f is transcendental, then F is called right-prime.

In order to prove our results, we need some known results:
Lemma 1 [2]. Let F be an entire function of finite order, if F has K distinct finite asymptotic values, then $\lim _{r \rightarrow \infty} \log M(r, F) / r^{k / 2}>0$, where $M(r, F)=$ $\max _{|z|=r}|F(Z)|$.

Lemma 2 [5]. Let F be extremal for Denjoy's Conjecture, $a_{1}, a_{2}, \cdots, a_{k}$ its distinct finite asymptotic values, $L_{1}, L_{2}, \cdots, l_{k}$ its asymptotic paths corresponding with $a_{1}, a_{2}, \cdots, a_{k} . \quad D_{i},(i=1,2, \cdots, k)$ is the simply connected domain bounded by L_{2} and $\left.L_{\imath+1}(i=1,2, \cdots, k), L_{k+1}=L_{1}\right)$, then
(i) $F(Z)$ has no finite deficient values;
(ii) There exists an unbounded domain $\Omega_{i} \subset D_{i}$ such that if we denote $\theta_{i t}=\{Z ;|Z|=t\} \cap D_{i}$ and $t \theta_{i}(t)$ its linear measure, then there exists a constant $r_{0}>0$, such that

$$
\int_{r_{0}}^{r} \frac{\left(\frac{2 \pi}{k}-\theta_{i}(t)\right)^{2}}{\theta_{i}(t)} \frac{d t}{t}=o(\log r) \quad(r \rightarrow \infty)
$$

(ii) can be obtained from the proof of the Lemma 1 in [5].

Lemma 3 [6]. Let f and g be both nonconstant entire functions, then there exists a constant $c(0<c<1)$, which is independent of r, such that for sufficiently large r, we have

$$
M(r, f(g))>M\left(c M\left(\frac{r}{2}, g\right), f\right)
$$

Lemma 4 [7, p. 119]. Suppose that f is a meromorphic function of order ρ, where $0 \leqq \rho<\frac{1}{2}$, and that $\delta(a, f)>1-\cos \pi \rho$. Then there exists a sequence $r_{n} \rightarrow \infty(n \rightarrow \infty)$, such that

$$
f\left(r_{n} e^{i \theta}\right) \longrightarrow a \text { as } n \rightarrow \infty \text { uniformly for } 0 \leqq \theta \leqq 2 \pi .
$$

3. Proof of theorem 1

Let $L_{\imath}(i=1,2, \cdots, k)$ and $a_{\imath}(i=1,2, \cdots, k)$ be as in Lemma 2. Suppose that $F(Z)=f(g(Z))$ and we discuss three cases.
(i) f, g are both transcendental entire functions.

By Polya's theorem [6] we see that f is of order zero. From Lemma 4 we can deduce that f is unbounded on any unbounded paths. So g is bounded on $L_{\imath}(i=1,2, \cdots, k)$. Suppose that R is sufficiently large, such that $g\left(L_{\imath}\right) \subset$
$\{\xi ;|\xi|<R\}$ and there is no zero of $f(\xi)-a_{\imath}$ on $|\xi|=R$. Since $f(\xi)-a_{\imath}$ has only finitely many zeros in $|\xi|<R$ and $\lim _{\substack{z \rightarrow \infty \\ L_{\imath}}} F(Z)=a_{\imath}$ and $g\left(L_{\imath}\right)$ is connected, we see that g must tend to one of the zeros of $f(\xi)-a_{\imath}$ in $|\xi|<R$ as $z \rightarrow \infty$ along L_{\imath}, that is

$$
\lim _{\substack{z \rightarrow \infty \\ L_{i}}} g(Z)=b_{i}
$$

where b_{i} is a zero of $f(\xi)-a_{2}$.
Therefore, g has also k distinct finite asymptotic values $b_{i}(i=1,2, \cdots, k)$. Since the order of g can not be greater than that of F, from Lemma 1 we deduce that $g(z)$ is of order λ.

Since $f(\xi)$ is transcendental, we have

$$
\varliminf_{r \rightarrow \infty} \frac{\log M(r, f)}{\log r}=\infty
$$

Using Lemma 3, we obtain

$$
\begin{aligned}
\frac{\lim _{r \rightarrow \infty}}{} \frac{\log M(r, F)}{\log c M\left(\frac{r}{2}, g\right)} & \geqq \lim _{r \rightarrow \infty} \frac{\log M\left(c M\left(\frac{r}{2}, g\right), f\right)}{\log c M\left(\frac{r}{2}, g\right)} \\
& =\lim _{R \rightarrow \infty} \frac{\log M(R, f)}{\log R}=\infty
\end{aligned}
$$

Since $\lim _{r \rightarrow \infty} \log M(r, F) / r^{k / 2}<\infty$, there exists a sequence $r_{n} \rightarrow \infty(n \rightarrow \infty)$ such that $\lim _{n \rightarrow \infty} \log M\left(r_{n}, F\right) / r_{n}^{k / 2}=M<\infty$.

From Lemma 1, we have

$$
\begin{aligned}
0 & <\varliminf_{r \rightarrow \infty} \log M(r, g) / r^{k / 2}=\underline{\lim }_{r \rightarrow \infty} \log c M\left(\frac{r}{2}, g\right) /\left(\frac{r}{2}\right)^{k / 2} \\
& <\varliminf_{n \rightarrow \infty} \log c M\left(\frac{r_{n}}{2}, g\right) /\left(\frac{r_{n}}{2}\right)^{k / 2} \\
& =\lim _{n \rightarrow \infty} \frac{\log c M\left(r_{n} / 2, g\right)}{\log M\left(r_{n}, F\right)} \cdot \frac{\log M\left(r_{n}, F\right)}{\left(\frac{1}{2}\right)^{k / 2} r_{n}^{k / 2}}=0
\end{aligned}
$$

This indicates that (i) is impossible.
(ii) f is a transcendental entire function and g a polynomial.

Now suppose that $L_{\imath}^{\prime}=g\left(L_{\imath}\right)$, then L_{\imath}^{\prime} is a continuous curve tending to ∞. We can easily see that

$$
\lim _{\substack{\xi \rightarrow \infty \\ L_{i}^{\prime}}} f(\xi)=\lim _{\substack{z \rightarrow \infty \\ L_{\imath}}} F(Z)=a_{\imath} \quad(i=1,2, \cdots, k)
$$

So f has k distinct finite asymptotic values and f is of order λ, therefore

$$
\begin{aligned}
\lambda & =\overline{\lim _{r \rightarrow \infty}} \log T(r, f(g)) / \log r=\varlimsup_{r \rightarrow \infty} \frac{\log T(r, f(g))}{\log |g|} \frac{\log |g|}{\log r} \\
& =\lambda \operatorname{deg} g
\end{aligned}
$$

So $\operatorname{deg} g=1$, that is, $g(z)$ is linear.
(iii) f is a transcendental meromorphic function having at least one pole and g transcendental entire. (it is obvious that g cannot be a polynomial)

In this case, we see that $f(\xi)=\left(\xi-\xi_{0}\right)^{-n} f_{1}(\xi)$, where n is a positive integer, f_{1} a transcendental entire function such that $f_{1}\left(\xi_{0}\right) \neq 0$, and that $g(z)=\xi_{0}+e^{P(2)}$, where $P(z)$ is a polynomial.

By a theorem in [8], we know that f is of order zero. And from Lemma $4, f$ is unbounded on any unbounded paths. As in (i), we can prove that g has k distinct finite asymptotic values. But it is obvious that $\delta\left(\xi_{0}, g\right)=1$. This contradicts Lemma 2 and so (iii) is impossible. The proof of theorem 1 is complete.

Corollary 1. Let F be extremal for Denjoy's conjecture, if F is not rightprime, then

$$
\lim _{r \rightarrow \infty} \log M(r, F) / r^{k / 2}=\infty .
$$

It is worth noting that from Lemma 1 we only know that

$$
\lim _{r \rightarrow \infty} \log M^{\prime}(r, F) / r^{k / 2}>0
$$

4. Proof of theorem 2.

Suppose that $a_{2}, L_{2}, D_{i}, \Omega_{2}, \theta_{i t}$ and $\theta_{i}(t)(i=1,2, \cdots, k)$ are defined as in Lemma 2 and set $F(z) / P(z)=f(g(z))$, we need only discuss two cases:
(i) f is transcendental meromorphic and g transcendental entire.

In this case, noting that $F(z) / P(z)$ has only finitely many poles, we have

$$
f(\xi)=\left(\xi-\xi_{0}\right)^{-n} f_{1}(\xi)
$$

where n is a positive integer, f_{1} an entire function of order zero and $f_{1}\left(\xi_{0}\right) \neq 0$. We also have

$$
g(z)=\xi_{0}+p_{1}(z) e^{p_{2}(z)}
$$

where p_{1} and p_{2} are both nonconstant polynomials. For the convenience of the proof, we may assume $\xi_{0}=0$.

Using Lemma 4, as in the proof of theorem 1 (i), for each i we have $\lim _{\substack{z \vec{L}_{\imath}^{\infty}}} g(z)=b_{i}$, where b_{i} is a zero of f_{1}.

Now we prove that g is unbounded in D_{i}. If this is not true, from Lindelof's theorem, g is uniformly bounded in D_{i} and g is uniformly convergent to $b_{i}\left(=b_{i+1}\right)$ as z tend to ∞ in \bar{D}_{2}.

From Lemma 2, noting that $0<\theta_{i}(t)<2 \pi$, we can find a sequence $r_{n} \rightarrow \infty$ $(n \rightarrow \infty)$ such that $\lim _{n \rightarrow \infty} \theta_{i}\left(r_{n}\right)=2 \pi / k$.

Let $z=r e^{i \theta}$, we have

$$
\begin{gathered}
|g(z)|=\left|p_{1}(z) e^{p_{2}(z)}\right|=\left|p_{1}(z) e^{\left(a_{m}+\imath b_{m}\right) z^{m}}+p_{3}(z)\right| \\
<\left|p_{1}(z)\right| \exp \left\{\frac{r^{m}}{\sqrt{a_{m}^{2}+b_{m}^{2}}} \cos m(\theta+\alpha)+o\left(r^{m-1}\right)\right\}
\end{gathered}
$$

where p_{3} is a polynomial whose degree is at most $m-1\left(=\operatorname{deg} p_{2}-1\right)$. So the plane $|z|<+\infty$ is divided into $2 m$ distinct angular domains $\Omega\left(\varphi_{3}, \varphi_{j+1}\right)=$ $\left\{r e^{\imath \theta} ; \varphi_{\jmath} \leqq \theta<\varphi_{\jmath+1}\right\}, \quad\left(j=1,2, \cdots, 2 m, \varphi_{2 m+1}=\varphi_{1}+2 \pi\right)$, such that for sufficiently small $\varepsilon>0, g(z)$ is uniformly convergent to ∞ (or 0) as z tends to ∞ in $\bar{\Omega}\left(\varphi_{\jmath}+\varepsilon, \varphi_{\jmath+1}-\varepsilon\right)$. Since $\lim _{n \rightarrow \infty} \theta_{i}\left(r_{n}\right)=\frac{2 \pi}{k}$, if we set $\varepsilon_{0}=\frac{2 \pi}{8 k m}$, then for sufficiently large n, there must exist $z_{n}=r_{n} e^{i \theta_{n}} \in \theta_{2} r_{n}$, such that $\varphi_{j}+\varepsilon_{0}<\theta_{n}<\varphi_{j+1}-\varepsilon_{0}$ for some $j(1 \leqq j \leqq 2 m)$. Since there are only $2 m$ distinct angular domains $\Omega\left(\varphi_{j}+\varepsilon_{0}, \varphi_{j+1}-\varepsilon_{0}\right)$, we can choose a subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ such that $\left\{z_{n_{k}}\right\} \subset \bar{\Omega}\left(\varphi_{\rho_{0}}+\varepsilon_{0}, \varphi_{j_{0}+1}-\varepsilon_{0}\right)$, where $j_{0}\left(1 \leqq j_{0} \leqq 2 m\right)$ is fixed. Since $\lim _{z} \overrightarrow{\bar{D}}_{i}(z)=b_{i} \neq \infty$, g cannot be convergent to ∞ in $\bar{\Omega}\left(\varphi_{\rho_{0}}+\varepsilon_{0}, \varphi_{\rho_{0}+1}-\varepsilon_{0}\right)$, so we have $b_{i}=0$ and $f_{1}(0)=0$. This contradicts the fact $f_{1}(0) \neq 0$. So g is unbounded in D_{i}.

Therefore, g has k distinct asymptotic paths L_{i} and is unbounded in D_{i}. Using the same method as in the proof of Lemma 1 and Lemma 2, we can show that for g the conclusions of Lemma 1 and Lemma 2 remain valid. But we also have $\delta(0, g)=1$, so (i) is impossible.
(ii) f is transcendental meromorphic and g a polynomial.

In this case, we have $f(\xi)=f_{1}(\xi) / p_{1}(\xi)$, where f_{1} is transcendental entire and p_{1} a polynomial such that f_{1} and p_{1} have no common zero. So we have

$$
\frac{F(z)}{P(z)}=\frac{f_{1}(g(z))}{p_{1}(g(z))}
$$

We see that $F(z)=c f_{1}(g(z))$. As in the proof of theorem 1 (ii), we can also deduce that g is linear. The proof of theorem 2 is complete.

5. Discussion of theorem 1

First we give an example to show that a nonprime entire function $F(Z)$ can satisfy the condition of theorem 1.

Example 1. Let

$$
F(Z)=\int_{0}^{z} \frac{\sin t^{2}}{t^{2}} d t
$$

and $G(Z)=(F(Z))^{3}$. Then $G(Z)$ is of order 2 and has 4 asymptotic values:
$e^{3 \nu \pi / 2 / 2}\left(\int_{0}^{\infty} \frac{\sin r^{2}}{r^{2}} d r\right)^{3} \quad(\nu=1,2,3,4)$. We can easily show $\frac{\lim }{r \rightarrow \infty} \frac{\log M(r, G)}{r^{2}}<\infty$. So $G(Z)$ is only right-prime and not prime.

Now we give another example to show that the condition $\frac{\lim }{r \rightarrow \infty} \frac{\log M(r, F)}{r^{k / 2}}$ $<\infty$ in theorem 1 is necessary.

Example 2. Let

$$
f(z)=\prod_{k=1}^{\infty}\left(1-\frac{z}{\exp (\exp k)}\right) .
$$

Since

$$
n(r, o, f)=O(\log \log r) \quad(r \rightarrow \infty)
$$

and

$$
\log M(r, f)=O((\log r)(\log \log r)), \quad(r \rightarrow \infty)
$$

we see that $f(z)$ is of order zero, and for any entire function g, we haxe

$$
\log M(r, f(g))<\log M(M(r, g), f)=O(\log M(r, g) \log \log M(r, g)) .
$$

So $f(g)$ has the same order as g. Now we put $g(z)=\int_{0}^{z} \frac{\sin t}{t} d t$, then $f(g)$ has order 1.

Since $f(z)$ is transcendental, we have

$$
\lim _{r \rightarrow \infty} \log M(r, f) / \log r=\infty
$$

and for any $k>0$,

$$
\log M(r, f)>k \log r \quad(r \rightarrow \infty)
$$

so

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \frac{\log M(r, f(g))}{r} & \geqq \lim _{r \rightarrow \infty} \frac{k \log c M\left(\frac{r}{2}, g\right)}{r} \\
& \geqq \frac{k}{2} \lim _{r \rightarrow \infty} \frac{\log M(r, g)}{r} .
\end{aligned}
$$

Since k can be arbitrarily large, we deduce

$$
\lim _{r \rightarrow \infty} \frac{\log M(r, f(g))}{r}=\infty .
$$

On the other hand, we have

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} f(g(r))=f\left(\frac{\pi}{2}\right), \\
& \lim _{r \rightarrow-\infty} f(g(r))=f\left(-\frac{\pi}{2}\right)
\end{aligned}
$$

and

$$
f\left(\frac{\pi}{2}\right)=\prod_{k=1}^{\infty}\left(1-\frac{\pi}{2 \exp (\exp k)}\right) \neq \prod_{k=1}^{\infty}\left(1+\frac{\pi}{2 \exp (\exp k)}\right)=f\left(-\frac{\pi}{2}\right)
$$

So function $f(g)$ is extremal for Denjoy's Conjecture but is not pseudo-prime.

6. Proo of theorem 3.

In this part, we shall prove theorem 3. First, we shall say something about the linear differential equation $f^{\prime \prime}+A f^{\prime}=0$.

In recent years, there are many papers on the properties of the solutions of differential equation $f^{\prime \prime}+A f=0$ where $A(Z)$ is entire or meromorphic, a major asspect of which is what conditions on $A(Z)$ will guarantee that every solution or one of the two linear independent ones of $f^{\prime \prime}+A f=0$ has the property that the exponent of convergence of its zero-sequence is ∞. We consider here that $A(Z)$ is an entire function extremal for Denjoy's Conjecture and obtain the interesting result which is stated in theorem 3.

In order to prove theorem 3, we need two lemmas.
Lemma 5. Let $A(Z)$ be an entire function extremal for Denjoy's conjecture $k=2 \lambda$ and $b_{1}, b_{2}, \cdots, b_{N}$ its zeros. Suppose $H(z)=A(z) / \prod_{i=1}^{N}\left(z-b_{i}\right)$, then we have the following conclusions:
(a) $\frac{\lim _{r \rightarrow \infty} \log M(r, H) / r^{k / 2}>0 \text {; }}{}$
(b) $H(z)$ has the same order as $A(z)$;
(c) Zero is an asymptotic value of $H(z)$, and $H(z)$ has k distinct asymptotic paths $L_{\imath}(i=1,2, \cdots, k)$ which divide the plane $|Z|<\infty$ into k disjoint simplyconnected domains $D_{i}(i=1,2, \cdots, k)$ (By suitable choice of the subscripts, we may assume that D_{i} is bounded by L_{\imath} and $\left.L_{\imath+1},\left(1 \leqq i \leqq k, L_{k+1}=L_{1}\right)\right)$
(d) For each $i(1 \leqq i \leqq k)$, there exists a curve contained in D_{2} tending to ∞ such that

$$
\begin{equation*}
\lim _{\substack{z \rightarrow_{i}^{\infty} \\ \Gamma_{2}}} \frac{\log \log |H(z)|}{\log |z|}=\lambda . \tag{6.2}
\end{equation*}
$$

Proof. From Lemma 1 and Lemma 2, (a), (b) and (c) are obvious.
From theorem 1 in [5(I)], we know that for each i, there exists a curve Γ_{\imath} contained in D_{\imath} tending to ∞ such that

$$
\lim _{\substack{z \vec{\Gamma}_{2}^{\infty}}} \log \log |A(z) / \log | z \mid=\lambda \quad(i=1,2, \cdots, k)
$$

From this we can easily deduce (d).
Lemma 6 [9]. Let $f(z)$ be an entire function and $N>1$ a given constant. Put

$$
D=\{z ;|f(z)|>N\} .
$$

If we define $A_{k}(t)(k=1,2, \cdots, n(t))$ the arcs of $|z|=t$ contained in D and $t \theta_{k}(t)$ their lengths, and

$$
\theta_{f}(t)= \begin{cases}\infty, & |z|=t \text { contained in } D \tag{6.3}\\ \max _{1 \leqq k \leqq n(t)} \theta_{k}(t), & \text { otherwise, }\end{cases}
$$

then for any $0<\alpha<1$, we have

$$
\log \log M(r, f)>\pi \int_{r_{0}}^{\alpha r} \frac{d t}{t \theta_{f}(t)}+C\left(\alpha, r_{0}\right)
$$

where $0<r_{0}<\alpha r$ and $c\left(\alpha, r_{0}\right)$ is a constant independent of r.

Proof of the theorem

Let f_{1}, f_{2} be two linear independent solutions of $f^{\prime \prime}+A f=0$. Set $F=f_{1} f_{2}$. Bank and Laine [10, p. 354] deduced that the function satisfies the equation

$$
\begin{equation*}
-4 A=\frac{c^{2}}{F^{2}}+2\left(\frac{F^{\prime \prime}}{F}\right)-\left(\frac{F^{\prime}}{F}\right)^{2}, \tag{6.4}
\end{equation*}
$$

where c is the constant Wronskian of f_{1} and f_{2}. Thus by applying the Nevanlinna theory to (6.4), they obtained

$$
\begin{equation*}
T(r, F)=O\left(N\left(r, \frac{1}{F}\right)+T(r, A)+\log r\right) \tag{6.5}
\end{equation*}
$$

as $r \rightarrow \infty$ outside a set of finite logarithmic measure.
If the order ρ of F is finite. From a Lemma [12], there exists a set $E \subset(0, \infty)$ having finite logarithmic measure such that for $|z| \notin E$

$$
\begin{equation*}
\left|F^{\prime \prime}(z) / F(z)\right|+\left|F^{\prime}(z) / F(z)\right|<|z|^{[4 \rho+1]}=|z|^{q} \tag{6.6}
\end{equation*}
$$

From lemma 5(a), we know that $A(z)$ must have infinitely many zeros, $\left\{b_{i}\right\}$ say. Put

$$
H(z)=4 A(z) / \prod_{\imath=1}^{q+1}\left(z-b_{i}\right)=A(z) / P(z) \text { say) }
$$

Now we have a contradition as follows, by the similar arguments to those in the proof of theorem 1 in [5 (I)].

Let $N>\max \left\{1, \sup _{z \in L}|H(z)|\right\}$ be a constant, where $L=\bigcup_{i=1}^{k} L_{i}$. To $H(z)$ applying lemma 5 (d), we know that there exist $z_{i} \in D_{2}(i=1,2, \cdots, k)$ such that

$$
\begin{equation*}
\left|H\left(z_{\imath}\right)\right| \geqq 2 N \tag{6.7}
\end{equation*}
$$

Write

$$
r_{0}=\max \left\{1,\left|z_{1}\right|,\left|z_{2}\right|, \cdots,\left|z_{k}\right|\right\}
$$

Since there exists $N^{\prime} \in[N, 2 N]$ such that there is no zero of $H^{\prime}(z)$ on the
curves defined by $|H(z)|=N^{\prime}$ and there is no zero of $F^{\prime}(z)$ on the curve defined by $|F(z)|=N^{\prime}$, the curves are analytic. We put

$$
\begin{align*}
& \widetilde{D}_{1}=\left\{z ;|F(z)|>N^{\prime}\right\} \tag{6.8}\\
& \widetilde{D}_{2}=\left\{z ;|H(z)|>N^{\prime}\right\} \tag{6.9}\\
& E^{*}=\left\{z ; z=r e^{i \theta}, 0 \leqq \theta<2 \pi, r \in E\right\}
\end{align*}
$$

From (6.4) and (6.5), we deduce that if $z \in \tilde{D}_{1}-E^{*}$, then

$$
\begin{equation*}
4|A(z)|<|c|^{2}+|z|^{q}<\frac{1}{2}|P(z)| . \quad\left(|z|=r \geqq r_{0}\right) \tag{6.10}
\end{equation*}
$$

But for $z \in \tilde{D}_{2}-E^{*}$, we have

$$
\begin{equation*}
4|A(z)|>|P(z)| \tag{6.11}
\end{equation*}
$$

From (6.10) and (6.11), we see that $\left(\widetilde{D}_{1}-E^{*}\right) \cap\left\{z ;|z| \geqq r_{0}\right\} \cap\left(\widetilde{D}_{2}-E^{*}\right)=\varnothing$.
Let $\Omega_{i} \subset D_{\imath}$ be the connected component of \widetilde{D}_{2} containing $z_{\imath},(i=1,2, \cdots, k)$.
From the maximum modulus principle, we deduce that each $\Omega_{\imath}(i=1,2, \cdots, k)$ is an unbounded domain. Let $\theta_{i t}\left(i=1,2, \cdots, k, r_{0} \leqq t<\infty\right)$ be the arc $|z|=t$ contained in Ω_{\imath}, and $t \theta_{i}(t)$ its linear measure, then we have

$$
\sum_{i=1}^{k} \theta_{i}(t)+\theta_{F}(t) \leqq 2 \pi, \quad t \notin E
$$

From Lemma 5(a), (b), we deduce that

$$
\begin{equation*}
\log \log M(r, H)=\frac{k}{2} \log r+o(\log r) \tag{6.12}
\end{equation*}
$$

By a theorem in [11, p. 116], we have

$$
\log \left|H\left(z_{\imath}\right)\right|<\log N^{\prime}+9 \sqrt{2} \exp \left(-\pi \int_{2\left|z_{i}\right|}^{r / 2} \frac{d t}{t \theta_{i}(t)}\right) \log M(r, H) . \quad(i=1,2, \cdots, k)
$$

Then we obtain

$$
\sum_{\imath=1}^{k} \int_{2 r_{0}}^{r / 2} \frac{\pi d t}{t \theta_{i}(t)} \leqq K \log \log M(r, H)+O(1)
$$

and we have

$$
\int_{2 r_{0}}^{r / 2} \sum_{\imath=1}^{k}\left(\frac{\pi}{\theta_{i}(t)}-\frac{k}{2}\right) \frac{d t}{t} \leqq K\left[\log \log M(r, H)-\frac{k}{2} \log r\right]+O(1)
$$

Since

$$
K^{2}=\left(\sum_{\imath=1}^{k} \sqrt{\theta_{i}(t)} / \sqrt{\theta_{i}(t)}\right)^{2} \leqq\left(\sum_{\imath=1}^{k} \theta_{i}(t)\right)\left(\sum_{\imath=1}^{k} \frac{1}{\theta_{i}(t)}\right)
$$

we have

$$
\sum_{i=1}^{k}\left(\frac{\pi}{\theta_{i}(t)}-\frac{k}{2}\right) \geqq 0
$$

Hence we deduce from (6.12)

$$
\begin{equation*}
\int_{2 r_{0}}^{r / 2} \sum_{i=1}^{k}\left(\frac{\pi}{\theta_{i}(t)}-\frac{k}{2}\right) \frac{d t}{t}=o(\log r) . \tag{6.13}
\end{equation*}
$$

For any $\delta>0$, put

$$
\begin{aligned}
& E(\delta)=\left\{t ; \sum_{i=1}^{k} \theta_{i}(t) \leqq 2 \pi-2 \delta\right\} \\
& E(\delta, r)=E(\delta) \cap\left[2 r_{0}, \frac{1}{2} r\right] \\
& E^{c}(\delta, r)=\left[2 r_{0}, \frac{1}{2} r\right]-E(\delta)
\end{aligned}
$$

We see that if $t \in E(\delta)$, then $\sum_{i=1}^{k}\left(\frac{\pi-\delta}{\theta_{i}(t)}-\frac{k}{2}\right) \geqq 0$. From (6.13), we deduce that for any $\varepsilon>0$, there exsits $R>0$ such that for $r \geqq R$,

$$
\begin{aligned}
\varepsilon \log r & >\int_{2 r_{0}}^{r / 2} \sum_{\imath=1}^{k}\left(\frac{\pi}{\theta_{i}(t)}-\frac{k}{2}\right) \frac{d t}{t} \\
& =\left(\int_{E(\delta, r)}+\int_{E^{c}(\delta, r)}\right) \sum_{\imath=1}^{k}\left(\frac{\pi}{\theta_{i}(t)}-\frac{k}{2}\right) \frac{d t}{t} \\
& \geqq \int_{E(\delta, r)} \sum_{i=1}^{k}\left(\frac{\pi}{\theta_{i}(t)}-\frac{\pi-\delta}{\theta_{i}(t)}\right) \frac{d t}{t} \\
& \geqq \frac{k \delta}{2 \pi} \int_{E(\delta, r)} \frac{d t}{t} .
\end{aligned}
$$

Therefore

$$
\lim _{r \rightarrow \infty} \frac{1}{\log r} \int_{E(\delta, r)} \frac{d t}{t}=0
$$

that is, the logarithmic dense of $E(\boldsymbol{\delta})$ is zero. If $t \notin E(\boldsymbol{\delta}) \cup E$ and $t \geqq r_{0}$, then

$$
\theta_{F}(t) \leqq 2 \delta
$$

Let $\left.J_{r}^{*}=\left[2 r_{0}, \frac{1}{2} r\right]-(E(\delta) \cup E)\right) . \quad$ From Lemma 6 , we have

$$
\begin{aligned}
\log \log M(r, F) \geqq & \geqq \int_{2 r_{0}}^{r / 2} \frac{d t}{t \theta_{F}(t)}+C \\
& \geqq \frac{\pi}{2 \delta} \int_{J_{r}^{*}} \frac{d t}{t}+C
\end{aligned}
$$

Since

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{1}{\log r} \int_{J_{r}^{*}} \frac{d t}{t}=1, \tag{6.14}
\end{equation*}
$$

we have

$$
\begin{equation*}
\varliminf_{r \rightarrow \infty} \frac{\log \log M(r, F)}{\log r} \geqq \frac{\pi}{2 \delta} . \tag{6.15}
\end{equation*}
$$

As δ can be arbitrarily small, (6.15) contradicts the assumption that F is of finite order. So F must be of infinite order.

Noting that $A(z)$ is of finite order, then from (6.5) we deduce that $\varlimsup_{r \rightarrow \infty} \log N\left(r, \frac{1}{F}\right) / \log r=\infty$, and this completes the proof.

7. Application

In this section, we define $\lambda(g)$ the exponent convergence of zero-sequence of g.

Example 1. If f_{1}, f_{2} are two linear independent solutions of

$$
\begin{equation*}
f^{\prime \prime}+\left(\int_{0}^{2} \frac{\sin t^{m / 2}}{t^{m / 2}} d t\right) f=0 \tag{7.1}
\end{equation*}
$$

where m is a positive integer, then $\max \left\{\lambda\left(f_{1}\right), \lambda\left(f_{2}\right)\right\}=\infty$.
Example 2. In [13], Bank and Laine considered the differential equations:

$$
\begin{align*}
& f^{\prime \prime}+z^{q} \sin ^{p}\left(z^{m}\right) f=0, \tag{7.2}\\
& f^{\prime \prime}+z^{q} \cos ^{p}\left(z^{m}\right) f=0 . \tag{7.3}
\end{align*}
$$

where q, p, m are positive integers. Under the additional condition $q>2(m-1)$, they obtained that if f_{1}, f_{2} are two linear independent solutions of (7.2) or (7.3), then $\max \left(\lambda\left(f_{1}\right), \lambda\left(f_{2}\right)\right)>1+m / 2$.

From our method used to prove the theorem, we can get some strong results in more general cases. Now we consider the differential equation:

$$
\begin{equation*}
f^{\prime \prime}+p_{1}(z) P\left(\sin z^{m / 2} / z^{m / 2}\right) f=0 \tag{7.4}
\end{equation*}
$$

where $p_{1}(z), P(w)$ (\neq const) are polynomials, and m is a positive integer. We prove that if f_{1}, f_{2} are two linear independent solutions of (7.4), then $\max \left(\lambda\left(f_{1}\right), \lambda\left(f_{2}\right)\right)=\infty$.

First we note that $A(z)=p_{1} P\left(\sin z^{m / 2} / z^{m / 2}\right)$ is of finite order and m distinct paths L_{\imath} from the oringin to $\infty: \arg z=\frac{2 \nu \pi}{m}(\nu=1,2, \cdots, m)$ are the asymptotic paths of $A(z) / p_{1}(z)$. In each angular domain D_{\imath} bounded by L_{\imath} and $L_{\imath+\imath}$
$\left(1 \leqq i \leqq m, L_{m+1}=L_{1}\right), A(z) / p_{1}(z)$ is unbounded.
It is worth noting that Lemma 5 is still true under the following conditions:
(1) $A(z)$ is of finite order $m / 2$.
(2) There are m distinct paths L_{2} from the oringin to $\infty(i=1,2, \cdots, m)$ and m distinct simply-connected domains D_{i} bounded by L_{\imath} and $L_{\imath+\imath}(1 \leqq i \leqq m$, $L_{m+1}=L_{1}$) such that $A(z)$ is bounded on $L=\bigcup_{\imath=1}^{m} L_{\imath}$ and unbounded in each D_{i} $(i=1,2, \cdots, m)$.

Therefore, $A(z) / p_{1}(z)$ has infinitely many zeros. If we choose an integer q such that $q \geqq \operatorname{deg} p_{1}$, and (6.6) is also satisfied, and let N in Lemma 5 equal to $1+q$. We deduce that $A(z) / \prod_{\imath=1}^{N}\left(z-a_{\imath}\right)=H(z)$ has the properties of Lemma $5(\mathrm{a})$, (b), (c), (d). Thus, using the same method in the proof of the theorem, we can prove the result mentioned above.

Applying the same method, we deduce that if f_{1}, f_{2} are two linear independent solutions of

$$
\begin{equation*}
f^{\prime \prime}+p_{1}(z) P\left(\cos z^{m / 2}\right) f=0 \tag{7.5}
\end{equation*}
$$

where $p_{1}(z), P(w)$ (\neq const) are polynomials, and m is a positive integer, then $\max \left(\lambda\left(f_{1}\right), \lambda\left(f_{2}\right)\right)=\infty$.

Especially, if f_{1}, f_{2} are two linear independent solutions of (7.2) (or (7.3)), where p, m are positive integers, and q is a nonnegetive integer, then $\max \left(\lambda\left(f_{1}\right), \lambda\left(f_{2}\right)\right)=\infty$.

References

[1] A. Donjoy, Sur les fonctions entieres de genre fini, C. R. Acad. Sci. Paris, 145 (1907), 106-109.
[2] L. V. Ahlfors, Untersuchungen Zur Theorie der konformen Abbildung und der Theorie der ganzem Funktionen, Acta Soc. Sci, Fenn. 1 (1930), 1-40.
[3] P.B. Kennedy, A class of integral functions bounded on certain curves, Proc, London Math. Soc. 6 (1956), 518-547.
[4] D. Drasin, On asymptotic curves of functions extremal for Denjoy's Conjecture, Proc. London Math. Soc. 26 (1973), 142-166.
[5] Zhang Guanghou, On entire function extremal for Denjoy's Conjecture, Sci. Sinica, (I) 24 (1981), 885-898, (II) 26 (1983), 337-349.
[6] G. Polya, On an integral function of an integral function, J. London Math. Soc. i (1926), 12-15.
[7] W.K. Hayman, Meromorphic functions, Clarenden Press, Oxford, 1964.
[8] A. Edrei and W.H. J. Fuchs, On the zeros of $f(g(z))$ where f and g are entire functions, J. Analyse Math. 12 (1964), 243-265.
[9] K. Arima, On the maximum modulus of integral functions, J. Math. Soc. Japan, 4 (1932), 1.
[10] S. Bank and L. Laine, On the oscillation theory of $f^{\prime \prime}+A f=0$ where A is entire, Trans. Amer, Math. Soc. 273 (1982), 351-363.
[11] M. Tsuji, Potential theory in mordern function theory, Maruzen 1959.
[12] G. G. Gundersen, Finite order solutions of second order linear differential equations, Trains, Amer, Math. Soc. 305 (1988), 415-429.
[13] S. Bank and L. Laine, On the zeros of meromorphic solutions of second-order linear differential equations, Comment. Math. Helv. 58 (1983), 656-677.

Department of Mathematics
East China Normal University
Shanghai 200062
P. R. China

