
K. TOHGE
KODAI MATH. J.
13 (1990), 409-416

ON THE VALUE DISTRIBUTION OF AN ENTIRE

FUNCTION OF ORDER AT MOST ONE

BY KAZUYA TOHGE

§ 1. Introduction.

As a consequence of results on solutions to a differential equation wff+Λw
=0, where A is entire, Shen [5] and Rossi [4] proved a curious result:

There does not exist a transcendental entire function E of order p(E)<l
such that the value of E'(z) at every zero of E{z) is ± 1 .

On proving this, they used the lemma of Bank and Laine [1] which states
that such a function E would have to be the product of two linearly independent
solutions of the above second order differential equation. It follows from the
counter-example given by Rossi, E(z)=2V?sin Vz, that the conclusion can not
hold even if only one zero fails to satisfy the assumption.

In this note we prove

THEOREM. Let E(z) be a transcendental entire function of order
and Q(z)^Q a rational function. Suppose that E'{z)—Q{z) vanishes at every zero
of E{z) with possibly finitely many exceptions. Then ρ(E)=l and further E is
of regular growth, and also the meromorphic function

E'{Z)~Q{Z)

is one of the followings:
a) A is a rational function such that for some nonzero constant a, A(z)~>a

as Z->co

b) A is a transcendental function of regular growth with p(A)—l, and has
a finite number of poles.

This result may be read as a result on the zeros of E'{z).
We can easily give examples for the case a).

Example 1. For any polynomials p^O and q and also a nonzero constant
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a, E(z)=p(z)(exp(az)+q(z)) and Q(z)=p(z)(q'(z)—aq(z)) satisfy the hypotheses of
our theorem and then

.. . p'(z)+ap(z)

Example 2. For the entire function E{z)—{ez~l)/z and the rational func-
tion Q(z)=l/z we have A(z)=(z—l)/z given by (1.1).

Also for the case b) we have

Example 3. The entire function E(z)=2Vz~ sin Vz~-exp(iz/π) and Q(z)=l
satisfy the hypotheses of our theorem. Then we have

E(z) smVz 2z π

and (see [2: p. 7])

m(\z\,A)~m(\z\,l/E)~m(\z\,e"<*)=\z\/π*, as khoo.

Example 4. The entire function E(z)~e~2z{z—ez) and the rational function
Q(z)=(l—z)/z2 imply the meromorphic function

from the definition (1.1).

Of course, the theorem does not hold in general for meromorphic E(z), since
the function A(z) as in (1.1) has always the poles possibly except for those of
Q(z) wherever the function E(z) does. If E(z) has, however, only a finite num-
ber of poles, the corresponding result to this theorem is easily obtained.

§ 2. Preliminaries.

To prove the theorem we make a direct application of a method of Rossi
in [4]. It bases on the Beurling-Tsuji estimate for harmonic measure and needs
the following three lemmas proved there.

LEMMA 1. Let E be an entire function of finite order. Given ε>0 there
exists a constant C~C(ε) such that

for all r^ro^l and all θφj{r), where the angular measure of the set J(r) in
[0, 2ττ), m(J(r)) is g

To state the second lemma we need some notation. Let D be a region in the
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complex plane C. We denote by θD(r) the measure of all θ in [0, 2π) such that
reiθϊΞD. To each r ^ l , if the entire circle \z\=r lies in D, set θ%(r)= + oo;
otherwise θ${r)—θD(r). As usual, the order p(u) and the lower order μ(u) of
a function u(z) subharmonic in C are given by

, x r— logM(r, w) logM(r, M)
PW= 1™ a n d l*u)=lM

where M{r, u)=mp\z\=ru(z). Also for an entire function E{z), they are given
by p(E)=p(log\E\) and μ(E)=μ(\og\E\). Then we have

LEMMA 2. Lβί u be a subharmonic function in C and let D be an open com-
ponent of {z: u(z)>0}. Then

(2.1) ^ H m ( l o g i ? ) - ^ ——.

Furthermore, given ε>0, define F={r: β%{r)^επ). Then

(2.2) ϊίmαog/?)-1^ dt/t£εp(u).

In this lemma we shall make a minor modification to θ$(r) when θD(t)—Q,

LEMMA 3. Let lx(i) and I2(t) be two positive and measurable functions on
[1, oo) with I1(t)+l2(t)<(2jrε)π, where ε>0. // G c [ l , ^ ) M any measurable set
and

then

dt

% 3. Proof of Theorem.

Now the function A(z) given by (1.1) is regular at every simple zero of
E(z) possibly with finitely many exceptions. The poles of A(z) may therefore
occur only at multiple zeros of E{z) or poles of Q(z). The number of these
points is however at most finite since our assumption requires the rational
function Q(z) should vanish at each multiple zero of E(z) except for finitely
many. Thus A(z) is a meromorphic function having only a finite number of poles.

We now distinguish the cases whether A is rational or transcendental.

CASE 1; in which A is rational. The entire function E{z) considered here
is a solution to the non-homogeneous differential equation
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(3.1) w'=A(z)w+Q(z)

with the rational coefficients, We apply the Wiman-Valiron theory (see [6: p.
105, Theorem 30]) to the equation with w=E(z) and note that E(z) is now
transcendental. Then the central index n(r) satisfies the relation

(3.2) n(r)=r\A(zr)\{l+o(X)}

as r tends to infinity outside a set Δ of finite logarithmic measure, ntι(Δ),
where zr is a point at which \E(zr)\=maX\z{=zr\E{z)\ and \zr\—r. The rational
function A{z) has the asymptotic representation

(3.3) A{z)=az*{l+O(\/\z\)}, (s-oo)

for some nonzero constant a and an integer m. Thus (3.2) gives

Since the right-hand side is non-negative and p(E)<l, we have m=0 or m— — \.
The former implies p(E)=l, and further we can see μ{E)—l. In fact, if rGΔ
and logr>mz(Δ)+l, then there exists a τ—τ(r) with exp(—m^Δ)—l)<[τ<l such
that τr^Δ. Thus it follows from monotonicity of n(r) (see [6]) that w(r)Ξ>
n(τr)^w(exp(—πiι(A)—l)r). Hence we have

log n(r)=(l+0(l)) log r , as r-^oo .

It is easy to see that m(r, l/E)<m{r, l/Q)+m(r, E'/E)+m(r, A)+\og 2=O(log r).
These results give the case a) as in our theorem. Next we suppose m— — 1.
Then we transform (3.1) into the equation

(3.4) ^ ' + ^ ( 1 / 0 ^ + ̂ -0(1/0=0,

by setting :y(ζ)=M/(l/ζ). Fix r>0 sufficiently small and let D be the simply
connected domain {ζ :O< |ζ |<r , 0<argζ<2π}. Then a solution to (3.4) in D
is given by

where ζ o eD and yo^C (see [3]). In the domain D, we may write

y(ζ; Co, yo)=exp^\^Aa/s)ds)(^yo-^Qa/t)e

C-80(C-1)=6C-c*+2>{14-O(|ζ|)}, bζΞC-{0}, k integer,

and thus for a constant dQ

(3.5) 3>(C;Co, yβ)=β-doζ
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as |ζ|->0 there. The function E(l/ζ) posesses the above representation and by
its monodromy property about the origin then it follows that either the con-
stant a must be an integer or the coefficient of ζ~a in (3.5) must vanish identi-
cally in a neighborhood of the origin. Then E(l/ζ) has the origin as possibly
a pole, which implies that the entire function E(z) cannot be transcendental.
This is a contradiction and the completes the proof in this case.

CASE 2; in which A is transcendental. From the reason given at the
beginning of this section, we may now write A(z)=B(z)/P(z) with an entire
function B{z) and a polynomial P{z). Then we have

(3.6) B W = P (

Let k and / be the degrees of the rational function Q(z) and the polynomial
P(z), respectively. After the manner of Rossi, fix ε>0 and choose an integer
N such that

(3.7) 7V>max(C,

where C is the constant as in Lemma 1 and

logM(2, B)<N\og2.

Since B is transcendental there exists a point zQ, | z o | > 2 , such that \og\B(zQ)\
>ΛMog|z 0 | . Let Dλ be the connected component of the set

{z:\og\B(z)\-NΊog\z\>0},

containing z0. By the choice of N, \og\B(z)\—N log\z\ is harmonic in Dx and
identically zero on the boundary. Thus the function u defined by

f \og\B(z)\-Nlog\z\

{ 0

is subharmonic in C with the lower order and the order

(3.8) μ(u)£μ(B) and p(u)£p(B).

It is easily shown that p(B)=p(A)< p(E), which will be mentioned later.
Let D2 be any connected component of {z: \og\E(z)\ >0} and let D3—

{reiθ: Θ^J{r)} where J(r) is as in Lemma 1. If the set (D1Γ\D2)—DZ contains
an unbounded sequence rnc

iθn, n—1, 2, •••, we obtain from the definitions of
Dlf D2, and Dz, Lemma 1 and also (3.6)

rn

N£]B(rne
iθ»)\£IP(rne

t9»)\ {rn

c+ IQ(rne
iθn)\}, r ^ r 0 .

This clearly contradicts (3.7) for n large enough.
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Then for arbitrary fixed s>0, we may assume that (DίΓ\D2)—D3 is bounded.
This implies that for r ^ r ^ r o

K(r)={θ : reiθ^D1

and thus by Lemma 1 the angular measure of K(r) satisfies

(3.9) m(K(r))<επ.

Setting lj{r)—θDj(r) given in §2, we have //r)>0 for r sufficiently large
since each Ό3 is an unbounded domain, / = 1 , 2. Also (3.9) gives /i(r)-j-/2(r)^
(2+ε)ττ (r^n). If need were, by putting θDj{r)=π (7=1, 2) for r<ru we could
assume each //r)>0 (/=1, 2) and this inequality to be true for any r ^ l . Now
let us set

(3.10)

By the definition of the /2, α^l/2. Since /! and /2 satisfy the hypotheses of
Lemma 3, we obtain

(3.11)
(2-\-ε)a—l

Define B3-{r: θtj(r)=oo} and £,=[1, ^)-B3> y=l, 2. If
39) Th 5 ^

i, we havej

θ$2(r)^επ by (3.9). Thus 5 xC{r:
By (2.2) we have

(3.12)

Then (2.1), (3.10) and (3.12) give

(3.13) M

^επ} and similarly 5 2 c{r :

dt/t^εp(u).

1 (jrί i l -^r-i-( dt/t)
\ Jitl2(t) Δ jB2nzι.Ri /

While by (2.2) we have

(3.14) dt/t£εp(E),

and by (3.8), (2.1), (3.11) and (3.14) we obtain
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(3.15)

16rΓ !τ^- i f dt/t)
\ Jltίι(t) I JB1ΠO,R1 '

^(2+^n- ( s / 2 ) " ( £ )

Inequalities (3.13) and (3.15) give then

p(E)+(*/2)p(u)
(2+s){p(E)+(s/2)p(u)}l

Since ε was arbitrarily chosen and p{u)^ρ(E) we obtain the inequality

and thus

(3.16) μ

On the other hand, (3.6) implies easily

r, A)=m(r, 1/E)+O(log r)

and therefore

T(r, A)+N{r, l/E)=T(rf E)+O(log r) (r->co).

This shows p{A)<p{E) as previously mentioned. Since p(E)^ί, (3.16) implies
/ι(^4)^l and thus μ(A)=p(A)~p(E)=l. By interchanging the roles of E and
(w rather than) A the above discussion yields

and thus μ(E)=L Hence we obtain the case b) and the proof of Theorem is

completed.
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