ON THE VALUE DISTRIBUTION OF AN ENTIRE FUNCTION OF ORDER AT MOST ONE

By Kazuya Tohge

§ 1. Introduction.

As a consequence of results on solutions to a differential equation $w^{\prime \prime}+A w$ $=0$, where A is entire, Shen [5] and Rossi [4] proved a curious result:

There does not exist a transcendental entire function E of order $\rho(E)<1$ such that the value of $E^{\prime}(z)$ at every zero of $E(z)$ is ± 1.

On proving this, they used the lemma of Bank and Laine [1] which states that such a function E would have to be the product of two linearly independent solutions of the above second order differential equation. It follows from the counter-example given by Rossi, $E(z)=2 \sqrt{z} \sin \sqrt{z}$, that the conclusion can not hold even if only one zero fails to satisfy the assumption.

In this note we prove
ThEOREM. Let $E(z)$ be a transcendental entire function of order $\rho(E) \leqq 1$ and $Q(z) \not \equiv 0$ a rational function. Suppose that $E^{\prime}(z)-Q(z)$ vanishes at every zero of $E(z)$ with possibly finitely many exceptions. Then $\rho(E)=1$ and further E is of regular growth, and also the meromorphic function

$$
\begin{equation*}
A(z)=\frac{E^{\prime}(z)-Q(z)}{E(z)} \tag{1.1}
\end{equation*}
$$

is one of the followings:
a) A is a rational function such that for some nonzero constant $a, A(z) \rightarrow a$ as $z \rightarrow \infty$;
b) A is a transcendental function of regular growth with $\rho(A)=1$, and has a finite number of poles.

This result may be read as a result on the zeros of $E^{\prime}(z)$.
We can easily give examples for the case a).
Example 1. For any polynomials $p \not \equiv 0$ and q and also a nonzero constant

[^0]$a, E(z)=p(z)(\exp (a z)+q(z))$ and $Q(z)=p(z)\left(q^{\prime}(z)-a q(z)\right)$ satisfy the hypotheses of our theorem and then
$$
A(z)=\frac{p^{\prime}(z)+a p(z)}{p(z)} \longrightarrow a, \quad \text { as } z \rightarrow \infty .
$$

Example 2. For the entire function $E(z)=\left(e^{z}-1\right) / z$ and the rational function $Q(z)=1 / z$ we have $A(z)=(z-1) / z$ given by (1.1).

Also for the case b) we have
Example 3. The entire function $E(z)=2 \sqrt{\bar{z}} \sin \sqrt{\bar{z}} \cdot \exp (i z / \pi)$ and $Q(z) \equiv 1$ satisfy the hypotheses of our theorem. Then we have

$$
A(z)=-\frac{1}{E(z)}+\frac{(\sin \sqrt{z})^{\prime}}{\sin \sqrt{z}}+\frac{1}{2 z}+\frac{i}{\pi}
$$

and (see [2: p. 7])

$$
m(|z|, A) \sim m(|z|, 1 / E) \sim m\left(|z|, e^{2 z / \pi}\right)=|z| / \pi^{2}, \quad \text { as }|z| \rightarrow \infty .
$$

Example 4. The entire function $E(z)=e^{-2 z}\left(z-e^{z}\right)$ and the rational function $Q(z)=(1-z) / z^{2}$ imply the meromorphic function

$$
A(z)=\left\{(1-z) e^{z}+z(1-2 z)\right\} / z^{2}
$$

from the definition (1.1).
Of course, the theorem does not hold in general for meromorphic $E(z)$, since the function $A(z)$ as in (1.1) has always the poles possibly except for those of $Q(z)$ wherever the function $E(z)$ does. If $E(z)$ has, however, only a finite number of poles, the corresponding result to this theorem is easily obtained.

§ 2. Preliminaries.

To prove the theorem we make a direct application of a method of Rossi in [4]. It bases on the Beurling-Tsuji estimate for harmonic measure and needs the following three lemmas proved there.

Lemma 1. Let E be an entire function of finite order. Given $\varepsilon>0$ there exists a constant $C=C(\varepsilon)$ such that

$$
\left|\frac{E^{\prime}}{E}\left(r e^{i \theta}\right)\right| \leqq r^{C}
$$

for all $r \geqq r_{0} \geqq 1$ and all $\theta \notin J(r)$, where the angular measure of the set $J(r)$ in $[0,2 \pi), m(J(r))$ is $\leqq \varepsilon \pi$.

To state the second lemma we need some notation. Let D be a region in the
complex plane \boldsymbol{C}. We denote by $\theta_{D}(r)$ the measure of all θ in $[0,2 \pi)$ such that $r e^{i \theta} \equiv D$. To each $r \geqq 1$, if the entire circle $|z|=r$ lies in D, set $\theta_{D}^{*}(r)=+\infty$; otherwise $\theta_{D}^{*}(r)=\theta_{D}(r)$. As usual, the order $\rho(u)$ and the lower order $\mu(u)$ of a function $u(z)$ subharmonic in \boldsymbol{C} are given by

$$
\rho(u)=\varlimsup_{r \rightarrow \infty} \frac{\log M(r, u)}{\log r} \quad \text { and } \quad \mu(u)=\lim _{r \rightarrow \infty} \frac{\log M(r, u)}{\log r},
$$

where $M(r, u)=\sup _{|z|=r} u(z)$. Also for an entire function $E(z)$, they are given by $\rho(E)=\rho(\log |E|)$ and $\mu(E)=\mu(\log |E|)$. Then we have

Lemma 2. Let u be a subharmonic function in \boldsymbol{C} and let D be an open component of $\{z: u(z)>0\}$. Then

$$
\begin{align*}
& \rho(u) \tag{2.1}\\
& \mu(u) \\
& \varlimsup_{R \rightarrow \infty}(\log R)^{-1} \pi \int_{1}^{R} \frac{d t}{t \theta_{D}^{*}(t)} .
\end{align*}
$$

Furthermore, given $\varepsilon>0$, define $F=\left\{r: \theta_{D}^{*}(r) \leqq \varepsilon \pi\right\}$. Then

$$
\begin{equation*}
\varlimsup_{R \rightarrow \infty}(\log R)^{-1} \int_{F \cap[1, R]} d t / t \leqq \varepsilon \rho(u) . \tag{2.2}
\end{equation*}
$$

In this lemma we shall make a minor modification to $\theta_{D}^{*}(r)$ when $\theta_{D}(t)=0$, $1 \leqq t \leqq t_{0}$.

Lemma 3. Let $l_{1}(t)$ and $l_{2}(t)$ be two positive and measurable functions on $[1, \infty)$ with $l_{1}(t)+l_{2}(t) \leqq(2+\varepsilon) \pi$, where $\varepsilon>0$. If $G \subset[1, \infty)$ is any measurable set and

$$
\pi \int \frac{d t}{\overline{t l_{2}(t)}} \leqq \alpha \int_{G} d t / t, \quad \alpha \geqq 1 / 2
$$

then

$$
\pi \int \frac{d t}{t l_{1}(t)} \geqq \frac{\alpha}{(2+\varepsilon) \alpha-1} \int_{G} d t / t
$$

§ 3. Proof of Theorem.

Now the function $A(z)$ given by (1.1) is regular at every simple zero of $E(z)$ possibly with finitely many exceptions. The poles of $A(z)$ may therefore occur only at multiple zeros of $E(z)$ or poles of $Q(z)$. The number of these points is however at most finite since our assumption requires the rational function $Q(z)$ should vanish at each multiple zero of $E(z)$ except for finitely many. Thus $A(z)$ is a meromorphic function having only a finite number of poles.

We now distinguish the cases whether A is rational or transcendental.
CASE 1; in which A is rational. The entire function $E(z)$ considered here is a solution to the non-homogeneous differential equation

$$
\begin{equation*}
w^{\prime}=A(z) w+Q(z) \tag{3.1}
\end{equation*}
$$

with the rational coefficients. We apply the Wiman-Valiron theory (see [6: p. 105, Theorem 30]) to the equation with $w=E(z)$ and note that $E(z)$ is now transcendental. Then the central index $n(r)$ satisfies the relation

$$
\begin{equation*}
n(r)=r\left|A\left(z_{r}\right)\right|\{1+o(1)\} \tag{3.2}
\end{equation*}
$$

as r tends to infinity outside a set Δ of finite logarithmic measure, $m_{l}(\Delta)$, where z_{r} is a point at which $\left|E\left(z_{r}\right)\right|=\max _{|z|=r}|E(z)|$ and $\left|z_{r}\right|=r$. The rational function $A(z)$ has the asymptotic representation

$$
\begin{equation*}
A(z)=a z^{m}\{1+O(1 /|z|)\}, \quad(z \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

for some nonzero constant a and an integer m. Thus (3.2) gives

$$
\rho(E) \geqq \varlimsup_{\substack{r \rightarrow \infty \\(r \notin)}} \frac{\log n(r)}{\log r}=m+1 .
$$

Since the right-hand side is non-negative and $\rho(E) \leqq 1$, we have $m=0$ or $m=-1$. The former implies $\rho(E)=1$, and further we can see $\mu(E)=1$. In fact, if $r \in \Delta$ and $\log r>m_{l}(\Delta)+1$, then there exists a $\tau=\tau(r)$ with $\exp \left(-m_{l}(\Delta)-1\right) \leqq \tau<1$ such that $\tau r \notin \Delta$. Thus it follows from monotonicity of $n(r)$ (see [6]) that $n(r) \geqq$ $n(\tau r) \geqq n\left(\exp \left(-m_{l}(\Delta)-1\right) r\right)$. Hence we have

$$
\log n(r)=(1+o(1)) \log r, \quad \text { as } r \rightarrow \infty .
$$

It is easy to see that $m(r, 1 / E) \leqq m(r, 1 / Q)+m\left(r, E^{\prime} / E\right)+m(r, A)+\log 2=O(\log r)$. These results give the case a) as in our theorem. Next we suppose $m=-1$. Then we transform (3.1) into the equation

$$
\begin{equation*}
y^{\prime}+\frac{1}{\zeta^{2}} A(1 / \zeta) y+\frac{1}{\zeta^{2}} Q(1 / \zeta)=0, \tag{3.4}
\end{equation*}
$$

by setting $y(\zeta)=w(1 / \zeta)$. Fix $r>0$ sufficiently small and let D be the simply connected domain $\{\zeta: 0<|\zeta|<r, 0<\arg \zeta<2 \pi\}$. Then a solution to (3.4) in D is given by

$$
y\left(\zeta ; \zeta_{0}, y_{0}\right)=\exp \left(-\int_{\zeta_{0}}^{\zeta} \frac{1}{s^{2}} A(1 / s) d s\right)\left(y_{0}-\int_{\zeta_{0}}^{\zeta} \frac{1}{t^{2}} Q(1 / t) \exp \left\{\int_{\zeta_{0}}^{t} \frac{1}{s^{2}} A(1 / s) d s\right\} d t\right)
$$

where $\zeta_{0} \in D$ and $y_{0} \in \boldsymbol{C}$ (see [3]). In the domain D, we may write

$$
\begin{aligned}
& \zeta^{-2} A\left(\zeta^{-1}\right)=a \zeta^{-1}\{1+O(|\zeta|)\}, \\
& \zeta^{-2} Q\left(\zeta^{-1}\right)=b \zeta^{-(k+2)}\{1+O(|\zeta|)\}, \quad b \in C-\{0\}, k \text { integer }
\end{aligned}
$$

and thus for a constant d_{0}

$$
\begin{equation*}
y\left(\zeta ; \zeta_{0}, y_{0}\right)=e^{-d_{0}} \zeta^{-a}\{1+O(|\zeta|)\}\left(y_{0}-e^{d_{0}} b\{1+O(|\zeta|)\} \int_{\zeta_{0}}^{\zeta} t^{-(k-a+2)} d t\right), \tag{3.5}
\end{equation*}
$$

as $|\zeta| \rightarrow 0$ there. The function $E(1 / \zeta)$ posesses the above representation and by its monodromy property about the origin then it follows that either the constant a must be an integer or the coefficient of ζ^{-a} in (3.5) must vanish identically in a neighborhood of the origin. Then $E(1 / \zeta)$ has the origin as possibly a pole, which implies that the entire function $E(z)$ cannot be transcendental. This is a contradiction and the completes the proof in this case.

CASE 2; in which A is transcendental. From the reason given at the beginning of this section, we may now write $A(z)=B(z) / P(z)$ with an entire function $B(z)$ and a polynomial $P(z)$. Then we have

$$
\begin{equation*}
B(z)=P(z)\left(\frac{E^{\prime}(z)}{E(z)}-\frac{Q(z)}{E(z)}\right) \tag{3.6}
\end{equation*}
$$

Let k and l be the degrees of the rational function $Q(z)$ and the polynomial $P(z)$, respectively. After the manner of Rossi, fix $\varepsilon>0$ and choose an integer N such that

$$
\begin{equation*}
N>\max (C, k)+l \tag{3.7}
\end{equation*}
$$

where C is the constant as in Lemma 1 and

$$
\log M(2, B)<N \log 2
$$

Since B is transcendental there exists a point $z_{0},\left|z_{0}\right|>2$, such that $\log \left|B\left(z_{0}\right)\right|$ $>N \cdot \log \left|z_{0}\right|$. Let D_{1} be the connected component of the set

$$
\{z: \log |B(z)|-N \cdot \log |z|>0\}
$$

containing z_{0}. By the choice of $N, \log |B(z)|-N \cdot \log |z|$ is harmonic in D_{1} and identically zero on the boundary. Thus the function u defined by

$$
u(z)=\left\{\begin{array}{cl}
\log |B(z)|-N \log |z| & \left(z \in D_{1}\right) \\
0 & \left(z \in C-D_{1}\right)
\end{array}\right.
$$

is subharmonic in \boldsymbol{C} with the lower order and the order

$$
\begin{equation*}
\mu(u) \leqq \mu(B) \quad \text { and } \quad \rho(u) \leqq \rho(B) \tag{3.8}
\end{equation*}
$$

It is easily shown that $\rho(B)=\rho(A) \leqq \rho(E)$, which will be mentioned later.
Let D_{2} be any connected component of $\{z: \log |E(z)|>0\}$ and let $D_{3}=$ $\left\{r e^{i \theta}: \theta \in J(r)\right\}$ where $J(r)$ is as in Lemma 1. If the set $\left(D_{1} \cap D_{2}\right)-D_{3}$ contains an unbounded sequence $r_{n} e^{i \theta_{n}}, n=1,2, \cdots$, we obtain from the definitions of D_{1}, D_{2}, and D_{3}, Lemma 1 and also (3.6)

$$
r_{n}^{N} \leqq\left|B\left(r_{n} e^{i \theta_{n}}\right)\right| \leqq\left|P\left(r_{n} e^{i \theta_{n}}\right)\right|\left\{r_{n}^{C}+\left|Q\left(r_{n} e^{i \theta_{n}}\right)\right|\right\}, \quad r_{n} \geqq r_{0}
$$

This clearly contradicts (3.7) for n large enough.

Then for arbitrary fixed $\varepsilon>0$, we may assume that $\left(D_{1} \cap D_{2}\right)-D_{3}$ is bounded. This implies that for $r \geqq r_{1} \geqq r_{0}$

$$
K(r)=\left\{\theta: r e^{i \theta} \in D_{1} \cap D_{2}\right\} \subset J(r),
$$

and thus by Lemma 1 the angular measure of $K(r)$ satisfies

$$
\begin{equation*}
m(K(r)) \leq \varepsilon \pi . \tag{3.9}
\end{equation*}
$$

Setting $l_{j}(r)=\theta_{D_{j}}(r)$ given in $\S 2$, we have $l_{j}(r)>0$ for r sufficiently large since each D_{1}, is an unbounded domain, $j=1,2$. Also (3.9) gives $l_{1}(r)+l_{2}(r) \leqq$ $(2+\varepsilon) \pi\left(r \geqq r_{1}\right)$. If need were, by putting $\theta_{D_{j}}(r) \equiv \pi(j=1,2)$ for $r<r_{1}$, we could assume each $l_{j}(r)>0(j=1,2)$ and this inequality to be true for any $r \geqq 1$. Now let us set

$$
\begin{equation*}
\varlimsup_{R \rightarrow \infty}(\log R)^{-1} \pi \int_{1}^{R} \frac{d t}{t l_{2}(t)}=\alpha \tag{3.10}
\end{equation*}
$$

By the definition of the $l_{2}, \alpha \geqq 1 / 2$. Since l_{1} and l_{2} satisfy the hypotheses of Lemma 3, we obtain

$$
\begin{equation*}
\varliminf_{R \rightarrow \infty}(\log R)^{-1} \pi \int_{1}^{R} \frac{d t}{t l_{1}(t)} \geqq \frac{\alpha}{(2+\varepsilon) \alpha-1} \tag{3.11}
\end{equation*}
$$

Define $B_{j}=\left\{r: \theta_{\mathcal{D}_{j}}^{*}(r)=\infty\right\}$ and $\tilde{B}_{j}=[1, \infty)-B_{j}, j=1$, 2. If $r \in B_{1}$, we have $\theta_{D_{2}}^{*}(r) \leqq \varepsilon \pi$ by (3.9). Thus $B_{1} \subset\left\{r: \theta_{D_{2}}^{*}(r) \leqq \varepsilon \pi\right\}$ and similarly $B_{2} \subset\left\{r: \theta_{D_{1}}^{*}(r) \leqq \varepsilon \pi\right\}$. By (2.2) we have

$$
\begin{equation*}
\varlimsup_{R \rightarrow \infty}(\log R)^{-1} \int_{B_{2 \cap[1, R]}} d t / t \leqq \varepsilon \rho(u) . \tag{3.12}
\end{equation*}
$$

Then (2.1), (3.10) and (3.12) give

$$
\begin{align*}
\rho(E) & \geqq \varlimsup_{R \rightarrow \infty}(\log R)^{-1} \pi \int_{1}^{R} \frac{d t}{t \theta_{D_{2}}^{*}(t)} \tag{3.13}\\
& =\varlimsup_{R \rightarrow \infty}(\log R)^{-1} \pi \int_{\tilde{B}_{2} \cap[1, R]} \frac{d t}{t l_{2}(t)} \\
& =\varlimsup_{R \rightarrow \infty}(\log R)^{-1}\left(\pi \int_{1}^{R} \frac{d t}{t l_{2}(t)}-\frac{1}{2} \int_{B_{2 \cap[1, R]}} d t / t\right) \\
& \geqq \alpha-(\varepsilon / 2) \rho(u) .
\end{align*}
$$

While by (2.2) we have

$$
\begin{equation*}
\varlimsup_{R \rightarrow \infty}(\log R)^{-1} \int_{B_{1 \cap[1, R]}} d t / t \leqq \varepsilon \rho(E) \tag{3.14}
\end{equation*}
$$

and by (3.8), (2.1), (3.11) and (3.14) we obtain

$$
\begin{align*}
\mu(A) & =\mu(B) \geqq \mu(u) \geqq \lim _{R \rightarrow \infty}(\log R)^{-1} \pi \int_{1}^{R} \frac{d t}{t \theta_{B_{1}}(t)} \tag{3.15}\\
& =\lim _{R \rightarrow \infty}(\log R)^{-1}\left(\pi \int_{1}^{R} \frac{d t}{\overline{l_{1}(t)}}-\frac{1}{2} \int_{B_{1} \cap[1, R]} d t / t\right) \\
& \geqq \frac{\alpha}{(2+\varepsilon) \alpha-1}-(\varepsilon / 2) \rho(E) .
\end{align*}
$$

Inequalities (3.13) and (3.15) give then

$$
\mu(A) \geqq \frac{\rho(E)+(\varepsilon / 2) \rho(u)}{(2+\varepsilon)\{\rho(E)+(\varepsilon / 2) \rho(u)\}-1}-(\varepsilon / 2) \rho(E) .
$$

Since ε was arbitrarily chosen and $\rho(u) \leqq \rho(E)$ we obtain the inequality

$$
\mu(A) \geqq \frac{\rho(E)}{2 \rho(E)-1}
$$

and thus

$$
\begin{equation*}
\mu(A)^{-1}+\rho(E)^{-1} \leqq 2 \tag{3.16}
\end{equation*}
$$

On the other hand, (3.6) implies easily

$$
m(r, A)=m(r, 1 / E)+O(\log r) \quad(r \rightarrow \infty)
$$

and therefore

$$
T(r, A)+N(r, 1 / E)=T(r, E)+O(\log r) \quad(r \rightarrow \infty)
$$

This shows $\rho(A) \leqq \rho(E)$ as previously mentioned. Since $\rho(E) \leqq 1$, (3.16) implies $\mu(A) \geqq 1$ and thus $\mu(A)=\rho(A)=\rho(E)=1$. By interchanging the roles of E and (u rather than) A the above discussion yields

$$
\mu(E)^{-1}+\rho(A)^{-1} \leqq 2,
$$

and thus $\mu(E)=1$. Hence we obtain the case b) and the proof of Theorem is completed.

References

[1] Bank, S.B. and I. Laine, On the zeros of meromorphic solutions of secondorder linear differential equations, Comment. Math. Helv. 58 (1983), 656-677.
[2] Hayman, W.K., Meromorphic functions, Clarendon Press, Oxford, 1964.
[3] Hille, E., Ordinary differential equations in the complex domain, Wiley, New York, 1976.
[4] Rossi, J., Second order differential equations with transcendental coefficients, Proc. Amer. Math. Soc. 97 (1986), No. 1, 61-66.
[5] Shen, L.C., Solution to a problem of S. Bank regarding exponent of convergence
of zeros of the solutions of differential equation $f^{\prime \prime}+A f=0$, Keuxue Tongbao 30 (1985), No. 12, 1579-1585.
[6] Valiron, G., Lectures on the general theory of integral functions, translated by E. F. Collingwood, Chelsea, New York, 1949.

Department of Mathematics
Science University of Tokyo
Noda, Chiba, Japan

[^0]: Received November 6, 1989 ; revised May 15, 1990.

