# FIELDS OF TOTALLY ISOTROPIC SUBSPACES AND ALMOST COMPLEX STRUCTURES 

By Albert Crumeyrolle


#### Abstract

Our aim is to prove global existence of a differentiable field of totally isotropic planes over the sphere $S_{4}$, to obtain from this result a counterexample nullifying a conjecture about some manifolds or fibre bundles.


Probably according an assertion given in rather conjectural way in [2], some people, papers or books consider the following statement as an obviousness :

If the complexified tangent bundle $T_{C}(M)$ of a $2 r$-dimensional real $C^{\infty}$ manıfold $M$ is a Whitney sum.

$$
\begin{equation*}
T_{c}(M)=\eta \oplus \eta^{\prime} \tag{1}
\end{equation*}
$$

where $\eta, \eta^{\prime}$ are $r$-complex subbundles, such that for any $x$ belonging to $M, \eta_{x}^{\prime}$ $=\bar{\eta}_{x}$, then $M$ owns an almost complex structure. More generally, if a real vector fiber bundle $\xi$, with base $M$ and rank $r$ is such that the complexified bundle $\xi_{c}$ is a Whitney sum:
$\xi_{c}=\xi_{1} \oplus \xi_{1}^{\prime}, \xi_{1}, \xi_{1}^{\prime}$, rank $r$ complexe subbundles, with $\hat{\xi}_{1}^{\prime}(x)=\bar{\xi}_{1}(x), \forall x \in M$, then $\xi$ owns an $r$-complex structure.

This paper intends to etablish that statement is erroneous, building a such decomposition over $M=S_{4}$ : indeed it is well known that $S_{4}$ doesn't admit any almost complex structure. One can define the sphere $S_{4}$ by angular parameters $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$, according the following equations:
(2)

$$
\begin{cases}x_{1}=\cos \theta_{1} \cos \theta_{2} \cos \theta_{3} \cos \theta_{4}, & \\ x_{2}=\sin \theta_{1} \cos \theta_{2} \cos \theta_{3} \cos \theta_{4}, & -\pi \leqq \theta_{1} \leqq \pi, \\ x_{3}=\sin \theta_{2} \cos \theta_{3} \cos \theta_{4}, & -\frac{\pi}{2} \leqq \theta_{2}, \theta_{3}, \theta_{4} \leqq \frac{\pi}{2}, \\ x_{4}=\sin \theta_{3} \cos \theta_{4}, & \\ x_{5}=\sin \theta_{4} . & \end{cases}
$$

Received May 9, 1983

With inequalities in the strict meaning, these equations define a diffeomorphism from a hypercubic set in $R^{4}$ to an open dense set in $S_{4}$.

Lemma 1. There exists over the sphere $S_{3}$, defined by:

$$
x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}=1,
$$

a global field of real orthonormed frames.
It's a classical result: $T\left(S_{3}\right)$ is a trivializable bundle. If the $e_{\imath}, \imath=1,2,3,4,5^{-}$ constitute a direct orthonormed frame in $\boldsymbol{R}^{5}$, it is sufficient to choose:
(3) $\left\{\begin{array}{l}U \\ V \\ W\end{array}\right.$

$$
\left\{\begin{array}{l}
U=-x_{3} e_{2}+x_{2} e_{3}-x_{5} e_{4}+x_{4} e_{5} \\
V=-x_{4} e_{2}+x_{5} e_{3}+x_{2} e_{4}-x_{3} e_{5} \\
W=-x_{5} e_{2}-x_{4} e_{3}+x_{3} e_{4}+x_{2} e_{5}
\end{array}\right.
$$

Lemma 2. There exists over the sphere $S_{2}$, defined by:

$$
x_{3}^{2}+x_{4}^{2}+x_{5}^{2}=1,
$$

a field of isotropic directions in the complexified tangent bundle $T_{c}\left(S_{2}\right)$.
Let $S_{z}$ be defined by:

$$
\begin{gather*}
x_{3}=\cos \theta_{3} \cos \theta_{4}, x_{4}=\sin \theta_{3} \cos \theta_{4}, x_{5}=\sin \theta_{4},  \tag{4}\\
-\pi \leqq \theta_{3} \leqq \pi, \quad-\frac{\pi}{2} \leqq \theta_{4} \leqq \frac{\pi}{2} .
\end{gather*}
$$

Let $\frac{1}{2}\left(\hat{S}_{1}\right)_{0}$ be the half open circle corresponding to $\theta_{3}=0,-\frac{\pi}{2}<\theta_{4}<\frac{\pi}{2}$, and $\frac{1}{2}\left(S_{1}\right)_{\theta_{3}}$ the intersection of $S_{2}$ with the half plane $\theta_{3}$, for some $\theta_{3}$.

Over $\frac{1}{2}\left(S_{1}\right)_{0}$, in $T_{c}\left(S_{2}\right)$, we consider a field of isotropic vectors, everywhere different from 0 .

$$
u_{0}=-e_{3} \sin \theta_{4}+e_{5} \cos \theta_{4}+i e_{4} ;
$$

from which by a $\theta_{3}$-rotation around $e_{5}$ we deduce:

$$
\begin{equation*}
u_{\theta_{3}}=-e_{3}\left(\sin \theta_{4} \cos \theta_{3}+r \sin \theta_{3}\right)-e_{4}\left(\sin \theta_{4} \sin \theta_{3}-i \cos \theta_{3}\right)+e_{5} \cos \theta_{4} . \tag{5}
\end{equation*}
$$

a field of isotropic vectors, everywhere different from 0 , over $\frac{1}{2}\left(\mathcal{S}_{1}\right)_{\theta_{3}}$, in $T_{c}\left(S_{2}\right)$. Varying $\theta_{3}$, between $(-\pi)$ and $(+\pi)$ appears a field of isotropic vectors over $S_{2}$. Indeed, it is sufficient to verificate that $\theta_{4}$ tending to $\pm \frac{\pi}{2}$ (we obtain thus $\pm e_{5}$ ), gives an unique isotropic direction, to verify:

$$
\left(\exp 2 \theta_{3}\right)\left(-e_{3}+i e_{4}\right), \quad \text { if } \quad \theta_{4} \rightarrow \frac{\pi}{2}
$$

Elsewhere there is no difficulty.
Lemma 3. $S_{3}$ is a principal fibre bundle, with base $S_{2}$ and fibre $S_{1}$.
This is a classical result pointed out by Hopf (good reference in Dieudonné, Cours d'Analyse, Tome 3, p. 71-72). $S_{3}$ is defined by the equations:

$$
\begin{cases}x_{2}=\cos \theta_{2} \cos \theta_{3} \cos \theta_{4}, &  \tag{6}\\ x_{3}=\sin \theta_{2} \cos \theta_{3} \cos \theta_{4}, & -\pi \leqq \theta_{2} \leqq \pi \\ x_{4}=\sin \theta_{3} \cos \theta_{4}, & -\frac{\pi}{2} \leqq \theta_{3}, \theta_{4} \leqq \frac{\pi}{2} \\ x_{5}=\sin \theta_{4} & \end{cases}
$$

$\stackrel{S}{S}_{3}$ is the open set corresponding to :

$$
-\pi<\theta_{2}<\pi,-\frac{\pi}{2}<\theta_{3}, \theta_{4}<\frac{\pi}{2}
$$

diffeomorphic with a cubic set in $\boldsymbol{R}^{3}$ and if we choose:

$$
-\frac{\pi}{2}<\theta_{2}, \theta_{3}, \theta_{4}<\frac{\pi}{2}
$$

we define $\frac{1}{2}\left(\stackrel{\circ}{S}_{3}\right)$ also diffeomorphic with a cubic set. According the quoted book, the bundle projection $力$ over $S_{2}$ :

$$
x^{\prime}=p(x)=p\left(x_{2}, x_{3}, x_{4}, x_{5}\right)
$$

is stated by:

$$
x_{3}^{\prime}=2 \operatorname{Im}(u \bar{v}), x_{4}^{\prime}=2 \operatorname{Re}(u \bar{v}), x_{5}^{\prime}=|u|^{2}-|v|^{2}
$$

with: $u=x_{2}+i x_{5}, v=x_{3}+\imath x_{4}$.
If $x \in \frac{1}{2} S_{2}$, the hemisphere corresponding to $-\frac{\pi}{2} \leqq \theta_{3} \leqq \frac{\pi}{2}$ in (4)-also defined by $\theta_{2}=\frac{\pi}{2}$ in (6)- $x^{\prime}$ is the point of $\frac{1}{2}\left(S_{2}\right)$ with coordinates:

$$
\left\{\begin{array}{l}
x_{3}^{\prime}=\cos \theta_{3} \cos \left(2 \theta_{4}-\frac{\pi}{2}\right)  \tag{7}\\
x_{4}^{\prime}=\sin \theta_{3} \cos \left(2 \theta_{4}-\frac{\pi}{2}\right) \\
x_{5}^{\prime}=\sin \left(2 \theta_{4}-\frac{\pi}{2}\right)
\end{array}\right.
$$

whereas, for the symmetric hemisphere $\frac{1}{2}\left(S_{2}^{\prime}\right)\left(\theta_{2}=-\frac{\pi}{2}\right.$ in (6)) we obtain.
(8)

$$
\left\{\begin{array}{l}
x_{3}^{\prime}=-\cos \theta_{3} \cos \left(2 \theta_{4}-\frac{\pi}{2}\right) \\
x_{4}^{\prime}=\sin \theta_{3} \cos \left(2 \theta_{4}-\frac{\pi}{2}\right) \\
x_{5}^{\prime}=\sin \left(2 \theta_{4}-\frac{\pi}{2}\right)
\end{array}\right.
$$

Writing abusively $x=\left(\theta_{2}, \theta_{3}, \theta_{4}\right)$, when $x$ belongs to $\dot{S}_{3}$, so that $\left(\theta_{2}, \theta_{3}\right.$, $\left.\frac{\theta_{4}}{2}+\frac{\pi}{4}\right)$ also belong to $\stackrel{\circ}{S}_{3}$, we define $p^{\prime}: \stackrel{\circ}{S}_{3} \rightarrow S_{2}$ according:

$$
x^{0}=p\left(\theta_{2}, \theta_{3}, \frac{\theta_{4}}{2}+\frac{\pi}{4}\right)=p^{\prime}\left(\theta_{2}, \theta_{3}, \theta_{4}\right)=p^{\prime}(x)
$$

and we see immediately:

$$
x=p^{\prime}(x), \quad \text { if } \quad x \equiv S_{2} \cap \dot{S}_{3}
$$

Demonstration.
First step. Let $A, A_{1}$ be two fields of vectors over $\frac{1}{2}\left(\dot{S}_{3}\right)$ in $T_{c}\left(S_{4}\right)$, with:

$$
\left\{\begin{array}{l}
A=x_{3}^{0} U+x_{4}^{0} V+x_{5}^{0} W+\imath e_{1}, \\
A_{1}=\alpha_{3} U+\alpha_{4} V+\alpha_{5} W,
\end{array}\right.
$$

we have put $x^{0}=p^{\prime}(x), x \in \frac{1}{2}\left(\dot{S}_{3}\right), U, V, W$ respectively for $U(x), V(x), W(x)$, and $\alpha_{3}, \alpha_{4}, \alpha_{5}$ for $\alpha_{3}\left(x^{0}\right), \alpha_{4}\left(x_{0}\right), \alpha_{5}\left(x^{0}\right)$, which are the components of the isotropic direction introduced by lemma 2, and:

$$
\begin{aligned}
& \left(\alpha_{3}\right)^{2}\left(x^{0}\right)+\left(\alpha_{4}\right)^{2}\left(x_{0}\right)+\left(\alpha_{5}\right)^{2}\left(x_{0}\right)=0, \\
& \alpha_{3}\left(x_{0}\right) x_{3}^{0}+\alpha_{4}\left(x_{0}\right) x_{4}^{0}+\alpha_{5}\left(x_{0}\right) x_{5}^{0}=0 .
\end{aligned}
$$

We observe that definition is tributary of an arbitrary complex coefficient.
One can easily verify that the pair $\left(A, A_{1}\right)$ defines over $\frac{1}{2}\left(\mathcal{S}_{3}\right)$ a field of totally isotropic planes.

Second step: Now consider the rotation $\theta_{1}-\frac{\pi}{2},-\pi \leqq \theta_{1} \leqq \pi$, in the plane $\left(e_{1}, e_{2}\right) ; \frac{1}{2}\left(\dot{S}_{3}\right)$ generates an open set $\stackrel{\circ}{4}_{4}$ of $S_{4}$, dense in $S_{4}, A$ and $A_{1}$ give $\hat{A}$ and $\hat{A}_{1}$ respectively:

$$
\hat{A}=-\left[\left(x_{3}^{0} x_{3}+x_{4}^{0} x_{4}+x_{\overline{5}}^{0} x_{5}\right) \cos \theta_{1}+\imath \sin \theta_{1}\right] e_{1}
$$

$$
\begin{aligned}
& \quad-\left[\left(x_{3}^{0} x_{3}+x_{4}^{0} x_{4}+x_{5}^{0} x_{5}\right) \sin \theta_{1}-i \cos \theta_{1}\right] e_{2} \\
& \\
& +\left(x_{3}^{0} x_{2}+x_{4}^{0} x_{5}-x_{5}^{0} x_{4}\right) e_{3}+\left(-x_{3}^{0} x_{5}+x_{4}^{0} x_{2}+x_{5}^{0} x_{3}\right) e_{4} \\
& \\
& \quad+\left(x_{3}^{0} x_{4}-x_{4}^{0} x_{3}+x_{5}^{0} x_{2}\right) e_{5}, \\
& \hat{A}_{1}=- \\
& -\left[\left(\alpha_{3} x_{3}+\alpha_{4} x_{4}+\alpha_{5} x_{5}\right) \cos \theta_{1}\right] e_{1}-\left[\left(\alpha_{3} x_{3}+\alpha_{4} x_{4}+x_{5} x_{5}\right) \sin \theta_{1}\right] e_{2} \\
& + \\
& +\left(\alpha_{3} x_{2}+\alpha_{4} x_{5}-\alpha_{5} x_{4}\right) e_{3}+\left(-\alpha_{3} x_{5}+\alpha_{4} x_{2}+\alpha_{5} x_{3}\right) e_{4} \\
& +\left(\alpha_{3} x_{4}-\alpha_{4} x_{3}+\alpha_{5} x_{2}\right) e_{5} .
\end{aligned}
$$

Thus, $\hat{A}$ and $\hat{A}_{1}$ define over $\stackrel{\circ}{S}_{4}$, in $T_{C}\left(\stackrel{S}{S}_{4}\right)$, a totally isotropic differentiable field of planes.

Concerning $S_{4}$, we must verify that any ambiguity appears when $\theta_{2}, \theta_{3}, \theta_{4}$ tend either to $\pm \frac{\pi}{2}$, so that we can complete the definition of $\hat{A}$ and $\hat{A}_{1}$ by mean of limits. Indeed, we verify, in each case that:
$\hat{A}$ determines over $S_{2}$ the direction:

$$
\left(-\cos \theta_{1}+r \sin \theta_{1}\right)\left(e_{1}+r e_{2}\right)
$$

and $\hat{A}_{1}$, the direction:

$$
\alpha_{3}\left(x^{0}\right) e_{3}+\alpha_{4}\left(x^{0}\right) e_{4}+\alpha_{5}\left(x^{0}\right) e_{5} .
$$

This ends the proof, because $\left(\hat{A}, \hat{A}_{1}\right)$ defines a subbundle $\eta$, with rank 2 , such that:

$$
T_{x}^{c}\left(S_{4}\right)=\eta_{x} \oplus \bar{\eta}_{x},
$$

the metric being positive definite, but the vector bundle $\eta$, doesn't admit a direct Whitney factor $\eta^{\prime}$ such that cocycles of $\eta$ and $\eta^{\prime}$ are conjugate (only $\eta_{x}=$ $\bar{\eta}_{x}, \forall x \in M$ ), otherwise $S_{4}$ would own an almost complex structure, that is impossible. However classicaly, $S_{4}$ admits a spinor structure (in the strict meaning) and it's possible to prove that statement (1) caracterises spinor structure, in the large meaning. We demonstrated that in [1, p. 61].

## References

[1] A. Crumeyrolle, Spin fibrations and generalised twistors, Proceedings of Sym. posia in Pure Mathematics, Stanford 1973. A. M.S. Providence R. [. 1975. Vol. XXVII. Part 1, p. 53.
[2] C. Ehresmann, Sur les variétés presque complexes, Proceed. of the international congress of math. Cambridge U.S.A. 1950, vol. II, p. 414.

