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Introduction

We have introduced in our former work [1] and [2] the comprehension

operator "{ )Ml>, which maps every binary relation to a binary relation. The

definition of this operator

is remarkable in that it can be defined in any formal system having the

membership relation e , which is hereafter called the universal system and is

denoted by ϋ . In this work, we would like to point out that the axiom of

choice, in the strong sense as well as in the weak senses\ can be formulated

in an extremely simple style by making use of the comprehension operator.

One can make use of our formulations of the axiom of choice in most of

the set-theoretical systems, i.e. theories of sets such as the systems of Zermelo

[4] and of Fraenkel [53, theories of classes and sets such as the systems of v.

Neumann [6], of Bernays [7], and of Gδdel [8], and also the theories of objects,

OF and OZ of ourselves, introduced in [2] and [3], respectively.

To unify our notations in this work as far as possible, we would like to

establish the following agreement:

We assume a binary relation e and a field of mathematical objects denoted

Received March 25, 1963.
α> The symbol "{•)" is introduced in [1], and the name "comprehension operator"

is introduced in [2]. In this work, we use mostly the same notations as those used in
[1]. (Capital Greek letters as meta-symbols for binary relations in general. We use
also notations of the forms ΓΔ, Γ, and ΓΛ^ for the relation product of Γ and Δ, for the
inverse relation of Γ, and for the conjunction of Γ and Δ (defined as x{Γf\Δ)y^uxfy[\
xΔy), respectively. (21^23 means here that Sϊ is defined by S3.)

2> In describing any axiom, any definition, or any theorem, we usually omit the
universal quantifiers standing at its top and having the whole formula in its scope.

3> As for the exact meaning of these words, see Sections (2) and (3).
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by small Latin letters. We call every mathematical object denoted by these

small Latin letters simply a set. The sets in this work can be regarded as

sets in the theories of sets of Zermelo and of Fraenkel. They can be also

regarded as sets in the theories of classes and sets of v. Neumann, of Bernays,

and of Godel. Namely, small Latin letters in this work can be regarded as

set variables in these systems. One may use, in addition, capital Latin letters

as class variables in these systems. Also, " e " can be regarded in OZ as its

primitive notion proto-membership €, and, in the systems OZ and OF, the small

Latin letters can be regarded as their general object variables, originally denoted

by capital Latin letters4).

In this work, we introduce a special type of formulations of the axiom of

choice, which can be described in the weakest system ϋ5 J without any assumption.

To examine mutual relations between our formulations and the popular forms

of the axiom of choice, it seems better to examine them in stronger systems

as occasion requires. Accordingly, we examine these relations in various set-

theoretical systems, naturally without assuming the axiom of choice. In this

connection, we take up together with our systems OF and OZ the Fraenkel

system (denoted by SF) and the Godel system (denoted by CG), both without

the axiom of choice, each as a representative of the respective kind of set-

theoretical systems.

In Section (1), we write down some definitions and theorems, which are

valid in the universal system U together with some remarks. Preparing for

Sections (2) and (4), Definitions and Theorems (1.1 D) - (1.11 R) 6 ) have to do

with mostly the notions of "left (or right) invariant" relations and of "left

(or right) unique'1 relations. Definitions and Theorems (1.12 D) - (1.25 R) have

to do with the usage of sets as binary relations, in preparation for Sections (3)

and (5). Namely, we can define for any set p two binary relations which are

denoted by P and P respectively. These relations P and P coincide in SF and

CG. They are called the binary relation defined by p. In CG, we can use also

4> Notice that the equality in OZ is originally called proto-equality (notatiσn: B ) in
[3]. (Compare Definition (1.1D) with [3]-( 1.2.5) i.e. (1.2.5) of [3].)

5> Concerning formal systems, we say that a system is stronger than another system
if and only if every theorem of the latter system is provable in the former system.

6> In numbering any definition or any remark, we attach the sign D or the sign Rζ

respectively.
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any class P as a binary relation, which is denoted by P. (See Remark (1.25 R)

and Section (4), Formula (E).)

We show in Section (2), that the axiom of choice in the strong sense can

be formulated as

(A) #ey->y ^ {y)y,

where -η denotes a special binary relation which generates a universal choice

function by the comprehension operator.

In Section (3), we show that the axiom of choice in the weak sense can be

formulated as

(B) ΞrVxyix ejy e m-*y ^{r)y)

or

(C)

We can introduce these axioms in any formal system stronger than U. It is

very remarkable that the axiom (C) implies the axiom of extensionality if we

assume existence of the unit set for every set. (See (1.47 R) and (3.4).)

In Sections (4) and (5), we give a few generalizations and modulations of

the axiom of choice. Namely, we give in Section (4) the axiom scheme

(D) Vxy{xΓy-*yΓ { ηΓ)y)

as a generalization of the axiom of choice in the strong sense, where ΎJΓ denotes

a special binary relation depending on the binary relation Γ. This formula can

be expressed more agreeably in CG as

(E) VP3Qys/xy(xPy~^yP_{Q)y)^

In Section (5), we give a generalization and a modulation of the axiom (C).

The one is namely the axiom scheme

(F) 3rVxy(xΓy e m-+yΓ{r)y).

This is a generalization of the axiom of choice anyway, but it seems that even

the axiom of choice in the strong sense (A) does not imply this axiom scheme

(F) even in very strong systems such as SF or CG. The other is the axiom

(G) BrVxy(xpy-+yp{r)y),
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which can be regarded as a modulation of (C). (See (5.6).)

In connection with our object theories, OF is practical except for that we

have to define a rather complicated satellite relation before stating its axiom

scheme. It is remarkable that we can replace this satellite relation by the

simpler satellite relation of OZ when we assume the axiom (C) or the axiom

(G). We denote the systems having the replaced axiom scheme of OF and

the axiom (C) or the axiom (G) by OMC or OMG respectively. (See (1.35 D),

(1.36 D), (1.44R), (5.4D), and (5.7R).) We can show that the system OMC

as well as the system OMG is essentially nothing but the Fraenkel set-theory.

(1) Preparatory formal theory developable
without any assumption

In this Section, we do not assume anything other than that our system has

the notion "membership" (naturally denoted by " e " ) . All the definitions and

theorems in this Section (except for Remark (1.25 R)) are valid in the universal

system ϋ.

First of all, we define equality. However, in defining equality, two ways

seem natural. The one is the way of defining equality by extensionality. The

other is the way of defining equality by property. For convenience' sake, we

call the former "equality" (See (1.1 D).) and the latter "identity" (See (1.2 D).)

(1.1D) The relation ( e ) is denoted by = and called equality.

(1.2D) χsy^Vt(χ(Ξt =jye t)7). The relation = is called identity.

(1.3 D) Any binary relation Γ is called right (or left) invariant if and only

if Γ— (or = Γ) implies8) Γ. Γ is called invariant if and only if it is right

invariant as well as left invariant.

(1.4D) Any binary relation Γ is called left (or right) unique if and only

if ΓΓ (or TΓ) implies = . Γ is called unique if and only if it is right unique

as well as left unique.

(1.5) Equality = is reflexive, symmetric, and transitive. It is also invariant

7 ) It may be more natural to call x&ndy identical if and only if xBy/\x=y. However,

we adopt here simpler form, because χ[Ξy implies x=y in the systems such as OZ or OF.

In SF (and also in CG for set variables x and y) XBy and x=y coincide.
8 ) We say that Γ implies Δ if and only if \/xy{xΓy-*χΔy) holds.
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and unique. (Proof. By (LID), (1.3D), and (1.4D).)

(1.6) Identity s is reflexive, symmetric, and transitive. (Proof. By (1.2 D).)

(1.7) Membership e is right invariant. (Proof. By ( L I D ) and (1.3D)..)

(1.8) If any binary relation Γ implies another left (or right) unique binary

relation, Γ is also left (or right) unique. (Proof. By (1. 4D).)

(1.9) Any binary relation of the form {Γ) is left invariant as well as left

unique. It is invariant if Γ is right invariant. (Proof. By (1. ID), (1. 3D), and

(1.4D).)

(1.10) Any left unique and left invariant relation Γ can be expressed in

the form {Δ)9). If Γ is right invariant, we can take a right invariant Δ for

this purpose. (As for the proof, see [2]-(2. 31). Notice that this proof is valid

in the universal system ϋ.)

(1.11 R) Remark. Sometimes, it looks advisable to take left (or right)

uniqueness more strictly. Because we assume nothing corresponding to the

axiom of extensionality, it is quite uncertain whether the condition \fxyuv(xΓy

Λ uΓv /\y = v -*χ = u) holds for every left unique relation Γ. This is a stronger

condition for a binary relation Γ, so we call any binary relation Γ satisfying

the above condition strongly left unique. Namely, any binary relation Γ is

called strongly left unique (or strongly right unique) if and only if Γ = Γ (or

f = Γ) implies equality. We can further define strong uniqueness in a natural

way. We can prove by (1. 4 D) and (1.5) that any strongly left (or right)

unique relation is left (or right) unique. We can further prove that any right

(or left) invariant and left (or right) unique relation is strongly left (or right)

unique. These two kinds of notions concerning uniqueness and strong uniqueness

naturally coincide in systems such as SF or CG.

Next we define pairs and ordered pairs, and further we introduce binary

relations defined by sets.

(1.12 D) p{x, y}^Vt(ti=p= t = xVt = y). Any set p satisfying p{x, y)

is called a pair set of x and y.

(1.13D) p{x, y

9> This means that we can express Δ in terms of Γ so that yxy{xΓy=x{Δ)y) holds.
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(1.14) p{x, y) ί\q{u, v} -» : p = q = • U = wAj? = v) V U = UAJ) = u)

and .£{#, jy} /\q{u, v} • -> - p~q~ (#swΛj>sz;) V UsyA^sw).

(Proof. By (LID), (1.5), (1.6), (1.12 D), and (1.13D).)

(1.15 D) p(xf y>^3uv(p{u, v)l\u{x} x}/\v{x, y}). Any set p satisfying

p(x> yy is called an ordered pair of x and y.

(1.16 D) p<x, y>^3uv(p{u, v}Λu{x, x}Av{x, y}).

(1.17) p<x, y}/\qζu, v> -* : P = q= mx=uAy = v.

and p(x, y> l\q(u> v} -» ' p = qΈ= * x^ul\ymv. (Proof. By (1. ID),

(1.5), (1.6), (1.12D), (1.13D), (1.14), (1.15D), and (1.16D).)

(1.18 D) χry^3p(p<ar/\p<xt y». We can regard r as a binary relation,

which is called the binary relation defined by the set r with respect to equality.

(1.19 D) χry^3p(p^rl\p(x, ;y>). We can regard r too a binary rela-

tion, which is called the binary relation defined by the set r with respect to

identity.

(1.20) u{x, y)Vu{χ, y} -+ χtΞuf\y<Ξu. (Proof. By (1.5), (1.6), (1.12D),

and (1.13D).)

(1.21) p<x,y>Vp<x,y> -* -x^^pAy^^p. (Proof. By (1.15D), (1.16D),

and (1.20).)

(1.22) xryVxry -* χ€Ξ€Ξς=rί\yς=e:€Ξr. (Proof. By (1.18D), (1.19D),

and (1.21).)

(1.23; Any binary relation of the form r is invariant. Also, s j s implies

r. (Proof. By (1.3 D), (1.5), (1.6), (1.17), (L18D), and (1.19D).)

(1.24) Any binary relation of the form {r) is invariant and left unique.

Also, {r)^ implies {£). (Proof. By (1.9) and (1.23).)

(1.25 R) Remark. In CG, we can use any class R as a binary relation,

which is naturally defined by xRy^3p(p<^R/\pζx, >'>). Notice thatpζx, y> and

p(x, y> coincide in CG.

Now we define generalized membership, inclusion, and generalized inclusion

in preparation for introducing the satellite relations.

(1.26 D) xtΞy^x - <=y. {Generalized membership)
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(1.27D) *c^Vs(se#->sey) . {Inclusion, subset)

(1.28 D) xQy ^\fs(s6^-^s€Ξy). (Generalized inclusion, generalized subset)

(1.29) x^y-^x'έy. (Membership implies generalized membership. Proof.

By (1.5) and (1.26D).)

(1.30) Generalized membership e= is invariant. (Proof. By (1.5), (1.7),

and (1.26D).)

(1.31) x^y->xί:y (Inclusion implies generalized inclusion. Proof. By

(1.5), (1.29D), (1.27D), and (1.28D).)

(1.32) Inclusion c as well as generalized inclusion £ is reflexive, tran-

sitive, and invariant. (Proof. By (1.3D), (1.27D), and (1.28D).)

(1.33) xzΞ^y->χ(=y and xi=£y->x£y. (Proof. By (1.27D) and (1.28D).)

(1.34) x=.y= -xQyAy^x. (Proof. By (1.1 D), and (1.27D).)

Now we define the satellite relations of OF and of OZ.

(1.35 D) xσy^Vp(Vs(s<=ί e p = s £ Gp) Λ y e (=p- -» X<Ξ <=p). (Satellite

relation oj OF. Only (1.26 D) and (1.28 D) are necessary for stating this defini-

tion.)

(1.36D) ^ ^ V ί ( V s ί s e ε ^ Ξ s c e ί ) Λ , y e G ί ^ j c 6 ε ί ) . (Satellite rela-

tion of OZ. Only (1.27 D) is necessary for stating this definition. As a funda-

mental notion, g can be defined in a simpler way than a).

(1.37) x&y-*xσy, x&y->xgyy χξLy-*xay, x<^y-*x&y, x{ = )y-*xay, x{^)y

-*xgy, xaay-^xay, and xg&y-*xgy. (Broadly speaking, any member, any subset,

and any unit set of a set are all satellites of the set, in the sense of OF as

well as in the sense of OZ. These satellite relations in both senses are also

tranistive. Proof. By (LID), (1.2D), (1.26 D), (1.27D), (1.28D), (1.32),

(1.33), (1.35D), and (1.36D).)

(1.38) x=y-*xσy and χ=y-*χgy. Also, xzsgsy-*xgy. (Proof. By (1.31),

(1.34), (1.37), (1.2D), (1.35D), and (1.36D).)

(1.39) xryVxry - - xβrNyar!\xgrNygr. (Proof. By (1.22) and (1.37).)

(1.40) (x{r)yVχ{r)y)f\(s{σ)rVs{g)r) -xςzs. (Proof. By (1.27 D) and

(1.39).)
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(1.41) x{r)y-+χ{£)χ. (Proof. By (1.23) and (1.26D).)

Lastly, we give some remarks for later references.

(1.42 R) Remark. OF is the system having only one axiom scheme

(OF) 3p-p{{Γ)σ)m.

(1.43 R) Remark. OZ is the system having only one axiom scheme

(OZ) 3p p{ΓAg)?n.

(1.44 R) Remark. Let us denote by OM (object theory with a mixed-type

axiom-scheme) the system which have as its only one axiom scheme

(OM) 3p p{{Γ)g)m.

The system OM itself is not so attractive compared with OF or OZ, because

we have been unable to imbed any important set-theoretical system in it.

However, the system turns out to be very remarkable when we assume the

axiom (C) in it. (See Section (2).)

(1.45R) Remark. According to (1.37), g implies a in OF. As for the

proof, see [2]-(5. 8).

(1.46 R) Remark. \fm3p*p{ = ΓAg)m holds in OF, in OZ, and in OM.

Namely, 3pmp{ = Γt\a)m holds in OF as is shown in [2]-(4.2). Quite similarly,

we can prove 3pmp{- Γ/\g)m in OM. Because 3pmp{ = Γί\a)m implies 3pm

p{ = ΓΛ g)m in OF by (1.45 R), 3p 'p{ = ΓΛ g)m holds in OF. The same formula

holds also in OZ, because it is a special case of the axiom scheme (OZ).

(1.47 R) Remark. In our terminology, the axiom of extensionality can

be formulated as

(EX) Vx'x{£)χ.

Namely, if we assume (EX), holds \fxyp(x=y-* *x<=p-±y (=p) by (1.5) and

(1.26 D). Consequently, >fxy(x =jv-> - 3ίU) s 21 O>)) is provable for any formula

9ί( ) by making use of this fact and (1. I D ) . On the other hand, we can

prove (EX) by (1.1D), (1.5), (1.26D), and (1.29), if we assume \ίxyp(;x = y-+ -

10> Any x satisfing x{ς=)x is called normal in [2].
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(2) Strong form of the axiom of choice

To make clear as far as possible what we have in mind as the axiom of

choice in the strong sense, we state it at first in the ordinary terminology as

follows

(2.1 S)Π ) We can assume that a function ψl2\ defined over the whole domain

of sets other than the null set, satisfies Vx φix) e # .

Naturally, we can not expect to have such a universal choice-function φ as

a set. Such function may be regarded either as a class (in such theory of

classes and sets as CG) or as a special binary relation ψ introduced to define

the function φ. In our terminology, the special binary relation φ must be left

unique, because ψ is assumed to be a function. So the axiom of choice (2.IS)

can be characterized by the axioms (2.2 S)-(2.4 S) :

(2.2 S) χφφy->χ=y (The special binary relation ψ defines a function.).

(2.3 S) #ejy-> 3z zψy (The domain of the function defined by the binary

relation φ includes the whole domain of sets other than the null set.)

(2.4 S) xψy-*x^y (The value x of the function defined by the binary

relation ψ at any y is a member of y.).

Combined with the axiom (2.2S), we can replace the axioms (2. 3S) and

(2.4S) by the single weaker axiom

(2.5S) x£Ξy->yΈi<py.

Namely, any binary relation Φ satisfying the conditions (2. 3S) and (2.4S)

satisfies the condition (2.5S) on <ρ. On the other hand, for any binary relation

Φ satisfying the condition (2.5S) on <p, the binary relation Φί\ e surely satis-

fies the conditions (2. 3S) and (2.4S) on ψ. Moreover, for any left unique Φ

i.e. for any Φ satisfying the condition (2.1 S) on <p, the binary relation Φ Λ e

can be also proved to be left unique i.e. to satisfy the condition (2.2 S) on ψ

by virtue of (1.4 D) and (1.8). Consequently, the axiom (2.1S) can be expressed

by the two axioms (2.2S) and (2.5S).

11) in numbering a proposition merely stated, we attach the sign S.
12> The function symbol ψ used in the form ψ(x) stands naturally outside our formal

system. We use this kind of symbols olny for illustration.
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By making use of the comprehension operator, we can further unify the

axioms (2. 2S) and (2.5 S) into the single extremely simple axiom

(A) x<^y-*y^>{y)y.

Namely we can prove

(2.6) The axiom (A) is equivalent to the pair of axioms (2.2 S) and (2.5 S).

Proof. For any binary relation Φ satisfying the conditions (2.2 S) and

(2.5S), the binary relation = Φ is left unique and left invariant by (1.3 D),

(1.4D), and (1.5). So, according to (1.10), =Φ can be expressed in the form

{Λ). It can be easily proved by (1.5), that the binary relation A satisfies the

condition (A) on -η. Conversely, for any binary relation Φ satisfying the condi-

tion (A) on -η> the binary relation {Φ) Λ e can be proved to satisfy the condition

(2.2 S) on ψ by virtue of (1.4D), (1.8), and (1.9), and it can be proved to

satisfy also the condition (2.5S) on ψ trivially.

Thus the axiom of choice in the strong sense can be stated in the form

(A). Namely, if (A) holds, the binary relation w({y) Λ e )z defines universal

choice-function regarding it as a mapping z to w.

(3) Weak form of the axiom of choice

In the terminology of the ordinary set-theory, we take the following

statement as the axiom of choice in the weak sense:

(3.1 S) For any set m, there is a function ψ (called a choice function of m)

satisfying V#- ψ(x) e x that is defined for all members of m possibly with an

exception of the null set.

In this case, the choice function ψ of m could be represented by a set.

However, it is not necessary to express the relation y = ψ{χ) in the forms ypx

or ypx. We might as well express the relation in the forms y{r)x or y{g)xy

as these forms have the advantage that binary relations of the forms {r) or

{£) are automatically left unique. Adopting these forms, (3.1S) can be express-

ed in the forms

(B) 3rVxy(χ(Ξy e m-*y 3 {r)y)

or

(C)
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(3.2) The axiom (A) implies the axiom (B) if we assume VmSp 'p{Γ/\g)m1Z)

for every Γ.

Proof /A->b14).

A) Assume \fxy(x&y-*y^{ η)y) and \fm3pmp{l' f\g)m> for every Γ.

b)) Vm3rVxy(x<^y<^m-*y^>{r)y) /bA-*be. bA)

bb) 3hk\ h{g)k{g)tn /A.

bC)

bd)

be))

beb)

bee))

becb)

becd)

bece)

beef)

becg)

beeh)

beci)

beck)

becm)

bed))

bedb)

bedc)

bede)

bedf))

bedfb)

bedfc)

bedfd)

bedff)

beA) Vxyl x

Define Φ by sΦt^ 3uv(s<u, v>/\urjv).

3r\ r{Φl\g)h /A.

\fxy{x<Ξy<anι-*yΞ){r)y) /beA-^bef.

3w\ y^w{η)y /beA, A.

Vs(s e w-^sgjy) /becA-^becm. becA) Vs! s e w .

sηy /becA, beb. becc) sgm /becA, beb, beA, (1.37).

ygm /beA, (1.37).

3uv\ u{sy s}f\v{s, y} /A, becc, becd, (1.13D), (1.38).

u^kAv^k /bece, becc, becd, bb, (1.13 D), (1.27 D), (1.38).

3z! ziu, v) /A, beef, (1.12D), (1.37), (1.38).

z^h /beef, becg, bb, (1.12 D), (1.27 D), (1.37), (1.38).

zgh /bech, (1.37). becj) z<s, y> /bece, becg, (1.16 D).

zΦh /becj, becb, bC. beel) ? e r /beck, beci, bd.

sry /beci, becj, (1.19 D).

\rs(sry->s&w) /bedA->bedg; beb. bedA) Vs! sry.

3zl z(=rf\z<s,y> /bedA, (1.19D).

zΦh /bedb, bd. bedd) 3uυ\ zKuf v^Auηv /bedc, bC.

u^s/W^y /bedb, bedd, (1.17), (1.5).

sηv /bedf A-> bedfg. bedfA) Define J by fjg^f-ηv.

3tf! q{Δ/\g)u /A.

uάuNugu /bedf A, bedd, (1.5), (1.38).

we <z /bedfb, bedfc. bedfe) s^q / bedf d, bede, (1.2 D).

sΔu /bedfe, bedfb. bedfg) sηv /bedff, bedfA.

1 3 ) This is not exactly the axiom scheme (OZ). For, by this assumption here, Γ may

be expressed in terms of the binary relation e and V, whereas in (OZ), Γ should be

expressed exclusively in terms of the primitive notion e .
1 4 ) Proofs of this type are described in PLK, the system of the classical predicate

logic (such as Gentzen's LK, [9]) described in the way introduced in [1]. An example

proof in PLK is given in [1], and the nickname PLK is introduced in [2].
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bedg) s-ηy /A, bedf, bede, (1.2 D), (1.5), (1.38); just as we deduced

bedf from A, bedd, and bede.

bee) w{r)y /bee, bed. bef) y Ξ> {r)y /beb, bee.

(3.3) The axiom (A) implies the axiom (C) if we assume the axiom scheme

3p'p{=Γ/\g)mW) and \fxy(x=-q=y-*χ ηy). As we can prove this theorem

in a parallel way to the proof of the preceding theorem, we do not go into

details of it.

We can hardly find out in U what difference lies between the axioms (B)

and (C). These axioms coincide in the usual set-theoretical systems such as

SF, because these systems assume the axiom of extensionality. However, if we

compare these axioms in object-theoretical systems such as OZ without assuming

the axiom of extensionality, we can easily realize that the axiom (C) is far the

more powerful than the axiom (B). Namely,

(3.4) The axiom (C) implies the axiom of extensionality (EX) if we

assume yΰx3yy{ = )x.

Proof /A-»b. A) Assume the axiom (C) and \fx3yy{=ί)x.

b)) (EX) i.e. VX X{ΪΞ)X /bA->bh. bA) Vxl

bb) Bmyl m{=- )y{ = )x /A. be) x^y^m /bb, (1.5).

bd) 3r\ Vst(stΞt<EΞm-*tΞϊ{r)t) /A. be) Bz\y^z{r)y /be, bd.

bf) z = # /be, bb. hg) x{r)y /be, bf, (1.5), (1.3D), (1.9).

bh) x{£)x /bg, (1.41).

(3.5R) Remark. According to (\4), (1.37), (1.38), and (1.46R), the

equality notion coincides with the identity notion if we assume the axiom (C)

in any one of the systems OF, OZ, and OM. We denote the system having

one axiom (C) and one axiom scheme (OZ) by OZC, and the system having

one axiom (C) and one axiom scheme (OM) by OMC. The satellite relations

a and g coincide in these systems. One could naturally deal with also the

system having one axiom (C) and one axiom scheme (OF). However, this

system is proved to be equivalent to the system OMC. We prefer OMC to the

15> According to (1.46 R), it looks like as if (A) implies (C) in OZ, in OF, and also
in OM as long as we assume that V in (A) is invariant. Exactly speaking, however, we
can assert 3pmp{=Γf\σ)m in these systems only when Γ can be expressed in terms of
6Ξ only.
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system, because the satellite relation of OZ can be introduced in a simpler way

than the satellite relation of OF.

(3.6R) Remark. According to the theory developed in our work [3], one

can easily realize that the Zermelo set-theory with the axiom of choice can be

developed in OZC. In reality, the imbedding process can be much simplified

than the imbedding process developed in [3]. For example, we can get rid of

the weary steps in [3] for introducing the extensionality axiom. However, we

do not go into details of this matter.

(3.7 R) Remark. The system OMC is equivalent to the Fraenkel set-theory

with the axiom of choice but without the axiom of fundierung. We can prove

this easily although we do not give here any detailed proof of it. We believe

that the system of the axiom scheme (OM) and the axiom (C) is much simpler

than the usual exposition of any axiom system of the Fraenkel set-theory, so

we believe further that the system OMC is extremely practical as a starting

point of the whole mathematical theories.

(3.8 R) Remark. The axiom (C) seems unprovable in the system OZB,

i.e. the system having the axiom scheme (OZ) and the axiom (B) only. At

present, it is an open question whether the system OZC can be proved to be

consistent by assuming that the system OZB is consistent.16)

(4) Modulation of the axiom of choice in the strong sense

In our usual reasoning, inferences such as

(4. IS) If, for every natural number n, there exists an object Xn bearing

a given relation Γ to n, there exists an infinite series of objects Xu X2, * .

satisfying the condition that, for every natural number n, Xn bears the relation

7" to n.

seem rather popular. Assuming the axiom of choice, this conclusion is

surely true if for every natural number n all the objects bearing the relation

Γ to n form a set. However, we are apt to consider that this conclusion is

valid even when we are not sure about whether, for every natural number n,

all the objects bearing the relation Γ to n really form a set. This consideration

16> In the original manuscript, there had been an erroneous proof of the relative con-
sistency of OZC, which was deleted in proof-reading.
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motivates us to formulate a general principle for inferences of this kind.

Corresponding to the axiom of choice in the strong sense, the principle can

be taken in a very strong sense, which may be stated in the terminolgy of the

ordinary set theory as follows:

(4. 2 S) For any binary relation Γ, we can assume that a function φ, defined

over the whole domain of sets other than the null set, satisfies y/x φ(x)Γx.

Also in this case, we can not expect to have such a choice funtion ψ as a

set. Such function may be regarded either as a class in such theories of sets

and classes as CG or as a special binary relation fr- In our terminology, <fΓ

must be a left unique binary relation satisfying yfxy(xΓy->yF<pry) Just as in

Section (2), we replace the left unique binary relation ψΓ by a relation of the

form {τ?Γ) which is surely left unique by (1.9). Accordingly, we formulate the

above stated modulation (4. 2S) of the axiom of choice in the strong sense as

(D) xΓy-+yΓ{ ηΓ)y.

At the first glance, the axiom scheme (D) seems really simple, but it is not

very agreeable because it contains the symbol τ/Γ for a special binary relation

depending on the meta-symbol Γ for a binary relation. It can be described

more agreeably in CG as

(E)

However, we can not set aside the form (D), because it leads to the interesting

formula (F) as a modulation of the axiom of choice in the weak sense.

Anyway, the principles (D) or (E) seem really stronger than the axiom of

choice even in the strong sense. The formula (A) is in fact a special case of

the formula scheme (D). However, it seems impossible to prove (D) generally

by assuming (A), even in such a strong system as SF. (Also, it seems impos-

sible to prove (E) by (B) or (C) in CG.)

(5) Modulation of the axiom of choice in the weak sense

In modulating the axiom of choice in the weak sense, two ways seem pos-

sible. In the terminology of the ordinary set theory, we can describe them in

the following two statements .'



NEW FORMULATION OF THE AXOIM OF CHOICE 67

(5. I S ) For any given set m and for any binary relation Γ, there is a

function ψ satisfying y/x φ(x)Γx that is defined for all members x of m as far

as there exists y bearing the relation yΓx.

(5.2 S) For any binary relation Γ defined by a set, there is a function ψ

satisfying y^X'ψ{χ)Γx that is defined for all sets x as far as there exists jy

bearing the relation yΓx.

Because, in ordinary set theories, the domain of any binary relation defined

by a set is considered to be a set, we do not need to impose a condition in

(5.2 S) that x should be a member of a given set.

Just as in Section (3), the function ψ in (5. I S ) or in (5.2S) might be as

well expressed by a left unique binary relation of the forms {r) or {r).

Along the line (5. I S ) :

Just as we were in Section (3) led to the formulas (B) and (C) by the

example of (A), we are led to the formula

(F) 3rVxy(xΓy e m->yT{r)y)

by the example of (D) as a matter of course. This formula is really remarkable

not only because it can be regarded as a generalization of the formula (C) but

because of its extremely extensive character. We could naturally introduce

the formula 3rVxy(xΓy ^ m-^yf(^)y) as a modulation of the formula (B).

However, this formula does not seem so serviceable as the formula (F).

The formula (F) naturally does not imply the formula (A). On the other

hand, even in such a strong system as SF, it seems impossible to prove (F)

by (A). Accordingly, the formula (F) can be regarded as another genaraliza-

tion of the axiom of choice in the weak sense.

(5.3) The axiom scheme (F) implies the axiom (C).

(5.4D) The system having the pair of axiom schemes (OZ) and (F) is

denoted by OZF.

(5.5) The system OZF is stronger than OMC; so, according to (3. 7R), it

is stronger than the Fraenkel set-theory without the fundierung axiom. To

prove this theorem, we have only to prove the axiom scheme (OM) in OZF,

because we can prove (C) in OZF by virtue of (5,3),
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Proof of (OM) in OZF /A, B, C->k. A) Assume (OZ) and (F).

B) Γ be any binary relation. C) Vw! d) 3hl h{g)m /A.

e) 3r\ Vxy(x{Γ)y(Ξh^y(Γ}{r)y) /A. f) 3q\ q{g)r /A.

g)) Vx(x{Γ)gm->xgq) /gA->gh. gA) V*! x{Γ)gm.

gb) 3y\ x{Γ)ygm /gA. gc) x{Γ)y e h /gb, d.

gd) 3;s! jKΓMrty /gc, e. ge) x = z /gc, gd, (1.9).

gf) x{r)y /ge, gd, (1.9). gg) x^q /f, gf, (1.40).

gh) Λ;^ /gg, (1.37).

H) Define A by xJy^x{Γ)gm. i) 3p\p{Δί\g)q /A.

j) ί{J)fw' /g, H, i. k) p{{Γ)*)m II H.

Along the line (5.2S):

As the second modulation of the axiom of choice in the weak sense, we

have the proposition

(G) 3r\fxy(xpy-*yp{r)y)i

which can be stated in any system having the membership relation. We could

naturally introduce another modulation 3rVxy(xpy->yp{r)y) which can be also
CZ CD

stated in any system having the membership relation. However, we do not

discuss on this formula because it does not seem so serviceable as (G).

(5.6) The axioms (C) and (G) are mutually equivalent as long as Vm3p'

p{ = Γί\g)m holds for every Γ.

Proof /A-»b, c. A) Assume ysfm3pap{ —Γ/\g)m for every 7".

b)) (C) implies (G) /bA-bd. bA) Assume (C).

bb) Vx3yy{ = )x /A, (1.5), (1.38).

be) According to (3.4), the extensionality axiom (EX) holds by A and

bb. Consequently, we have no need to draw any distinction between

e and e, or between σ and g. Also, by virtue of (1.47 R), A

implies Vm3p p{ΓΊ\α)m for every Γ.

bd)) (G) /bdA->bdf. bdA) Vpl

bdb) 3msq\ m{σ)s{σ)q{σ)p /be.

bde) 3u\ \fxz(x e 2£ s-* z^ {u)z) /bA.

bdD) Define Γ by kΓα^3xy(k<x, y>/\xu{p)y).
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bde) 3rl r{ΓAa)m /be.

bdf)) Vxy(xpy-»yp{r)y) /bdfA-* bdfi. bdfA) V*y! xpy.

bdfb) 3zl Vt{ttΞz= -tpyMσp) /be. bdfc) z{p)y /bdfb, (1.39).

bdfd) zςzq /bdfc, bdb, (1.40). bdfe) 2 6 s /bdfd, bdb, (1.37).

bdff) XZΞZ /bdfA, bdfc. bdfg) 3wl ZΞBW{U)Z /bdff, bdfe, bde.

bdfh) ypw /bdfc, bdfg.

bdfi)) Vt(t<=w->try) /bdf iA-* bdf in. bdfiA) Vί! t(Ξw.

bdfib) tuz /bdfiA, bdfg. bdfic) tu{p)y /bdfib, bdfc.

bdfid) zaq /bdfe, bdb. bdfie) taq /bdfiA, bdfg, bdfid, (1.37).

bdfif) yaq /bdfA, bdb, (1.37), (1.39).

bdfig) 3/gl fit, t}Λg{ty y) /bdfie, bdfif, be, (1.12D), (1.38).

bdfih) fσs/\g<ys /bdfig, bdfie, bdfif, bdb, (1.27D), (1.37), (1.38).

bdfii) 3k\ k{f, g} /bdfih, be, (1.12D), (1.38).

bdfij) k<t,y> /bdfii, bdfig, (1.15D).

bdfik) kΓm /bdfij, bdfic, bdD.

bdfii) ham /bdfii, bdfih, bdb, (1.27D), (1.37), (1.38).

bdfim) k^r /bdfik, bdfii, bde. bdfin) try /bdfim,bdfij, (1.18D),

bdfj)) y/t(try-+tew) /bdfjA->bdfji. bdfjA) Vί! try.

bdfjb) 3kl keΞrΛk<t,y> /bdfjA, (1.18D).

bdfjc) kΓm /bdfjb, bde.

bdfjd) B/gϊ K/, g>ί\fu{p)g /bdf jc, bdD.

bdfje) f=tNg = y /bdfjd, bdfjb, (1.5), (1.17).

bdfjf) 3υ\ tuv{p)y /bdfje, bdfjd, (1.3D), (1.5), (1.23), (1.24).

bdfjg) υ^z /bdfjf, bdfc, (1.4D), (1.24).

bdfjh) tuz /bdfjf, bdfjg, (1.3D), (1.23). bdfji) t^w /bdfjh, bdfg.

bdfk) w{r)y /bdfi, bdfj. bdfl) yp{r)y /bdfh, bdfk.

c)) (G) implies (C) /cA-^cb. cA) Assume (G).

cb)) (C) /cbA-cbi. cbA) Vm!

cbB) Define Γ by fΓg^ 3xy(f<x, y>/\x^y e m).

cbc) 3qn\ q{g)n{g)m /A, (1.37), (1. 38). cbd) 3p\ p{ = ΓNg)q /A.

cbe) Γ is left invariant /cbB, (1. 3D), (1.17).

cbf)) Vf(fΓq->fgq) /cbfA-^cbfg. cbfA) VflfΓq.

cbfb) 3xy\ f<x} y>/\x<=y<=m /cbfA, cbB.

cbfc) xgmNygm /cbfb, (1.37).
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cbfd) 3ft*! /{ft, k) Λ h{x, x) Λ k{x, y) /cbfb, (1.15 D).

cbfe)) h^n/\k^n /cbfeA-»cbfed, (1.27D).

cbfeA) Vf! t<=hVt<=k.

cbfeb) t = xVt=y /cbfeA, cbfd, (1.12 D).

cbfec) tgm /cbfeb, cbfc, (1.37), (1.38). cbfed) t<Ξn /cbfec, cbc.

cbff) hgnNkgn /cbfe, (1.37).

cbfg) fgq /cbff, cbfd, cbc, (1.12D), (1.27D), (1.37), (1.38); just as we

deduced cbff from cbfc, cbfd, and cbc.

cbg) p{Γ)q /cbd, cbe, cbf, (1.3D), (1.5).

cbh) 3r! \fxy(xpy-»yp{r)y) /cA.

cbi)) \fxy(xeyem-*y^(r)y) /cbiA-^cbiq. cbiA) Vxyl x<=y<=m.

cbib) xgml\ygm /cbiA, (1.37).

cbic) 3hk\ h{x, x)l\k{x, y) /cbib, A, (1.12 D), (1.37), (1.38).

cbid) hgnNhgn /cbib, cbic, cbc, (1.12D), (1.27D), (1.37), (1.38); just

as we deduced cbff from cbfc, cbfd, and cbc.

cbie) 3/! /{ft, k) /cbid, A, (1.12D), (1.37), (1.38).

cbif) fix, y> /cbic, cbie, (1.15 D). cbig) fΓq /cbif, cbiA, cbB.

cbih) f&p /cbig, cbg. cbii) xpy /cbih, cbif, (1.18D).

cbij) 32! ypz{r)y /cbii, cbh.

cbik) ?ίu\ utΞpNuiz,y> /cbij, (1.18D). cbii) uΓq /cbik, cbg.

cbim) 3st\ u<s, t>/\s<Ξt<Ξm /cbii, cbB.

cbin) s = zf\t=y /cbik, cbim, (1.5), (1.17).

cbio) s^y /cbim, cbin, (1. ID).

cbip) s{r)y /cbin, cbij, (1.3D), (1.24).

cbiq) y^{l)y /cbio, cbip.

(5.7 R) Remark. According to (1.46R) and (5.6), we know that the

systems OZC and OZG as well as the systems OMC and OMG are mutually

equivalent. Here we denote by OZG and OMG the systems which have the

axiom (G) together with the axiom scheme (OZ) or the axiom scheme (OM),

respectively.
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