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ON UNSOLVABILITY IN SUBRECURSIVE
CLASSES OF PREDICATES

FORBES D. LEWIS

Introduction Decision problems for various classes of sets or languages
have been studied extensively in the theory of automata and formal
languages [7]. These results have been combined in [3] where certain
closure properties important to formal language theory are used to show
undecidability in classes meeting certain specifications, and in [6] where
the "ability to count" provides the unsolvability. In this paper* closure
properties prevalent in mathematical logic will be utilized to relate several
decision problems to each other. First, several decision problems for
bases of the r.e. sets will be located in the arithmetic hierarchy and then
other decision problems will be related to them.

1 Preliminaries In the results presented below <#* will always be a
class of recursive predicates [never the class of all recursive predicates]
for which there is a recursive enumeration [denoted: Ro, Ri, . . .] . The
class of predicates 5* will always be a subclass of </?*. In addition, the
class <R* will always possess an s™ Theorem, which can hi stated:

Theorem (s™) There is a recursive function s™{i, xl9 . . ., xm) such that for
any Rz in <#*:

R s j α ^ *„) (3>l> , yn) = Ri(*l, , Xm, 3>l, . , 3>»).

This technical theorem will be useful in proofs since it provides a method
to set several variables to specific values.

Several notational conventions should be given at this point. Script
letters refer to classes of predicates while capital Roman letters represent
predicates and small letters denote functions and variables. The empty set
is denoted by 0 and N represents the set of non-negative integers. The
sequence WOi Wlf . . . is the "standard enumeration" of the recursively
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enumerable sets. For completeness a few definitions from recursive
function theory are necessary and are explained more fully in a text such
as [13].

Definition The set A is many-one reducible [denoted A <m B] to the set B
iff there is a recursive function g such that for all x:

X € A^Φg(x) € B.

Definition A predicate is in the class Σn(ϊln) iff it can be expressed in
prenex normal form with a prefix containing n alternating quantifiers
beginning with an existential (universal) quantifier.

The collection of these classes [Σn and Πw] is called the arithmetic
hierarchy. A set in ΣW(ΠM) is called Σn-complete (Πw-complete) if every
other set in ΣW(ΠW) is reducible to it.

Since closure properties play an important role in the results which
follow several common ones used with predicates are:

(a) The predicate P is formed from the predicate S by explicit transforma-
tion iff

P(#i, . . ., xn) = S(tu . . ., tm)

where each U is either an Xi or a constant.
(b) P is formed from S by finite modification iff P(ΛΓ) = S(x) for all but a
finite number of x.
(c) P is formed from S by finite quantification iff either:

F(x,y) = 3z[z^XAS(z>y)l

or

V(x,y) = Vz[z<x=ΦS(z,y)].

The operations of constructive definability [14] are explicit transformation,
finite quantification, and operations involving the propositional connectives
[conjunction, disjunction, and negation].

For functions, several closure properties are

(a) / i s formed from hl9 . . ., hn, and g" by composition iff:

f(xi, . . ., Xk) = g[hx(xu . . ., Xk), . . ., hn(xly . . ., #*)].

(b) / is formed from g by finite summation iff:

f(x, yu . . ., yn) = Σ ' g(z, 3>i, . . ., yn).
z=o

A class of functions is said to be closed under the operations of substitution
if it is closed under composition and explicit transformation.

A class of predicates is said to be effectively closed under an
operation if there is a recursive function which provides the index of the
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new predicate. That is, effective closure under conjunction requires a
recursive g such that for all i, j, and x:

Rgtt.;)M = R * W Λ R 7 (#)

Predicates will usually be represented as having one argument and it
is assumed that any class examined below possesses the pairing predicates
which select members of a pair as follows:

VAn, x) = Bz ^ x [x = (n, z)]

P2(z>x) = Bn ^x[x = (n,z)].

Whenever predicates are written with several parameters [for emphasis on
certain components] it is assumed that the "paired" form occurs in the
standard enumeration of the class.

The universal predicate for the class of predicates <£* is a predicate
Q(i, x) such that for each predicate in «£* there is an integer n such that
Q(n, x) is exactly that predicate.

2 Presenting classes of predicates Often when a class of predicates is
studied, results about its subclasses are proven. One of the first problems
is to describe the subclass in terms of the original class of predicates.
This may be done by defining a set which contains all of the members of the
subclass. If a class of recursive predicates </?* can be enumerated by the
predicates Ro, Ri, . . . then a subclass ,2* could be presented within </?* by
a set which contains indices of the R, which are members of S*. Formally:

Definition The set A is a presentation of 5* within <#* iff:

(a) For each predicate Q in <2* there is a n ύ i such that for all x: Ri(x) =
Q(ΛΓ). [That is, A contains an index for each member of <3*.]

(b) For every it A, the predicate Rz is a member of the class <2*.

An interesting property of <g* is just how it may be presented. If its
presentation [the set A above] is recursively enumerable [r.e.] then the
class is said to be r.e. also. If the presentation is recursive then the class
is said to be recursively presentable. For example, the graphs of the
recursive functions are not r.e. within the class of r.e. sets but the context
sensitive predicates are easily recursively presented by indices of linear
bounded automata. The r.e. classes of predicates can be thought of as
"well behaved" due to the following straightforward result:

Theorem 1 An r.e. class of predicates has a recursive universal predicate.

Proof: Let the set A present «2* within <#*. If A is empty then the null
predicate is universal for S*. Otherwise let A be the range of the recur-
sive function g. Then a recursive universal predicate for ^ can be defined:

Q(i,x) =Rg{i)(x).

Usually when a_ class is presented it is completely presented and this
presentation is called an index set.
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Definition Θ^|* is the index set for <£* with respect to <#* and is defined:

Θ£* = {i 13Q e g * A V* [Q(x) ^ Rdx)]}.

Index sets for many classes have been studied with respect to the class
of r.e. sets and will be examined below in connection with subrecursive
classes. Several immediate upper bounds in the arithmetic hierarchy for
index sets are as follows:

Theorem 2 Let S|+ be a subclass of <#*. Then:

(a) If Q* is trivial [either Q* is empty or 5* = <#*], thenθQ* is recursive.
(b) Ifg* is finite, then Θ£* e Πx.
(c) If Q* is r.e., thenθQ*eΣ2.

Proof: (a) In this case Θ5* is either p or N and thus recursive.
(b) Let R&1, . . ., Rk)n be the members of <££*. Then membership in ^ * is
provided by the Πi predicate:

zeΘ5*#Φ Vx[Ri(x) Ξ Rkχ(x)]v . . . v V*[Rf (*) = Rkn(x)].

(c) If i£j* is r.e. then it has a recursive universal predicate [by the previous
theorem]. Letting this predicate be Q, the Σ 2 predicate:

ieβQί*<^>3nVx[Ri(x) =Q(n,x)]

denotes membership inθ<2*.

3 Bases and standard index sets In this section several index sets will
be located in the arithmetic hierarchy. Knowing where these sets are will
help in locating other, more general sets. These "reference sets" [within
# * = {R0, Rl9 . . .}]are:

(a) β0 = {i\VxiRi(x)}
(b) ΘN ={i\VxRi(x)}

(c) Θ Equal = {<t,j> I V*[Rf (*) = Rj(x)]}
(d) Θ Finite = {i|R/(ΛΓ) for a finite number of x} = {i\3zVx[x > z =#>lRi(x)]}
(e) Θ Cofinite = {i \lRi(x) for a finite number of x} = {i \ 3z Vx[x > z =Φ R/(ΛΓ)]}

It should be obvious that the upper bound in the arithmetic hierarchy
for Θ0, ΘN!, and Θ Equal is U! and the upper bound for Θ Finite and Θ Cofinite
is Σ 2 . If <#* possesses several specific closure properties then there are
several immediate equivalences among these index sets [effective closure
under complement insures that Θj£ Ξ

m Θ N and Θ Finite =m Θ Cofinite] but the
only immediate relationships are between ΘN, Θ0, and Θ Equal. [It is
assumed throughout this section that these index sets are non-trivial in <#*.]

Lemma Θ 0 ^ m Θ Equal and ON ^ m Θ Equal.

Proof: If k e Θ0 then Θ0 ̂ m Θ Equal via:

g(i) = \i{i, k)

Since: ieβ0<ξ=¥VxΊRi(x)<=>Vx[Ri(x) = RjbW]^^^', k) eΘ Equal.

The proof of ΘN ̂ m Θ Equal is quite similar.
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Many classes of predicates can be used to characterize the r.e. sets
and knowing this about a class provides exact placement of the above index
sets in the arithmetic hierarchy. A class is said to be a basis for the r.e.
sets if it is powerful enough to yield them when closed under existential
quantification [14].

Definition The class of predicates /?* is a basis for the r.e. sets iff for
each r.e. set Wi there is a predicate Tf in <#* such that for all x:

xe Wi-^ΦΞx Ti(x,z).

These T-predicates are usually known as Kleene T-predicates and can
be intuitively described as:

Ti(x, z) = Turing machine ιMt halts in z steps for the input x.

The class <R* is known as an effective basis for the r.e. sets if there is a
recursive function g such that:

Vx, z[Rg{i)(x,z) = Ti{x,z)].

[In other words, the T-predicates can be found effectively within <#*.] Once
a class of predicates is known to be a basis for the r.e. sets the positions
of the index sets defined above are easily established.

Theorem 3 If <R* is effectively closed under explicit transformations and
is an effective basis for the r.e. sets then:

(a) Θ0, ΘN, andθ Equal are Hi-complete;
(b) Θ Finite andθ Cofinite are Σ2-complete.

Proof: Let the recursive function g provide the T-predicates, i.e., for all
x and z:

(a) The Πi-complete set

K = {i\VxΊTi(i,x)}

can be reduced to θfi via / which is defined:

R/ωW sR*ω (*',#).

Thus:

ie ~K<==> VAΠT/(Z\ X)<^> VxlRgu){i, x)<^> V Λ Π R / ( / ) M < H > / ( Z ) e Θ 0

and since K <mΘ0 and K is Πi-complete then so is Θ0.

Another U^complete set is

A = {i\VxTi(x,x)}

which is just the indices of all Turing machines which halt in x steps for
input x [9]. This set can be reduced to ΘN via the recursive function /
which is defined:
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Rfd)(x) Ξ Rg(i)(x,x).

Since:

i e A<==>Vx Ti(x, x)<=ΦVxRg{i) (x, J C ) O V * R / ( J ) (x)<^>f(i) € ON

then A ^ m ON and thus ON is Πi-complete.

O Equal is also Πi-complete because ON ̂ m O Equal and O Equal is a

Πi set.

(b) A Σ2-complete set which can be reduced to O Cofinite is

A = {i\3nVx[x> n=¥Ti(x,x)]}

or the indices of all Turing machines which halt in x steps for all but a

finite number of inputs [9]. The reduction is via / where:

R/«)W =Rgω(χ>χ)

The placement of O Finite is quite similar.

Many well known classes of predicates are bases for the r.e. sets

[such as the primitive recursive predicates, context sensitive languages,

and all of the classes in the Grzegorczyk hierarchy] but some classes of

predicates which are not have many subclasses with nonrecursive index

sets. An example is the context free languages for which O0 and O Finite

are recursive but ON and O Cofinite are not. This happens because they

are a basis for the co-r.e. sets [5].

Definition The class of predicates </?,* is an effective basis for the co-r.e,

sets iff there is a recursive g such that for each r.e. set Wf and all x:

xίWi<F>VzRgw(x9z).

[in this case the Rga) predicates compute the negation of the T-predicates.]

Theorem 4 If <#* is an effective basis for the co-r.e. sets and is effectively

closed under explicit transformations then:

(a) ON andΘ Equal are Πx-complete;

(b) O Cofinite is Σ2-complete.

Proof: Let the recursive function g provide the negations of T-predicates,

i.e., for all x and z:

Rg{i)(x,z) s-iT*(*,*).

(a) Again K will be used in the reduction, this time to ON via/ which is

defined:

Rfd)(x) =Rgu)(i,x).

Since:

i e κ<^> Vxl Ύi (i, x) <ΦVx RgQ) (i, x) <N> Vx R / ( i ) (x) <^> f(i) e ON

then H ̂ m ON and ON is IVcomplete.
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Θ Equal is Πx-complete because ΘIN ̂ m Θ Equal and Θ Equal is in Πi.

(b) First, consider the set:

A = {i\Wi is finite and Vx[xe W{ =^T, (#,#)]}

The set B = {i I W* is finite} can be reduced to A by means of the following
procedure which defines the Turing machine iM/(, ) on input x:

Write down a description of the Turing machine M;—if this
takes more than x steps then diverge, otherwise begin computing
Mΐ(0), Mij(l), . . . in the following manner: one step of M^O), one
step of iMi(l), two steps of M(ί (0), one step of ;Mjf (2), two steps of
Mi(ί)y three steps of IVÎ O), and so forth until ;Mi/(, ) has run for x
steps. If ',Mlf has accepted an input that was not detected during the
computation of M/(i)(0), . . ., Mfφix- 1) then halt, otherwise
diverge.

Note that M/d) halts for x in x steps or less whenever it halts and accepts a
finite set iff M,,- accepted one. Thusi? ^mA via/and so A is Σ2-complete.

The reduction of A to Θ Cofinite is accomplished by means of the
recursive / defined as follows:

Rfd)(x) =Rg{i)(x,x).

Recalling that Rgu){x,z) = iT{(xfz) and:

z ^ x ΛΎi(x, z)==> Ύi(x,x)

one arrives at the fact that:

i e A <£Φ 3n Vx, z [Ti(x, z) =#> z < x *z n]
<€Φ3nVx[Ύi(x,x)=Φx *z n]
Φ^3nVx[ΊRgϋ) (x, x) ==> x ^ n]
<=$>3n V#[lRy(, ) (x) =$> x < n]
<^>f(i)eθ Cofinite.

Since A is Σ2-complete so is Θ Cofinite.

The context free languages form a basis for the co-r.e. sets [5] if one
thinks of them as multi-parametered predicates under some simple
string-theoretic pairing function, and therefore their Σ* problem [i.e., Θ|\l]
is Πi-complete while their cofiniteness problem [Θ Cofinite] is Σ2-complete.
As mentioned above, it is quite well known that Θ0 and Θ Finite are recur-
sive for the context free languages [7].

4 General index sets Several index sets were classified in the last
section so that arbitrary index sets could be located in the arithmetic
hierarchy relative these "standard" sets. This can be done rather easily
if some information is given about the class of predicates being examined
and the index set which is to be classified. Again it is assumed that Λ* is
an enumerable class of recursive predicates [represented by Ro, Ri, . . .]
and that 5* is a non-trivial subclass of Λ*.
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Theorem 5 Let Λ\* be effectively closed under propositional connectives
and finite quantification, and let either of the following conditions hold:

(a) «Sj* contains no finite predicates
(b) Sl\* is closed under finite modification.

Then for any non-trivial subclass 3^ of </?(*, Θ0 <m ®9\*.

Proof: Since <£'* is a non-trivial subclass of Hw let H e a member of Θi&*
and let I be a member of Θ«g*. The theorem can now be proven by
reduction.

(a) Given a predicate R, a predicate Rgu) is to be constructed such that if
R, j is the null predicate [i.e., R, (#) is always false] then Rg(, ) will be a
predicate of i£|*, namely Rk. Rg(, > is defined as follows:

Rg(ί) (x) = Rk(x) AVZ^XI Ri(z)

If Rt is the null predicate then Rgu) will be true only where R* is true.
Thus:

ieΘ0=Φ VxiRi(x) ==> ix [Rg{iy(x) ^ Rk(x)] =>g{i) eΘ£*.

But if there is some x for which R, (ΛΓ) is true this forces R ^ ) (z) to be false
for all values of z greater than x, and so:

i f[eφ =£> 3x Ri(x) ==>> 3x Vz^xi Rg(i) (x)

=#>Rg(;) is a finite predicate =Φg(i)ί&ίlχ.

Therefore Op is reducible to Θ^*.

(b) In this case if Rί( is the null predicate Rga) will be Rk as before but if
for some x; R,j(̂ ) is true then Rga)l{z) will be the same as Rί(z) for all z
which are greater than x. This is accomplished by the definition of Rga) as:

Rg(*)/(#) = [&h(x) Λ Vz ^ xlRi(z)] v [R/(ΛΓ) Λ 3Z ^ xRi(z)]

If Rj, is the null predicate then Rg(t y is the same as R& [as in part (a)]
but if Rjl(x) is true for some x then Rga) is a finite modification of R/ and
therefore g(i) is a member of Θ£*. Thus Θ0 is reducible to Θ ^ .

The method used in the previous proof was the selection of a member
of «3|* if R; was null and a member of <#* - Q* if R, was true somewhere.
This procedure required some knowledge of either the membership of 3.¥
or at least one of its closure properties. However, if R\* contains the
machinery needed to diagonalize over ££.* then nothing need be known about
<2|* other than the fact that it is non-trivial.

Theorem 6 Let <R\* be a class of recursive predicates which is effectively
closed under propositional connectives and finite quantification and contains
the pairing predicates. Then, Θ0 is many-one reducible to the index set of
any non-trivial subclass of <K* whose universal predicate is in <#*.

Proof: Let 5* be a non-trivial subclass of ΛJ+, let Q(ifx) be its universal
predicate, and let &eΘ<g*. First a predicate will be defined [as in the



ON UNSOLVABILITY 63

previous theorem] which will be the same as Rk if the predicate Rf is null
[for arbitrary ί]. This predicate is:

S(i, x) s R (̂ΛΓ) Λ VZ < xiRi(z),

and it should be obvious that:

ieθ0=Φ\/x[S(i,x)^Rk(x)]=ϊS(i,x)e£*.

Next a predicate is defined which will diagonalize over S* whenever
there is some z such that Ri(z) is true. This is defined for x = (nf z) as:

D(f, <w, «»sR f .(«)ΛΊQ(Λ >^),

or

Ό(i,x) = 3n, z <ΛΓ[P 1 (W,JV)AP 2 U,^)ΛR # U ) Λ Ί Q ( » , ^ ) ] .

It is claimed that whenever ifίθfi, the predicate D(&',ΛΓ) cannot be in (2*.
Assuming that z/Θ0 and that D(z, #) is in 5* then there must be:

(a) a £ such that Rj(z) is true,

and

(b) an n such that V#[D(z,#) = Q(n,x)].

Consider D(i,x) for x = (n,z);

Ό(i9x) =Ό(i, (n,z)) = Ri(z)AlQ(n9x) =ΊQ(n,x) =ΊΌ(i,x).

This contradiction indicates that:

iίe0=ΦΏ(i,x)f!£*.

Since some form of the s™ Theorem is true for Λ?*, there are
recursive functions / and h such that for all i and x:

Rf(i)(x) = S(i,x) and Rha)(x) = Ώ(i,x).

Thus O0 is many-one reducible to Θi£* via the recursive function g which
is defined as:

RgU) (x) = S(i, x) v Ό(i, x)
= RfU)(x)vRm(x).

The previous theorems indicate that in order to classify Θ,i2* [where
5* is a subclass of <#*] either a little information must be available about
both classes or a lot of power must be present in <#*. The next result
shows the other side of this trade-off: that when many things are known
about 5*, then only a minimal amount of machinery need be contained
in ̂ * .

Theorem 7 If 5 * is a non-trivial subclass of <R* containing the null
predicate, <#* is effectively closed under finite existential quantification,
and either of the following holds:
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(a) «2|* is closed under finite modification and Λ* is effectively closed
under conjunction;
(b) 5|* contains no cofinite predicates

thenOφ *?mΘ5*.

Proof: Again the required reductions are accomplished by means of
predicate constructions. Assuming that Z/Θ^*, these are:

(a) Rgu) (x) = RI(X)Λ> 3Z ^ xRi(z)

(b) Rg(i)(x) =3z^xRi(z).

The details of the arguments are similar to those used in the previous
theorems.

The same kind of classification may be accomplished with the other
"standard" Πi-complete index set: ΘN. A result which expresses resource
trade-offs like the previous ones is stated in the following theorem.

Theorem 8 If 5* is a non-trivial subclass of <R* containing no finite
predicates, Λ* is effectively closed under finite universal quantification,
and either of the following holds:

(a) Λ* is effectively closed under conjunction;
(b) 5* contains the "always true" predicate;

thenON <mΘ5*.

Proof: By the reductions:

(a) Rg(/) (x) s RJ,{Λ;) Λ Vz ^ xRi{z) for some keθ£>\*,

(b) Rgd)(x) = Vz^xRj(z).

5 Using characteristic functions In this section, Θ Finite and Θ Cofinite
will be reduced to index sets of classes of predicates. The major technique
used will be diagonalization, but these results differ from Theorem 6 in
that counting is used as a major tool in the diagonalization. To accomplish
this with ease much of the work will be done within the class of functions
related to the class of predicates being examined. If Λ is a class of
recursive functions then ^ * is the class of predicates whose characteristic
functions are in H. It is assumed that the class R is recursively enu-
merable and that its standard enumeration is represented by the sequence
of functions r 0, rl9 . . .. An enumeration of /J* can then be specified as:

Ri(x) Ξ n{x) > 0.

A universal function for a subclass 5|* of Λ?ί* is of course the characteristic
function for a universal predicate of 51*. Two special functions used in the
next proof are the "sign functions" which are defined:

sgn(0) = 0
sgnί(ΛΓ+ 1) = 1,

and
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sgn(0) = 1

sgn(# + 1) = 0.

Since reductions from Θ Finite and Θ Cofinite to an index set can be quite
similar only the result involving Θ Finite is given here.

Theorem 9 Let <R be a class of recursive functions which contains the sign
functions, is effectively closed under composition and finite summation,
and whose class of predicates <#* is effectively closed under propositional
connectives. Then Θ Finite is many-one reducible to the index set of any
non-trivial subclass of Λ* which is closed under finite modification and
whose universal function is in R.

Proof: Let 3^ be a non-trivial subclass of Λ* whose universal function is
q(i,x), and let &eΘi£j*. First a predicate is defined which will be a finite
modification of R̂ , if R, . is true for only a finite number of x. This
predicate is:

S(i,x) = Rk(x) AiRi(x)

and obviously:

ieO Finite =Φ3xVz[z > χ=^>iRi(z)]
=Φ3xVz[z> x=ΦS(i,z) sRA(s)]
=ΦS(i,x)e%*.

Next a function is defined which counts the number of times R; has
been true on values less than or equal to x. This is

X

n(ifx) = Σ/ sgn[r, 0z)]
z= 0

and it is combined with the universal function to yield:

d(ifx) =T^ή[q(n(i9x)9x)].

Let d(i,x) be the characteristic function for the predicate Ό(i,x)9 which
of course is in Λ* since d(i, x) is a member of Λ. It should be noted that if
R/ is true for an infinite number of values then every integer occurs in the
range of n(i,x) and thus the predicate D(i,x) diagonalizes over 5*.
Therefore:

ifίΘ Finite =ΦD(z, #)/£•*.

The reduction is accomplished via the recursive function g which is
defined:

R gω (x) Ξ S(i, x) v [Ώ(i, x) Λ Ri{x)].

This theorem can be applied to the problem of deciding whether a
deterministic linear bounded automaton accepts a regular set. The deter-
ministic Ibα form is a basis for the r.e. sets [8], [10], and meet all of the
conditions of the theorem [12]. Therefore Θ Finite is Σ2-complete by
Theorem 3. Since the regular sets are closed under finite modification and
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have a universal function which can be computed by a linear bounded
automaton, Θ Finite ̂ m Θ Regular. The regular sets are an r.e. class; thus
Θ Regular is in Σ2 and is therefore Σ2-complete.

6 Discussion and open problems One thing which should be noted is that
in several of the above theorems the restrictions placed on classes of
predicates were often too severe. When classes were required to be
effectively closed under explicit transformation usually only the substitu-
tion of a constant was used in the proof. Also, instead of finite quan-
tification, some sort of bounded [by an increasing recursive function]
quantification would have sufficed. Thus any computational complexity
class which is a basis for the r.e. sets (such as the class of polynomial
time computable functions [1]) will satisfy the above theorems.

Several open problems related to this material are:

(a) When the universal predicate for a class of functions is contained in
that class, what does this imply about its index set?

(b) The basic unsolvability result concerning sets of indices of r.e. sets is
due to Rice [11]. It states that the only recursive index sets are (δ and N.
A similar result for index sets in subrecursive classes would be quite
interesting. An approximation to the desired result might be:

Theorem 10 If <R* is an effective basis for the r.e. sets which is effectively
closed under the operations of constructive definability t then its only
recursive index sets which are closed under finite modification are <p
and N.

Proof: The argument is identical to that of Rice. Let A be a non-trivial
index set of Λ?*. Then if Θ0 c A, let I be an index not in A and define:

Rg(i) (x) Ξ ] 2 < xTi(i, z) Λ Rj(x).

Upon examination one discovers that:

ieK=Φg(i)eθ0.

while

i e K =Φ Rg(/) is a finite modification of R/.

Therefore A cannot be recursive.

(c) A study of class properties such as recursively enumerable, recur-
sively presentable, and completely recursively enumerable might be
carried out along the lines established by Dekker and Myhill [2].

(d) A notion of subrecursively inseparable could easily be defined for these
classes and possibly used in computational complexity, [e.g., if A and B
are index sets which are subrecursively inseparable within H then they
must contain indices of predicates which are not in Λ.]

(e) Can subpart quantification [3x such that x is a substring of y] be used in
place of finite quantification in the above results?
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(f) What interesting observations emerge when Turing reducibility rather
than many-one reducibility is used? An easy result is that if Θ Equal is in
Uι (as it is when one considers a basis for the r.e. sets) then no r.e. class
has its index set above Σ2. And obviously no class which is both r.e. and
co-r.e. has an index set above Π^
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