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On the Elementary Theory of Restricted Real and
Imaginary Parts of Holomorphic Functions

Hassan Sfouli

Abstract We show that the ordered field of real numbers with restricted RH -
definable analytic functions admits quantifier elimination if we add a function
symbol �1 for the function x 7! 1

x (with 0�1 D 0 by convention), where RH

is the real field augmented by the functions in the family H of restricted parts
(real and imaginary) of holomorphic functions which satisfies certain conditions.
Further, with another condition on H we show that the structure .RH ; constants/
is strongly model complete.

1 Introduction

The quantifier elimination property is one of the central properties in model theory.
It was successfully used to demonstrate that various theories possess certain model-
theoretic properties like decidability and completeness. In 1948, Tarski showed
(see [5]) a quantifier elimination method for the elementary theory of real closed
fields. As noted by Tarski, any quantifier elimination method for this theory pro-
vides also a decision method, which enables one to decide whether any sentence of
the theory is true or false. Subsequently, Denef and van den Dries proved (see [1])
the strong result that the ordered field with restricted analytic functions admits quan-
tifier elimination if we add a function symbol �1 for x 7! 1

x
, where 0�1 D 0 by

convention. However, this result is not known in general for subclasses of the class
of restricted analytic functions. In this paper, we will give some classes where we
have a positive answer. More precisely, we will prove a quantifier elimination result
for the real field augmented by all restricted RH -definable analytic functions. Here
H is an arbitrary family of restricted real and imaginary parts of holomorphic func-
tions with certain conditions (see conditions (P1) and (P2) in Section 2) and RH is
the real field augmented by all functions of H . Moreover, under a new condition
(see condition (P3) in Section 2) on H we show that the structure .RH ; constants/ is
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strongly model complete. Throughout this paper, “definable” means “definable with
parameters.”

In Section 3, we will give some examples of the family H . In Section 4, we
shall recall the definition of Weierstrass systems and give some examples. In Sec-
tion 5, we prove the first main result. Finally, in Section 6, we will prove the model
completeness result mentioned above. Now we state the main results of this work.

2 Statement of the Main Results

Define I WD Œ�1; 1� and J WD .�1; 1/. For each nonnegative integer n and each
analytic function f W U ! R, where U is some open neighborhood of the closed
box I n in Rn, write dim.f / D n, and let ef W Rn ! R be defined by

ef .x/ WD � f .x/; x 2 I nI

0; otherwise:

We denote by F the collection of all ef . From now on, we fix a subset H of F such
that the following two conditions are satisfied:

(P1) Ifeh 2 H , then there iseg 2 H such that dim.h/ D dim.g/ D 2n, for some
n 2 N, and either hC ig or gC ih is holomorphic on J 2n � Cn, where we
identify Cn with R2 � � � � �R2 D R2n in the usual way.

(P2) Ifeh 2 H , then there are 0 < " < 1 andeg 2 H such that dim.h/ D dim.g/ D
2n, for some n 2 N, and h.x/ D g."x/ for all x 2 I 2n.

Let RH WD .R; <; 0; 1;C;�; : ;H / be the expansion of the ordered field of real
numbers by the functions in H , and let RD be the expansion of the ordered field of
real numbers by the functions in

D WD
nef 2 F W f is definable in RH

o
:

Finally, let .RD ;
�1 / be the expansion of RD by the function

x�1 WD

�
1
x
; x 2 R n f0g I

0; x D 0:

We can now state the first main result, proved in Section 5.

Theorem A The structure .RD ;
�1 / admits quantifier elimination.

Let R WD .RH ; constants/ be the expansion of RH obtained by adding a name
for each real number to the language. Let L be the language of R. A subset
A � Rn is strongly definable in R if there is a quantifier-free L-formula  .X; Y /,
X D .X1; : : : ; Xn/, Y D .Y1; : : : ; Yp/ such that A is defined in R by the existen-
tial formula 9Y .X; Y / and there is for each a 2 A exactly one b 2 Rp such that
R ˆ  .a; b/. The structure R is strongly model complete if its definable sets are
strongly definable in R. Given D � Rm, we call a map f W D ! Rn strongly
definable in R if its graph and the complement Rm n D of its domain are strongly
definable in R.

We consider the following condition:

(P3) if ef 2 H and dim.f / D n, then e@f
@xk
2 H , for k D 1; : : : ; n.

We can now state the other main result of this paper, proved in Section 5.

Theorem B If H also satisfies (P3), then the structure R is strongly model complete.
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The reader familiar with early work on o-minimal expansions of the real field may
have noticed that R, with (P3), is a structure to which Gabrielov’s theorem on reducts
of Ran applies (see [3]), and hence is model complete, but my main point here is to
prove that, with (P3), R is strongly model complete. As noted by van den Dries
(in [2]) strong model-completeness is the next best thing after quantifier elimination
and is stronger than model-completeness.

3 Examples of the Family H

Let h W V ! R be a harmonic function, where V is a simply connected open neigh-
borhood of I 2 in R2. Let h"k W k 2 Ni be a sequence of positive real numbers such
that "k < "kC1 < 1 for all k 2 N. Put Vk D

n
z
"k
W z 2 V

o
, and let fk ; gk W Vk ! R

be the analytic functions given by fk.z/ D @h
@y
."kz/ and gk.z/ D @h

@x
."kz/:Note that

Vk is an open neighborhood of I n. Now put

Hh WD

nef k ;egk W k 2 N
o
� F :

Proposition 3.1 The conditions (P1) and (P2) hold for the family Hh.

Proof The function h is harmonic and V is simply connected. By [4], §7.1.4, there
is a harmonic function g W V ! R such thatH WD hCig is holomorphic on V � C.
We have

@H

@y
D
@h

@y
C i

@g

@y
D iH 0;

where H 0 denotes the derivative of H , and by Cauchy-Riemann,

@h

@x
D
@g

@y
:

Then
@h

@y
C i

@h

@x
D iH 0:

Now it is easy to see that, for each k 2 N, the function fk C igk is holo-
morphic on J 2. Thus (P1) holds for Hh. On the other hand, 0 < "k

"kC1
< 1,

fk.z/ D fkC1.
"k
"kC1

z/, and gk.z/ D gkC1.
"k
"kC1

z/, for all k 2 N and all z 2 I 2.
Hence, (P2) holds for Hh.

Now put Hhar WD

nef 2 F W dim.f / D 2 and f is harmonic
o
:

Proposition 3.2 The family Hhar satisfy (P1), (P2), and (P3).

Proof Let ef 2 Hhar. We can assume that f W U ! R with U is a simply
connected open neighborhood of I 2 in R2. Hence, by [4], §7.1.4, there is a harmonic
function g W U ! R such that f C ig is holomorphic on U � C and eg 2 Hhar.
Thus (P1) holds for Hhar. Let r > 1 be such that r2:J 2 � U . We consider the
function u W r:J 2 ! R defined by u.z/ D f .rz/. It is clear that r:J 2 is an open
neighborhood of I 2 and u is harmonic. Theneu belongs to Hhar. Put " D 1

r
< 1. We

have f .z/ D u."z/ for all z 2 r:J 2, so that I 2 � r:J 2. Then (P2) holds for Hhar.

The functions @f
@x

and @f
@y

are harmonic, then f@f
@x

and f@f
@y

belong to Hhar. Therefore,
(P3) holds for Hhar.
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4 Weierstrass Systems

We shall use the following notations. Let K be either R or C, and let X D .X1; : : : ;
Xn/ be a tuple of distinct indeterminates with n � 0. We denote by K ŒŒX�� the
ring of formal power series in X1; : : : ; Xn over K, and by K hXi the ring of power
series over K in X1; : : : ; Xn which converge in some neighborhood of the origin.
The subring of polynomials over K in X1; : : : ; Xn will be denoted by K ŒX�. Recall
that a polydisc in Kn centered at a point a 2 Kn is an open set of the form

fx 2 Kn
W jx1 � a1j < r1; : : : ; jxn � anj < rng ;

where 0 < r1; : : : ; rn 2 R.
Following Denef and Lipshitz, we define a Weierstrass system over K to be a

family of rings hPn W n � 0i such that for all n the following three conditions hold:
(W1) KŒX� � Pn � K ŒŒX��, and if � is a permutation of f1; : : : ; ng and

f .X1; : : : ; Xn/ 2 Pn; then f .X�.1/; : : : ; X�.n// 2 Pn. Moreover, for
each m > 0, PnCm \K ŒŒX�� D Pn:

(W2) If f 2 Pn is a unit in K ŒŒX��, then f is a unit in Pn.
(W3) (Weierstrass division) If f 2 PnC1 and f .0;XnC1/ 2 K ŒŒXnC1�� is nonzero

of order d , then for every g 2 PnC1 there is q 2 PnC1 and there are rj 2 Pn,
j D 0; 1; : : : ; d � 1 such that

g D qf C .rd�1X
d�1
nC1 C � � � C r0/:

We say that a Weierstrass system over K as above is convergent if each f 2 Pn
converges on a polydisc � in Kn centered at 0 2 Kn, and is also such that for each
a 2 � the series

f .X C a/ WD
X
˛2Nn

@j˛jf

@X˛
.a/

X˛

˛Š

belongs to Pn: (Here ˛ ranges over Nn and we write j˛j D ˛1 C � � � C ˛n,
@X˛ D @X

˛1
1 : : : @X

˛n
n , X˛ D X˛11 : : : X

˛n
n , and ˛Š D ˛1Š : : : ˛nŠ.)

For each polydisc � � Cn centered at the origin let C� be the collection of
all power series h 2 C ŒŒX�� which converge on � to a holomorphic function
H W �! C definable in RH . Now, put Cn D

S
� C�, the union over all polydiscs

� � Cn centered at the origin. Clearly, the elements of Cn can be added and
multiplied in the usual way and are easily seen to form a local ring.

Proposition 4.1 hCn W n � 0i is a convergent Weierstrass system over C.

For the proof we require two lemmas.

Lemma 4.2 Let f; g 2 Cn and h 2 C hXi be such that f 6D 0 and g D f h. Then
h 2 Cn.

Proof We can assume that f , g, and h are functions defined on a polydisc� � Cn

centered at the origin. We suppose also that f and g are RH -definable. We have to
prove that the graph of h, �h, is RH -definable. Let

Y D fx 2 � W f .x/ D 0g :

Since � is connected, the interior of Y is empty; hence �nY \ � D �. The set
�h \ .�nY /�C is definable in RH . Hence so is �h \ .�nY / �C \��C. Since
h is continuous, we have �h D �h \ .�nY / �C \� � C: Hence the graph of h is
definable in RH .
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Lemma 4.3 Let f 2 CnC1 be such that f .0;XnC1/ 2 C ŒŒXnC1�� is nonzero
of order d , and let g 2 CnC1. Then there is q 2 CnC1 and there are rj 2 Cn,
j D 0; 1; : : : ; d � 1 such that g D qf C .rd�1Xd�1nC1 C � � � C r0/:

The proof of Lemma 4.3 is, modulo obvious changes, the same as that given for [2],
Lemma 3.6. (Use “RH -definable” in place of “strongly definable” and Lemma 4.2
in place of [2], Lemma 3.4).

Proof of Proposition 4.1 Clearly, (W1) and (W2) hold for the system C . Surely,
(W3) is essentially Lemma 4.3.

Put An D Cn\R ŒŒX��. Then A WD hAn W n � 0i is a convergent Weierstrass system
over R. Let LA be the language of ordered rings f<; 0; 1;C;�; : g augmented by a
new function symbol for each ef 2 F such that all translated series f .X C a/ with
a 2 I n belong to An, and denote by RA the reals with its natural LA-structure.
Then we have the following theorem.

Theorem 4.4 ([2]) The structure .RA;
�1 / admits quantifier elimination.

It is well known that the proof of the main results of [2] is based on some elemen-
tary properties of the functions sine and exponential (for example, eaCb D eaeb)
using complex power series methods. By van den Dries [2], 4.7, it seems plausible
that these results hold for elliptic functions. We ask the question: which restricted
real and imaginary parts of holomorphic functions? This paper gives an answer to
this question. For the proof of the main theorems of this paper we use also complex
power series methods and the fact that the real and imaginary parts of the Weierstrass
coefficients are in the same Weierstrass system (i.e., Corollary 5.5, that plays in this
paper the role of the properties of elementary functions that are used by van den
Dries in [2]). This paper is a generalization of the work of van den Dries [2]. Indeed,
we may create an example of the family H by the elementary functions (sine and
exponential) where we obtain the main results of [2]. The reader can remark that the
structures considered in [6] are examples of the structures RH (without parameters).
Wilkie [6] gives a characterization of functions locally definable in neighborhood of
generic points in terms of complex-analytically natural closure conditions. As noted
by Wilkie the structures of [6] are model complete but here we prove that (with pa-
rameters) they are strongly model complete. It is not hard to prove that if the conjec-
ture [6], 1.8 holds, then every function locally definable (in the structures considered
in [6]) is locally strongly definable, then it seems plausible that Theorem B could be
deduced (for the structures considered in [6]) if the characterization of Wilkie holds
in general case (not only in neighborhood of generic points). Now we prove the main
theorems of this paper.

5 Proof of Theorem A

Let X1; : : : ; X2n and Y1; : : : ; Yn be distinct indeterminates, and put X WD .X1; : : : ;

Xn/ and Y WD .Y1; : : : ; Yn/. We also letX 0 D .X1; : : : ; X2n/. Given g 2 C ŒŒX; Y ��,
then

g D
X
˛

g˛X
˛1Y ˛2 ;

and put
g� WD

X
˛

g˛X
˛1Y ˛2 ;
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where the sum is over all ˛ D .˛1; ˛2/ from Nn � Nn, all g˛ belong to C and
C ! C; z 7! z the usual conjugation. From now on,

Z D .Z1; : : : ; Zn/ WD .X1 C iY1; : : : ; Xn C iYn/:

If f 2 C ŒŒX��, f .Z/ 2 C ŒŒX; Y �� denotes the power series given by substituting
X D Z in f , and put

< Œf � WD
1

2
.g C g�/ and = Œf � WD

1

2i
.g � g�/;

where g D f .Z/. Note that < Œf � ;= Œf � 2 R ŒŒX; Y �� and the equality f .Z/ D
< Œf �C i= Œf � in this form is unique.

Theorem 5.1 Let f 2 An. Then < Œf � .X 0/ and = Œf � .X 0/ belong to A2n.

Lemma 5.2 If f 2 An and g1; : : : ; gn 2 Ap are such that g1.0/ D � � � D
gn.0/ D 0; then f .g1; : : : ; gn/ 2 Ap .

The proof of Lemma 5.2 is easy.

Lemma 5.3 Let k � 1 be an integer. If n � k and f 2 An, then there are
u; v 2 AnCk such that

f .Z1; : : : ; Zk ; XkC1; : : : ; Xn/ D .uC iv/.X; Y1; : : : ; Yk/:

Proof We proceed by induction on k. Assume that k D 1. Let n � 1 and
f 2 An. Put g.X; Y1/ D f .X1 C Y1; X2; : : : ; Xn/. Then by Lemma 5.2,
g.X;XnC1/ 2 AnC1. Introduce a new variable T ; by (W3), there are q 2 AnC2 and
r0; r1 2 AnC1 such that

g.X; T / D .Y 21 C T
2/q.X; Y1; T /C r1.X; Y1/T C r0.X; Y1/: (4.1)

By substituting T D iY1 in (4.1), we obtain

f .Z1; X2; : : : ; Xn/ D iY1r1.X; Y1/C r0.X; Y1/:

Then u D r0 and v D XnC1r1.
Now suppose that the lemma holds for each p such that 1 � p � k. Let n � kC1

and f 2 An. By the inductive assumption, there are u0; v0 2 AnC1 such that

f .Z1; X2; : : : ; Xn/ D u0.X; Y1/C iv0.X; Y1/: (4.2)

Moreover, by (W1) and the inductive assumption, there are s; t; s0; t 0 2 AnCkC1

such that

u0.X1; Z2; : : : ; ZkC1; XkC2; : : : ; Xn; Y1/ D .s C i t/.X; Y1; : : : ; YkC1/

and

v0.X1; Z2; : : : ; ZkC1; XkC2; : : : ; Xn; Y1/ D .s
0
C i t 0/.X; Y1; : : : ; YkC1/:

By substituting .X2; : : : ; XkC1/ D .Z2; : : : ; ZkC1/ in (4.2), we obtain

f .Z1; : : : ; ZkC1; XkC2; : : : ; Xn/ D .uC iv/.X; Y1; : : : ; YkC1/;

where u D s � t 0 and v D t C s0 belong to AnCkC1. Thus the lemma is proved.

Proof of Theorem 5.1 By Lemma 5.3 for k D n, there are u; v 2 A2n such
that f .Z/ D u.X; Y / C iv.X; Y /. Hence by uniqueness, u.X; Y / D < Œf � and
v.X; Y / D = Œf �.
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In what follows, we denote the coordinates in Cn by z D .z1; : : : ; zn/, with
zi D xi C iyi , xi D Re.zi / and yi D Im.zi / are, respectively, the real and the
imaginary parts of zi . Also, we consider the usual conjugation � W Cn ! Cn; z 7!

.z1; : : : ; zn/. If f 2 C ŒŒX�� � C ŒŒX; Y ��, then f � is well defined.

Proposition 5.4 If f 2 Cn, then f � 2 Cn.

Proof Let f 2 Cn. Then there is a polydisc � � Cn centered at the ori-
gin such that f converges on � to an RH -definable (holomorphic) function
H W � ! C. Clearly, �.�/ D � and f � converges on � to the holomorphic
function H SR W � ! C given by H SR.z/ D H.�.z//; H SR is the Schwarz
Reflection of H. Clearly, H SR is definable in RH . Hence f � 2 Cn.

Corollary 5.5 Let f 2 Cn. Then < Œf � .X 0/ and = Œf � .X 0/ belong to C2n.

Proof Put

r D
f C f �

2
and m D

f � f �

2i
:

Clearly, f D r C im and f .Z/ D r.Z/C im.Z/. We obtain then

< Œf � D < Œr� � = Œm� and = Œf � D = Œr�C< Œm� :

By Proposition 5.4, r;m 2 An. Therefore, by Theorem 5.1, < Œf � .X 0/ and
= Œf � .X 0/ belong to C2n.

Proposition 5.6 Leteh 2 H be such that dim.h/ D 2n. Then, for each a 2 I 2n,
the translate series h.X 0 C a/ belongs to A2n.

Proof According to (P1), there is eg 2 H such that dim.g/ D 2n and either
H D eh C ieg or G D eg C ieh is holomorphic on J 2n. We may assume that H
is holomorphic on J 2n. Otherwise, we replace H by G.

Suppose a 2 J 2n. Clearly, the translate series Ha WD H.X C a/ belongs to Cn;
then, by Corollary 5.5, < ŒHa� .X 0/ and = ŒHa� .X 0/ belong to C2n. Since

< ŒHa� .X
0/ D h.X 00 C a/ and = ŒHa� .X 0/ D g.X 00 C a/;

where X 00 D .X1; XnC1; : : : ; Xn; X2n/; by (W1), h.X 0 C a/ and g.X 0 C a/

belong to C2n. On the other hand, h.X 0 C a/; g.X 0 C a/ 2 R ŒŒX 0��. Then
h.X 0 C a/; g.X 0 C a/ 2 A2n.

Now suppose that a 2 I 2n. According to (P2), there are 0 < " < 1 andeg 2 H such that dim.g/ D 2n and h.x/ D g."x/ for all x 2 I 2n. Since
h.X 0 C a/ D g."X 0 C "a/ and "a 2 J 2n, by the above discussion and Lemma 5.2,
h.X 0 C a/ belongs to A2n.

Corollary 5.7 The structures RA and RD have the same definable sets.

Proof By compactness of I n, the restriction of each ef 2 LA on I n (where
n D dim.f /) extends to an RH -definable analytic function on some open neigh-
borhood of I n. We deduce that every RA-definable set is RH -definable. Moreover,
by Proposition 5.6, eacheh 2 H is definable in RA. Hence every RH -definable set
is RA-definable.

From the definition, every RD -definable set is RH -definable. Now, let ef 2 H .
By (P2), there are 0 < " < 1 andeg 2 H such that f .x/ D g."x/ for all x 2 I 2n.
Let 1 < � < 1

"
. The subset �:J 2n is an open neighborhood of I 2n and the analytic
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function l W �:J 2n ! R given by l.x/ D g."x/ is RH -definable. Sinceel D ef , ef
is RD -definable. Therefore, every RH -definable set is RD -definable.

We can now prove Theorem A.

Proof of Theorem A By compactness of I n, the restriction on I n of each ef 2 LA

extends to an RH -definable analytic function on some open neighborhood of I n.
Then RD is an expansion of RA in the first-order language extendingLA. By Corol-
lary 5.7, the structures RA and RD have the same definable sets. From Theorem 4.4,
.RD ;

�1 / admits quantifier elimination.

6 Proof of Theorem B

Let A, B, and C be semialgebraic sets, and let f W C ! B and g W A ! C be
strongly definable functions in R. Then the function f ı g W A! B; x 7! f .g.x//

is strongly definable in R. If f1; : : : ; fn W A ! R, then the function .f1; : : : ; fn/
is strongly definable in R if and only if each fj is strongly definable in R.
Furthermore, if each fj is strongly definable in R, then, for each polynomial
P 2 R ŒX1; : : : ; Xn�, the function P.f1; : : : ; fn/ is strongly definable in R.

Throughout the rest of this section, we suppose that H satisfies also (P3).
“Strongly definable” means “strongly definable in R.”

For each polydisc � � Cn centered at the origin let B� be the collection of all
power series h 2 C ŒŒX�� which converge on � to a strongly definable holomorphic
function H W � ! C and all partial derivatives @j˛jH

@z˛
are strongly definable. Now,

put Bn D
S
� B�, the union over all polydiscs � � Cn centered at the origin.

From [2], Bn may easily be seen to form a local ring.

Proposition 6.1 hBn W n � 0i is a convergent Weierstrass system over C.

The proof of Proposition 6.1 is, modulo obvious changes, the same as that given
in [2], (4.2).

Put Sn D Bn \ R ŒŒX��. Then S WD hSn W n � 0i is a convergent Weierstrass
system over R. Let RS be the expansion of the ordered field of real numbers by eachef 2 F such that all translated series f .X C a/ with a 2 I n belong to Sn. Then we
have the following theorem.

Theorem 6.2 Every definable set in RS is strongly definable .in R/.

The proof of Theorem 6.2 is, modulo obvious changes, the same as that given in [2],
(4.4)–(4.5).

Lemma 6.3 If f 2 Sp and g1; : : : ; gp 2 Sp are such that g1.0/ D � � � D
gp.0/ D 0; then f .g1; : : : ; gp/ 2 Sn.

Proof We may assume that g1; : : : ; gp 2 B� and f 2 B�0 , for some poly-
discs � � Rp and �0 � Rn centered at the origin. We suppose also that
.g1; : : : ; gp/.�/ � �

0. Clearly, H WD f .g1; : : : ; gp/ is strongly definable. By the
claim (see below), all @

j˛jH
@z˛

are strongly definable. Therefore, f .g1; : : : ; gp/ 2 Sn.

Claim For each ˛ 2 Nn, there are R1; : : : ; Rk 2 B�0 and Q1; : : : ;Qk 2 B� such
that @

j˛jH
@z˛
D
Pk
mD1Qm:Rm.g1; : : : ; gp/:
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We proceed by induction on j˛j. Assume that j˛j D 0. Since H D f .g1; : : : ; gp/,
the claim holds for j˛j D 0. Now, let ˛ 2 Nn and assume that

@j˛jH

@z˛
D

kX
mD1

Qm:Rm.g1; : : : ; gp/;

for some k � 1, R1; : : : ; Rk 2 B�0 andQ1; : : : ;Qk 2 B�. For each l D 1; : : : ; n,
we have

@

@zl

�@j˛jH
@z˛

�
D

kX
mD1

@

@zl
.Qm:Rm.g1; : : : ; gn//

D

kX
mD1

@Qm

@zl
Rm.g1; : : : ; gp/C

kX
mD1

pX
jD1

Qm
@gj

@zl
:
@Rm

@zj
.g1; : : : ; gp/:

Since @Qm
@zl

;Qm
@gj
@zl
2 B� and @Rm

@zj
2 B�0 , the claim holds for j˛j C 1.

Lemma 6.4 Let H W � ! C be a holomorphic function, where � � Cn is a
polydisc centered at the origin. We suppose that H is strongly definable and all
partial derivatives @j˛jH

@z˛
are strongly definable. Then the Schwarz Reflection of H,

H SR, is strongly definable and all partial derivatives @
j˛jHSR

@z˛
are strongly definable.

Proof Clearly, H SR is strongly definable. Moreover, if f 2 C ŒŒX��, then
@j˛jf �

@X˛
D

�
@j˛jf
@X˛

��
(see Section 5 for the definition of the map �). It follows then

that @j˛jHSR

@z˛
D
�
@j˛jH
@z˛

�SR. Therefore, all partial derivatives @j˛jHSR

@z˛
are strongly

definable.

Lemma 6.5 Let eh;eg 2 H be such that dim.h/ D dim.g/ D 2n and H D

.egC ieh/jJ 2n is holomorphic, where .egC ieh/jJ 2n is the restriction ofegC ieh on J 2n.
ThenH is strongly definable and all partial derivatives @

j˛jH
@z˛

are strongly definable.

Proof In this proof, if ef 2 H and dim.f / D 2n, then bf denotes the restriction
of ef on J 2n. Clearly, H is definable in R by a quantifier-free LR-formula. Hence
H is strongly definable. By the claim (see below), all partial derivatives @j˛jH

@z˛
are

definable in R by quantifier-free LR-formulas. Hence they are strongly definable.

Claim For each ˛ 2 Nn, there is a positive integerm and there are P 2 CŒX1; : : : ;
Xm� and ef 1; : : : ;ef m 2 H such that dim.f1/ D � � � D dim.fm/ D 2n and
@j˛jH
@z˛
D P.bf 1; : : : ;bf m/:

We proceed by induction on j˛j. For j˛j D 0, we have

H D .eg C ieh/jJ 2n Dbg C ibh:
Hence the claim holds for j˛j D 0. Let ˛ 2 Nn. We suppose that the claim holds for
˛. We have

@j˛jH

@z˛
D P.bf 1; : : : ;bf m/

of the required form. Then, for each l D 1; : : : ; n,

@

@zl

�@j˛jH
@z˛

�
D

@

@zl
.P.bf 1; : : : ;bf m//:
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Put P D RC iT , with R; T 2 RŒX1; : : : ; Xm�. Say F WD .bf 1; : : : ;bf m/. Then

@

@zl
.P.F // D

1

2

� @

@xl
.P.F // � i

@

@yl
.P.F //

�
D
1

2

� @

@xl
.R.F //C

@

@yl
.T .F //C i

� @

@xl
.R.F // �

@

@yl
.T .F //

��
:

Let S be either R or T , and let tl be either xl or yl . We have

@

@tl
.S.F // D

mX
jD1

@bf j
@tl

:
@S

@Xj
.F /

D

mX
jD1

b@fj
@tl
:
@S

@Xj
.F /:

By (P3), all
f@fj
@tl

belong to H , and clearly dim
�
@fj
@tl

�
D 2n. Therefore, the claim

holds for j˛j C 1.

Proposition 6.6 Leteh 2 H be such that dim.h/ D 2n. Then for each a 2 I 2n

the translate series h.X 0 C a/ belongs to S2n.

Proof According to (P1), there is eg 2 H such that dim.g/ D 2n and either
H D eh C ieg or G D eg C ieh is holomorphic on J 2n. We may assume that H
is holomorphic on J 2n. Otherwise, we replace H by G.

Suppose a 2 J 2n. By Lemma 6.5, the translate series Ha WD H.X C a/

belongs to Bn. By Proposition 6.1 and Lemmas 6.3–6.4, Corollary 5.5 also
holds for the system hBn W n � 0i. Then < ŒHa� .X 0/ and = ŒHa� .X 0/ belong
to B2n. Since < ŒHa� .X 0/ D h.X 00 C a/ and = ŒHa� .X 0/ D g.X 00 C a/;

where X 00 D .X1; XnC1; : : : ; Xn; X2n/; by (W1), h.X 0 C a/ and g.X 0 C a/

belong to B2n. On the other hand, h.X 0 C a/; g.X 0 C a/ 2 R ŒŒX 0��. Hence
h.X 0 C a/; g.X 0 C a/ 2 S2n.

Now suppose that a 2 I 2n. According to (P2), there are 0 < " < 1 andeg 2 H such that dim.g/ D 2n and h.x/ D g."x/ for all x 2 I 2n. Since
h.X 0 C a/ D g."X 0 C "a/ and "a 2 J 2n, by the above discussion and Lemma 6.3,
h.X 0 C a/ belongs to S2n.

Proof of Theorem B By Proposition 6.6, eacheh 2 H is definable in RS . Hence
every R-definable set is RS -definable. Therefore, by Theorem 6.2, the structure R

is strongly model complete.
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