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COMPACT CONNECTED LIE GROUPS
ACTING ON SIMPLY CONNECTED 4-MANIFOLDS

HAE SOO OH

Suppose a compact connected Lie group G acts effectively on a
simply connected 4-manifold M. Then we show that G is one of
the groups SO(5), SU(3)/Z(G), SO(3) X SO(3), SO(4), SO(3) X T\
(SU(2) X Tι)/D, SU(2), SO(3), Γ2, T\ and that the representatives
of the conjugacy classes of the principal isotropy groups for these
groups on M are, respectively, SO(4), 17(2), Γ2, SO(3), S\ S\ SO(2) or
e, SO(2) or D2n9 e, and e. We also show that in each of these cases M
is a connected sum of copies of S4, S2 X S2, CP2, and -CP2 (except
when G is T\ see Theorem 2.6).

1. Introduction. All manifolds in this paper are assumed to be

closed, connected and orientable. Also all actions are assumed to be

effective and locally smooth. Orlik-Raymond [O-R] showed that if a

simply connected 4-manifold admits an action of the two-dimensional

torus group Γ 2, then M is a connected sum of copies of S 4, S2 X S2,

CP2, and -CP2. Fintushel [F2] proved that if M admits a circle action and

the orbit space M* is not a counterexample of Poincare's conjecture, then

M is also a connected sum of copies of these manifolds.

In this paper we determine all Lie groups which can act on a simply

connected 4-manifold M, and dually we classify all simply connected

4-manifolds which admit an action of a given compact connected Lie

group G.

An isotropy group H is & principal if H is conjugate to a subgroup of

each isotropy group (that is, G/H is a maximum orbit type for G on M).

One denotes by G(x) the orbit of G through x, and by Gx the isotropy

group at x. A maximal torus T is a compact connected abelian Lie

subgroup which is not properly contained in any larger such subgroup.

We denote the normalizer of G by N(G), and the centralizer of G by

Z(G). Let χ ( M ) denote the euler characteristic of a space M. Then it is

well known that χ(G/T) is the order of N(T)/T.

2. The rank of a Lie group G which can act on a simply connected
4-manifold M. Suppose AT is a subgroup of G which acts on a topological

space X. Then the action of G on X may not be effective even if the action

restricted to K is effective. But the maximal torus theorem gives rise to the

following.
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LEMMA 2.1. A compact connected Lie group G acts effectively on a

topological space X if and only if the action restricted to a maximal torus T

of G is effective.

Proof. Suppose G does not act effectively. Then there exists at least

one element g Φ e in G such that gx = x, for all x E X. It follows from

the maximal torus theorem that there exists an element / ι E 6 such that

g E hTh~λ. Hence h~xgh E T. Thus we have (h~]gh)x = h~xg(hx) =

h~ ιhx = x, for all x E X , which says that the action restricted to T is not

effective. D

By the rank of a Lie group G, we mean the dimension of a maximal

torus of G.

LEMMA 2.2. // a compact connected Lie group G acts on a simply

connected 4-manifold M, then the rank of G is less than 3.

Proof. Suppose the rank of G is > 3. Then M admits an effective

Γ3-action. By [P], M is homeomorphic to either T4 or L(p,q) X T\

which contradicts the simple connectivity of M. D

It is known that every compact connected Lie group of dimension

< 6 can be represented as a factor group G/F, where G — Gλ X G2

X XGn is a product; each factor G, is either SO(2) or SU(2) ( = S3),

and F is a finite subgroup of the center of G.

From now on G is a compact connected Lie group acting on a simply

connected 4-manifold M, and H is a principal isotropy group for G on M.

(Note: any two principal isotropy groups are conjugate to each other.

Actually H denotes a representative group of the conjugacy class of prin-

cipal isotropy groups.)

LEMMA 2.3. Suppose the rank of G is 2 and the rank of H is 0. Then G is

the two-dimensional torus group T2.

Proof. From [B, p. 195], we have the following inequality:

(*) dim M - dim G/H - (rank G - rank H) < dim M - 2 rank G.

Since we assumed rank H — 0, then dim G/H < 4. Hence the inequality

gives rise to 4 > dim G/H > rank G = 2. Since dim G — rank G should be

an even integer, dim G ( = dim G/H) must be either 4 or 2.
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If dim G is 4, then G acts transtively on M (that is, M — G/H). Since
a compact connected Lie group of dimension 4 and of rank 2 is either
SU(2) X SO(2) or a factor group of this by a finite subgroup, G/H cannot
be simply connected. We thus have dim G = 2 = rank G. Hence G is
T2. •

LEMMA 2.4. // a compact connected Lie group G acts on a simply

connected 4-maniJvld M', then we have the following:

(i) //rank G = 2 and rank H = 2, then dim G is 10, 8, or 6;
(ii) if rank G — 2 and rank H — 1, then dim G/H = 3 and dimG is

either 6 or 4;
(iii) //rank G ^ 2 and rank // = 0, /ACT G = Γ2;
(iv) ίAe orbit space M* is a simply connected manifold with boundary.

Proof. From [B, p. 195], we have an inequality,

(**) 4 > dim G/H > rank G + rank //.

It is known [M-Z] that if the maximal dimension of any orbit is k, then
dimG < k(k + l)/2. Thus dimG < 10. Since dimG — rank G is an even
integer, dim G is 10, 8, 6, 4, or 2, provided rank G is 2.

(i) If rank G = 2 and rank H — 2, then it follows from inequality
(**) that dim G/H = 4. Hence dim G>6.

(ii) If rank G = 2 and rank H = 1, then by (**), dimG/// is either 3
or 4. Suppose dim G/// = 4. Then dim // (= dim G - dim G/H) is 6, 4,
or 2. On the other hand, rank H = 1 implies that the identity component
of H is SO(2), SO(3), or SU(2). Hence dim G/H should be 3. By [M-Z],
dim G < i(dim G/7/)(dim G/7/ + 1) = 6.

(iii) was shown in Lemma 2.3.
(iv) If rank G = 2 and rank H > 1, then (**) implies that dim G/7/ is

either 4 or 3. If rank G = 2, and rank // = 0, then by (iii), we have
G= T2.

Thus if rank G = 2, the orbit space M* is D{\ D\ or D2 (cf. Lemma
5.1 [O-R]). If rankG = 1, then G is SO(2), SO(3), or SU(2). Since any
proper subgroups of SO(3) and SU(2) are of dimension < 1, if G is either
SO(3) or SU(2), then dimG/// should be > 2. Hence M* is Z)1, £>2, or S2.
If G = SO(2), then by Lemma 3.1 [F,], M* is a simply connected
3-manifold with boundary. D

If an abelian group G acts effectively on a manifold M, then the
principal isotropy group // is trivial. We have shown that if rank G = 2
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and rank H = 0, then G is T2, hence H is trivial. In this case, the

manifolds are determined by the following theorem.

THEOREM 2.5. [O-R] If M is a simply connected 4-manifold supporting

an effective T1-action, then M has k ( > 2)-fixed points, and

M

S4, ifk = 2;

CP2or-CP2, ifk = 3;

S2 X S2,CP2#CP2, CP2#-CP2,or-CP2#~CP2, ifk = 4;

a connected sum of copies of these spaces, if k > 4.

THEOREM 2.6. [F2] Let SO(2) act locally smoothly and effectively on the

simply connected 4-manifold M, and suppose the orbit space M* is not a

counterexample to the 3-dimensional Poincare conjecture. Then M is a

connected sum of copies of S4, CP2, -CP2, and S2 X S2.

Suppose a compact Lie group G acts on a compact connected mani-

fold M so that the orbit space M/G is a closed interval [0,1], and let G(x)

and G(y) be the orbits corresponding to 0 and 1 respectively. Then G(x)

and G(y) are singular orbits and all other orbits are principal orbits of

type G/H. Moreover, we may assume H C Gx and H C Gv. The following

lemma was proved by Mostert [Mo].

LEMMA 2.7. [Mo] // a Lie group G acts locally smoothly and effectively

on a manifold M so that M/G is a closed interval, then Gx/H and Gγ/H are

spheres.

3. The case of rank G — 2.

3A. Suppose rank G — 2 and rank H — 2. Then by Lemma 2.4, dim G

is 10, 8, or 6. Inequality (**) implies άϊmG/H — 4 and hence M is a

homogeneous space.

(i) It follows from [E, p. 239] that if dimG = 10, then M is S4 or

RP4. Since M is simply connected, M is S4. Hence [Wo, p. 282] gives rise

to G = SO(5) and H = SO(4).

(ii) It is known [Wa] that if n(n - l)/2 + 1 < dimG < n(n + l)/2,

n — dim M, then n — 4. Mann [Ma] proved that the effective action of

SU(3)/Z(SU(3)) of dimension 8 on the complex projective plane CP2 —

SU(3)/C/(2) is the only exceptional possibility for n — 4.

(iii) If dim G — 6, then dim H should be 2. Since G is assumed to be

connected and G/H — M is assumed to be simply connected, the homo-

topy exact sequence of the fibre bundle implies that H is also connected,
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hence H is T2. The Lie group G of dimension 6 and of rank 2 is either
SU(2) X SU(2), or a factor group of this by a finite subgroup. Since
Z(SU(2) X SU(2)) = {(1,1), (-1,1), (1,-1), (-1,-1)} is contained in a
maximal torus (and hence in //), SU(2) X SU(2) is not admissible. For
similar reasons, SO(3) X SU(2), SU(2) X SO(3), and SO(4) are not admis-
sible. Hence (SU(2) X SU(2))/the center = SO(3) X SO(3) is the only
admissible group. Hence M is S2 X S2. D

We recall some properties of SO(3) (see [R]).
(1) Every subgroup of SO(3) is conjugate to one of the following:

SO(2), iV(SO(2)), the cyclic group Zk of order k, the dihedral group Dn of
order 2n, the groups T, 0, / of all rotational symmetries of the tetra-
hedron, octahedron, and icosahedron, respectively.

(2) If V is a finite subgroup of SO(3), then SO(3)/K is an orientable
3-manifold with JΪ2(SO(3)/F) = 0. Using the double covering TΓ: SU(2)
-> SO(3) we can calculate the first homology group of SO(3)/F:

Hx(SO(3)/Zk) - Z2k9 Hλ{SO(S)/Dln) = Z2 + Z 2 ,

Hι(SO(3)/D2n+x) = Z 4, Hλ(SO(3)/T) - Z3,

Hl(SO(3)/O) = Z 2, #,(80(3)//) - 0.

In the following K denotes the preimage of K C SO(3) under the covering
map.

3B. Suppose rank G — 2 and rank H — 1. Then by Lemma 2.4, dim G
is either 6 or 4 and dim G/H is 3.

(I) If dim G = 4, then G is SU(2) X Tλ or a factor group of this by a
finite subgroup. Since dimG/// is 3, dim H is 1. Since any 1-dimensional
subgroup of SU(2) X Γ1 contains a non-trivial element of Z(SU(2) X Γ1)
= {1,-1}XΓ I, it is not admissible. The remaining possibilities are
SO(3) X Γ !and(SU(2) X T])/D, where/) - {(1,1), (-1,-1)}.

(la) Suppose G is (SU(2) X Tι)/D. Then the identity component Ho

of H cannot be included in (SU(2) X Y)/D since (SO(2) X X)/D contains
(-1, \)/D (GZ(G)). Nor can Ho be (1 X Tι)/D since (1 X Tx)/D is a
subgroup of Z(G). Hence by using an argument similar to that of 8.1 of
[R], we can show that H is included in a maximal torus of G.

Since dim G/H is 3, the orbit space M* is a closed interval [0,1]. That
is, the orbit space M* is as shown below.

H

Gx Gy

By Lemma 2.7, Gx/H and Gγ/H are spheres. But^(NSO(2) X T])/D)/H
is not a sphere. Hence Gx (and also Gv) must be (SO(2) X Tι)/D or G.
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(i) If Gx and Gv are maximal tori, then the number of fixed points of

the action restricted to Gx is either 2 or 4 since the order of N(GX)/GX is

χ(G/Gx) = 2. Now it follows from Theorem 2.5 that M is S4 or an

S2-bundle over S2 according as the number of fixed points is 2 or 4. Let

A = p~\[0, $]) and B = p'\[09 £]), where/?: M -> M* = [0,1] is the orbit

map. From the Mayer-Vietoris sequence for (Af, A, B), we have

0 -> H3(M) -* H2(G/H) -* Z θ Z -> H2(M) -> Hλ{G/H) -» 0.

Now we have

(G/H)/ {[(S6(2) X Tι)/D]/H}

«[(SU(2) X ΓI)/Z)]/[(SO(2) X Γ1)//)]

« (SU(2) X Γ 1 ) / (SO(2) X Γ ' j ^ S 2

(see [B, p. 87]). Since [(SO(2) X T])/D]/H is a topological group, the

fundamental group of this is abelian. From a homotopy exact sequence of

the fibre bundle [(SO(2) X Tx)/D]/H -» G/H -> S2, we can see that

π}(G/H) is abelian, hence Hλ(G/H) = π}(G/H).

From the homotopy sequence of the fibre bundle H -> G -> G///, we

have

0 -> ττ2(G/H) -> Z^Z^ πx(G/H) -+ πQ(H) -> 0.

If M is S 4, then from the homology sequence we have π2(G/H) = Z θ Z

which contradicts the homotopy sequence. Hence the number of fixed

points must be 4. Therefore we have Gx — Gv which implies ττx{G/H) — 1,

and hence H is connected. Thus H is S] and M is either S2 X S2 or

CP2#-CP2.
(ii) If Gx and Gv are G (i.e. x and _y are fixed points), then the

homotopy exact sequence of a fibre bundle H -> G -» G//^ = G v/// « S 3

yields H^S]. Furthermore, the number of fixed points of the action

restricted to (SO(2) X T])/D is two. Hence, by Theorem 2.5, we have

M — S4 (alternatively,

(iii) If Gx is G and Gv is a maximal torus, then by an argument similar

to that used in (ii), H is connected and hence H is Sι. The number of fixed

points of the action restricted to Gv is 3 and hence it follows from

Theorem 2.5 that M is CP2.

(Ib) Suppose G is SO(3) X Tι. Then by 8.1 of [R], H is contained in a

maximal torus or conjugate to either SO(2) X 1 or JV(SO(2)) X I . But
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(SO(3) X l)/(iV(SO(2)) X 1) = RP2 X S 1 is not orientable and hence by

[B, p. 188], H cannot be N(SO(2)) X 1. (1) If H is contained in a maximal

torus, then neither Gx nor Gv can be G since (SO(3) X Tx)/H is not a

sphere. Hence by an argument similar to that of (la), H is S] and M is

S2 X S2 or CP2#-CP2. (2) If H is SO(2) X 1, then by Lemma 2.7, there

are three possibilities:

(i) Gx » SO(2) X Γ ' « Gy, which implies AT = S2 X S 2 .

(ii) G, « SO(3) and Gy « SO(2) X Γ\ which implies M = [(S 2 X /)2)

U (/) 3 X S1)] = S 4 .

(iii) GΛ « SO(3) « Gv, which implies M = S 3 X S1, not admissible.

(II) If dim G = 6, then dim // should be 3. Since the rank of G is 2, G

is SU(2) X SU(2), SO(3) X SU(2), SU(2) X SO(3), or (SU(2) X SU(2))//),

where/) ={(1,1), (-1,-1)}.

Assertion. Suppose Ho is the identity component of a 3-dimensional

subgroup H of SU(2) X SU(2) and let pi be the projection onto the /th

factor, for / = 1,2. Then Pj\H0, the restriction of /?, to i/0, is either a

trivial map or an isomorphism.

To prove this Assertion, first of all we have to show that pi \ Ho is

either trivial or surjective. Suppose p{ \ Ho is neither surjective nor trivial.

ThenPi(HQ) should be either SO(2) or 7V(SO(2)), and hence the kernel of

p,\H0 is a two-dimensional normal subgroup of Ho. This is impossible.

Hence p] \ Ho or p2 \ Ho must be surjective. Suppose p] \ Ho is surjective and

let K be the kernel of/?, |Ho. Then Ho/K « SU(2). Since SO(3) is simple,

Ho cannot be SO(3). If Ho is SU(2), then K = <πλ{H0/K) - *r,(SU(2)) = 1.

Thus^! I Ho is an isomorphism and Ho « SU(2). D

(Ha) If either pλ \H0 or p2\H0 is trivial, then H « SU(2) X F, for a

finite subgroup F, which contains a normal subgroup of SU(2) X SU(2).

Since H cannot contain a normal subgroup of SU(2) X SU(2), px\HQ and

p21 Ho must be isomorphisms. Therefore, H contains the two elements

central subgroup D. Thus SU(2) X SU(2) is not admissible.

(lib) If G is SO(4) ( » (SU(2) X SU(2))//)), then a principal isotropy

group is H/D, where H is a three-dimensional subgroup of SU(2) X SU(2)

such thatpλ(H) = SU(2) = p2(H).

If x* and j ; * are the endpoints of a closed interval M/SO(4), then x

and y should be fixed points so that Gx (and also Gv) could contain H as a

conjecture subgroup. In fact, suppose K is a subgroup of SU(2) X SU(2)

such that H C K and dim K > 4. Then dim AT is either 4 or 6 since rank G

is 2. If dim AT is 4, then the kernel of Px is an 1-dimensional subgroup of

K. So # contains 1 X SO(2). For any g G SU(2), there exists h G SU(2)
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such^that (A, g) G K. Moreover, (A, g)~\\ X SO(2))(/z, g ) = l x
g" !SO(2)g C K. By the maximal torus theorem, we have 1 X SU(2) C K.

Similarly, SU(2) X l c ί . Hence K= SU(2) X SU(2). Since G/(H/D)

must be S3 (by Theorem 2.7), by a homotopy exact sequence of H/D -> G

-> S 3, ///Z) is connected. Since Ho/D « SU(2)/D « SO(3), ///£> is SO(3)

and hence M is S4.

(He) If G is SO(3) X SO(3), then by an argument similar to the

Assertion, we can show that x and y should be fixed points so that Gx (and

Gv) can contain a non-normal 3-dimensional subgroup H as a conjugate

subgroup. But (SO(3) X SO(3))/7/ cannot be a sphere. Hence SO(3) X

SO(3) is not admissible.

(Hd) If G is SU(2) X SO(3), then by an argument similar to that used

in the proof of the Assertion, Pι | Ho is either a trivial map or an

isomorphism. If P, | Ho is trivial, then H is V X SO(3) for a finite

subgroup V of SU(2), which contains a normal subgroup 1 X SO(3). If

P\\H0 is an isomorphism, then H contains {(-1,1), (1,1)} ( C Z ( G ) ) .

Hence SU(2) X SO(3) is not admissible.

As a summary we have the table:

TABLE I

D

dimG

10
8
6

6
4
4

2

rank//

2
2
2

1
1
1

0

G

SO(5)
SU(3)/Z(G)

SO(3) X SO(3)

SO(4)
SO(3) X Γ1

SU(2) XT]/D

T2

H

SO(4)
U(2)/Z(G)

T2

SO(3)

s]

e

M

S4

CP2

S2 X S2

s4

S2 X S2,S4,CP2#-CP2

S4, CP2, S2 X S2, CP2#-CP2

Theorem 2.5

Here Sι is a circle subgroup and D is the two element central subgroup

{(1,1), (-1,-1)}.

4. The case of rank G = 1. If a compact connected Lie group G is of

rank 1, then G is T\ SO(3), or SU(2), and the rank of H must be either 1

orO.

4A. Suppose rank H = 1. Then G is either SO(3) or SU(2).

(i) If G = SO(3), then H is either SO(2) or N(SO(2)). Since

SO(3)/W(SO(2)) = RP2 is not orientable, // should be SO(2). Since

SO(3)/SO(2) is S2, the orbit space M* is either S 2 or D2. If M* is S 2 ,

then M is an 5'2-bundle over S2. If M* is D2, then 3Z)2 corresponds to the

fixed points and int D2 corresponds to the principal orbits. Hence M is

S\
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(ii) If G — SU(2), then by an argument similar to that used in (i), H is

SO(2), and M is either S4 or an S2-bundle over S2.

4B. Suppose rank H = 0. Then G is T\ SO(3), or SU(2).

(i) If G is Γ1, then H must be trivial and M was described in

Theorem 2.6.

(ii) If G — SO(3) and x* and 7* are the endpoints of M*, then Gx and

Gy are conjugate to SO(2), iV(SO(2)), or SO(3). By Lemma 2.7, none of x

and y are fixed points and Gx should be conjugate to Gv.

(iia) If Gx and Gv are conjugate to 7V(SO(2)), then H is a dihedral

group Z>2/? (since Gx/H and G v /i/ must be spheres). Richardson [R]

showed that S4 admits an action of SO(3) such that S4/SO(3) = [x*9 y%

a closed interval, H = D2n9 (SO(3))(x) = RP2 = (SO(3))(.y). Since the

orbit maps M -> M/G and S 4 -> S4/SO(3) have cross-sections ([Mo],

[R]), M is equivariantly homeomorphic to S4.

(iib) If Gx and Gy are conjugate to SO(2), then H should be a cyclic

group Zk and M is the space [0,1] X SO(3)/Zk with 0 X SO(3)/ZA

collapsed to SO(3)/GΛ ( « S 2 ) and 1 X SO(3)/ZA collapsed to SO(3)/GV

( « 5 2 ) . Let /? be the orbit map. Let A = ρ'\[09 {]) and B = p~\[{, 1]).

From the Mayer-Vietoris sequence for (M, A, 5), we have H2(M; Q) =

Q® Q and hence χ ( M ) = 4. Now we consider the action restricted to Gx

( ^ Γ 1). The set of fixed points under the restricted action is contained in

G(x) U G(y). Since N(GX)/GX is Z 2 , there are only two fixed points for

Gx on G(JC), and hence there are at most four fixed points under the

restricted action. Let F(GX, M) denote the set of fixed points. Then it is

well known that χ(F(Gx, M)) — χ(M) — 4. Therefore there are four

fixed points for Gx on M, which implies Gx — Gv. Since H3(M; Z) —

//,(M; Z) = 0, H2(M; Z) is torsion free and hence H2{M\ Z) is Z θ Z.

The Mayer-Vietoris sequence gives rise to

0 - ^ Z Θ Z1*^* ZΘZ-+ //,(SO(3)/ZA Z) -* 0.

Here i# and j# are induced by inclusions /: A -> M and j : B -> M

respectively. Since Gx — Gv, / andy are virtually the same maps. Hence

( Z θ Z)/im(i* ®y*) = Zn θ Zn for an integer n, which contradicts

HX(SOQ)/Zk\ Z) = Z 2 , .

(iii) If G is SU(2) and π is the double covering map, then the only

subgroups of SU(2) which do not contain the kernel of π are cyclic

subgroups of odd order. Hence every subgroup K of SU(2) contains

Z(SU(2)) unless AT is a cyclic group of odd order. Since the action was

assumed to be effective, H is either Z2k+, or e. By an argument similar to

that used in (ii) of 4B, we can show that H cannot be Z2k+X. If H is the
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identity, then by Lemma 2.7, there are three possibilities:
(a) x and y are fixed points, which implies M ^ S4.
(b) Gx is conjugate to SO(2) and y is a fixed point, which implies

M « CP2#S4 (Recall: SU(2) -> SU(2)/SO(2) is the Hopf bundle).
(c) Gx and Gv are conjugate to SO(2), which implies M ~ CP2#~

CP2. D

We summarize these in the following table:

TABLE II

dimG

3

3

3

3

1

rank H

1

1

0

0

0

G

SO(3)

SU(2)

SO(3)

SU(2)

H

SO(2)

SO(2)

e

e

M*

D2

D-

s2

D'

£>'

M

S4

S1 X S2, CP2#-CP2

s4

S2 X S2,CP2#-CP2

s4

S4,CP2,CP2#-CP2

Theorem 2.6

5. Conclusion. Suppose a compact connect Lie group G acts on a
simply connected 4-manifold M. Then it was shown in §2 that the rank of
G is either 1 or 2. Let H denote a representative subgroup of the
conjugacy class of principal isotropy groups. Then G, M, and H are
completely determined in §§3 and 4 in the cases of rank G = 2 and
rank G = 1, respectively. Thus we have proved the following.

THEOREM 5.1. If a Lie group G, a subgroup / / , and a manifold M are
those denoted above, then G, //, and M must be one of the eases represented
in Table I (§3) and Table II (§4).

The author would like to thank professors P. E. Conner and Robert
Perlis of the Louisiana State University for their encouragement and
helpful discussions.
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