COMPACT CONNECTED LIE GROUPS ACTING ON SIMPLY CONNECTED 4-MANIFOLDS

Hae Soo Oh

Abstract

Suppose a compact connected Lie group G acts effectively on a simply connected 4 -manifold M. Then we show that G is one of the groups $\mathrm{SO}(5), \mathrm{SU}(3) / Z(G), \mathrm{SO}(3) \times \mathrm{SO}(3), \mathrm{SO}(4), \mathrm{SO}(3) \times T^{1}$, $\left(\mathrm{SU}(2) \times T^{1}\right) / D, \mathrm{SU}(2), \mathrm{SO}(3), T^{2}, T^{1}$, and that the representatives of the conjugacy classes of the principal isotropy groups for these groups on M are, respectively, $\mathrm{SO}(4), U(2), T^{2}, \mathrm{SO}(3), S^{1}, S^{1}, \widetilde{\mathrm{SO}}(2)$ or $e, \mathrm{SO}(2)$ or $D_{2 n}, e$, and e. We also show that in each of these cases M is a connected sum of copies of $S^{4}, S^{2} \times S^{2}, C P^{2}$, and $-C P^{2}$ (except when G is T^{1}, see Theorem 2.6).

1. Introduction. All manifolds in this paper are assumed to be closed, connected and orientable. Also all actions are assumed to be effective and locally smooth. Orlik-Raymond [O-R] showed that if a simply connected 4 -manifold admits an action of the two-dimensional torus group T^{2}, then M is a connected sum of copies of $S^{4}, S^{2} \times S^{2}$, $C P^{2}$, and $-C P^{2}$. Fintushel $\left[\mathbf{F}_{2}\right]$ proved that if M admits a circle action and the orbit space M^{*} is not a counterexample of Poincare's conjecture, then M is also a connected sum of copies of these manifolds.

In this paper we determine all Lie groups which can act on a simply connected 4-manifold M, and dually we classify all simply connected 4 -manifolds which admit an action of a given compact connected Lie group G.

An isotropy group H is a principal if H is conjugate to a subgroup of each isotropy group (that is, G / H is a maximum orbit type for G on M). One denotes by $G(x)$ the orbit of G through x, and by G_{x} the isotropy group at x. A maximal torus T is a compact connected abelian Lie subgroup which is not properly contained in any larger such subgroup. We denote the normalizer of G by $N(G)$, and the centralizer of G by $Z(G)$. Let $\chi(M)$ denote the euler characteristic of a space M. Then it is well known that $\chi(G / T)$ is the order of $N(T) / T$.
2. The rank of a Lie group G which can act on a simply connected 4-manifold M. Suppose K is a subgroup of G which acts on a topological space X. Then the action of G on X may not be effective even if the action restricted to K is effective. But the maximal torus theorem gives rise to the following.

Lemma 2.1. A compact connected Lie group G acts effectively on a topological space X if and only if the action restricted to a maximal torus T of G is effective.

Proof. Suppose G does not act effectively. Then there exists at least one element $g \neq e$ in G such that $g x=x$, for all $x \in X$. It follows from the maximal torus theorem that there exists an element $h \in G$ such that $g \in h T h^{-1}$. Hence $h^{-1} g h \in T$. Thus we have $\left(h^{-1} g h\right) x=h^{-1} g(h x)=$ $h^{-1} h x=x$, for all $x \in X$, which says that the action restricted to T is not effective.

By the rank of a Lie group G, we mean the dimension of a maximal torus of G.

Lemma 2.2. If a compact connected Lie group G acts on a simply connected 4-manifold M, then the rank of G is less than 3.

Proof. Suppose the rank of G is ≥ 3. Then M admits an effective T^{3}-action. By [$\left.\mathbf{P}\right], M$ is homeomorphic to either T^{4} or $L(p, q) \times T^{1}$, which contradicts the simple connectivity of M.

It is known that every compact connected Lie group of dimension ≤ 6 can be represented as a factor group G / F, where $G=G_{1} \times G_{2}$ $\times \cdots \times G_{n}$ is a product; each factor G_{i} is either $\operatorname{SO}(2)$ or $\mathrm{SU}(2)\left(=S^{3}\right)$, and F is a finite subgroup of the center of G.

From now on G is a compact connected Lie group acting on a simply connected 4-manifold M, and H is a principal isotropy group for G on M. (Note: any two principal isotropy groups are conjugate to each other. Actually H denotes a representative group of the conjugacy class of principal isotropy groups.)

Lemma 2.3. Suppose the rank of G is 2 and the rank of H is 0 . Then G is the two-dimensional torus group T^{2}.

Proof. From [B, p. 195], we have the following inequality:
(*) $\operatorname{dim} M-\operatorname{dim} G / H-(\operatorname{rank} G-\operatorname{rank} H) \leq \operatorname{dim} M-2 \operatorname{rank} G$.
Since we assumed $\operatorname{rank} H=0$, then $\operatorname{dim} G / H \leq 4$. Hence the inequality gives rise to $4 \geq \operatorname{dim} G / H \geq \operatorname{rank} G=2$. Since $\operatorname{dim} G-\operatorname{rank} G$ should be an even integer, $\operatorname{dim} G(=\operatorname{dim} G / H)$ must be either 4 or 2 .

If $\operatorname{dim} G$ is 4 , then G acts transtively on M (that is, $M=G / H$). Since a compact connected Lie group of dimension 4 and of rank 2 is either $\mathrm{SU}(2) \times \mathrm{SO}(2)$ or a factor group of this by a finite subgroup, G / H cannot be simply connected. We thus have $\operatorname{dim} G=2=\operatorname{rank} G$. Hence G is T^{2}.

Lemma 2.4. If a compact connected Lie group G acts on a simply connected 4 -manifold M, then we have the following:
(i) if rank $G=2$ and rank $H=2$, then $\operatorname{dim} G$ is 10,8 , or 6 ;
(ii) if rank $G=2$ and $\operatorname{rank} H=1$, then $\operatorname{dim} G / H=3$ and $\operatorname{dim} G$ is either 6 or 4;
(iii) if rank $G=2$ and $\operatorname{rank} H=0$, then $G=T^{2}$;
(iv) the orbit space M^{*} is a simply connected manifold with boundary.

Proof. From [B, p. 195], we have an inequality,

$$
\begin{equation*}
4 \geq \operatorname{dim} G / H \geq \operatorname{rank} G+\operatorname{rank} H \tag{**}
\end{equation*}
$$

It is known [$\mathbf{M}-\mathbf{Z}$] that if the maximal dimension of any orbit is k, then $\operatorname{dim} G \leq k(k+1) / 2$. Thus $\operatorname{dim} G \leq 10$. Since $\operatorname{dim} G-\operatorname{rank} G$ is an even integer, $\operatorname{dim} G$ is $10,8,6,4$, or 2 , provided rank G is 2 .
(i) If rank $G=2$ and rank $H=2$, then it follows from inequality (**) that $\operatorname{dim} G / H=4$. Hence $\operatorname{dim} G \geq 6$.
(ii) If rank $G=2$ and rank $H=1$, then by $(* *), \operatorname{dim} G / H$ is either 3 or 4. Suppose $\operatorname{dim} G / H=4$. Then $\operatorname{dim} H(=\operatorname{dim} G-\operatorname{dim} G / H)$ is 6,4 , or 2 . On the other hand, rank $H=1$ implies that the identity component of H is $\mathrm{SO}(2), \mathrm{SO}(3)$, or $\mathrm{SU}(2)$. Hence $\operatorname{dim} G / H$ should be 3 . By [M-Z], $\operatorname{dim} G \leq \frac{1}{2}(\operatorname{dim} G / H)(\operatorname{dim} G / H+1)=6$.
(iii) was shown in Lemma 2.3.
(iv) If rank $G=2$ and rank $H \geq 1$, then (**) implies that $\operatorname{dim} G / H$ is either 4 or 3 . If $\operatorname{rank} G=2$, and rank $H=0$, then by (iii), we have $G=T^{2}$.

Thus if rank $G=2$, the orbit space M^{*} is D^{0}, D^{1}, or D^{2} (cf. Lemma 5.1 [O-R]). If rank $G=1$, then G is $\mathrm{SO}(2), \mathrm{SO}(3)$, or $\mathrm{SU}(2)$. Since any proper subgroups of $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$ are of dimension ≤ 1, if G is either $\mathrm{SO}(3)$ or $\mathrm{SU}(2)$, then $\operatorname{dim} G / H$ should be ≥ 2. Hence M^{*} is D^{1}, D^{2}, or S^{2}. If $G=\mathrm{SO}(2)$, then by Lemma $3.1\left[\mathbf{F}_{\mathbf{1}}\right], M^{*}$ is a simply connected 3-manifold with boundary.

If an abelian group G acts effectively on a manifold M, then the principal isotropy group H is trivial. We have shown that if $\operatorname{rank} G=2$
and rank $H=0$, then G is T^{2}, hence H is trivial. In this case, the manifolds are determined by the following theorem.

Theorem 2.5. [O-R] If M is a simply connected 4 -manifold supporting an effective T^{2}-action, then M has $k(\geq 2)$-fixed points, and

$$
M \approx\left\{\begin{array}{l}
S^{4}, \quad \text { if } k=2 ; \\
C P^{2} \text { or }-C P^{2}, \quad \text { if } k=3 \\
S^{2} \times S^{2}, C P^{2} \# C P^{2}, C P^{2} \#-C P^{2}, \text { or }-C P^{2} \#-C P^{2}, \quad \text { if } k=4 \\
\text { a connected sum of copies of these spaces, if } k>4
\end{array}\right.
$$

Theorem 2.6. $\left[\mathbf{F}_{2}\right]$ Let $\mathrm{SO}(2)$ act locally smoothly and effectively on the simply connected 4-manifold M, and suppose the orbit space M^{*} is not a counterexample to the 3-dimensional Poincaré conjecture. Then M is a connected sum of copies of $S^{4}, C P^{2},-C P^{2}$, and $S^{2} \times S^{2}$.

Suppose a compact Lie group G acts on a compact connected manifold M so that the orbit space M / G is a closed interval [0,1], and let $G(x)$ and $G(y)$ be the orbits corresponding to 0 and 1 respectively. Then $G(x)$ and $G(y)$ are singular orbits and all other orbits are principal orbits of type G / H. Moreover, we may assume $H \subset G_{x}$ and $H \subset G_{v}$. The following lemma was proved by Mostert [Mo].

Lemma 2.7. [Mo] If a Lie group G acts locally smoothly and effectively on a manifold M so that M / G is a closed interval, then G_{\downarrow} / H and G_{\downarrow} / H are spheres.
3. The case of rank $G=2$.

3A. Suppose rank $G=2$ and rank $H=2$. Then by Lemma 2.4, $\operatorname{dim} G$ is 10,8 , or 6 . Inequality ($* *$) implies $\operatorname{dim} G / H=4$ and hence M is a homogeneous space.
(i) It follows from [E, p. 239] that if $\operatorname{dim} G=10$, then M is S^{4} or $R P^{4}$. Since M is simply connected, M is S^{4}. Hence [Wo, p. 282] gives rise to $G=\mathrm{SO}(5)$ and $H=\mathrm{SO}(4)$.
(ii) It is known [Wa] that if $n(n-1) / 2+1<\operatorname{dim} G<n(n+1) / 2$, $n=\operatorname{dim} M$, then $n=4$. Mann [Ma] proved that the effective action of $\mathrm{SU}(3) / Z(\mathrm{SU}(3))$ of dimension 8 on the complex projective plane $C P^{2}=$ $\mathrm{SU}(3) / U(2)$ is the only exceptional possibility for $n=4$.
(iii) If $\operatorname{dim} G=6$, then $\operatorname{dim} H$ should be 2 . Since G is assumed to be connected and $G / H=M$ is assumed to be simply connected, the homotopy exact sequence of the fibre bundle implies that H is also connected,
hence H is T^{2}. The Lie group G of dimension 6 and of rank 2 is either $\mathrm{SU}(2) \times \mathrm{SU}(2)$, or a factor group of this by a finite subgroup. Since $Z(\operatorname{SU}(2) \times \operatorname{SU}(2))=\{(1,1),(-1,1),(1,-1),(-1,-1)\}$ is contained in a maximal torus (and hence in H), $\mathrm{SU}(2) \times \mathrm{SU}(2)$ is not admissible. For similar reasons, $\mathrm{SO}(3) \times \mathrm{SU}(2), \mathrm{SU}(2) \times \mathrm{SO}(3)$, and $\mathrm{SO}(4)$ are not admissible. Hence $(\mathrm{SU}(2) \times \mathrm{SU}(2)) /$ the center $=\mathrm{SO}(3) \times \mathrm{SO}(3)$ is the only admissible group. Hence M is $S^{2} \times S^{2}$.

We recall some properties of $\mathrm{SO}(3)$ (see [R]).
(1) Every subgroup of $\mathrm{SO}(3)$ is conjugate to one of the following: $\mathrm{SO}(2), N(\mathrm{SO}(2))$, the cyclic group Z_{k} of order k, the dihedral group D_{n} of order $2 n$, the groups T, O, I of all rotational symmetries of the tetrahedron, octahedron, and icosahedron, respectively.
(2) If V is a finite subgroup of $\mathrm{SO}(3)$, then $\mathrm{SO}(3) / V$ is an orientable 3-manifold with $H_{2}(\mathrm{SO}(3) / V)=0$. Using the double covering π : $\mathrm{SU}(2)$ $\rightarrow \mathrm{SO}(3)$ we can calculate the first homology group of $\mathrm{SO}(3) / V$:

$$
\begin{array}{ll}
H_{1}\left(\mathrm{SO}(3) / Z_{k}\right)=Z_{2 k}, & H_{1}\left(\mathrm{SO}(3) / D_{2 n}\right)=Z_{2}+Z_{2}, \\
H_{1}\left(\mathrm{SO}(3) / D_{2 n+1}\right)=Z_{4}, & H_{1}(\operatorname{SO}(3) / T)=Z_{3}, \\
H_{1}(\mathrm{SO}(3) / O)=Z_{2}, & H_{1}(\mathrm{SO}(3) / I)=0 .
\end{array}
$$

In the following \tilde{K} denotes the preimage of $K \subset \mathrm{SO}(3)$ under the covering map.

3B. Suppose rank $G=2$ and rank $H=1$. Then by Lemma 2.4, $\operatorname{dim} G$ is either 6 or 4 and $\operatorname{dim} G / H$ is 3 .
(I) If $\operatorname{dim} G=4$, then G is $\mathrm{SU}(2) \times T^{1}$ or a factor group of this by a finite subgroup. Since $\operatorname{dim} G / H$ is $3, \operatorname{dim} H$ is 1 . Since any 1 -dimensional subgroup of $\mathrm{SU}(2) \times T^{1}$ contains a non-trivial element of $Z\left(\mathrm{SU}(2) \times T^{1}\right)$ $=\{1,-1\} \times T^{1}$, it is not admissible. The remaining possibilities are $\mathrm{SO}(3) \times T^{1}$ and $\left(\mathrm{SU}(2) \times T^{1}\right) / D$, where $D=\{(1,1),(-1,-1)\}$.
(Ia) Suppose G is $\left(\mathrm{SU}(2) \times T^{1}\right) / D$. Then the identity component H_{0} of H cannot be included in $(\mathrm{SU}(2) \times 1) / D$ since $(\widetilde{\mathrm{SO}}(2) \times 1) / D$ contains $(-1,1) / D(\in Z(G))$. Nor can H_{0} be $\left(1 \times T^{1}\right) / D$ since $\left(1 \times T^{1}\right) / D$ is a subgroup of $Z(G)$. Hence by using an argument similar to that of 8.1 of [\mathbf{R}], we can show that H is included in a maximal torus of G.

Since $\operatorname{dim} G / H$ is 3 , the orbit space M^{*} is a closed interval $[0,1]$. That is, the orbit space M^{*} is as shown below.

By Lemma 2.7, G_{x} / H and G_{y} / H are spheres. But $\left(\left(\widetilde{\mathrm{NSO}}(2) \times T^{1}\right) / D\right) / H$ is not a sphere. Hence G_{x} (and also G_{y}) must be $\left(\widetilde{\mathrm{SO}}(2) \times T^{1}\right) / D$ or G.
(i) If G_{x} and G_{v} are maximal tori, then the number of fixed points of the action restricted to G_{x} is either 2 or 4 since the order of $N\left(G_{x}\right) / G_{x}$ is $\chi\left(G / G_{x}\right)=2$. Now it follows from Theorem 2.5 that M is S^{4} or an S^{2}-bundle over S^{2} according as the number of fixed points is 2 or 4. Let $A=p^{-1}\left(\left[0, \frac{1}{2}\right]\right)$ and $B=p^{-1}\left(\left[0, \frac{1}{2}\right]\right)$, where $p: M \rightarrow M^{*}=[0,1]$ is the orbit map. From the Mayer-Vietoris sequence for (M, A, B), we have

$$
0 \rightarrow H_{3}(M) \rightarrow H_{2}(G / H) \rightarrow Z \oplus Z \rightarrow H_{2}(M) \rightarrow H_{1}(G / H) \rightarrow 0
$$

Now we have

$$
\begin{aligned}
& (G / H) /\left\{\left[\left(\widetilde{\mathrm{SO}}(2) \times T^{1}\right) / D\right] / H\right\} \\
& \quad \approx\left[\left(\mathrm{SU}(2) \times T^{1}\right) / D\right] /\left[\left(\widetilde{\mathrm{SO}}(2) \times T^{1}\right) / D\right] \\
& \quad \approx\left(\mathrm{SU}(2) \times T^{1}\right) /\left(\widetilde{\mathrm{SO}}(2) \times T^{1}\right) \approx S^{2}
\end{aligned}
$$

(see $[\mathbf{B}$, p. 87$]$). Since $\left[\left(\widetilde{\mathrm{SO}}(2) \times T^{1}\right) / D\right] / H$ is a topological group, the fundamental group of this is abelian. From a homotopy exact sequence of the fibre bundle $\left[\left(\widetilde{\mathrm{SO}}(2) \times T^{1}\right) / D\right] / H \rightarrow G / H \rightarrow S^{2}$, we can see that $\pi_{1}(G / H)$ is abelian, hence $H_{1}(G / H)=\pi_{1}(G / H)$.

From the homotopy sequence of the fibre bundle $H \rightarrow G \rightarrow G / H$, we have

$$
0 \rightarrow \pi_{2}(G / H) \rightarrow Z \rightarrow Z \rightarrow \pi_{1}(G / H) \rightarrow \pi_{0}(H) \rightarrow 0
$$

If M is S^{4}, then from the homology sequence we have $\pi_{2}(G / H)=Z \oplus Z$ which contradicts the homotopy sequence. Hence the number of fixed points must be 4 . Therefore we have $G_{x}=G_{y}$ which implies $\pi_{1}(G / H)=1$, and hence H is connected. Thus H is S^{1} and M is either $S^{2} \times S^{2}$ or $C P^{2} \#-C P^{2}$.
(ii) If G_{x} and G_{y} are G (i.e. x and y are fixed points), then the homotopy exact sequence of a fibre bundle $H \rightarrow G \rightarrow G / H=G_{x} / H \approx S^{3}$ yields $H \approx S^{1}$. Furthermore, the number of fixed points of the action restricted to $\left(\widetilde{\mathrm{SO}}(2) \times T^{1}\right) / D$ is two. Hence, by Theorem 2.5 , we have $M=S^{4}$ (alternatively,

$$
\left.M \approx p^{-1}\left(\left[0, \frac{1}{2}\right]\right) \cup p^{-1}\left(\left[\frac{1}{2}, 1\right]\right) \approx D^{4} \cup D^{4} \approx S^{4}\right)
$$

(iii) If G_{x} is G and G_{y} is a maximal torus, then by an argument similar to that used in (ii), H is connected and hence H is S^{1}. The number of fixed points of the action restricted to G_{y} is 3 and hence it follows from Theorem 2.5 that M is $C P^{2}$.
(Ib) Suppose G is $\mathrm{SO}(3) \times T^{1}$. Then by 8.1 of $[\mathbf{R}], H$ is contained in a maximal torus or conjugate to either $\mathrm{SO}(2) \times 1$ or $N(\mathrm{SO}(2)) \times 1$. But
$(\mathrm{SO}(3) \times 1) /(N(\mathrm{SO}(2)) \times 1)=R P^{2} \times S^{1}$ is not orientable and hence by [B, p. 188], H cannot be $N(\mathrm{SO}(2)) \times 1$. (1) If H is contained in a maximal torus, then neither G_{x} nor G_{y} can be G since $\left(\mathrm{SO}(3) \times T^{1}\right) / H$ is not a sphere. Hence by an argument similar to that of (Ia), H is S^{1} and M is $S^{2} \times S^{2}$ or $C P^{2} \#-C P^{2}$. (2) If H is $\mathrm{SO}(2) \times 1$, then by Lemma 2.7, there are three possibilities:
(i) $G_{x} \approx \operatorname{SO}(2) \times T^{1} \approx G_{y}$, which implies $M=S^{2} \times S^{2}$.
(ii) $G_{x} \approx \mathrm{SO}(3)$ and $G_{y} \approx \mathrm{SO}(2) \times T^{1}$, which implies $M=\left[\left(S^{2} \times D^{2}\right)\right.$ $\left.\cup\left(D^{3} \times S^{1}\right)\right]=S^{4}$.
(iii) $G_{x} \approx \operatorname{SO}(3) \approx G_{v}$, which implies $M=S^{3} \times S^{1}$, not admissible.
(II) If $\operatorname{dim} G=6$, then $\operatorname{dim} H$ should be 3 . Since the rank of G is $2, G$ is $\mathrm{SU}(2) \times \mathrm{SU}(2), \mathrm{SO}(3) \times \mathrm{SU}(2), \mathrm{SU}(2) \times \mathrm{SO}(3)$, or $(\mathrm{SU}(2) \times \mathrm{SU}(2)) / D$, where $D=\{(1,1),(-1,-1)\}$.

Assertion. Suppose H_{0} is the identity component of a 3-dimensional subgroup H of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ and let p_{i} be the projection onto the i th factor, for $i=1,2$. Then $p_{i} \mid H_{0}$, the restriction of p_{t} to H_{0}, is either a trivial map or an isomorphism.

To prove this Assertion, first of all we have to show that $p_{i} \mid H_{0}$ is either trivial or surjective. Suppose $p_{t} \mid H_{0}$ is neither surjective nor trivial. Then $p_{i}\left(H_{0}\right)$ should be either $\mathrm{SO}(2)$ or $N(\mathrm{SO}(2))$, and hence the kernel of $p_{1} \mid H_{0}$ is a two-dimensional normal subgroup of H_{0}. This is impossible. Hence $p_{1} \mid H_{0}$ or $p_{2} \mid H_{0}$ must be surjective. Suppose $p_{1} \mid H_{0}$ is surjective and let K be the kernel of $p_{1} \mid H_{0}$. Then $H_{0} / K \approx \mathrm{SU}(2)$. Since $\mathrm{SO}(3)$ is simple, H_{0} cannot be $\mathrm{SO}(3)$. If H_{0} is $\mathrm{SU}(2)$, then $K=\pi_{1}\left(H_{0} / K\right)=\pi_{1}(\mathrm{SU}(2))=1$. Thus $p_{1} \mid H_{0}$ is an isomorphism and $H_{0} \approx \mathrm{SU}(2)$.
(IIa) If either $p_{1} \mid H_{0}$ or $p_{2} \mid H_{0}$ is trivial, then $H \approx \mathrm{SU}(2) \times V$, for a finite subgroup V, which contains a normal subgroup of $\mathrm{SU}(2) \times \mathrm{SU}(2)$. Since H cannot contain a normal subgroup of $\operatorname{SU}(2) \times \operatorname{SU}(2), p_{1} \mid H_{0}$ and $p_{2} \mid H_{0}$ must be isomorphisms. Therefore, H contains the two elements central subgroup D. Thus $\mathrm{SU}(2) \times \mathrm{SU}(2)$ is not admissible.
(IIb) If G is $\mathrm{SO}(4)(\approx(\mathrm{SU}(2) \times \mathrm{SU}(2)) / D)$, then a principal isotropy group is H / D, where H is a three-dimensional subgroup of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ such that $p_{1}(H)=\mathrm{SU}(2)=p_{2}(H)$.

If x^{*} and y^{*} are the endpoints of a closed interval $M / \mathrm{SO}(4)$, then x and y should be fixed points so that G_{x} (and also G_{y}) could contain H as a conjecture subgroup. In fact, suppose K is a subgroup of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ such that $H \subset K$ and $\operatorname{dim} K \geq 4$. Then $\operatorname{dim} K$ is either 4 or 6 since rank G is 2. If $\operatorname{dim} K$ is 4 , then the kernel of P_{1} is an 1-dimensional subgroup of K. So K contains $1 \times \widetilde{\mathrm{SO}}(2)$. For any $g \in \mathrm{SU}(2)$, there exists $h \in \mathrm{SU}(2)$
such that $(h, g) \in K$. Moreover, $(h, g)^{-1}(1 \times \widetilde{\operatorname{SO}}(2))(h, g)=1 \times$ $g^{-1} \widetilde{\mathrm{SO}}(2) g \subset K$. By the maximal torus theorem, we have $1 \times \mathrm{SU}(2) \subset K$. Similarly, $\mathrm{SU}(2) \times 1 \subset K$. Hence $K=\mathrm{SU}(2) \times \mathrm{SU}(2)$. Since $G /(H / D)$ must be S^{3} (by Theorem 2.7), by a homotopy exact sequence of $H / D \rightarrow G$ $\rightarrow S^{3}, H / D$ is connected. Since $H_{0} / D \approx \mathrm{SU}(2) / D \approx \mathrm{SO}(3), H / D$ is $\mathrm{SO}(3)$ and hence M is S^{4}.
(IIc) If G is $\mathrm{SO}(3) \times \mathrm{SO}(3)$, then by an argument similar to the Assertion, we can show that x and y should be fixed points so that G_{x} (and G_{v}) can contain a non-normal 3-dimensional subgroup H as a conjugate subgroup. But $(\mathrm{SO}(3) \times \mathrm{SO}(3)) / H$ cannot be a sphere. Hence $\mathrm{SO}(3) \times$ $\mathrm{SO}(3)$ is not admissible.
(IId) If G is $\mathrm{SU}(2) \times \mathrm{SO}(3)$, then by an argument similar to that used in the proof of the Assertion, $P_{1} \mid H_{0}$ is either a trivial map or an isomorphism. If $P_{1} \mid H_{0}$ is trivial, then H is $V \times \mathrm{SO}(3)$ for a finite subgroup V of $\mathrm{SU}(2)$, which contains a normal subgroup $1 \times \operatorname{SO}(3)$. If $P_{1} \mid H_{0}$ is an isomorphism, then H contains $\{(-1,1),(1,1)\}(\subset Z(G))$. Hence $\mathrm{SU}(2) \times \mathrm{SO}(3)$ is not admissible.

As a summary we have the table:
Table I

$\operatorname{dim} G$	rank H	G	H	M
10	2	$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	S^{4}
8	2	$\mathrm{SU}(3) / Z(G)$	$U(2) / Z(G)$	$C P^{2}$
6	2	$\mathrm{SO}(3) \times \mathrm{SO}(3)$	T^{2}	$S^{2} \times S^{2}$
6	1	$\mathrm{SO}(4)$	$\mathrm{SO}(3)$	S^{4}
4	1	$\mathrm{SO}(3) \times T^{1}$	S^{1}	$S^{2} \times S^{2}, S^{4}, C P^{2} \#-C P^{2}$
4	1	$\mathrm{SU}(2) \times T^{1} / D$	S^{1}	$S^{4}, C P^{2}, S^{2} \times S^{2}, C P^{2} \#-C P^{2}$
2	0	T^{2}	e	Theorem 2.5

Here S^{1} is a circle subgroup and D is the two element central subgroup $\{(1,1),(-1,-1)\}$.
4. The case of rank $G=1$. If a compact connected Lie group G is of rank 1, then G is $T^{1}, \mathrm{SO}(3)$, or $\mathrm{SU}(2)$, and the rank of H must be either 1 or 0 .

4A. Suppose rank $H=1$. Then G is either $\mathrm{SO}(3)$ or $\mathrm{SU}(2)$.
(i) If $G=\mathrm{SO}(3)$, then H is either $\mathrm{SO}(2)$ or $N(\mathrm{SO}(2))$. Since $\mathrm{SO}(3) / N(\mathrm{SO}(2))=R P^{2}$ is not orientable, H should be $\mathrm{SO}(2)$. Since $\mathrm{SO}(3) / \mathrm{SO}(2)$ is S^{2}, the orbit space M^{*} is either S^{2} or D^{2}. If M^{*} is S^{2}, then M is an S^{2}-bundle over S^{2}. If M^{*} is D^{2}, then ∂D^{2} corresponds to the fixed points and int D^{2} corresponds to the principal orbits. Hence M is S^{4}.
(ii) If $G=\mathrm{SU}(2)$, then by an argument similar to that used in (i), H is $\widetilde{\mathrm{SO}}(2)$, and M is either S^{4} or an S^{2}-bundle over S^{2}.

4B. Suppose rank $H=0$. Then G is $T^{1}, \mathrm{SO}(3)$, or $\mathrm{SU}(2)$.
(i) If G is T^{1}, then H must be trivial and M was described in Theorem 2.6.
(ii) If $G=\operatorname{SO}(3)$ and x^{*} and y^{*} are the endpoints of M^{*}, then G_{x} and G_{y} are conjugate to $\mathrm{SO}(2), N(\mathrm{SO}(2))$, or $\mathrm{SO}(3)$. By Lemma 2.7, none of x and y are fixed points and G_{x} should be conjugate to G_{y}.
(iia) If G_{x} and G_{y} are conjugate to $N(\mathrm{SO}(2))$, then H is a dihedral group $D_{2 n}$ (since G_{x} / H and G_{y} / H must be spheres). Richardson [R] showed that S^{4} admits an action of $\mathrm{SO}(3)$ such that $S^{4} / \mathrm{SO}(3)=\left[x^{*}, y^{*}\right]$, a closed interval, $H=D_{2 n},(\mathrm{SO}(3))(x)=R P^{2}=(\mathrm{SO}(3))(y)$. Since the orbit maps $M \rightarrow M / G$ and $S^{4} \rightarrow S^{4} / \mathrm{SO}(3)$ have cross-sections ([Mo], $[\mathbf{R}]), M$ is equivariantly homeomorphic to S^{4}.
(iib) If G_{x} and G_{v} are conjugate to $\mathrm{SO}(2)$, then H should be a cyclic group Z_{k} and M is the space $[0,1] \times \mathrm{SO}(3) / Z_{k}$ with $0 \times \operatorname{SO}(3) / Z_{k}$ collapsed to $\mathrm{SO}(3) / G_{x}\left(\approx S^{2}\right)$ and $1 \times \mathrm{SO}(3) / Z_{h}$ collapsed to $\mathrm{SO}(3) / G_{r}$. $\left(\approx S^{2}\right)$. Let p be the orbit map. Let $A=p^{-1}\left(\left[0, \frac{1}{2}\right]\right)$ and $B=p^{-1}\left(\left[\frac{1}{2}, 1\right]\right)$. From the Mayer-Vietoris sequence for (M, A, B), we have $H_{2}(M ; Q)=$ $Q \oplus Q$ and hence $\chi(M)=4$. Now we consider the action restricted to G_{v} $\left(\approx T^{1}\right)$. The set of fixed points under the restricted action is contained in $G(x) \cup G(y)$. Since $N\left(G_{x}\right) / G_{x}$ is Z_{2}, there are only two fixed points for G_{x} on $G(x)$, and hence there are at most four fixed points under the restricted action. Let $F\left(G_{\lambda}, M\right)$ denote the set of fixed points. Then it is well known that $\chi\left(F\left(G_{x}, M\right)\right)=\chi(M)=4$. Therefore there are four fixed points for G_{x} on M, which implies $G_{x}=G_{1}$. Since $H^{3}(M ; Z)=$ $H_{1}(M ; Z)=0, H_{2}(M ; Z)$ is torsion free and hence $H_{2}(M ; Z)$ is $Z \oplus Z$. The Mayer-Vietoris sequence gives rise to

$$
0 \rightarrow Z \oplus Z \xrightarrow{i_{*} \oplus j_{*}} Z \oplus Z \rightarrow H_{1}\left(\mathrm{SO}(3) / Z_{k} ; Z\right) \rightarrow 0
$$

Here i_{*} and j_{*} are induced by inclusions $i: A \rightarrow M$ and $j: B \rightarrow M$ respectively. Since $G_{x}=G_{v}, i$ and j are virtually the same maps. Hence $(Z \oplus Z) / \operatorname{im}\left(i_{*} \oplus j_{*}\right)=Z_{n} \oplus Z_{n}$ for an integer n, which contradicts $H_{1}\left(\mathrm{SO}(3) / Z_{k} ; Z\right)=Z_{2 k}$.
(iii) If G is $\mathrm{SU}(2)$ and π is the double covering map, then the only subgroups of $\operatorname{SU}(2)$ which do not contain the kernel of π are cyclic subgroups of odd order. Hence every subgroup K of $\mathrm{SU}(2)$ contains $Z(\mathrm{SU}(2))$ unless K is a cyclic group of odd order. Since the action was assumed to be effective, H is either $Z_{2 k+1}$ or e. By an argument similar to that used in (ii) of 4 B , we can show that H cannot be $Z_{2 k+1}$. If H is the
identity, then by Lemma 2.7, there are three possibilities:
(a) x and y are fixed points, which implies $M \approx S^{4}$.
(b) G_{1} is conjugate to $\widetilde{\mathrm{SO}}(2)$ and y is a fixed point, which implies $M \approx C P^{2} \# S^{4}$ (Recall: $\mathrm{SU}(2) \rightarrow \mathrm{SU}(2) / \widetilde{\mathrm{SO}}(2)$ is the Hopf bundle).
(c) $G_{,}$and G_{y} are conjugate to $\widetilde{\mathrm{SO}}(2)$, which implies $M \approx C P^{2} \#-$ $C P^{2}$.

We summarize these in the following table:
Table II

$\operatorname{dim} G$	$\operatorname{rank} H$	G	H	M^{*}	M
3	1	$\mathrm{SO}(3)$	$\mathrm{SO}(2)$	D^{2} S^{2}	S^{4} $S^{2} \times S^{2}, C P^{2} \#-C P^{2}$
3	1	$\mathrm{SU}(2)$	$\widetilde{\mathrm{SO}(2)}$	D^{2} S^{2}	S^{4} $S^{2} \times S^{2}, C P^{2} \#-C P^{2}$
3	0	$\mathrm{SO}(3)$	$D_{2 n}$	D^{1}	S^{4}
3	0	$\mathrm{SU}(2)$	e	D^{1}	$S^{4}, C P^{2}, C P^{2} \#-C P^{2}$
1	0	T^{1}	e		Theorem 2.6

5. Conclusion. Suppose a compact connect Lie group G acts on a simply connected 4 -manifold M. Then it was shown in $\S 2$ that the rank of G is either 1 or 2 . Let H denote a representative subgroup of the conjugacy class of principal isotropy groups. Then G, M, and H are completely determined in $\S \S 3$ and 4 in the cases of $\operatorname{rank} G=2$ and rank $G=1$, respectively. Thus we have proved the following.

Theorem 5.1. If a Lie group G, a subgroup H, and a manifold M are those denoted above, then G, H, and M must be one of the cases represented in Table I (§3) and Table II (§4).

The author would like to thank professors P. E. Conner and Robert Perlis of the Louisiana State University for their encouragement and helpful discussions.

References

[A] J. F. Adams, Lectures on Lie Groups, W. A. Benjamin, (1969).
[B] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, (1972).
[E] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, (1949).
$\left[\mathrm{F}_{1}\right]$ R. Fintushel, Circle actıons on simply connected 4-manifolds, Trans. Amer. Math. Soc., 230 (1977), 147-171.
$\left[\mathrm{F}_{2}\right]$, Classification of Circle Actions on 4-Manifolds, Trans. Amer. Math. Soc., 242 (1978), 377-390.
[Ma] L. N. Mann, Gaps in the Dimensions of Compact Transformation Groups, proceedings of the conference on Transformation Groups, Springer-Verlag, (1967), 293-296.
[M-Z] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publishers, (1955).
[Mo] P. S. Mostert, On a compact Lie group acting on a manifold, Annals. of Math., 65 (1957), 447-455; Errata, Annals of Math., 66 (1957), 589, Math. Annalen, 167 (1966), 224.
[O-R] P. Orlik and F. Raymond, Actions of the torus on 4-manifolds I, Trans. Amer. Math. Soc., 152 (1970), 531-559.
[P] J. Pak, Actions of the torus T^{n} on $(n+1)$-manifolds M^{n+1}, Pacific J. Math., 44 (1973), 671-674.
[R] R. W. Richardson, Groups acting on the 4-sphere, Illinois J. Math., 5 (1961), 474-485.
[Wa] H. C. Wang, On Finsler spaces with completely integrable equations of killing, J. London Math. Soc., 22 (1947), 5-9.
[Wo] J. A. Wolf, Spaces of constant curvature, Publish or Perish, (1973).
Received May 11, 1981.

Michigan State University
East Lansing, MI 48824

