COMPACT CONNECTED LIE GROUPS ACTING ON SIMPLY CONNECTED 4-MANIFOLDS

Hae Soo Oh

Suppose a compact connected Lie group G acts effectively on a simply connected 4-manifold M. Then we show that G is one of the groups SO(5), SU(3)/Z(G), SO(3) × SO(3), SO(4), SO(3) × T¹, (SU(2) × T¹)/D, SU(2), SO(3), T², T¹, and that the representatives of the conjugacy classes of the principal isotropy groups for these groups on M are, respectively, SO(4), U(2), T², SO(3), S¹, S¹, SO(2) or e, SO(2) or D_{2n} , e, and e. We also show that in each of these cases M is a connected sum of copies of S⁴, S² × S², CP², and -CP² (except when G is T¹, see Theorem 2.6).

1. Introduction. All manifolds in this paper are assumed to be closed, connected and orientable. Also all actions are assumed to be effective and locally smooth. Orlik-Raymond [**O-R**] showed that if a simply connected 4-manifold admits an action of the two-dimensional torus group T^2 , then M is a connected sum of copies of S^4 , $S^2 \times S^2$, CP^2 , and $-CP^2$. Fintushel [**F**₂] proved that if M admits a circle action and the orbit space M^* is not a counterexample of Poincaré's conjecture, then M is also a connected sum of copies of these manifolds.

In this paper we determine all Lie groups which can act on a simply connected 4-manifold M, and dually we classify all simply connected 4-manifolds which admit an action of a given compact connected Lie group G.

An isotropy group H is a *principal* if H is conjugate to a subgroup of each isotropy group (that is, G/H is a maximum orbit type for G on M). One denotes by G(x) the orbit of G through x, and by G_x the isotropy group at x. A maximal torus T is a compact connected abelian Lie subgroup which is not properly contained in any larger such subgroup. We denote the normalizer of G by N(G), and the centralizer of G by Z(G). Let $\chi(M)$ denote the euler characteristic of a space M. Then it is well known that $\chi(G/T)$ is the order of N(T)/T.

2. The rank of a Lie group G which can act on a simply connected 4-manifold M. Suppose K is a subgroup of G which acts on a topological space X. Then the action of G on X may not be effective even if the action restricted to K is effective. But the maximal torus theorem gives rise to the following.

LEMMA 2.1. A compact connected Lie group G acts effectively on a topological space X if and only if the action restricted to a maximal torus T of G is effective.

Proof. Suppose G does not act effectively. Then there exists at least one element $g \neq e$ in G such that gx = x, for all $x \in X$. It follows from the maximal torus theorem that there exists an element $h \in G$ such that $g \in hTh^{-1}$. Hence $h^{-1}gh \in T$. Thus we have $(h^{-1}gh)x = h^{-1}g(hx) = h^{-1}hx = x$, for all $x \in X$, which says that the action restricted to T is not effective.

By the rank of a Lie group G, we mean the dimension of a maximal torus of G.

LEMMA 2.2. If a compact connected Lie group G acts on a simply connected 4-manifold M, then the rank of G is less than 3.

Proof. Suppose the rank of G is ≥ 3 . Then M admits an effective T^3 -action. By [P], M is homeomorphic to either T^4 or $L(p,q) \times T^1$, which contradicts the simple connectivity of M.

It is known that every compact connected Lie group of dimension ≤ 6 can be represented as a factor group G/F, where $G = G_1 \times G_2 \times \cdots \times G_n$ is a product; each factor G_i is either SO(2) or SU(2) (= S^3), and F is a finite subgroup of the center of G.

From now on G is a compact connected Lie group acting on a simply connected 4-manifold M, and H is a principal isotropy group for G on M. (Note: any two principal isotropy groups are conjugate to each other. Actually H denotes a *representative group of the conjugacy class* of principal isotropy groups.)

LEMMA 2.3. Suppose the rank of G is 2 and the rank of H is 0. Then G is the two-dimensional torus group T^2 .

Proof. From [**B**, p. 195], we have the following inequality:

(*) dim $M - \dim G/H - (\operatorname{rank} G - \operatorname{rank} H) \le \dim M - 2 \operatorname{rank} G$.

Since we assumed rank H = 0, then dim $G/H \le 4$. Hence the inequality gives rise to $4 \ge \dim G/H \ge \operatorname{rank} G = 2$. Since dim G – rank G should be an even integer, dim G (= dim G/H) must be either 4 or 2.

If dim G is 4, then G acts transtively on M (that is, M = G/H). Since a compact connected Lie group of dimension 4 and of rank 2 is either SU(2) × SO(2) or a factor group of this by a finite subgroup, G/H cannot be simply connected. We thus have dim $G = 2 = \operatorname{rank} G$. Hence G is T^2 .

LEMMA 2.4. If a compact connected Lie group G acts on a simply connected 4-manifold M, then we have the following:

(i) if rank G = 2 and rank H = 2, then dim G is 10, 8, or 6;

(ii) if rank G = 2 and rank H = 1, then dim G/H = 3 and dim G is either 6 or 4;

(iii) if rank G = 2 and rank H = 0, then $G = T^2$;

(iv) the orbit space M^* is a simply connected manifold with boundary.

Proof. From [**B**, p. 195], we have an inequality,

(**)
$$4 \ge \dim G/H \ge \operatorname{rank} G + \operatorname{rank} H.$$

It is known [M-Z] that if the maximal dimension of any orbit is k, then dim $G \le k(k + 1)/2$. Thus dim $G \le 10$. Since dim G – rank G is an even integer, dim G is 10, 8, 6, 4, or 2, provided rank G is 2.

(i) If rank G = 2 and rank H = 2, then it follows from inequality (**) that dim G/H = 4. Hence dim $G \ge 6$.

(ii) If rank G = 2 and rank H = 1, then by (**), dim G/H is either 3 or 4. Suppose dim G/H = 4. Then dim H (= dim G - dim G/H) is 6, 4, or 2. On the other hand, rank H = 1 implies that the identity component of H is SO(2), SO(3), or SU(2). Hence dim G/H should be 3. By [M-Z], dim $G \le \frac{1}{2}(\dim G/H)(\dim G/H + 1) = 6$.

(iii) was shown in Lemma 2.3.

(iv) If rank G = 2 and rank $H \ge 1$, then (**) implies that dim G/H is either 4 or 3. If rank G = 2, and rank H = 0, then by (iii), we have $G = T^2$.

Thus if rank G = 2, the orbit space M^* is D^0 , D^1 , or D^2 (cf. Lemma 5.1 **[O-R]**). If rank G = 1, then G is SO(2), SO(3), or SU(2). Since any proper subgroups of SO(3) and SU(2) are of dimension ≤ 1 , if G is either SO(3) or SU(2), then dim G/H should be ≥ 2 . Hence M^* is D^1 , D^2 , or S^2 . If G = SO(2), then by Lemma 3.1 **[F₁]**, M^* is a simply connected 3-manifold with boundary.

If an abelian group G acts effectively on a manifold M, then the principal isotropy group H is trivial. We have shown that if rank G = 2

and rank H = 0, then G is T^2 , hence H is trivial. In this case, the manifolds are determined by the following theorem.

THEOREM 2.5. [O-R] If M is a simply connected 4-manifold supporting an effective T^2 -action, then M has $k (\geq 2)$ -fixed points, and

$$M \approx \begin{cases} S^{4}, & \text{if } k = 2; \\ CP^{2} \text{ or } -CP^{2}, & \text{if } k = 3; \\ S^{2} \times S^{2}, CP^{2} \# CP^{2}, CP^{2} \# -CP^{2}, \text{ or } -CP^{2} \# -CP^{2}, \\ a \text{ connected sum of copies of these spaces, } & \text{if } k > 4. \end{cases}$$

THEOREM 2.6. $[F_2]$ Let SO(2) act locally smoothly and effectively on the simply connected 4-manifold M, and suppose the orbit space M^* is not a counterexample to the 3-dimensional Poincaré conjecture. Then M is a connected sum of copies of S^4 , CP^2 , $-CP^2$, and $S^2 \times S^2$.

Suppose a compact Lie group G acts on a compact connected manifold M so that the orbit space M/G is a closed interval [0, 1], and let G(x) and G(y) be the orbits corresponding to 0 and 1 respectively. Then G(x) and G(y) are singular orbits and all other orbits are principal orbits of type G/H. Moreover, we may assume $H \subset G_x$ and $H \subset G_y$. The following lemma was proved by Mostert [Mo].

LEMMA 2.7. [Mo] If a Lie group G acts locally smoothly and effectively on a manifold M so that M/G is a closed interval, then G_{χ}/H and G_{γ}/H are spheres.

3. The case of rank G = 2.

3A. Suppose rank G = 2 and rank H = 2. Then by Lemma 2.4, dim G is 10, 8, or 6. Inequality (**) implies dim G/H = 4 and hence M is a homogeneous space.

(i) It follows from [E, p. 239] that if dim G = 10, then M is S^4 or RP^4 . Since M is simply connected, M is S^4 . Hence [Wo, p. 282] gives rise to G = SO(5) and H = SO(4).

(ii) It is known [Wa] that if $n(n-1)/2 + 1 < \dim G < n(n+1)/2$, $n = \dim M$, then n = 4. Mann [Ma] proved that the effective action of SU(3)/Z(SU(3)) of dimension 8 on the complex projective plane $CP^2 =$ SU(3)/U(2) is the only exceptional possibility for n = 4.

(iii) If dim G = 6, then dim H should be 2. Since G is assumed to be connected and G/H = M is assumed to be simply connected, the homotopy exact sequence of the fibre bundle implies that H is also connected,

428

hence *H* is T^2 . The Lie group *G* of dimension 6 and of rank 2 is either $SU(2) \times SU(2)$, or a factor group of this by a finite subgroup. Since $Z(SU(2) \times SU(2)) = \{(1, 1), (-1, 1), (1, -1), (-1, -1)\}$ is contained in a maximal torus (and hence in *H*), $SU(2) \times SU(2)$ is not admissible. For similar reasons, $SO(3) \times SU(2)$, $SU(2) \times SO(3)$, and SO(4) are not admissible. Hence $(SU(2) \times SU(2))/$ the center = $SO(3) \times SO(3)$ is the only admissible group. Hence *M* is $S^2 \times S^2$.

We recall some properties of SO(3) (see [R]).

(1) Every subgroup of SO(3) is conjugate to one of the following: SO(2), N(SO(2)), the cyclic group Z_k of order k, the dihedral group D_n of order 2n, the groups T, O, I of all rotational symmetries of the tetrahedron, octahedron, and icosahedron, respectively.

(2) If V is a finite subgroup of SO(3), then SO(3)/V is an orientable 3-manifold with $H_2(SO(3)/V) = 0$. Using the double covering π : SU(2) \rightarrow SO(3) we can calculate the first homology group of SO(3)/V:

$$H_{1}(SO(3)/Z_{k}) = Z_{2k}, \qquad H_{1}(SO(3)/D_{2n}) = Z_{2} + Z_{2},$$

$$H_{1}(SO(3)/D_{2n+1}) = Z_{4}, \qquad H_{1}(SO(3)/T) = Z_{3},$$

$$H_{1}(SO(3)/O) = Z_{2}, \qquad H_{1}(SO(3)/I) = 0.$$

In the following \tilde{K} denotes the preimage of $K \subset SO(3)$ under the covering map.

3B. Suppose rank G = 2 and rank H = 1. Then by Lemma 2.4, dim G is either 6 or 4 and dim G/H is 3.

(I) If dim G = 4, then G is SU(2) $\times T^1$ or a factor group of this by a finite subgroup. Since dim G/H is 3, dim H is 1. Since any 1-dimensional subgroup of SU(2) $\times T^1$ contains a non-trivial element of $Z(SU(2) \times T^1) = \{1, -1\} \times T^1$, it is not admissible. The remaining possibilities are SO(3) $\times T^1$ and (SU(2) $\times T^1/D$, where $D = \{(1, 1), (-1, -1)\}$.

(Ia) Suppose G is $(SU(2) \times T^1)/D$. Then the identity component H_0 of H cannot be included in $(SU(2) \times 1)/D$ since $(\widetilde{SO}(2) \times 1)/D$ contains (-1, 1)/D ($\in Z(G)$). Nor can H_0 be $(1 \times T^1)/D$ since $(1 \times T^1)/D$ is a subgroup of Z(G). Hence by using an argument similar to that of 8.1 of [**R**], we can show that H is included in a maximal torus of G.

Since dim G/H is 3, the orbit space M^* is a closed interval [0, 1]. That is, the orbit space M^* is as shown below.

$$G_x \stackrel{H}{\longleftarrow} G_y$$

By Lemma 2.7, G_x/H and G_y/H are spheres. But $((\widetilde{NSO}(2) \times T^1)/D)/H$ is not a sphere. Hence G_x (and also G_y) must be $(\widetilde{SO}(2) \times T^1)/D$ or G.

(i) If G_x and G_y are maximal tori, then the number of fixed points of the action restricted to G_x is either 2 or 4 since the order of $N(G_x)/G_y$ is $\chi(G/G_x) = 2$. Now it follows from Theorem 2.5 that M is S^4 or an S^2 -bundle over S^2 according as the number of fixed points is 2 or 4. Let $A = p^{-1}([0, \frac{1}{2}])$ and $B = p^{-1}([0, \frac{1}{2}])$, where $p: M \to M^* = [0, 1]$ is the orbit map. From the Mayer-Vietoris sequence for (M, A, B), we have

$$0 \to H_3(M) \to H_2(G/H) \to Z \oplus Z \to H_2(M) \to H_1(G/H) \to 0.$$

Now we have

$$(G/H) / \left\{ \left[(\widetilde{SO}(2) \times T^{1}) / D \right] / H \right\}$$

$$\approx \left[(SU(2) \times T^{1}) / D \right] / \left[(\widetilde{SO}(2) \times T^{1}) / D \right]$$

$$\approx \left(SU(2) \times T^{1} \right) / \left(\widetilde{SO}(2) \times T^{1} \right) \approx S^{2}$$

(see [**B**, p. 87]). Since $[(\widetilde{SO}(2) \times T^1)/D]/H$ is a topological group, the fundamental group of this is abelian. From a homotopy exact sequence of the fibre bundle $[(\widetilde{SO}(2) \times T^1)/D]/H \to G/H \to S^2$, we can see that $\pi_1(G/H)$ is abelian, hence $H_1(G/H) = \pi_1(G/H)$.

From the homotopy sequence of the fibre bundle $H \rightarrow G \rightarrow G/H$, we have

$$0 \to \pi_2(G/H) \to Z \to Z \to \pi_1(G/H) \to \pi_0(H) \to 0.$$

If *M* is S^4 , then from the homology sequence we have $\pi_2(G/H) = Z \oplus Z$ which contradicts the homotopy sequence. Hence the number of fixed points must be 4. Therefore we have $G_x = G_y$ which implies $\pi_1(G/H) = 1$, and hence *H* is connected. Thus *H* is S^1 and *M* is either $S^2 \times S^2$ or $CP^2 \# - CP^2$.

(ii) If G_x and G_y are G (i.e. x and y are fixed points), then the homotopy exact sequence of a fibre bundle $H \to G \to G/H = G_x/H \approx S^3$ yields $H \approx S^1$. Furthermore, the number of fixed points of the action restricted to $(\widetilde{SO}(2) \times T^1)/D$ is two. Hence, by Theorem 2.5, we have $M = S^4$ (alternatively,

$$M \approx p^{-1}([0, \frac{1}{2}]) \cup p^{-1}([\frac{1}{2}, 1]) \approx D^4 \cup D^4 \approx S^4).$$

(iii) If G_x is G and G_y is a maximal torus, then by an argument similar to that used in (ii), H is connected and hence H is S^1 . The number of fixed points of the action restricted to G_y is 3 and hence it follows from Theorem 2.5 that M is CP^2 .

(Ib) Suppose G is SO(3) $\times T^1$. Then by 8.1 of [**R**], H is contained in a maximal torus or conjugate to either SO(2) $\times 1$ or $N(SO(2)) \times 1$. But

 $(SO(3) \times 1)/(N(SO(2)) \times 1) = RP^2 \times S^1$ is not orientable and hence by [**B**, p. 188], *H* cannot be $N(SO(2)) \times 1$. (1) If *H* is contained in a maximal torus, then neither G_x nor G_y can be *G* since $(SO(3) \times T^1)/H$ is not a sphere. Hence by an argument similar to that of (Ia), *H* is S^1 and *M* is $S^2 \times S^2$ or $CP^2 \# - CP^2$. (2) If *H* is $SO(2) \times 1$, then by Lemma 2.7, there are three possibilities:

(i) $G_x \approx SO(2) \times T^1 \approx G_y$, which implies $M = S^2 \times S^2$.

(ii) $G_x \approx SO(3)$ and $G_y \approx SO(2) \times T^1$, which implies $M = [(S^2 \times D^2) \cup (D^3 \times S^1)] = S^4$.

(iii) $G_x \approx SO(3) \approx G_y$, which implies $M = S^3 \times S^1$, not admissible.

(II) If dim G = 6, then dim H should be 3. Since the rank of G is 2, G is SU(2) × SU(2), SO(3) × SU(2), SU(2) × SO(3), or (SU(2) × SU(2))/D, where $D = \{(1, 1), (-1, -1)\}$.

Assertion. Suppose H_0 is the identity component of a 3-dimensional subgroup H of SU(2) × SU(2) and let p_i be the projection onto the *i*th factor, for i = 1, 2. Then $p_i | H_0$, the restriction of p_i to H_0 , is either a trivial map or an isomorphism.

To prove this Assertion, first of all we have to show that $p_i | H_0$ is either trivial or surjective. Suppose $p_i | H_0$ is neither surjective nor trivial. Then $p_i(H_0)$ should be either SO(2) or N(SO(2)), and hence the kernel of $p_i | H_0$ is a two-dimensional normal subgroup of H_0 . This is impossible. Hence $p_1 | H_0$ or $p_2 | H_0$ must be surjective. Suppose $p_1 | H_0$ is surjective and let K be the kernel of $p_1 | H_0$. Then $H_0/K \approx SU(2)$. Since SO(3) is simple, H_0 cannot be SO(3). If H_0 is SU(2), then $K = \pi_1(H_0/K) = \pi_1(SU(2)) = 1$. Thus $p_1 | H_0$ is an isomorphism and $H_0 \approx SU(2)$.

(IIa) If either $p_1|H_0$ or $p_2|H_0$ is trivial, then $H \approx SU(2) \times V$, for a finite subgroup V, which contains a normal subgroup of $SU(2) \times SU(2)$. Since H cannot contain a normal subgroup of $SU(2) \times SU(2)$, $p_1|H_0$ and $p_2|H_0$ must be isomorphisms. Therefore, H contains the two elements central subgroup D. Thus $SU(2) \times SU(2)$ is not admissible.

(IIb) If G is SO(4) (\approx (SU(2) × SU(2))/D), then a principal isotropy group is H/D, where H is a three-dimensional subgroup of SU(2) × SU(2) such that $p_1(H) = SU(2) = p_2(H)$.

If x^* and y^* are the endpoints of a closed interval M/SO(4), then x and y should be fixed points so that G_x (and also G_y) could contain H as a conjecture subgroup. In fact, suppose K is a subgroup of $SU(2) \times SU(2)$ such that $H \subset K$ and dim $K \ge 4$. Then dim K is either 4 or 6 since rank G is 2. If dim K is 4, then the kernel of P_1 is an 1-dimensional subgroup of K. So K contains $1 \times \widetilde{SO}(2)$. For any $g \in SU(2)$, there exists $h \in SU(2)$

such that $(h, g) \in K$. Moreover, $(h, g)^{-1}(1 \times \widetilde{SO}(2))(h, g) = 1 \times g^{-1}\widetilde{SO}(2)g \subset K$. By the maximal torus theorem, we have $1 \times SU(2) \subset K$. Similarly, $SU(2) \times 1 \subset K$. Hence $K = SU(2) \times SU(2)$. Since G/(H/D) must be S^3 (by Theorem 2.7), by a homotopy exact sequence of $H/D \to G \to S^3$, H/D is connected. Since $H_0/D \approx SU(2)/D \approx SO(3)$, H/D is SO(3) and hence M is S^4 .

(IIc) If G is SO(3) × SO(3), then by an argument similar to the Assertion, we can show that x and y should be fixed points so that G_x (and G_y) can contain a non-normal 3-dimensional subgroup H as a conjugate subgroup. But (SO(3) × SO(3))/H cannot be a sphere. Hence SO(3) × SO(3) is not admissible.

(IId) If G is SU(2) × SO(3), then by an argument similar to that used in the proof of the Assertion, $P_1 | H_0$ is either a trivial map or an isomorphism. If $P_1 | H_0$ is trivial, then H is $V \times SO(3)$ for a finite subgroup V of SU(2), which contains a normal subgroup $1 \times SO(3)$. If $P_1 | H_0$ is an isomorphism, then H contains $\{(-1, 1), (1, 1)\}$ ($\subset Z(G)$). Hence SU(2) × SO(3) is not admissible.

As a summary we have the table:

I ADLE I							
$\dim G$	rank H	G	Н	М			
10	2	SO(5)	SO(4)	<i>S</i> ⁴			
8	2	SU(3)/Z(G)	U(2)/Z(G)	CP^2			
6	2	$SO(3) \times SO(3)$	T^2	$S^2 \times S^2$			
6	1	SO(4)	SO(3)	<i>S</i> ⁴			
4	1	$SO(3) \times T^1$	S^1	$S^{2} \times S^{2}, S^{4}, CP^{2} \# - CP^{2}$			
4	1	$SU(2) \times T^1/D$	S^1	$S^4, CP^2, S^2 \times S^2, CP^2 \# - CP^2$			
2	0	T^2	е	Theorem 2.5			

TABLE I

Here S^1 is a circle subgroup and D is the two element central subgroup $\{(1, 1), (-1, -1)\}.$

4. The case of rank G = 1. If a compact connected Lie group G is of rank 1, then G is T^1 , SO(3), or SU(2), and the rank of H must be either 1 or 0.

4A. Suppose rank H = 1. Then G is either SO(3) or SU(2).

(i) If G = SO(3), then *H* is either SO(2) or N(SO(2)). Since $SO(3)/N(SO(2)) = RP^2$ is not orientable, *H* should be SO(2). Since SO(3)/SO(2) is S^2 , the orbit space M^* is either S^2 or D^2 . If M^* is S^2 , then *M* is an S^2 -bundle over S^2 . If M^* is D^2 , then ∂D^2 corresponds to the fixed points and int D^2 corresponds to the principal orbits. Hence *M* is S^4 .

(ii) If G = SU(2), then by an argument similar to that used in (i), H is $\widetilde{SO}(2)$, and M is either S^4 or an S^2 -bundle over S^2 .

4B. Suppose rank H = 0. Then G is T^1 , SO(3), or SU(2).

(i) If G is T^1 , then H must be trivial and M was described in Theorem 2.6.

(ii) If G = SO(3) and x^* and y^* are the endpoints of M^* , then G_x and G_y are conjugate to SO(2), N(SO(2)), or SO(3). By Lemma 2.7, none of x and y are fixed points and G_x should be conjugate to G_y .

(iia) If G_x and G_y are conjugate to N(SO(2)), then H is a dihedral group D_{2n} (since G_x/H and G_y/H must be spheres). Richardson [**R**] showed that S^4 admits an action of SO(3) such that $S^4/SO(3) = [x^*, y^*]$, a closed interval, $H = D_{2n}$, $(SO(3))(x) = RP^2 = (SO(3))(y)$. Since the orbit maps $M \to M/G$ and $S^4 \to S^4/SO(3)$ have cross-sections ([**Mo**], [**R**]), M is equivariantly homeomorphic to S^4 .

(iib) If G_x and G_y are conjugate to SO(2), then H should be a cyclic group Z_k and M is the space $[0, 1] \times SO(3)/Z_k$ with $0 \times SO(3)/Z_k$ collapsed to SO(3)/ G_x ($\approx S^2$) and $1 \times SO(3)/Z_k$ collapsed to SO(3)/ G_y ($\approx S^2$). Let p be the orbit map. Let $A = p^{-1}([0, \frac{1}{2}])$ and $B = p^{-1}([\frac{1}{2}, 1])$. From the Mayer-Vietoris sequence for (M, A, B), we have $H_2(M; Q) =$ $Q \oplus Q$ and hence $\chi(M) = 4$. Now we consider the action restricted to G_x ($\approx T^1$). The set of fixed points under the restricted action is contained in $G(x) \cup G(y)$. Since $N(G_x)/G_x$ is Z_2 , there are only two fixed points for G_x on G(x), and hence there are at most four fixed points under the restricted action. Let $F(G_x, M)$ denote the set of fixed points. Then it is well known that $\chi(F(G_x, M)) = \chi(M) = 4$. Therefore there are four fixed points for G_x on M, which implies $G_x = G_y$. Since $H^3(M; Z) =$ $H_1(M; Z) = 0, H_2(M; Z)$ is torsion free and hence $H_2(M; Z)$ is $Z \oplus Z$. The Mayer-Vietoris sequence gives rise to

$$0 \to Z \oplus Z^{i_* \oplus j_*} Z \oplus Z \to H_1(\mathrm{SO}(3)/Z_k; Z) \to 0.$$

Here i_* and j_* are induced by inclusions $i: A \to M$ and $j: B \to M$ respectively. Since $G_x = G_y$, i and j are virtually the same maps. Hence $(Z \oplus Z)/\operatorname{im}(i_* \oplus j_*) = Z_n \oplus Z_n$ for an integer n, which contradicts $H_1(\operatorname{SO}(3)/Z_k; Z) = Z_{2k}$.

(iii) If G is SU(2) and π is the double covering map, then the only subgroups of SU(2) which do not contain the kernel of π are cyclic subgroups of odd order. Hence every subgroup K of SU(2) contains Z(SU(2)) unless K is a cyclic group of odd order. Since the action was assumed to be effective, H is either Z_{2k+1} or e. By an argument similar to that used in (ii) of 4B, we can show that H cannot be Z_{2k+1} . If H is the identity, then by Lemma 2.7, there are three possibilities:

(a) x and y are fixed points, which implies $M \approx S^4$.

(b) G_{χ} is conjugate to $\widetilde{SO}(2)$ and y is a fixed point, which implies $M \approx CP^2 \# S^4$ (Recall: SU(2) \rightarrow SU(2)/ $\widetilde{SO}(2)$ is the Hopf bundle).

(c) G_{χ} and G_{χ} are conjugate to $\widetilde{SO}(2)$, which implies $M \approx CP^2 \# - CP^2$.

We summarize these in the following table:

1	ABLE	П	

dim G	rank H	G	Н	<i>M</i> *	М
3	1	SO(3)	SO(2)	D^2 S^2	$\frac{S^4}{S^2 \times S^2}, CP^2 \# - CP^2$
3	1	SU(2)	SO(2)	D^2 S^2	S^4 $S^2 \times S^2, CP^2 \# - CP^2$
3	0	SO(3)	D_{2n}	D^{1}	S^4
3	0	SU(2)	е	D^{1}	S^4 , CP^2 , CP^2 # – CP^2
1	0	T^1	е		Theorem 2.6

5. Conclusion. Suppose a compact connect Lie group G acts on a simply connected 4-manifold M. Then it was shown in §2 that the rank of G is either 1 or 2. Let H denote a representative subgroup of the conjugacy class of principal isotropy groups. Then G, M, and H are completely determined in §§3 and 4 in the cases of rank G = 2 and rank G = 1, respectively. Thus we have proved the following.

THEOREM 5.1. If a Lie group G, a subgroup H, and a manifold M are those denoted above, then G, H, and M must be one of the cases represented in Table I (\S 3) and Table II (\S 4).

The author would like to thank professors P. E. Conner and Robert Perlis of the Louisiana State University for their encouragement and helpful discussions.

References

- [A] J. F. Adams, Lectures on Lie Groups, W. A. Benjamin, (1969).
- [B] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, (1972).
- [E] L. P. Eisenhart, *Riemannian Geometry*, Princeton University Press, (1949).
- [F₁] R. Fintushel, *Circle actions on simply connected 4-manifolds*, Trans. Amer. Math. Soc., 230 (1977), 147–171.

434

- [F₂] _____, Classification of Circle Actions on 4-Manifolds, Trans. Amer. Math. Soc., 242 (1978), 377–390.
- [Ma] L. N. Mann, Gaps in the Dimensions of Compact Transformation Groups, proceedings of the conference on Transformation Groups, Springer-Verlag, (1967), 293-296.
- [M-Z] D. Montgomery and L. Zippin, *Topological Transformation Groups*, Interscience Publishers, (1955).
- [Mo] P. S. Mostert, On a compact Lie group acting on a manifold, Annals. of Math., 65 (1957), 447–455; Errata, Annals of Math., 66 (1957), 589, Math. Annalen, 167 (1966), 224.
- [O-R] P. Orlik and F. Raymond, Actions of the torus on 4-manifolds I, Trans. Amer. Math. Soc., 152 (1970), 531-559.
- [P] J. Pak, Actions of the torus T^n on (n + 1)-manifolds M^{n+1} , Pacific J. Math., 44 (1973), 671-674.
- [R] R. W. Richardson, Groups acting on the 4-sphere, Illinois J. Math., 5 (1961), 474-485.
- [Wa] H. C. Wang, On Finsler spaces with completely integrable equations of killing, J. London Math. Soc., 22 (1947), 5–9.
- [Wo] J. A. Wolf, Spaces of constant curvature, Publish or Perish, (1973).

Received May 11, 1981.

MICHIGAN STATE UNIVERSITY East Lansing, MI 48824