# CHARACTERS OF INDUCED REPRESENTATIONS AND WEIGHTED ORBITAL INTEGRALS 

Rebecca A. Herb<br>The main result of this paper is a formula relating characters of principal series representations of a reductive Lie group to weighted orbital integrals of wave packets.

1. Introduction. Let $G$ be a reductive Lie group satisfying HarishChandra's general assumptions [2]. Let $P=M A N$ be the Langlands decomposition of a cuspidal parabolic subgroup of $G$. Denote by $\varepsilon_{2}(M)$ the set of equivalence classes of irreducible unitary square integrable representations of $M$. For $\omega \in \varepsilon_{2}(M)$ and $\nu \in \mathscr{F}=\mathfrak{a}^{*}$, the real dual of the Lie algebra of $A$, let $\pi_{\omega, \nu}$ be the corresponding unitary representation of $G$ induced from $P$. Let $f$ be a wave packet corresponding to $\omega$. Then the integral of $f$ over any regular (semisimple) orbit of $G$ which can be represented by an element of $L=M A$ has been evaluated by HarishChandra in terms of the character $\Theta_{\omega, \nu}$ of $\pi_{\omega, \nu}[4]$.

Let $\gamma$ be a regular element of $G$ contained in a Cartan subgroup $H$ of $L$. Write $H=H_{K} H_{p}$ where $H_{K}$ is compact, $H_{p}$ is split, and $A \subseteq H_{p}$. Then for suitable normalizations of the $G$-invariant measure $d \dot{x}$ on $H_{p} \backslash G$ and Haar measure $d \nu$ on $\mathscr{F}$.

$$
\begin{equation*}
\int_{H_{p} \backslash G} f\left(x^{-1} \gamma x\right) d \dot{x}=\varepsilon(A, H)[W(\omega)]^{-1} \int_{\mathscr{F}}\left\langle\Theta_{\omega, \nu}, f\right\rangle \Theta_{\omega, \nu}(\gamma) d \nu \tag{1.1}
\end{equation*}
$$

where $W(\omega)=\left\{s \in N_{G}(A) / L \mid s \omega=\omega\right\}$ and $\varepsilon(A, H)$ is 1 if $H_{p}=A$ and is 0 otherwise. This formula can be interpreted as giving the value of $\Theta_{\omega, \nu}$ on regular elements $\gamma$ of a fundamental Cartan subgroup of $L$ in terms of the integral of a wave packet for $\omega$ over the orbit of $\gamma$. It also gives the Fourier inversion formula for the tempered invariant distribution

$$
f \rightarrow\langle\Lambda(\gamma), f\rangle=\int_{H_{p} \backslash G} f\left(x^{-1} \gamma x\right) d \dot{x}
$$

restricted to the subspace of $\mathscr{C}(G)$, the Schwartz space of $G$, spanned by wave packets corresponding to representations induced from cuspidal parabolic subgroups $P=M A N$ with $A \subseteq H_{p}$. The complete Fourier inversion formula for $\Lambda(\gamma)$ is much more complicated. (See [5].)

In the case that $P=G$ is cuspidal and $\omega \in \varepsilon_{2}(G)$, then $\Theta_{\omega}$ is a discrete series character of $G$, and $f$ is a matrix coefficient corresponding to $\omega$. Formula (1.1) becomes

$$
\begin{equation*}
\int_{H_{p} \backslash G} f\left(x^{-1} \gamma x\right) d \dot{x}=\varepsilon(1, H)\left\langle\Theta_{\omega}, f\right\rangle \Theta_{\omega}(\gamma) \tag{1.2}
\end{equation*}
$$

Arthur has obtained the following generalization of (1.2) [1]. Let $A$ be the split component of a parabolic subgroup of $G$. Let $L$ be the centralizer in $G$ of $A$. Corresponding to $A$, Arthur defines a function $v_{A}$ on $G$ which is left $L$-invariant. Let $\gamma$ be a regular element of $G$ contained in a Cartan subgroup $H=H_{K} H_{p}$ of $L$. Let $\omega \in \varepsilon_{2}(G)$, and let $f$ be a matrix coefficient for $\omega$. Then Arthur's formula is

$$
\begin{equation*}
\int_{H_{p} \backslash G} f\left(x^{-1} \gamma x\right) v_{A}(x) d \dot{x}=(-1)^{p} \varepsilon(A, H)\left\langle\Theta_{\omega}, f\right\rangle \Theta_{\omega}(\gamma) \tag{1.3}
\end{equation*}
$$

where $p$ is the dimension of $A$. This formula gives the value of the character $\Theta_{\omega}$ on the nonelliptic element $\gamma$ in terms of a weighted orbital integral of a matrix coefficient of $\omega$. It also gives the Fourier inversion formula for the tempered distribution

$$
f \rightarrow\left\langle r_{A}(\gamma), f\right\rangle=\int_{H_{p} \backslash G} f\left(x^{-1} \gamma x\right) v_{A}(x) d \dot{x}
$$

restricted to the space ${ }^{0} \mathscr{C}(G)$ of cusp forms on $G$. The distributions $r_{A}(\gamma)$ occur in the Selberg trace formula for $\Gamma \backslash G, \Gamma$ a discrete subgroup of $G$ for which $\Gamma \backslash G$ has finite volume but is not compact. As formula (1.3) shows, $r_{A}(\gamma)$ is invariant on ${ }^{0} \mathscr{C}(G)$. However, $r_{A}(\gamma)$ is not an invariant distribution on $\mathscr{C}(G)$, and the full Fourier inversion formula for $r_{A}(\gamma)$ is not known.

Authur's formula can be generalized to the setting of induced representations and wave packets. Let $P=M A N$ be a cuspidal parabolic subgroup of $G$, and let $A_{1}$ be the split component of a parabolic subgroup of $L=M A, L_{1}$ its centralizer in $G$. Let $\gamma$ be a regular element of $G$ contained in a Cartan subgroup $H=H_{K} H_{p}$ of $L_{1}$. We will define a left $L_{1}$-invariant function $v_{A_{1}}^{P}$ on $G$ with the following properties.

If $f^{\prime}$ is a wave packet coming from a cuspidal parabolic subgroup $P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$ of $G$ with $\operatorname{dim} A^{\prime} \leq \operatorname{dim} A$ and $A$ not conjugate to $A^{\prime}$, then

$$
\begin{equation*}
\int_{H_{p} \backslash G} f^{\prime}\left(x^{-1} \gamma x\right) v_{A_{1}}^{P}(x) d \dot{x}=0 . \tag{1.4}
\end{equation*}
$$

Now let $f$ be a wave packet corresponding to $\omega \in \varepsilon_{2}(M)$. Then

$$
\begin{equation*}
\int_{H_{p} \backslash G} f\left(x^{-1} \gamma x\right) v_{A_{1}}^{P}(x) d \dot{x}=0 \quad \text { if } H_{p} \neq A_{1} . \tag{1.5}
\end{equation*}
$$

If $H_{p}=A_{1}$, let $\gamma=\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ be a complete set of elements of $L$ for which $\gamma_{i}=x_{t} \gamma x_{t}^{-1}$ for some $x_{t} \in G$, but $\gamma_{i}$ and $\gamma_{J}$ are not conjugate in $L$ for $1 \leq i \neq j \leq k$. Let $A_{i}=x_{i} A_{1} x_{l}^{-1}$. Then

$$
\begin{align*}
& \int_{H_{p} \backslash G} f\left(x^{-1} \gamma x\right) \sum_{t=1}^{k} v_{A_{l}}^{P}\left(x_{t} x\right) d \dot{x}  \tag{1.6}\\
& \quad=(-1)^{p_{1}}[W(\omega)]^{-1} \int_{\mathscr{F}}\left\langle\Theta_{\omega, \nu}, f\right\rangle \Theta_{\omega, \nu}(\gamma) d \nu
\end{align*}
$$

where $p_{1}$ is the dimension of $A_{1} \cap M$.
Formulas (1.4)-(1.6) are proved by using Arthur's formula and results of Harish-Chandra relating characters and orbital integrals on $G$ to those on $M$ and $L$. Any unexplained notation follows that of Harish-Chandra [2, 3, 4].
2. Background material. Let $G$ be a real reductive Lie group, $g$ the Lie algebra of $G$. Let $K$ be a maximal compact subgroup of $G, \theta$ the Cartan involution of $G$ corresponding to $K$, and $B$ a real symmetric bilinear form on g . Assume that ( $G, K, \theta, B$ ) satisfy the general assumptions of Harish-Chandra in [2] and that Haar measures are normalized as in [2]. Given a $\theta$-stable Cartan subgroup $H$ of $G$, we will write $H=H_{K} H_{p}$ where $H_{K}=H \cap K$ and $H_{p}$ is a vector subgroup with Lie algebra $\mathfrak{h}_{p}$ contained in the -1 eigenspace for $\theta$. Let $G^{\prime}$ be the set of regular semisimple elements of $G, H^{\prime}=H \cap G^{\prime}$. If $J$ is any subgroup of $G$, we will write $N_{G}(J)$ and $C_{G}(J)$ for the normalizer and centralizer of $J$ in $G$, respectively, and $W(G, J)=N_{G}(J) / C_{G}(J)$.

We will first review some definitions and formulas of Harish-Chandra from [2, 3, 4]. Fix a double unitary representation $\tau$ of $K$ on a finite-dimensional Hilbert space $V$. Let $\mathscr{C}(G, \tau)$ and ${ }^{0} \mathscr{C}(G, \tau)$ denote the $\tau$-spherical functions in the spaces of $V$-valued Schwartz functions $\mathscr{C}(G, V)$ and $V$-valued cusp forms ${ }^{0} \mathscr{C}(G, V)$ respectively. Let $F_{0}$ be the operator on $V$ given by

$$
F_{0} v=\int_{K} \tau\left(k^{-1}\right) v \tau(k) d k, \quad v \in V .
$$

For $f \in \mathscr{C}(G, V)$ and $x \in G$, define $\bar{f}(x)=\int_{K} f\left(k^{-1} x k\right) d k$. Then if $f \in$ $\mathscr{C}(G, \tau), \bar{f}(x)=F_{0} f(x), x \in G$.

Fix a cuspidal parabolic subgroup $P=M A N$, that is, a parabolic subgroup of $G$ with $\varepsilon_{2}(M) \neq \varnothing$. Let $\tau_{M}$ be the restriction of $\tau$ to $K_{M}=K \cap M$. For any $f \in \mathscr{C}(G, V), m \in M$, and $a \in A$, let

$$
\begin{equation*}
f^{(P)}(m a)=f_{a}^{(P)}(m)=\delta_{P}^{1 / 2}(a) \int_{N} f(m a n) d n \tag{2.1}
\end{equation*}
$$

where $\delta_{P}$ is the module of $P$. Then $f_{a}^{(P)} \in \mathscr{C}(M, V), f^{(P)} \in \mathscr{C}(M A, V)$, and the following relationships between $f$ and $f^{(P)}$ can be found in or easily derived from results in $[\mathbf{2}, \mathbf{3}, \mathbf{4}]$.

Let $H$ be a $\theta$-stable Cartan subgroup of $L$. for $f \in \mathscr{C}(G, V)$ and $h \in H^{\prime}$,

$$
\begin{equation*}
\int_{N} f\left(n^{-1} h n\right) d n=\Delta_{+}^{G}(h)^{-1} \Delta_{+}^{L}(h) f^{(P)}(h) \tag{2.2}
\end{equation*}
$$

where $\Delta_{+}^{L}$ and $\Delta_{+}^{G}$ are the functions $\Delta_{+}$on $H$, considered as a Cartan subgroup of $L$ and $G$ respectively, defined by Harish-Chandra in [2].

For $\nu \in \mathscr{F}=\mathfrak{a}^{*}$ and $m \in M$, define

$$
\begin{equation*}
f_{\nu}^{(P)}(m)=\int_{A} f^{(P)}(m a) e^{-i \nu(\log a)} d a \tag{2.3}
\end{equation*}
$$

Then because $d \nu$ is the dual measure to $d a$ on $A$ and $f^{(P)}$ is rapidly decreasing in the $A$ variable,

$$
\begin{equation*}
f^{(P)}(m a)=\int_{\mathscr{F}} f_{\nu}^{(P)}(m) e^{i \nu(\log a)} d \nu \tag{2.4}
\end{equation*}
$$

For $\omega \in \varepsilon_{2}(M)$ and $\nu \in \mathscr{F}$, let $\pi_{\omega, \nu}$ be the tempered unitary representation of $G$ induced from $\omega \otimes e^{\nu \nu} \otimes 1$ on $M A N$. Let $\Theta_{\omega, \nu}$ and $\Theta_{\omega}$ denote the characters of $\pi_{\omega, \nu}$ and $\omega$ considered as functions on $G^{\prime}$ and $M^{\prime}$ respectively. For $f \in \mathscr{C}(G, \tau), g \in \mathscr{C}\left(M, \tau_{M}\right)$, define

$$
\left\langle\Theta_{\omega, \nu}, f\right\rangle=\int_{G} f(x) \overline{\Theta_{\omega, \nu}(x)} d x \quad \text { and } \quad\left\langle\Theta_{\omega}, g\right\rangle=\int_{M} g(m) \overline{\Theta_{\omega}(m)} d m
$$

Then, for $f \in \mathscr{C}(G, \tau), \nu \in \mathscr{F}, f_{\nu}^{(P)} \in \mathscr{C}\left(M, \tau_{M}\right)$ and

$$
\begin{equation*}
\left\langle\Theta_{\omega, \nu}, f\right\rangle=F_{0}\left\langle\Theta_{\omega}, f_{\nu}^{(P)}\right\rangle \tag{2.5}
\end{equation*}
$$

For $\omega \in \varepsilon_{2}(M)$, let $L(\omega)={ }^{0} \mathscr{C}\left(M, \tau_{M}\right) \cap \mathfrak{h}_{\omega} \otimes V$ where $\mathfrak{h}_{\omega}$ is the closed subspace of $L^{2}(M)$ spanned by matrix coefficients for $\omega$. For $\psi \in L(\omega), \alpha \in C_{c}^{\infty}(\mathscr{F})$, and $x \in G$, define

$$
\begin{equation*}
\varphi_{\alpha}(x)=\int_{\mathscr{F}} \alpha(\nu) E(P: \psi: \nu: x) \mu(\omega: \nu) d \nu \tag{2.6}
\end{equation*}
$$

where $E(P: \psi: \nu)$ is the Eisenstein integral defined in [2], and $\mu(\omega: \nu)$ is the Plancherel factor corresponding to $\pi_{\omega, \nu}$. Then $\varphi_{\alpha} \in \mathscr{C}(G, \tau)$ is called a wave packet for $\omega \in \varepsilon_{2}(M)$, and for $\nu \in \mathscr{F},\left(\varphi_{\alpha}\right)_{\nu}^{(P)}$ belongs to $\sum_{s \in W(G, A)} L(s \omega)$ and is supported on a compact subset of $\mathscr{F}$.

We now turn to Arthur's results. Let $A$ be a special vector subgroup of $G$, that is, the split component of a parabolic subgroup of $G$. Write $\mathscr{P}(A)$ for the (finite) set of all parabolic subgroups of $G$ having $A$ as split component. For $P \in \mathscr{P}(A)$ let $\Phi_{P}$ denote the set of simple roots of $(P, A)$. We identify $\mathfrak{a}$, the Lie algebra of $A$, and its dual via the bilinear form $B$. A set $\mathscr{Y}=\left\{Y_{P} \mid P \in \mathscr{P}(A)\right\}$ of points in $\mathfrak{a}$ is called $A$-orthogonal if for any pair of adjacent parabolic subgroups $P, P^{\prime} \in \mathscr{P}(A), Y_{P}-Y_{P^{\prime}}=r \alpha, r \in \mathbf{R}$, where $\alpha$ is the unique element of $\Phi_{P}$ with $-\alpha \in \Phi_{P^{\prime}}$. Let

$$
\mathfrak{a}^{0}=\{H \in \mathfrak{a} \mid\langle\alpha, H\rangle=0 \text { for every root } \alpha \text { of }(\mathfrak{g}, \mathfrak{a})\}
$$

$\mathfrak{a}^{1}$ its orthogonal complement in $A$. Let $p$ be the dimension of $\mathfrak{a}^{1}$, and let $c_{A}=|\operatorname{det} C|^{1 / 2}$ where $C$ is the Cartan matrix for the roots of $(g, a)$. For any $P=M A N \in \mathscr{P}(A)$ and $x \in G$, write

$$
x=m(x) \exp \left(H_{P}(x)\right) n(x) k(x)
$$

where $m(x) \in M, n(x) \in N, k(x) \in K$, and $H_{P}(x) \in a$. For any $A$-orthogonal set $\mathscr{Y}$ and $\lambda \in \mathfrak{a}_{\mathbf{C}}^{1}$, define

$$
\begin{equation*}
v(x: \mathscr{Y})=c_{A}(p!)^{-1} \sum_{P \in \mathscr{P}(A)} \frac{\left\langle\lambda, Y_{P}-H_{P}(x)\right\rangle^{p}}{\prod_{\alpha \in \Phi_{P}}\langle\lambda, \alpha\rangle} \tag{2.7}
\end{equation*}
$$

Then $v(x: \mathscr{Y})$ is independent of $\lambda$ and is left-invariant under $L=C_{G}(A)$. It is also clearly right $K$-invariant. If $v_{A}(x)=v(x: \mathscr{Y})$ for any $A$-orthogonal set $\mathscr{Y}$, then (1.3) is valid.
3. The distributions. Fix a cuspidal parabolic subgroup $P=M A N$ of $G$. Let $A_{1}^{M}$ be a special vector subgroup of $M, A_{1}=A_{1}^{M} A$. Let $\mathscr{Y}_{1}$ be an $A_{1}^{M}$-orthogonal set, and let $v_{1}^{M}(m)=v\left(m: \mathscr{Y}_{1}\right), m \in M$, be the function on $M$ defined as in (2.7) with respect to $A_{1}^{M}$ and $\mathscr{Y}_{1}$. Extend $v_{1}^{M}$ to a function $v_{1}$ on $G$ by setting

$$
\begin{align*}
v_{1}(\text { mank })=[W(G, A)]^{-1} v_{1}^{M}(m) &  \tag{3.1}\\
& m \in M, a \in A, n \in N, k \in K
\end{align*}
$$

This extension is well defined since $v_{1}^{M}$ is right $K_{M}$-invariant. Since $v_{1}^{M}$ if left-invariant under $L_{1}^{M}=C_{M}\left(A_{1}^{M}\right), v_{1}$ is left-invariant under $L_{1}=L_{1}^{M} A$ $=C_{G}\left(A_{1}\right)$.

Let $H$ be a $\theta$-stable Cartan subgroup of $G$ with $A_{1} \subseteq H_{p}$. Write $J=H \cap M$. Let $h \in H^{\prime}$. For $f \in C_{c}^{\infty}(G, V)$, define

$$
\begin{equation*}
\left\langle r_{1}(h), f\right\rangle=\int_{H_{p} \backslash G} f\left(x^{-1} h x\right) v_{1}(x) d \dot{x} \tag{3.2}
\end{equation*}
$$

Lemma 3.3. For any $h \in H^{\prime}$ the distribution $r_{1}(h)$ is tempered. For any $f \in \mathscr{C}(G, V), \int_{H_{p} \backslash G} f\left(x^{-1} h x\right) v_{1}(x) d \dot{x}$ is absolutely convergent and

$$
\begin{aligned}
& \left\langle r_{1}(h), f\right\rangle=\int_{H_{p} \backslash G} f\left(x^{-1} h x\right) v_{1}(x) d \dot{x} \\
& \quad=[W(G, A)]^{-1} \Delta_{+}^{G}(h)^{-1} \Delta_{+}^{L}(h) \int_{J_{p} \backslash M} \bar{f}^{(P)}\left(m^{-1} h m\right) v_{1}^{M}(m) d \dot{m}
\end{aligned}
$$

Proof. Let $f \in \mathscr{C}(G, V)$. Write $h=j a$ where $j \in J^{\prime}, a \in A$. Then using (2.2) and (3.1),

$$
\begin{aligned}
& \int_{H_{p} \backslash G}\left|f\left(x^{-1} h x\right) v_{1}(x)\right| d \dot{x} \\
&=[W(G, A)]^{-1} \int_{J_{p} \backslash M}\left|v_{1}^{M}(m)\right| \int_{N K}\left|f\left(k^{-1} n^{-1} m^{-1} h m n k\right)\right| d n d k d \dot{m} \\
&=[W(G, A)]^{-1} \Delta_{+}^{G}(h)^{-1} \Delta_{+}^{L}(h) \int_{J_{>} \backslash M}\left|v_{1}^{M}(m) \bar{f}_{a}^{(P)}\left(m^{-1} j m\right)\right| d \dot{m}
\end{aligned}
$$

since $\Delta_{+}^{G}$ and $\Delta_{+}^{L}$ are invariant under conjugation by $M$. The lemma now follows since for any $a \in A, f \rightarrow \bar{f}_{a}^{(P)}$ is a continuous map from $\mathscr{C}(G, V)$ to $\mathscr{C}(M, V)$ [2]. Further, for $g \in \mathscr{C}(M, V), j \in J^{\prime}$,

$$
\int_{J_{p} \backslash M} g\left(m^{-1} j m\right) v_{1}^{M}(m) d \dot{m}
$$

is absolutely convergent and defines a tempered distribution [1].
Corollary 3.4. Let $A^{\prime}$ be a special vector subgroup of $G$ with $\operatorname{dim} A^{\prime}$ $\leq \operatorname{dim} A$. Let $P^{\prime}=M^{\prime} A^{\prime} N^{\prime} \in \mathscr{P}\left(A^{\prime}\right), \omega^{\prime} \in \varepsilon_{2}\left(M^{\prime}\right)$. Let $f$ be a wave packet defined as in (2.6) with respect to $\omega^{\prime}$ and $P^{\prime}$. Then $\left\langle r_{1}(h), f\right\rangle=0$ unless $A^{\prime}$ is conjugate to $A$ under $K$.

Proof. In this case $\bar{f}^{(P)}=0$ [4]. Thus the result follows from (3.3).

Lemma 3.5 Suppose that $f=\varphi_{\alpha}$ is a wave packet associated to $\omega \in$ $\varepsilon_{2}(M)$. Let $h \in H^{\prime}$. Then

$$
\begin{aligned}
\left\langle r_{1}(h), f\right\rangle= & {[W(G, A)]^{-1}(-1)^{p_{1}} \varepsilon\left(A_{1}, H\right)[W(\omega)]^{-1} \Delta_{+}^{G}(h)^{-1} \Delta_{+}^{L}(h) } \\
& \cdot \int_{\mathscr{F}}\left\langle\Theta_{\omega, \nu}, f\right\rangle \sum_{s \in W(G, A)}\left(\Theta_{s \omega} \otimes e^{i s \nu}\right)(h) d \nu
\end{aligned}
$$

where $p_{1}=\operatorname{dim} A_{1}^{M}$.
Proof. Using (3.3) and (2.4),

$$
\begin{aligned}
\left\langle r_{1}(h), f\right\rangle= & {[W(G, A)]^{-1} \Delta_{+}^{G}(h)^{-1} \Delta_{+}^{L}(h) F_{0} } \\
& \cdot \int_{J_{p} \backslash M} v_{1}^{M}(m) \int_{\mathscr{F}} e^{i \nu(\log a)} f_{\nu}^{(P)}\left(m^{-1} j m\right) d \nu d \dot{m}
\end{aligned}
$$

Since $f_{\nu}^{(P)} \in \mathscr{C}(M, V)$ and is supported on a compact subset of $\mathscr{F}$, we can interchange the order of integration. Let $W=W(G, A)$, and write $f_{\nu}^{(P)}=$ $\sum_{s \in W / W(\omega)} g_{s}$ where $g_{s} \in L(s \omega)$. Then, using (1.3),

$$
\int_{J_{p} \backslash M} g_{s}\left(m^{-1} j m\right) v_{1}^{M}(m) d \dot{m}=(-1)^{p_{1}} \varepsilon\left(A_{1}^{M}, J\right)\left\langle\Theta_{s \omega}, g_{s}\right\rangle \Theta_{s \omega}(j)
$$

But $\varepsilon\left(A_{1}^{M}, J\right)=\varepsilon\left(A_{1}, H\right)$, and $\left\langle\Theta_{s \omega}, g_{s^{\prime}}\right\rangle=0$ if $s \omega \neq s^{\prime} \omega$. Thus using (2.5),

$$
\begin{aligned}
& F_{0} \int_{J_{>} \backslash M} f_{\nu}^{(P)}\left(m^{-1} j m\right) v_{1}^{M}(m) d \dot{m} \\
&=(-1)^{p_{1}} \varepsilon\left(A_{1}, H\right) \sum_{s \in W / W(\omega)} F_{0}\left\langle\Theta_{s \omega}, f_{\nu}^{(P)}\right\rangle \Theta_{s \omega}(j) \\
& \quad=(-1)^{p_{1}} \varepsilon\left(A_{1}, H\right)[W(\omega)]^{-1} \sum_{s \in W}\left\langle\Theta_{s \omega, \nu}, f\right\rangle \Theta_{s \omega}(j)
\end{aligned}
$$

Now for each $s \in W$,

$$
\int_{\mathscr{F}} e^{i \nu(\log a)} \Theta_{s \omega}(j)\left\langle\Theta_{s \omega, \nu}, f\right\rangle d \nu=\int_{\mathscr{F}} e^{i s \nu(\log a)} \Theta_{s \omega}(j)\left\langle\Theta_{\omega, \nu}, f\right\rangle d \nu
$$

since $\Theta_{s \omega, s \nu}=\Theta_{\omega, \nu}$.
Now suppose that $H$ is a Cartan subgroup of $G$ with $H_{p}=A_{1}$, and fix $h \in H^{\prime}$. Let $h_{i}=x_{i} h x_{i}^{-1}, 1 \leq i \leq k$, be defined as in (1.6). Then using
results from [6, 7], for $\omega \in \varepsilon_{2}(M)$ and $\nu \in \mathscr{F}$,

$$
\begin{equation*}
\Theta_{\omega, \nu}(h)=\sum_{i=1}^{k} \Delta_{+}^{G}\left(h_{i}\right)^{-1} \Delta_{+}^{L}\left(h_{i}\right)\left(\Theta_{\omega} \otimes e^{i \nu}\right)\left(h_{\imath}\right) \tag{3.6}
\end{equation*}
$$

Fix $1 \leq i \leq k$. Let $A_{i}=x_{i} A_{1} x_{t}^{-1}, A_{i}^{M}=A_{i} \cap M$. Let $L_{i}=C_{G}\left(A_{i}\right)$. Then $A_{i}^{M}$ is a special vector subgroup of $M$. Let $\mathscr{Y}_{i}$ be any $A_{i}^{M}$-orthogonal set, and define $v_{l}$ on $G$ as in (3.1) starting from $v_{1}^{M}$. Then $v_{i}$ is left $L_{i}$-invariant so that $x \rightarrow v_{l}\left(x_{i} x\right)$ is left $L_{1}$-invariant. For $x \in G$ define

$$
\begin{equation*}
\langle r(h), f\rangle=\int_{H_{p} \backslash G} f\left(x^{-1} h x\right) \sum_{i=1}^{k} v_{i}\left(x_{i} x\right) d \dot{x} \tag{3.7}
\end{equation*}
$$

Theorem 3.8. Let $H$ be a Cartan subgroup of $G$ with $H_{p}=A_{1}, h \in H^{\prime}$. Then $r(h)$ is a tempered distribution, and for $f$ a wave packet corresponding to $\omega \in \varepsilon_{2}(M)$,

$$
\langle r(h), f\rangle=(-1)^{p_{1}}[W(\omega)]^{-1} \int_{\mathscr{F}}\left\langle\Theta_{\omega, \nu}, f\right\rangle \Theta_{\omega, \nu}(h) d \nu
$$

Proof. Define $x_{1}, \ldots, x_{k}$ and $h_{1}, \ldots, h_{k}$ as in (3.6). Then for $1 \leq i \leq k$, $H_{i}=x_{i} H x_{i}^{-1}$ is a Cartan subgroup of $G$ with $A_{i}=\left(H_{t}\right)_{p}$ so that using (3.3),

$$
\begin{aligned}
\langle r(h), f\rangle & =\sum_{i=1}^{k} \int_{H_{p} \backslash G} f\left(x^{-1} h x\right) v_{i}\left(x_{i} x\right) d \dot{x} \\
& =\sum_{i=1}^{k} \int_{\left(H_{i}\right)_{p} \backslash G} f\left(x^{-1} h_{t} x\right) v_{i}(x) d \dot{x} \\
& =(-1)^{p_{1}} \varepsilon\left(A_{1}, H\right)[W(\omega)]^{-1} \int_{\mathscr{F}}\left\langle\Theta_{\omega, \nu}, f\right\rangle \varphi(\omega, \nu, h) d \nu
\end{aligned}
$$

where

$$
\begin{aligned}
\varphi(\omega, \nu, h) & =[W]^{-1} \sum_{s \in W} \sum_{i=1}^{k} \Delta_{+}^{G}\left(h_{i}\right)^{-1} \Delta_{+}^{L}\left(h_{i}\right) \Theta_{s \omega} \otimes e^{i s \nu}\left(h_{i}\right) \\
& =[W]^{-1} \sum_{s \in W} \Theta_{s \omega, s \nu}(h)=\Theta_{\omega, \nu}(h)
\end{aligned}
$$

## References

[1] J. Arthur, The characters of discrete series as orbital integrals, Inv. Math., 32 (1976), 205-261.
[2] Harish-Chandra, Harmonic analysis on real reductive groups, I, J. Funct. Anal., 19 (1975), 104-204.
[3] __, Harmonic analysis on real reductive groups, II, Inv. Math., 36 (1976), 1-55.
[4] , Harmonic analysis on real reductive groups, III, Ann. of Math., 104 (1976), 117-201.
[5] R. Herb, Discrete series characters and Fourier inversion on semisimple real Lie groups, Trans. Amer. Math. Soc., 277 (1983), 241-261.
[6] W. Schmid, On the characters of the discrete series, Inv. Math., 30 (1975), 47-144.
[7] J. Wolf, Unitary representations on partially holomorphic cohomology spaces, Mem. Amer. Math. Soc., 138 (1974).

Received March 20, 1981. Supported in part by National Science Foundation Grant MCS 77-18723 A04.

University of Maryland
College Park, MD 20742

