CHARACTERS OF INDUCED REPRESENTATIONS AND WEIGHTED ORBITAL INTEGRALS

Rebecca A. Herb

The main result of this paper is a formula relating characters of principal series representations of a reductive Lie group to weighted orbital integrals of wave packets.

1. Introduction. Let G be a reductive Lie group satisfying Harish-Chandra's general assumptions [2]. Let P = MAN be the Langlands decomposition of a cuspidal parabolic subgroup of G. Denote by $\varepsilon_2(M)$ the set of equivalence classes of irreducible unitary square integrable representations of M. For $\omega \in \varepsilon_2(M)$ and $\nu \in \mathscr{F} = \mathfrak{a}^*$, the real dual of the Lie algebra of A, let $\pi_{\omega,\nu}$ be the corresponding unitary representation of G induced from P. Let f be a wave packet corresponding to ω . Then the integral of f over any regular (semisimple) orbit of G which can be represented by an element of L = MA has been evaluated by Harish-Chandra in terms of the character $\Theta_{\omega,\nu}$ of $\pi_{\omega,\nu}$ [4].

Let γ be a regular element of G contained in a Cartan subgroup H of L. Write $H = H_K H_p$ where H_K is compact, H_p is split, and $A \subseteq H_p$. Then for suitable normalizations of the G-invariant measure $d\dot{x}$ on $H_p \setminus G$ and Haar measure $d\nu$ on \mathcal{F} .

(1.1)
$$\int_{H_p \setminus G} f(x^{-1} \gamma x) d\dot{x} = \varepsilon(A, H) [W(\omega)]^{-1} \int_{\mathscr{F}} \langle \Theta_{\omega,\nu}, f \rangle \Theta_{\omega,\nu}(\gamma) d\nu$$

where $W(\omega) = \{s \in N_G(A)/L | s\omega = \omega\}$ and $\varepsilon(A, H)$ is 1 if $H_p = A$ and is 0 otherwise. This formula can be interpreted as giving the value of $\Theta_{\omega,\nu}$ on regular elements γ of a fundamental Cartan subgroup of L in terms of the integral of a wave packet for ω over the orbit of γ . It also gives the Fourier inversion formula for the tempered invariant distribution

$$f \rightarrow \langle \Lambda(\gamma), f \rangle = \int_{H_p \setminus G} f(x^{-1} \gamma x) d\dot{x}$$

restricted to the subspace of $\mathscr{C}(G)$, the Schwartz space of G, spanned by wave packets corresponding to representations induced from cuspidal parabolic subgroups P = MAN with $A \subseteq H_p$. The complete Fourier inversion formula for $\Lambda(\gamma)$ is much more complicated. (See [5].)

REBECCA A. HERB

In the case that P = G is cuspidal and $\omega \in \varepsilon_2(G)$, then Θ_{ω} is a discrete series character of G, and f is a matrix coefficient corresponding to ω . Formula (1.1) becomes

(1.2)
$$\int_{H_{\rho}\backslash G} f(x^{-1}\gamma x) d\dot{x} = \varepsilon(1, H) \langle \Theta_{\omega}, f \rangle \Theta_{\omega}(\gamma).$$

Arthur has obtained the following generalization of (1.2) [1]. Let A be the split component of a parabolic subgroup of G. Let L be the centralizer in G of A. Corresponding to A, Arthur defines a function v_A on G which is left L-invariant. Let γ be a regular element of G contained in a Cartan subgroup $H = H_K H_p$ of L. Let $\omega \in \epsilon_2(G)$, and let f be a matrix coefficient for ω . Then Arthur's formula is

(1.3)
$$\int_{H_p \setminus G} f(x^{-1} \gamma x) v_A(x) \, d\dot{x} = (-1)^p \varepsilon(A, H) \langle \Theta_{\omega}, f \rangle \Theta_{\omega}(\gamma)$$

where p is the dimension of A. This formula gives the value of the character Θ_{ω} on the nonelliptic element γ in terms of a weighted orbital integral of a matrix coefficient of ω . It also gives the Fourier inversion formula for the tempered distribution

$$f \rightarrow \langle r_A(\gamma), f \rangle = \int_{H_p \setminus G} f(x^{-1}\gamma x) v_A(x) d\dot{x}$$

restricted to the space ${}^{0}\mathscr{C}(G)$ of cusp forms on G. The distributions $r_{A}(\gamma)$ occur in the Selberg trace formula for $\Gamma \setminus G$, Γ a discrete subgroup of G for which $\Gamma \setminus G$ has finite volume but is not compact. As formula (1.3) shows, $r_{A}(\gamma)$ is invariant on ${}^{0}\mathscr{C}(G)$. However, $r_{A}(\gamma)$ is not an invariant distribution on $\mathscr{C}(G)$, and the full Fourier inversion formula for $r_{A}(\gamma)$ is not known.

Authur's formula can be generalized to the setting of induced representations and wave packets. Let P = MAN be a cuspidal parabolic subgroup of G, and let A_1 be the split component of a parabolic subgroup of L = MA, L_1 its centralizer in G. Let γ be a regular element of G contained in a Cartan subgroup $H = H_K H_p$ of L_1 . We will define a left L_1 -invariant function $v_{A_1}^p$ on G with the following properties.

If f' is a wave packet coming from a cuspidal parabolic subgroup P' = M'A'N' of G with dim $A' \le \dim A$ and A not conjugate to A', then

(1.4)
$$\int_{H_p \setminus G} f'(x^{-1} \gamma x) v_{\mathcal{A}_1}^P(x) d\dot{x} = 0.$$

368

Now let f be a wave packet corresponding to $\omega \in \varepsilon_2(M)$. Then

(1.5)
$$\int_{H_p \setminus G} f(x^{-1} \gamma x) v_{A_1}^P(x) d\dot{x} = 0 \quad \text{if } H_p \neq A_1.$$

If $H_p = A_1$, let $\gamma = \gamma_1, \gamma_2, \dots, \gamma_k$ be a complete set of elements of L for which $\gamma_i = x_i \gamma x_i^{-1}$ for some $x_i \in G$, but γ_i and γ_j are not conjugate in L for $1 \le i \ne j \le k$. Let $A_i = x_i A_1 x_i^{-1}$. Then

(1.6)
$$\int_{H_{p}\backslash G} f(x^{-1}\gamma x) \sum_{i=1}^{k} v_{A_{i}}^{P}(x_{i}x) d\dot{x}$$
$$= (-1)^{p_{1}} [W(\omega)]^{-1} \int_{\mathscr{F}} \langle \Theta_{\omega,\nu}, f \rangle \Theta_{\omega,\nu}(\gamma) d\nu$$

where p_1 is the dimension of $A_1 \cap M$.

Formulas (1.4)-(1.6) are proved by using Arthur's formula and results of Harish-Chandra relating characters and orbital integrals on G to those on M and L. Any unexplained notation follows that of Harish-Chandra [2, 3, 4].

2. Background material. Let G be a real reductive Lie group, g the Lie algebra of G. Let K be a maximal compact subgroup of G, θ the Cartan involution of G corresponding to K, and B a real symmetric bilinear form on g. Assume that (G, K, θ, B) satisfy the general assumptions of Harish-Chandra in [2] and that Haar measures are normalized as in [2]. Given a θ -stable Cartan subgroup H of G, we will write $H = H_K H_p$ where $H_K = H \cap K$ and H_p is a vector subgroup with Lie algebra \mathfrak{h}_p contained in the -1 eigenspace for θ . Let G' be the set of regular semisimple elements of G, $H' = H \cap G'$. If J is any subgroup of G, we will write $N_G(J)$ and $C_G(J)$ for the normalizer and centralizer of J in G, respectively, and $W(G, J) = N_G(J)/C_G(J)$.

We will first review some definitions and formulas of Harish-Chandra from [2, 3, 4]. Fix a double unitary representation τ of K on a finite-dimensional Hilbert space V. Let $\mathscr{C}(G, \tau)$ and ${}^{0}\mathscr{C}(G, \tau)$ denote the τ -spherical functions in the spaces of V-valued Schwartz functions $\mathscr{C}(G, V)$ and V-valued cusp forms ${}^{0}\mathscr{C}(G, V)$ respectively. Let F_0 be the operator on V given by

$$F_0 v = \int_K \tau(k^{-1}) v \tau(k) \, dk, \qquad v \in V.$$

For $f \in \mathscr{C}(G, V)$ and $x \in G$, define $\overline{f}(x) = \int_K f(k^{-1}xk) dk$. Then if $f \in \mathscr{C}(G, \tau), \overline{f}(x) = F_0 f(x), x \in G$.

Fix a cuspidal parabolic subgroup P = MAN, that is, a parabolic subgroup of G with $\varepsilon_2(M) \neq \emptyset$. Let τ_M be the restriction of τ to $K_M = K \cap M$. For any $f \in \mathscr{C}(G, V)$, $m \in M$, and $a \in A$, let

(2.1)
$$f^{(P)}(ma) = f_a^{(P)}(m) = \delta_P^{1/2}(a) \int_N f(man) \, dn$$

where δ_P is the module of *P*. Then $f_a^{(P)} \in \mathscr{C}(M, V)$, $f^{(P)} \in \mathscr{C}(MA, V)$, and the following relationships between *f* and $f^{(P)}$ can be found in or easily derived from results in [2, 3, 4].

Let H be a θ -stable Cartan subgroup of L. for $f \in \mathscr{C}(G, V)$ and $h \in H'$,

(2.2)
$$\int_{N} f(n^{-1}hn) dn = \Delta_{+}^{G}(h)^{-1} \Delta_{+}^{L}(h) f^{(P)}(h)$$

where Δ_{+}^{L} and Δ_{+}^{G} are the functions Δ_{+} on *H*, considered as a Cartan subgroup of *L* and *G* respectively, defined by Harish-Chandra in [2].

For $\nu \in \mathscr{F} = \mathfrak{a}^*$ and $m \in M$, define

(2.3)
$$f_{\nu}^{(P)}(m) = \int_{\mathcal{A}} f^{(P)}(ma) e^{-i\nu(\log a)} da.$$

Then because dv is the dual measure to da on A and $f^{(P)}$ is rapidly decreasing in the A variable,

(2.4)
$$f^{(P)}(ma) = \int_{\mathscr{F}} f_{\nu}^{(P)}(m) e^{i\nu(\log a)} d\nu.$$

For $\omega \in \varepsilon_2(M)$ and $\nu \in \mathscr{F}$, let $\pi_{\omega,\nu}$ be the tempered unitary representation of G induced from $\omega \otimes e^{i\nu} \otimes 1$ on MAN. Let $\Theta_{\omega,\nu}$ and Θ_{ω} denote the characters of $\pi_{\omega,\nu}$ and ω considered as functions on G' and M' respectively. For $f \in \mathscr{C}(G, \tau)$, $g \in \mathscr{C}(M, \tau_M)$, define

$$\langle \Theta_{\omega,\nu}, f \rangle = \int_G f(x) \overline{\Theta_{\omega,\nu}(x)} dx$$
 and $\langle \Theta_{\omega}, g \rangle = \int_M g(m) \overline{\Theta_{\omega}(m)} dm$.

Then, for $f \in \mathscr{C}(G, \tau), \nu \in \mathscr{F}, f_{\nu}^{(P)} \in \mathscr{C}(M, \tau_M)$ and (2.5) $\langle \Theta_{\omega,\nu}, f \rangle = F_0 \langle \Theta_{\omega}, f_{\nu}^{(P)} \rangle.$

(2.5) $(\Theta_{\omega,\nu}, f) = \Gamma_0 (\Theta_{\omega}, f_{\nu}) / F$

For $\omega \in \varepsilon_2(M)$, let $L(\omega) = {}^0 \mathscr{C}(M, \tau_M) \cap \mathfrak{h}_{\omega} \otimes V$ where \mathfrak{h}_{ω} is the closed subspace of $L^2(M)$ spanned by matrix coefficients for ω . For $\psi \in L(\omega), \alpha \in C_c^{\infty}(\mathscr{F})$, and $x \in G$, define

(2.6)
$$\varphi_{\alpha}(x) = \int_{\mathscr{F}} \alpha(\nu) E(P:\psi:\nu:x) \mu(\omega:\nu) d\nu$$

where $E(P: \psi: \nu)$ is the Eisenstein integral defined in [2], and $\mu(\omega: \nu)$ is the Plancherel factor corresponding to $\pi_{\omega,\nu}$. Then $\varphi_{\alpha} \in \mathscr{C}(G, \tau)$ is called a wave packet for $\omega \in \varepsilon_2(M)$, and for $\nu \in \mathscr{F}$, $(\varphi_{\alpha})_{\nu}^{(P)}$ belongs to $\sum_{s \in W(G,A)} L(s\omega)$ and is supported on a compact subset of \mathscr{F} .

We now turn to Arthur's results. Let A be a special vector subgroup of G, that is, the split component of a parabolic subgroup of G. Write $\mathscr{P}(A)$ for the (finite) set of all parabolic subgroups of G having A as split component. For $P \in \mathscr{P}(A)$ let Φ_P denote the set of simple roots of (P, A). We identify α , the Lie algebra of A, and its dual via the bilinear form B. A set $\mathscr{Y} = \{Y_P | P \in \mathscr{P}(A)\}$ of points in α is called A-orthogonal if for any pair of adjacent parabolic subgroups $P, P' \in \mathscr{P}(A), Y_P - Y_{P'} = r\alpha, r \in \mathbf{R}$, where α is the unique element of Φ_P with $-\alpha \in \Phi_{P'}$. Let

$$a^{0} = \{ H \in a | \langle \alpha, H \rangle = 0 \text{ for every root } \alpha \text{ of } (g, a) \},\$$

 a^1 its orthogonal complement in A. Let p be the dimension of a^1 , and let $c_A = |\det C|^{1/2}$ where C is the Cartan matrix for the roots of (g, a). For any $P = MAN \in \mathscr{P}(A)$ and $x \in G$, write

$$x = m(x)\exp(H_p(x))n(x)k(x)$$

where $m(x) \in M$, $n(x) \in N$, $k(x) \in K$, and $H_P(x) \in \mathfrak{a}$. For any A-orthogonal set \mathscr{Y} and $\lambda \in \mathfrak{a}^1_{\mathbb{C}}$, define

(2.7)
$$v(x:\mathscr{Y}) = c_{A}(p!)^{-1} \sum_{P \in \mathscr{P}(A)} \frac{\langle \lambda, Y_{P} - H_{P}(x) \rangle^{p}}{\prod_{\alpha \in \Phi_{P}} \langle \lambda, \alpha \rangle}.$$

Then $v(x : \mathscr{Y})$ is independent of λ and is left-invariant under $L = C_G(A)$. It is also clearly right K-invariant. If $v_A(x) = v(x : \mathscr{Y})$ for any A-orthogonal set \mathscr{Y} , then (1.3) is valid.

3. The distributions. Fix a cuspidal parabolic subgroup P = MAN of G. Let A_1^M be a special vector subgroup of M, $A_1 = A_1^M A$. Let \mathscr{Y}_1 be an A_1^M -orthogonal set, and let $v_1^M(m) = v(m : \mathscr{Y}_1)$, $m \in M$, be the function on M defined as in (2.7) with respect to A_1^M and \mathscr{Y}_1 . Extend v_1^M to a function v_1 on G by setting

(3.1)
$$v_1(mank) = [W(G, A)]^{-1} v_1^M(m),$$

 $m \in M, a \in A, n \in N, k \in K.$

This extension is well defined since v_1^M is right K_M -invariant. Since v_1^M if left-invariant under $L_1^M = C_M(A_1^M)$, v_1 is left-invariant under $L_1 = L_1^M A = C_G(A_1)$.

Let *H* be a θ -stable Cartan subgroup of *G* with $A_1 \subseteq H_p$. Write $J = H \cap M$. Let $h \in H'$. For $f \in C_c^{\infty}(G, V)$, define

(3.2)
$$\langle r_1(h), f \rangle = \int_{H_p \setminus G} f(x^{-1}hx) v_1(x) d\dot{x}.$$

LEMMA 3.3. For any $h \in H'$ the distribution $r_1(h)$ is tempered. For any $f \in \mathscr{C}(G, V), \int_{H_n \setminus G} f(x^{-1}hx)v_1(x) dx$ is absolutely convergent and

$$\langle r_1(h), f \rangle = \int_{H_p \setminus G} f(x^{-1}hx) v_1(x) d\dot{x}$$

= $[W(G, A)]^{-1} \Delta^G_+(h)^{-1} \Delta^L_+(h) \int_{J_p \setminus M} \bar{f}^{(P)}(m^{-1}hm) v_1^M(m) d\dot{m}.$

Proof. Let $f \in \mathscr{C}(G, V)$. Write h = ja where $j \in J'$, $a \in A$. Then using (2.2) and (3.1),

$$\begin{split} \int_{H_{p}\backslash G} |f(x^{-1}hx)v_{1}(x)| d\dot{x} \\ &= [W(G,A)]^{-1} \int_{J_{p}\backslash M} |v_{1}^{M}(m)| \int_{NK} |f(k^{-1}n^{-1}m^{-1}hmnk)| dn \, dk \, d\dot{m} \\ &= [W(G,A)]^{-1} \Delta_{+}^{G}(h)^{-1} \Delta_{+}^{L}(h) \int_{J_{p}\backslash M} |v_{1}^{M}(m)\bar{f}_{a}^{(P)}(m^{-1}jm)| d\dot{m} \end{split}$$

since Δ_{+}^{G} and Δ_{+}^{L} are invariant under conjugation by M. The lemma now follows since for any $a \in A$, $f \to \overline{f}_{a}^{(P)}$ is a continuous map from $\mathscr{C}(G, V)$ to $\mathscr{C}(M, V)$ [2]. Further, for $g \in \mathscr{C}(M, V)$, $j \in J'$,

$$\int_{J_p\setminus M} g\big(m^{-1}jm\big)v_1^M(m)\,dm$$

is absolutely convergent and defines a tempered distribution [1].

COROLLARY 3.4. Let A' be a special vector subgroup of G with dim A' $\leq \dim A$. Let $P' = M'A'N' \in \mathcal{P}(A')$, $\omega' \in \varepsilon_2(M')$. Let f be a wave packet defined as in (2.6) with respect to ω' and P'. Then $\langle r_1(h), f \rangle = 0$ unless A' is conjugate to A under K.

Proof. In this case $\bar{f}^{(P)} = 0$ [4]. Thus the result follows from (3.3).

LEMMA 3.5 Suppose that $f = \varphi_{\alpha}$ is a wave packet associated to $\omega \in \epsilon_2(M)$. Let $h \in H'$. Then

$$\langle r_1(h), f \rangle = [W(G, A)]^{-1} (-1)^{p_1} \varepsilon(A_1, H) [W(\omega)]^{-1} \Delta^G_+(h)^{-1} \Delta^L_+(h)$$

$$\cdot \int_{\mathscr{F}} \langle \Theta_{\omega, \nu}, f \rangle \sum_{s \in W(G, A)} (\Theta_{s\omega} \otimes e^{is\nu})(h) \, d\nu$$

where $p_1 = \dim A_1^M$.

Proof. Using (3.3) and (2.4),

$$\left\langle r_1(h), f \right\rangle = \left[W(G, A) \right]^{-1} \Delta^G_+(h)^{-1} \Delta^L_+(h) F_0 \cdot \int_{J_p \setminus M} v_1^M(m) \int_{\mathscr{F}} e^{i\nu(\log a)} f_{\nu}^{(P)}(m^{-1}jm) \, d\nu \, dm$$

Since $f_{\nu}^{(P)} \in \mathscr{C}(M, V)$ and is supported on a compact subset of \mathscr{F} , we can interchange the order of integration. Let W = W(G, A), and write $f_{\nu}^{(P)} = \sum_{s \in W/W(\omega)} g_s$ where $g_s \in L(s\omega)$. Then, using (1.3),

$$\int_{J_p \setminus \mathcal{M}} g_s(m^{-1}jm) v_1^{\mathcal{M}}(m) d\dot{m} = (-1)^{p_1} \varepsilon (A_1^{\mathcal{M}}, J) \langle \Theta_{s\omega}, g_s \rangle \Theta_{s\omega}(j).$$

But $\varepsilon(A_1^M, J) = \varepsilon(A_1, H)$, and $\langle \Theta_{s\omega}, g_{s'} \rangle = 0$ if $s\omega \neq s'\omega$. Thus using (2.5),

$$F_{0} \int_{J_{p} \setminus M} f_{\nu}^{(P)}(m^{-1}jm) v_{1}^{M}(m) d\dot{m}$$

= $(-1)^{p_{1}} \varepsilon(A_{1}, H) \sum_{s \in W/W(\omega)} F_{0} \langle \Theta_{s\omega}, f_{\nu}^{(P)} \rangle \Theta_{s\omega}(j)$
= $(-1)^{p_{1}} \varepsilon(A_{1}, H) [W(\omega)]^{-1} \sum_{s \in W} \langle \Theta_{s\omega,\nu}, f \rangle \Theta_{s\omega}(j)$

Now for each $s \in W$,

$$\int_{\mathscr{F}} e^{i\nu(\log a)} \Theta_{s\omega}(j) \langle \Theta_{s\omega,\nu}, f \rangle d\nu = \int_{\mathscr{F}} e^{is\nu(\log a)} \Theta_{s\omega}(j) \langle \Theta_{\omega,\nu}, f \rangle d\nu$$

since $\Theta_{s\omega,s\nu} = \Theta_{\omega,\nu}$.

Now suppose that H is a Cartan subgroup of G with $H_p = A_1$, and fix $h \in H'$. Let $h_i = x_i h x_i^{-1}$, $1 \le i \le k$, be defined as in (1.6). Then using

results from [6, 7], for $\omega \in \varepsilon_2(M)$ and $\nu \in \mathscr{F}$,

(3.6)
$$\Theta_{\omega,\nu}(h) = \sum_{i=1}^{k} \Delta^{G}_{+}(h_{i})^{-1} \Delta^{L}_{+}(h_{i}) (\Theta_{\omega} \otimes e^{i\nu})(h_{i}).$$

Fix $1 \le i \le k$. Let $A_i = x_i A_1 x_i^{-1}$, $A_i^M = A_i \cap M$. Let $L_i = C_G(A_i)$. Then A_i^M is a special vector subgroup of M. Let \mathscr{Y}_i be any A_i^M -orthogonal set, and define v_i on G as in (3.1) starting from v_i^M . Then v_i is left L_i -invariant so that $x \to v_i(x_i x)$ is left L_i -invariant. For $x \in G$ define

(3.7)
$$\langle r(h), f \rangle = \int_{H_p \setminus G} f(x^{-1}hx) \sum_{i=1}^k v_i(x_ix) d\dot{x}.$$

THEOREM 3.8. Let H be a Cartan subgroup of G with $H_p = A_1$, $h \in H'$. Then r(h) is a tempered distribution, and for f a wave packet corresponding to $\omega \in \varepsilon_2(M)$,

$$\langle r(h), f \rangle = (-1)^{p_1} [W(\omega)]^{-1} \int_{\mathscr{F}} \langle \Theta_{\omega,\nu}, f \rangle \Theta_{\omega,\nu}(h) d\nu.$$

Proof. Define x_1, \ldots, x_k and h_1, \ldots, h_k as in (3.6). Then for $1 \le i \le k$, $H_i = x_i H x_i^{-1}$ is a Cartan subgroup of G with $A_i = (H_i)_p$ so that using (3.3),

$$\langle r(h), f \rangle = \sum_{i=1}^{k} \int_{H_{p} \setminus G} f(x^{-1}hx) v_{i}(x_{i}x) d\dot{x}$$

$$= \sum_{i=1}^{k} \int_{(H_{i})_{p} \setminus G} f(x^{-1}h_{i}x) v_{i}(x) d\dot{x}$$

$$= (-1)^{p_{1}} \varepsilon(A_{1}, H) [W(\omega)]^{-1} \int_{\mathscr{F}} \langle \Theta_{\omega,\nu}, f \rangle \varphi(\omega, \nu, h) d\nu$$

where

$$\varphi(\omega, \nu, h) = [W]^{-1} \sum_{s \in W} \sum_{i=1}^{k} \Delta^{G}_{+}(h_{i})^{-1} \Delta^{L}_{+}(h_{i}) \Theta_{s\omega} \otimes e^{is\nu}(h_{i})$$
$$= [W]^{-1} \sum_{s \in W} \Theta_{s\omega,s\nu}(h) = \Theta_{\omega,\nu}(h).$$

374

References

- [1] J. Arthur, The characters of discrete series as orbital integrals, Inv. Math., **32** (1976), 205–261.
- [2] Harish-Chandra, Harmonic analysis on real reductive groups, I, J. Funct. Anal., 19 (1975), 104-204.
- [3] _____, Harmonic analysis on real reductive groups, II, Inv. Math., 36 (1976), 1–55.
- [4] ____, Harmonic analysis on real reductive groups, III, Ann. of Math., 104 (1976), 117–201.
- [5] R. Herb, Discrete series characters and Fourier inversion on semisimple real Lie groups, Trans. Amer. Math. Soc., 277 (1983), 241–261.
- [6] W. Schmid, On the characters of the discrete series, Inv. Math., 30 (1975), 47–144.
- [7] J. Wolf, Unitary representations on partially holomorphic cohomology spaces, Mem. Amer. Math. Soc., 138 (1974).

Received March 20, 1981. Supported in part by National Science Foundation Grant MCS 77-18723 A04.

UNIVERSITY OF MARYLAND COLLEGE PARK, MD 20742