REAL C*-ALGEBRAS

T. W. PALMER

Several variants of the classical Gelfand-Neumark characterization of complex C^* -algebras are here extended to characterize real C^* -algebras up to isometric*-isomorphism and also up to homeomorphic *-isomorphism. The proofs depend on norming the complexification of the real algebra and applying the author's characterization of complex C^* -algebras to the result. L. Ingelstam has obtained similar but weaker results by an entirely different method.

An involution on \mathfrak{A} is a map (*): $\mathfrak{A} \to \mathfrak{A}$ which is a conjugate linear involutive antiautomorphism. A generalized involution is an involution except that it may be either an automorphism or an antiautomorphism (Generalized involutions have been considered previously by B. Yood [12]. If $\mathfrak{A} = \mathfrak{M}^{\circ} \bigoplus \mathfrak{M}^{1}$ is a \mathbb{Z}_{2} graded real algebra, then $x^{\circ} + x^{1} \to x^{\circ} - x^{1}$ is an automorphic generalized involution, and conversely the sets of hermitian and skew hermitian elements in a real algebra with an automorphic generalized involution give a \mathbb{Z}_{2} grading.) An algebra \mathfrak{A} with a [generalized] involution is called a [generalized] *-algebra. If \mathfrak{A} is also a Banach algebra and the norm and involution satisfy $||x^{*}x|| = ||x||^{2}$ for all $x \in \mathfrak{A}$ then \mathfrak{A} is called a [generalized] B^{*} -algebra.

If \varkappa is a real or complex Hilbert space, then $[\varkappa]$, the Banach algebra of all bounded linear transformations from \varkappa into \varkappa , is a B^* algebra when the involution is defined as the map assigning to each element its Hilbert space adjoint. A subset of a generalized *-algebra is called self adjoint if it is closed under the involution. A self adjoint subalgebra is called a *-subalgebra. Obviously a norm closed *-subalgebra of $[\checkmark]$ is also a B*-algebra. A homomorphism φ from an algebra \mathfrak{A} with generalized involution into [\varkappa] is called a *-representation if $\varphi(x^*) = \varphi(x)^*$ for all $x \in \mathfrak{A}$. A Banach generalized *-algebra \mathfrak{A} will be called a C^* -algebra if there is an isometric *-representation of \mathfrak{A} on some Hilbert space. In this case the generalized involution is in fact antiautomorphic. A generalized *-algebla \mathfrak{A} is called hermitian if and only if $-h^2$ has a quasi-inverse in \mathfrak{A} for each hermitian element h in \mathfrak{A} , skew hermitian if and only if j^2 has a quasi-inverse in \mathfrak{A} for each skew hermitian element j in \mathfrak{A} . Α *-algebra is called symmetric if and only if $-x^*x$ has a quasiinverse in \mathfrak{A} for each x in \mathfrak{A} . Complex B*-algebras are necessarily symmetric and therefore hermitian. However the complex numbers, C considered as a real Banach algebra with the identity map as

involution are an example of a nonhermitian real B^* -algebra. The existence of an involution or generalized involution is a much weaker condition on a real algebra than on a complex algebra since the identity map is an involution on any commutative real algebra and a generalized involution on any real algebra.

It is well known that any complex B^* -algebra is a C^* -algebra. See [4] for a proof and further references (cf. [2], [11]). The analogous result for real B^* -algebras is false without further restriction. In fact we prove the following theorem which extends results of L. Ingelstam [5, 17.7, 18.6, 18.7, 18.8].

THEOREM 1. The following are equivalent for a real Banach generalized *-algebra \mathfrak{A} :

- (1) \mathfrak{A} is a C^* -algebra.
- (2) $||x||^2 \leq ||x^*x + y^*y||$ for all x, y in \mathfrak{A} .
- (3) \mathfrak{A} is a hermitian generalized B^* -algebra.

A complex *-algebra \mathfrak{A} with an identity is a C*-algebra if and only if $||z^*|| ||z|| \leq ||z^*z||$ for all normal elements z in \mathfrak{A} [3, 2.5], and any complex *-algebra \mathfrak{A} is a C*-algebra if and only if the same inequality holds for all elements x in \mathfrak{A} [11]. It is not known whether these results generalize to real hermitian *-algebra.

We call a generalized *-algebra C^* -equivalent if and only if it is homeomorphically *-isomorphic to some C^* -algebra. Thus a generalized *-algebra is C^* -equivalent if and only if it has a homeomorphic *-representation on some Hilbert space.

THEOREM 2. The following are equivalent for a real Banach generalized *-algebra \mathfrak{A} .

(1) \mathfrak{A} is C^* -equivalent.

(2) There is a constant C such that $||z^*|| ||z|| \leq C ||z^*z + w^*w||_{\mathcal{A}}$ for all commuting pairs of normal elements z, w in \mathfrak{A} .

(3) A is hermitian and there is a constant C such that $||z^*|| ||z||_{\mathbb{A}} \leq C ||z^*z||$ for all normal elements z in A.

(4) At is hermitian and skew hermitian and there is a constant C such that $||k||^2 \leq C ||k^2||$ for all hermitian and all skew hermitian elements k in A.

The real group algebra of \mathbb{Z}_2 with 2^1 -norm and an involution given by $(a + b\gamma)^* = a - b\gamma$ where γ is the generator of \mathbb{Z}_2 satisfies condition (4) except that it is not skew hermitian. Also the algebra C of complex numbers with the identity map as involution satisfies (3) and (4) except that it is not hermitian. The equivalence of (1) and (4) can be regarded as a real and noncommutative version of B. Yood's result [12, 4.1(4)] or as a real version of his Theorem 2.7 in [13] as extended by a remark in [10]. Notice that condition (2), (3), (4) do not assume the continuity of the involution nor do they put any restriction on nonnormal elements of \mathfrak{A} . In these respects Theorem 2 significantly strengthens Theorem 17.6 of L. Ingelstam in [5].

S. Shirali and J. W. M. Ford have recently shown [10] that a complex Banach algebra with a hermitian real linear involution is symmetric. Their arguments also show that a real hermitian and skew hermitian Banach *-algebra is symmetric. Although the full force of the real version of this result could be avoided in our arguments it is noted in Lemma 1 because of its general interest.

The theorems are all proved by embedding the real algebra in a complex algebra and using a recent result of the author on complex C^* -algebras:

THEOREM A ([7]). A complex Banach algebra \mathfrak{A} with an identity element 1 of norm one is isometrically isomorphic to some complex C^* -algebra if and only if \mathfrak{A} is the linear span of

$$\mathfrak{A}_{H} = \{h \in \mathfrak{A} : || \exp(ith) || \leq 1, \forall t \in \mathbf{R} \}.$$

In this case each element of \mathfrak{A} has a unique decomposition x = h + ikwith $h, k \in \mathfrak{A}_{H}$. Furthermore the map $h + ik \rightarrow h - ik$ is an involution on \mathfrak{A} and any isometric isomorphism of \mathfrak{A} into a C*-algebra is a *-isomorphism relative to this involution.

2. Embedding in a complex C^* -algebra. The fundamental tool used in this paper is described in Proposition 1 at the end of this section. For convenience we establish some notation to use throughout the paper.

If \mathfrak{A} is a real algebra, we shall denote the associated complex algebra by \mathfrak{B} . That is, \mathfrak{B} is the set of formal expressions x + iywith x and y in \mathfrak{A} and the obvious algebraic operations. Recall that the spectrum of an element in a real algebra \mathfrak{A} is defined to be its usual spectrum in \mathfrak{B} . Notice that with this convention a real algebra \mathfrak{A} with generalized involution is hermitian if and only if each hermitian element in \mathfrak{A} has real spectrum, is skew hermitian if and only if each skew hermitian element has purely imaginary spectrum, and a *-algebra is symmetric if and only if x^*x has nonnegative spectrum for each element x in \mathfrak{A} [8, 4.1.7 and 4.7.6]. Clearly a complex *-algebra is skew hermitian if and only if it is hermitian. If \mathfrak{A} has a generalized involution, then \mathfrak{B} will be endowed with the generalized involution $(x + iy)^* = x^* - iy^*$.

T. W. PALMER

If \mathfrak{A} is an algebra without an identity then \mathfrak{A}^{1} will represent the algebra (under the obvious operation) of all formal expressions x + t with x in \mathfrak{A} and t a scalar. If \mathfrak{A} is normed \mathfrak{A}^{1} is given the norm ||x + t|| = ||x|| + |t| unless \mathfrak{A} is assumed to be a generalized B^{*} -algebra in which case the norm

$$||x + t|| = \sup \{||xu + tu||: u \in \mathfrak{A}, ||u|| = 1\}$$

is used instead. If \mathfrak{A} is a Banach algebra the first norm on \mathfrak{A}^{1} is complete, and if \mathfrak{A} is a B^* -algebra so is \mathfrak{A}^{1} with the second norm [8, 4.1.13].

It is also convenient to introduce once and for all the following notation for the sets of hermitian, skew hermitian, unitary, normal and positive elements in a generalized *-algebra:

$$\mathfrak{A}_{H} = \{h \in \mathfrak{A} : h = h^*\}, \ \mathfrak{A}_{J} = \{j \in \mathfrak{A} : -j = j^*\},\ \mathfrak{A}_{U} = \{u \in \mathfrak{A} : uu^* = u^*u = 1\},\ \mathfrak{A}_{N} = \{z \in \mathfrak{A} : z^*z = z^*z\},\ \mathfrak{A}_{+} = \{h \in \mathfrak{A}_{U} : h \text{ has nonnegative real spectrum}\}.$$

Notice that this is only one of several possible notions of positivity. It will be convenient to use \mathfrak{A}_{G} to denote $\mathfrak{A}_{\Pi} \bigcup \mathfrak{A}_{J}$ in a (real or complex) generalized *-algebra. Denote the spectrum and spectral radius of an element x in a Banach algebra by $\sigma(x)$ and $\nu(x)$, respectively. Note that $\sigma(x^*) = \{\overline{\lambda} : \lambda \in \sigma(x)\}$ so that $\nu(x) = \nu(x^*)$ for all x in \mathfrak{A} .

LEMMA 1. (Shirali and Ford [10].) A real hermitian and skew hermitian Banach *-algebra is symmetric.

Proof. Ford's square root lemma [1] is proved for a real Banach *-algebra \mathfrak{A} by applying the original proof to the complexification \mathfrak{E} of a closed maximal commutative *-subalgebra of \mathfrak{A} which contains h, and noting that $u = \lim h_n$ lies in the natural image of \mathfrak{A} in \mathfrak{E} . Lemmas 1 through 5 of [10] now follow for real *-algebras without essential change. The proof is completed by constructing the real commutative *-subalgebra \mathfrak{E} as in [10] and noting that θ is defined on the complexification of \mathfrak{E} .

We note that the proof of Ford's square root lemma holds even for real Banach generalized *-algebras.

LEMMA 2. Let \mathfrak{A} be a (real or complex) Banach generalized *-algebra. Let there be a constant C such that $||k||^2 \leq C ||k^2||$ for all $k \in \mathfrak{A}_{g}$. Then

(a) $||k|| \leq C \nu(k)$ for all $k \in \mathfrak{A}_{c}$.

(b) The involution is continuous.

198

(c) If \mathfrak{A} is hermitian and lacks an identity then $||k + t||^2 \leq 9C^2 ||(k + t)^2||$ for all $k + t \in (\mathfrak{A}^1)_G$.

(d) Let \mathfrak{A} be hermitian and if the involution is antiautomorphic let \mathfrak{A} be skew hermitian. Then \mathfrak{A}_+ is closed under addition.

Proof. (a) $||k|| \leq (CC^2 \cdots C^{2^{n-1}})^{2^{-n}} ||k^{2^n}||^{2^{-n}}$

(b) This follows from Theorem 3.4 in [12].

(c) If \mathfrak{A} is real $(\mathfrak{A}^{1})_{J} = \mathfrak{A}_{J}$ and if \mathfrak{A} is complex the inequality for elements in $(\mathfrak{A}^{1})_{J}$ follows from the inequality for elements in $(\mathfrak{A}^{1})_{H}$. Thus let $h \in \mathfrak{A}_{H}$ and $t \in \mathbf{R}$. By replacing h by -h if necessary we can assume that $\nu(h)$ is the greatest real number in $\sigma(h)$. Let the convex hull of $\sigma(h)$ be [-r, s]. Then r and $s = \nu(h)$ are nonnegative since \mathfrak{A} lacks an identity, and $\sigma(h + t) \subseteq [-r + t, s + t]$.

Case 1.
$$t \ge 0$$
. Then $C\nu(h+t) = C(s+t) \ge ||h|| + |t| = ||h+t||$.

Case 2. $0 > t \ge r-s/2$. Then $3C \nu (h+t) = 3C (s+t) \ge 3C (s+(r-s/2)) \ge 3C (S/2) \ge C(s-(r-s/2) \ge C(s+|t|) \ge ||h+t||$.

Case 3. r-s/2 > t. Then $3C \nu (h + t) = 3C (r - t) \ge 3C(r - (2/3))$ $(r-s/2) - 1/3 t) \ge C(s-t) \ge ||h + t||$. Thus in any case $3C \nu (h + t)$ $\ge ||h + t||$ so that $||h + t||^2 \le 9C^2 \nu (h + t)^2 = 9C^2 \nu (h + t))^2) \le 9C^2$ $||(h + t)^2||$.

(d) If the involution is antiautomorphic this follows from Lemma 1 and [8, 4.7.10] and in any case is an intermediate step in the proof of Lemma 1. If the involution is automorphic then \mathfrak{A}_{H} is a *-subalgebra of \mathfrak{A} in which every element satisfies $||h||^2 \leq C ||h^2||$ and has real spectrum. Then \mathfrak{A}_{H} is semisimple by [12, 3.5] and thus is commutative by [6, Th. 4.8]. Thus $\mathfrak{A}_{+} \subseteq \mathfrak{A}_{H}$ is closed under addition since the spectrum is subadditive in a commutative algebra.

The existence of C such that $||k||^2 \leq C ||k^2||$ for all $k \in \mathfrak{A}_G$ is equivalent to the existence of B or D such that $||k|| \leq B\nu(k)$ for all $k \in \mathfrak{A}_G$ or $||z|| \leq D\nu(z)$ for all $z \in \mathfrak{A}_N$, since $||z|| \leq ||(z+z^*)/2|| + ||(z-z^*)/2||$ $\leq C(\nu(z) + \nu(z^*)) = 2C\nu(z)$.

PROPOSITION 1. Let \mathfrak{A} be a real hermitian and skew hermitian Banach generalized *-algebra. Let there be a constant C such that $||k||^2 \leq C ||k^2||$ for each $k \in \mathfrak{A}_{g}$. Then there is a complex C^* -algebra \mathfrak{B} and a homeomorphic *-isomorphism of \mathfrak{A} into \mathfrak{B} .

Proof. \mathfrak{A}^1 is hermitian and skew hermitian. Thus using Lemma 2(c) we may assume \mathfrak{A} has an identity element. We will define a

T. W. PALMER

norm on \mathfrak{B} which makes it a complex Banach algebra satisfying the hypotheses of Theorem A. The norm $|| \cdot ||_{\sigma}$ for \mathfrak{B} is defined to be the Minkowski functional of the convex hull of \mathfrak{B}_{σ} , or directly:

 $||x+iy||_{U} = \inf \{\sum_{j=1}^{n} t_j : x+iy = \sum_{j=1}^{n} t_j u_j; t_j \in \mathbf{R}, t_j \ge 0; u_j \in \mathfrak{B}_{U} \}.$ (This norm has been used previously by Russo and Dye [9]).

In order to prove that this expression is always finite and in fact a complete norm, it is easiest to introduce another norm $||| \cdot |||$ on \mathfrak{B} which is obviously finite and complete and then compare $|| \cdot ||_{\sigma}$ and $||| \cdot |||$. Let |||x + iy||| = ||x|| + ||y|| for all $x, y \in \mathfrak{A}$. With respect to this norm \mathfrak{B} is a real Banach generalized *-algebra.

By Lemma 2(b) the involution in \mathfrak{A} is continuous. Let a constant such that $||x^*|| \leq B ||x||$ for all $x \in \mathfrak{A}$. If $x \in \mathfrak{A}$ then x = h + j where $h = (x + x^*)/2 \in \mathfrak{A}_H$ and $j = (x - x^*)/2 \in \mathfrak{A}_J$. Clearly ||h|| and ||j|| are bounded by $(1 + B) ||x||/2 \leq B ||x||$.

Let s be a real number greater than B ||x||. Then the power series for $V = \cos^{-1}(h/s)$ and $w = \sinh^{-1}(j/s)$ converge and $h = s [\exp(iv) + \exp(-iv)]/2$, $j = s [\exp(w) + (-\exp(-w))]/2$ with each exponential in \mathfrak{B}_{v} . Similarly iy can be expressed as a positive real linear combination of elements in \mathfrak{B}_{v} . Thus $||x + iy||_{v}$ is always finite and in fact $||x + iy||_{v} \leq 2B(||x|| + ||y||) = 2B|||x + iy|||$ for all $x, y \in \mathfrak{A}$.

It is obvious from the definition that $|| \cdot ||_{\sigma}$ is a norm for a real linear space. However \mathfrak{B} is also a complex normed algebra with respect to $|| \cdot ||_{\sigma}$ since \mathfrak{B}_{σ} is a multiplicative group closed under multiplication by complex numbers of norm one. Furthermore the involution is an isometry.

Any element $u \in \mathfrak{B}_{U}$ can be written as u = h + j + i(k + g) with $h, k \in \mathfrak{A}_{H}$ and $j, g \in \mathfrak{A}_{J}$. Taking the real part of the equations $u^{*} u = 1$ and $uu^{*} = 1$ we get

$$egin{aligned} h^2-j^2+k^2-g^2+hj-jh+ky-gk&=1\ h^2-j^2+k^2-g^2+jh-hj+gk-kg&=1\ . \end{aligned}$$

Thus $h^2 - j^2 + k^2 - g^2 = 1$. Since \mathfrak{A} is hermitian and skew hermitian, h^2 , k^2 , $-j^2$ and $-g^2$ all belong to \mathfrak{A}_+ . Thus by Lemma 2(d) $-j^2 + k^2 - g^2 \in \mathfrak{A}_+$. Therefore $\sigma(h^2) \leq \sigma(1 - (-j^2 + k^2 - g^2)) \leq [0, 1]$ and $\nu(h) \leq 1$. Similarly $\nu(j) \leq 1$, $\nu(k) \leq 1$ and $\nu(g) \leq 1$. Thus

$$||| u ||| = || h + j || + || k + g || \le || h || + || j || + || k || + || g || \le 4C$$

for all $u \in \mathfrak{B}_{\mathcal{U}}$. Thus if $x + iy = \sum_{j=1}^{n} t_{j}u_{j}$ with $t_{j} \ge 0$ and $u_{j} \in \mathfrak{B}_{\mathcal{U}}$ then $|||x + iy||| \le (\sum_{j=1}^{n} t_{j}) |||u_{j}||| \le 4C \sum_{j=1}^{n} t_{j}$. Therefore $|||x + iy||| \le 4C ||x + iy|||$ $\le 4C ||x + iy||_{\mathcal{U}}$ for all x + iy in \mathfrak{B} .

Since $|| \cdot ||_{v}$ is equivalent to a complete norm it is a complete

norm. Thus \mathfrak{B} is a complex Banach algebra with an identity element of norm one. Furthermore \mathfrak{B} is the linear span of \mathfrak{B}_{H} . For each hin \mathfrak{B}_{H} , $\exp(ith)$ is in \mathfrak{B}_{U} and hence $||\exp(ith)||_{U} \leq 1$. Therefore $(\mathfrak{B}, || \cdot ||_{U})$ satisfies the hypotheses of Theorem A and is a complex C^* -algebra with respect to its involution.

We must still show that the natural map of \mathfrak{A} into \mathfrak{B} is a homeomorphism. This is true since, for all x in \mathfrak{A} , $||x||_{v} \leq 2B |||x||| = 2B ||x|| \leq 8BC ||x||_{v}$.

COROLLARY 1. Any generalized *-algebra satisfying the hypotheses of Proposition 1 has an antiautomorphic involution.

COROLLARY 2. Let \mathfrak{A} be a real hermitian and skew hermitian generalized B^* -algebra. Then there is a complex C^* -algebra and a real isometric *-isomorphism of \mathfrak{A} into \mathfrak{B} .

Proof. Consider \mathfrak{A} as embedded in $(\mathfrak{B}, || \cdot ||_{\mathcal{V}})$ as described in Proposition 1. Using Lemma 2(a), Corollary 1 and the fact that a C^* -algebra is a B^* -algebra we get

$$||x||^2 = ||x^*x|| = \nu(x^*x) = ||x^*x||_U = ||x||_U^2$$
 for all $x \in \mathfrak{A}$.

Thus the embedding is an isometry.

3. Proofs of Theorems 1 and 2. We need three more lemmas. The first one records the connection between real and complex *-representations.

LEMMA 3. Let φ be an isometric *-representation of the [real, respectively, complex] B*-algebra \mathfrak{A} on the [real, respectively, complex] Hilbert space \measuredangle . Then there is a natural isometric *-representation ψ of the [complex, respectively, real] algebra \mathfrak{B} associated with \mathfrak{A} on the complex, respectively, real] Hilbert space \mathscr{K} associated with \measuredangle .

Proof. If \varkappa is real let \mathscr{K} be the set of formal expressions $\xi + i\eta$ where ξ and η belong to \varkappa . The inner product in \mathscr{K} is given by

$$(\xi + i\eta, \zeta + i\mu) = (\xi, \zeta) + i(\eta, \zeta) - i(\xi, \mu) + (\eta, \mu)$$

and thus the norm in \mathscr{K} is given by $||\xi + i\eta||^2 = ||\xi||^2 + ||\eta||^2$. The complex B^* -algebra \mathfrak{B} associated to the real B^* -algebra \mathfrak{A} is that defined in the proof of Proposition 1. The typical element of \mathfrak{B} is of the form x + iy with x and y elements of \mathfrak{A} . Define ψ by

$$\psi(x+iy)(\xi+i\eta)=arphi(x)\xi+iarphi(x)\eta+iarphi(y)\xi-arphi(y)\eta$$
 .

It is easy to check that this is a *-isomorphism, and that the image is closed in the norm of $[\mathscr{K}]$. Thus the complex *-algebra \mathfrak{A} can be provided with a *B**-norm pulled back through ψ . This norm must agree with the *B**-norm defined in the proof of Proposition 1. Thus ψ is an isometry.

Now consider the case where \mathfrak{A} and \mathscr{A} are complex. The associated real algebra and vector space are obtained by merely restricting scalar multiplication to the real numbers. The inner product and norm in \mathscr{K} are $(\xi, \eta)_{\mathscr{K}} = \operatorname{Re}(\xi, \eta)_{\mathscr{A}}, ||\xi||_{\mathscr{K}} = ||\xi||_{\mathscr{A}}$. Thus φ considered as a *-representation of a real algebra coincides with ψ .

LEMMA 4. Let \mathfrak{A} be a Banach generalized *-algebra. Let there be a constant C such that $||z^*|| ||z|| \leq C ||z^*z + w^*w||$ for all commuting elements z and w in \mathfrak{A}_N . Then \mathfrak{A} is hermitian and skew hermitian.

Proof. Any $k \in \mathfrak{A}_{\sigma}$ lies in some closed maximal commutative *-subalgebra \mathfrak{E} [8, 4.1.3] where it has the same spectrum as in \mathfrak{A} . By Lemma 2(b) there is a constant B such that $||z||^2 \leq B ||z^*|| ||z|| \leq BC ||z^*z + w^*w||$ when z and w lie in \mathfrak{E} . Thus \mathfrak{E} satisfies Theorem 4.2.3 in [8] so that it is hermitian and skew hermitian. Thus \mathfrak{A} is also.

LEMMA 5. Let \mathfrak{A} be a Banach generalized *-algebra satisfying $||z^*|| ||z|| \leq C ||z^*z||$ for all $z \in \mathfrak{A}_N$. Then \mathfrak{A} is skew hermitian.

Proof. Let B be the bound for the generalized involution guaranteed by Lemma 2(b). Then the involution in \mathfrak{A}^1 is also bounded by B. For an arbitrary skew hermitian element j of \mathfrak{A} , $e^j(e^j)^* = e^j e^{-j} = 1 = (e^j)^*(e^j)$ is \mathfrak{A}^1 . If z + t is in $(\mathfrak{A}^1)_U$, then $z^*z + tz^* + tz = 0$ and $t^2 = 1$. Thus $||z||^2 \leq B ||z^*|| ||z|| \leq BC ||z^*z|| \leq BC (1 + B) ||z||$, so $||z + t|| \leq BC (1 + B) + 1$. Applying this to e^{nj} for $n \in \mathbb{Z}$ gives $\nu(e^j) = \nu(e^{-j}) = 1$. Therefore the spectrum of e^j lies on the unit circle and the spectrum of j is purely imaginary.

Proof of Theorem 1. $(1) \Rightarrow (2)$: Consider \mathfrak{A} as embedded in $[\mathscr{A}]$ for a suitable Hilbert space \mathscr{A} . Then for x and y in $[\mathscr{A}]$.

$$\begin{split} || \, x \, ||^2 &= \sup \left\{ || \, x \, \xi \, ||^2 \right\} \leq \sup \left\{ || \, x \, \xi \, ||^2 + || \, y \, \xi \, ||^2 \right\} \\ &= \sup \left\{ (x^* \, x \, \xi, \, \xi) + (y^* \, y \, \xi, \, \xi) \right\} = \sup \left\{ ((x^* \, x \, + \, y^* \, y) \, \xi, \, \xi) \right\} \\ &\leq || \, x^* \, x \, + \, y^* \, y \, || \end{split}$$

where each supremum is over all $\xi \in \mathscr{A}$ with $||\xi|| \leq 1$.

 $(2) \Rightarrow (3)$: Lemma 4.

 $(3) \Rightarrow (1)$: Lemma 5, Corollary 2 and Lemma 3.

Note that without changing this proof, condition (2) of Theorem 1 can be weakened to: $||x||^2 \leq ||x^*x||$ for all $x \in \mathfrak{A}$ and there exists a constant C such that $||z^*|| ||z|| \leq C ||z^*z + w^*w||$ for all commuting pairs z and w in \mathfrak{A}_N . This is essentially the condition Dc^* in [5, 18.6].

Proof of Theorem 2. $(1) \Rightarrow (2)$: Theorem 1 and Lemma 2b. (2) \Rightarrow (3): Lemma 4. (3) \Rightarrow (4): Lemma 5. (4) \Rightarrow (1): Proposition 1 and Lemma 3.

The following corollary bears the same relationship to Theorem 2 that [5, 18.7] bears to Theorem 1 or [5, 18.6].

COROLLARY 3. Let \mathfrak{A} be a real normed generalized *-algebra. Let there be a constant C such that $||x||^2 \leq C ||x^*x + y^*y||$ for all x and y in \mathfrak{A} . Then \mathfrak{A} has a homeomorphic *-representation on some Hilbert space.

Proof. The generalized involution is continuous since $||x||^2 \leq C ||x^*x|| \leq C ||x^*|| ||x||$. Thus the completion of \mathfrak{A} is a generalized *-algebra which satisfies the same inequality and hence satisfies Theorem 2.

The author wishes to thank S. Shirali and J. W. M. Ford for supplying a prepublication copy of [10], C. E. Rickart for telling him of reference [5], and the referee for pointing out an error in the original version of Lemma 1.

References

- 1. J. W. M. Ford, A square root lemma for Banach *-algebras, J. London Math. Soc. 42 (1967), 521-522.
- 2. I. Gelfand and M. Neumark, On the embedding of normed rings into the ring of operators in Hilbert space, Mat. Sbornik (N.S.) 12(1943), 197-213.
- 3. B. W. Glickfeld, A metric characterization of C(X) and its generalization to C*algebras, Illinois J. Math. **10**(1966), 547-556.
- 4. J. G. Glimm and R. V. Kadison, Unitary operators in C*-algebras, Pacific J. Math. 10 (1960), 547-556.
- 5. L. Ingelstam, Real Banach algebras, Ark. Math. 5 (1964), 239-279.
- 6. I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.

T. W. PALMER

7. T. W. Palmer, Characterizations of C*-algebras, Bull. Amer. Math. Soc. 74 (1968), 538-540.

 C. E. Rickart, General theory of Banach algebras, Van Nostrand, New York, 1960.
B. Russo and H. A. Dye, A note on unitary operations in C*-algebras, Duke Math. J. 33 (1966), 413-416.

10. S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras II Duke Math. J. **37** (1970), 275-280.

11. B. J. Vowden, On the Gelfand-Neumark theorem, J. London Math. Soc. 42 (1967), 725-731.

12. B. Yood, Topological properties of homomorphisms between Banach algebras, Amer. J. Math. **76** (1954), 155-167.

13. B. Yood, Faithful *-representations of normed algebras, Pacific J. Math. 10 (1960), 345-363.

Received March 6, 1969. A preliminary version of this article was presented to the American Mathematical Society, Abstract No. 663-468. The author thanks the University of Kansas for its support of his research.

UNIVERSITY OF KANSAS LAWRENCE, KANSAS