REAL C*-ALGEBRAS

T. W. Palmer

Several variants of the classical Gelfand-Neumark characterization of complex C^{*}-algebras are here extended to characterize real C^{*}-algebras up to isometric*-isomorphism and also up to homeomorphic *isomorphism. The proofs depend on norming the complexification of the real algebra and applying the author's characterization of complex C^{*}-algebras to the result. L. Ingelstam has obtained similar but weaker results by an entirely different method.

An involution on \mathfrak{Y} is a map (*): $\mathfrak{X} \rightarrow \mathfrak{Y}$ which is a conjugate linear involutive antiautomorphism. A generalized involution is an involution except that it may be either an automorphism or an antiautomorphism (Generalized involutions have been considered previously by B. Yood [12]. If $\mathfrak{H}=\mathfrak{X}^{0} \oplus \mathfrak{A}^{1}$ is a \mathbf{Z}_{2} graded real algebra, then $x^{0}+x^{1} \rightarrow x^{0}-x^{1}$ is an automorphic generalized involution, and conversely the sets of hermitian and skew hermitian elements in a real algebra with an automorphic generalized involution give a \mathbf{Z}_{2} grading.) An algebra \mathfrak{A} with a [generalized] involution is called a [generalized] *-algebra. If \mathfrak{A} is also a Banach algebra and the norm and involution satisfy $\left\|x^{*} x\right\|=\|x\|^{2}$ for all $x \in \mathfrak{A}$ then \mathfrak{A} is called a [generalized] B^{*}-algebra.

If h is a real or complex Hilbert space, then [\hbar], the Banach algebra of all bounded linear transformations from \hbar into \hbar, is a B^{*} algebra when the involution is defined as the map assigning to each element its Hilbert space adjoint. A subset of a generalized ${ }^{*}$-algebra is called self adjoint if it is closed under the involution. A self adjoint subalgebra is called a ${ }^{*}$-subalgebra. Obviously a norm closed *-subalgebra of [κ] is also a B^{*}-algebra. A homomorphism φ from an algebra \mathfrak{N} with generalized involution into [κ] is called a *-representation if $\varphi\left(x^{*}\right)=\varphi(x)^{*}$ for all $x \in \mathfrak{A}$. A Banach generalized *-algebra \mathfrak{Y} will be called a C^{*}-algebra if there is an isometric *-representation of \mathfrak{H} on some Hilbert space. In this case the generalized involution is in fact antiautomorphic. A generalized *-algebla \mathfrak{N} is called hermitian if and only if $-h^{2}$ has a quasi-inverse in \mathfrak{A} for each hermitian element h in \mathfrak{A}, skew hermitian if and only if j^{2} has a quasi-inverse in \mathfrak{N} for each skew hermitian element j in \mathfrak{N}. A *-algebra is called symmetric if and only if $-x^{*} x$ has a quasiinverse in \mathfrak{H} for each x in \mathfrak{H}. Complex B^{*}-algebras are necessarily symmetric and therefore hermitian. However the complex numbers, \mathbf{C} considered as a real Banach algebra with the identity map as
involution are an example of a nonhermitian real B^{*}-algebra. The: existence of an involution or generalized involution is a much weaker condition on a real algebra than on a complex algebra since the identity map is an involution on any commutative real algebra and a generalized involution on any real algebra.

It is well known that any complex B^{*}-algebra is a C^{*}-algebra. See [4] for a proof and further references (cf. [2], [11]). The analogous result for real B^{*}-algebras is false without further restriction. In fact we prove the following theorem which extends results of L. Ingelstam [5, 17.7, 18.6, 18.7, 18.8].

Theorem 1. The following are equivalent for a real Banach. generalized *-algebra \mathfrak{H} :
(1) \mathfrak{V} is a C^{*}-algebra.
(2) $\|x\|^{2} \leqq\left\|x^{*} x+y^{*} y\right\|$ for all x, y in \mathfrak{N}.
(3) \mathfrak{A} is a hermitian generalized B^{*}-algebra.

A complex *-algebra \mathfrak{A} with an identity is a C*-algebra if and only if $\left\|z^{*}\right\|\|z\| \leqq\left\|z^{*} z\right\|$ for all normal elements z in \mathfrak{A} [3, 2.5], and any complex *-algebra \mathfrak{A} is a C^{*}-algebra if and only if the same inequality holds for all elements x in \mathfrak{N} [11]. It is not known whether these results generalize to real hermitian *-algebra.

We call a generalized *-algebra C^{*}-equivalent if and only if it is. homeomorphically ${ }^{*}$-isomorphic to some C^{*}-algebra. Thus a generalized *-algebra is C^{*}-equivalent if and only if it has a homeomorphic *-representation on some Hilbert space.

Theorem 2. The following are equivalent for a real Banach. generalized *-algebra \mathfrak{A}.
(1) \mathfrak{Z} is C^{*}-equivalent.
(2) There is a constant C such that $\left\|z^{*}\right\|\|z\| \leqq C\left\|z^{*} z+w^{*} w\right\|$ for all commuting pairs of normal elements z, w in \mathfrak{N}.
(3) \mathfrak{N} is hermitian and there is a constant C such that $\left\|z^{*}\right\|\|z\|^{*}$ $\leqq C\left\|z^{*} z\right\|$ for all normal elements z in \mathfrak{H}.
(4) \mathfrak{Y} is hermitian and skew hermitian and there is a constant C such that $\|k\|^{2} \leqq C\left\|k^{2}\right\|$ for all hermitian and all skew hermitian elements k in \mathfrak{N}.

The real group algebra of \mathbf{Z}_{2} with ℓ^{1}-norm and an involution given by $(a+b \gamma)^{*}=a-b y$ where γ is the generator of \mathbf{Z}_{2} satisfies condition (4) except that it is not skew hermitian. Also the algebra C of complex numbers with the identity map as involution satisfies. (3) and (4) except that it is not hermitian. The equivalence of (1) and (4) can be regarded as a real and noncommutative version of B.

Yood's result [12, 4.1(4)] or as a real version of his Theorem 2.7 in [13] as extended by a remark in [10]. Notice that condition (2), (3), (4) do not assume the continuity of the involution nor do they put any restriction on nonnormal elements of \mathfrak{A}. In these respects Theorem 2 significantly strengthens Theorem 17.6 of L. Ingelstam in [5].
S. Shirali and J. W. M. Ford have recently shown [10] that a complex Banach algebra with a hermitian real linear involution is symmetric. Their arguments also show that a real hermitian and skew hermitian Banach *-algebra is symmetric. Although the full force of the real version of this result could be avoided in our arguments it is noted in Lemma 1 because of its general interest.

The theorems are all proved by embedding the real algebra in a complex algebra and using a recent result of the author on complex C^{*}-algebras :

Theorem A ([7]). A complex Banach algebra \mathfrak{N} with an identity element 1 of norm one is isometrically isomorphic to some complex C^{*}-algebra if and only if \mathfrak{A} is the linear span of

$$
\mathfrak{A}_{H}=\{h \in \mathfrak{A}:\|\exp (i t h)\| \leqq 1, \forall t \in \mathbf{R}\} .
$$

In this case each element of \mathfrak{A} has a unique decomposition $x=h+i k$ with $h, k \in \mathfrak{U}_{H}$. Furthermore the map $h+i k \rightarrow h-i k$ is an involution on \mathfrak{Y} and any isometric isomorphism of \mathfrak{A} into a C^{*}-algebra is a *-isomorphism relative to this involution.
2. Embedding in a complex \mathbf{C}^{*}-algebra. The fundamental tool used in this paper is described in Proposition 1 at the end of this section. For convenience we establish some notation to use throughout the paper.

If \mathfrak{Z} is a real algebra, we shall denote the associated complex algebra by \mathfrak{B}. That is, \mathfrak{B} is the set of formal expressions $x+i y$ with x and y in $\{$ and the obvious algebraic operations. Recall that the spectrum of an element in a real algebra \mathfrak{A} is defined to be its usual spectrum in \mathfrak{B}. Notice that with this convention a real algebra \mathfrak{A} with generalized involution is hermitian if and only if each hermitian element in \mathfrak{A} has real spectrum, is skew hermitian if and only if each skew hermitian element has purely imaginary spectrum, and a ${ }^{*}$-algebra is symmetric if and only if $x^{*} x$ has nonnegative spectrum for each element x in \mathfrak{Z} [8, 4.1.7 and 4.7.6]. Clearly a complex *-algebra is skew hermitian if and only if it is hermitian. If \mathfrak{H} has a generalized involution, then \mathfrak{B} will be endowed with the generalized involution $(x+i y)^{*}=x^{*}-i y^{*}$.

If \mathfrak{Y} is an algebra without an identity then \mathfrak{X}^{1} will represent the algebra (under the obvious operation) of all formal expressions $x+t$ with x in \mathfrak{H} and t a scalar. If \mathfrak{A} is normed \mathfrak{X}^{1} is given the norm $\|x+t\|=\|x\|+|t|$ unless \mathfrak{X} is assumed to be a generalized B^{*} algebra in which case the norm

$$
\|x+t\|=\sup \{\|x u+t u\|: u \in \mathfrak{H},\|u\|=1\}
$$

is used instead. If \mathfrak{X} is a Banach algebra the first norm on \mathfrak{Y}^{1} is complete, and if \mathfrak{H} is a B^{*}-algebra so is \mathfrak{U}^{1} with the second norm [8, 4.1.13].

It is also convenient to introduce once and for all the following notation for the sets of hermitian, skew hermitian, unitary, normal and positive elements in a generalized *-algebra:

$$
\begin{aligned}
& \mathfrak{N}_{H}=\left\{h \in \mathfrak{N}: h=h^{*}\right\}, \mathfrak{N}_{J}=\left\{j \in \mathfrak{U}:-j=j^{*}\right\}, \\
& \mathfrak{N}_{U}=\left\{u \in \mathfrak{N}^{\prime}: u u^{*}=u^{*} u=1\right\}, \mathfrak{N}_{N}=\left\{z \in \mathfrak{U}: z^{*} z=z^{*} z\right\}, \\
& \mathfrak{N}_{+}=\left\{h \in \mathfrak{N}_{I I}: h \text { has nonnegative real spectrum }\right\} .
\end{aligned}
$$

Notice that this is only one of several possible notions of positivity. It will be convenient to use \mathfrak{U}_{G} to denote $\mathfrak{N}_{H} \cup \mathfrak{N}_{J}$ in a (real or complex) generalized *-algebra. Denote the spectrum and spectral radius of an element x in a Banach algebra by $\sigma(x)$ and $\nu(x)$, respectively. Note that $\sigma\left(x^{*}\right)=\{\bar{\lambda}: \lambda \in \sigma(x)\}$ so that $\nu(x)=\nu\left(x^{*}\right)$ for all x in \mathfrak{V}.

Lemma 1. (Shirali and Ford [10].) A real hermitian and skew hermitian Banach *-algebra is symmetric.

Proof. Ford's square root lemma [1] is proved for a real Banach *-algebra \mathfrak{V} by applying the original proof to the complexification \mathfrak{F} of a closed maximal commutative *-subalgebra of \mathfrak{H} which contains h, and noting that $u=\lim h_{n}$ lies in the natural image of \mathfrak{A} in \mathfrak{s}. Lemmas 1 through 5 of [10] now follow for real *-algebras without essential change. The proof is completed by constructing the real commutative *-subalgebra $[5$ as in [10] and noting that θ is defined on the complexification of \mathfrak{F}.

We note that the proof of Ford's square root lemma holds even for real Banach generalized *-algebras.

Lemma 2. Let \mathfrak{H} be a (real or complex) Banach generalized *-algebra. Let there be a constant C such that $\|k\|^{2} \leqq C\left\|k^{2}\right\|$ for all $k \in$ Sr $_{a}$. Ther
(a) $\|k\| \leqq C \nu(k)$ for all $k \in \mathfrak{U}_{G}$.
(b) The involution is continuous.
(c) If \mathfrak{N} is hermitian and lacks an identity then $\|k+t\|^{2} \leqq$ $9 C^{2}\left\|(k+t)^{2}\right\|$ for all $k+t \in\left(\mathfrak{R}^{1}\right)_{G}$.
(d) Let \mathfrak{U} be hermitian and if the involution is antiautomorphic let $\mathfrak{\{}$ be skew hermitian. Then \mathfrak{Z}_{+}is closed under addition.

Proof. (a) $\|k\| \leqq\left(C C^{2} \cdots C^{2 n-1}\right)^{2-n}\left\|k^{2 n}\right\| \|^{2-n}$
(b) This follows from Theorem 3.4 in [12].
(c) If \mathfrak{A} is real $\left(\mathfrak{C}^{1}\right)_{J}=\mathfrak{A}_{J}$ and if \mathfrak{A} is complex the inequality for elements in $\left(\mathfrak{K}^{1}\right)_{J}$ follows from the inequality for elements in $\left(\mathfrak{R}^{1}\right)_{H}$. Thus let $h \in \mathfrak{V}_{H}$ and $t \in \mathbf{R}$. By replacing h by $-h$ if necessary we can assume that $\nu(h)$ is the greatest real number in $\sigma(h)$. Let the convex hull of $\sigma(h)$ be $[-r, s]$. Then r and $s=\nu(h)$ are nonnegative since \mathfrak{A} lacks an identity, and $\sigma(h+t) \cong[-r+t, s+t]$.

Case 1. $t \geqq 0$. Then $C \nu(h+t)=C(s+t) \geqq\|h\|+|t|=\|h+t\|$.
Case 2. $0>t \geqq r-s / 2$. Then $3 C \nu(h+t)=3 C(s+t) \geqq 3 C$ $(s+(r-s / 2)) \geqq 3 C(S / 2) \geqq C(s-(r-s / 2) \geqq C(s+|t|) \geqq\|h+t\|$.

Case 3. $r-s / 2>t$. Then $3 C \nu(h+t)=3 C(r-t) \geqq 3 C(r-(2 / 3)$ $(r-s / 2)-1 / 3 t) \geqq C(s-t) \geqq\|h+t\|$. Thus in any case $3 C \nu(h+t)$ $\geqq\|h+t\|$ so that $\left.\left.\|h+t\|^{2} \leqq 9 C^{2} \nu(h+t)^{2}=9 C^{2} \nu(h+t)\right)^{2}\right) \leqq 9 C^{2}$ $\left\|(h+t)^{2}\right\|$.
(d) If the involution is antiautomorphic this follows from Lemma 1 and [8, 4.7.10] and in any case is an intermediate step in the proof of Lemma 1. If the involution is automorphic then \mathfrak{H}_{H} is a *-subalgebra of \mathfrak{U} in which every element satisfies $\|h\|^{2} \leqq C\left\|h^{2}\right\|$ and has real spectrum. Then \mathfrak{A}_{H} is semisimple by $[12,3.5]$ and thus is commutative by [6, Th. 4.8]. Thus $\mathfrak{U}_{+} \subseteq \mathfrak{A}_{H}$ is closed under addition since the spectrum is subadditive in a commutative algebra.

The existence of C such that $\|k\|^{2} \leqq C\left\|k^{2}\right\|$ for all $k \in \mathfrak{X}_{G}$ is equivalent to the existence of B or D such that $\|k\| \leqq B \nu(k)$ for all $k \in \mathfrak{A}_{G}$ or $\|z\| \leqq D \nu(z)$ for all $z \in \mathfrak{A}_{N}$, since $\|z\| \leqq\left\|\left(z+z^{*}\right) / 2\right\|+\left\|\left(z-z^{*}\right) / 2\right\|$ $\leqq C\left(\nu(z)+\nu\left(z^{*}\right)\right)=2 C \nu(z)$.

Proposition 1. Let \mathfrak{A} be a real hermitian and skew hermitian Banach generalized *-algebra. Let there be a constant C such that $\|k\|^{2} \leqq C\left\|k^{2}\right\|$ for each $k \in \mathfrak{A}_{G}$. Then there is a complex C^{*}-algebra \mathfrak{B} and a homeomorphic *-isomorphism of \mathfrak{Y} into \mathfrak{B}.

Proof. \mathfrak{Y}^{1} is hermitian and skew hermitian. Thus using Lemma 2(c) we may assume \mathfrak{A} has an identity element. We will define a
norm on \mathfrak{B} which makes it a complex Banach algebra satisfying the hypotheses of Theorem A. The norm $\|\cdot\|_{U}$ for \mathfrak{B} is defined to be the Minkowski functional of the convex hull of \mathfrak{R}_{U}, or directly :

$$
\|x+i y\|_{U}=\inf \left\{\sum_{j=1}^{n} t_{j}: x+i y=\sum_{j=1}^{n} t_{j} u_{j} ; t_{j} \in \mathbf{R}, t_{j} \geqq 0 ; u_{j} \in \mathfrak{B}_{U}\right\}
$$

(This norm has been used previously by Russo and Dye [9]).
In order to prove that this expression is always finite and in fact a complete norm, it is easiest to introduce another norm ||| •||| on \mathfrak{B} which is obviously finite and complete and then compare $\|\cdot\|_{U}$ and ||| $\cdot \| \mid$. Let $\|\|x+i y\|=\| x\|+\| y \|$ for all $x, y \in \mathfrak{Y}$. With respect to this norm \mathfrak{B} is a real Banach generalized *-algebra.

By Lemma 2(b) the involution in \mathfrak{A} is continuous. Let x constant such that $\left\|x^{*}\right\| \leqq B\|x\|$ for all $x \in \mathfrak{A}$. If $x \in \mathfrak{h}$ un $x=h+j$ where $h=\left(x+x^{*}\right) / 2 \in \mathfrak{U}_{H}$ and $j=\left(x-x^{*}\right) / 2 \in \mathfrak{A}_{j}$. Clearly $\|h\|$ and $\|j\|$ are bounded by $(1+\mathrm{B})\|x\| / 2 \leqq B\|x\|$.

Let s be a real number greater than $B\|x\|$. Then the power series for $V=\cos ^{-1}(h / s)$ and $w=\sinh ^{-1}(j / s)$ converge and $h=s[\exp (i v)$ $+\exp (-i v)] / 2, \quad j=s[\exp (w)+(-\exp (-w))] / 2$ with each exponential in \mathfrak{B}_{U}. Similarly iy can be expressed as a positive real linear combination of elements in \mathfrak{B}_{U}. Thus $\|x+i y\|_{U}$ is always finite and in fact $\|x+i y\|_{U} \leqq 2 B(\|x\|+\|y\|)=2 B\|x+i y\|$ for all $x, y \in \mathfrak{Y}$.

It is obvious from the definition that $\|\cdot\|_{U}$ is a norm for a real linear space. However \mathfrak{B} is also a complex normed algebra with respect to $\|\cdot\|_{U}$ since \mathfrak{B}_{U} is a multiplicative group closed under multiplication by complex numbers of norm one. Furthermore the involution is an isometry.

Any element $\mathrm{u} \in \mathfrak{B}_{U}$ can be written as $u=h+j+i(k+g)$ with $h, k \in \mathfrak{A}_{H}$ and $j, g \in \mathfrak{Y}_{J}$. Taking the real part of the equations $u^{*} u=1$ and $u u^{*}=1$ we get

$$
\begin{aligned}
& h^{2}-j^{2}+k^{2}-g^{2}+h j-j h+k y-g k=1 \\
& h^{2}-j^{2}+k^{2}-g^{2}+j h-h j+g k-k g=1
\end{aligned}
$$

Thus $h^{2}-j^{2}+k^{2}-g^{2}=1$. Since \mathfrak{V} is hermitian and skew hermitian, $h^{2}, k^{2},-j^{2}$ and $-g^{2}$ all belong to \mathfrak{X}_{+}. Thus by Lemma $2(\mathrm{~d})$ $-j^{2}+k^{2}-g^{2} \in \mathfrak{U}_{+} . \quad$ Therefore $\sigma\left(h^{2}\right) \leqq \sigma\left(1-\left(-j^{2}+k^{2}-g^{2}\right)\right) \leqq[0,1]$ and $\nu(h) \leqq 1$. Similarly $\nu(j) \leqq 1, \nu(k) \leqq 1$ and $\nu(g) \leqq 1$. Thus

$$
\|u\|=\|h+j\|+\|k+g\| \leqq\|h\|+\|j\|+\|k\|+\|g\| \leqq 4 C
$$

for all $u \in \mathfrak{B}_{U}$. Thus if $x+i y=\sum_{j=1}^{n} t_{j} u_{j}$ with $t_{j} \geqq 0$ and $u_{j} \in \mathfrak{B}_{U}$ then $\left|\left|\left|x+i y\left\|\left|\leqq\left(\sum_{j=1}^{n} t_{j}\right)\right|| | u_{j} \mid\right\| \leqq 4 C \sum_{j=1}^{n} t_{j}\right.\right.\right.$. Therefore $\left.|\|x+i y\|\right|$ $\leqq 4 C\|x+i y\|_{U}$ for all $x+i y$ in \mathfrak{B}.

Since $\|\cdot\|_{U}$ is equivalent to a complete norm it is a complete
norm. Thus \mathfrak{B} is a complex Banach algebra with an identity element of norm one. Furthermore \mathfrak{F} is the linear span of \mathfrak{B}_{H}. For each h in \mathfrak{B}_{H}, $\exp (i t h)$ is in \mathfrak{B}_{U} and hence $\|\exp (i t h)\|_{U} \leqq 1$. Therefore $\left(\mathfrak{B},\|\cdot\|_{U}\right)$ satisfies the hypotheses of Theorem A and is a complex C^{*}-algebra with respect to its involution.

We must still show that the natural map of \mathfrak{X} into \mathfrak{B} is a homeomorphism. This is true since, for all x in $\mathfrak{X},\|x\|_{U} \leqq 2 B\|x\| \|=$ $2 B\|x\| \leqq 8 B C\|x\|_{U}$.

Corollary 1. Any generalized *-algebra satisfying the hypotheses of Proposition 1 has an antiautomorphic involution.

Corollary 2. Let \mathfrak{X} be a real hermitian and skew hermitian generalized B^{*}-algebra. Then there is a complex C^{*}-algebra and a real isometric *-isomorphism of \mathfrak{Y} into \mathfrak{B}.

Proof. Consider \mathfrak{A} as embedded in ($\mathfrak{B},\|\cdot\|_{U}$) as described in Proposition 1. Using Lemma 2(a), Corollary 1 and the fact that a C^{*}-algebra is a B^{*}-algebra we get

$$
\|x\|^{2}=\left\|x^{*} x\right\|=\nu\left(x^{*} x\right)=\left\|x^{*} x\right\|_{U}=\|x\|_{U}^{2} \text { for all } x \in \mathfrak{A} .
$$

Thus the embedding is an isometry.
3. Proofs of Theorems 1 and 2. We need three more lemmas. The first one records the connection between real and complex *-representations.

Lemma 3. Let φ be an isometric *-representation of the [real, respectively, complex] B^{*}-algebra \mathfrak{A} on the [real, respectively, complex] Hilbert space h. Then there is a natural isometric ${ }^{*}$-representation ψ of the [complex, respectively, real] algebra \mathfrak{B} associated with \mathfrak{H} on the complex, respectively, real] Hilbert space \mathscr{K} associated with h.

Proof. If \hbar is real let \mathscr{K} be the set of formal expressions $\xi+i \eta$ where ξ and η belong to κ. The inner product in \mathscr{K} is given by

$$
(\xi+i \eta, \zeta+i \mu)=(\xi, \zeta)+i(\eta, \zeta)-i(\xi, \mu)+(\eta, \mu)
$$

and thus the norm in \mathscr{K} is given by $\|\xi+i \eta\|^{2}=\|\xi\|^{2}+\|\eta\|^{2}$. The complex B^{*}-algebra \mathfrak{B} associated to the real B^{*}-algebra \mathfrak{A} is that defined in the proof of Proposition 1. The typical element of \mathfrak{B} is of the form $x+i y$ with x and y elements of \mathfrak{N}. Define ψ by

$$
\psi(x+i y)(\xi+i \eta)=\varphi(x) \xi+i \varphi(x) \eta+i \varphi(y) \xi-\varphi(y) \eta
$$

It is easy to check that this is a *-isomorphism, and that the image is closed in the norm of [$\mathscr{K}]$. Thus the complex ${ }^{*}$-algebra \mathfrak{N} can be provided with a B^{*}-norm pulled back through ψ. This norm must agree with the B^{*}-norm defined in the proof of Proposition 1. Thus ψ is an isometry.

Now consider the case where \mathfrak{V} and \hbar are complex. The associated real algebra and vector space are obtained by merely restricting scalar multiplication to the real numbers. The inner product and norm in $\mathscr{\mathscr { C }}$ are $(\xi, \eta)_{x}=\operatorname{Re}(\xi, \eta)_{九},\|\xi\|_{\infty}=\|\xi\|_{\hbar}$. Thus φ considered as a *-representation of a real algebra coincides with ψ.

Lemma 4. Let \mathfrak{U} be a Banach generalized *-algebra. Let there be a constant C such that $\left\|z^{*}\right\|\|z\| \leqq C\left\|z^{*} z+w^{*} w\right\|$ for all commuting elements z and w in \mathscr{U}_{N}. Then \mathfrak{A} is hermitian and skew hermitian.

Proof. Any $k \in \mathfrak{N}_{G}$ lies in some closed maximal commutative *-subalgebra © [8, 4.1.3] where it has the same spectrum as in \mathfrak{X}. By Lemma $2(\mathrm{~b})$ there is a constant B such that $\|z\|^{2} \leqq B\left\|z^{*}\right\|\|z\|$ $\leqq B C\left\|z^{*} z+w^{*} w\right\|$ when z and w lie in \mathfrak{F}. Thus \mathfrak{r} satisfies Theorem 4.2.3 in [8] so that it is hermitian and skew hermitian. Thus \mathfrak{X} is also.

Lemma 5. Let \mathfrak{U} be a Banach generalized *-algebra satisfying $\left\|z^{*}\right\|\|z\| \leqq C\left\|z^{*} z\right\|$ for all $z \in \mathfrak{U}_{N}$. Then \mathfrak{U} is skew hermitian.

Proof. Let B be the bound for the generalized involution guaranteed by Lemma 2(b). Then the involution in \mathfrak{X}^{1} is also bounded by B. For an arbitrary skew hermitian element j of $\mathfrak{N}, e^{j}\left(e^{j}\right)^{*}=e^{j} e^{-j}=$ $1=\left(e^{j}\right)^{*}\left(e^{j}\right)$ is \mathfrak{Y}^{1}. If $z+t$ is in $\left(\mathscr{Y}^{1}\right)_{U}$, then $z^{*} z+t z^{*}+t z=0$ and $t^{2}=1$. Thus $\|z\|^{2} \leqq B\left\|z^{*}\right\|\|z\| \leqq B C\left\|z^{*} z\right\| \leqq B C(1+\mathrm{B})\|z\|$, so $\|z+t\| \leqq B C(1+B)+1$. Applying this to $e^{n j}$ for $n \in \mathbf{Z}$ gives $\nu\left(e^{j}\right)=\nu\left(e^{-j}\right)=1$. Therefore the spectrum of e^{j} lies on the unit circle and the spectrum of j is purely imaginary.

Proof of Theorem 1. $(1) \Rightarrow(2)$: Consider \mathfrak{Z} as embedded in [$九$] for a suitable Hilbert space k. Then for x and y in [$\%$].

$$
\begin{aligned}
\|x\|^{2} & =\sup \left\{\|x \xi\|^{2}\right\} \leqq \sup \left\{\|x \xi\|^{2}+\|y \xi\|^{2}\right\} \\
& =\sup \left\{\left(x^{*} x \xi, \xi\right)+\left(y^{*} y \xi, \xi\right)\right\}=\sup \left\{\left(\left(x^{*} x+y^{*} y\right) \xi, \xi\right)\right\} \\
& \leqq\left\|x^{*} x+y^{*} y\right\|
\end{aligned}
$$

where each supremum is over all $\xi \in \swarrow$ with $\|\xi\| \leqq 1$.
$(2) \Rightarrow(3): \quad$ Lemma 4.
$(3) \Rightarrow(1):$ Lemma 5, Corollary 2 and Lemma 3.
Note that without changing this proof, condition (2) of Theorem 1 can be weakened to: $\|x\|^{2} \leqq\left\|x^{*} x\right\|$ for all $x \in \mathfrak{H}$ and there exists a constant C such that $\left\|z^{*}\right\|\|z\| \leqq C\left\|z^{*} z+w^{*} w\right\|$ for all commuting pairs z and w in \mathfrak{U}_{N}. This is essentially the condition $D c^{*}$ in [5, 18.6].

Proof of Theorem 2. (1) $\Rightarrow(2)$: Theorem 1 and Lemma 2 b .
(2) $\Rightarrow(3)$: Lemma 4 .
$(3) \Rightarrow(4): \quad$ Lemma 5 .
$(4) \Rightarrow(1)$: Proposition 1 and Lemma 3.
The following corollary bears the same relationship to Theorem 2 that [5, 18.7] bears to Theorem 1 or [5, 18.6].

Corollary 3. Let \mathfrak{N} be a real normed generalized *-algebra. Let there be a constant C such that $\|x\|^{2} \leqq C\left\|x^{*} x+y^{*} y\right\|$ for all x and y in \mathfrak{X}. Then \mathfrak{Y} has a homeomorphic *-representation on some Hilbert space.

Proof. The generalized involution is continuous since $\|x\|^{2} \leqq$ $C\left\|x^{*} x\right\| \leqq C\left\|x^{*}\right\|\|x\|$. Thus the completion of \mathfrak{A} is a generalized *-algebra which satisfies the same inequality and hence satisfies Theorem 2.

The author wishes to thank S. Shirali and J. W. M. Ford for supplying a prepublication copy of [10], C. E. Rickart for telling him of reference [5], and the referee for pointing out an error in the original version of Lemma 1.

References

1. J. W. M. Ford, A square root lemma for Banach *-algebras, J. London Math. Soc. 42 (1967), 521-522.
2. I. Gelfand and M. Neumark, On the embedding of normed rings into the ring of operators in Hilbert space, Mat. Sbornik (N.S.) 12(1943), 197-213.
3. B. W. Glickfeld, A metric characterization of $C(X)$ and its generalization to C^{*} algebras, Illinois J. Math. 10(1966), 547-556.
4. J. G. Glimm and R. V. Kadison, Unitary operators in C*-algebras, Pacific J. Math. 10 (1960), 547-556.
5. L. Ingelstam, Real Banach algebras, Ark. Math. 5 (1964), 239-279.
6. I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
7. T. W. Palmer, Characterizations of C*-algebras, Bull. Amer. Math. Soc. 74 (1968), 538-540.
8. C. E. Rickart, General theory of Banach algebras, Van Nostrand, New York, 1960.
9. B. Russo and H. A. Dye, A note on unitary operations in C*-algebras, Duke Math. J. 33 (1966), 413-416.
10. S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras II Duke Math. J. 37 (1970), 275-280.
11. B. J. Vowden, On the Gelfand-Neumark theorem, J. London Math. Soc. 42 (1967), 725-731.
12. B. Yood, Topological properties of homomorphisms between Banach algebras, Amer. J. Math. 76 (1954), 155-167.
13. B. Yood, Faithful *-representations of normed algebras, Pacific J. Math. 10 (1960), 345-363.

Received March 6, 1969. A preliminary version of this article was presented to the American Mathematical Society, Abstract No. 663-468. The author thanks the University of Kansas for its support of his research.

University of Kansas
Lawrence, Kansas

