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COMPACT CONVEX SETS WITH THE EQUAL
SUPPORT PROPERTY

JouN N. McDoNALD

Simplexes may be characterized as follows: (C) X is a sim-
plex if and only if each x € X has a unique <-maximal represent-
ing measure, where < denotes the Choquet ordering on the
set M+*(X) of positive regular Borel measures on X. In this
paper, we study compact convex sets which satisfy a condi-
tion which is similar to that given in (C). Definition: X has
the equal support property if, for each xz<cX, any two
<-maximal representing measures for 2 have the same
support., Some of our theorems are extensions to sets with
the equal support property of results which hold for simplexes,
Other results given here are analogous of theorems which hold
for simplexes, We are especially interested in the relation-
ships between the equal support property and a topology,
called the structure topology, which was first defined for the
set of extreme points of a simplex, but also makes sense
for a wider class of compact convex sets,

The background material for §81 through 4 of this paper may
be found in [12]. The equal support property was first considered
by Feinberg in [8]. The expression “compact convex set” will always
refer to a nonempty compact convex subset of a locally convex
Hausdorff linear space. Let X be a compact convex set. ex X will
denote the set of extreme points of X. 60X will denote the closure
ex X of ex X. Consider a point e X and a closed subset F of X.
RI will denote the set of representing measures for x which are
supported by F, i.e., vanish on X — F. (We will not distinguish
between measures on F' and measures on X which are supported by
F.) It is known [12, p. 5] that yecov F if and only if R = @&.
Recall tha X = cov (ex X) (Krein-Milman Theorem, KMT), or, equi-
valently, R == @ for each ve¢ X. We will make use of Milman’s
converse to the Krein-Milman Theorem, henceforth refered to as M7,
which states that: X = cov S implies ex X = S.

1. Extreme sets. In this section, X will denote a compact
convex set. A fuction f: X— Z where Z is a convex set is called
affine if f(cx + (1 — cjy) = ¢f(x) + (L — e)f(y) for every

(r,y,c)e XxXx][0,1].
A function g: X — (— ==, =0] is called concave if
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cg(@) + (1 — 0g(y) = glex + (1 — ¢)y)
for all (z, y, ¢) e X x X x][0, 1].

DEFINITION 1.1. A set S< X will be called extreme if
(u, v,b)e Xx X x(0,1)

and bu + (1 — b)ve S imply u,veS. A convex extreme set will be
called a face.

Note the union of any collection of closed faces is extreme. In
particular, if S < ex X, then S is extreme.

LEMMA 1.2. A closed subset E of X s extreme if and only if

v e E implies supp 0 S E for each pec RX (supp 0 denotes the closed
support of the measure P).

The proof is a slight modification of the proof of [12, prop. 1.4].
See also, [1, p. 100].

Let & (X) denote the collection of closed faces of X. Note that,
if e 2.7 (X),thenn{C|Ce%}e. s (X). Thus, &# (X) is a complete
lattice in the containment ordering. Let F’, F”e & (X). We will
denote N {F'|Fe & (X) and FF2 F'UF"} by F’'V F”. The following
gives some elementary but useful information about members of

F(X):

ProrosITION 1.3. Let F, F'e % (X). Then: (a) ex F =ex XN F.
(b) ex (cov (FUF")) =ex FUex F' =ex XNcov (FUF.

Proof. (a) 1is clear. By MT, ex (cov (FUF) S FUPF'. (b)
now follows from (a).

It is natural to ask, whether F,F'e. % (X) imply cov
(FUF)e # (X)? A more general question is: If E is closed and
extreme, is cov E extreme? It follows from a result of Effros that,
if X is a simplex and F < ex X, then the answer to the last question
is yes (see [7, Th. 3.3]). The following theorem shows that the
answer to the above question is affirmative if X has the equal support

property, furthermore, the proof given here may be used to obtain
Th. 3.3 of [7]:

THEOREM 1.4. Suppose that X has the equal support property.

Let E be a closed extreme set of X. Then cov E is extreme, and
hence is a face.
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In the proof of Theorem 1.4, we will need the following pro-
positions:

PropoSITION 1.5. Let Y be a compact convex set. Suppose
t,ve M (Y) and pt <v. Then supp ft < cov (Supp v).

Proof. Suppose yesupp/t —cov (suppv). Then, there is a
continuous affine function # on X such that u(y) = —1 and inf u(cov
(suppv)) = 0. Let w = min{u, 0}. Then w is concave. Hence,

Swd v < Swd/l < 0. But, w = 0 on suppy — a contradiction.

PporosiTION 1.6. Let F be a closed extreme set of the compact
convex set Y. Suppose v, <y, and suppy, S F. Then suppy, S F.

Proof. Let J, denote the function which is 0 on F and 1 on
Y — F. Then J, is l.s.c. and concave. Let D be the set of
continuous concave functions on Y which are strictly dominated
(pointwise) by Jr,. By a result of Mokobodski [11, p. 222], D is

directed upward and J, = sup {g|g e D}. Sinceggd Y, < Sgd v, for each

ge D, it follows thatSde y, < SJFd v,. (For a proof that

SJdez = sup{ggd vztgeD} ,
see, e.g., [4. p. 8].) Thus, v, (Y —F)=y, (Y - F)=0.

Proof of Theorem 1.4. Let weccov E. It will be shown that
supp ¢t S cov E for allpze Rf. By [12, Lemma 4.1] and proposition
1.5, it is enough to prove that cov X contains the support of every
<-maximal measure in RY. Since X has the equal support property,
it is only necessary to find one <-maximal representing measure
which is supported by E. Letve R’ (see [12, p. 5]). There is a

<-maximal measure g such that v < ¢ [12, Lemma 4.1]. By pro-
position 1.6, it follows that supp ¢ & E.

In [1], Alfsen proved that if Z is an r-simplex, i.e., a simplex
whose set of extreme points is closed, then cov B is a face for every
B<ex Z. We will show that X satisfies the conclusion of Alfsen’s
result if and only if X has the equal support property and ex X is
closed. We claim that X has the equal support property and ex X = 60X
if and only if for each xe X, all measures in R2?Y have the same



432 JOHN N. McDONALD

support. The “only if” part of the previous statement follows from
the fact that if supp ¢t S ex X, then g is <-maximal [12, pp. 26-2T].
Suppose that ze€ X and that all measures in R?* have the same
support. Let v be a <-maximal measure with ¢, <v. Since all
<-maximal measures are supported by X [12, p. 30], it follows that
e, =v. Thus, zeex X[12, p. 27]. The proof of the above statement
is complete. (¢, = the Dirac measure at z.)

DerFiNITION 1.7. X has the strong equal support property if, for
each x € X, all measures in R?¥ have the same support.

For the sake of brevity, we will use the abbreviation “s.e.s.p.”
to indicate the “strong equal support property”.

THEOREM 1.8. The following are equivalent:
(i) X has the s.e.s.p.

(ii) cov B is extreme for every B = 6X.

Proof. That (i) implies (ii) follows from Theorem 1.4.

If (ii) holds, then cov{x} = {x} is extreme for each xze X.
Thus, 0X S ex X. It must be shown that X has the equal support
property. Let yeX and let g and v be <-maximal representing

measures for y. Since yecov (supp p),it follows, by Proposition 1.2,

that suppy < cov (supp /). By MT and Proposition 1.3, supp v & cov
(supp ) N ex X = supp p. Similarly, supp ¢ & supp v.

In [8] Feinberg gave a proof of Theorem 1.8 which is independent
of Theorem 1.4.

We are now able to give an example of a compact convex set
which has the s.e.s.p., but is not a simplex.

ExampLE 1.9. Let M(]0, 1]) denote the space of real valued
regular Borel measures on [0,1]. Assume that M([0, 1]) is equipped
with the weak* topology (recall that M([0, 1]) is the dual of the space
of real valued continuous functions on [0,1]). In [9, Remark 4]
Lazar considers the quotient space M([0, 1])/V, where V is the linear
subspace of M([0,1]) spanned by a certain measure p. /¢ possesses
the following properties: (P1) ¢£{[0,1]) = 0 and (P2) every open sub-
interval of [0, 1] contains sets of positive #-measure and sets of negative
p-measure. Let T be the restriction to P([0,1]) (P([0, 1]) = the
probability measures on [0, 1]) of the quotient map of M([0, 1]) onto
M([0,1])/V and let Z = T(P([0,1])). Then T maps ex P([0,1])
homeomorphically onto ex Z and satisfies: T (T(F')) = F for each
Fe 7 (P(0,1])). Furthermore, Z is not a simplex.
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It is claimed that Z has the s.e.s.p. By Theorem 1.8, it is
enough to show that cov Ec. & (Z) whenever E is a closed subset
of ex Z. Let E'=ex P(0,1)N T (E). Then, T(cov E') = cov E.
By Theorem 1.8, it follows that cov E’ is a face. Thus,

T-'(cov E) = cov E' .

A straightforward argument shows that cov E is a face.

Rogalski [13, Prop. 13] has given an example of a compact
convex set Y which does not have the equal support property but
which satisfies the following: If E is a closed subset of Y with

E S ex Y, then cov E is a face of Y.

2. Extremally concave functions. In this section X will denote
a compact convex set and A will denote the set of real valued
continuous affine functions on X. Consider the following abstract
“Dirichlet” problem: (D) Given fe(C(0X) (C(0X) = space of real
continuous functions on 0X), find a,e A such that a,/0X = f. In [2]
Bauer characterized r-simplexes as follows: X is an r-simplex if and
only if (D) is solvable for each f e C(0X). In view of the definition
of the equal support property, it is natural to expect that there is a
characterization of compact convex sets with the s.e.s.p. which is
similar to Bauer’s result. In §4 we will characterize the s.e.s.p. in
terms of a problem which is the same as (D) except that A is
replaced by a certain collection & (X) of functions on X. This section
is concerned with investigating & (X).

Suppose X has the s.e.s.p. Let f e C(ex X). For each ce(— ==, =],
let F,=cov (f"'(—o,¢]). By Theorem 1.8, F,ec.~ (X) for each
c€(—o0, co]. Define a function f*:X— (-2, ] as follows: for

each v e X, let f*(x) = inf {¢|x e F,}. Then f* extends f and satisfies:
(f*)"(—==,d]le. 7 (X) for each de(— o, =].

DEFINITION 2.1. A function ¢: X — (—co, o] will be called
extremally concave if g7'(— oo, cle F(X) for each ce(— oo, =o]. The
set of all extremally concave functions on X will be denoted by « (X).

ProposITION 2.2. (a) Extremally concave functions are concave

and 1.s.c. (b) For each xe X and each (e R, ggd‘u < g{®) for every
ge & (X).

Proof. Let g be an extremally concave function. That g is
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l.s.c. is clear. The fact that g is concave is a special case of (b).
Suppose pe RY. Let \ = g(x). Since xzeg (e, )], it follows that

Supp f£ S g~(— oo, \] (Prop. 1.2). Thus S gd it < \uX) = g(o).

ProPO3ITION 2.3. Suppose f, g€ & (X). Then: (a) f < g if and only
if flex X< glex X. (b) —f =gifand onlyif (—f)|ex X < glex X.
It follows from (a) that extremally comcave functiomns are uniquely
determined by their valugs on ex X.

Proof. Suppose flex X < glex X. Let xeX and let b = g(x).
Clearly, g '(—oo,blNex X & f'(—c,b]lnex X. By Proposition 1.3
and the KMT, g7'(— o, d] & f~'(—,b]. Thus, f(z) <b = g(x).

Suppose —flex X < glex X and (f + g)"'(—o,0) %= @. Then
there are real numbers s, ¢ with s < ¢ and

97 (=2, sIN(=1)7t, =) # @ -

Since g7'(— o, s|N(—f)7'[t, =) e &7 (X), it follows by Proposition 1.3
and the KMT that g'(— o, s]N(—f)7'[¢, o)Nex X # @ — a contradic-
tion.

The next theorem is crucial in the proofs of some later theorems.

THEOREM 2.4. Let & & & (X). Then sup{g|gec <} (pointwise)
is in & (X). Consequently, & (X) is a complete lattice in the pointwise
ordering.

Proof. Let k= sup{glg e D}. Suppose ce(—c, «]. Then
k™'(—co, ¢l = N{g7'(—,c]l|ge D}. Since & (X) is closed under
arbitrary intersections, it follows that k¢ & (X).

Let f,9e&(X). f A g will denote sup {k|ke & (X) and k¥ < min

{f, 91}
We will complete this section by giving another property of
extremally concave functions and some simple examples.

PropoSITION 2.5. Let ge&(X), zeX, and peRE. Then
g{x) = sup g(supp ). In particular, of x=cu+ 1 — c)v where
w,veX and ce(0,1), then g(x) = max {g(u), g(v)}.

Proof. Since xe g'(—co, g(x)], it follows from Proposition 1.2

that supp /¢t S ¢7(— oo, g{x)]. Thus, sup g(supp #) < g(x). Let Z = cov
(supp ¢#). Then xe Z. Note that g|Ze & (Z). (This fact follows from
the fact that if S is an extreme subset of X then SN Z is an extreme
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subset of Z.) By MT, ex Z < supp tt. By Proposition 2.3, g/ Z < sup
g(supp /).

The “In particular.-.” part of the proposition follows from the
fact that cs, + (1 — ¢)e, € RY.

Examples. Let X = [0,1]. Then fe & (X) if and only if f is
in one of the following forms: (i) f is a constant be(— oo, =] on
(0,1] and f(0) £b. (ii) f(x) = g(1 — x) where g is of form (i).

Let X = {(a,b)]a,be]0,1] and a + b < 1}. Let F,, F,, and F, be
the “edges” of X. We will regard the F';’s as copies of [0, 1]. Then
fe&(X) if and only if f is in one of the forms f(x) = be (— oo, o]
for ke X — F; and f(x) = g(x) < b, where ge & (F;), when xeF;
ji=123.

3. The structure topology. Let Z be a simplex. Effros [6,
p. 117] has defined a topology for ex Z called the structure topology.
In this section, we extend Effros’ definition to a larger class of
compact convex sets. Alfsen and Andersen [2] have defined a topology
called the facial topology, for the set of extreme points of an arbitrary
compact convex set. The facial topology is a generalization of Effros’
structure topology. At the end of this section, we will make a com-
parison between the structure and facial topologies.

For the rest of this section, X will denote a nonempty compact
convex set. Let 9y ={FNer X|Fe.& (X)}. Note that @, ex Xe 7
and that the intersection of any sub-collection of 9 is in 7.
Suppose X has the e.s.p. Consider F', F'e & (X). By Theorem 1.4,
cov (FUF'Ye & (X). By Proposition 1.3,

Fne X)UF'Nex X) =ex XNcov (FUEF).

It follows that the union of any finite sub-collection of 77 is in F%.
Thus, .9y is the collection of closed sets for a topology on ex X,
whenever X has the e.s.p.

DEFINITION 3.1. If 7, is closed under finite unions, then the
topology on ex X for which .77 is the collection of closed sets will be
called the structure topology. We will use the adjective “structurally”
to replace “- .. in the structure topology”, e.g., “structurally compact”
means “compact in the structure topology”.

THEOREM 3.2. The following are equivalent:

(i) The structure topology exists on ex X.

(ii) cov (FUF)e 7 (X) for all F, F'e 7 (X).
(ili) cov (FUEF"y = F\/ F' for all F, F' e (X).
(iv) F(X) s a distributive lattice.



436 JOHN N. McDONALD

Proof. The equivalence of (i) and (ii) follows from Proposition 1.3.
The equivalence of (ii) and (iii) is clear.
Let F, F” e # (X). Suppose (iii) holds. To show that

FnF'VF") = (FnNF)VEFNEF"),
it is enough to prove that
(1) Fncov (FPUF")=cov (FNEF)UFNEF").
By the KMT, equation (1) is equivalent to
(2) ex (F'Ncov (F"UF”)) =ex (cov (FNF)UFNF")) .

Equation (2) follows from Proposition 1.3. Suppose (iv) holds and
F'\/ F" properly contains cov (F'U F"). By the KMT and Proposition
1.3, there is a point x,cex XN (EVE —cov (FUZF")). Since
{x,} e & (X) we have

{w} ={e}n (FVE)
= (el F)V ({}n F)
=0V =0.

The next lemma indicates that compact convex sets X for which
7 (X) is distributive are similar to simplexes.

LEMMA 3.3. Suppose 5% (X) is distributive. Let S S ex X. Then
cov S is extreme and each point in cov S has a unique <-maximal
representing measure.

Proof. To prove that cov S is extreme, it is enough to consider
the case where S is finite. cov S is surely extreme if S is a singleton.
Suppose that, for sets S of ecardinality < the integer =, cov S is
extreme. Let B be a subset of ex X with n elements. Choose some
ye B. Then cov B=cov ({y}Ucov (B— {y})). By Theorem 3.2,
cov B is extreme.

We will now prove the second assertion. Let zecov S. Then
2z may be written in the form (1) z = Y2, ¢;v; where the z;’s are
distinct elements of S, ¢, >0 for 1 =1,2--+,p and >\.,¢; = 1. By
Lemma 1.2, all representing measures for z are supported by cov
{, +++,x,}. Thus, to show that 3 . cg, is the only maximal
representing measure for z, it is enough to show that the representa-
tion (f) is unique (see [18, p. 26]). Let z = > by; be another
representation for z of the form (f). Since cov{z,, ---, x,} is extreme,

{yly "'ayq} gCOV{ﬂ'Zl, "'yxp}n ex X
g{xu "'yxp} .
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Similarly, {x, -<-,2,} S {y, +++,y,}. Assume y, =2, t=1,2, +-+, p.
Suppose b, > ¢,. Then

bl—cl> b, b
— 1 jx, + X s P
<1—'Cl ' 1—01 F —l_l_clxp

c€cov {&,, +++,x,}. Thus x, ecov{n, ---, 2,} — a contradiction. Hence,
¢, = b,. Similarly, b, = ¢,. By the same argument, ¢; = b;,, 1 = 2, -+, p.

THEOREM 3.4. Suppose X is a compact convex subset of a finite
dimensional linear space. Then the following are equivalent:

(i) For some integer m, there is an affine homeomorphism of
X onto the standard n-simplex.

(ii) X is a simplex.

(iil) F(X) 1s distributive.

(iv) X has the e.s.p.

Proof. For a proof of the equivalence of (i) and (ii) see [18,
Prop. 9. 11]. At the beginning of this section we proved that (iv)
implies (iii), and it is clear that (ii) implies (iv). Suppose (iii) holds.
By a theorem of Minkowski [18, p. 1], X = cov (ex X). By the
previous lemma, X is a simplex.

In [10], Feinberg proved the equivalence of (ii) and (iii). Theorem
3.4 shows that compact convex sets X for which & (X) is distributive
and those which have the equal support property are generalizations
of finite dimensional simplexes. The following example shows that
they are distinct generalizations:

ExaMPLE 3.5. The technique used in constructing this example
is due to Alfsen [1]. Let N* be the one-point compactification of the
space of positive integers. Then C(N*) is the space of real sequences
of the form (a,, a,+++; a..) where a.. = lim a,. Let

M(N*) = M (N*) — M*(N*),

then M(N*) is the dual space of C(N*) and may be identified with
the space of real sequences of the form (x,,, ---;%.) Where

2o lxl < 0. It will be assumed that M(N*) is equipped with the
weak* topology. P(N*) will denote {(x,, --+;®)[2, = 0n =1,2, «++c0
and x. + >\, 2, = 1}. Then P(N*) is a compact convex subset of
M(N*), indeed P(N*) is a simplex (see, e.g., [2, Satz 13]). The
extreme points of P(N*) are those of the form ¢, where ¢, is 1 at
the p-th and 0 at every other position p = 1,2, -+-, o (see [4, p.
441)).
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Consider the sequences w» = (1/2,0,1/4,0,1/8,0,..- —1) and
v=(0,1/2,0,1/4,0,1/8, -+ — 1). Let L be the subspace of M(N*)
generated by w and v. Consider the quotient space V = M(N*)/L
and let 7 be the cannonical projection of M(N*) onto V. Let
Z = T(P(N*)). It is claimed that ex Z = {T(e,)|1 =< n < «}. Suppose
yeexr Z. Then T-'(y) N P(N*) is a closed convex extreme subset of
P(N*). By Proposition 1.3, and the KMT, it follows that y = Tl(e,)
for some 1 < n < . It must be shown that n = . Let §, denote
the Dirac measure at T(s,) for n =1,2, ..., 0. The series >,
1/270,;_, converges in the norm topology of the dual of C(Z) to a
measure #, which is <-maximal and represents T'(c..) (see [18, p. 26]).
It follows that T(c.) ¢ ex Z.

Next, it is asserted that Fe & (Z) if and only if F= X or
F = cov E where E is a finite subset of ex Z. Suppose F e & (Z)
and ex F' is infinite. Then T-'(F) Nex P(N*) is infinite. It follows
that e¢.€ T7'(F'). The measure g, = >.2,1/270,;_, is a <-maximal
representing measure for 7T'(c.). By Lemma 1.2, supp ¢, U supp 1, < F..
But supp ¢, Usupp ¢, 2 ex Z. By the KMT, it follows that F' = Z.
Conversely, suppose F' = cov {x,, ---, ©,} where {x,, ---,2,} S ex Z. To
prove Fe & (Z), it is enough to show T-'(F) N P(N*)e & (P(N*)).
There are integers k,, k,, - -+, k, such that T(¢,) =x;, 7 =1,2, -+, n.
Clearly, cov {e;,, -+, 6, } S T'(F) N P(N*) and T(cov {es, +++,¢&,}) = F.
It follows that, if w = (a,, ++-; a.) € T7(F') N P(N*), then there is an
secov{e,, «++, ¢, } such that w — s =cu + dv where ¢,d are real
numbers. Hence, a. = —(¢ + d) = 0. Also, there integers p and ¢
such that a,, , = 1/2° ¢ and a,, = 1/2°d. Thus, ¢ =d = 0. It follows
that cov{e,, -+, ¢, } = T7'(F) N P(N*).

It is now clear that cov (FFU E)e & (Z) for all F,Eec. & (Z).
By Theorem 3.2, & (X) is distributive. Z does not, however, have
the e.s.p. for the measures g, and g, are both <-maximal and
represent T(c..) but supp f, = Supp .

It is interesting to note that the structure topology on ex Z is
the smallest T topology on ex Z.

The following theorem extends [7, Corollary 4.6].

Theorem 3.6. If the structure topology is defined on ex X, then
ex X s structurally compact.

Proof. Let _# be a collection of structurally closed subsets of
ex X having the finite intersection property. For each Ce _JZ, there is
a F,e & (X) such that F; N ex X = C. Hence, the family {F;|Ce _#Z}
has the finite intersection property. Thus, N {F;|Ce _#} is nonempty.
By the KMT and Proposition 1.3, it follows that N {C|Ce _#Z} # @.
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THEOREM 3.7. Suppose the structure topology is defined on ex X.
Let f:ex X —(—oo, ] be structurally 1.s.c., then there is an
f*e &(X) such that f*|ex X = f.

Proof. For each be(—co, ], let F, =cov f'(—o,6b]. By
Proposition 1.3, and the KMT, it follows that F,e.& (X) for all
be(—o0, ]. Define f* by: f*(x) = inf {b|x € F,}.

NoTATION. Suppose f:ex X — (—oco, co] ([—co, )). If there is
an extension of f to & (X) (—& (X)), denote it by f*(f,).

When the structure topology is defined, it is stronger than the
facial topology. If the facial topology is Hausdorff, then the facial,
structure, and relative topologies coincide (see [2, Th. 6.2]).

Consider Example 1.9. We will identify ex P([0, 1]) and [0, 1]
and regard each pe P([0, 1]) as its own unique <-maximal represent-
ing measure. Note that, on ex Z, “closed” and “structurally closed”
mean the same thing. Let E be a proper closed subset of ex Z and
let £/ =1[0,1]n T'(E). It is known that the set FF'=cov E is a
face of Z. Furthermore, T~'(F') = cov ' = {p|supp o & E'} is a face
of P([0,1]). We claim that E is closed in the facial topology if and
only if |p|(E’) = 0, where || denotes the total variation of . (It
will be convenient to assume that |z|{[0, 1]) = 2.)

Suppose that |x¢|(E') = 0. It is enough to show that F is a
split face ([2, p. 9]). Let G ={x|x = T(v) where v(E£’) = 0. Then
G is a face of Z and, since T-'(F') = cov E’, G is disjoint from F.
Since every p e P([0, 1]) can be written as a convex combination of a
measure in cov E’ and a measure in P{][0, 1]) which vanishes on £,
it follows that Z = cov (F'UG). Thus, any face of Z which is
disjoint from F must be contained in G. Hence, G is the comple-
mentary set ([2]) of F. Suppose that weZ — F UG and

w = cu, + (1 - cl)vl = CU, + (1 - Cz)vz ’

where 0 < ¢; <1, u;€ F, and v,€G for : =1,2. For ¢ = 1,2 choose
a; such that T(a;) = u;, and B; such that B,(&£’) = 0 and T(B;) = v;.
Then there is a real number k£ such that

e, + (L —e)f — e, — (L — ¢,)B, = ke .

Since |¢|(E") = 0, it follows that ¢, = ¢, and «, = @,. Hence, F' is a
split face.

Assume that |g¢|(E’) > 0. It will be shown that F' is not split.
Let £ = p#* — ¢~ be the Hahn decomposition of . By Pl, we have
unt, pme PO, 1).

Case 1. p7(E") >0 and p~(E) > 0. By P2, we have 1 > p"(E),
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p~(E'). Let ¢, = ¢ (') and ¢, = p~(£’). Define measures «,, a,, B, B.
as follows: a(B) =c¢ ¢ (E'NB), a(B) =c¢;' £ (E'N B), pL(B) =
(1—0)~ pt*(B— E), and B,(B) = (1—¢)~ pr~(B— F'). Then ¢+ (L— o)y, =
¢,%, + (1—c,)y,, where x; = T(;) and y; = T(B;) for ¢ = 1, 2. A straight-
forward argument shows that either ¢, # ¢, #, # x,, or ¥, # %,. Since
a,, a, are supported by E’, it follows that x,, x,€ F'. Suppose it can be
shown that y, and y, are in the complementary set of F'. Then, by
definition, F' is not a split face.

The set S={ueZlcu+ (1 — ¢jv =y, for some (¢, v) e (0, 1) xZ}.
is the smallest face containing y,. Suppose that cu + (1 — ¢)v = y..
Choose v,, v, such that v = T(v,) and v = T(v,). Then there is a real
number %k such that cv, + 1 — ¢)v, — B, = kp. It follows that ky is
non-negative on subsets of E’. Thus, k£ = 0. It follows that u, v ¢ F.
Hence, SN F = @. 1i.e. ¥y 1is in the complementary set of F.
Similarly, ¥, is in the complementary set of F'.

Case 2. pu*(E') > 0 and p~(£’) = 0. Let I denote the characteristic
function of the set F. The pointwise inf of the set of all continuous
affine functions strictly dominating I will be denoted by I. Suppose
F is a split face then, by [2, Th. 3.5], I is affine. Define the measure
pro T7" by pt o TY(B) = pH(T74(B)). Define gt~ o T similarly. Then
pto T and g~ o T~ are <-maximal representing measures for the
point T(¢*) = T(¢~). It follows by [12, Lemma 9.7] that

gfdw o T :Sfdp‘o T .

Since I is u.s.c. on Z, we have I = I on ex Z (see [12, p. 27]). It follows
that pto T-Y(E) = = o T-'(E). Therefore, p*(E') = p~(E') =0 — a
contradiction. Hence, F' is not split.

The case in which #*(E’) =0 and g~ (£’) > 0 is handled in the
same way as Case 2.

By P2, a proper subset of ex Z which is closed in the facial
topology, is nowhere dense in the structure topology.

4, Characterizations of the strong equal support property.

THEOREM 4.1. Let X be a monempty compact convex set. Then
the following are equivalent:

(i) X has the s.e.s.p.

(ii) For each feC(0X), there is a function f*e & (X) with
froX =f

(iii) & (X) s distributive and separates the points of ex X in the
following sense: if « and y are distinct extreme points of X, then
there are g, f € E(X) such that f(z) >0, gly) >0 and fFANg=0
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(iv) 7 (X) 1s distributive and ex X s structurally Hausdorff.
(v) For each continuous affine function a on X, there is an
a*e & (X) such that alex X = a*|ex X.

Proof. For a proof that (i) implies (ii}, see the discussion
preceding Definition 2.1.

(ii) — (iii). Suppose = and y are distinct elements of ex X.
There are functions h, ke C(0X) such that h(x) >0, k(y) >0, and
min {k, k} < 0. Since h*, k*|ex X =< 0, it follows by Proposition 2.3
that 2* A k* < 0.

To prove that % (X) is distributive, it is enough to show that,
for all f, ge &(X),

(NS A g]oX = min {f, g}j0X .

Since f and ¢ are l.s.c., it follows that f|0X = sup{u|ju < f|0X
and weC0OX)} and ¢|oX = sup{v|v < ¢g|0X and »eC(OX)}. Let
h=sup{u* A v*lu,veC0OX), u < floX,v < ¢g]0X}. By Theorem 2.4,
it follows that he &(X). Note that, if u,veC0OX), u* A v* =
(min {u, ¥})* (Prop. 2.3). Thus, 2|0X = min{f|0X, ¢g|oX}. It follows
by Proposition 2.8 that 2 = f < g¢.

(iii) — (iv). First, it will be shown that & (X) is distributive.
We will use Jg to denote the function which is 0 on S and 1 elsewhere.
Let F, Ee & (X). Then J;, Je& (X). Note that J, A J, = Jpyp.
Suppose 2 (F'V E)Nex X) — cov (F U K). Then

Jioy = max {J,, Jp A\ Jg}
= (max {J ), J}) A (max {J.,, J.})
=1A1=1.

Thus, (FV E)Nnex X) —cov (FUE)= ©». By Proposition 1.3 and
the KMT, F\v E =cov (F U E). It follows by Theorem 3.2 that
& (X) is distributive.

To prove that ex X is structurally Hausdorff, it is enough to
show that, for each pair z,ycex X, 2 =y, there are F', Fe & (X)
such that x¢ F, ye £ and FU E 2ex X. By hypothesis, there are
functions f, ge &(X) such that f(x) > 0,9y >0 and f A g=Z0.
Let FF = f~'(—c,0] and E = g7*(— =, 0]. Since min {f|ex X, glex X}
is structurally 1.s.c., it follows by Theorem 3.7 and Proposition 2.3
that f A glex X = min{f, g}|ex X. Thus, (FUE)Nex X = ex X.

(iv) — (1). Suppose it can be shown that ex X is closed. Then,
since the structure topology is weaker than the relative topology,
every closed subset of ex X is structurally closed. Thus, if FE S ex X
is closed, then there is an Fe. 7 (X) with = Fner X. By
Proposition 1.3, cov K = F. It follows by Theorem 1.8 that X has
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the s.e.s.p.

It remains to be shown that ex X is closed. Let C,(ex X) be
the space of structurally continuous real-valued functions on ex X.
Suppose z, €0X. Then there is a net {z,} of elements in ex X which
converges to 2, and converges structurally to some zcex X. Hence,
by Theorem 3.7 and the proof of Theorem 3.8, f*(z) = f(2) for each
feCyex X). Note that J,|ex X is structurally 1.s.c. Since ex X is
structurally compact and Hausdorff, it follows that

le)lex X =sup{feClex X)|f < J(z)lex X}.
By Theorem 2.4 and Proposition 2.3, it follows that
J(Z) = SuD{f*(feCs(ex X)yf < J(,,(em X} .«

Therefore, J,(z,) = J,,(2). Thus, z = z,.

That (ii) implies (v) is clear.

(v)—(iv). First it will be shown that & (X) is distributive.
Let F, Ec & (X). Let K = {a|a is continuous affine and a='(— <, 0] 2
cov (FFU E)}. It is claimed that

cov (FUE) = Nn{{a*")"(—,0]lac K} .

If ac K, then (a*)7'(— <, 0] 2 ex (cov (F U E)) by Proposition 1.3.
Suppose a*(x) < 0 for every ac K. If h is any real continuous affine
function on X, then h* — h is concave and 1.s.c. Since (A* — h)|ex X = 0,
it follows that 2* = h. Thus, a(x) < 0 for every ac K. A simple
separation argument shows that xecov (F U E).

To prove that ex X is structurally Hausdorff, it is enough to
note that C,(ex X) contains a point-separating subspace.

Many of the results contained in this paper can be generalized
to the following setting: Let Y be a compact Hausdorff space.
Suppose that S is a cone of real-valued continuous functions on Y
which satisfies: f, ¢ . implies that min {f, g}e &7 A notion of
“convexity with respect to .&”” can be introduced on Y. The concepts
of: extreme point, extreme set, face, and structure topology can be
given meaning in the above context. For details, see [10].
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