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COMPACT CONVEX SETS WITH THE EQUAL
SUPPORT PROPERTY

JOHN N. MCDONALD

Simplexes may be characterized as follows: (C) X is a sim-
plex if and only if each xe X has a unique < -maximal represent-
ing measure, where < denotes the Choquet ordering on the
set M+(X) of positive regular Borel measures on X. In this
paper, we study compact convex sets which satisfy a condi-
tion which is similar to that given in (C). Definition: X has
the equal support property if, for each xe X, any two
-< -maximal representing measures for x have the same
support. Some of our theorems are extensions to sets with
the equal support property of results which hold for simplexes.
Other results given here are analogous of theorems which hold
for simplexes. We are especially interested in the relation-
ships between the equal support property and a topology,
called the structure topology, which was first defined for the
set of extreme points of a simplex, but also makes sense
for a wider class of compact convex sets.

The background material for §§ 1 through 4 of this paper may
be found in [12]. The equal support property was first considered
by Feinberg in [8]. The expression "compact convex set" will always
refer to a nonempty compact convex subset of a locally convex
Hausdorff linear space. Let X be a compact convex set. ex X will
denote the set of extreme points of X. dX will denote the closure

ex X of ex X. Consider a point xe X and a closed subset F of X.
Rζ will denote the set of representing measures for x which are
supported by F, i.e., vanish on X — F. (We will not distinguish
between measures on F and measures on X which are supported by

F.) It is known [12, p. 5] that ye COY F if and only if Rζ Φ 0 .
Recall tha X = cov (ex X) (Krein-Milman Theorem, KMT), or, equi-
valently, Rlx Φ 0 for each x e X. We will make use of Milman's
converse to the Krein-Milman Theorem, henceforth refered to as AfT,
which states that: X = cov S implies ex X £ S.

1* Extreme sets* In this section, X will denote a compact
convex set. A fuction f:X—+Z where Z is a convex set is called
affine if f(cx + (1 - c)y) = cf(x) + (1 - c)f(y) for every

(x,y,c)eXxXx[O,l].

A function g: X-+(— ^, oo] is called concave if
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cg(x) + (1 - c)g(y) ̂  g(cx + (1 - c)y)

for all (x, y, c) e XxXx [0, 1].

DEFINITION 1.1. A set S £ X will be called extreme if

(u,v,b)eXxXx(0,ΐ)

and ?m + (1 — b)v e S imply u, v e S. A convex extreme set will be
called a /αcβ.

Note the union of any collection of closed faces is extreme. In
particular, if S £ ex X, then S is extreme.

LEMMA 1.2. A closed subset E of X is extreme if and only if
x e E implies supp p £Ξ E for each p e Rξ (supp p denotes the closed
support of the measure p).

The proof is a slight modification of the proof of [12, prop. 1.4].
See also, [1, p. 100].

Let ^{X) denote the collection of closed faces of X. Note that,
if ^ S J^ί-X"), then n{C\Ceϊf}eJ?~(X). Thus, J^iX) is a complete
lattice in the containment ordering. Let F\ F" e^(X). We will
denote Π{F\Fe J^(X) and F a f ' U F") by F' V F". The following
gives some elementary but useful information about members of

PROPOSITION 1.3. Let F, F' e ̂ {X). Then: (a) ex F = ex X Π F.
(b) ex (cov (F U F')) = ex F (J e.τ ί7' = ex X Π cov (F U F').

Proof, (a) is clear. By MT, ex (cov (ί7 U F')) QFUF'. (b)
now follows from (a).

It is natural to ask, whether F, Fr e J^iX) imply cov
A more general question is: If E is closed and

extreme, is cov E extreme? It follows from a result of Effros that,
if X is a simplex and E £ ex X, then the answer to the last question
is yes (see [7, Th. 3.3]). The following theorem shows that the
answer to the above question is affirmative if X has the equal support
property, furthermore, the proof given here may be used to obtain
Th. 3.3 of [7]:

THEOREM 1.4. Suppose that X has the equal support property.
Let E be a closed extreme set of X. Then cov E is extreme, and
hence is a face.
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In the proof of Theorem 1.4, we will need the following pro-
positions:

PROPOSITION 1.5. Let Y be a compact convex set. Suppose

μ,ve M+(Y) and μ < v. Then supp μ g cov (supp v).

Proof. Suppose y e supp μ — cov (suppv). Then, there is a

continuous affine function u on X such that u(y) — — 1 and inf u(cov
(supp v)) = 0. Let w = min {u, 0}. Then w is concave. Hence,

S c
wdv <£ \wdμ<0. Bat, w — 0 on supp v — a contradiction.

PPOPOSITION 1.6. Let F be a closed extreme set of the compact
convex set Y. Suppose vι -< v2 and supp vι g F. Then supp v2 g F.

Proof. Let JF denote the function which is 0 on F and 1 on
Y — F. Then JF is l.s.c. and concave. Let D be the set of
continuous concave functions on Y which are strictly dominated
(pointwise) by JF. By a result of Mokobodski [11, p. 222], D is

directed upward and JF = sup {g \ g e D). Since I gd v2 ^ \gd vι for each

f Γ
geD, it follows that \JFdv2^ \Jydv,. (For a proof that

S ίf Ί

Λ ^ 2 = sup^Ud v2\geD\ ,
V J )

see, e.g., [4. p. 8].) Thus, v2 (Y - F) = vx ( Γ - F) = 0.

Proof of Theorem 1.4. Let x e cov E. It will be shown that
supp μ g cov £/ for all μeRξ. By [12, Lemma 4.1] and proposition
1.5, it is enough to prove that cov E contains the support of every
-<-maximal measure in Rξ. Since X has the equal support property,
it is only necessary to find one -< -maximal representing measure
which is supported by E. Letveiϊf (see [12, p. 5]). There is a
-<-maximal measure μ such that v < μ [12, Lemma 4.1]. By pro-
position 1.6, it follows that suppμ g E.

In [1], Alfsen proved that if Z is an r-simplex, i.e., a simplex

whose set of extreme points is closed, then coy B is a face for every
B g ex Z. We will show that X satisfies the conclusion of Alfsen's
result if and only if X has the equal support property and ex X is
closed. We claim that X has the equal support property and ex X = dX
if and only if for each x e X, all measures in R\x have the same
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support. The "only if" part of the previous statement follows from
the fact that if suppμ g exX, then μ is <-maximal [12, pp. 26-27].
Suppose that ze X and that all measures in R\x have the same
support. Let v be a -< -maximal measure with εz < v. Since all
-<-maximal measures are supported by X [12, p. 30], it follows that
εz = v. Thus, zeex X[12, p. 27]. The proof of the above statement
is complete. (εz — the Dirac measure at z.)

DEFINITION 1.7. X has the strong equal support property if, for
each x e Xy all measures in R\x have the same support.

For the sake of brevity, we will use the abbreviation "s.e.s.p."
to indicate the "strong equal support property".

THEOREM 1.8. The following are equivalent:
( i ) X has the s.e.s.p.

(ii) cov B is extreme for every B S dX

Proof. That ( i ) implies (ii) follows from Theorem 1.4.
If (ii) holds, then cov{x} — {x} is extreme for each xeX.

Thus, dX £ ex X. It must be shown that X has the equal support
property. Let yeX and let μ and v be •<-maximal representing

measures for y. Since ye coy (supp//),it follows, by Proposition 1.2,

that supp v S cov (suppμ). By MT and Proposition 1.3, supp v £ cov
(supp μ) Γ\ ex X = supp μ. Similarly, supp μ § supp v.

In [8] Feinberg gave a proof of Theorem 1.8 which is independent
of Theorem 1.4.

We are now able to give an example of a compact convex set
which has the s.e.s.p., but is not a simplex.

EXAMPLE 1.9. Let M([0,1]) denote the space of real valued
regular Borel measures on [0, 1]. Assume that ikf([O, 1]) is equipped
with the weak* topology (recall that M([0,1]) is the dual of the space
of real valued continuous functions on [0, 1]). In [9, Remark 4]
Lazar considers the quotient space M([0, 1])/F, where V is the linear
subspace of M([0, 1]) spanned by a certain measure μ. μ possesses
the following properties: (PI) μ{[0, 1]) = 0 and (P2) every open sub-
interval of [0, 1] contains sets of positive /^-measure and sets of negative
μ-measure. Let T be the restriction to P([0, 1]) (P([0, 1]) = the
probability measures on [0, 1]) of the quotient map of M([0, 1]) onto
Af([0, 1])/V and let Z = Γ(P([0, 1])). Then T maps ex P([0, 1J)
homeomorphically onto ex Z and satisfies: T~ι(T(F)) = F for each

, 1])). Furthermore, Z is not a simplex.
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It is claimed that Z has the s.e.s.p. By Theorem 1.8, it is
enough to show that cov Ee^~(Z) whenever E is a closed subset
of ex Z. Let E' = ex P([0, l])n T~ι(E). Then, T(cov E') = coΫE.
By Theorem 1.8, it follows that cov Er is a face. Thus,

Γ-^cov E) = cov Er .

A straightforward argument shows that cov E is a face.

Rogalski [13, Prop. 13] has given an example of a compact
convex set Y which does not have the equal support property but
which satisfies the following: If E is a closed subset of Y with
E s ex Y, then cov E is a face of Y.

2. Extremally concave functions* In this section X will denote
a compact convex set and A will denote the set of real valued
continuous affine functions on X. Consider the following abstract
"Dirichlet" problem: (D) Given / e C(dX) (C(dX) = space of real
continuous functions on dX), find afe A such that af\3X — / . In [2]
Bauer characterized r-simplexes as follows: X is an r-simplex if and
only if (D) is solvable for each feC(dX). In view of the definition
of the equal support property, it is natural to expect that there is a
characterization of compact convex sets with the s.e.s.p. which is
similar to Bauer's result. In § 4 we will characterize the s.e.s.p, in
terms of a problem which is the same as (D) except that A is
replaced by a certain collection g* (X) of functions on X. This section
is concerned with investigating &(X).

Suppose X has the s.e.s.p. Let / e C(ex X). For each c e (— - 9 co],
let Fβ = cόv (f-ι(-°°,c]). By Theorem 1.8, FcejP"(X) for each
ce(-oo ? oo]. Define a function /*: X—* (— M, CO] as follows: for
each xeX, let f*(x) — inf {c\xe Fc}. Then /* extends / and satisfies:
(f*)-l(-°°,d]eJt~(X) for each de (-<>,, co].

DEFINITION 2.1. A function g: X-+ (— co, co] will be called
e x t r e m a l l y concave i f g~ι(— oo, c] e F(X) f o r e a c h c e ( — c o , c o ] . T h e
set of all extremally concave functions on X will be denoted by

PROPOSITION 2.2. (a) Extremally concave functions are concave

and l.s.c. (b) For each xeX and each μeRξ, \gdμ ^ g(x) for every

&(X

Proof. Let g be an extremally concave function. That g is
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l.s.c. is clear. The fact that g is concave is a special case of (b).
Suppose μeRξ. Let λ = g(x). Since xe flr1^, λ], it follows that

μ S g~ι{- °°, λ] (Prop. 1.2). Thus U d μ ^ λμ(JΓ) = #0).supp

PROPOSITION 2.3. Suppose f,ge i f (X). 2%βra: (a) / ^ g ΐ/ αraZ
if f\ex X ^ g\ ex X. (b) - / £ g if and only if {-f)\ex X ^ # | ex X.
It follows from (a) that extremally concave functions are uniquely
determined by their values on ex X.

Proof. Suppose /1exX ^ g|exX. Let xe X and let b — g(x).
Clearly, g~ι{- oo, b]ΠexX g / " ' ( - °°, δ ]Π^X. By Proposition 1.3
and the KMT, flΓ^- °°, 6] S / - 1 ( - °°, δ] Thus, /(a?) ^ δ = 0(α).

Suppose - / 1 βα; X ^ g| βa; X and (/ + flr)-^- ^ , 0) ^ 0 . Then
there are real numbers s, t with s < t and

Since g~\- ^, s] f] (-f)-ι[t, oo)eJ^(X), it follows by Proposition 1.3
and the KMT that g~ι(- co, s] n (-Z)" 1 !^ ^) Π ex X Φ 0 - a contradic-
tion.

The next theorem is crucial in the proofs of some later theorems.

THEOREM 2.4. Let & S if (-3Γ). Γλew swp {gr | flr 6 ^ } (pointwise)
is m g'(JSΓ). Consequently, &(X) is a complete lattice in the pointwise
ordering.

Proof. Let k = sup{g\g e D}. Suppose C G ( - M , CO]. Then
k"1(—oo9c]= Oig^i—^yCWgeD}. Since ^(X) is closed under
arbitrary intersections, it follows that ke^(X).

L e t f,ge i f (X). f A g w i l l d e n o t e s u p { k \ k e &(X) a n d A; ̂  m i n

{/, g}}.
We will complete this section by giving another property of

extremally concave functions and some simple examples.

PROPOSITION 2.5. Let geg"(X), xeX, and μeRξ. Then
g(x) — sup #(suppμ). In particular, if x — cu + (1 — c)v where
u, v e X and c e (0, 1), then g(x) — max {g(u), g(v)}.

Proof. Since x e g~ι{— oo, g(x)]y it follows from Proposition 1.2

that suppμ g g"λ(— oo, ̂ (x)]. Thus, sup#(suppμ) ^ ^(x). Let Z = cov
(suppμ). Then a GZ, Note that g\Ze ξ?(Z). (This fact follows from
the fact that if S is an extreme subset of X then S Π Z is an extreme
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s u b s e t of Z.) B y MT, ex Z £ s u p p μ . B y P r o p o s i t i o n 2 . 3 , g \ Z ̂  s u p

The "In particular " part of the proposition follows from the
fact that ceu + (1 — e)ευ e Rξ.

Examples. Let X= [0,1]. Then fe^(X) if and only if / is
in one of the following forms: (i) / is a constant be( — ©o, oo] on
(0, 1] and /(0) ^ b. (ii) f{x) = g(l - x) where g is of form (i).

Let X = {(a, b)\a,be [0, 1] and a + b ^ 1}. Let Flf F2, and F3 be
the "edges" of X. We will regard the F/s as copies of [0, 1]. Then
/ e &(X) if and only if / is in one of the forms f(x) = b e ( — oo, oo]
for xeX—Fj and /(«) = g(a?) ^ δ, where getf(Fj)y when αeί7,-
i - 1, 2, 3.

3* The structure topology* Let Z be a simplex. Effros [6,
p. 117] has defined a topology for ex Z called the structure topology.
In this section, we extend Effros' definition to a larger class of
compact convex sets. Alfsen and Andersen [2] have defined a topology
called the facial topology, for the set of extreme points of an arbitrary
compact convex set. The facial topology is a generalization of Effros'
structure topology. At the end of this section, we will make a com-
parison between the structure and facial topologies.

For the rest of this section, X will denote a nonempty compact
convex set. Let ^~x = {Ff] ex X\FeJ?~(X)}. Note that 0 , ex Xe
and that the intersection of any sub-collection of ^~x is in
Suppose X has the e.s.p. Consider F, Ff e J^iX). By Theorem 1.4,
cov (F U F') e J^iX). By Proposition 1.3,

(F Γ)ex X){J {Fr n ex X) = ex X Π cov (F (J F') .

It follows that the union of any finite sub-collection of ^ x is in
Thus, ^Γx is the collection of closed sets for a topology on ex X,
whenever X has the e.s.p.

DEFINITION 3.1. If ^Tx is closed under finite unions, then the
topology on ex X for which ^ ^ is the collection of closed sets will be
called the structure topology. We will use the adjective "structurally"
to replace " in the structure topology", e.g., "structurally compact"
means "compact in the structure topology".

THEOREM 3.2. The following are equivalent:
( i ) The structure topology exists on ex X.
(ii) cov (F U F') e JT(X) for all F, Ff e^(X).
(iii) cov (FDF') = FV F' for all F, F' e (X).
(iv) J^~(X) is a distributive lattice.
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Proof. The equivalence of (i) and (ii) follows from Proposition 1.3.
The equivalence of (ii) and (iii) is clear.

Let F,F"eJr(X). Suppose (iii) holds. To show that

Ff] {Ff V F") = (FnF') V (FnF") ,

it is enough to prove that

(1) F Π cov {Ff U F") = cov ((F n F') U (F n F")) .

By the KMT, equation (1) is equivalent to

(2) ex (F n cov (F' UF")) - ex (cov ((F Π F') U(Fn F"))) .

Equation (2) follows from Proposition 1.3. Suppose (iv) holds and
F\/F' properly contains cov (FUF') By the KMT and Proposition
1.3, there is a point x, eex Xn(EV Ff — cov (F U F')). Since
{ĉ } G ̂ (X) we have

- ({»i} n F) v ({x,} n F')

= 0 V 0 = 0 .

The next lemma indicates that compact convex sets X for which
is distributive are similar to simplexes.

LEMMA 3.3. Suppose J^~(X) is distributive. Let S Q ex X. Then
cov S is extreme and each point in cov S has a unique <-maximal
representing measure.

Proof. To prove that cov S is extreme, it is enough to consider
the case where S is finite, cov S is surely extreme if S is a singleton.
Suppose that, for sets S of cardinality < the integer n, cov S is
extreme. Let B be a subset of ex X with n elements. Choose some
yeB. Then cov B = cov ({y} U cov (5 - {y})). By Theorem 3.2,
cov B is extreme.

We will now prove the second assertion. Let z e cov S. Then
z may be written in the form (t) z = Σ?=i c ; χ ; where the x/s are
distinct elements of S, c4 > 0 for ΐ = 1, 2 , p and Σ?=i ci — l ^y
Lemma 1.2, all representing measures for z are supported by cov
{xί9 9%p}. Thus, to show that Σ L i ^ is the only maximal
representing measure for a;, it is enough to show that the representa-
tion (t) is unique (see [18, p. 26]). Let z — Σ?=i ^όVό be another
representation for z of the form (t). Since cov{ajlf , ajp} is extreme,

{2/i, , yJ S cov {xu , xp} n e» X
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Similarly, {xu , xp} Q {yu , yq}. Assume yi = xt i = 1, 2, , p.
Suppose ί>! > d Then

1 — c J 1 — r 1 o

G cov {x2, , xp}. Thus xί e cov {x2, , α̂ } — a contradiction. Hence,

d ^ δi Similarly, 6X ^ d By the same argument, c< = δ, , i — 2, , p.

THEOREM 3.4. Suppose X is a compact convex subset of a finite
dimensional linear space. Then the following are equivalent:

( i ) For some integer n, there is an affine homeomorphism of
X onto the standard n-simplex.

(ii) X is a simplex.
(iii) j^~(X) is distributive.
(iv) X has the e.s.p.

Proof. For a proof of the equivalence of (i) and (ii) see [18,
Prop. 9. 11]. At the beginning of this section we proved that (iv)
implies (iii), and it is clear that (ii) implies (iv). Suppose (iii) holds.
By a theorem of Minkowski [18, p. 1], X — cov (ex X). By the
previous lemma, X is a simplex.

In [10], Feinberg proved the equivalence of (ii) and (iii). Theorem
3.4 shows that compact convex sets X for which ^~(X) is distributive
and those which have the equal support property are generalizations
of finite dimensional simplexes. The following example shows that
they are distinct generalizations:

EXAMPLE 3.5. The technique used in constructing this example
is due to Alfsen [1]. Let N* be the one-point compactification of the
space of positive integers. Then C(ΛΓ*) is the space of real sequences
of the form (au α2 •; αoo) where a^ — lim an. Let

M(N*) = M+(N*) - M+(N*) ,

then M(N*) is the dual space of C(N*) and may be identified with
the space of real sequences of the form (xu x2, •; xj) where
ΣΠ=il#<l < co- It will be assumed that M(N*) is equipped with the
weak* topology. P(N*) will denote {(xίy xj) \ xn ^ 0 n = 1,2, co
and Xoo + Σn=i %n = 1} Then P(N*) is a compact convex subset of
M(N*), indeed P(N*) is a simplex (see, e.g., [2, Satz 13]). The
extreme points of P(N*) are those of the form ep where εp is 1 at
the p-th and 0 at every other position p — 1, 2, •••, co (see [4, p.
441]).
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Consider the sequences u = (1/2, 0, 1/4, 0, 1/8, 0, - 1) and
v = (0, 1/2, 0, 1/4, 0, 1/8, . . . - 1). Let L be the subspace of M(N*)
generated by u and v. Consider the quotient space V = M(N*)/L
and let T be the cannonical projection of M(N*) onto V. Let
Z = T(P(N*)). It is claimed that ex Z - {T(εw)|l ^ w < oo}. Suppose
ye ex Z. Then T~ι{y) Π P(ΛΓ*) is a closed convex extreme subset of
P{N*). By Proposition 1.3, and the KMT, it follows that y = T(εΛ)
for some 1 ^ n ^ oo. It must be shown that n Φ oo. Let δn denote
the Dirac measure at T(en) for n = 1, 2, , oo. The series ΣΓ=ι
1/23'δ2j^ converges in the norm topology of the dual of C(Z) to a
measure μι which is -< -maximal and represents T(Soo) (see [18, p. 28]).
It follows that T(εJ) g ex Z.

Next, it is asserted that Fe^~(Z) if and only if F = X or
JP = cov i? where ϋ7 is a finite subset of ex Z. Suppose F e &~(Z)
and ex F is infinite. Then T~ι{F) n ex P(iV*) is infinite. It follows
that e c e H F ) , The measure μ2 = ΣS=i l/2y δ2i_2 is a -<-maximal
representing measure for T(ε*>). By Lemma 1.2, suppμ2 U supp/^i £ F.
But supp /ij. U supp μ2 3 ex Z. By the KMT, it follows that F = Z.
Conversely, suppose F = cov j ^ , , x j where {xu •••,«?»}£ ex ^ . To
prove Fe^iZ), it is enough to show T-ι(F) f] P(N*) e J?~(P(N*)).
There are integers ^ , jfe2, , kn such that T(ekj) = x̂  , i = 1, 2, , n.
Clearly, cov {εfcl, , ekJ S T " 1 ^ ) Π P(iSΓ*) and T(cov {εfcl, , ekj) = F.
It follows that, if w = (α^ •; cu) e T " 1 ^ ) n PίiV*), then there is an
s e cov {εΛl, , εfc%} such that w — s = cu + dv where c, d are real
numbers. Hence, αTO = — (c + d) >̂ 0. Also, there integers p and g
such that α2?,_1 = 1/2P c and a2q = lβq d. Thus, c = d = 0. It follows
that cov {64l, , εkj - T - 1 ^ ) n P(N*).

It is now clear that cov (F{J E)eJΓ(Z) for all F, EeJ?~(Z).
By Theorem 3.2, ^"{X) is distributive. Z does not, however, have
the e.s.p. for the measures μγ and μ2 are both <-maximal and
represent T(Soo) but supp μx Φ supp μ2.

It is interesting to note that the structure topology on ex Z is
the smallest T1 topology on ex Z.

The following theorem extends [7, Corollary 4.6].

Theorem 3.6. If the structure topology is defined on ex X, then
ex X is structurally compact.

Proof. Let ^ be a collection of structurally closed subsets of
ex X having the finite intersection property. For each Ce ^ , there is
2iFce ^{X) such that Fc n ex X = C. Hence, the family {Fc\Ce J")
has the finite intersection property. Thus, Π {Fc\Ce ^ } is nonempty.
By the KMT and Proposition 1.3, it follows that Π {C\Ce ^ } Φ 0 .
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THEOREM 3.7. Suppose the structure topology is defined on ex X.
Let f: ex X—>(— 00,00] be structurally l.s.c, then there is an
/ * G gf (X) such that / * | ex X = / .

Proof. For each b e ( — co, oo], let Fb = cov /"'(—°°,δ]. By
Proposition 1.3, and the KMT, it follows that Fbej^(X) for all
δ G ( _ o o , co]. Define / * by: /*(α) = inf {61 α; e Fb}.

NOTATION. Suppose f: ex X—>(—co, TO] ([—oo, co)). If there is

an extension of / to gf(X) (-gf(X)), denote it by / * ( / * ) .

When the structure topology is defined, it is stronger than the
facial topology. If the facial topology is Hausdorff, then the facial,
structure, and relative topologies coincide (see [2, Th. 6.2]).

Consider Example 1.9. We will identify ex P([0, 1]) and [0, 1]
and regard each peP([0, 1]) as its own unique -< -maximal represent-
ing measure. Note that, on ex Z, "closed" and "structurally closed"
mean the same thing. Let E be a proper closed subset of ex Z and
let E' = [0, 1] n T-\E). It is known that the set F = cov E is a
face of Z. Furthermore, T~ι{F) = cov E' = {|θ|supp/θ Q Ef) is a face
of P([0, 1]). We claim that E is closed in the facial topology if and
only if \μ\{Er) = 0, where \μ\ denotes the total variation of μ. (It
will be convenient to assume that |μ|([0, 1]) — 2.)

Suppose that \μ\(E') = 0. It is enough to show that F is a
split face ([2, p. 9]). Let G = {x\x = T{v) where v(E') = 0. Then
G is a face of Z and, since T~ι(F) = cov E', G is disjoint from F.
Since every p e P([0, 1]) can be written as a convex combination of a
measure in cov E' and a measure in P([0, 1]) which vanishes on Ef,
it follows that Z = cov (F\jG). Thus, any face of Z which is
disjoint from F must be contained in G. Hence, G is the comple-
mentary set ([2]) of F. Suppose that w e Z — F U G and

w — cλuL + (1 — c1)v1 = c2u2 + (1 — c2)v2 ,

where 0 < c{ < 1, u{ e F, and v^eG for i = 1, 2. For i = 1, 2 choose
α< such that T(cCi) = ui9 and β{ such that /S^^7) = 0 and T(βt) = v{.
Then there is a real number k such that

c,a, + (1 - cJ/9: - c2α2 - (1 - c2)/92 = kμ .

Since | ^ | ( £ " ) = 0, it follows that cx = c2 and aL = αr2. Hence, ί7 is a
split face.

Assume that \μ\(Er) > 0. It will be shown that F is not split.
Let μ = μ+ — μ~ be the Hahn decomposition of μ. By PI, we have
μ\μ-eP(0,l).

Case 1. μ+(Ef) > 0 and μ~(Er) > 0. By P2, we have 1 > μ+(E),
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μ~{Er). Let cι = μ+(E') and c2 = μ~{E'). Define measures au az, βu β2

as follows: a^B) = cr1 μ+(£" Π £), tf2(£) = cf1 μ~(Ef Π J5), &(£) =

c2x2 + (1 — c2)τ/2, where a?< — JXαJ and ^ = ϊ7^*) for i = 1, 2. A straight-
forward argument shows that either ct Φ c2, xt Φ x21 or yι Φ y2. Since
au a2 are supported by £", it follows that xu x2 G .F. Suppose it can be
shown that yL and y2 are in the complementary set of F. Then, by
definition, F is not a split face.

The set S = {ue Z\cu + (1 — c)v = ^ for some (c, v) G (0, 1) xZ}.
is the smallest face containing yt. Suppose that cu + (1 — c)v — yx.
Choose vu v2 such that u = T(vx) and v = T(v2). Then there is a real
number k such that cvγ + (1 — c)v2 — βι — kμ. It follows that kμ is
non-negative on subsets of E'. Thus, k = 0. It follows that u, v g F.
Hence, £ 0 ^ = 0 . i.e., yt is in the complementary set of F.
Similarly, y2 is in the complementary set of F.

Case 2. μ+(E') > 0 and μ~(Ef) = 0. Let I denote the characteristic
function of the set F. The pointwise inf of the set of all continuous
affine functions strictly dominating / will be denoted by I. Suppose
F is a split face then, by [2, Th. 3.5], I is affine. Define the measure
μ+ o T-1 by μ+ o T" 1^) = μ+(T-ι(B)). Define μ- o T~ι similarly. Then
μ+ o T~ι and ^£" o T"1 are <-maximal representing measures for the
point T(μ+) = T(μ~). It follows by [12, Lemma 9.7] that

ί Id μ+ o T~ι = [ϊdμ-

Since / is u.s.c. on Z, we have / = I on ex Z (see [12, p. 27]). It follows
that μ+ o T~\E) = jM- O T~ι{E). Therefore, μ+(Er) = μ~(E') = 0 - a
contradiction. Hence, ί7 is not split.

The case in which μ+{E') = 0 and μ~(E') > 0 is handled in the
same way as Case 2.

By P2, a proper subset of ex Z which is closed in the facial
topology, is nowhere dense in the structure topology.

4* Characterizations of the strong equal support property*

THEOREM 4.1. Let X be a nonempty compact convex set. Then
the following are equivalent:

( i ) X has the s.e.s.p.
(ii) For each feC(dX), there is a function f*e&(X) with

f*\dX=f
(iii) &(X) is distributive and separates the points of ex X in the

following sense: if x and y are distinct extreme points of X, then
there are g, f e E(X) such that f(x) > 0, g(y) > 0 and f Λ g ^ 0
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(iv) ^(X) is distributive and ex X is structurally Hausdorff.
(v) For each continuous affine function a on X, there is an

such that a\ex X— a*\ex X.

Proof. For a proof that (i) implies (ii), see the discussion
preceding Definition 2.1.

(ii)—>(iii). Suppose x and y are distinct elements of ex X.
There are functions h, k e C(dX) such that h(x) > 0, k(y) > 0, and
min {h, k) ̂  0. Since h*, k*\ex X ^ 0, it follows by Proposition 2.3
that A* Λ k* ̂  0.

To prove that &(X) is distributive, it is enough to show that,
for all f,ge&(X),

(f)f A g\dX = min {f,g}\dX.

Since / and g are l.s.c, it follows that f\dX = suip{u\u < f\dX
and ueC(dX)} and g\dX = sup{v\v < g\dX and veC(dX)}. Let
h = su p{u* Λv*\u,ve C(dX), u^ f\dX,v ^ g\ dX}. By Theorem 2.4,
it follows that heξ?(X). Note that, if u, veC(dX),u* A v* =
(min{u, v})* (Prop. 2.3). Thus, h\dX = min{/ί<3X, g\3X}. It follows
by Proposition 2.3 that h = f < g.

(iii) —> (iv). First, it will be shown that J^(X) is distributive.
We will use Js to denote the function which is 0 on S and 1 elsewhere.
Let F, Ee J*~(X). Then JF, JE e ^ ( I ) . Note that JF A JE = JFVE.
Suppose x 6 ((F V E) Π ex X) - cov (F U E). Then

J{x] - max {J{xhJF A JE}

= (max {/{.,}, JF}) Λ (max {/(,}, JE})

= 1 Λ 1 = 1 .

Thus, ((F V S ) ί l βα; X) - cov ( f U S ) = 0 . By Proposition 1.3 and
the KMT, F V E = COY (F U E). It follows by Theorem 3.2 that
^(X) is distributive.

To prove that ex X is structurally Hausdorff, it is enough to
show that, for each pair x,yeex X,xΦy, there are F,Ee^(X)
such that x$F, y^E and F U E 2 ex X. By hypothesis, there are
functions f,geξf(X) such that f(x) > 0, g(y) > 0 and / Λ ^ 0 ,
Let F = /-H-^iO] and £7- ̂ ( - - 0 , 0 ] . Since min {f\ ex X, g\ex X}
is structurally l.s.c, it follows by Theorem 3.7 and Proposition 2.3
that / Λ g \ ex X= min {/, g] \ ex X. Thus, (F U E) Π ex X = ex X.

(iv) —> ( i ) . Suppose it can be shown that ex X is closed. Then,
since the structure topology is weaker than the relative topology,
every closed subset of ex X is structurally closed. Thus, if E g ex X
is closed, then there is an Fe^{X) with E = F Π ex X. By
Proposition 1.3, cov E — F. It follows by Theorem 1.8 that X has
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the s.e.s.p.
It remains to be shown that ex X is closed. Let Cs(ex X) be

the space of structurally continuous real-valued functions on ex X.
Suppose z1 e dX. Then there is a net {za} of elements in ex X which
converges to zv and converges structurally to some z e ex X. Hence,
by Theorem 3.7 and the proof of Theorem 3.8, /*(^) = f(z) for each
feCs(ex X). Note that J{z]\ex X is structurally l.s.c. Since ex X is
structurally compact and Hausdorίf, it follows that

J{z) I ex X = sup {/ e C.(ex X) \ f < J{z] \ ex X} .

By Theorem 2.4 and Proposition 2.3, it follows that

J{z) - sup {Πfe Cs(ex X), / < J[z] \ ex X} .

Therefore, J{g}(3i) = J[z)(z) Thus, z — zγ.
That (ii) implies (v) is clear.
(v)—>(iv). First it will be shown that j^~{X) is distributive.

Let F, Ee ^"(X). Let K = {a\ a is continuous affine and arι(— oo, 0] 2
cov (F U E)}. It is claimed that

cov(F\jE) = n t t α ^ ί - o c ^ o i l α e K) .

If aeK, then (a*)-ι(- oo, 0] 2 ex (cov (F U E)) by Proposition 1.3.
Suppose a*(x) ̂  0 for every aeK. If h is any real continuous affine
function on X, then h* — his concave and l.s.c. Since (h* — h) \ ex X ^ 0,
it follows that fc* ^ h. Thus, α(a?) ̂  0 for every aeK. A simple
separation argument shows that xecov (F\JE).

To prove that βα; X is structurally Hausdorff, it is enough to
note that Cs(ex X) contains a point-separating subspace.

Many of the results contained in this paper can be generalized
to the following setting: Let 7 be a compact Hausdorff space.
Suppose that S is a cone of real-valued continuous functions on Y
which satisfies: f,gS^ implies that min {/, g} e £f. A notion of
"convexity with respect to 6^" can be introduced on Y. The concepts
of: extreme point, extreme set, face, and structure topology can be
given meaning in the above context. For details, see [10].
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