
RELATIVIZATION AND EXTENSION OF SOLUTIONS

OF IRREFLEXIVE RELATIONS

MOSES RICHARDSON

1. Introduction. Let >- be an irreflexive binary relation defined over a

domain 2) of elements α, 6, c, . We represent the system (5), >-) by an oriented

graph G by regarding the elements of 3 as vertices of G and inserting an arc

ab of the graph, oriented from a to b, if and only if a >- b. The sentence " α >- b"

is read " α dominates 6". A set V of vertices is termed internally satisfactory1

if and only if x G V and γ E V implies x ^j- y. A set V of vertices is termed ex-

ternally satisfactory if and only if γ E 5) — F implies that there exists an % E F

such that % >- y. A set F of vertices is termed a solution of G, or of ( 3 , >~), if

and only if it is both internally and externally satisfactory. In [4], various suf-

ficient conditions for the existence of solutions were established.

By a subsystem Oo,/*") of the system (§>,>-) is meant a system where

5)0 C 5) and the relation >- for the subsystem is merely the restriction of the

relation >- for the supersystem (5), >-). Let Go be the graph of the subsystem

(^o> >"") a n d l e t ^o he a solution of Go. A solution V of G is termed an extension

of Vo if Fn ®0 = Vo; in this case VQ is also said to be relativized from V. In

this paper, some sufficient conditions for the existence of relativizations and

extensions of solutions are presented. More elegant and more effective extension

theorems, especially with a view toward possible applications to the theory of

ra-person games, remain to be desired. It is hoped that the present paper may

serve to stimulate interest in this apparently difficult problem.

2. A theorem on relativization. If H is a subgraph of the graph G, then the

graph obtained by adding to H all the arcs of G which join pairs of vertices of

H will be termed the juncture of H (relative to G) and will be denoted by //.

In [ 2 ] , internally satisfactory is called satisfactory with respect to non-domination,
and in [4] it is called ^/- -satisfactory.

Received March 1, 1954. Part of the work of this paper was done at the Institute for
Advanced Study in 1952-3, and part while the author was consultant to the Logistics
Project sponsored by the Office of Naval Research in the Department of Mathematics at
Princeton University in 1953-4. A statement of many of the results contained herein
appeared without proofs in L 5 J .

Pacific J. Math. 5 (1955), 551-584

551



552 MOSES RICHARDSON

H is termed a conjunct subgraph of G if and only if H = H.

The graph Go of a subsystem (§) O f >-) oί the system (§),>-) having the

graph G is a conjunct closed subgraph of G. If H is any subgraph of G, proper

or not, and x is any vertex of G, then D~ι(χ9H) shall denote the set of all

vertices y oί H such that y >» x. If v¥ is any set of vertices of G, let

D'\X9H)= U D-H%,«),

and let

D-n(X,H)=D-ι(D-n+\X,H), H)

for Λ > 1. Let D°(X,H) = Z by definition.

THEOREM 1. // Go is α conjunct subgraph of G and V is a solution of G,

then a sufficient condition for V n 5)0 to be a solution of Go, where 5)0 is ίAe

set of vertices of Go, is

(1) D - y ,

Proof. We must prove that F n S)o is both internally and externally satis-

factory with respect to G o . That is we must prove that

( a ) χ9 y E V n S)o implies x >/-y relative to Go, and

(b) y G ? ) 0 - F n 5 ) 0 implies that there exists an % € F π S 0 such that

Λ; >- y relative to Go.

But (a) follows immediately from the facts that GQ is a conjunct subgraph of

G and that V is a solution of G. To prove (b) , consider any y E S)o - Fn §)0.

There exists an Λ; E F such that Λ; >- y relative to G since V is a solution of G.

Then Λ; E D"ι(y9 G) C S)o by hypothesis. Thus x$ y E ®0

 a n ( l t n e oriented arc

%y C G. Since GQ is a conjunct subgraph of G, arc xy C G o . This completes the

proof.

REMARK. It would suffice to replace Condition (1) by the weaker condition:

y G S o - Fn 5)0 implies that there exists a vertex x E Fn S)o such that % >- y.

3. An extension theorem. If X C 5), let the predecessor-set of Z relative to

G — Go denote the set
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P(χt G~G0) = U Dmn(X,G-G0).
n-i

B y a predecessor-sequence p(xo,G-Go) of x0 E 2)Q r e l a t i v e to G - Go i s

meant a maximal regression2 #o, %i,%2» ' ' •» of finite or infinite length, such

that all its vertices except possibly XQ itself are in G - Go; that is, such that

one vertex xn is chosen from the set D~ι(xn_l9 G - Go) for each n > 0, all

xn's being distinct. Let p* (x0, G — Go ) be the set of all vertices of the pre-

decessor-sequence p (xo9 G — GQ ) other than XQ itself. A predecessor-sequence

is termed trivial if and only if p*(#o» G ~ Go) is empty. We have

for all predecessor-sequences p (x0$ G - Go ) of XQ relative to G - GQ. Note

that the elements of the predecessor-set of x0 or of a predecessor-sequence of

x0 are not necessarily ancestors of XQ, although every ancestor of XQ belongs to

at least one predecessor-sequence of XQ (all relative to G — GQ), If >- is not

asymmetric then a source, which has no ancestor, may have non-trivial pre-

decessor-sequences.

Throughout the sequel we suppose that Go is the graph of a subsystem

(® 0 , >-) of the system (3) f>-) the graph of which is G, that Vo is a given

solution of Go, and that 3

T H E O R E M 2. Suppose that:

(1) All non-trivial predecessor-sequences p (XQ, G — GQ ), XQ E 2>0, are

either infinite or, if finite, of odd length if XQ £$OO and of even length if XQ E F O ;

(2) D( Vo, G)n D- 2 n ( F o, G - Go ) = D ( Vo, G)n D " 2 n + l (f 0 0, G - Go ) = 0 /or

σZZ n > 0;

(3) If h > 0 and k > 0 ore o/ ίAe same parity then

D-h(Vo,G-Go)nD-k(Woo,G-Go) = 0,

and if h > 0 and k > 0 are of different panties then

D-h(V0, G - G0)*D-k{V0, G-Go)= D'h{Woo, G - Go ) n D k(W00, G - GQ) = 0;

2 See [4] for definitions omitted here.
3 This is a slight modification of the notation of [ 4 ] .
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( 4 ) S _ 3 O C P ( 2 ) O , G - G o ) .

Then a solution V of G which is an extension of VQ exists.

Proof. Let

F = F o u ( u D 2n(V09G-G0)) u ( U D-2n+ι(W009G-G0)),

tf00, G - Go
W = Wooυl U D-2n+ι(V0,G-G0)) u( U

We shall show that V is a solution of G. Since Go is a conjunct subgraph of G

and Fo is a solution of Go, it follows that FQ is internally satisfactory relative

to G. By (4), 2) = F u I P . By (3), F n IF = 0; hence W = 3 - F. We have only

to prove:

(a) F n Z ) ( F , G ) = 0 ;

(b) WCD(V9G).

Proof of ( a ) . If Λ; E FQ, y G Fo, then x yf- γ since FQ is internally satis-

factory relative to G.

If x e Fo, y G D " 2 n ( F o, G - Go ), then % )f y by (2) .

If x e Vo, y e D'2n+ι (IFoo, G - Go ), then Λ y. γ by ( 2).

If x eD"2n(V0%G - G o ) , y 6 Fo, then jc^-y; for x >- y would imply that

* G D- ι ( Fo, G ~ Go ) contrary to ( 3).

If x £ D"2n ( F o, G - Go ), y G D " 2 m ( FOf G - Go ), then % ̂  y; for % >• y would

imply that XeD'2m'ι( Fo, G - Go ) contrary to (3) .

If xeD-2n(V0,G-G0), y e D - 2 m + ι ( i F o o , G - G o ) , then x Jf y; for % >^ y

would imply that Λ; G D " 2 m ( ! F 0 0 , G - Go ) contrary to (3) .

If % E D - 2 m + 1 ( f F o o , G - G o ) , y ^ o , then % >f y; for % >- y would imply

that x e D" ι ( F o, G - Go ), contrary to (3) .

If % e D - 2 m + l ( t F 0 0 , G - G 0 ) , y £ D - 2 * ( F o , G - G o ) , then x^γ; for x ^ y
would imply that x e D"2n~ι (V0$G - GQ) contrary to (3) .
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If x£D-2m+ι(W0Q,G~G0), γeD-2n+ι(W00$G-G0), then x >f y; for

x >- y would imply that x G D"2n (Woθ9 G - Go ) contrary to (3) .

Proof of (b) . If y G IFOO, then there exists an x G Fo such that # >-y.

If y G β - 2 " + 1 ( F o , G - G o ) , then there exists an x G D'2n( VQi G - Go ) such

that Λ; >-y, since y belongs to some predecessor-sequence p(% 0, G - G o ) of

some %0 G Fo and such a predecessor-sequence is infinite or of even length by

(1).

If y eD'2n(W00,G~G0), then there exists an x G D'2n'1 (WOOi G - Go ) such

that x >- y, since y belongs to some predecessor-sequence p(xo9G — Go) of

some %o G $oo* a n c^ such a predecessor-sequence is infinite or of odd length by

(1). This completes the proof.

C O R O L L A R Y . Suppose Conditions ( 1 ) and ( 4 ) of the theorem above, and

that:

( a ) No vertex of any P(XQ9G
 Λ GO ), XQ G ®O> is adjacent to any vertex of

®o other than XQ; and if XQ and XQ are distinct vertices of ®o then

P(χo,G-Go)nP(xζ,G-Go) = O;

(b) No P(xo9 G — GQ) U ixo), XO G 2>O» contains an odd unoriented cycle.

Then a solution V of G which is an extension of Vo exists.

Proof. We have to show that the hypotheses of the corollary imply those of

the theorem. It will suffice to show that if either ( 2 ) or ( 3 ) are false then

either ( a ) or ( b ) will be violated.

If ( 2 ) were false, there would exist either a vertex

xeD(VOfG)nD'2n(Vθ9G-Go)

or a vertex

yeD(Vo,G)nD'2nU(Woθ9G-.Go).

In either case , the first part of ( a ) or ( b ) is contradicted.

If ( 3 ) were false there would exist either

( i ) a vertex
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x e D-Hvl, G - Go ) n D-k(wJ00, G - Go)

with h and k of the same parity or

( i i ) a vertex y such that either

Y e D-Hυί, G - Go )n D-Hvi G - Go)

or

y € D - A K 0 , G - Go ) n Z r f e U 0 0 , G - G 0 )

with h and A; of d i f ferent p a n t i e s .

In C a s e ( i ) , Cond i t i on ( a ) would be v i o l a t e d . In C a s e ( i i ) , ( a ) i m p l i e s

i = /. But then P (vι

Q9 G - Go ) u (v^ ) or P (wι

QQ$ G - Go ) u (u)ι

QQ) would contain

an unoriented cycle of odd length h + k contrary to ( b ) .

4. Sinks and inverse bases. We suppose henceforth that 5) - 2)0 C P (5)0»

G - Go ). If H is any conjunct subgraph of G, and % is a vertex of G, let

C - ι ( % , # ) = U D'n(x9H).
n-0

That is, C" (x9H) denotes the set of all vertices y of H which chain-dominate

x by means of a chain all the vertices of which, except possibly x, lie in H,

together with x itself; in symbols

If y G C"1 (xfH) and x E C"1 (y, ff), x j/= y9 then Λ; and y are termed cyclically

related relative to //. If y E C"1 (%,//) but x £ C~ι (y,H) then % is termed a

descendant of y relative to H. A sequence #i , %2$ %3> °f vertices of # is

termed a descending sequence of // if xn+\ is a descendant of xn for all τι

(except the last n if the sequence is finite) and if there exists no vertex y

which is a descendant of all xn. If a vertex x of // has no descendant relative

to // then Cml{xtH) is termed an inverse basic set of A/ and x is termed a sink

of this inverse basic set. A subgraph H is termed descendingly finite if every

descending sequence of H is finite. The same inverse basic set may contain

more than one sink; all sinks of the same inverse basic set are cyclically
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related relative to //, and any vertex cyclically related to a sink is a sink of

the same inverse basic set of //.

LEMMA I . 4 If H is descendinglγ finite then every vertex of H belongs to

some inverse basic set of H.

Proof. L e t xι be any v e r t e x of H. E a c h d e s c e n d i n g s e q u e n c e Xι9X29 # 3 , •••

of H b e g i n n i n g with X\ h a s a l a s t e l e m e n t x\. T h e n

- A C V%2» " '9 X 2 ̂  ^ V X 3 , Π ) , 9 X\ 1 ̂  ^ \ X \ 9 t i )

but

%2 0 C- L ( %i , ̂  ), %3 ^ C- l ( %2 , / / ) , . . . , %λ ^ C- [ ( Xλ _ £, / / ) .

Hence

C - 1 ( λ ; 1 , / / ) C C'ι(x2,H) C . C C ^ U ^ t f )

and

λ
C'ι(xλ,H) = U C'Hxi9H)

is an inverse basic set containing %i of which x\ is a sink.

LEMMA 2. // // is descendinglγ finite, no proper subset B of an inverse

basic set A is an inverse basic set.

Proof. Suppose contrarywise that B were an inverse basic set and a proper

subset of A. Let b be a sink of B and a a sink of A. Then B = C"ι{b9H) and

A - C"1 (α, H). Since B is a proper subset of /4, 6 ̂  a and 6 G C'1 (a9H). Since

the sink 6 can have no descendant relative to H9 we have a G C"ι{b9 H)9 other-

wise a would be a descendant of b. Then C"1 (α, //) C C"1 (b9 H), or A C B.

Therefore A = β contrary to hypothesis.

By an inverse basis of // is meant a set S of vertices of H such that (a)

x G S, y G S, x ^ y9 implies that x is not chain-dominated by y relative to H,

4Lemmas 1-5 are duals, in an obvious sense, of Lemmas 1-5 of [4] which are in turn
generalizations of theorems of Kδnig [ 1 , pp. 88-90], for finite graphs. Lemma 2 of [4,
p.58l] should be corrected by adding to its statement "if B has a source", and de-
leting from the proof all mention of Case (c); this change does not affect the rest of [ 4 ] ,
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and (b) y G//n S — S implies that there exists a vertex x of S such that x is

chain-dominated by y relative to H (that is, y G C ' 1 (x$ //)).

LEMMA 3. Every descendinglγ finite subgraph H has an inverse basis.

Proof, Let the distinct inverse basic sets of H be Bί9 B2$ , where βχ ^ βy

for i 5^/. (The range of i and / is any lower segment of ordinal numbers, finite

or not.) By Lemma 1, every vertex of H belongs to at least one β t . Let 6; be a

sink of 5 j . Then no b{ chain-dominates bj9 i ^ j . For, if so, i , G C"1 (bj9 //).

Then bi has 6y as a descendant unless bj G C~ι (bi,H); that is, unless 6j and

6y are cyclically related relative to //. In this case,

C'ί(bhH)cC'ι(bJ9H) and C-ι(bJ9H)CC'ι(bhH);

that is, βj = βy, a contradiction. Let S be the set of b^s just chosen, con-

sisting of one sink from each inverse basic set β;. It has just been shown that

Condition (a) of the definition of inverse basis is satisfied by S. That Con-

dition (b) is satisfied follows immediately from Lemma 1.

LEMMA 4. If H has an inverse basis S and b{ G S9 then C" (b(9H) is an

inverse basic set of which b( is a sink.

Proof. If not, 6t has a descendant p in H. That is,

bieC'Hp.H) but P£C'ι(bi9H).

Since p G H n §>, there exists a vertex bj of S such that p G C" (bj9H). Now,

bj φi b[ since p f. C~ (bι9H) Hence b{ chain-dominates p which chain-dominates

bjf so that bi chain-dominates bj since chain-domination is transitive. This

contradicts the fact that b{ and bj both belong to the inverse basis S.

LEMMA 5. Every inverse basis S of a descendinglγ finite subgraph H con-

sists of one sink from each inverse basic set of H.

Proof. By Lemma 4, each vertex of S is a sink of some inverse basic set.

Two distinct vertices of S cannot both be sinks of the same inverse basic set

since, if so, they would be chain-dominated by each other. There remains only

to show that every inverse basic set has a sink in the given basis S, Suppose

β were an inverse basic set none of the sinks of which were in S. Let b be a

sink of β. Since b is not in S, there exists a vertex b' of S such that b chain-

dominates b\ Hence C"l(b9H) C C~ι{b'9H). But b has no descendant relative
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to H s ince b is a sink. Therefore 6 ' and b must be cyclically related relative

to // s ince, if not, b/ would be a descendant of 6. Therefore C" {b'9H)C

C'ι(b9H\ so that C'\b'%h)=C'\b9H) = B. Then b' is a sink of B which does

lie in 5.

5. Progressively finite graphs. A graph H is termed completely descend-

ingly finite if and only if all its closed subgraphs are descendingly finite. A

sequence \xn\ of vertices of H is termed a progression of // if and only if

xn >-#ft + ι, and Cl (xnxn + ι) C H for all n (except the last if the sequence is

finite ). // is termed progressively finite if and only if all the progressions of

// are finite.

LEMMA 6. A necessary and sufficient condition that H be completely de-

scendingly finite is that H be progressively finite.

Proof. If H is progressively finite then it is descendingly finite. If H is

progressively finite then every closed subgraph of H is progressively finite.

Hence if H is progressively finite then it is completely descendingly finite.

If H is completely descendingly finite, there can exist no infinite progression

#ι >~ ^2 >~ y^χn >"•••• For, if so, the subgraph consisting of the vertices

%i and the oriented arcs x^x^x (i - 1, 2, 3, ) would constitute a closed sub-

graph which would not be descendingly finite. This completes the proof.

For example, the graph G of Figure 1 is descendingly finite but not com-

pletely descendingly finite since G — St(y) is an infinite progression.

We suppose henceforth that Cl (G — Go ) is progressively finite^ where Go is

a conjunct closed subgraph of G having the solution Vo. Let5

Woo = D(V0,G0) and Wo = D( Vo, G) υ D'1 ( Vo, G - Go).

Let

G.t = G - S t ( F 0 u f 0 ) .

Let V.i be an inverse basis of G. ι which exists by Lemma 3. For each finite

ordinal number k >_ 1, let

W.k=D(V.k,G.k)uD-HV_k,G_k),

^This is a slight modification of the notation of [4],
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ad inf.

Figure 1
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and

- St [ U ( Vmi u Wmi ) I = G Λ - S t ( V.-k u »LΛ

and let F_̂ _ j be an inverse basis of C^-i

LEMMA 7. G.^-i is α conjunct subgraph of G for all k >, 0.

Proof. Any arc of G not in G.^.i lies in

St f U (F. u IF.,.)]

and hence has at least one endpoint in this star. Thus if x and y are vertices

of G_£_i and x >- y relative to G then x >- y relative to G.£. i since arc %y

cannot lie in the star while both endpoints are in G./ .̂ ι

LEMMA 8. For α/Z A; > 0,

u vmi

o < j X /c+i

is internally satisfactory.

Proof. We prove the lemma by mathematical induction.

For k - 0, we must prove that

( F o u F . 1 ) π D ( F o u H l f G ) = 0.

(1) #, y G Fo implies Λ; >̂ - y relative to G; for % >/- y relative to Go since

Vo is a solution of Go and Go is a conjunct subgraph of G.

(2) x E Vo, y € H i implies Λ; )f y relative to G; for Z) ( VOf G - Go ) n G. t = 0

by definition of G. t while V_χ C G. j .

(3) x E F . i j G F o implies % >f y relative to G; for ZTι ( Vo, G - Go) nG.! = 0

by definition of G. i while F. t C G. ι

(4) Λ;, y G F . i implies x >/- y relative to G; for F. t is an inverse basis of

G.i which implies x >/- y relative to G_ t while G_ i is a conjunct subgraph of G

by Lemma 7.

Assuming that U.^ , Vm( is internally satisfactory, we complete the proof by
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showing:

( b ) Vmkmln D ( F Φ 1 , G ) = 0 ;

(c ) / U VmλnD(Vmkml9G)=0.
\i<k J

If

x e U Vmim y G K.L..1 ,

then % >ί- y; for if % >- y then

y e U

and y jέ G.^ . i , while F-^-i C G.^. i This proves ( a ) . Since G.£. i is a conjunct

subgraph of G, x >- y relative to G, where x, y E Vm/Cmχf would imply x >-y

relative to G./j . i, contrary to the definition of inverse bas i s . This proves ( b ) .

If

then Λ; >/- y; for if x >- y then

%e U D " ι ( H / t G . ^ c U Wmi

so that Λ: ̂  G.^.. t , a contradiction. This completes the proof*

It may happen that G_n = 0 for no finite ordinal n, in which case we may let

V = any inverse basis of G , and

W.ω = D( V.ω, G.ω) uD-ι(V.ω,G.ω),

and so on. Transfinite induction shows that if β is an ordinal number for which
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PLα is nonempty for all α < β then

U V.a
a<β

is internally satisfactory. Let the cardinal number of the set 2) be K . Let λ be

the next largest ordinal after those of 3 ( K ) where 3 ( K ) is the set of all

ordinal numbers of well-ordered sets having cardinal number jr Then no

matter how we well-order the elements of ®, its ordinal number is < λ. Well-

order them as follows:

•• Xa»Xa+l$ '• xβ,Xβ + 1, * * Xy 9Xy +\9

V W

Then every vertex of 2) is in some F.ζ or some ίf.ζ with ζ < λ. Let K be the

lowest ordinal for which G.κ = 0. Then every vertex of G is ultimately used up

in some fiζ or ULζ, ζ < K. We have then the following theorems in which we

let

V= U V.a:
0 < α<κ

THEOREM 3. If Vo is a solution of the subsystem (®o>^~) °f t n e system

(2), >•), and if the graph C\(G~G0) is progressively finite, and every vertex

of G - Go is in the predecessor-set P (®o» G - Go), then V is a maximally in-

ternally satisfactory set.

THEOREM 4. //, in addition to the hypotheses of Theorem 3, there exist

inverse bases V.afor each CC with 1 <_ Cί < K such that

D-l{V0,G-G0)CD(V,G) and D" ι ( V.a, G.a) C D( V, G),

then V is a solution of G and an extension of VQ.

THEOREM 5. //, in addition to the hypotheses of Theorem 3, >- is sym-

metric, then V is a solution of G and an extension of VQ.

The proofs of Theorems 4 and 5 are immediate. 6

6 As to Theorem 5, the fact that if >~ is symmetric then every maximally internally
satisfactory set is a solution is established in [2],
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THEOREM 6. If the hypotheses of Theorem 2 are satisfied, then so are the

hypotheses of Theorem 4.

Proof. Let

V.i = D-2( Vo, G - Go ) u D - ι ( IF,,,,, G-Go),

V.i = D-3(V0, G - Go ) u D - 2 ( I F 0 0 , G - Go ) = D ' ι ( V.u G - Go) u D( F ^ , G - G o ) ,

F.j =* Z)"4( F o , G - Go ) u D-'dT'oo. G - G o ) ,

and so on. Then

= U F.α

0< α

and

H7= U !F.α = IF0 0uUD-2"+ 1(F0,G-Go)uUD-2 n(IF0 0,G-G0),
0 £ α

so that V is a solution.

There remains to show that V.a is an inverse basis of G. α . Clearly, neither

of two distinct vertices x9 y^V.a chain-dominates the other by virtue of the

parity restrictions (2), (3) of Theorem 2. We must show now that every vertex

γ oί G.a chain-dominates some x of K α . This is obvious since by (4) every y

belongs to P ( $ 0 , G - G 0 ) , t h a t i s> t o s o m e D'n(Vθ9G—GQ) or to some D'n(W00,

G - Go), that is, to some H α or W_a. By (1) it is clear that every D"l ( H α , G.α)C

D(VSG). This completes the proof.

The example of Figure 2 shows that Theorem 4 is less restrictive than

Theorem 2. For

but an extension exists and the hypotheses of Theorem 4 are satisfied.

6. Some extension theorems. If H is a subgraph of G, let

K(x,H)=D(x,H) u Z ) - 1 ( % , # ) ,
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Figure 2
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let

K(X,H)= U Kix.H), X C S ;
x£X

let

Kn(X,H)=K(Kn ι(X9H),H) lorn > 1.

That is, Kn(X,H) denotes the set of vertices of H connected to vertices of X

by unoriented one-dimensional chains of length n.

LEMMA 9. If 2) — S)o C P ( Vo$ G - Go ), then every inverse basic set B of

G-j-i has a sink in K2 ( F.j , G./.i), i >_ 0.

Proof, Suppose i = 0. Each sink y of B chain-dominates some vertex of

Vo since 5) - ®0 C P ( Vo, G - Go )• Consider the chains of minimum length m by

which y chain-dominates vertices of FQ. Then m >_ 2 since /£( PQ, G — GQ ) n

G_ι = 0 . Suppose the lemma were false, so that m > 2, and let yQ be a sink of

B for which this minimum length is attained. Then there exist distinct vertices
χl$ χ2$ 9 xm- i of G ~ GQ such that

ϊo>- xmΊ >~xm-2 >- •*• >- x l >• v{

for some t>0 G FQ. Then either

(1) Λm-iJfG.i,

or ( 2) x m . i G G. i and is a descendant of yQ,

or (3) %m-i G G β l and is cyclically related to y0 relative to G.χ.

In Case (1), xm.\ £ Vo v WQ so that

xm-i£Kl(V0,Gmi) and yQ eKHV^G.,)

contrary to the supposition that the lemma is false. In Case (2) yQ is not a

sink of B since a sink can have no descendant. In Case (3), m is not the mini-

mum length since xmm\ would be a sink of B which chain-dominates vJ

Q by means

of a chain of length m — 1.

Now suppose i > 0. Let B be an inverse basic set of G_, _i Each sink y of

B chain-dominates some vertex of Vm( since Vmj is an inverse basis of G.t 3 G.t . χ
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Consider the chains of minimum length m by which y chain-dominates vertices

of Pίj. Then m >_ 2 since K{ V-i, G.j) n G-i-ι ~ 0. Suppose the lemma were false,

so that m > 2, and let yQ be a sink of B for which this minimum length is at-

tained. Then there exist distinct vertices χu x2, 9 xm. i of G_; such that

y o >- %m.i >- Λm.2 > >- xι >- ^ for some i Λ G K.j .

Then either

(1) Xn.iϊG.i.i,

or ( 2) χmm j G G. t _ L and is a descendant of y 0,

or (3) xm-ι G G. t _ i and is cyclically related to yQ relative to G.̂  . 1#

In Case (1),

and hence %m.\ G Kj u W.i and hence %m. i G X l ( PI;, G.j) so that yQ G Â 2 ( Kj,

G.j . i ) contrary to our supposition that the lemma is false. In Case (2), y is

not a sink of B since a sink has no descendant. In Case (3), m is not minimal

since xm.\ would be a sink of B which chain-dominates v { by means of a chain

of length m — 1. This completes the proof.

The example of Figure 3 shows that we must take Kn in the unorίented

sense; for here v]γ G P ( F o , G - Go ), in fact υ\ G D'4 (Vo , G - Go ) but υ\<£

D'2 ( Vo, G ~ Go ) although ^ G K2 ( Vo, G - Go )."

A subgraph // of G is termed progressively bounded at the vertex y if all

progressions of H beginning with γ have lengths forming a bounded set of

natural numbers. H is termed progressively bounded if it is progressively bound-

ed at each of its vertices.

LEMMA 10. // S - ® 0 C P ( F o , G - G o ) and if Cl (G-Go) is progressively

bounded then every vertex y of S• - S o i\s arc element of F. t or $ l t for some finite

ordinal i.

Proof. Every vertex y of 2) — 2)0 i s a n element of C" (v^Qi Cl (G — Go )) for

some t;^ G Vo by hypothesis. Consider all progressions of Cl (G - Go ) beginning

with y and ending with elements of Vo. Their lengths have a least upper bound

M(y) by hypothesis. By Lemma 9, we may select inverse bases

V.i.ιCK2(V.i,G-G.i.ι), »>0.
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Since V.i is an inverse basis of G_ u there exist progressions starting with y

and ending with elements of F. t unless y is in Vmjc or W^ with k <^ 1. All such

progressions have lengths <̂  M(y) - 2. For if there existed a progression from

y to some v t 6 F_ ι of length > M(y) - 2, there would be a progression from y

to some element of Vo of length > M(γ) since there exists some progression

from v t to some element of Fo and its length must be >̂  2 because Vm i CG.i

Similarly the lengths of all progressions from y to elements of V_ι must be

<_ M(y) -2i. But this can be >_ 0 for only a finite number of values of i. Hence

there exists a value of i for which y chain-dominates some element of Vm( by

means of a progression of length 0 or 1; that is, y is in either Vmj or ίF.j .

By a relative cycle (of Cl (G - Go ) mod Fo with modulo 2 coefficients) shall

be meant an unoriented one-dimensional chain lying in Cl (G — GQ) except for

its set of boundary vertices (possibly empty; that is, absolute cycles are in-

cluded among the relative cycles ) which lies in Vo.

THEOREM 7. Suppose that Vo is a solution of Go such that'

(1) Cl (G — GQ) is progressively bounded^

(2) each vertex of every K n" (VQ, G — Go ) is dominated by some element

(3 ) Cl ( G — GQ ) contains no relative cycle of odd length;

( 4 ) 3 ) ~ 5 ) o C P ( F o , G - G o ) .

Then there exists a solution V of G which is an extension of Vo.

Proof. Choose V.i as in Lemma 9. To show that V = U Q < i V_ι is a solution

of G we have, by Theorem 4, only to show that

D - ι d / 0 , G - G 0 ) c D ( F , G ) a n d D - 1 ( F . i , G . i ) C D ( F , G ) f o r i > 1.

L e t

Then

£K2n-ι(viQ,G-G0)
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for some / and n by virtue of the way in which the F.^ were chosen. By ( 2 ) , w is

dominated by some vertex x of 5) — 2)0. If x G F, there is no more to prove. If

x e S - F , then

for some k and m. Hence there exists a relative cycle of odd length, contrary to

(3). This completes the proof.

THEOREM 8. Let V be any maximally internally satisfactory set containing

Fo such that:

(1) every v G V belongs to K2n(V0,G - Go) for some n > 0;

(2) each element of K m" (VQ9 G — GQ)9 for every m > 0, is dominated by

some element of 5) - S o

(3) Cl ( G - Go ) contains no relative cycle of odd length.

Then V is a solution of G.

Proof. Let

γ E ( 5 ) - S 0 ) n ( % - V ) .

We sha l l show that there e x i s t s a n % 6 F such that x >- y. Since V i s maximally

internal ly s a t i s f a c t o r y , F u ( y ) i s not internal ly s a t i s f a c t o r y . Therefore e i ther

( a ) some v >- y, or ( b ) some v -< y. In C a s e ( a ) , there i s no more to prove.

In C a s e ( b ) ,

y eK2n"ι(V0,G-G0) for some τι > 0.

By ( 2 ) , there exists an x G 5) — S o such that a; >- y. If x G F f there is no more

to prove. If not, that is if x G (2) - ® 0 ) n ( S - F ) , then F u (%) is not internally

satisfactory. Therefore there exists a v G F such that either Λ; >- v or x -< t>.

In either case,

xeK2mml(Vθ9G-Go)

for some natural number m But this together with

y£Kanml{V0,G-G0)
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and x >- y imply that there exists a relative cycle of odd length contrary to

(3). This completes the proof.

COROLLARY. The hypotheses of Theorem 8 imply that

V0,G-G0) and W = §-V =

Proof. We have

Vcυκ2n(V0,G~G0)=E,

and

W = 2> - V C U K 2 m ' ( Vo, G - Go ) = Ω.

Furthermore

K2n ( Vo, G - Go ) n K2m-ι ( Fo, G - Go ) = 0 ,

for, if not, there would exist a relative cycle of odd length. Thus we have

£ n Ω = 0 , E u Ω = S , F c £ , W'Cίl, F u l F = S),

This implies E - V9 Ω = W as follows. Let e E £. Then e E 5) which implies that

either e E F or e E IF. But e E ίP would imply that e E Ω contrary to £ n Ω = 0.

Therefore e 6 F , Hence E C V and therefore E = V. Similarly Ω C IF and hence

Ω = IF. This completes the proof.

Thus Theorem 8 resembles Theorem 2, except that now the parity restric-

tions are on the unoriented chains rather than on the oriented ones, and we do

not restrict the sets Kn(WOOf G -Go).

The examples of Figures 4-6 are covered by Theorem 8 but not by Theorem

2. In Figure 4,

w I e D ( Vo, G) n D -1 (Wo 0, G - G 0 ) £ 0

violating hypothesis 2b of Theorem 2, but the extension exists under Theorem

8. In Figure 5,

v _\ G D'2 (Wo o, G - G o ) n D" ι (Wo 0 , G - G 0 ) ^ 0

violating the second part of the hypothesis 3b of Theorem 2, but the extension
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Figure 5
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exists under Theorem 8. Note also that an odd relative cycle exists mod Go but

not mod VQ, In Figure 6,

v\ eD-2(V0,G-G0)nD-2(W00,G-GQ) ^ 0

and

j2£D-l(V0,G-G0)nD-l(Woo,G-G0)J-0Wn

both violating hypothesis 3a of Theorem 2, but the extension exists under

Theorem 8.

Let μ (X9 G - Go ) denote the set of vertices of G - Go connected to X by

an unoriented chain of minimal length h, where X C 2). Then

μh(X, G - Go ) n μk (X, G - Go ) = 0 for h £ k.

By μ° (X9 G - Go ) is meant Z.

THEOREM 9. Lei F o be a solution of Go where Go i's α conjunct subgraph

of G. Let WQQ = ®o — ̂ o β ^ suppose that every vertex of 3 — 5)0 Ϊ'S connected

to 5)0 ^y some unoriented chain. Let

= U μ 2 " ( J / 0 , G - G 0 ) u U
n=o m = i

F = U J u 2 ί l - 1 ( F 0 , G - G 0 ) u U μ 2 m ( I F o o > G - G o ) .

w = l m = o

Suppose that:

(1) every element of W is dominated by some element of V;

(2) μh(V0,G-G0)nμk{W00,G-Go)=0

if h and k have the same parity,

(3) no two elements of the same μ2n"1 (tFOo, G - Go ) are adjacent;

(4) no two elements of the same μ n{ VQ, G — GQ ) are adjacent.

Then V is a solution of G which is an extension of Vo .
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Prόυf. Clearly 5) = V u Ψ and WCD{V9G). Also (2) implies V n IF = 0.

There remains only to prove that no two elements of V are adjacent.

If *, y E μ2n{V0,G- Go ) then x >f y by (4).

If *, y £ μ2m-1 (iF0o, G - Go ) then x + y by (3).

Let

^ e μ 2 n ( 7 0 , G - G 0 ) , y£μ2m(V0,G-G0), mfn.

Suppose m > n. If x and y were adjacent then y & K2n ι (V0,G — Go). But

2re + 1 < 2m, contradicting the minimal property of μ2m( Vo, G — Go ). A similar

proof is obtained if m < n.

If

* e μ a B - | ( I P o o , G - G o ) , y £ μ a m " ι ( l P o o , G - G o ) , m Φ n ,

then Λ: and y are proved non-adjacent as in the preceding paragraph.

Let

χeμ2n(Vo,G-Go),y£ μ2P ι(W00,G - Go )

and suppose x were adjacent to y. Then

x&K2P(W00,G-G0) or x£K2P-2(W00,G-G0).

Since Λ: is connected to Woo, it is minimally connected to Woo. That is, either

(a) * € μ 2 Λ ( l F O o , G - G o )

or

(b) x e μ

2 h ι{WQ0iG~G0)

for some A. In Case ( a ) , Condition ( 2 ) would be violated. In Case ( b ) , h = p

since either h < p or h > p would violate the minimal property of some μ.

But h =p contradicts Condition ( 3 ) . This completes the proof.

THEOREM 10. Let VQ be a solution of a conjunct subgraph Go of G such

that every vertex of 5) - ®o *5 connected to Vo by some unoriented chain. Let:
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(1) no two elements of the same μ2ι( Vθ9 G — Go), i > 0, be adjacent;

(2) x £ μ ι" (Vo$ G - Go) imply that there exists a j >_0 such that

x -< y for some γ € μ2} ( Vo, G - Go).

Then

V' = U μ2i(V0,G-G0)
ϊ = 0

is a solution of G which is an extension of Vo.

Proof. Every element of 5) — 2)0 not in V must be in

IF= U ^ 2 i - l ( F 0 f G - G 0 ) .

Clearly

5) = F u IF and Fn W = 0 .

Also (2) implies W C D (VfG). There remains only to prove that V is internally

satisfactory.

Let

x e μ

2i( Vo, G - Go ), y £ μ2H Vo$ G - G o ) , i ί j .

Suppose i < j . If x were adjacent to y, then y £ K2i ι ( Vo, G - Go ). But 2i + 1 <

2/, contradicting the minimal property of μ2Π VOf G - G o ) . A similar proof

holds if i > j .

Let x9 y G μ ι (Vo$ G - Go). If i > 0, (1) implies that x and y are non-

adjacent. For i = 0, this follows from the facts that Vo is a solution of Go and

that Go is a conjunct subgraph of G. This completes the proof.

The conditions of Theorem 10 do not prohibit entirely the existence in

Cl (G — Go) of adjacent vertices of IF, of odd unoriented cycles, or of transitive

triples. For example, the graph in Figure 7 permits an extension by Theorem 10

and includes the three cited phenomena. Theorems 7-10 may be regarded as

variants of Theorem 2.

7. Dual and alternating procedures. Let G t be a conjunct subgraph of G.
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If x £ 5), let D(x$ G — Gι) denote the set of all vertices γ of G - G\ such that

x >- y. If X C 2), let

,G~G 1 )= U D C ^ G - d ) .

Λ G X

For n > 1, let

By the successor-set of /? relative to G - Gι is meant the set

oo

SiX G-G^- U D^ί^G-Gx).

THEOREM 11. Let Gγ be a conjunct subgraph of G, Vγ a solution of G\9

Wί = ®! - Fi where ® t = S) n G t . Suppose that:

( 1 ) for et>ery τι > 0,

F x n Z) 2 n + r ( Vt, G - G r ) = ̂  n D2 n (IF ι , G - G % ) = 0

( 2 ) if h > 0 αrac? A; > 0 are of the same parity^ then

Dh(Vι,G-G1)nD
k(Wι,G-Gι) = 0;

if h > 0 and k > 0 are of different parities then

Dh(Vι,G-Gι)r\Dk{Vι,G-Gι)=Dh(Wι,G-Gι)nDk(Wι,G-Gι)=O;

(3) S - S 1 C S ( S 1 , G - C ) .

Γλerc there exists a solution V of G which is an extension of V\.

Proof. Let

= F , u U D2n{VltG-Gι)u U D2m ι(Wu G - Gι).
n = l m = l
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We must show:

( a ) F n D ( F , G ) = 0 ;

(b) 5 > - F c D ( F , G ) .

(a) If x G F j , γ G Vx, then x >jί- y since Vι is internally satisfactory rela-

tive to G.

If x£Vl3 y£D2n{VuG-Gι) thens . j f y; for* >- y would imply D ( F,, G) n

D a B ( ί Ί . G - G ι ) ^ 0 contrary to (1) .

If xG Fi , y e D ^ - ' d ί Ί . G - G ! ) then * y- y; for * X y would imply D ( Vι,

G)n D2m ι(WuG -Gι) ^ 0 contrary to (1) .

If xeD2n(VltG-Gι\ y€Vi, then * )/- y; for * >^ y would imply γ£

D^+HVuG-d) contrary t o ( l ) .

If * e D a n ( ^ l f G - G i ) , y e J 9 2 m ( f 1 , G - G l ) then c ^ y ; for * > y would

imply y e D2n+ι (Vlt G - G t ) contrary to (2) .

If x e D 2 " ( Ft, G - d ), y e D ^ ^ (Wt, G - G t ) then x Jf y; for * V y would

imply y e D 2 n + 1 ( F 1 , G - G x ) contrary to (2) .

If xeD2mml(WltG~Gι), y G F t then a; )f y; for * > - y would imply y G

D ^ d f Ί . G - G t ) contrary t o ( l ) .

If x € D2"1"1 (IΓX, G - Gi ), y G Z) 2 n ( Vx, G - G t ) then x ^- y; for * >• y would

imply y G D 2 m ( I F 1 , G - G 1 ) contrary to (2) .

If % G D 2 m - l ( l F 1 , G - G 1 ) , yeD^-^W^G-Gi) then x >/-γ; for x >- y

would implyy G D2m(Wlt G - Gγ) contrary to (2) .

(b) Let

ι U U D 2 n - 1 ( F 1 , G - G 1 ) υ U D 2 m ( I F i , G - G t ) .
n=l m = l

By (3) ,

By (1) and (2), V n W = 0. Hence IF = 2) - F.

If y G IFi, then there exists an x G Vι such that x >- y.

If yG D 2 n - 1 ( F 1 , G - G 1 ) then there exists an x G Vγ u D 2 π ( F t , G - Gx

such that x >- y.
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If y £D2m(Wl9G~Gι), then there exis t s an x G D2m"1 ( Wx, G - Gι) such

that x >- y. This completes the proof.

COROLLARY. Let Gx be a conjunct subgraph of G, Vι a solution of Gx.

Suppose that:

( a ) no vertex of any S (xι,G - Gχ)9 x\ £ ® i , is adjacent to any other

vertex of 2)χ; and if X\and x^are any two distinct vertices of^i then

( b ) no

S(xlt G - Gι) u (xι), xχ£^>ι,

contains an unoriented cycle of odd length;

( c ) S-^CSI^G-G,).

Then there exists a solution of G which is an extension of V\.

Proof. C o n d i t i o n ( c ) i s i d e n t i c a l with ( 3 ) of the theorem. We h a v e only to

s h o w t h a t ( a ) and ( b ) imply ( 1 ) and ( 2 ) ; t h a t i s , t h a t if e i t h e r ( 1 ) or ( 2 ) were

f a l s e t h e n ( a ) or ( b ) would be v i o l a t e d .

If ( 1 ) were fa l se t h e r e would e x i s t e i t h e r

( i ) a v e r t e x x € D ( F 1 , G ) n D 2 " ( F ι , G - G ι ) ,

or ( i i ) a v e r t e x r G D ( K ι $ G ) n D 2 " - ι ( l F ι , G ~ G ι ),

or ( i i i ) a v e r t e x z G Vx n D 2 n + 1 ( V,, G - Gt),

or ( i v ) a v e r t e x u € Vx n D2n(WuG - Gx).

In C a s e ( i )

xeS{v[9G-Gx)r\S{v{tG-Gx)

and by ( a ) , i - j . But then there e x i s t s an unor ien ted cyc l e of odd leng th in

S(vι

ι<$ G - G\ ) u {v[ ) contrary to ( b ) . In C a s e ( i i ) , the s e c o n d p a r t of ( a )

i s c o n t r a d i c t e d . In C a s e s ( i i i ) and ( i v ) , the first p a r t of ( a ) i s c o n t r a d i c t e d .

If ( 2 ) were f a l s e , t h e r e would e x i s t e i t h e r
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( i ) a vertex

x £ Dh ( Vx, G - G ι ) n D k (W ί, G - G t )

for some h9 k of the same parity,

or ( i i) a vertex

y EDh(v[9G - Gv)n Dk{υ{9G - Gt)

for some A, A; of different parities,

or (i i i) a vertex

zeDh(w[$G-Gι)nDk(w{fG-Gι)

for some ^, A; of different par i t ies . In Case ( i ) , the second part of ( a ) is con-

tradicted. In C a s e s ( i i ) and ( i i i ) , ( a ) implies i -j and then ( b ) is contradicted.

Now suppose Go is a nonempty conjunct subgraph of Gι and let Vo be a

solution of GQ. For each natural number n, let £271-1 be constructed by adjoining

to G2n-2 the vert ices of P (5)2n-2$ G - ^2^-2)* where S j = S) n G t , and taking

the juncture; that is ,

£2/2-1 " ^2n-2 U P ( ̂ >2n-2f G - G 2 Λ - 2 )

Similarly let

G2n = G2n-ι u 5(5)2n-U^ ~ £2^-1).

Then each Gf is a conjunct subgraph of G + i For x% y G 5)j , # >- y relative to

Gj+i implies Λ; >- y relative to Gz since at least one endpoint of every arc in

Gj+ t - Gj is not in G;.

If GQ intersects every component of G, then

3 = U 5)f .

For then every vertex of G is joined to some vertex of Go by a finite unoriented

chain and therefore lies in some G;. In particular, this is true if G is connected.

THEOREM 12. Let Go be a conjunct subgraph of G which intersects every
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component of G, let Vo be a solution of G o , and let Gι9 i >_ 1, be defined as

above. Suppose that for every even i, G( satisfies Conditions ( 1 ) , ( 2 ) , ( 3 ) of

Theorem 2 relative7 to Gj+ l 9 and that for every odd i9 G t satisfies Conditions

( 1 ) and ( 2 ) of Theorem 11 relative to Ĝ  + i. Then there exists a solution of G

which is an extension of Vo.

Proof. The solution Vo of Go can be extended stepwise to a solution Vγ of

£i> ^2 °f ^29 ' ' '» Vi °f £/» by Theorems 2 and 11 applied alternately. Hence

U°t.o Vι i s a solution of G.

For example, in Figure 8, G; has the set of vert ices 2); = [g.j,, g 2 , g 3 , ].

Then

F l = [ £ l 2 , S l 4 » - - ] u F 0 , ^2 = [ g 2 1 , g 2 5 , ••• i § 2 4 ^ 2 8 > # ] U F 1 »

Theorem 11 is a sort of dual to Theorem 2. Theorem 12 merely uses the

procedures of Theorems 2 and 11 in alternation. Similar processess dual to those

of other preceding theorems can be introduced so as to yield extensions in the

direction of successor-sets rather than predecessor-sets, and similar alternating

procedures can then be used.

T h a t i s , w i t h G(+χ in t h e r o l e of G in T h e o r e m 2 .
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