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MODEL-COMPLETENESS IN A FIRST ORDER
LANGUAGE WITH A GENERALIZED QUANTIFIER

SHLOMO VINNER

The concept of Model-Completeness is defined in a first
order language with a generalized quantifier. A necessary and
sufficient condition is given for that Model-Completeness and its
relation to categoricity is discussed.

Some results of this paper were obtained in the author's thesis [12]
and were announced in [11], They, together with other results of [12]
were improved independently by the author and by S. Shelah. A
suggestion of S. Shelah made some proofs simpler and due to it, better
results were obtained in Theorem 1.5. The author wishes to thank S.
Shelah for his remarks.

Let L be a first order language with equality and let L(Q) be the
language obtained from L by adding a new quantifier Q. Let α, β
denote infinite cardinals. We define α-satisfaction for L(Q) by inter-
preting Q as "there exist at least a elements". If a sentence φ of
L(Q) is a-satisfied in a model 91 for L we write 9ll=αφ and we say that 91
is an a-model for φ. Let 31,93 be two models for L, | 9 l | ^ α and
91 C 93. Write 21 < a 93 if for every n, every formula φ{xu- ,xn) in
L(Q) and every au--,an in 9Ϊ: 9lM>[α,, ,αj iff
93hαφ[α,, ,α n]. Let T be an ordinary first order theory (namely a
theory in L) that has infinite models. Define T(Q) =
TU{Qx[x =x]}. Call T a-model-complete if for every 21,93 which
are α-models for T(Q) and 91 C 93 also 9l<α93. A necessary and
sufficient condition for T to be a- model-complete for a > Ho is given in
section 1.

Let T be as before. Define T(a) = {φ: φ is a sentence in L(Q)
and for every 91, if 9lhαT(Q) then 9ίhαφ}. Call T α-complete if for
every sentence φ in L(Q) either φ G T(a) or — yφ G Γ(α). In §2, it is
shown that if T is categorical in one uncountable power, it is in-
complete and for every a^H*: T(a)=T(Ho). If T is also model-
complete (in the usual sense) then it is α-model-complete for every
α^No and T(a) is decidable provided T is axiomatic.

1. ci-Model-Completeness.

DEFINITION 1.1. Let φ(x,xu ,jcm) be a formula in L such that
x, jt,, ,jcm are exactly all its free variables. Let 91 be a model for L
and let α,, ,αm be elements in 91. Define:
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φ(9ί, aί9 ,am) = {a: 9ϊhφ[α, α,, ,αm]}.

Let Γ be a theory in L and observe the following condition in
which T is involved.

Condition 1.1. For every m ^ 0 and every φ(jc, JCH ,xm) in L
there exists an integer nφ such that for every a-model 91 of T(Q) and
every α,, ,am in 91: if |φ(9I,0,, - am)\>nφ then |φ(9ϊ,a,, , α m ) | ^
α.

LEMMA 1.1. Let Tbe a theory in L, a ^ No. // T fulfills Condition
1.1 ίhen /or euery formula ψ in L(Q) there exists a formula φ in L such
that T(Q) \=aφ++φ. (The meaning of the notation " h α " is "semanti-
cally valid in α".)

Proof. Use induction on the structure of φ. The lemma is true
for formulae in L and it is clear that if it is true for φ, φ{ in L(Q) it is
also true for —ιψ, φ Λ φu 3vψ (for every individual variable v). We
now prove the lemma for Qυφ assuming it is true for φ. Suppose φ is
Ψ(JC,JC,, ,xm) and v is x. Let Φ(JC,JC,, ,jcm) be a formula in L such
that T(Q) f:

aφ<r^φ. Let n be an integer the existence of which is
assumed in Condition 1.1. Let 3=n+1jcφ(jc, JC,, , jcn) be a formula of L
"saying" that there are at least n + 1 different elements x such that
Φ(JC,JC,, ,jcm) (here we use the assumption that L contains the
equality sign). It is easy to see that for every model 91, if 91 is a model
of T(Q) and au , am G 91 then

], - ;xm).

Hence

Therefore 3 S π + 1 xφ is the required formula for Qxφ.
Note that Lemma 1.1 is true also when L is uncountable.
An Example. Let T be the first order theory of a dense linear

ordering having neither first nor last element. Using the well known
elimination of quantifiers (e.g. Kreisel and Krivine [6]) it is easy to see
that T fulfills Condition 1.1 for α = Ho but not for a > H 0 .

Now again let T be a theory in L but suppose a > Ho and observe
the following condition involving T.

Condition 1.2. For every m ^ 0 , every formula φ(x,xu - ,jcm) in
L, every a-model 91 of T(Q) and every #i, ,α m E 91 either
|φ(9I,α,, ' , α m ) | < H o or |φ(9ί,α,, , α m ) | g α .
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The following lemma settles the relation between Condition 1.1 and
Condition 2.2.

LEMMA 1.2. Let The a theory in a language L (possibly uncount-
able). Then for every a >\L\ Condition 1.1 is equivalent to Condition
1.2.

Proof, It is clear that if Condition 1.1 holds, then also Condition
1.2 holds. Choose any cardinal μ such that 2μ >.\L |. By Keisler [4]
(Theorem 3.3 (iii), p. 121) if D is a regular ultra filter on μ there exist
natural numbers nv, v < μ, such that D-Prod λvnv = 2μ. Suppose that
Condition 1.2 holds but Condition 1.1 does not hold. Hence there
exists a formula φ(x,xu ,xm) in L such that for every nv, v < μ, it is
possible to find an a- model %v of T(Q) and elements avt9 , aVm in 21,
such that nv < | φ{%w aVί9 , aVm) | < a. Since Condition 1.2 holds we
obtain: nv < \φ(ςi\v,aVi, ,aVm)\ <Mo By Skolem-Lowenheim
Theorem we are allowed to suppose that |2lv\ = 22^° (where 2 K 0 = Ky

2***x = 22K " and 2XH° = sup{2Klf: n <M0} for every infinite cardinal
K). Observe now the structures (Sl^φ^l^α,,,, -,aVm)) and take the
ultra product D-Prod λ,(?L, φ(9ϊw αn, , aVm)). Denote it by

,, •••,&„)). Then:

Therefore we can use Vaught [10] (the generalization of Corollary 4.2,
p. 401). Hence, there exists an a- model © of T(Q) and elements
c,, , cm in © such that | ψ(®, c,, , cw) | = Ko, a contradiction to the
assumption that Condition 1.2 holds.

In some applications it is simpler to deal with Condition 1.2 than
with Condition 1.1, so there is also a practical purpose in Lemma 1.2.

LEMMA 1.3. Let T be any first order theory, a^Ho. If T is
model-complete (in the usual sense) and T fulfills Condition 1.1 then Tis
a-model-complete.

Proof. Use Lemma 1.1.

LEMMA 1.4. Let Tbe a theory in L and suppose a >\L\. IfTis
a-model-complete then T fulfills Condition 1.1.

Proof. Suppose that T does not fulfill Condition 1.1. Then by
Lemma 1.2 it also does not fulfill Condition 1.2. Therefore there exists
an a-model SI of Γ(ζ)), a formula Φ(JC,JC,, ,xm) in L and elements
au- - %am in SI such that M ̂ |φ(3t,έii9- , α m ) | < α . Let C be any set
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of power a such that C and the domain of 21 are disjoint. Denote by
D(2l) the diagram of 31 and let T be the following set of sentences:

T U D(?l) U {ψ(c,α,, ,flm): c G C} U { c , ^ c2: for every two
different elements cuc2, in C}.

T" is a first order theory and every finite subset of T' has a
model. Hence, by the Compactness Theorem, T has a model
2Γ. Since 21 C 2Γ and T is a- model-complete then 2 l< α 2Γ. But
2lf=α—\Qxφ(x, au , αm) while 21' f=αQxφ(jc, a,, , am), a contradiction.

For a theory T in L such that α > | L | Lemmas 1.3 and 1.4 yield the
following:

THEOREM 1.5. Let T be a theory in L. Suppose T is model-
complete (in the usual sense) and a>\L\. Then a sufficient and
necessary condition for T to be a-model-complete is Condition 1.1.

It is possible to look at Theorem 1.5 also from the aspect of
definability. Let 21 be a model for L, | 2 l | ^ α . Suppose A, C
21. Call A, α-parametrically definable in 21 if there exist a formula
φ(x,x, , %x m ) in L(Q) and elements a,, , α m in 21 such that for every
a in 21, a G A, iff 2lhαφ(α,α,, - , α m ) By Lemmas 1.1-1.4 we obtain at
once:

THEOREM 1.5*. Lei T be a theory in L which is also model-
complete. Suppose a >\L\. Then T is a-model complete iff for every
a-model 21 of T(Q) and for every set A, C 21, // A, is a-parametrically
definable in 21 then \ A, |<K 0 or | A , | ^ α .

We proceed with this section by relating to some known model-
complete theories. The theory of totally discrete linear ordering
having neither first nor last element is model-complete (in the usual
sense) but for every α g No it is not a- model-complete.

The theory of dense linear ordering having neither first nor last
element is Mo- model complete but for every αSKj it is not α-
model complete. For the theory of algebraically closed fields and the
theory of real closed fields we have the following theorem:

THEOREM 1.6. Let T be the theory of algebraically closed fields or
the theory of real closed fields. Let φ(xu * *,**) be any formula in
L(Q) (where L is the language of T). Then there exists a quantifier free
formula ψ(xu ,xn) such that T(Q) KΦ(X\, " ',xn)**Ψ(xι, -,*„) for
every a ^ Ho.
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Proof. The proof is similar to the usual elimination of quantifiers
for these theories (e.g. Kreisel and Krivine [6]).

COROLLARY 1.7. The theory of algebraically closed fields and the
theory of real closed fields are a-model-complete for every a S No.

The last theorem of this section gives a partial answer to a natural
question, that is, what conclusions about β- model-completeness can be
made assuming a- model-completeness? Using Fuhrken [2] and Keisler
[3], one can prove in a straightforward manner that:

THEOREM 1.8. Let T be a countable first order theory.
(1) // T is a-model-complete, α>M0, then it is also Ho-

model-complete.
(2) // T is Hλ-model-complete, then T is a-model-complete for every

regular a.
(3) (G.C.H) // T is a-model-complete where a is a successor of a

regular cardinal, then T is β-model-complete for every regular β.
(4) IfTis a-model-complete where a is a singular cardinal, then T

is β-model-complete for every strong limit cardinal β.
(5) (G.C.H) // T is a-model-complete where a is a singular cardinal

then T is β-model-complete for every singular β.

Proof All the parts of the theorem are proved in the same way so
it will be enough if we prove for example part (1).

Assume that T is a- model-complete but not M0-model
complete. Then there exist two No-models 2Ϊ, 93 for T(Q), 21 C 93, and
there exist a formula φ(X\, , jcm) in L(Q) and elements au , am in ?ί
such that ahχ,φ[έi,, ,am] while 93hTo— φ[α,, ,am]. By Fuhrken [2]
we may assume that | % | = 1931 = Ko. We also may assume for the sake
of simplicity that none of the elements au , am is an interpretation of
an individual constant in the language of T and also that this language
does not contain functions symbols. Let c,, ,cm,P(x) be m new
individual constants and a new unary predicate, respectively. Let ψ be
any formula in L(Q). Write ψp for the formula obtained from ψ by
relativizing all the quantifiers of ψ to P (the relativisation of Q is
exactly as the relativisation of the existential quantifier). Denote:
Tp = {φp: ψ E Γ}. Let S be the following set of sentences:

T U P U{QxP(x), Λ P(c), φp(cu-. ,cm), -iφ(c,, ,cm)}.

It is easy to see that a suitable expansion of 93 is an K0-model of 5. By
Fuhrken [2] it follows that there exists an a- model ®' of 5. Define
C = {d: 3)'hP[d]}. Let © be the model obtained from 2)' by reducing
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2)' to the language of T. Let © be the submodel of ® built on C (S is a
submodel since we assumed that our language does not contain func-
tions symbols). It follows immediately that (£, ®t=αΓ(Q). Denote by
dl9 9dm the elements of © which correspond to the individual
constants c,, ,cm. Then (5>αφ[d,, •,</„], ®t%—ιφ[d,, ,dm], a
contradiction to the assumption that T is α- model complete.

A similar theorem, concerning the connections between α-
completeness and β-completeness, can be formulated.

It is unknown whether this result is the best result one can obtain.

2. cc -Completeness, categoricity and oc -model-
completeness. Recall now the notions Γ(α) and α-completeness in
the beginning. As an analogue to Vaught's Theorem about the connec-
tion between categoricity and completeness we have here:

THEOREM 2.1. Let T be a countable first order theory categorical
in an uncountable power. Then, for every a g Mo, T is a-complete and

Proof. If T is not Mo-complete then there exist two M0-models 91, 93
of T(Q) and there exists a sentence φ in L(Q) such that ^ίh^φ and
931-κo—\Φ- By Fuhrken [2] there exist two Mj-models SI,, 93, such that
9l,hHlφ, 93ihKl—\φ and |9l, | = |93, | = Mi. If T is not α-complete for
α > Mo, then there exist two α-models 91,, 93, of T(Q) and a sentence φ
in L(Q) such that 3l,t=αφ, 93,l=«—iφ and | SI, | = 193, | = a. So whether
α = Mo or α >Mo the assumption that T is not α-complete leads us to
two uncountable models of T that have the same power and are not
isomorphic, a contradiction to Morley [7]. Suppose now that there
exists a such that T ( α ) ^ Γ(Mo). Since T is Mo-complete and also
α-complete there exists φ in L(Q) such that φ G T(Mo) and —iφ E
T(α). By Fuhrken [2] there exists an α-model 91 for T(Q) such that
9ϊhαφ, a contradiction to the assumption that —\φ E T(a).

REMARK. If T is categorical in Mo then T is also Mo-complete but it
is not necessarily α-complete for α > Mo. One can easily see that by
taking T as the theory of dense linear ordering (having neither first nor
last element). Again as in the previous section arises the question
about the connection between α-completeness and β- completeness and
the answer here is the same as there. Another question about α-
completeness is to find a sufficient and necessary condition on formulae
in L so that T will be α-complete; but what we know about α-
completeness are Theorems 2.2 and 2.3.

Let ψ(jc) be a formula in L(Q) having JC as its only free
variable. Let 91 be a model for L. Denote φ(9ί,α) = {α: 9lhαφ[α]}.
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THEOREM 2.2. Let The a countable first order theory. Assume T
is a-complete, a >Hϋ. Then for every formula φ(x) in L(Q) (having x
as its only free variable) there exists a cardinal raφ, finite or equal to α,
such that for every model % for T of power α, |φ(2l,α)| = mφ.

Proof. Let St be any countable model for T (there exists such a
model since by the definition of α-completeness T has infinite
models. It has also a countable model because it is countable). It is
clear that either ^l^^Qxφix) or 2ίh*,—ιQxφ(x). In the first case
define Σ, = T(Q) U {Qxφ(x)}. By Fuhrken [2] there exists an a-model
?ί, for Σ,. Since 31,I%<2JC<£(JC) and T is α-complete then for every
a-model 21 for T(Q), %\*aQxφ(x). Hence mφ = a in this case. In the
second case there exists a finite number k such that 2H-Mo3

/C \xφ(x),
where 3* \xφ(x) is a formula in L(Q) "saying" that there are exactly k
elements x such that φ(x). Define Σ2 = T(Q) U{3* \xφ(x)}. By the
same argument as before there exists an a- model 212 for Σ2. Because
of the a- completeness of T we obtain 21 h a 3* ! xφ (x) for every α- model
91 of T(Q). Hence, in this case, mφ = k.

THEOREM 2.3. Let T be a complete theory in L which is also a-
model-complete, a ^ No. Then T is also a-complete.

Proof. Suppose on the contrary that T is not α-complete. Then
there exist two a-models ?ί, S3 for T(Q) and a sentence φ in L(Q) such
that yί\=aφ and 93K—xφ. Since T is complete then ?ί is elementary
equivalent to S3. By Bell and Slomson [1] (p. 161), there exists a model
Φ which is an elementary extension of 31 and S3. Since T is a- model-
complete and ?ίhαφ it follows that S)f=αφ. By the same argument we
obtain also ®hα—,φ, a contradiction.

DEFINITION 2.1. Let L(Q) be recursive and let T be a theory in
L. Call Γα-decidable if T(a) is recursive (more precisely, the set of
Gόdel-Numbers of all the sentences in T(a) is recursive).

THEOREM 2.4. Let Tbe a theory in L categorical in an uncounta-
ble power. Suppose L(Q) and T are recursive. Then T is a-decidable
for every a ^ Ho.

Proof. By Theorem 2.1 we have: Γ(α)=Γ(Ko) for every α g
Ko. So it is sufficient to show that Γ(M,) is recursive. By Keisίer [5]
we know that T(Hτ) is recursively enumerable. Since T is ^-complete
then for every φ in L(Q), φ G T(Kα) iff —}φf£ T(Nx). This means that
also the complement of T(Ht) is recursively enumerable. Hence
is recursive.
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LEMMA 2.5. Let T be any theory in a countable first order lan-
guage L such that Tis categorical in an uncountable power. Let ?ί be a
model for T and let au - -,an be elements in 91. Suppose | 9Ϊ | = α > Ko

and φ(x,x,, ,xπ) is a formula in L having exactly x, x,, -,xn as free
v a r i a b l e s . T h e n | φ ( ? l , α , , - , a n ) \ = a o r | φ ( α , α , , , z n ) | < N 0 .

Proof. Since a > Ko then T is categorical in α, by Morley
[7]. Denote by Γ((91,Λ,, ,an)) the (first order) theory of
(9l,αi, ,α π ) . Again by Morley [7] it is easy to see that
Γ((9ϊ,Λi, ,flπ)) is categorical in a so (91, ai, , an) is a saturated
model. It is well known (see for instance Morley and Vaught [8],
Theorem 3.7) that in a saturated model each infinite set defined by a
formula (in the language for the model) has the power of the whole
model. Hence |φ(9l,Λi, —,an)\ = a or |φ(9l,flι, ,an)\ < Ko.

COROLLARY 2.6. Let T be as in Lemma 2.5. Then for every
formula φ(xu' * •,*„) m L(ζ)) ίΛ^r^ ex/sίs α formula ψ(jcl9 ,xπ) in L
such that T(Q) \=aφ(xu ,xπ)«-»ψ(Xi, ,xn) /or ei ery α ^ Ko.

Proof. By Lemmas 2.5, 1.2, 1.1 and Theorem 2.1.

Corollary 2.6 says that the use of the language L(Q) is dispensible
for talking about models of Γ; namely, everything that can be said in
L(Q) about elements in a model of T can be said about them in L.

THEOREM 2.7. Let The a theory in a countable first order language
L such that T is categorical in an uncountable power and also
model-complete (in the usual sense). Then

(1) For every formula φ(X\, ,jcn) in L(Q) there exist two for-
mulae ψi(X], ,JCn), i = 1,2, in L, ψx is existential, ψi is universal and
T(Q) \=aφ(Xu- -9xn)*+ψ(X\,- ',Xn) for every a ^ J V

(2) T is a-model-complete for every a ^ No.
(3) // L(Q) and T are recursive then there exists an effective

procedure to find ψh i = 1,2, that were mentioned in (1).

Proof. (1) Let φ(jc,, - ,xn) be a formula in L(Q). By Corol-
lary 2.6 there exists a formula ψ(x,, ,xn) in L such that T(Q)
\-aφ(xl9 - - ',xn)±+ψ(xu '' ,xn) for every a^H0. By Robinson [9]
(Theorem 3.3.11), since Γ is model-complete, there exist two formulae
</Ί(JCI, ,xn), Φi(X\,' -,xn) in L, ψ, is existential, ψ2 is universal and

sXπ)^<M*i,••%**)> / = 1,2. Therefore

T(Q)h α φ(x,, ,xΛ)+*ψi(Xι, ,*π),

i = 1,2, for every a ^ Ho.
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(2) By the assumption on T and by Corollary 2.6 T is a- model-
complete for every α ^ Ko.

(3) Since L(Q) is recursive there is an effective procedure to
count all existential formulae (in L) that have exactly JC,, , xn as free
variables. Let ψ' be such a formula. By Theorem 2.4 there is an
effective procedure to decide whether [φ <-> ψ'] G T(Hi) or not. Since
there exists an existential formula ψι such that [φ <-> ψ,] e Γ(K,) we
shall find it after finite number of steps. In the same way we shall find a
universal formula ψ2 such that [φ <-> ψ2] E Γ(Nj).
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