ON MAPPINGS FROM THE FAMILY OF WELL ORDERED SUBSETS OF A SET

SEYMOUR GINSBURG

A simply ordered set E is called a *k-set* if there exists a simply ordered extension of the family of nonempty well ordered subsets of E, ordered by initial segments, into E. If E is not a *k*-set then it is called a *k'-set*. Kurepa [1;2] first discussed these sets. He showed that if Eis a subset of the reals and if the smallest ordinal number α such that E does not contain a subset of order type α is ω_1 , then E is a *k'*-set. In particular the rationals and the reals, denoted by R and R^+ respectively, are both *k'*-sets. In this paper the existence of *k*-sets and *k'*-sets is discussed further. Theorem 7 states that each simply ordered set Eis a terminal segment of some *k*-set F(E). It is not true, however, that each simply ordered set E is similar to an initial section of some *k*-set F(E) (Theorem 2). Finally, in Theorem 10 it is shown that each infinite simply ordered group is a *k'*-set.

Following the symbolism in [1;2] let E be a simply ordered set and ωE the family of all nonempty well ordered subsets of E, partially ordered as follows: For A and B in ωE , $A <_k B$ if and only if A is a proper initial segment of B.¹

Definition. A function f from ωE to E is called a k-function on E, if $A \leq_k B$ implies that $f(A) \leq f(B)$.

If there exists a k-function on E, that is, from ωE to E, then E is called a k-set. If not, then E is called a k'-set.

THEOREM 1. If f is a k-function on E, then for each nonempty well ordered subset W of E, there exists an element x in W such that $f(W) \leq x$.

Proof. Suppose that the theorem is false, that is, suppose that there exists an element W_1 in ωE with the property that $x < f(W_1)$ for each x in W_1 . Let $W_2 = W_1 \cup f(W_1)$. It is easily seen that W_2 is well ordered, $W_1 <_k W_2$, $x < f(W_2)$ for each element x in W_2 , and the order type of W_2 is ≥ 2 . Suppose that for each $0 < \xi < \alpha$, W_{ξ} is an element

Received October 17, 1955. Presented to the American Mathematical Society November, 1955.

¹ A is a (proper) initial segment of B if A is a (proper) subset of B and if, for each element z in A, $\{x|x \leq z, x \in B\}$ is a subset of A. A is a terminal segment of B if A is a subset of B and if, for each element z in A, $\{x|z \leq x, x \in B\}$ is a subset of A.

of ωE such that

(1) $x < f(W_{\xi})$ for each x in W_{ξ} ,

(2) $W_{\xi} <_{k} W_{v}$ for $\xi < v < \alpha$,

(3) the order type of W_{ξ} is $\geq \xi$.

Two possibilities arise.

(a) If $\alpha = \beta + 1$ let $W_{\alpha} = W_{\beta} \cup f(W_{\beta})$. By (1) and the fact that W_{β} is well ordered, it follows that W_{α} is well ordered. Clearly $W_{\beta} <_{k} W_{\alpha}$. Thus $f(W_{\beta}) < f(W_{\alpha})$. It is now easy to verify that (1), (2), and (3) are satisfied for $\xi \leq \alpha$.

(b) Suppose that α is a limit number. Let $W_{\alpha} = \bigcup_{\xi < \alpha} W_{\xi}$. Since $W_{\xi} <_{k} W_{\nu}$ for $\xi < \nu$, W_{α} is well ordered. It is obvious that (2) and (3) are satisfied for $\xi \leq \alpha$. Let x be any element of W_{α} . Then x is in W_{ξ} for some $\xi < \alpha$, thus $x < f(W_{\xi}) < f(W_{\alpha})$. Hence (1) is also satisfied.

In this way W_{ε} becomes defined for each ordinal number ε . Thus W_{δ} is defined, where δ is the smallest ordinal number such that E contains no subset of order type δ . This is a contradiction since W_{δ} is of order type $\geq \delta$.

We conclude that no such set W_1 exists, that is, the theorem is true.

Suppose that E is a k'-set and that the ordered sum² E+F is a kset for some simply ordered set F. Let f be a k-function on E+F. Since E is a k'-set, for some well ordered subset W of E, f(W) is not in E, thus is in F. Then $f(W) \leq x$ for some x in W is false. By Theorem 1, therefore, f is not a k-function on E+F. Hence we have

THEOREM 2. If E is a k'-set then so is E+F for every simply ordered set F.

The simplest example of a k'-set E is any infinite well ordered set. This is an immediate consequence of the following observation, whose proof is by a straightforward application of transfinite induction.

'The initial segments of an infinite well ordered set of order type α form a set of order type $\alpha + 1$ '.

Another consequence of this observation is the following: For any infinite k-set E, the smallest ordinal number δ having the property that E contains no subset of order type δ , is a limit number.

Suppose that E is a k-set and has an initial segment of n-elements, say $x_0 < x_1 < \cdots < x_{n-1}$. Letting $A_j = \{x_i | i < j\}$, by a simple application of Theorem 1, it is easily seen that $f(A_j) = x_{j-1}$ for each k-function fon E. In other words, there is no element x of A_j such that $f(A_j) < x$.

584

and

² The ordered sum $\sum_{v} E_{v}$, or $\dots + E_{v_{1}} + \dots + E_{v_{2}} + \dots$, of a family of pairwise disjoint simply ordered sets is the set $E = \bigcup_{v} E_{v}$ ordered as follows: If x and y are in the same E_{v} , then x < y or y < x according as x < y or y < x in E_{v} . If x is in E_{v} and y is in E_{v} and v < v in V, then x < y.

This result cannot occur if E has no first element. To be precise we have:

THEOREM 3. If E is a k-set without a first element, then there exists a k-function g such that g(W) < x for each element W in ωE and for some element x in W.

Proof. Let f be a k-function on E. Well order the elements of ωE into the sequence $\{W_{\xi}\}, \xi < \delta$. Suppose that g is already defined for each $W_{\xi}, \xi < \theta$ (possibly other W_{ξ} also) such that

- (1) $g(W_{\lambda}) \leq f(W_{\lambda})$ for each W_{λ} for which g is defined;
- (2) g is not defined for W_{θ} ;
- (3) if g is defined for W_{γ} , then g is also defined for each initial segment of W_{γ} ;
- (4) if $W_{\sigma} <_{k} W_{\tau}$ and g is defined for W_{σ} and W_{τ} , then $g(W_{\sigma}) < g(W_{\tau})$;
- (5) if g is defined for W_{ε} , then $g(W_{\varepsilon}) < x_{\varepsilon}$ for some element x_{ε} in W_{ε} .

Let $W_{\theta} = \{x_{\theta,\nu} | \nu < \alpha(\theta)\}$ and $W_{\theta,\xi} = \{x_{\theta,\nu} | \nu < \xi\}$ for $0 < \xi \leq \alpha(\theta)$. Let $W_{\theta,\gamma}$ be the first $W_{\theta,\xi}$ for which g is not defined: If $\gamma = 1$, that is, $W_{\theta,\gamma} = \{x_{\theta,0}\}$ let $g(W_{\theta,1})$ be some element of E which is $<\min[x_{\theta,0}, f(x_{\theta,0})]$. Such an element exists since E has no first element. Suppose that $\gamma = \beta + 1$, where $\beta > 0$. By induction, $g(W_{\theta,\beta}) < x_{\theta,\beta}$ for some element $x_{\theta,\beta}$ in $W_{\theta,\beta}$. Let $g(W_{\theta,\beta+1}) = \min[x_{\theta,\beta}, f(W_{\theta,\beta+1})]$. Since $W_{\theta,\beta} < W_{\theta,\beta+1}, x_{\theta,\beta}$ is not the last element in $W_{\theta,\beta+1}$. Thus $g(W_{\theta,\beta+1}) < x_{\theta,\beta+1}$ for some element $x_{\theta,\beta+1}$ in $W_{\theta,\beta+1}$. Suppose that $W_{\sigma} <_k W_{\theta,\beta+1}$. If $g(W_{\theta,\beta+1}) = x_{\theta,\beta}$, then $g(W_{\sigma}) \leq$ $g(W_{\theta,\beta}) < x_{\theta,\beta} = g(W_{\theta,\beta})$. If $g(W_{\theta,\beta+1}) = f(W_{\theta,\beta+1})$, then

$$g(W_{\sigma}) \leq g(W_{\theta,\beta}) \leq f(W_{\theta,\beta}) < f(W_{\theta,\beta+1}) = g(W_{\theta,\beta+1}).$$

Suppose that γ is a limit number. Then $W_{\theta,\gamma}$ has no last element. It follows from Theorem 1 that there exists an element $x_{\theta,\gamma}$ in $W_{\theta,\gamma}$ so that $f(W_{\theta,\gamma}) < x_{\theta,\gamma}$. Let $g(W_{\theta,\gamma}) = f(W_{\theta,\gamma})$. If $W_{\sigma} <_{k} W_{\theta,\gamma}$, then

$$g(W_{\sigma}) \leq f(W_{\sigma}) < f(W_{\theta,\gamma}) = g(W_{\theta,\gamma})$$
.

By transfinite induction g becomes defined for each $W_{\theta,\xi}$, thus for W_{θ} so as to satisfy (1), (3), (4), and (5). Thus g becomes defined for every W_{ξ} . From the manner of construction, that is (4), g is a k-function. By (5) g has the property that for each element W in ωE , g(W) < xfor some element x in W.

THEOREM 4. If $\overline{A} = \overline{B}^3$ and A is a k-set, then so is B. Equivalently. if $\overline{A} = \overline{B}$ and A is a k'-set, then so is B.

³ E being a simply ordered set, \overline{E} denotes the order type of E. $\overline{A} \equiv \overline{B}$ if there exists a similarity transformation of A into B and a similarity transformation of B into A.

Proof. Let g be a similarity transformation of A into B and h a similarity transformation of B into A. Suppose that f is a k-function of ωA into A. For each well ordered subset E of B, h(E) is a well ordered subset of A which is similar to E. Let f^* be the function of ωB into B which is defined by $f^*(E) = gfh(E)$. Clearly gfh(C) < gfh(D) if $C <_{\nu} D$. Thus f^* is a k-function, so that B is a k-set.

Turning to the construction of k-sets we have

THEOREM 5. If $\{E_v | v \in V\}$ is a family of pairwise disjoint k-sets, and V is the dual⁴ of a well ordered set, then the ordered sum ΣE_v is a k-set.

Proof. Let f_v be a k-function from ωE_v to E_v . Now let A be a nonempty well ordered subset of ΣE_v . Denote by w the largest element v in V such that $A \cap E_v$ is nonempty. Since V is the dual of a well ordered set, w exists. Let h be the function which is defined by $h(A) = f_w(A \cap E_w)$. There is no trouble verifying that h is a k-function from $\omega \Sigma E_v$ to ΣE_v .

COROLLARY. The dual of a well ordered set is a k-set. One particular k-function is the mapping which takes a well ordered subset into its largest element.

Another method of obtaining k-sets is to use the next result.

THEOREM 6. Let $\{A_v | v \in V\}$ be a family of pairwise disjoint simply ordered sets where V is the dual of a well ordered set of order type α , α being a limit number. Furthermore suppose that for each element w in V, there exists a simply ordered extension f_w of $A^w = \omega \sum_{v > w} A_v$ into A_w^5 . Then $A = \sum_{v \in V} A_v$ is a k-set.

Proof. Let X be any nonempty well ordered subset of A. Let x_0 be the first element in X. x_0 is in one of the sets A_v , say A_r . Since α is a limit number, r has an immediate predecessor in V, say r^- . By hypothesis there exists a simply ordered extension f_{r^-} of $\omega A^{r^-} = \omega \sum_{v > r^-} A_v$ into A_{r^-} . Let $f(X) = f_{r^-}(X)$. Thus f is a well defined function from ωA into A.

Suppose that $Y \leq_k Z$ in ωA . The first element in Y, say y_0 , is also the first element in Z. If y_0 is in A_s , then $f(Y) = f_{s-}(Y) < f_{s-}(Z) = f(Z)$. Thus f is a k-function and A is a k-set.

Now let E_0 be any simply ordered set. It is known that each

⁴ $(\rho, <')$ is the dual of $(\rho, <)$ if x < 'y if and only if x > y, for every x and y in ρ .

⁵ f is a simply ordered extension of the partially ordered set B into the simply ordered set A if f maps B into A in such a manner that whenever x < y in B, f(x) < f(y) in A.

partially ordered set has a simply ordered extension [3]. Let f_0 be a simply ordered extension of ωE_0 into some set, say F_0 . Let E_1 be a simply ordered set such that $\overline{E}_1 = \overline{F}_0 + \overline{E}_0$. Continuing by induction we obtain for each ordinal number v, a simply ordered extension f_v of ωG_v , where $\overline{G}_v = \cdots + \overline{E}_{\xi} + \cdots + \overline{E}_1 + \overline{E}_0$ ($\xi < v$), into a simply ordered set F_v . Let E_v be a simply ordered set such that $\overline{E}_v = \overline{F}_v + \overline{G}_v$. In particular, by Theorem 6, G_{ω} is a k-set. Thus we have

THEOREM 7. Each simply ordered set E is a terminal segment¹ of some k-set F(E).

REMARK. Theorem 2 shows that there exist simply ordered sets E such that for no k-set F(E) is E similar to an initial segment of F(E).

We now consider products of simply ordered sets, ordered by last differences.

THEOREM 8. If E and F are k-sets, then so is $E \times F$.

Proof. Let f and g be k-functions for E and F respectively, and z a definite element of E. Let A be any well ordered subset of $E \times F$. Define A_{τ} to be the set $\{v | \text{for some } u, (u, v) \text{ is in } A\}$. Obviously A_{τ} is a well ordered subset of F. If A_{τ} has a last element, say w, let $A_{\sigma} = \{u | (u, w) \text{ is in } A\}$ and let $h(A) = (f(A_{\sigma}), g(A_{\tau}))$. If A_{τ} has no last element, let $h(A) = (z, g(A_{\tau}))$. To see that h is a k-function let $A <_k B$ in $\omega E \times F$. Since A is a proper initial segment of B, either A_{τ} is a proper initial segment of B_{τ} , or else $A_{\tau} = B_{\tau}$. If the former holds, then since $g(A_{\tau}) < g(B_{\tau})$, h(A) < h(B). Suppose that the latter holds. Since $A <_k B$, there exists an element (x, y) in B which is not in A. Thus $A \subseteq \{(u, v) | (u, v) < (x, y), (u, v)$ in $B\}$. Since $A_{\tau} = B_{\tau}$, it follows that y must be the last element of B_{τ} , thus also of A_{τ} . Therefore A_{σ} and B_{σ} exist. Since A is a proper initial segment of $B, A_{\sigma} <_k B_{\sigma}$. As f is a k-function, $f(A_{\sigma}) < f(B_{\sigma})$. Hence

$$h(A) = [f(A_{\sigma}), g(A_{\tau})] < [f(B_{\sigma}), g(A_{\tau})] = h(B).$$

REMARKS. (1) Theorem 8 is no longer true if one of the sets, either A or B is a k'-set. This is seen by two examples.

(a) Let E be a set of one element and F a set order type ω . Then $E \times F$ is of order type ω , thus a k'-set.

(b) Interchange E and F in (a).

(2) The conclusion of Theorem 8 may be true if one of the sets is a k-set and the other is not. For example

(a) Let $\overline{E} = \omega^{\omega^*}$ and $\overline{F} = \omega$. Then $\overline{E} \times \overline{F} = \overline{E}$, and as easily seen, E

is a k-set. It is also easy to show that for each ordinal number α and each limit number δ , $A_{\alpha} \times B_{\delta}$ is a k-set, where $\overline{A}_{\alpha} = \alpha$ and $\overline{B}_{\delta} = \delta^*$. If $\alpha \geq \omega$, then $B_{\delta} \times A_{\alpha}$ is a k'-set.

(b) Let $A_0 = R$, f_1 be a simply ordered extension of wA_0 into B_1 , and $A_{-1} = (A_0 \times B_1)$. In general, let f_n be a simply ordered extension of $\omega(\sum_{l < n} A_{-l})$ into B_n , and $A_{-n} = (A_0 \times B_n)$. Let $F = \sum_{n < \omega} A_{-n}$. By Theorem 6, F is a k-set. Then $\overline{A_0 \times F} = \sum (\overline{A_0 \times A_{-n}}) = \sum \overline{A_{-n}} = \overline{F}$. Thus $A_0 \times F$ is a k-set. It is known [1;2] that A_0 is a k'-set.

(3) Theorem 8 is no longer true if we have a product of an infinite number of k-sets. For example, for each negative integer v let $E_v = \{0, 1\}$. Then ΠE_v is the set of all zero-one sequences of order type ω^* , ordered by last differences. But $\overline{\Pi_v E_v} \equiv \lambda$, where $\lambda = \overline{R}^+$. R^+ is a k'-set [2]. By Theorem 4, ΠE_v is a k'-set.

Question. Do there exist two k'-sets E and F such that $E \times F$ is a k-set?

THEOREM 9. If E is a k'-set and F is a simply ordered set with a first element, then $E \times F$ is a k'-set.

Proof. Let x_0 be the first element of F and $G=F-\{x_0\}$. Then $E \times F = E \times [\{x_0\} + G] = E \times \{x_0\} + E \times G$. Since $E \times \{x_0\}$ is a k'-set, by Theorem 2 so is $E \times \{x_0\} + E \times G$. Hence the result.

Since $\lambda \equiv 1+\lambda$ and $\eta \equiv 1+\eta$, where $\eta = \overline{R}$, it follows from Theorem 4 and Theorem 9 that for any k'-set A, $A \times R$ and $A \times R^+$ are k'-sets. In particular, Euclidean *n*-space, ordered by last differences of the coordinates of the points, is a k'-set.

THEOREM 10. Each infinite simply ordered group is a k'-set. If E is an ordered field, then there is no k-function from the bounded elements of ωE to E.

Proof. First suppose that E is an ordered field. Let 1 be the multiplicative identity. For 1 < x let h(x)=2-1/x where 2=1+1. For $0 \le x \le 1$ let h(x)=x. For x < 0 let h(x)=-h(-x). Then h is a similarity transformation of E onto (-2, 2).

Suppose that f is a k-function from the bounded elements of ωE to E. Let $x_0=z_0=0$, $z_1=1$, $x_1=h(1)$, and $A_j=\{x_i|i < j\}$ for j=1, 2. Let $y_1=f(A_1)$ and $y_2=f(A_2)$. Clearly $y_1 < y_2$. Let $z_2=z_1+(y_2-y_1)$. Thus $z_2-z_1=y_2-y_1$. Let $x_2=h(z_2)$. In general suppose that for $1 < \xi < \alpha$, z_{ξ} , $x_{\xi}=h(z_{\xi})$, $A_{\xi}=\{x_{\upsilon}|\upsilon < \xi\}$, and $y_{\xi}=f(A_{\xi})$ are defined. Furthermore, suppose that $\{z_{\xi}\}$ and $\{y_{\xi}\}$ are strictly increasing and that $z_{\xi}-z_1=y_{\xi}-y_1$ for $1 < \xi$. Since E is a group, z_{ξ} and x_{ξ} are elements of E. Observe that $-2 < x_{\xi} < 2$, that is $\{x_{\xi}\}$ is a bounded sequence.

(1) Suppose that $\alpha = \beta + 1$. Let $A_{\alpha} = \{x_{\xi} | \xi < \alpha\}$, $y_{\alpha} = f(A_{\alpha})$, $z_{\alpha} = z_{\beta} + (y_{\alpha} - y_{\beta})$, and $x_{\alpha} = h(z_{\alpha})$. Since $A_{\beta} <_{k} A_{\alpha}$, $y_{\beta} < y_{\alpha}$. Thus $z_{\beta} < z_{\alpha}$ and $x_{\beta} < x_{\alpha}$. Since $z_{\alpha} - z_{\beta} = y_{\alpha} - y_{\beta}$ and $z_{\beta} - z_{1} = y_{\beta} - y_{1}$, we get $z_{\alpha} - z_{1} = y_{\alpha} - y_{1}$.

(2) Suppose that α is a limit number. Let $A_{\alpha} = \{x_{\xi} | \xi < \alpha\}$ and $y_{\alpha} = f(A_{\alpha})$. Since $A_{\xi} <_{k} A_{\alpha}$, for $\xi < \alpha$, $y_{\xi} < y_{\alpha}$. Let $z_{\alpha} = z_{1} + (y_{\alpha} - y_{1})$ and $x_{\alpha} = h(z_{\alpha})$. Since $A_{\xi} <_{k} A_{\alpha}$ for $\xi < \alpha$, $y_{\xi} < y_{\alpha}$ and thus $z_{\xi} < z_{\alpha}$ and $x_{\xi} < x_{\alpha}$. Note that $z_{\alpha} - z_{1} = y_{\alpha} - y_{1}$.

In this way, for each ξ we get an x_{ξ} . Let δ be the smallest ordinal number such that E contains no subset of order type δ . The elements of the set $\{x_{\xi} | \xi < \delta\}$ form a strictly increasing sequence of order type δ . From this contradiction we see that no such function f exists.

Now suppose that E is an infinite simply ordered group. Let $z_0=0$ and $z_1 > 0$. Let $A_j = \{z_i | i < j\}$ for j=1, 2. Let $y_1 = f(A_1)$ and $y_2 = f(A_2)$. Repeat the procedure given above, defining y_{ξ} and z_{ξ} for each ξ , with $A_v = \{z_{\xi} | \xi < v\}$. We obtain a strictly increasing sequence of elements $\{z_{\xi}\}, \xi < \delta$, where δ has the same significance as above. Again we arrive at a contradiction.

REMARK. The second statement in Theorem 10 cannot be extended to hold for a group. For example, let E be the group consisting of all the integers, positive, negative, and zero. The bounded, well ordered subsets of E consist of the finite subsets of E. For this family there does exist a k-function, namely the function which maps each set into its maximal element.

References

2. _____. Fonctions croissantes dans la famille des ensembles bien ordonnés lineaires; Bulletin Scientique Yougoslavie, **2**, (1954), 9.

3. Szpilrajn, E. Sur l'extension de l'ordre partiel, Fund. Math., 16, (1930), 386-389.

NORTHROP AIRCRAFT CORPORATION AND UNIVERSITY OF SOUTHERN CALIFORNIA

^{1.} Kurepa, G. Sur les fonctions réeles dans la famille des ensembles bien ordonnés de nombres rationnels, Bull. Internat. Acad. Yougoslave. Cl. Sci. Math. Phys. Tech., **12** (1954), 35-42.