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A simply ordered set E is called a k-set if there exists a simply
ordered extension of the family of nonempty well ordered subsets of E,
ordered by initial segments, into E. If E is not a k-set then it is called
a h'-set. Kurepa [1;2] first discussed these sets. He showed that if E
is a subset of the reals and if the smallest ordinal number a such that
E does not contain a subset of order type a is ωlf then E is a k'-set.
In particular the rationale and the reals, denoted by R and R+ respec-
tively, are both fc'-sets. In this paper the existence of A>sets and Λ'-sets
is discussed further. Theorem 7 states that each simply ordered set E
is a terminal segment of some k-set F(E). It is not true, however, that
each simply ordered set E is similar to an initial section of some k-set
F(E) (Theorem 2). Finally, in Theorem 10 it is shown that each infinite
simply ordered group is a k'-set.

Following the symbolism in [1 2] let £ be a simply ordered set
and ωE the family of all nonempty well ordered subsets of E> partially
ordered as follows: For A and B in ωE, A<CkB if and only if A is a
proper initial segment of B.1

Definition. A function / from ωE to E is called a k-function on
E, if A<CkB implies that /(A)</(£).

If there exists a k-ίunction on E, that is, from ωE to E, then E
is called a k-set. If not, then E is called a k'-set.

THEOREM 1. If / is a k-ί unction on E, then for each nonempty
well ordered subset W of E, there exists an element x in W such that

Proof. Suppose that the theorem is false, that is, suppose that
there exists an element W1 in ωE with the property that x<^f(Wλ) for
each x in WΎ. Let W2= W1 \J f(WΊ). It is easily seen that W2 is well
ordered, ^ i < & W2, x<Cf(W2) for each element x in W2, and the order
type of W2 is I>2. Suppose that for each 0 < ? < α , Wξ is an element
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1 A is a (proper) initial segment of B if A is a (proper) subset of B and if, for each
element z in ^4, {x\x^Lz, xQB} is a subset of A. -A is a terminal segment of B if A is a
subset of J5 and if, for each element z in A, {x\z^x, x£B] is a subset of A.
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of ωE such that

(1) x<f(Wξ) for each x in Wξ,
(2) Wξ<kWυ for ξ<υ<a,

and (3) the order type of Wς is ^f.

Two possibilities arise.
(a) If a=--β + l let Wa=Wβ \J f(Wβ). By (1) and the fact that

Wβ is well ordered, it follows that WΛ is well ordered. Clearly Wβ < f c

Wa. Thus /(ΐfβ)</(TΓΛ). It is now easy to verify that (1), (2), and
(3) are satisfied for £<Iα.

(b) Suppose that a is a limit number. Let WΛ= \J Wξ. Since

Wξ^ Wυ for 6 < υ , Wa is well ordered. It is obvious that (2) and (3)
are satisfied for ξ<L(x. Let x be any element of Wa. Then x is in
Wξ for some ξ<Ccc9 thus #</(~FP?)<C/(TFαJ). Hence (1) is also satisfied.

In this way Wξ becomes defined for each ordinal number ξ. Thus
Ws is defined, where 3 is the smallest ordinal number such that E con-
tains no subset of order type δ. This is a contradiction since Wδ is of
order type i>£.

We conclude that no such set Wx exists, that is, the theorem is true.
Suppose that Έ is a &'-set and that the ordered sum2 E+F is a k-

set for some simply ordered set F. Let / be a k-function on E-t-F.
Since E is a fc'-set, for some well ordered subset W of E, f(W) is not
in E, thus is in F. Then f(W)<Lx for some x in W is false. By
Theorem 1, therefore, / is not a fe-function on E+F. Hence we have

THEOREM 2. If E is a k'-set then so is EΛ-F for every simply

ordered set F.

The simplest example of a fc'-set E is any infinite well ordered set.
This is an immediate consequence of the following observation, whose
proof is by a straightforward application of transfinite induction.

' The initial segments of an infinite well ordered set of order type
a form a set of order type α-t-l\

Another consequence of this observation is the following: For any
infinite k-set E, the smallest ordinal number δ having the property that
E contains no subset of order type δ, is a limit number.

Suppose that E is a k-set and has an initial segment of n-elements,
say XQ<CXI<- •• <C%n-i- Letting Aj={xi\i<Cj), by a simple application
of Theorem 1, it is easily seen that f(AJ)=xj^1 for each k-function /
on E. In other words, there is no element x of Aj such that

3 The ordered sum YJEV, or \-EVl~\ \-EV2~\ , of a family of pairwise disjoint

simply ordered sets is the set E^\JEυ ordered as follows: If x and y are in the same Ev,
V

then x<Cv or y <^x according as x<Cy or y<ix in Eυ. If x is in Ev and y is in Ev and
y<v in V, then x<Cy.
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This result cannot occur if E has no first element. To be precise we
have:

THEOREM 3. If E is a k-set without a first element, then there exists
a k-function g such that g( W) <C x for each element W in ωE and for
some element x in W.

Proof. Let / be a ^-function on E. Well order the elements of
ωE into the sequence {TFJ, ζ<^8. Suppose that g is already defined
for each W%, £ < 0 (possibly other Wξ also) such that

(1) g(Wλ)<^f(Wλ) for each Wλ for which g is defined;
(2) g is not defined for Wθ;
(3) if g is defined for Wy, then g is also defined for each initial

segment of Wy;
(4) if Wσ<kWτ and g is defined for Wσ and Wτ, then g{Wσ)<g{WrY,
(5) if g is defined for Wv then g(Wξ)<C%ξ for some element xζ in Wξ.

Let Wβ={xθtυ\υ<a(θ)} and Wθ,ξ={xθ,υ\υ<ξ} for 0<ξ<*ct(θ). Let Wθ,y

be the first Wθ>ξ for which g is not defined: If γ=l, that is, Wθ,y= {xΘ>0}
let g(Wθιl) be some element of E which is < m i n | > M , f(xθ,o)] Such an
element exists since E has no first element. Suppose that γ=β + l,
where β > 0 . By induction, g(Wθιβ)<Cxθlβ for some element xθtβ in Wθίβ.
Let g(Wθιβ+ι)=mm[xθιβ, f(Wθtβ+ι)]. Since Wθtβ<Wθ,β+1, xθ)β is not the
last element in Wθ)β+1. Thus g(Wθtβ+1) <^xθιβ+1 for some element xθ,β+i in
Wθtβ+1. Suppose that Wσ<CkWθtβ+1. If g(Wθlβ+1)=xθtβ, then g(Wσ)<L
g(Wθtβ)<xθtβ=g(Wθ,β). If g(Wθ,β+1)=f(Wθ,β+1), then

g(Wσ)^g(Wθ,β)^f{Wθιβ)<f(Wθ,β+1)==g(Wθ,β+ι).

Suppose that γ is a limit number. Then Wθiy has no last element. It
follows from Theorem 1 that there exists an element xθ>y in Wθiy so that
f(Wθ>y)<xθ>y. Let g(WΘ,y)=f(Wθ,y). If Wσ<k Wθ>y, then

By transfinite induction (/ becomes defined for each Wθ}ξy thus for WQ so
as to satisfy (1), (3), (4), and (5). Thus g becomes defined for every
Wξ. From the manner of construction, that is (4), g is a ^-function.
By (5) g has the property that for each element W in ωE, g(W)<C%
for some element x in W.

THEOREM 4. // A=B3 and A is a k-set, then so is B. Equivalently.

if A=ΞB and A is a k'-set, then so is B.

3 E being a simply ordered set, I? denotes the order type of E. Λ = B if there exists
a similarity transformation of A into B and a similarity transformation of B into A.
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Proof. Let g be a similarity transformation of A into B and h a
similarity transformation of B into A. Suppose that / is a k-ίunction
of ωA into A. For each well ordered subset E of 5, h{E) is a well
ordered subset of A which is similar to E. Let / * be the function of
ωB into B which is defined by f*(E)=gfh(E). Clearly gfh{C)<Cgfh{D)
if C<CkD. Thus / * is a k-ί unction, so that B is a &-set.

Turning to the construction of /b-sets we have

THEOREM 5. // {Eυ\v e V} is a family of pairwise disjoint k-sets, and
V is the dual^ of a well ordered set, then the ordered sum ΣEυ is a k-set.

Proof. Let /„ be a k-ί unction from ωEv to Eυ. Now let A be a
nonempty well ordered subset of Ί,Eυ. Denote by w the largest element
v in V such that Af\Eυ is nonempty. Since V is the dual of a well
ordered set, w exists. Let h be the function which is defined by h(A)
=fw(A Γ\ Ew). There is no trouble verifying that h is a ^-function from

to Ί,EΏ.

COROLLARY. The dual of a well ordered set is a k-set. One parti-
cular k-function is the mapping which takes a well ordered subset into
its largest element.

Another method of obtaining /b-sets is to use the next result.

THEOREM 6. Let {Aυ\ve V} be a family of pairwise disjoint simply
ordered sets where V is the dual of a well ordered set of order type a, a
being a limit number. Furthermore suppose that for each element w in
V, there exists a simply ordered extension fw of Aw==ω^Aυ into AJ\

v>ιv

Then A = Σ Λ ^ a k-set.

Proof. Let X be any nonempty well ordered subset of A. Let xQ

be the first element in X. xQ is in one of the sets Aυ, say Ar. Since
a is a limit number, r has an immediate predecessor in V, say r~. By
hypothesis there exists a simply ordered extension fr- of ωAr~=ω^Av

υ>r-

into Ar-. Let f(X) = fr-(X). Thus / is a well defined function from
ωA into A.

Suppose that Y^^Z in ωA. The first element in F, say yQ, is also
the first element in Z. If yQ is in A8, then f(Y)==fs.(Y)<Cfs-(Z)=f(Z).
Thus / is a k-ί unction and A is a &-set.

Now let Eo be any simply ordered set. It is known that each
4 (p> <C0 is the dual of (<o, <) if x<i'y if and only if x^>y, for every x and y in p.
5 / is a simply ordered extension of the partially ordered set B into the simply ordered

set A if / maps B into A in such a manner that whenever x<^y in B, f(x)<C.f(y) in A.
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partially ordered set has a simply ordered extension [3]. Let fQ be a

simply ordered extension of ωE0 into some set, say Fo. Let Eλ be a

simply ordered set such that E1=F0

JrEQ. Continuing by induction we

obtain for each ordinal number υ, a simply ordered extension fυ of ωGv,

where Gυ= t-Eξ-i h£Ί + £Ό (?<C )̂> ^° a simply ordered set Fυ.

Let Ev be a simply ordered set such that Eυ=Fυ-hGυ. In particular, by
Theorem 6, Gω is a Λ>set. Thus we have

THEOREM 7. ^αc/^ simply ordered set E is a terminal segment1 of
some k-set F{E).

REMARK. Theorem 2 shows that there exist simply ordered sets E
such that for no A>set F(E) is E similar to an initial segment of F(E).

We now consider products of simply ordered sets, ordered by last
differences.

THEOREM 8. // E and F are k-sets, then so is ExF.

Proof, Let / and g be ^-functions for E and F respectively, and
z a definite element of E. Let A be any well ordered subset of ExF.
Define Aτ to be the set {v\ΐor some u, (u, v) is in A}. Obviously Aτ is
a well ordered subset of F. If Ar has a last element, say w, let Aσ=
{u\(u, w) is in A] and let h(A) = (f(Aσ), g(Aτ)). If Ar has no last element,
let h(A)=(z, g{AΊ)). To see that h is a ^-function let A<CkB in ωExF.
Since A is a proper initial segment of B, either Aτ is a proper initial
segment of Bτ, or else Aτ=Bτ. If the former holds, then since g(Aτ)
<g(Bτ), h(Aχh(B). Suppose that the latter holds. Since A^B,
there exists an element (x, y) in B which is not in A. Thus A c: {(u, v)\
(u,v)<C(%, y), (u, v) in B). Since AT=BT, it follows that y must be the
last element of Bτ, thus also of Aτ. Therefore Aσ and Bσ exist. Since
A is a proper initial segment of B, Aσ<^kBσ. As / is a k-ΐunction,
f(Aσ)<f(Bσ). Hence

h(A) = [f(Aσ), g(Aτ)]<[f(Bσ), g(Aτ)] = h(B).

REMARKS. (1) Theorem 8 is no longer true if one of the sets,
either A or B is a λ '-set. This is seen by two examples.

(a) Let E be a set of one element and F a set order type ω. Then
ExF is of order type ω, thus a A '-set.

(b) Interchange E and F in (a).

(2) The conclusion of Theorem 8 may be true if one of the sets is
a &-set and the other is not. For example

(a) Let E=ωω* and F=ω. Then ΈxF=Έ, and as easily seen, E
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is a k-set. It is also easy to show that for each ordinal number a and

each limit number δ, A0ίlxB6 is a &-set, where AΛ=a and Z?ό = £*. If
oc^ω, then BδxAΛ is a &'-set.

(b) Let AQ=R, fτ be a simply ordered extension of wA0 into Bu

and A_1==(AoxS1). In general, let /„ be a simply ordered extension of
) into Bn, and A_w=(ΛoxSJ. Let F = Σ 4 . r a . By Theorem 6,

F is a fc-set. Then Λ χ j P = Σ ( Λ x 4 - n ) = ΣA-«=F. Thus A o xF is a
/b-set. It is known [1;2] that Ao is a &'-set.

(3) Theorem 8 is no longer true if we have a product of an infinite
number of &-sets. For example, for each negative integer υ let Eυ= {0,
1}. Then ΠEυ is the set of all zero-one sequences of order type ω*,

ordered by last differences. But ΠυEυ = λ, where λ=R+. R+ is a A '-set
[2]. By Theorem 4, ΠEυ is a fc'-set.

Question. Do there exist two &'-sets E and F such that ExF is a
A-set ?

THEOREM 9. If 2? is a ά'-set and F is a simply ordered set with a
first element, then ExF is a &'-set.

Proof. Let #0 be the first element of F and G=F— {xo\. Then
fixF^xCW+GJ^SxW+fixff. Since Ex{xQ} is a fc'-set, by
Theorem 2 so is E x {#0} -\-ExG. Hence the result.

Since λ = l + λ and 7 = 1+ 7, where ^==i2, it follows from Theorem
4 and Theorem 9 that for any &'-set A, AxR and AxR+ are AZ-sets. In
particular, Euclidean w-space, ordered by last differences of the coordi-
nates of the points, is a &'-set.

THEOREM 10. Each infinite simply ordered group is a &'-set. If E
is an ordered field, then there is no A -function from the bounded elements
of ωE to E.

Proof. First suppose that E is an ordered field. Let 1 be the
multiplicative identity. For 1 < > let A(a?)=2-l/a? where 2=1 + 1. For
0 < : # < : i let h(x)=x. For # < 0 let h(x)=-h(-x). Then h is a simi-
larity transformation of E onto ( — 2, 2).

Suppose that / is a ^-function from the bounded elements of ωE
to E. Let χo=zo=O, z1=lf xτ=h(l), and Aj={Xi\i<iJ} for j=l , 2. Let
y1=f(A1) and y2=f(A2). Clearly ?/1<?/2. Let z.^z^^-y,). Thus ^
—̂ 1=2/2 — 2/1. Let x2=h(z2). In general suppose that for 1 < ? < Ό : , ^,
Xξ=h(zf:), Aξ={xυ\υ<ξ}, and yξ=f(Aξ) are defined. Furthermore, sup-
pose that {zj and {%} are strictly increasing and that Zξ—z1=yξ—y1 for
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l < f . Since E is a group, zξ and a?έ are elements of E. Observe that
— 2 O ξ < 2 , that is {xξ} is a bounded sequence.

(1) Suppose that α=/? + l. Let AΛ= {xξ\ξ<α}, yΛ=f{AΛ), za=zβ

+ (V*—Vβ)> and xΛ=h(za). Since Aβ< f cA,, yβ<CyΛ. Thus s β < z Λ and #β

<a?Λ. Since z(A-zβ=y«-yβ and zβ-zι=yβ-y1, we get za-zι=ya-y1.

(2) Suppose that α is a limit number. Let AΛ= {tfg|£<<*} and 2/*
= /(Afl5). Since ^ < f c Λ » , for f < α , yξ<Cya. Let 3α»=Si-K2/«-2/i) and
xΛ=h(zΛ). Since ^ < f c ^ L Λ for ? < α , y^<^yΛ and thus z$<CzΛ and #$<#«.
Note t h a t zcύ — zι=yΛ — yι.

In this way, for each 6 we get an #$. Let (5 be the smallest ordinal
number such that E contains no subset of order type δ. The elements
of the set {#$!?<<?} form a strictly increasing sequence of order type
δ. From this contradiction we see that no such function / exists.

Now suppose that E is an infinite simply ordered group. Let zo=O
and ^ > 0 . Let AJ={zi\i<j} for j=l, 2. Let y1=f(Aί) and y2=f(A2).
Repeat the procedure given above, defining yξ and z% for each ξ, with
Aυ={zξ\ξ<^υ}. We obtain a strictly increasing sequence of elements
{zϊ}> ?<C^ where δ has the same significance as above. Again we
arrive at a contradiction.

REMARK. The second statement in Theorem 10 cannot be extended
to hold for a group. For example, let E be the group consisting of all
the integers, positive, negative, and zero. The bounded, well ordered
subsets of E consist of the finite subsets of E. For this family there
does exist a ^-function, namely the function which maps each set into
its maximal element.
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