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THE EXTREMAL STRUCTURE OF LOCALLY
COMPACT CONVEX SETS

J. C. HANKINS AND R. M. RAKESTRAW

Let X be a locally compact closed convex subset of a locally
convex Hausdorff topological linear space E. Then every ex-
posed point of X is strongly exposed. The definitions of denting
(strongly extreme) ray and strongly exposed ray are given for
convex subsets of E. If X does not contain a line, then every
extreme ray is strongly extreme and every exposed ray is
strongly exposed. An example is given to show that the hypoth-
esis that X be locally compact is necessary in both cases.

By a locally convex space we mean a real Hausdorff locally convex
topological linear space E. E* will denote the topological dual of
E. The set of extreme points of X will be denoted by ext X. The
closed line segment between the points x and y in E will be denoted
[JC, y]. The following definition was given by M. Rieffel [6, p. 75] for
subsets of a Banach space. I. Namioka also studied these points in [4],

DEFINITION 1. If X is a subset of a locally convex space, then
x G X is called a denting (strongly extreme) point of X if for any nbhd U
of JC, Jc£cl-conv(X\J7). The set of all denting points of X will be
denoted by dentX.

Clearly, every denting point is an extreme point. It follows from
the separation theorem for convex sets that x0 is a denting point of X iff
for each nbhd U of x0 there exist fEE* and aGR such that
xo£{x: f(x)< a}Π X C X Γ) U. An example is given in [6, p. 75] to
show that not every extreme point is a denting point. However, this is
not the case in a locally compact set. For completeness we state the
following theorem due to J. Reif and V. Zizler [5, p. 64].

THEOREM 1. Assume X is a locally compact closed convex set in a
locally convex space E. Then any extreme point ofXis a strongly extreme
point of X with respect to the relative topology from E.

A point p of a set X in a locally convex space E is an exposed point
of X if there exists an / G E* such that /(JC) > f(p) for each x G X\{p}.
The following definition was given by J. Lindenstrauss [3, p. 140] for
subsets of a Banach space.
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DEFINITION 2. A point x E X , where X C E, is called a strongly
exposed point of X whenever (i) there exists an fEE* such that
/(y) > f(x) f o r e a c h y E X\{x}, and (ii) for any net {xa} C X, /(xα)->f(x)
in i? implies that xα -» x in E. The set of all strongly exposed points of
X is denoted by strexp X.

It is easy to see from the definition that every strongly exposed point
is an exposed point. J. Lindenstrauss in [3, p. 145] gave an example of a
set which has an exposed point that is not strongly exposed. However,
this is not the case if the set is locally compact.

THEOREM 2. Let X be a locally compact closed convex subset of a
locally convex space £", then every exposed point of X is a strongly exposed
point of X.

Proof Let U be a closed convex nbhd of x such that U Π X is
compact and assume fEE* such that /(*)</(y), for all
y E X\{x}. Since x is an exposed point of X, x is an extreme point of
X. By Theorem 1, x is a denting point of X. Thus, there exist g EE*
and a ER such that {x: g(x)<a}ΠX C (int U)ΠX.

If {x: g(x)^a}Π (X Π ί/) = 0, then it follows immediately that
UΠX C{x: g(x)<a}ΠX C (int U)ΠX. Therefore UΠX is a
nonempty open and closed set in the connected set X. Hence, U Π X =
X which implies X is compact. Let {xα} be a net in X such that
/(xα) —» /(x) in i?. Since X is compact, there is a subnet {xβ} of {xa} and
a vector y EX such that xβ -> y. Thus, /(xβ)->/(y) = /(x) in i? and so
y = x. For any subnet {xγ} C {xα} there is similarly a subnet which
converges to x, which proves that xa —> x in E.

On the other hand, if W = {x: g(x)^a}Π(XΠ [ 7 ) ^ 0 , then W is
a nonempty compact convex subset of X which does not contain
x. Hence, there is a w E W such that f(x)< f(w) = inίf(W). Let
y E X\ U, then [x, y ] C X. 17 is a closed convex nbhd of x hence, there
exists a z E Bdry (/ such that z E [x, y]. Since z E Bdry [/, then zg. int (7
andz£{x: g(x)< α}. Therefore, z E{x: g ( x ) ^ α } Π ( X Π U)sof(z)^
f(w). B u t y - x = λ(z - x ) where A > 1. Hence, /(y - x) = λ/(z - x)>
f(z - x ) which implies /(y) >/(z) ^/(w). Let {yj be a net in X such
that /(yα)->/(*) in ί?. Since {yα} C X and /(y)^/(w)>/(x) for each
y E X\(7, we may assume that {y, ya} C 1/ Π X. Since [/ Π X is com-
pact, it follows from the previous argument that ya -> x in £.

As V. Klee has shown in [1] and [2], it is possible to extend the
Krein-Milman theorem to certain noncompact convex sets with the aid
of the notion of extreme ray. An extreme ray of a closed convex set X
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is a closed half-line p C X such that whenever x, y E X and ΛJC +
( l - λ ) y E ρ for some λ with 0 < A < 1, JC, y E p.

DEFINITION 3. A ray p = {x + λz: A ̂  0, z ̂  0} of a convex set X
in a topological linear space E is a denting (strongly extreme) ray of X if
for any nbhd U of 0, p ' Π cl-conv[X'\(x + <z > + t/)] = 0 , where X' is any
bounded convex subset of X, p' = p Π X' and (z) denotes the one-
dimensional linear subspace generated by z. Denote the union of all
denting rays of X by rdent X.

It is easy to show that every denting ray of a convex set X is an
extreme ray of X. The following theorem and example show that
extreme rays and denting rays coincide in some instances and are distinct
in others.

THEOREM 3. Let X be a locally compact closed convex subset of a
locally convex space E, then every extreme ray ofX is a denting ray ofX.

Proof. Let p be an extreme ray of X. We may assume without loss
of generality that p = {AJC0: A g 0}, JC0 ¥" 0. Let X' be a bounded convex
subset of X and let /0 be in E* such that f0 is positive on K\{0}, where K
is the union of all rays in X which emanate from 0, and X Π {x: /0(x) = i)
is compact, for each t E R. Such a functional exists by Theorem 3.2 in
[1]. Since X' is bounded and convex, cl(X') is bounded and convex.
According to a result of Klee [1, p. 236], cl(X') is compact which implies
sup /o(cl(X')) < x. Then we may assume X' C {x: /„(*) ̂  1} Π X = X".
Let W = {x: /(,(x) = 1} Π X and assume /0(JC0) = 1 Then x0 E ext( W) and
W is compact, since X" is compact. By Theorem 1, JC0 is a denting point
of W. Let U be a nbhd of zero and let g £ E* and a > 0 such that
JC()E{JC: g(jc)<α}Π W C (JCO+ U)Π W. Let T = {JC: g(jc) = α}Π W.
Then T is compact, convex and T Π (x0) = 0 . Let / G £ * and β > 0 such
that /«jc (,))<j8<inf/(T). Since OE<JCO>, we have 0 = /(<JCO» < β <
inf/(T).

If y E W such that /(y) < 0, then /0(y) = 1 and [JC0, y ] Π Γ = 0 , since
f(x{))<β. It follows that g ( y ) < α and hence, y E (xo+ U) Π W C

On the other hand, if y E X such that / 0(y)< 1 and /(y)< j8, then
there is a unique A > 0 such that /0(y + AJC0) = 1. Again from Klee
[1, p. 235] we have y + AJC0 E X. Hence, y + λx0 E W and /(y -h AJC0) =
/(y) < ]3. By the previous argument, it follows that y + Ax0 E x0 + Ĉ  and
so y E( l-A) jc o + t/ C (JCO)+ ί/.

In both cases we have y E {JC: f(x)< β} Π X" implies
y E(x()>+ {7. Hence, X"\«JCo>+ [/) C X"\{x: /(x) < j8} C {x: /(jc)^β}.
Thus, cl-conv[X'\«jt0>+ U)]C{x: f(x)^ β}. Now f{p')<β, since
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/«*o» < β and p' = (X' Π p), so p' Π cl-conv[X'\((x0) + ί/)] = 0. There-
fore, p is. a denting ray of X.

EXAMPLE 1. Let the space be ί2 with the canonical basis {en}, and
X = cl-conv({e« n = 2,3, •}). Then 0 G X and e, is in €2\X. Let C be
the cone generated by X with vertex eu then C is a closed convex subset
of ί2- Let p be the ray of the cone through 0. Clearly, p is an extreme
ray of C Let S (̂0) be the open ball of radius 1/2 centered on
0. Clearly, en^Sφ) so en£ (ex)+ S (̂0) and it follows that en E
cl-conv[X\((ei)+ Si(0))] for n S 2. However, {eπ} converges weakly
to 0 and cl-conv[X\((ei)+ SA

2(0))] is weakly closed so 0E
cl-conv[X\((β1) -K5i(0))]. Hence p is not a denting ray of C

A ray p in X, where X C £, is an exposed ray of X if there exist
/ E £ * a n d α G K such that p = {x: f(x) = a} Π X and/(X\p)> α. The
next definition was given by V. Zizler in [7, p. 55] for subsets of a Banach
space.

DEFINITION 4. Let X be a convex set in a locally convex space E
and p a closed ray in X. Then p is a strongly exposed ray of X if (i)
there exist / E E * and rGJ? such that /(x) = r f or x E p and /(x) > r for
x E X\p, and (ii) {xα} is eventually in p + t/, whenever ί7 is a nbhd of 0
and {x«} is a bounded net in X such that f{xa)-^>r. The set of all
strongly exposed rays will be denoted by rstrexp X.

Clearly every strongly exposed ray is an exposed ray. The follow-
ing proposition, theorem, and examples show the relationships among
denting ray, exposed ray and strongly exposed ray.

PROPOSITION 1. Let p be a strongly exposed ray of a convex set X in
a locally convex space E. Then p is a denting ray of X.

Proof. We may assume p = {λx0: λ ^ 0}, xOτ^ 0. Let fEE* such
that p ={x:/(x) = 0}ΠX and/(x)>0 for each x E X\p. Let U be a
nbhd of zero and X' a bounded convex subset of X. Assume for each
positive integer n there is an xn E {x: /(x)< (1/w)} Γ) X' such that
xn g: (x0) + U. Clearly {x,,} i§ bounded and f(xn) -> 0. Hence, there exists
a positive integer N such that xn E p + U for n ^ N. This is a contradic-
tion; so therς is a positive integer Nf such that {x: f(x)< (1/JV')} Π X ' C
(<JCO>+ l/)ΠX'. Thus, cl-conv[X'\«*o>+ I/)] C {x: /(x)S(l/N')} which
implies (p Π X') Π cl-conv[X'\((x0) + U)] = 0 ; so p is a denting ray of X

THEOREM 4. Lei X be a locally compact closed convex subset of a
locally convex space £", then every exposed ray of X is a strongly exposed
ray of X.
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Proof. Let p be an exposed ray of X. We may assume that p
emanates from the origin. Let / G £ * such that p = X Π{x: f(x) = 0}
and /(x)>0 for x E X\ρ. Let {xa} be a bounded net in X such that
/(jcα)->0 in R and let U be a nbhd of 0. There exists a nbhd V of 0
such that V is closed, balanced and convex, V C U and V Π X is
compact. Let {x̂ } denote the set of all vectors in the net {xa} which lie in
X\U. If {jcβ} is not a subnet of {xα}, then {jcα} is eventually in
U = 0+ U C p + U and the conclusion follows.

If {xβ} is a subnet of {xα}, then it suffices to show that {JĈ } is
eventually in p + U. By Theorem 1, 0 is a denting point of X, since 0 is
an extreme point of X. Let g €Ξ E* and a > 0 such that {JC: g(x)< a)
Π X C V n X . Since xβ£ V, then g(xβ) ^ α, for each β. The net {xα} is

bounded, so there exists a number b > 0 such that g ^ ) ^ 6, for each
β. Hence, 0< a ^ g(xβ)^ b, for each β. If yβ = [a/g(xβ)]xβ, then
yβ e { x : g ( x ) = α } Π X . Since {x: g ( j c ) < α } Π X C V Π X and V Π X is
compact, then { x : g ( x ) = α } Π X is compact; so there is a subnet
{yΎ} C {yβ} and a point y E { j c : g ( j c ) = α } Π X such that yγ -^ y in E.
Since g ^ ) is bounded and f(xβ)—>0 in i?, we have y E { J C : / ( X ) = 0}

ΓΊX and thus, y E p. Hence, y E {x: g(x) = a} ΓΊ p. It follows im-
mediately that {y} = {x: g(x)= a}Γ\ p. Let W = {JC: g(x)= a}ΠX and
z E W\{y}. Then z E W\p which implies /(z) > 0. Thus, y is exposed
by / on W. Since /(y^)->0 = /(y), by Theorem 2 we have y β ->y in
£. Hence, there is a λ0 such that yβ E y + (alb)V, for β ^ λ0. If
zβ = [g(χβ)/a]y> t h e n zβ<Ξp, for each j8. But yβ = [a/g(xβ)]xβ, so
^E[g(^)/fl]y + [g(jcβ)/α](fl/6)VCp+VCp + ί7, for all β ^ λ0.
Therefore, the net {xβ} is eventually in p + J7 and it follows that p is a
strongly exposed ray of X.

EXAMPLE 2. The ray p defined in Example 1 is exposed by
/ = (0,5,5, , 1/w, * *) on C Therefore p is an exposed ray of C that is
not a denting ray of C so by Proposition 1 p is not a strongly exposed ray
of C

EXAMPLE 3. Let the space be R3 and

X = conv[{(x,y,z): x 2 + y 2 g l , - l ^ y ^Oand z = 1} U (1,1,1)].

Let C be the cone generated by X with vertex (0,0,0). Then C is a
closed convex subset of R3. Let p be the ray of the cone through the
point (1,0,1). It is easy to see p is not an exposed ray of C, but p is a
denting ray of C.

From the preceding work we can restate two of Klee's theorems ([2,
Th. 2.3, p. 91], [1, Th. 3.4, p. 237]) as follows:
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THEOREM 5. Suppose X is a locally compact closed convex subset of
a normed linear space, and X contains no line. Then ext X C
cl(strexp X) and X = cl-conv(strexp X U rstrexp X).

THEOREM 6. // X is a locally compact closed convex subset of a
locally convex space, and X contains no line, then X —
cl-conv(dent X U rdent U).
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