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45. The Role of Mollifiers in Wightman Functions

By Hideo YAMAGATA
(Comm. by Kinjir6 KUNUGI, M.J.A., March 12, 1964)

§ 1. Introduction. The normal representation of Canonical com-
mutation relations can be treated at least in three different ways
[1]. Weyl’s formulation and Segal’s formulation are one of them.

The unitary operators which is constructed by Weyl’s formula-
tion is used for the construction of Wightman functions. These
functions are one example of Wightman functions related to the
axiomatic relativistic quantum field theory [2].

For the reinvestigation of the meaning of the unitary operator
constructed by Weyl’s formulation the exact definition of multi-
plication of the operator valued distributions is needed. But its
concept is not clear. Here we define the three kinds of multiplication
and show the method to find the most natural one.

The meaning of multiplication of field functions has not been
definite. In the present paper, the meaning of non local field func-
tions which appeared in Wightman functions above will be made
clear by using our definitions. Furthermore, by using our definition,
the meaning of commutation relations becomes clear.

On the other hand, the orthogonality between the domain of the
free Hamiltonian and that of the total Hamiltonian is already proved
in the case of the neutral scalor field with fixed point source [3-5].
Nobody yet has constructed a linear compatible topology satisfying
the Hausdorff’s axioms (A-D) in which the statevectors in interac-
tion field can be approximated by the sequence of the state vectors
in free field [6-77.

In Wightman’s method the domain of the free Hamiltonian and
that of the total Hamiltonian can be constructed separately in the
same way. This situation is not sufficient in clarifying the relation
between these two domains.

If we try to clarify this point forcibly, then it can be seen that
the lack of the sufficiently strong linear compatible topology is an
essential obstacle [9]. Hence, only free fields have been taken up
so far. The case of interacting field will be referred to briefly, in
this paper.

Here we shall show the limitation for the usual Gelfand’s con-
struction by using Weyl’s formulation and show the effects of
mollifiers upon this construction.

§ 2. The multiplication of operator valued distributions. We
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use the word “ generalized infinite sum” to indicate the integral or
sum of operator valued function. The operators treated here are
the linear operators which have the range and the domain in Von
Neumann’s direct product space. They may have no domains. In a
special case, they are infinite linear sum of creation and annihilation
operators in the momentum space.

Let D(R™) be the space of the real testing functions defined in
R". ¢(f) means the integral f S (x)e(x)dx, where ¢(x) is an operator
valued function and f(x) is a testing function in D(R?). The integral
f f(x)p(x)dx is the generalized infinite linear sum of ¢(x) with coef-
ficient f(x).

Theorem 1. If o(x) is an operator valued function and f s
smooth, then o(f) is an operator with domain.

For the proof of this Theorem, we need the exact definition of
infinite linear sum i.e. ¢(f). But this argument is not the aim of
this paper, and the proof will not give here.

Now consider the two operator valued functions defined in R®
¢(x) and =(x) which satisfy the following commutation relations;

Lo(x), p(x")]=[r(x), z(x")]=0 (1)
Lo(x), z(x")]=10(x—x"). (2)

Definition 1. Let denote A-B the product of two operators A
and B. In our case A and B may have not domains.

Let’s define the following three multiplications.

Definition 2. (1) Let’s ¢(x) and ¥ (x) be two given operator
valued functions, and (D(R%)) and (D(R:)) be the spaces of the
testing functions of two operator valued functions ¢(x) and Y(x).

We then take (D(R%X R:)) as the space of the testing functions
of ¢(x)XY¥(x") whose meaning will be given below.

Let L(D(R%), D(R:)) denote the subspace of (D(R:XR:)) con-
sisting of elements of the form SY..C,f:(x)g,(x’). Here N is a posi-
tive integer, C’s are real constants, f,(x)’s are contained in (D(RY))
for all ¢ and g,(x’)’s are in (D(R:)) for all <.

If the element h(x,x’) is contained in L(D(R), D(R:)), then
the following operator valued functional is defined,;

{p(x) X (x"), h(x, X)) = 2ILiC{p(xx) X P ('), f.(x) X g(x))
=2L,C(f)¥(9).

If the element h(x, x') of (D(RLXRE)) ts mot contained in
L((D(R%)), (D(RL))), then we can take a set of sequence [{h,(x, x")}]
in L((D(R3)), (D(R5))), such that hm h(x, x)=h(x,x") in (D(RLX R%))
and define the set of the sequence [{<go(x)><\lf(x ), h(x, x'»Y]. If a
sequence {{p(x)XY(x), h,(x, x)>} contained in the set [{{p(x)X(x’),
h,(x, x")>}] converges to an operator @ in a certain topology, then we



202 H. YAMAGATA [Vol. 40,

replace this sequence by @ wunder the assumptions that only this
topology is used.

Here we do mot refer to the wuniqueness of this product ete.
The above functional or the set of the functional sequences define
the product operator valued function ¢(x)XY(x’).

(2) We denote by ¢(x)oy¥(x') the following operator valued func-
tional defined in a testing function’s space D(R®).

Namely, ¢(x)°¥(x)-(f(x))=<p(x) X¥(x'), fx) X f(x))=0(f)¥(f),
where f(x) belongs to D(R?).

(8) We denote by o(x)oY(x) the set of the following sequences
of operator valued functionals defined in a testing function’s space
D(R?).

Namely, ¢(x)0¥(x)-(f(x))=[{{p(x)*p.(x) ¥ (x)*0.(x), f(x))}] for

f(x)e D(R?), where p,(x), p.(x)c(D(R?)), llm p(x)=0 and hm o.(x)=6
in (D), and llmlxl’”pc(x) 0 and hm |x|"‘pe,(x) 0 umformly for an

arbitrary ﬁxed integer m [9].

Using these definitions the following problems arise under the
basic rule such that we should use the multiplication which is the
most faithful to the original one. The original definition of multi-
plication is not distribution-wise [8] [10].

1) What sort of multiplication should be used in the commutation
relations (1) and (2)?

2) What sort of multiplication should be used in the definition
of the unitary operators exp [i¢(x)] and exp [ix(x)]?

Furthermore, the following problem arises.

3) Are the three multiplications defined above different with each
other or not ?
Since the product of two field functions used in the commutation
relations are defined in R%X RZ, it is very natural to use the testing
functions defined in R%X R:. Hence only the multiplication (1) must
be used in the commutation relations.

Namely, the commutation relation can be written as follows:

(L), p(x)], hlx, x))=lim {[o(x), ¢(x)], 02 Crun Frum(X)Gam()) =0
([r(x), =(x")], h(x, x')) =lim {[x(x), =(x")], 2 C (%) G (X)) =0

and  {[e(x), (x)], h(x, x)) =lim (id(x—x), a2 Cm frum ()G (X))
=i f h(x, x)dx.

Since exp (ip(x)) and exp (iz(x)) are unitary operators for fixed
x Dbelonging to R3, they are field functions on R:. Hence it is
very natural to use the testing functions on R:. If it is allowed
to take (D(R3)) as the testing function’s space, then exp (i¢(x))- f(x)
must be defined by the following form:
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exp (tp(x)) - f (x)=[1+10(x)+ (1/21)ie(x) - tp(x)+ -+ - - 1 F (x).

It is evident that the multiplications appeared in this series are
not of type (1) in Definition 2. Taking into account that ¢(x) is
operator valued, we shall show that these multiplications are not of
type (2) in Definition 2.

Each term of the above series is not of the same form as in
2) of Definition 2. In fact we shall show that these two types of
multiplications are essentially different with each other, i.e.

{p(x) - ¥(x), f(x))=0(SF) V().
Case 1. T= f AdE(2), where dE(2) is a spectral measure. Let’s

denote A, the set of operators f(T)= f SAEQ) f(2) in C*. Sup-

pose that the operator valued functions ¢(x) and Y¥(x) are in 9, for
each x. Then ¢(x) and Y(x) have the integral representations

o(x)= f q(x, HAE(2) and Y(x)= f p(x, )AE(2), where p(x, 2) and g(x, 2)
is in C*= for each x.

Then we have (¢(x)-V(x), f(x)>=< f q(x, HAE()- f p(x, )AE(2), f(x)>

=/ f a(x, Dp(x, D f (x)dxd E(R).
The right hand side has a meaning different with that of
[{[atw 2@ [pee, 2f i} dBD.
For example, (9:0)f is not determined uniquely in general but (3-f)-
0-f)=r(0)* has a definite meaning.
Case 2. Suppose that the field function ¢(x) can be decomposed in
the formulas ¢(x)= f AdE,(x, 2) where dFE,(x, 2) is the spectral measure

for each x. Then {¢(x)-¢(x), f(x)>= f A%d f E (x, ) f(x)dx.
The right hand side is not equal to

{ f 2d f E,(x, z)f(x)dx} : { f 2d f B(x, z)f(x)dx}.

That is, if d f E (x, 2)f(x)dx is a spectral measure, the latter product

of integrals will be reduced to a simple integral and will be equal
to the former right hand side. But we can easily construct an ex-

ample such that d f E,(x,2)f(x)dx is not a spectral measure. For

example, if f(x) contained in (D(RY)), satisfies the condition f fx)dx
x1 and if E,(x,2)=FE() is independent of x, then we obtain
f d f E,(x, )f (X)dx=1.

Hence it seems that the most faithful distribution-wise exten-
sion of exp (i¢p(x)) can be constructed only by using the multiplica-
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tion of type (8) in Definition 2.

In Gelfand’s construction by Weyl’s formulation the multiplica-
tion of (2) is used. And the unitary operators used in this con-
struction can be expressed as follows:

exp (te(f)=[1+1ie(f)+(1/2)ip(f)-te(f)+- - -]
=[1+{p(x)* f (x)}+(1/2D)(E{e(x)x f (x)})*+ « + + Jemor

Hence it is seen that the non-local field operator appears in this
construction, and the multiplication used in Wightman’s theory is
not unified with that of commutation relations.

§ 3. Gelfand’s construction

a) Let’s consider linear space R with the Hausdorff topology <.

Suppose that ¢ satisfies the conditions: (1) for any neighbour-
hood U(xz+y), there exist neighbourhoods U,(xz) and U,(y) such that
U(x+y) contains the sum of these neighbourhoods U,(x)+ U,(y), (2)
for any neighbourhood U(ax), there exists a neighbourhood U,(x)
such that U(axz) contains the set aU,(x). Then, we say that - is a
linear compatible topology in R.

b) Let denote (Z) the space consisting of the Fourier trans-
form of elements in (D), and let denote ¥ (0(k)) the element in Von
Neumann’s direct product space corresponding to the free vacuum
state [1].

Von Neumann’s direct product space can be decomposed in in-
complete direct product space: [e[z RH,=H"'DH'D-.--.

These $° satisfies the following properties:
(i) HILH for 7,
(ii) 9° contains the free vacuum state ¥(0(k)).
Theorem 2. If fe(Z), then exp (to(f))¥(0(k))eHC.
Proof. The multiplications used in the expansion of this unitary
operator is of type (2). And the exact form of the field function
in practical use is expressed by the formula

o(x) = (L@ { [ (eai+ f a(k)e‘“‘”dlc}.

In o(x)*f(x)=F (Fe(x)-Ff(x)) the effects of sufficiently large
k does not appear. Because Ff is contained in the space (D(k?)).

exp (1o(f))¥(0(k)) is contained in the Hilbert space $° whose
bases are the states obtained by operating the creation and an-
nihilation operators to Y(0(k)) for finite k’s whose absolute values
are bounded.

From this theorem we cannot construct £ (for 7=0) from a
state by using the above procedure.

(¢) In Von Neumann’s direct product space, the orthogonal prop-
erty is not usual. That is, ¢ gN@)gﬂn, nIEYN®‘Pn>=£N<</>n, Pv.>=0 for
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HN®¢,L, 17N &, such that <¢,,¥,>=0 (for all n).
ne ne

We cannot, however, construct a linear compatible topology in
which the element in $° is approximated by sequences of the elements
in §°. In the proof of the uniqueness of the vacuum state, it is
seen that the linear compatibility is essentially used.

Since the linear compatibility seems to be valied in each in-
complete direct product space, the uniqueness theorem can be applied
to only the free fields. The use of linear compatibility is shown by
the following example: “from (1/N) 2L, Tovi=v; we can deduce (1/N)

i Tapp~,, where |[W{|P=1, [[¥.[[*~1, |[¥.—Vil| <e, ¥.=Z1C.U(f)¥o
and 77 is the translation of the length a,” [2]. (The symbol ~ is
taken to mean equal to within terms of infinitesimal order e&.)

§ 4. The extension of the space of mollifiers. If we wish to
adopt the above theorem to the interaction field, we must use the
space D which contains the generalized function ¢ instead of (Z), as
the space of mollifiers.

In this case, however, we meet the difficulty of the multiplica-
tion of singular field functions. But we will be able to avoid it by
using the result in [9].

The contents of this paper I lectured at the meeting held at
Kanseigakuin University on January 15, 1964.
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