Real Analysis Exchange

Vol. 18(1), 1992/93, pp. 237-240
Zbigniew Grande*, Department of Mathematics, Slupsk Pedagogical University, ul. Arciszewskiego 22b, 76-200 Slupsk, Poland

On the Sums and Products of Darboux Baire* ${ }^{\text {1 Functions }}$

Let \mathbf{R} denote the set of all real numbers. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to be Baire* 1 ([5]) if for every perfect set $A \subset \mathbf{R}$ there is an open interval I such that $A \cap I \neq \emptyset$ and the restricted function $f /(A \cap I)$ is continuous. Obviously, the sum and the product of two Baire* 1 functions are Baire* 1 functions.

Let us settle some of the notation to be used in the article.
B_{1}^{*} - the class of all Baire* 1 functions,
D - the class of all Darboux functions,
C - the class of all continuous functions,
$D B_{1}^{*}+D B_{1}^{*}=\left\{f+g ; f, g \in D B_{1}^{*}\right\}, D B_{1}^{*} \cdot D B_{1}^{*}=\left\{f g ; f, g \in D B_{1}^{*}\right\}$,
$M\left(D B_{1}^{*}\right)=\left\{f\right.$; for every $g \in D B_{1}^{*}$ the sum $\left.f+g \in D B_{1}^{*}\right\}$,
$P\left(D B_{1}^{*}\right)=\left\{f ;\right.$ for every $g \in D B_{1}^{*}$ the product $\left.f g \in D B_{1}^{*}\right\}$,
$E\left(D B_{1}^{*}\right)=\left\{f \in B_{1}^{*} ; f\right.$ has a zero in each subinterval in which it changes sign $\}$ ([2]),
$F\left(D B_{1}^{*}\right)=\left\{f \in D B_{1}^{*}\right.$; if f is discontinuous from the right (resp. left) at $x=a$ then $f(a)=0$ and there is a sequence $x_{n} \searrow a\left(y_{n} \nearrow a\right)$ such that $\left.f\left(x_{n}\right)=0\left(f\left(y_{n}\right)=0\right)\right\}([3])$.

Since the constant functions $f=0$ and $g=1$ are in $D B_{1}^{*}, M\left(D B_{1}^{*}\right) \cup P\left(D B_{1}^{*}\right) \subset$ $D B_{1}^{*}$.

In this paper we characterize the families $D B_{1}^{*}+D B_{1}^{*}, D B_{1}^{*} \cdot D B_{1}^{*}, M\left(D B_{1}^{*}\right)$, and $P\left(D B_{1}^{*}\right)$. Moreover, we prove that every function $f \in D B_{1}^{*}$ is quasicontinuous, i.e. for every $x \in \mathbf{R}$, for every $r>0$, and for every neighborhood U of x there is a nonempty open set $V \subset U$ such that $f(V) \subset(f(x)-r, f(x)+r)([4])$.

[^0]Theorem 1 Suppose that a Darboux function $f: \mathbf{R} \rightarrow \mathbf{R}$ is such that for every open interval I the preimage $f^{-1}(I)$ is F_{σ} as well as G_{δ}. Then f is a quasicontinuous function.

Proof. Fix $x \in \mathbf{R}$, an open neighborhood U of x and $r>0$. If $I=(f(x)-$ $r, f(x)+r)$ then $f^{-1}(I)$ is an F_{σ} and G_{δ} set. Since f has the Darboux property, the set $f^{-1}(I)$ is bilaterally c-dense-in-itself. So, there is an interval $(a, b) \subset$ $U \cap f^{-1}(I)([6])$, and consequently, $(a, b) \subset U$ and $f((a, b)) \subset I$. This completes the proof.

Corollary 2 Every Darboux, Baire* 1 function is quasicontinuous.
Proof. It suffices to remark that every Baire* 1 function f is such that $f^{-1}(I)$ is an $F_{\sigma^{-}}$and G_{δ} set for every open interval I ([7]).

Remark 1 Rosen's theorem in [8] follows immediately from Theorem 1.
Theorem 3 The equality $D B_{1}^{*}+D B_{1}^{*}=B_{1}^{*}$ is true.
Proof. Fix $f \in B_{1}^{*}$. Since f is a Baire* 1 function, the interior of the set $C(f)$ of all continuity points of f is dense. We may assume that $C(f) \neq$ \mathbf{R}. Consequently, the set $D(f)=\mathbf{R}-C(f)$ is nowhere dense. In every open component (a, b) of the interior int $C(f)$ of the set $C(f)$ with $a, b \in \mathbf{R}$ there are two sequences $a_{n} \searrow a$ and $b_{n} \nearrow b$ such that $a_{1}<b_{1}$. Analogously, in every component (a, b) of the set int $C(f)$ with $a=-\infty$ or $b=\infty$ there is a sequence $b_{n} \nearrow b$ or respectively $a_{n} \searrow a$. If $a, b \in \mathbf{R}$ then there is a continuous function $f_{a b}:(a, b) \rightarrow \mathbf{R}$ such that:

$$
\begin{align*}
& f_{a b}(x)=0 \text { for } x \in\left(a_{1}, b_{1}\right) \text { or } x=a_{i} \text { or } x=b_{i}, \quad i=1,2, \ldots ; \tag{1}\\
& \left(f+f_{a b}\right)\left(\left[a_{n+1}, a_{n}\right]\right) \supset[-n, n], \quad n=1,2, \ldots ; \tag{2}\\
& \left(f+f_{a b}\right)\left(\left[b_{n}, b_{n+1}\right]\right) \supset[-n, n], \quad n=1,2, \ldots ; \tag{3}
\end{align*}
$$

If $a=-\infty(b=\infty)$, then we define such $f_{a b}$ which satisfies only the conditions (1), (3) ((1), (2)). Let us put

$$
g(x)= \begin{cases}f(x)+f_{a b}(x) & \text { in the component } \quad(a, b) \text { of int } C(f) \\ f(x) & \text { otherwise }\end{cases}
$$

and

$$
h(x)= \begin{cases}-f_{a b}(x) & \text { in the component } \quad(a, b) \text { of int } C(f) \\ 0 & \text { otherwise }\end{cases}
$$

Evidently, $f=g+h$ and the functions g, h are continuous at each point $x \in$ int $C(f)$. So, for every perfect set A with $A \cap \operatorname{int} C(f) \neq \emptyset$ there is an open interval $I \subset$ int $C(f)$ such that $I \cap A \neq \emptyset$ and $g /(A \cap I)$ and $h /(A \cap I)$ are continuous. If A is a perfect set contained in the closure cl $D(f)$ of the set $D(f)$ then $g / A=f / A$ and $h / A=0$. Since $f \in B_{1}^{*}$, there is an open interval I such that $A \cap I \neq \emptyset$ and $g /(A \cap I)=f /(A \cap I)$ is continuous. Obviously, $h /(A \cap I)=0$ is also continuous. So, g, h are Baire* 1 functions. From (2), (3) it follows that the right cluster sets

$$
C^{+}(g, x)=\left\{y \in \overline{\mathbf{R}} ; \text { there is a sequence } x_{n} \searrow x \text { with } g\left(x_{n}\right) \rightarrow y\right\}
$$

and the left cluster sets $C^{-}(g, x)=\left\{y \in \overline{\mathrm{R}}\right.$; there is a sequence $x_{n} \nearrow x$ with $\left.g\left(x_{n}\right) \rightarrow y\right\}$ are equal to $\overline{\mathbf{R}}$ for $x \in \operatorname{cl} D(f)$. By (1) $0 \in C^{+}(h, x) \cap C^{-}(h, x)$ for $x \in \operatorname{cl} D(f)$. Since the functions g, h are continuous at every point $x \in$ Rcl $D(f)=\operatorname{int} C(f)$, the functions g, h have the Darboux property ([1], pp. 8-9, Thm. 1.1.).

Theorem 4 The following equality $M\left(D B_{1}^{*}\right)=C$ is true.
Proof. The proof is the same as the proof of Bruckner's theorem 3.2 in [1] on p. 14.

Theorem 5 The following equality $D B_{1}^{*} \cdot D B_{1}^{*}=E\left(B_{1}^{*}\right)$ is true.
Proof. The proof is the same as the proof of Ceder's theorem in [2]. It is necessary to remark that the functions g, h in Ceder's proof in [2] are Baire* 1 whenever $f \in E\left(B_{1}^{*}\right)$.

Theorem 6 The following equality $P\left(D B_{1}^{*}\right)=F\left(B_{1}^{*}\right)$ is true.
Proof. The proof is a modification of the proof of Fleissner's theorem in [3]. If $f \in F\left(B_{1}^{*}\right)$ and $g \in D B_{1}^{*}$ then $f g \in D([3])$. Since $g f \in B_{1}^{*}$, the sufficiency is proven. For the proof of the necessity we consider two cases.

Case 1. Suppose that $f \in P\left(D B_{1}^{*}\right)$ is discontinuous from the right at a point a and $f(x)>0$ on $(a, a+r](r>0)$. There is $K>0$ such that there is a sequence $p_{n} \searrow a$ with $f\left(p_{n}\right) \rightarrow K \neq f(a)$. Set

$$
g(x)=\left\{\begin{array}{lll}
1 / f(a+r) & \text { for } & x \geq a+r \\
1 / f(x) & \text { for } & x \in(a, a+r) \\
1 / K & \text { for } & x \leq a
\end{array}\right.
$$

Then $g \in D B_{1}^{*}$, but $f(a) g(a) \neq 1$ and $f(x) g(x)=1$ on $(a, a+r)$. So $f g \notin D$.

Case 2. Suppose that f is discontinuous from the right at a with $f(a)>$ 0 , and there is a sequence $p_{n} \searrow a$ with $f\left(p_{n}\right)=0$. Let $E=\{x: x>$ $a, f(x)<f(a) / 2\}$. Since $f \in D B_{1}^{*}$, there are ([7]) disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right], n=1,2, \ldots$, contained in E and such that $a<a_{n+1}<b_{n+1}<$ $a_{n}, n=1,2, \ldots, a_{n} \searrow a, b_{n} \searrow a$. Consequently, there is a function $g \in D B_{1}^{*}$ such that $0<g(x) \leq 1$ for $x \in \bigcup_{n} I_{n}, g(x)=0$ for $x \in(a, \infty)-\bigcup_{n} I_{n}$, and $g(x)=1$ for $x \leq a$. Then $g(a) f(a)=f(a)$ and $f(x) g(x)<f(a) / 2$ for $x>0$. So $f g \notin D$. It suffices to consider only the two cases, since we can suppose that $f \geq 0$ (in the contrary case we can consider f^{2}).

References

[1] A.M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer-Verlag.
[2] J. Ceder, A necessary and sufficient condition for a Baire functions to be a product of two Darboux Baire functions, Rendiconti del Circolo Matematico di Palermo, Ser. II, 34 (1987), 78-84.
[3] R. Fleissner, A note on Baire 1 functions, Real Anal. Exchange 3 (1977-78), 104-106.
[4] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184197.
[5] R.J. O'Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc. 60 (1976), 187-192.
[6] R.J. O'Malley, Approximately differentiable functions: The r topology, Pac. J. Math. 72 (1977), 207-222.
[7] H.W. Pu, Associated sets of Baire* 1 functions, Real Anal. Exchange 8 (198283), 479-485.
[8] H. Rosen, Darboux Baire - . 5 functions, Proc. Math. Amer. Soc. 110 (1990), 285-286.

[^0]: *Supported by KBN research grant (1992-94) Nr. 211449101.
 Received by the editors December 2, 1991

