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 On the Sums and Products of

 Darboux Baire*l Functions

 Let R denote the set of all real numbers. A function / : R - ► R is said to be
 Baire* 1 ([5]) if for every perfect set A C R there is an open interval I such that
 A fi I ^ 0 and the restricted function f/(A fl I) is continuous. Obviously, the
 sum and the product of two Baire* 1 functions are Baire* 1 functions.

 Let us settle some of the notation to be used in the article.

 Bļ - the class of all Baire* 1 functions,

 D - the class of all Darboux functions,

 C - the class of all continuous functions,

 DBļ + DBļ = {f + g; f,geDBļ}, DBļ • DBļ = {fg' fìgeDB1}ì

 M (D BD = {/; for every g G DBļ the sum / + g G DB *},

 P(DBļ ) = {/; for every g G DBļ the product fg G DB *},

 E (DBļ) = {/ G Bļ' f has a zero in each subinterval in which it changes
 sign) ([2]),

 F(DBļ) = {/ G DBļ] if / is discontinuous from the right (resp. left) at
 X = a then f(a) = 0 and there is a sequence xn ' a ( yn /* a) such that
 /(*») = 0 (f(yn) = 0)} ([3]).

 Since the constant functions / = 0 and g = 1 are in DBļ, M(DBļ)'J P(DBl) C
 DBļ.

 In this paper we characterize the families DBļ +DB1 , DBļ DBļ, M {DBļ),
 and P(DBļ). Moreover, we prove that every function / G DBļ is quasicontin-
 uous, i.e. for every x G R, for every r > 0, and for every neighborhood U of x
 there is a nonempty open set V C U such that f(V) C ( f(x ) - r, f(x) + r) ([4]).
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 Theorem 1 Suppose that a Darboux function f : R - ► R is such that for every
 open interval I the preimage f~x(I) is Fa as well as G$. Then f is a quasicon -
 tinuous function .

 Proof. Fix X G R, an open neighborhood U of x and r > 0. If I = (f(x) -
 r, f(x) + r) then /~1(/) is an Fa and G s set. Since / has the Darboux property,
 the set /""1(/) is bilaterally c-dense-in-itself. So, there is an interval (a, 6) C
 U nf"1^) ([6]), and consequently, (a, 6) C U and /((a, 6)) C L This completes
 the proof.

 Corollary 2 Every Darboux, Baire* 1 function is quasicontinuous.

 Proof. It suffices to remark that every Baire* 1 function / is such that f~l(I)
 is an Fa- and G s set for every open interval I ([7]).

 Remark 1 Rosen's theorem in [8] follows immediately from Theorem 1.

 Theorem 3 The equality DBļ + DB{ = Bļ is true.

 Proof. Fix f £ Bļ. Since / is a Baire* 1 function, the interior of the
 set C(f) of all continuity points of / is dense. We may assume that C(f) ^
 R. Consequently, the set D(f) = R - C(f) is nowhere dense. In every open
 component (a, b) of the interior int C(f) of the set C(f) with a, b £ R there are
 two sequences an 'u a and bn /* b such that a' < 6i. Analogously, in every
 component (a, 6) of the set int C(/) with a = - oo or b = oo there is a sequence
 bn b or respectively an ' a. If a, 6 G R then there is a continuous function
 fab • (a, b) - ► R such that:

 fab(x) = 0 for x £ (ai, òi) or x = ai or x = b¿, i = 1,2,... ; (1)

 (/ -f /aò)([a„+i,an]) D [-n,n], n = l,2, (2)

 (/ + /aô)([&n,&n+i]) D [-n,n], n = l,2, (3)

 If a = -oo (6 = oo), then we define such fab which satisfies only the conditions
 (1), (3) ((1), (2)). Let us put

 {/(#) f(x) + fab(z) otherwise in the component (a, b) of int C(f) f(x) otherwise

 and

 {- 0 fab(x) otherwise in the component . (a, b) of int C(f) 0 otherwise .
 .
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 Evidently, / = g + h and the functions <7, h are continuous at each point x G
 int C(f). So, for every perfect set A with A fl int C{f) ^ 0 there is an open
 interval I C int C(f) such that I fi A ^ 0 and g /(A fi I) and h/(A D I) are
 continuous. If A is a perfect set contained in the closure cl D(f) of the set D(f )
 then g/A = f/A and h/A = 0. Since / G B{, there is an open interval I such
 that ADI ^ 0 and g /(AD I) = f/(AnI) is continuous. Obviously, h/(AC'I) = 0
 is also continuous. So, <7, /i are Baire* 1 functions. From (2), (3) it follows that
 the right cluster sets

 C+(g,x) = {y € Ř; there is a sequence xn' x with g(xn) - ► y},

 and the left cluster sets C~(g,x) = {y G Ř; there is a sequence xn /* x with
 g(xn) -+ y} are equal to Ř for x G cl D(f). By (1) 0 G C+(h,x) fl C~(h,x)
 for x G cl D(f). Since the functions <7, h are continuous at every point x G
 Rei D(f) = int C(/), the functions g,h have the Darboux property ([1], pp.
 8-9, Thm. 1.1.).

 Theorem 4 The following equality M{DB') = C is true.

 Proof. The proof is the same as the proof of Bruckner's theorem 3.2 in [1]
 on p. 14.

 Theorem 5 The following equality DB* • DB{ = E(B1) is true.

 Proof. The proof is the same as the proof of Ceder's theorem in [2]. It is
 necessary to remark that the functions gì h in Ceder's proof in [2] are Baire* 1
 whenever / G E(Bļ).

 Theorem 6 The following equality P(DB*) = F(B*) is true.

 Proof. The proof is a modification of the proof of Fleissner's theorem in [3].
 If / G F(Bļ) and g G DB* then fg G D ([3]). Since gf € B*, the sufficiency is
 proven. For the proof of the necessity we consider two cases.

 Case 1. Suppose that / G P{DB' ) is discontinuous from the right at a point
 a and f(x) > 0 on (a, a + r] (r > 0). There is K > 0 such that there is a sequence
 Pn' a with f(pn) - ► K / /(a). Set

 1 //(a-f r) for x > a + r

 g(x) = < 1 / f(x) for x G (a, a + r)
 1/K for x < a

 Then g G DB* , but f(a)g(a) ^ 1 and f(x)g(x) = 1 on (a,a + r). So fg £ D.



 240

 Case 2. Suppose that / is discontinuous from the right at a with f(a) >
 0, and there is a sequence pn ' a with f(pn) = 0. Let E = {x : x >
 a, f(x) < /(a)/2). Since / G DB *, there are ([7]) disjoint closed intervals
 In = [an,6n], n = 1,2, . . . , contained in E and such that a < an+' < 6n+i <
 an, n = 1, 2, . . . , an ' a, bn ' a. Consequently, there is a function g G
 such that 0 < g(x) < 1 for x G (Jn g(x) = 0 for a: G (a,oo) - an(^
 ^r(x) = 1 for x < a. Then g(a)f(a) = f(a) and f(x)g(x) < f(a)/ 2 for x > 0.
 So fg D. It suffices to consider only the two cases, since we can suppose that
 / > 0 (in the contrary case we can consider /2).
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