Real Analysis Exchange Vol. 18(1), 1992/93, pp. 237-240

Zbigniew Grande, Department of Mathematics, Slupsk Pedagogical University, ul. Arciszewskiego 22b, 76-200 Slupsk, Poland

On the Sums and Products of Darboux Baire*1 Functions

Let **R** denote the set of all real numbers. A function $f : \mathbf{R} \to \mathbf{R}$ is said to be Baire* 1 ([5]) if for every perfect set $A \subset \mathbf{R}$ there is an open interval I such that $A \cap I \neq \emptyset$ and the restricted function $f/(A \cap I)$ is continuous. Obviously, the sum and the product of two Baire* 1 functions are Baire* 1 functions.

Let us settle some of the notation to be used in the article.

 B_1^* - the class of all Baire^{*} 1 functions,

D - the class of all Darboux functions,

C - the class of all continuous functions,

 $DB_1^* + DB_1^* = \{f + g; \ f, g \in DB_1^*\}, \ DB_1^* \cdot DB_1^* = \{fg; \ f, g \in DB_1^*\},$

 $M(DB_1^*) = \{f; \text{ for every } g \in DB_1^* \text{ the sum } f + g \in DB_1^*\},\$

 $P(DB_1^*) = \{f; \text{ for every } g \in DB_1^* \text{ the product } fg \in DB_1^*\},\$

 $E(DB_1^*) = \{f \in B_1^*; f \text{ has a zero in each subinterval in which it changes sign}\}$ ([2]),

 $F(DB_1^*) = \{f \in DB_1^*; \text{ if } f \text{ is discontinuous from the right (resp. left) at } x = a \text{ then } f(a) = 0 \text{ and there is a sequence } x_n \searrow a \ (y_n \nearrow a) \text{ such that } f(x_n) = 0 \ (f(y_n) = 0)\}$ ([3]).

Since the constant functions f = 0 and g = 1 are in DB_1^* , $M(DB_1^*) \cup P(DB_1^*) \subset DB_1^*$.

In this paper we characterize the families $DB_1^* + DB_1^*$, $DB_1^* \cdot DB_1^*$, $M(DB_1^*)$, and $P(DB_1^*)$. Moreover, we prove that every function $f \in DB_1^*$ is quasicontinuous, i.e. for every $x \in \mathbf{R}$, for every r > 0, and for every neighborhood U of x there is a nonempty open set $V \subset U$ such that $f(V) \subset (f(x) - r, f(x) + r)$ ([4]).

^{*}Supported by KBN research grant (1992-94) Nr. 2 1144 91 01.

Received by the editors December 2, 1991

Theorem 1 Suppose that a Darboux function $f : \mathbf{R} \to \mathbf{R}$ is such that for every open interval I the preimage $f^{-1}(I)$ is F_{σ} as well as G_{δ} . Then f is a quasicontinuous function.

Proof. Fix $x \in \mathbf{R}$, an open neighborhood U of x and r > 0. If I = (f(x) - r, f(x) + r) then $f^{-1}(I)$ is an F_{σ} and G_{δ} set. Since f has the Darboux property, the set $f^{-1}(I)$ is bilaterally c-dense-in-itself. So, there is an interval $(a, b) \subset U \cap f^{-1}(I)$ ([6]), and consequently, $(a, b) \subset U$ and $f((a, b)) \subset I$. This completes the proof.

Corollary 2 Every Darboux, Baire* 1 function is quasicontinuous.

Proof. It suffices to remark that every Baire^{*} 1 function f is such that $f^{-1}(I)$ is an F_{σ} - and G_{δ} set for every open interval I ([7]).

Remark 1 Rosen's theorem in [8] follows immediately from Theorem 1.

Theorem 3 The equality $DB_1^* + DB_1^* = B_1^*$ is true.

Proof. Fix $f \in B_1^*$. Since f is a Baire^{*} 1 function, the interior of the set C(f) of all continuity points of f is dense. We may assume that $C(f) \neq \mathbf{R}$. Consequently, the set $D(f) = \mathbf{R} - C(f)$ is nowhere dense. In every open component (a, b) of the interior int C(f) of the set C(f) with $a, b \in \mathbf{R}$ there are two sequences $a_n \searrow a$ and $b_n \nearrow b$ such that $a_1 < b_1$. Analogously, in every component (a, b) of the set int C(f) with $a = -\infty$ or $b = \infty$ there is a sequence $b_n \nearrow b$ or respectively $a_n \searrow a$. If $a, b \in \mathbf{R}$ then there is a continuous function $f_{ab}: (a, b) \to \mathbf{R}$ such that:

$$f_{ab}(x) = 0$$
 for $x \in (a_1, b_1)$ or $x = a_i$ or $x = b_i$, $i = 1, 2, ...;$ (1)

$$(f + f_{ab})([a_{n+1}, a_n]) \supset [-n, n], \ n = 1, 2, \dots;$$
 (2)

$$(f + f_{ab})([b_n, b_{n+1}]) \supset [-n, n], \ n = 1, 2, \dots;$$
 (3)

If $a = -\infty$ ($b = \infty$), then we define such f_{ab} which satisfies only the conditions (1), (3) ((1), (2)). Let us put

$$g(x) = \begin{cases} f(x) + f_{ab}(x) & \text{in the component} \quad (a, b) \text{ of int } C(f) \\ f(x) & \text{otherwise} \end{cases}$$

and

$$h(x) = \begin{cases} -f_{ab}(x) & \text{in the component} \quad (a,b) \text{ of int } C(f) \\ 0 & \text{otherwise} \end{cases}$$

Evidently, f = g + h and the functions g, h are continuous at each point $x \in$ int C(f). So, for every perfect set A with $A \cap$ int $C(f) \neq \emptyset$ there is an open interval $I \subset$ int C(f) such that $I \cap A \neq \emptyset$ and $g/(A \cap I)$ and $h/(A \cap I)$ are continuous. If A is a perfect set contained in the closure cl D(f) of the set D(f)then g/A = f/A and h/A = 0. Since $f \in B_1^*$, there is an open interval I such that $A \cap I \neq \emptyset$ and $g/(A \cap I) = f/(A \cap I)$ is continuous. Obviously, $h/(A \cap I) = 0$ is also continuous. So, g, h are Baire^{*} 1 functions. From (2), (3) it follows that the right cluster sets

$$C^+(g, x) = \{y \in \overline{\mathbf{R}}; \text{ there is a sequence } x_n \searrow x \text{ with } g(x_n) \to y\},\$$

and the left cluster sets $C^{-}(g, x) = \{y \in \overline{\mathbb{R}}; \text{ there is a sequence } x_n \nearrow x \text{ with } g(x_n) \to y\}$ are equal to $\overline{\mathbb{R}}$ for $x \in \operatorname{cl} D(f)$. By (1) $0 \in C^+(h, x) \cap C^-(h, x)$ for $x \in \operatorname{cl} D(f)$. Since the functions g, h are continuous at every point $x \in \operatorname{Rcl} D(f) = \operatorname{int} C(f)$, the functions g, h have the Darboux property ([1], pp. 8-9, Thm. 1.1.).

Theorem 4 The following equality $M(DB_1^*) = C$ is true.

Proof. The proof is the same as the proof of Bruckner's theorem 3.2 in [1] on p. 14.

Theorem 5 The following equality $DB_1^* \cdot DB_1^* = E(B_1^*)$ is true.

Proof. The proof is the same as the proof of Ceder's theorem in [2]. It is necessary to remark that the functions g, h in Ceder's proof in [2] are Baire^{*} 1 whenever $f \in E(B_1^*)$.

Theorem 6 The following equality $P(DB_1^*) = F(B_1^*)$ is true.

Proof. The proof is a modification of the proof of Fleissner's theorem in [3]. If $f \in F(B_1^*)$ and $g \in DB_1^*$ then $fg \in D$ ([3]). Since $gf \in B_1^*$, the sufficiency is proven. For the proof of the necessity we consider two cases.

Case 1. Suppose that $f \in P(DB_1^*)$ is discontinuous from the right at a point a and f(x) > 0 on (a, a+r] (r > 0). There is K > 0 such that there is a sequence $p_n \searrow a$ with $f(p_n) \rightarrow K \neq f(a)$. Set

$$g(x) = \begin{cases} 1/f(a+r) & \text{for } x \ge a+r \\ 1/f(x) & \text{for } x \in (a,a+r) \\ 1/K & \text{for } x \le a \end{cases}$$

Then $g \in DB_1^*$, but $f(a)g(a) \neq 1$ and f(x)g(x) = 1 on (a, a + r). So $fg \notin D$.

Case 2. Suppose that f is discontinuous from the right at a with f(a) > 0, and there is a sequence $p_n \searrow a$ with $f(p_n) = 0$. Let $E = \{x : x > a, f(x) < f(a)/2\}$. Since $f \in DB_1^*$, there are ([7]) disjoint closed intervals $I_n = [a_n, b_n], n = 1, 2, \ldots$, contained in E and such that $a < a_{n+1} < b_{n+1} < a_n, n = 1, 2, \ldots, a_n \searrow a, b_n \searrow a$. Consequently, there is a function $g \in DB_1^*$ such that $0 < g(x) \le 1$ for $x \in \bigcup_n I_n$, g(x) = 0 for $x \in (a, \infty) - \bigcup_n I_n$, and g(x) = 1 for $x \le a$. Then g(a)f(a) = f(a) and f(x)g(x) < f(a)/2 for x > 0. So $fg \notin D$. It suffices to consider only the two cases, since we can suppose that $f \ge 0$ (in the contrary case we can consider f^2).

References

- [1] A.M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer-Verlag.
- [2] J. Ceder, A necessary and sufficient condition for a Baire functions to be a product of two Darboux Baire functions, Rendiconti del Circolo Matematico di Palermo, Ser. II, 34 (1987), 78-84.
- [3] R. Fleissner, A note on Baire 1 functions, Real Anal. Exchange 3 (1977-78), 104-106.
- [4] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
- [5] R.J. O'Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc. 60 (1976), 187-192.
- [6] R.J. O'Malley, Approximately differentiable functions: The r topology, Pac. J. Math. 72 (1977), 207-222.
- [7] H.W. Pu, Associated sets of Baire^{*} 1 functions, Real Anal. Exchange 8 (1982-83), 479-485.
- [8] H. Rosen, Darboux Baire .5 functions, Proc. Math. Amer. Soc. 110 (1990), 285-286.

240