
Jetpack Attack:
Artificial Intelligence for Project Hoshimi

SW10 - Spring 2008

Project Group: d632a

Department of Computer Science

Selma Lagerlöfsvej 300

http://www.cs.aau.dk

Title:
Jetpack Attack : AI for Project
Hoshimi.

Theme:
Machine Intelligence

Semester:
SW10, 1st of February - 4th of
June 2008

Group:
d632a

Members:
Henrik Kronborg Andersen
Morten Krog Sneftrup Pedersen

Supervisor:
Yifeng Zeng

Copies: πn

Report - pages: en

Appendices: 0

DVD: 1

Total pages: en +∞

Abstract:

This report describes the process
of creating a competitive AI sys-
tem named Jetpack Attack for
the programming game Project
Hoshimi, using various Machine
Intelligence techniques. The re-
port is a study of implementing a
complete multi-agent AI, but has
emphasis on two specific parts of
the game; finding a starting point,
and classifying the mission.
The rules of Project Hoshimi are
described, followed by the design
of the AI. A range of different AI
techniques are then described, and
the useful ones are implemented,
and a new method for finding the
landing point is developed.
The final implementation is then
tested with various experiments,
including a submission to a world-
wide competition. The results of
these experiments are described
and the report concludes on the
project with an evaluation of the
various results.

Preface

The following report is written during the spring of 2008 by two Software
Engineering students, at the Department of Computer Science at Aalborg
University.

When the words we and our are used, it refers to the authors of this
report and he refers to he/she.

When code is presented, it may differ from the actual source code. It
may have been modified and have had some details removed to make it fit
into the report. This has been done to heighten the legibility of the code,
and to focus on essential functionality.

The first time an abbreviation is used, the entire word or sentence is
written, followed by the abbreviation in parentheses. Throughout the rest
of the report, the abbreviation is used. Abbreviations and their meanings
are located in Appendix A.

It is expected that the reader has basic knowledge of software engineering
and machine intelligence.

Henrik Andersen Morten Pedersen

v

Contents

1 Introduction 2

2 Project Hoshimi 4
2.1 Bots . 5
2.2 Missions . 6

3 AI Design 10
3.1 Common Strategies . 10
3.2 Jetpack Attack Behavior . 14

4 AI Techniques 18
4.1 Related Work . 18
4.2 Landing Point . 19
4.3 Mission Analysis . 29
4.4 Bot Behavior . 34

5 Implementation 38
5.1 Design . 38
5.2 Landing Point Finder . 43
5.3 Mission Controller . 47
5.4 Bot Example . 52

6 Experiments 56
6.1 Landingpoint Finder . 56
6.2 Mission Analyzer . 59
6.3 Competition . 60

7 Conclusion 62
7.1 Future Work . 63

8 Bibliography 64

A List of Acronyms 66

vii

CONTENTS

B Bot Characteristics 68
B.1 AI Bot . 68
B.2 Collector Bot . 68
B.3 Container Bot . 69
B.4 LPCreator Bot . 69
B.5 Explorer Bot . 69
B.6 Needle Bot . 70
B.7 Blocker Bot . 70
B.8 Wall Bot . 70

C Conditional Probability Tables 72
C.1 Factories . 72
C.2 Hoshimi . 73
C.3 Navigation . 74
C.4 Unique Navigation . 75

D Bayesian Network Values 76
D.1 Factories . 76
D.2 Hoshimi . 76
D.3 Navigation . 76
D.4 Unique Navigation . 77

E Score Experiment Results 78

F LPFinder Performance Test 80

G Bayesian Data 82

viii

List of Figures

2.1 Sample Map . 6

3.1 Standard way of attacking. 17
3.2 Jetpack Attack way of attacking. 17

4.1 Two-dimensional gaussian function distribution [6]. 20
4.2 Visualization of an influence map. [7] 22
4.3 Two problems with influence mapping. 22
4.4 Example of strongly connected components. 26
4.5 Example graph for the prune algorithms problem. 28
4.6 Faulty result found by prune algorithm. 28
4.7 Correct result. 29
4.8 Hierarchical Naive Bayes Classifier. 32
4.9 A Simple FSM modeling a door. 34
4.10 An example of a FSM modeling the behavior of a bot. 35

5.1 Class diagram of the landing point finder. 44

6.1 Performance of the Landingpoint Finder approach. 57
6.2 Comparison of worst-case number of TSP calculations. 57

F.1 Landingpoint Finder performance test data. 80

ix

List of Tables

3.1 Landing Points in Small Competition 2 Final Round 11
3.2 Navigation Strategy in Small Competition 2 12
3.3 Final Round Statistics in Small Competition 2 13

4.1 FacKillPercent Conditional Probability Table (CPT) 33

5.1 Collector Template . 40

6.1 Cumulative Scores . 58
6.2 Bayesian Results . 59

B.1 AI Template . 68
B.2 Collector Template . 68
B.3 Container Template . 69
B.4 LPCreator Template . 69
B.5 Explorer Template . 69
B.6 Needle Template . 70
B.7 Blocker Template . 70
B.8 Wall Template . 70

C.1 FacCount CPT . 72
C.2 FacScore CPT . 72
C.3 FacNoOfBots CPT . 72
C.4 FacKillPercent CPT . 73
C.5 Factories CPT . 73
C.6 HoshimiScore CPT . 73
C.7 Hoshimi CPT . 73
C.8 NavScore CPT . 74
C.9 NavNoOfBots CPT . 74
C.10 Navigation CPT . 74
C.11 UNavDist CPT . 75
C.12 UNavScore CPT . 75
C.13 UniqueNavigation CPT . 75

D.1 Factories Values . 76

xi

LIST OF TABLES

D.2 Hoshimi Values . 76
D.3 Navigation Values . 76
D.4 Unique Navigation Values . 77

E.1 SC4 Scores . 78
E.2 Round2-2 Scores . 78
E.3 Round2-3 Scores . 78

G.1 Round2-1 Data . 82
G.2 Round2-2 Data . 82
G.3 Round2-3 Data . 83
G.4 SC1 Data . 83
G.5 SC2 Data . 83
G.6 SC3 Data . 83

xii

Listings

4.1 Sample FSM Implementation 35
5.1 LPFinder.Initialize Implementation 44
5.2 Part of LPFinder.FindLandingPoint Implementation 46
5.3 MissionController.AnalyzeMission Implementation 48
5.4 MissionController.AddNavigationTask Implementation 48
5.5 MissionController.NextBot Implementation 50
5.6 Transporter bot Implementation 52

xiii

Chapter 1

Introduction

Artificial Intelligence (AI) in games is becoming more and more advanced,
along with receiving more and more attention. Competitions like Dream-
BuildPlay [4] and Imagine Cup[9] emphasizes AI, and game developers are
putting a lot of effort into creating very sophisticated AI in their games. One
of the many challenges of implementing a good AI, is making it perform well,
despite involving a lot of complex calculations.

One specific type of AI, is the multi-agent system, which has a number
of autonomous agents, interacting with each other, which must be able to
solve complex tasks. This project is a general study of how to implement
such a multi-agent AI for a game. In the chosen game, main focus is on
developing a method for selecting a starting point, and classification of a
given mission, and using that classification to decide what overall strategy
to use. For both of these points, and advanced solution will be built, that
should improve the overall usefulness of the AI.

In order to avoid developing a full game, the programming game Project
Hoshimi[2], which is part of the Imagine Cup competition, has been chosen.
Project Hoshimi is a game where the player creates an AI to control a fleet
of robots, that have to solve different objectives, in order to get the highest
score. This game has been chosen for two reasons. Firstly, all the necessary
Software Development Kits (SDK) and tools are freely available, and should
be of high quality, which will make it easier to focus on developing the actual
AI. Secondly, because it is part of a well-known and respected competition,
several qualified opponents should be available for us to test our AI against,
which will help us evaluate our efforts. Project Hoshimi also presents a

2

CHAPTER 1. INTRODUCTION

challenge, performance wise, since it is turn-based and thus enforces that
actions must be completed within the given time limit of a turn.

The obvious goal is to create a competitive AI, that will rank among the
top players in the competition. The optimal goal would be a first place, but
since many of the opponents we will be competing against, have participated
in the competition several years in a row, first place is unlikely. Furthermore,
the goal is to prove that our solutions to the two points of focus improve the
overall AI, and that they are general techniques that can be used in other
contexts than Project Hoshimi.

This report covers the development of an AI for Project Hoshimi, named
Jetpack Attack . The techniques used for the implementation along with re-
lated work will be presented, and finally the AI will be tested and evaluated,
with regards to whether or not it fulfills the goals set in the preceding para-
graph. The remainder of this report, is structured as follows:

• Chapter 2 - Project Hoshimi: describes the rules of Project Hoshimi.

• Chapter 3 - AI Design: describes the common strategies used by
other players, and the design of our AI.

• Chapter 4 - AI Techniques: describes the techniques used for the
different parts of the AI.

• Chapter 5 - Implementation: describes the implementation of Jet-
pack Attack .

• Chapter 6 - Experiments: describes various experiments performed
to test the results of this project.

• Chapter 7 - Conclusion: evaluates and concludes upon the project.

3

Chapter 2

Project Hoshimi

This chapter describes the main focus of this report, i.e. Project Hoshimi[2],
which is a part of a competition called the Imagine Cup[9]. Project Hoshimi
is a programming competition, where the purpose is to create an AI, which
will play against AIs, created by other participants in the competition.

The story behind Project Hoshimi, is that the Earth has become over-
populated and extremely polluted. The pollution is especially the result of
the actions of a man named Pierre, who builds polluting factories at dif-
ferent locations all over the world. To help heal the Earth, scientists have
discovered a gas called OXY gas, which reduces pollution when injected into
special locations on the Earth. These locations are called Hoshimi points.
Apart from healing the Earth, the source of the pollution must also be re-
moved, and therefore Pierre’s factories must be destroyed.

The role of a participator in the Project Hoshimi competition, is to
create an AI, which helps stop pollution by destroying Pierre’s factories,
and injecting OXY gas into Hoshimi points. To do this, a number of bots
are available, each of which have different strengths and weaknesses, and
different abilities. These bots are described in Section 2.1. When the AI
is ready for deployment, it is given a map and a number of objectives to
solve. The combinations of a map and the objectives, are called missions,
and these are described in Section 2.2. When given a mission, the first task
that must be performed, is selecting a landing point, which can be anywhere
in the map. This location is where all bots are initially built, so therefore
choosing the landing point, must be done with great care.

The competition part of Project Hoshimi, consists of pitting your AI

4

CHAPTER 2. PROJECT HOSHIMI

against an AI created by another competitor. This is done by giving both
AIs the same mission, and thus deploying them simultaneously in the same
map, with the same objectives.

2.1 Bots

There are several types of bots in Project Hoshimi, all of which are built
and controlled by a single bot, called the AI. The different bots which can
be built, all have different abilities and characteristics which makes them
more or less suited to perform a given task. It is not possible to have more
than 40 bots at any point during the game. The different types of bots, and
their graphical representation in the game, are the following:

• - AI: builds and controls the other bots.

• - Container: used for collecting OXY gas and transporting it to
Hoshimi points.

• - Collector: can also collect and transport OXY gas, and is fur-
thermore able to defend itself.

• - Explorer: fast bot which ignores slow areas on the map, and
can see far, but has a limited amount of health.

• - Needle: non-moving bot, used for injecting OXY gas into the
Earth.

• - Blocker: stationary bot, which slows opponent’s bots down in
an area around itself.

• - Wall: another non-moving bot, which completely stops the op-
ponent’s bots from passing.

• - LPCreator: used for creating a second landing point, where
new bots can be built.

As mentioned previously, all bots are initially built at the selected land-
ing point, but with the LPCreator, it is possible to open a new landing
point anywhere on the map, and then have the option of using this point
for building bots. However, the Needle, Wall and Blocker bots are not built

5

2.2. MISSIONS

at the new landing point nor the old one for that matter, but instead are
always built at the location of the AI bot, since these bots can not move.
Once an LPCreator has opened the landing point, the bot will only be alive
for 500 more turns, after which the new landing point will close, and it will
not be possible to build an LPCreator again during the game.

2.2 Missions

As mentioned previously, a mission in Project Hoshimi consists of a map,
and a number of objectives. The map consists of different terrain types all of
which have different attributes. Water is not passable and is therefore used
for outlining the map and creating natural obstacles, such as rivers, lakes
and fjords. Other than that, there are two types of terrain which makes
bots move slow and very slow respectively, and one type which makes the
bots move faster. A sample map can be seen in Figure 2.1.

Figure 2.1: Sample Map

6

CHAPTER 2. PROJECT HOSHIMI

The symbols on the map, signify different things, i.e. the circles ()
are OXY gas locations, the squares () are Hoshimi points, and the white
factories (), are indeed factories. The light-brown areas make the bots
move slowly, and the dark-brown areas make the bots move very slowly.

To win a mission, the AI must have a higher score than the opponent’s
AI, when the game is over, which is when 1500 turns have passed. It is
possible to score points by completing objectives and by injecting OXY gas
in to the Earth, at Hoshimi points. After selecting a landing point, the
AI must attempt to defeat the opponent. This is done using the different
bots, described in Section 2.1. The following section describes the different
types of objectives possible to encounter in a mission, and how they can be
completed. It should be noted, that in the case of the two players having
the same number of points at the end of the game, there are four rules which
decides the outcome of the game:

1. Number of objectives done

2. Needle bots placed on Hoshimi points

3. Number of Needle bots

4. Number of bots

This means that if two players have the same score, the one with the
most completed objectives will be the winner. If this number also is equal,
number two in the list is used to determine a winner, and so on.

2.2.1 Objectives

There are five different types of objectives in Project Hoshimi, all of which
gives a number of points and most of them can appear more than once in
any given mission. Some objectives are of a more passive nature while others
are more active. Apart from the five objectives in the official rules, we have
chosen to add a sixth one, which is of high importance, when it comes to
scoring points, and should therefore be treated as an objective in itself.

2.2.1.1 Passive Objectives

The passive objectives are ones which do not require specific actions of the
AI, but instead are achieved, if not automatically, then at least without

7

2.2. MISSIONS

making explicit decisions to achieve them. Achieving them only for the
sake of doing so is therefore not as important as the active objectives, but
nevertheless can be crucial to winning the game. For example, the AI Alive
objective aims to keep the AI bot alive for a certain number of turns. If this
goal is reached, a number of points is awarded to the player. Achieving this
objective also makes a lot of sense in itself, since if the AI bot dies, all the
other bots will finish their current action and not be able to do anything
after that, and thus leaving the opponent free to do as he chooses. The last
passive objective, is the Score objective, which is accomplished by having a
certain score by a specific turn. Again, this objective makes sense, since it
is the goal of the game to get the highest possible score.

2.2.1.2 Active Objectives

The active objectives are ones which can not be completed, without explic-
itly taken them into account, when devising a strategy. There are three of
these, plus the one we have added. There are two that deal with navigation,
i.e. the Navigation objective and the Unique Navigation objective. The first
one lists a number of locations in the map, and to achieve the objective, all
these locations must be visited, before the game ends. This can be done
with any number of bots. The Unique Navigation objective also has a list
of locations which must be visited. The only difference from the Navigation
objective, is that in this objective all the locations must be visited by one
specific bot. It should be noted that both players can achieve these objec-
tives, and receive full points for them. There can be any number of both
Navigation objectives and Unique Navigation objectives in a mission. Both
navigation objectives can also require that it is completed by a specific type
of bot, e.g. a Collector or an Explorer.

Another active objective is the Factory objective, where the goal simply
is to destroy a number of factories. This number will always be more than
half of the total number of factories, so only one player can achieve the ob-
jective. Therefore it is important to quickly accomplish the objective, before
the opponent does. Destroying factories can also influence the completion
of other objectives, since they have the ability to shoot and damage bots,
and thus preventing them from passing by.

The last active objective, is the one we have added and named the
Hoshimi Objective. As mentioned previously, apart from achieving objec-

8

CHAPTER 2. PROJECT HOSHIMI

tives, scoring points can also be done by collecting OXY gas, and injecting
it into the Earth at Hoshimi points. Since achieving the highest score is cru-
cial to winning a game, it has been deemed necessary to treat the process
of collecting the OXY gas, transporting it to Hoshimi points, and injecting
it into the earth, as it was an objective. Therefore it will be considered an
objective along with the others, for all intent and purposes.

This concludes the description of Project Hoshimi, and the different
resources available when creating an AI for the competition.

9

Chapter 3

AI Design

This chapter describes the initial design of the AI for Jetpack Attack . This
includes the behavior of the different bots, along with how they are con-
trolled, and other features which helps in scoring points in the game. To
both gain an understanding of the opponents we might face, and also serve
as an inspiration for Jetpack Attack , the following section surveys AIs devel-
oped by other players. After that, Section 3.2 describes the overall behavior
of Jetpack Attack and some of the features used to create that behavior.

3.1 Common Strategies

This section describes some of the common strategies for solving active ob-
jectives and for selecting the initial landing point. The strategies have been
found by examining replays of Small Competition games from the Project
Hoshimi website, and they are used to gain knowledge of how players com-
plete the objectives and position their landing point. Focus is on active ob-
jectives, as they are the only objectives that require non-trivial strategies.
This information is used when the strategy for Jetpack Attack is created.

3.1.1 Landing Point

Picking a landing point is one of the most important aspects in Project
Hoshimi. It is also one of the hardest aspects to analyze from replays, as a
players most likely take several factors into account when selecting a landing
point, that cannot directly be seen from replays. However, using replays will
give some indication of what players take into account when computing their

10

CHAPTER 3. AI DESIGN

Player Factories Nav UNav Hoshimi OXY Notes
G3 3 3 1 1 1 On OXY
KTropic 4 0 2 5 1 On Hoshimi
NanoTim 5 1 1 6 1 On Hoshimi
NoOne 3 0 1 5 0 On Hoshimi

Table 3.1: Landing Points in Small Competition 2 Final Round

landing point.

Table 3.1 lists the information collected from the replays of the Small
Competition 2 final round. The information was gathered by finding all
objective points in a radius of 30 from the landing point.

Although Table 3.1 is only based on four players, it seems to indicate
that players tend to place their landing point close to hoshimi points, OXY
points and factories. Considering that hoshimi points only can be occupied
by one Needle bot at a time, ensuring that you start close to these can be
essential. In the map used for Small Competition 2 factories are located
right next to hoshimi points, which explains why the landing point of every
player is located next to factories. It is interesting to note that the landing
point of every player is on top of a hoshimi or OXY point. This means that,
in the case of hoshimi points, the player can build a Needle bot without
having to move the AI bot.

3.1.2 Navigation Objectives

There are two common strategies for solving navigation objectives. One is
to simply create a bot for every navigation point, thereby traversing every
point in one go. Another strategy, that seems to be the most widely used,
is to create a certain number of bots, and then make them traverse the
different points one at a time. Along with the two different strategies, there
is also a variance in the type of bot used when moving to objective points,
and how the player prioritize navigation objectives all together.

Table 3.2 lists the different strategies used by the players in Small Com-
petition 2. Unit count is an estimate on how many units are assigned to
navigation objectives, and Priority is an estimated priority, based on how
long it takes for the AI to start focusing on navigation objectives.

The data has been gathered by watching replays, and therefore might
not be entirely accurate. However, it shows that some players seem to use

11

3.1. COMMON STRATEGIES

Player Units used Unit count Priority
G3 Both Few units Low
NoOne Both Several units Medium
KTropin Collectors Several units Medium
NanoTim Both Several units Low
AravindaDP SC2 Explorers Few units Medium
BHKongMing Both Several units Medium
DGAP team Both Few units Medium
Bonnet Collectors Many units High
Zephyr Explorers Few units Medium
Darkspy Collectors Few units Low
Sphinx Both Few units Low

Table 3.2: Navigation Strategy in Small Competition 2

one type of bots consistently, either Explorer or Collector bots, except when
the navigation objective specifically specifies which bot type must be used.
This makes it hard to draw a specific conclusion regarding which type to
use. One thing that can be concluded, is that every single player tries to
solve the navigation objectives.

3.1.3 Unique Navigation Objectives

Accomplishing unique navigation objectives is significantly harder than the
navigation objectives. The unique-navigation objectives require traveling
more by one bot than navigation objectives, which means more time for the
bot be destroyed. For this reason, it seems like most players use Explorer
bots to accomplish them, due to their higher movement speed. This leads
to the question of whether it pays off to actually try an achieve these.

Table 3.3 lists different statistics from the 12 games in the final round in
Small Competition 2. The Nav. and UNav. columns list how many naviga-
tion objectives and unique-navigation objectives each player completed out
of the maximum possible. The Score column is the score at the end of the
game, and AI Alive list whether the players AI was alive at the end of the
game or not.

From the statistics in Table 3.3, it seems fair to conclude that winning the
game is related to the amount of navigation and unique navigation objectives
completed. It also becomes visible that solving unique objectives is far from
trivial, and that even though most players try to complete them, they rarely

12

CHAPTER 3. AI DESIGN

Game Nav. (4) UNav. (3) Score AI Alive Winner
G3, KTropin 1, 3 0, 1 1200, 4495 no, yes KTropin
G3, NanoTim 2, 3 0, 1 2240, 4490 no, yes NanoTim
G3, NoOne 2, 2 0, 1 2120, 4020 yes, yes NoOne
KTropin, G3 3, 3 0, 1 4505, 2200 yes, no KTropin
KTropin, NanoTim 1, 4 1, 2 2680, 5680 no, yes NanoTim
KTropin, NoOne 0, 0 0, 0 1060, 5 no, no KTropin
NanoTim, G3 2, 3 0, 0 3100, 2940 no, yes NanoTim
NanoTim, KTropin 4, 1 2, 0 6350, 2065 yes, no NanoTim
NanoTim, NoOne 4, 3 3, 0 4765, 2640 yes, no NanoTim
NoOne, G3 4, 2 1, 0 4405, 2340 yes, yes NoOne
NoOne, KTropin 0, 0 0, 0 5, 1060 no, no KTropin
NoOne, NanoTim 3, 4 0, 3 2425, 4585 no, yes NanoTim

Table 3.3: Final Round Statistics in Small Competition 2

succeed. This should be taken into account when deciding how much to
prioritize them.

3.1.4 Factory

Factory objectives seem to be prioritized high by the players as they often
attack factories within the first 200 turns. However, it seems like most of
the players in Small Competition 2 are not completely aware of how scoring
works for factory objectives, as three of four players consistently attacks
more than one factory. It should be noted that the maps used for this
survey, uses an old version of the factory objective, where all factories had
to be destroyed to gain points. However, it was enough to just kill on factory
and let the other player destroy the others to gain points for completion.

When attacking factories, players simply send Collector bots to the fac-
tories, and attack out of range from the factories. The amount of units sent
to destroy the factories varies from player to player.

3.1.5 Hoshimi

The strategy for accomplishing hoshimi objectives require two steps; build
a Needle bot on a hoshimi point, and collect OXY gas and deposit it in the
Needle.

The players in the final round of Small Competition 2 use three different
strategies for accomplishing OXY gas objectives. The first player selects his
landing point on a hoshimi point, builds an LPCreator bot as the first bot,

13

3.2. JETPACK ATTACK BEHAVIOR

sends the LPCreator bot to the nearest OXY point and opens a landing
point there. After building a Needle bot, he starts building Container bots
at the newly open landing point, fills them, and sends them towards the
Needle bots and fills the Needle. The second and third player creates several
Container bots and the initial landing point, sends them to the nearest OXY
point to collect gas, while building Needle bots. The last player selects a
landing point on a OXY point, and builds Container bots when the first
Needle bot has been build.

This concludes the survey of the common strategies used by other players
in Project Hoshimi. The following describes how Jetpack Attack will behave,
inspired by the previous sections.

3.2 Jetpack Attack Behavior

This section describes the overall behavior of the bots in Jetpack Attack ,
along with some of the techniques which will be used to implement this
behavior. The first thing that must be done when the game starts, is picking
a landing point, and as described previously, this is very important for how
well the strategy works. There are many factors that go into deciding a good
landing point, such as the number of, and locations of the hoshimi points,
OXY points and factories, and the layout of the terrain. Our strategy is to
do an initial analysis of the given mission, to determine which factors are
the most important. This will be based on a number of things, e.g. the total
number of factories and how many must be killed to fulfil an objective, how
many hoshimi points there are, and how far they are apart, etc. When this
analysis is done, and it is determined that, for instance, hoshimi points are
the most important point-giver in the game, a landing point will be selected
which enables quick access to as many hoshimi points as possible. How
the mission will be analyzed, and the landing point selected, is described in
Chapter 4. Once a landing point has been chosen, the next goal is achieving
objectives, and scoring as many points as possible. To do this, a number
of different features are designed, and these are described in the following
sections.

14

CHAPTER 3. AI DESIGN

3.2.1 Protecting the AI

One of the most important things to do in a game is to keep the AI bot
alive. To help ensure the security of the AI bot, first an Explorer bot is
built, called the AIScout. Because the Explorer is capable of seeing further
than any other bot, the AIScout is useful for extending the viewing distance
of the AI bot, and thus helping it better foresee what will happen in future
turns. The AIScout will follow the AI constantly. Since neither the AI
nor the AIScout are capable of defending themselves, a Collector bot called
a Bodyguard will also follow the AI around, providing attack power, for
when enemies come too close. Despite of the Bodyguard, the AI can still be
killed. Therefore a stationary Needle bot, the DefenseNeedle, is introduced.
This type of bot, has the advantage of being built at the location of the AI,
instead of at the landing point, and it has a shield which protects all nearby
bots while it is up. So when an enemy is spotted near the AI, it stops
and builds a DefenseNeedle. If the shield of the DefenseNeedle becomes
low, it will auto-destruct, and another one will be built immediately. The
DefenseNeedle also has the added bonus of being able to shoot, and can
therefore help kill the enemies faster. By using the AIScout, the Bodyguard
and the DefenseNeedle, the AI should be very hard to kill, and capable of
defending itself efficiently.

3.2.2 Navigation Objectives

Now that the AI is protected, we will focus on completing objectives. For
the unique navigation objectives, Explorer bots, called Scouts will be used,
unless the objective calls for a specific bot to be used. These bots have the
advantage of being faster than all other bots, and this is often necessary to
reach all goals of a unique navigation objective before the end of the game.
For regular navigation objectives, Collector bots called Destroyers will be
used, as it is possible to send one of these out to each goal of several different
navigation objectives, and they are able to defend themselves, if they run
into enemies along the way. Again, the Destroyers will only be used, if the
objective does not call for a specific bot.

15

3.2. JETPACK ATTACK BEHAVIOR

3.2.3 Hoshimi Objectives

To collect OXY gas, Container bots, named Transporters will be used, and
these bots will also be able to complete navigation objectives, if the objective
itself stipulates this. To inject the gas into the earth at hoshimi points,
Needle bots called InjectorNeedles will be used. The Transporters will collect
the gas and then either move to an available InjectorNeedle placed on a
hoshimi point, or if none are available, move to the current target of the AI,
since this will be the next place an InjectorNeedle will be built.

3.2.4 Hunter Bots

The last type of bot being used in Jetpack Attack , is another Collector
bot, called the Hunter. At all times during a game, there will be five of
these bots, and their responsibility is to, as the name suggests, hunt the
enemy bots. To do this they will randomly patrol the map, and attack all
enemies it encounters. If another bot spots the enemy AI, all Hunters will
immediately give up their current target, and move to where the AI was
spotted. Killing the enemy AI would give our team a very large advantage
since, as mentioned previously, if your AI dies, you will no be able to perform
any actions for the rest of the game, and thus leaving your opponent to do
as he likes.

3.2.5 Miscellaneous Techniques

Apart from the bots and techniques described in the previous sections, there
are also a few other techniques which are valuable for gaining an advantage
over the opponent. First of all, the bots which are not able to defend them-
selves (such as the Scout and the Transporter), must be able to call for help,
when an enemy is spotted, which can potentially hurt the bot. When a call
for help has been made, a Destroyer bot must come to the aid of the bot in
need. This can either be a new bot, or one which has already been built.

Another thing which can give an edge over the opponents, is utilizing the
way a bot attacks. As described previously, all bots capable of attacking,
has a characteristic called DefenseDistance, which is how far they can shoot.
When they shoot at a point, damage will be dealt in a circle around that
point. This is illustrated in Figure 3.1.

16

CHAPTER 3. AI DESIGN

Figure 3.1: Standard way of attacking.

The strategies used by the other players, described in Section 3.1, all use
the standard way of attacking other players, i.e. when the other player’s bot
is spotted, the bot will fire at the location of the other bot. This is actually
less than optimal, since other bots are often spotted before they are within
the DefenseDistance of the spotter. Jetpack Attack will use this fact to gain
an advantage over other players. By taking into account that damage is
dealt in a circle around the point being attacked, it is possible to shoot at
enemies outside of a bots DefenseDistance, as can be seen in Figure 3.2.

Figure 3.2: Jetpack Attack way of attacking.

By doing this, it is possible to kill an enemy with the same capabilities
as our own bot, before he reaches us, with his attack.

As described above, Jetpack Attack will use multiple bots, with differ-
ent abilities, strengths and weaknesses, to accomplish objectives and score
points. To keep track of the different bots and objectives, a central control
unit is used, and the concept of Tasks is introduced. Since every way of
scoring points basically comes down to moving to a location and perform-
ing some action, tasks are very generic entities which contains a number of
targets and the type of bot needed to complete the task. To handle the
delegation of tasks, the central control unit is needed, to keep track of the
given mission, and which tasks are of the highest priority.

17

Chapter 4

AI Techniques

This chapter describes some of the techniques used to implement the main
features of Jetpack Attack . As described previously, the two main focus
points of this project are finding a good landing point, and the initial analysis
of the mission. Apart from these two points, a description of how bots will
behave is presented.

4.1 Related Work

This section describes two techniques for finding a landing point in Project
Hoshimi. Because Project Hoshimi is a competition, most of the information
about how the competitors build their AI is kept secret. The only informa-
tion available is the official documentation. The two techniques described
here are taken from this documentation [11].

4.1.1 Barycenter

This technique uses the barycenter of the objectives in the map to find a
landing point. It is one of the approaches to find a landing point provided
by Project Hoshimi.

The barycenter is defined as the center of mass of one or more objects. In
this case, it is used to provide a weighted average of the different objectives
in the map. Calculating the landing point is very simple using this approach.
First, three average points are calculated from every hoshimi point, OXY
point and factory. The landing point is then found by calculating a weighted
average of those three points.

18

CHAPTER 4. AI TECHNIQUES

Although the landing point can be found very fast using this approach,
the landing point found, is rarely in a desirable location, and does not take
the terrain into consideration.

4.1.2 Gaussian Function

This techniques works by rating every point in the map using a two-dimensional
Gaussian function, and picking the highest value point. This section is based
on [11] and [13].

By rating every point in the map, finding the landing point is done
simply by picking the highest rated point. In order to rate the maps, a
two-dimensional Gaussian function

f(x, y) = Ae
−

„
(x−xo)2

2σ2
x

+
(y−yo)2

2σ2
y

«

is used, where where A is the amplitude, x0,y0 is the center and σx, σy is the
spread in x and y, that is, how far the value will spread out from the point
of the amplitude. This function gives good results, due to the way values
are distributed, as seen in Figure 4.1 where A = 1, x0 = 0, y0 = 0, and σx

= σy = 1.
In order to find the landing point, the Gaussian function is applied to

every hoshimi point, OXY point and factory. After applying the function,
the best starting point is simply found by choosing the point with the highest
value.

Although this method is a significant improvement over the Barycenter
approach described in Section 4.1.1, it too does not take terrain into con-
sideration as well. This can make it perform badly in maps made to expose
and exploit AIs using such algorithms. Therefore, a number of new methods
has been investigated, which takes the shortcomings of the barycenter and
gauss methods into account. These methods are described in the following
sections.

4.2 Landing Point

This section contains details regarding selection of a landing point. First,
the problem is formalized, followed by two different approaches to solving
the problem. Both approaches are described and evaluated with regards

19

4.2. LANDING POINT

Figure 4.1: Two-dimensional gaussian function distribution [6].

to their use in Project Hoshimi. Lastly, the section is concluded with the
selection of an approach for use in Jetpack Attack .

4.2.1 Formalizing the Landing Point Problem

Through examination of the problem, we have devised to following formal-
ization: Given some map M with some number of objectives, find a starting
point P from which the number of objectives reachable with less than or
equal to D total distance walked is maximized. Another way to define the
problem, is with the following maximization problem:

argmax
P

ReachableObjectives(P,D,M)

where ReachableObjectives gives the number of objectives reachable in map
M with less than or equal to D distance. No matter what point of found
as the best starting point, it will always be on the location of an objective,
e.g. an OXY or hoshimi point.

To put this is a more real-life usable form: Consider a city with several

20

CHAPTER 4. AI TECHNIQUES

landmarks and a car with enough gas to drive some set number of miles, the
problem is: If you could pick any spot in the city, where would you start
to see the highest possible number of landmarks before you run out of gas?
This translates to finding the spot where the AI bot can go to the highest
number of objectives, within some set number of turns.

The following sections describe two different approaches to solving this
problem.

4.2.2 Influence Mapping

This section describes influence mapping and how it can be used to decide
where to place the landing point. The details of influence mapping is de-
scribed along with strategies for applying it to our problem. Finally, the
benefits and shortcomings of influence mapping is described.

An influence map is a spatial representation of the value of different areas
of a map, that can be used to find an approximative result to the landing
point problem. Influence mapping works by assigning influence to points in
the map, and propagating the influence across the map, according to some
falloff factor, to produce an overall picture of the value of the different areas
in the map. The falloff factor decides how large a percentage of the influence
of a given cell is propagated to adjacent cells. Using the influence map, it
is possible to find points of high value, points of conflict, or areas of high
value. Figure 4.2 is a visualization of an influence map. The map consist
of two different sources of influence, represented by black dots and orange
influence, and white dots and blue influence.

Given the nature of the problem of finding a landing point, influence
mapping seems a perfect fit. By assigning values to different objectives, the
location of highest influence can be found, which in turn is the most valuable
starting location. The problem is in deciding what amount of influence for
the different objects, and the algorithm for propagating the influence.

Through testing and experimentation, it turns out that influence map-
ping is not as good a solution to the landing point problem as first thought.
By using a testing application where the influence and propagation can be
modified at runtime, we found two major problems with the use of influence
mapping in our context.

Figure 4.3 shows the two problems with using influence mapping for
finding the landing point. In each side of the figure, the black cross denotes

21

4.2. LANDING POINT

Figure 4.2: Visualization of an influence map. [7]

Figure 4.3: Two problems with influence mapping.

the point of highest influence.

The left side of Figure 4.3 shows the problem of having a too high falloff
factor, that is, a falloff factor close to one. When a high falloff factor is used,

22

CHAPTER 4. AI TECHNIQUES

it means that influence is propagated far across the map. When influence is
propagated with almost no drop is values, the end result is almost the same
as using weighted average Euler distances to the objectives. Because the AI
bot is the only bot that can build Needle bots, it is more desirable to have
a landing point close to a set of hoshimi points than it is to be close be in
the closest distance to every objective.

The right side of Figure 4.3 shows the problem of having too low falloff
values. With low falloff values, influence is not propagated very far across
the map, which results in several areas of influence instead of one big area.
With several areas of influence, one might think that it would be possible
to achieve the desired goal. However, because influence is not spread very
far, objectives that are very close together will produce very high influence
values, and would therefore be chosen as a landing point. This is also not
desirable, as it is more valuable to have five hoshimi points with relatively
short distance, that three right next to each other.

Another problem, not depicted in the figure, is the OXY points. Because
OXY points have unlimited amounts of OXY gas, it is never required to
have access to more than one OXY points. Using a single influence map,
this cannot be taken into account, which means that giving OXY points high
influence would cause two OXY points next to each other to be regarded as
a good starting position, which is not the case.

It might be possible to develop some way of working around these prob-
lems, e.g. by using several influence maps. However, because these problems
stem from the way influence mapping works, the problems have lead us to
believe that another approach would be better suited to solve the problem
of finding the optimal landing point location.

4.2.3 Graph Approach

This sections describes how the problem of finding a landing point can be
turned into a graph problem, and then solved.

The problem in 4.2.1 can easily be converted to a graph problem, by
converting the map M to a graph, and using graph theory to evaluate the
ReachableObjectives function. However, to create a graph that mimics the
problem at hand, several factors has to be taken into account. These factors
are:

23

4.2. LANDING POINT

• The type of graph to build: directed, non-directed, cyclic or acyclic.

• What are nodes in the graph: every objective point, hoshimi points,
OXY points, etc.

• How are nodes connected in the graph: weighted or non-weighted.

The goal is to create a graph that resembles the actual problem. To
do that, the graph needs to be cyclic, as there are no restrictions on that
in the game. It also needs to be directed, as the length of a path in one
direction can be different from the length of the same path in the opposite
direction, due to airstreams. In order to make the edges correspond to the
path in the map, they have to be weighted, with the weight being the length
of the path. The graph must have a path for every walkable path in the
game, which means it will most likely be a fully connected graph, unless the
map consists of unreachable locations. As the graph will be used to find the
optimal landing point, the graph will have a vertices corresponding to one
type of objective, depending on which objective is most valuable.

Building the graph then, consists of deciding what objective to use as
vertices, and then fully connecting the graph, and calculating the distance of
every edge in the graph, based on the path in the map. This will most likely
result in large number of paths having to be calculated. As an example, the
map used in Small Competition 2 has 30 hoshimi points. If building the
graph with 30 hoshimi points as vertices, the number of paths having to be
found is:

NumberOfPaths = 2 ·
N−1∑
i=1

i

that is, if N = 30
NumberOfPaths = 870.

Because the landing point has to be found as fast as possible, this can prove
to be a problem if calculating the path takes too long.

Given a graph as described above we have devised two graph approaches
to solving the problem. One is a brute force exhaustive search of every
available subgraph, and the other is based on pruning the graph until a
solution is found, rather than checking every subgraph. Each solution will
be described in detail below.

24

CHAPTER 4. AI TECHNIQUES

4.2.3.1 Brute Force

An exact result to the maximization problem can be found by performing an
exhaustive search of for the best subgraph in the graph; best meaning the
subgraph with the highest number of vertices, that can be visited in less than
the distance D. Finding the shortest distance needed to visit all nodes in the
subgraph is the well-known Traveling Salesman Problem (TSP), which is a
known NP-hard problem. However, both exact and approximative solutions
to the TSP are available, and they all perform well on low vertex counts, so
solving the TSP in our case will not be the most expensive part of finding
the landing point. Something much more problematic is the sheer number
of subgraphs, for which the TSP has to be solved. Consider a graph of n
vertices; the number of unique subgraphs without repetitions of size k is(

n

k

)
=

n!
k!(n− k)!

This means that the number of unique subgraphs of size 1 to n can be found
using

n∑
k=1

(
n

k

)
which means that in a graph with 30 vertices, the number of unique sub-
graphs is

30∑
k=1

(
30
k

)
= 1073741823.

The incredibly high number of subgraphs that has to be searched in order
to find the optimal subgraph is the breaking point for this approach. By
searching subgraphs starting with the biggest down to the lowest, the op-
timal subgraph might be found quickly in some cases, but a worst case of
2N − 1 subgraphs to check makes this approach unusable for our needs.

4.2.3.2 Pruning

This approach relies on pruning of the edges of the graph in order to produce
a result quickly. Although not exact solution of the maximization problem,
the result is found significantly faster than using a brute force approach,
which is of higher importance in our case.

The major problem with a brute force solution, is the high number of

25

4.2. LANDING POINT

subgraphs that has to be examined to find the best solution. By continuously
removing edges from the graph, the graph will eventually be split up into
several different strongly connected components, that can be examined for
their potential of being a candidate.

In order to understand this approach, it is important to understand
the concept of strongly connected components. In graph theory, a directed
graph with a path from each vertex to every other vertex is called a strongly
connected graph. The strongly connected components of a directed graph
are the strongly connected subgraphs of a graph. As an example, see Figure
4.4 where the two strongly connected components of the graph are marked
by a blue circle.

Figure 4.4: Example of strongly connected components.

When the strongly connected components have been found, the TSP
path distance is calculated, and compared to the maximum allowed distance.
If the TSP distance is less than the maximum distance, it use stored as a
possible candidate for a starting point and removed from the graph, if not,
it is left as part of the graph. By continuing in this manner, the graph will
eventually be empty, and the best candidate can be found by selecting the
candidate with the highest number of vertices, and picking the location of
any vertex as the starting point. The following is an outline of the algorithm.

1. Given a graph as described in section 4.2.3.

2. Prune some number of edges, starting with the highest weighted edges.

3. Find every connected component in the graph pruned.

4. Solve TSP for every strongly connected component found; if the dis-
tance of the path is below the desired distance, save the component in

26

CHAPTER 4. AI TECHNIQUES

a list of candidates and remove it from the graph.

5. If the graph still contains vertices, go back to 2, otherwise, continue
to 6.

6. Find and return candidate with the highest number of vertices.

Pruning the edges is done in a greedy manner, from the highest weight
to the lowest. By always removing the edge with the highest weight, we
hope to reach a global optimum by finding the largest possible strongly con-
nected component within some maximum distance. However, the approach
is not guaranteed to return the global optimum. When pruning the nodes,
different approaches can be taken. One can simply choose to prune the
highest weighted edge at every iteration, or to choose some set number of
edges. Another way could be to prune a percentage of edges to achieve a
faster albeit more inaccurate result. No matter what approach is taken, the
algorithm is guaranteed to terminate, as a graph with no edges will have as
many strongly connected components and the number of vertices.

Although this approach does not produce the exact result, finding the
landing point using this approach can be done significantly faster than using
a brute force method. Given a graph with V vertices and E edges, and that
1 edge is pruned every iteration of the algorithm, the algorithm will at most
run E iterations. At each iteration, the strongly connected components
have to be found. However, this can be done in O(|V |+ |E|) using Tarjan’s
algorithm [12] and is therefore not a problem.

As mentioned earlier, this approach is not guaranteed to produce a global
optimum. For an example of a problem, consider the graph in Figure 4.5 and
a maximum total distance of 20. Initially, the strongly connected component
of the graph is the entire graph, which is not a candidate, as the TSP path
distance is more than 20.

By using the prune algorithm on this graph, the highest weighted edge,
i.e. the edge with weight 10, will be removed, and the strongly connected
components of the graph is as shown in Figure 4.6. In this case, the largest
strongly connected component that has a total TSP distance less than 20,
contains 4 vertices.

However, neither the strongly connected components in Figure 4.6 are
optimal. By removing a different edge, as shown in Figure 4.7, the largest

27

4.2. LANDING POINT

4

3

3 310

4

3 3

4

3

3 10

3

Figure 4.5: Example graph for the prune algorithms problem.

4

3

3 310

4

3 3

4

3

3 10

3

Figure 4.6: Faulty result found by prune algorithm.

strongly connected component that satisfies the TSP distance contains 5
nodes.

The prune approach falls short with graphs of this type, and is the main
cause of why the prune approach produces results that are not exact. How-
ever, as mentioned earlier, exactness is less important than performance in
our case. In this regard, the prune approach is a far more suitable approach
to finding the landing point.

The problems with a brute force graph approach and an influence map-
ping approach has led us to believe that a prune approach would be best for
finding the landing point in Project Hoshimi. Therefore, this will be the ap-
proach used to finding the landing point in Jetpack Attack . How the prune
method has been implemented in Jetpack Attack is described in Chapter 5,
and how well it performs is tested in Chapter 6

28

CHAPTER 4. AI TECHNIQUES

4

3

3 310

4

3 3

4

3

3 10

3

Figure 4.7: Correct result.

4.3 Mission Analysis

This section describes the techniques used to analyze the mission given at
the beginning of a game. To find out what to focus on in the beginning of
a mission, it is necessary to analyze the objectives, to be able to prioritize
them, and discover what gives the most points in the game. This means
that the objectives must be evaluated, and the most important information
must be drawn out of them, to find out which ones are the most important
for winning the game. To do this, it is necessary to structure the game in a
manner such that it is possible to derive a focus point for a given mission.
Therefore, a number of overall focus points have been found, which are
described in the following section. These focus points are the formalized in
to a model which can be used in the actual implementation of Jetpack Attack .
This model is described in Section 4.3.2. The outcome of the analysis of the
mission, is a prioritized list of the focus points, to use for deciding which
objectives to solve first.

4.3.1 Focus Points

As described in Section 2.2.1, there are four active objectives in Project
Hoshimi, which can be translated directly in to focus points, for the analy-
sis of the mission. Therefore, the focus points chosen are factories, hoshimi,
navigation, and finally unique navigation, which covers all the active objec-
tives. Each of these focus points are made up of different factors, which each
influence the importance of the overall goal. These factors are taken into

29

4.3. MISSION ANALYSIS

account when doing the analysis, to gain an idea of what to choose as the
main focus point.

One common factor the focus points share, is the score of the given ob-
jective, i.e. how many points can be made by completing it. It is important
to note that this deciding factor is the same unit for all focus points, mean-
ing for example that a score of less than 1000 points in the factory focus
point, is classified as the same in the hoshimi focus point. This is done to
be able to compare the different focus points.

4.3.1.1 Factories

The factories focus point deals with achieving the PlayerFactoryDestruction
objectives. As described previously, these objectives state that the player
must destroy more than half the factories in the map. To determine whether
or not factories are important for winning the game, there are four factors
to consider.

• Score: The score given for solving the objectives. The higher the
score is, the higher priority factories should get.

• Number of Bots: The number of bots needed to solve the objective.
The higher number of bots necessary, the higher priority, since the
more bots needed, the sooner they should be built and deployed.

• Kill Percentage: How big a percentage of the total number of fac-
tories that must be killed. If this number is low, it means less effort is
necessary to solve the objective, and it should therefore be prioritized
lower.

Each of these factors contribute in prioritizing the factories goal, and they
are all measures for how much effort, solving this objective would take. For
example, if the number of bots needed is high but the score is categorized as
low, it signifies that the factories goal should not be prioritized high, because
it would take a lot of effort solving it, with little reward.

4.3.1.2 Hoshimi

The hoshimi focus point is about gathering OXY gas and transferring it to
hoshimi points. The following factor influences the importance of hoshimi
points.

30

CHAPTER 4. AI TECHNIQUES

• Score: The total score obtainable by filling the hoshimi points with
OXY gas. The higher the score is, the higher the priority the hoshimi
focus point should get.

The reason for only choosing score as a deciding factor for the hoshimi
goal, and not the number of hoshimi points in the map, is that these two
numbers are directly proportional, since each filled hoshimi point grants the
same number of points, and also to be able to compare this goal to the other
goals, which also uses score as a measure, score has been chosen over the
number of hoshimi points.

4.3.1.3 Navigation

This goal deals with solving navigation objectives. To prioritize this goal,
the factors Number of Bots and Score has been chosen.

• Number of bots: The number of bots needed for solving the objec-
tives. Once again, the lower the number of bots, the higher priority.

• Score: The total score of the navigation objectives.

Like the factories objective, if the number of bots needed is high, and the
score is low, this goal will not be prioritized, since it would take too much
effort to solve, compared to other goals.

4.3.1.4 Unique Navigation

This goal is very similar to the navigation goal, but instead deals with unique
navigation objectives. The following factors have been deemed important
for this goal.

• Distance: The distance to be traveled to solve the unique navigation
objectives. If the distance is low, it takes less effort to complete the
objective should be prioritized higher.

• Score: The total score for solving the unique navigation objectives.

Again, these factors signify the effort of solving the goal versus the reward
for doing so.

31

4.3. MISSION ANALYSIS

4.3.2 Model

This section describes the formal model used for analyzing the mission given
at the beginning of a game. For this analysis, it has been chosen to use
Bayesian Networks, and the chosen structure, is the Hierarchical Naive
Bayes classifier, inspired by [8]. This structure is a modification of the
Naive Bayes classifier, which is used to classify instances of a given problem,
from a set of attributes, describing the problem. It usually consists of a
class node, which is the root of the network, representing the variable to be
classified, and a set of leaf nodes which are the attributes. In the hierarchi-
cal version, a set of intermediate nodes are introduced between the root and
the leaf nodes.

The classifier for Jetpack Attack is depicted in Figure 4.8.

Strategy

NavNoBots UNavScoreNavScore UNavDistHoshimiScoreFacKillPercentFacNoBotsFacScore

Factories UNavigationHoshimi Navigation

Figure 4.8: Hierarchical Naive Bayes Classifier.

In this network, the class node, Strategy, is the one being classified, and
it consists of four states, i.e. the four focus points from Section 4.3.1, and
the attributes are the subgoals of each goal. The structure of the network
allows for inference, based on the evidence received from the mission in the
beginning of a game.

The main challenge in using this network, is choosing the probabilities
for each of the Conditional Probability Tables (CPT) of the nodes. Normally
these would be built by learning from data by playing against other players.
However, as mentioned previously, since this is a competition, other players
are not willing to share their strategies. Therefore, we have to estimate the
probabilities ourselves, and an example of this can be seen in Table 4.1,
which shows the CPT for the FacKillPercent node.

As the table shows, the FacKillPercent node has three states, i.e. low,

32

CHAPTER 4. AI TECHNIQUES

Factories Low Medium High
Low 0.7 0.1 0.05

Medium 0.25 0.8 0.25
High 0.05 0.1 0.7

Table 4.1: FacKillPercent CPT

medium and high. This is an effort to discretise the node, and this in itself
can also be hard, since determining what e.g. a High kill percentage means
is not trivial. The table also shows that the Factories intermediate node has
the same states as the FacKillPercent node. In this case this symbolizes the
probability of recommending the factory goal. The rest of the CPTs for the
attributes are structured similarly to that of the FacKillPercent node, and
can be seen in Appendix C. The actual values of Low, Medium and High
can be seen in Appendix D. These values are derived from examining six
different, official maps, and then estimating the values, based on the maps.

To use the network, one simply has to insert the data from the mission,
and the run inference on the network. How this network performs in practice
is described in the following section.

4.3.3 Experiments

To test how well the Bayesian network described in the previous section
performs in practice, a number of tests have been conducted. These tests
are described in detail in Chapter 6 but as the results are important for the
remainder of the report, they will briefly be discussed here. The tests were
structured to test what focus point would be chosen in different maps. To
do this, data from each map was inserted as evidence in to the network,
inference was run, and the resulting focus point was noted. For every map
we encountered, i.e. all the official maps, the focus always turned out to be
hoshimi points. The reason for this is, that in every map there was always
a large number of hoshimi points, and therefore a lot of points to gain from
this objective. Since we are using the same unit for comparing the Score
of each focus point, and the score of hoshimi points always has a higher
score than the others, it was selected as the best focus point every time. It
also makes sense to always focus on hoshimi objectives, since they always
provide a way of scoring a large number of points.

The initial analysis of the mission will always end up with the same re-

33

4.4. BOT BEHAVIOR

sult, and is thus rather pointless. Therefore, the Bayesian network will not
be implemented in Jetpack Attack , as it would bring a completely unneces-
sary overhead to the implementation, which is needed to be computationally
light, because of the time-based structure of the game.

4.4 Bot Behavior

This section describes how the behavior of the various bots can be modeled
and controlled using Finite State Machines (FSM). The information about
FSMs is based on [10].

A common and simple way to model behavior, is using FSMs. An FSM
is a collection of states and transitions between states. A very simple FSM
model of a door can be seen in Figure 4.9.

Open Closed

Close door

Open door

Figure 4.9: A Simple FSM modeling a door.

FSMs can similarly be used to model the behavior of a bot, by split-
ting the behavior into different states, and defining transitions from state
to state. Consider a bot that has the following actions available: Receive
Order, Attack, Flee, Move, and Collect. By modeling the bot using FSMs,
implementing the bot can be done in a very elegant and almost trivial man-
ner. An example FSM that can be used to model the behavior of such a bot
can be seen in Figure 4.10.

The bot in Figure 4.10 immediately starts waiting for orders after it
is created, by switching to the WaitForOrders state. When an order is
received, the order is prepared in some fashion, and the bot switches to the
Move, and moves to whatever location it needs to be at. When it is at the
desired position, the state is changed to either Collect or Attack, depending
on what the objective is. When the bot is done collecting or attacking, the
state is switch back to WaitForOrders and so on. At any point, if the bot
sees an enemy, it enters the Flee state and runs away. When the enemy is no
longer seen, it returns to the state it left to enter the flee state. Implementing
this behavior can be done using a simple switch case, as shown in Listing

34

CHAPTER 4. AI TECHNIQUES

AttackCollect

Move

Flee

WaitForOrders

Enemy Visible

Enemy Gone

StartBot Created

Order Received

At Position

Enemy DeadDone Collecting

Figure 4.10: An example of a FSM modeling the behavior of a bot.

4.1.

1 enum BotStates
2 {
3 WaitingForOrders,
4 Move,
5 Flee,
6 Attack,
7 Collect
8 }
9

10 void BotLoop()
11 {
12 BotStates state = BotStates.WaitingForOrders;
13

14 while (true)
15 {
16 switch (state)
17 {
18 case BotStates.WaitingForOrders:
19 // Wait for orders logic here, when an order is received,
20 // change to BotStates.Move.
21 break;
22 case BotStates.Move:
23 // Move the bot, when at the desired position, change to
24 // either BotStates.Attack or BotStates.Collect, depending

35

4.4. BOT BEHAVIOR

25 // on the type of order.
26 break;
27 case BotStates.Flee:
28 // Run away from the enemy. When the enemy is no longer
29 // visible, change back to the previous state.
30 break;
31 case BotStates.Attack:
32 // Attack the enemy. When the enemy is dead, change to
33 // BotStates.WaitingForOrders.
34 break;
35 case BotStates.Collect:
36 // Collect resources. When done collecting, change to
37 // BotStates.WaitingforOrders.
38 break;
39 default:
40 break;
41 }
42 }
43 }

Listing 4.1: Sample FSM Implementation

The code in Listing 4.1 shows part of the bot implementation in C#.
In this case, the different states of the bot are switched over using an enu-
meration of the different states. In each different case of the switch, the
corresponding logic is written, along with any state changes. This general
method of implementing FSMs is easy to implement and understand, and
will be used to implement all bots used in Jetpack Attack .

This concludes the description of some of the various techniques used for
the AI in Jetpack Attack . The next chapter describes how these techniques
have been implemented.

36

Chapter 5

Implementation

This chapter describes the implementation of some of the key features of
Jetpack Attack . It is not meant to be an exhaustive review of the entire im-
plementation, but rather a brief overview, highlighting interesting elements
of Jetpack Attack . This includes how the Landingpoint Finder and the cen-
tral control unit, the MissionController, has been implemented, and finally
an example of a bot-implementation.

5.1 Design

Before discussing the actual implementation of Jetpack Attack , it is nec-
essary to describe the basic structure of the implementation. This section
describes this initial design of the implementation, along with a brief de-
scription of the Project Hoshimi SDK.

5.1.1 Project Hoshimi SDK

To implement a strategy in the Project Hoshimi SDK, it is necessary to
create a class which inherits from Player, and create event handlers for
the two events ChooseLandingPoint and WhatToDoNext. The first one is
fired once in the beginning of a game, and when this happens, the event
handler must choose where the landing point must be in the map. The
second event is fired every four turns throughout the game, and is where the
actual strategy is implemented. There are two central pieces of information
available from the beginning of the game, which are the objects Mission and
Terrain. The first one is, as the name states, the mission for the given game,

38

CHAPTER 5. IMPLEMENTATION

which holds all information about the objectives, such as type, location and
score. The second is the map used in the mission, and has information about
the speed modifiers for all points in the map, and the location of hoshimi
and OXY points.

5.1.1.1 Bots

The bots described in Section 2.1, are all generic types of bots. When
developing an AI for Project Hoshimi, it is necessary to customize the bots,
by altering the characteristics from the following list.

• Container Capacity: the maximum number of OXY gas units the
bot can carry.

• Collect/Transfer Speed: how fast the bot can collect OXY gas and
transfer it.

• Scan Range: how far the bot can see on the map.

• Maximum Damage: how much damage the bot can deal to oppo-
nents.

• Defense Distance: how far away from itself the bot is able to do
damage

• Constitution: the health of the bot. If this reaches zero, the bot is
destroyed.

• Shield: when bots have a positive shield value, it and the friendly
bots are unaffected by attacks. However, the shield value decreases
with each attack.

The bots which are able to put points into Defense Distance and Maxi-
mum Damage are the ones used for attacking and destroying factories. They
can also attack the bots of the opponent, and are therefore very useful for
hindering him in completing objectives.

Each type of generic bot, has a predefined template that they must
adhere to, which describes maximum values for the different characteristics
and a number of possible actions they can perform. As an example, the
template for a Collector bot, can be seen in Table 5.1.

39

5.1. DESIGN

Characteristic Value Actions
ContainerCapacity 20 Self Destruct
CollectTransferSpeed 5 Move
Scan 5 Stop Moving
MaxDamage 5 Defend
DefenseDistance 12 Collect OXY
Constitution 50 Transfer OXY
Total 50

Table 5.1: Collector Template

The numbers is in the Value column, are the maximum number the given
characteristic can have for the collector. The Total row signifies the total
amount of points that can be put into the characteristics for the bot, so it is
necessary to decide which characteristics are most important, since not all
of them can be awarded the maximum number of points. Also notice that
the shield characteristic is left out. This is because only the AI bot and the
Needle bot can have shields. The Actions column, states what the bot is
able to do. For the Collector bot this is self destruction, moving, defending
itself and loading and unloading OXY gas. For a complete list of templates
for all bots, see Appendix B. Now that the Project Hoshimi SDK has been
described, the actual implementation of Jetpack Attack can be presented.
First, the basic structure is described, and then parts of the implementation
is shown in greater detail.

5.1.2 Jetpack Attack

This sections describes the overall structure and design of the implementa-
tion of Jetpack Attack .

5.1.2.1 Controller

The main class of Jetpack Attack is the Controller which inherits from
Player, and as mentioned previously, has handlers for the two events Choose-
LandingPoint and WhatToDoNext. The first is responsible for setting the
property LandingPointWanted, which is were the landing point for the game
will be chosen. The implementation of the Landingpoint Finder, which
makes this choice, is described in Section 5.2. The second event, as men-
tioned, is the main loop of the game, which is fired every 4 turns, and where
all actions performed by the bots are initiated. The Controller class also

40

CHAPTER 5. IMPLEMENTATION

controls the AI bot, which is responsible for building the other bots. The
Controller has three basic states it can be in, i.e. Building, Defending and
Hoshimi. The Building state is where the AI bot builds other bots, and
what to build is dictated by the class MissionController, described in Sec-
tion 5.1.2.2. The Controller goes in to the Defending state, when an enemy
is nearby, and in this state the DefenseNeedle, described in Section 3.2.1, is
built and the AI bot stands still, until the enemy is disposed of. Finally,
in the Hoshimi state, the AI bot moves between the hoshimi points in the
map, and builds InjectionNeedles used to load OXY gas in to the ground.
The Controller can switch between these states, depending on what is nec-
essary at a given point in the game, and what information is received from
the MissionController, described in the following section.

5.1.2.2 MissionController

As described in Section 3.2, a central class is needed to keep track of the
status of the mission. This class, called the MissionController, is responsible
for generating and managing the different tasks for a given mission. When
the game starts, the MissionController is given the Mission object, and
starts to analyze the mission. This is done by first creating a list of tasks
for each of the bots used for solving objectives, i.e. the Destroyer, the Scout
and the Transporter, and then populating these lists with information from
the given mission. Every time an objective is found in the mission, it is
broken in to separate tasks, one for each location that needs to be visited
or, in the case of factories, destroyed. Each task is given a priority, based
on how important they are for scoring points and doing well with the given
mission. This prioritization can be very hard, since there are a lot of factors
which come into play, when deciding which objectives are important for
the mission. When the tasks have been prioritized, they are analyzed, and
compared to the already existing tasks, to see if the target of the original
task is close to the targets of any other task. If so, the target from the
original task, is added to the found task. Otherwise a new task is added.
If the objective requires a specific bot, this is set as the bot type for the
task, and if this is not so, a bot will be selected. As described previously, for
unique navigation tasks, the bot chosen will be a Scout, if it is a non-unique
navigation objective or a factory objective, the Destroyer will be used.

Apart from the initial analysis of the mission, the MissionController is

41

5.1. DESIGN

also responsible for delegating tasks to the different bots in the game. When
a bot needs a new task, it will simply ask the MissionController for the next
task for that specific bot type, and it will look through the list of task for that
bot, and return the one with highest priority, which has not been completed
or picked up by another bot. If no such task exists, meaning all tasks are
completed, or at least picked up by another, the bot will selfdestruct.

The MissionController is implemented as a Singleton class, to enable
access of the same instance of it from all parts of the game.

5.1.2.3 Bots

Apart from inheriting from the generic bot they stem from, each bot in
Jetpack Attack also implements the interface IBot. This interface only has
one method signature, i.e. the DoNext(Controller player) method, which is
simply the main method of each bot, and this is called every time What-
ToDoNext is fired. The reason for passing the Controller object to the
method, is to be able to access data about the game, e.g. the list of the
enemy’s bots which are currently visible. All bots used in Jetpack Attack
are implemented as FSMs, which are described in Section 4.4. The following
describes the different bots.

Scouts

The Scout bot is a derivative of the Explorer, and is a very fast bot, which
ignore movement-impairing parts of the terrain. Therefore, as mentioned
above, it is used for unique navigation objectives, since these objectives
require the bot to travel a long distance, within the game’s time limit. Scouts
are not able to defend themselves, so therefore they can call for help.

Destroyers

The Destroyer bot is a derivative of the Collector, and is a very versatile bot,
and is therefore both used for navigation and factory objectives. The reason
they are viable for navigation is that these objectives do not require one
specific bot to travel to all targets, and therefore a Collector can be built
for each target, of each objective. Because of their versatility, Collectors
are the most used bots in Jetpack Attack , and therefore they are able to
help each other finish tasks. When they finish their own tasks, and no new

42

CHAPTER 5. IMPLEMENTATION

ones are available, instead of immediately selfdestructing, they can ask the
MissionController if there are any tasks close to it. If that is the case, they
can start going to the targets of that task.

Transporters

The Container derivative Transporter is very essential for scoring points in
the game, since its main responsibility is to transport OXY gas from OXY
points, to hoshimi points, and then unloading it. Since it is also possible
that navigation objectives can require a Container to be completed, the
Transporters are also able to do navigation tasks.

5.1.2.4 Map

The map of any given game in Project Hoshimi has a fixed size of 200x200
pixels. Each pixel has a terrain type which can be Normal which takes two
turns to pass, Slow which takes 3 turns to pass, Very Slow which takes
4 turns to pass, and finally Water which can not be passed. To enable
pathfinding in the map, the class MapGrid is used. It consists mainly of a
200x200 two-dimensional array, which holds MapNodes, which contain infor-
mation about the cost of moving across a given point in the map, and other
relevant data, such as adjacent and parent nodes. For pathfinding, the A*
algorithm[5] is used, and is implemented in the Pathfinder class. Because of
the size of the map, it is not viable to use A* for calculating all paths in the
game, as it would take too much time. Therefore it is only used to calculate
the path for the AI bot and the Bodyguard. For other bots, the pathfinder
built into the SDK is used. The MapGrid is, like the MissionController,
implemented using the Singleton design pattern.

This concludes the design portion of this chapter. The following sections
describe the finer details of some the important features of Jetpack Attack .

5.2 Landing Point Finder

This sections describes the implementation details for the landing point
finder, which is responsible for finding the landing point.

The landing point finder consists of three classes: Graph, LPGraph and

43

5.2. LANDING POINT FINDER

LPFinder. The Graph class is a generic adjacency-list based graph imple-
mentation, used as a base class for the LPGraph class. The LPGraph class is
responsible for handling the graph functionality specific for finding a land-
ing point, such as pruning the graph, and finding the strongly connected
components. The final class is the LPFinder class, which is the actual class
responsible for finding the landing point. This class uses an instance of the
LPGraph class. The class diagram of the landing point finder can be seen
in Figure 5.1.

LPFinder
Class

Fields

points

Methods

FindLandingPoint
Initialize
PathDistance

Nested Types

LPEntity
Enum

Candidate
Struct

LPGraph

Graph
Class

Methods

FindGraphComponents
LPGraph
Prune (+ 1 overload)

Graph
Class

Fields

edges
vertices

Properties

Vertices

Methods

AddEdge (+ 1 overload)
AddVertex (+ 1 overload)
AddVertices
CleanGraph
GetSubgraph
Graph
IsReachable
RemoveVertices

graph

Figure 5.1: Class diagram of the landing point finder.

Both the Graph and LPGraph are simple and uninteresting, and will
therefore not be described. However, during implementation of the LPFinder
class, a few changes had to be made to improve performance during initial-
ization. To shed some light on these changes, the rest of this section will
focus on the details of the LPFinder class.

In order to find the landing point using the prune method described in
Section 4.2.3.2, a graph has to be built first, and then pruned until empty.
Building the graph is done in the Initialize method, which can be seen in
Listing 5.1.

1 public void Initialize(Point[] points, int pruneDistance)
2 {
3 this.points = points;
4 graph = new LPGraph();
5 // Add the vertices to the graph
6 foreach (Point point in points)
7 {
8 graph.AddVertex(point);

44

CHAPTER 5. IMPLEMENTATION

9 }
10

11 // Add the edges
12 for (int i = 0; i < graph.Vertices.Count; i++)
13 {
14 Vertex currentVertex = graph.Vertices[i];
15 for (int j = i + 1; j < graph.Vertices.Count; j++)
16 {
17 int manDistance = Utilities.ManhattanDistance(currentVertex. ←↩

location, graph.Vertices[j].location);
18 if (manDistance <= pruneDistance)
19 {
20 graph.AddEdge(currentVertex, graph.Vertices[j], PathFinder. ←↩

GetDistance(currentVertex.location, graph.Vertices[j]. ←↩

location));
21 }
22 else
23 {
24 graph.AddEdge(currentVertex, graph.Vertices[j], manDistance ←↩

∗ 5);
25 }
26 }
27 }
28 }

Listing 5.1: LPFinder.Initialize Implementation

Initialization of the LPFinder class is simple. Firstly, the vertices are
added by using a list of points that is passed as an argument to the Ini-
tialize method. After the vertices have been added, the edges are added
to the graph. However, some changes had to be made to the calculation
of distances, due to performance issues. As mentioned in Section 4.2.3, the
original goal was to have the weight of edges be the actual distance required
to travel vertex to vertex. However, during implementation, we quickly
found out that this simply would not be possible without spending most of
the game time on building the graph. Therefore, to speed the graph building
up, we decided that some distances would have to be estimated. Specifically,
as the longer distances will get pruned quickly, and they require more time
to calculate, they do not need to be exact. The decision of whether a dis-
tance has to be exact or not is based on the Manhattan distance[1] of the

45

5.2. LANDING POINT FINDER

edge. If the Manhattan distance is higher than the pruneDistance argument
passed to the Initialize method, the Manhattan distance multiplied by five
is used, instead of the actual distance. On the other hand, if the distance is
lower, the actual distance is calculated using the Pathfinder class. This can
be seen in Lines 17-25. After Initialize has been run, the graph is built and
the landing point can be found by calling FindLandingPoint.

The FindLandingPoint method is the implementation of the actual al-
gorithm for finding the landing point. As described in Section 4.2.3.2, the
algorithm works by pruning the graph, finding strongly connected compo-
nents, and checking them for their viability as a candidate. The loop in
FindLandingPoint where the candidates are found can be seen in Listing
5.2.

1 // snip
2

3 while (graph.Vertices.Count > 0)
4 {
5 Graph[] components = lpgraph.FindGraphComponents();
6

7 foreach (Graph component in components)
8 {
9 Vertex[] path = TSPSolver.Solve(component).ToArray();

10 int distance = PathDistance(path);
11 if (distance < maxWeights)
12 {
13 Candidate candidate = new Candidate();
14 candidate.path = path;
15 candidate.weight = distance;
16 candidates.Add(candidate);
17 graph.RemoveVertices(path);
18 }
19 }
20 lpgraph.Prune(prunePercentage);
21 }
22

23 // snip

Listing 5.2: Part of LPFinder.FindLandingPoint Implementation

The code in Listing 5.2 is responsible for finding every possible candidate.
It works by first finding every strongly connected component in the graph,

46

CHAPTER 5. IMPLEMENTATION

and then checking each component to see if it satisfies the maximum distance
requirement. If it does, the candidate is added to a list of candidates, and
the vertices in candidate are removed from the graph. The graph is then
pruned, and the loop is run again. This continues until no vertices are left
in the graph. The best candidate is then found, and a starting vertex is
selected from the candidate.

The speed versus exactness of the LPFinder can be controlled by the
arguments pruneDistance and prunePercentage of the Initialize and Find-
LandingPoint method respectively. As mentioned earlier, the pruneDistance
is used when deciding whether to calculate the actual weight of an edge, or
using a Manhattan distance estimate. This means that a higher pruneDis-
tance will result in more paths being calculated, which will result in a better
result when pruning. The prunePercentage argument specifies how many
edges are pruned at each iteration. A higher value removes more edges
at each iteration, and therefore find more components faster. However, by
being greedy when removing edges, it is possible that too many edges are
removed, which results in a more inaccurate result as well.

Using this implementation, we are able to find our landing point with
the first 30 turns, with prunePercentage set to 10% and pruneDistance set
to 40. The experiments performed, to further evaluate the implementation
of the Landingpoint Finder, can be seen in Chapter 6.

5.3 Mission Controller

This section describes the implementation of the MissionController, the class
which keeps track of the progression of the mission for a given game. As
described in Section 5.1.2.2, this class must also create the tasks for the
other bots to solve, when the game is started. The implementation of these
two features, are described below.

5.3.1 Initialization

The initialization of the MissionController deals with generating tasks for
the bots to complete. As described previously, each of the three bots, Scout,
Destroyer and Transporter, have their own list of tasks, which must be
populated in the beginning of the game. This is done in the method Ana-
lyzeMission, shown in Listing 5.3.

47

5.3. MISSION CONTROLLER

1 //snip
2 foreach (BaseObjective obj in mission.Objectives)
3 {
4 if (obj is NavigationObjective)
5 {
6 NavigationObjective navObj = obj as NavigationObjective;
7 BotType type = BotType.Collector;
8 if (navObj.BotType != BotType.Unknown)
9 {

10 type = navObj.BotType;
11 }
12 foreach (Point p in obj.GetObjectiveLocations())
13 {
14 AddNavigationTask(Settings.NavPriority, p, type);
15 }
16 }
17 //Similar code for UniqueNavigation and PlayerFactoryDestruction ←↩

objectives
18 }
19 //snip

Listing 5.3: MissionController.AnalyzeMission Implementation

First all objectives are examined, and for each location in the objective,
the method invokes the appropriate task generator, in the example this
is the AddNavigationTask method. The task generators take a priority,
a location and a bot type, and from this either generates a new task, or
finds one close to the location, and adds the location to that task. As
described earlier, the default bot for Navigation objectives, is the Collector
derivative, Destroyer. Therefore, this is set in line 7, and only changed if
the objective calls for something different. The tasks generating method,
AddNavigationTask method is shown in Listing 5.4.

1 //snip
2 if (typeOfBot == BotType.Collector)
3 {
4 Task tsk = new Task();
5 foreach (Task task in DestroyerTasks)
6 {
7 if (task.IsUnique || task.Completed)
8 {

48

CHAPTER 5. IMPLEMENTATION

9 continue;
10 }
11 bool suitableTaskFound = true;
12 foreach (Point p in task.Targets)
13 {
14 if (Utilities.ManhattanDistance(p, target) > 50)
15 {
16 suitableTaskFound = false;
17 }
18 }
19 if (suitableTaskFound)
20 {
21 tsk = task;
22 }
23 }
24 if (tsk.ID != 0)
25 {
26 tsk.AddTarget(target);
27 tsk.UpdatePriority(priority);
28 }
29 else
30 {
31 DestroyerTasks.Add(new Task(NewId(), priority, BotType.Collector, ←↩

target, false));
32 }
33 }
34 //snip

Listing 5.4: MissionController.AddNavigationTask Implementation

This example only shows what happens if the bot type is Collector but it
is similar for Explorers and Transporters. All Destroyer task are examined
and if they are not UniqueNavigation objectives or complete, it is checked if
all targets of the task is close to the new location. If so, the new location is
added to the task and the priority is updated. If not all targets are close to
the new location, a new task is generated and added to the list of Destroyer
tasks.

49

5.3. MISSION CONTROLLER

5.3.2 Mission Progress

Once the mission has been analyzed, the main responsibility of the Mission-
Controller is to keep track of the tasks, and inform the Controller of what
to build next. In the beginning of each turn, the Controller invokes the
NextBot method in the MissionController which returns the bot type of the
next bot to be built. This method can be seen in Listing 5.5.

1 //snip
2 int curPriority = 0;
3 Task nextTask = new Task();
4 NextBotType result = NextBotType.None;
5 foreach (Task task in DestroyerTasks)
6 {
7 if (!task.Completed && !task.Ongoing)
8 {
9 if (task.Priority > curPriority)

10 {
11 nextTask = task;
12 curPriority = task.Priority;
13 }
14 }
15 }
16 //Similar code for Scout and Transporter tasks
17

18 if (nextTask.Priority == 0)
19 {
20 int remainingBots = 40 − NoOfBots;
21 int neededHunters = 5;
22 if (NoOfTransporters < remainingBots)
23 {
24 result = NextBotType.Transporter;
25 }
26 else if (NoOfHunters < neededHunters)
27 {
28 result = NextBotType.Hunter;
29 }
30 else
31 {
32 result = NextBotType.None;
33 }

50

CHAPTER 5. IMPLEMENTATION

34 }
35 else
36 {
37 switch (nextTask.Bot)
38 {
39 case BotType.Collector:
40 result = NextBotType.Destroyer;
41 break;
42 case BotType.Container:
43 result = NextBotType.Transporter;
44 break;
45 case BotType.Explorer:
46 result = NextBotType.Scout;
47 break;
48 default:
49 break;
50 }
51 }
52 return result;

Listing 5.5: MissionController.NextBot Implementation

The NextBotType type, is an enumeration containing the different bot types,
which are available. The NextBot method first runs through all tasks, and
checks if there are any which has not been picked up by a bot. If there are
more of these, the one with the highest priority is chosen. If all tasks are
taken, the method checks if either Hunter bots or Transporters are missing.
If this is the case, the given bot is set as the result. Otherwise, the type
None is returned, signifying that it is not necessary for the Controller to
build anything the given turn.

5.3.3 Other Functionality

Apart from the two main features of the MissionController described above,
it also has a number of minor functionalities worth mentioning. For instance,
the MissionController is also responsible for keeping track of the hoshimi
points, which ones does not have needles on them and which ones do not. It
also has auxiliary methods, the bots can use, such as NearestDestroyerTask
which takes a location, and returns the task which is closest to that location.
This is helpful when a Destroyer is finished with its own task, and there

51

5.4. BOT EXAMPLE

are no new tasks, then the Destroyer can help with other tasks. Another
functionality is the ReportKill method, for bots to report if they have killed
an enemy which was not in their task. Then this enemy can be removed
from a task, so time is not wasted going to that location.

5.4 Bot Example

This section describes the implementation of the Transporter bot as an
example of how bots are implemented in Jetpack Attack.

The Transporter bot has been implemented according to the model de-
scribed in Section 4.4. The Transporter has the following 6 states:

• GoingToOXY - The transporter is moving to an OXY point.

• GoingToNeedle - The transporter is moving to a needle.

• Collecting - The transporter is collecting OXY gas from an OXY point.

• Depositing - The transporter is depositing OXY gas to a needle.

• FollowingAI - The transporter is following to AI while waiting for an
open needle.

• Tasking - The transporter is solving an objective.

These 6 states model all the needed functionality of the Transporter.
As described in Section 4.4, the bot is implemented using a simple switch
statement, which is implemented in the DoNext method that is called by the
Controller every 4th turn. Part of the implementation of the Transporter
can be seen in Listing 5.6.

1 [Characteristics(CollectTransfertSpeed = 5, Constitution = 15, ←↩

ContainerCapacity = 50)]
2 class Transporter : Container, IBot
3 {
4 Random rand = new Random();
5 Task currentTask = null;
6 Point target = Point.Empty;
7 public TransporterStates transporterState = TransporterStates. ←↩

GoingToOXY;
8

52

CHAPTER 5. IMPLEMENTATION

9 public void DoNext(Controller player)
10 {
11 if (HitPoint < 8 && currentTask != null)
12 {
13 currentTask.Reset();
14 }
15 if (currentTask == null)
16 {
17 currentTask = MissionController.NextTransporterTask();
18 if (currentTask != null)
19 {
20 currentTask.Ongoing = true;
21 transporterState = TransporterStates.Tasking;
22 }
23 }
24

25 switch (transporterState)
26 {
27 case TransporterStates.GoingToOXY:
28 //snip
29 break;
30 case TransporterStates.GoingToNeedle:
31 //snip
32 break;
33 case TransporterStates.Collecting:
34 //snip
35 break;
36 case TransporterStates.Depositing:
37 //snip
38 break;
39 case TransporterStates.FollowingAI:
40 // snip
41 break;
42 case TransporterStates.Tasking:
43 // snip
44 break;
45 default:
46 break;
47 }
48 }
49 }

53

5.4. BOT EXAMPLE

Listing 5.6: Transporter bot Implementation

When DoNext is called, the bot first checks to see if it is dying so that
it can give up its task. This is done in Lines 10-13. After that, the bot
checks for any available task. If a task is received, the bot changes to the
Tasking state, and solves the objective, as seen in Lines 14-22. The bot
then goes to whatever state it is in, and does whatever is needed. The
actual implementation of each state has been omitted in this description, as
it is trivial and uninteresting.

Every bot has been implemented using this method. The states of each
bot varies, but the overall structure is shared among all bots. It should also
be noted that the Controller also has been implemented as a bot, i.e. using
FSMs to control the flow of the application.

This concludes the description of the most interesting elements of the im-
plementation of Jetpack Attack . Experiments designed to evaluate parts of
this implementation are described in the following chapter. An evaluation
of the entire implementation can be found in Chapter 7.

54

Chapter 6

Experiments

This chapter describes different experiments performed on Jetpack Attack ,
to test various parts of the system. The Bayesian network used to analyze
the mission, is tested to evaluate the how well it works on different maps, and
the Landingpoint Finder is tested with regards to performance and score.
Finally, the competition aspect of Project Hoshimi is discussed, along with
how well Jetpack Attack performed against other players’ AI.

6.1 Landingpoint Finder

This sections describes the experiments performed on the Landingpoint Finder,
to evaluate how well it performs with regards to two criteria, i.e. perfor-
mance and score.

6.1.1 Performance

To test the performance of the Landingpoint Finder, it has been tested on
graphs of various sizes. This test will help show how the approach scales to
problems with higher vertex count than used in Project Hoshimi.

The performance test has been run on randomly generated graphs with
a vertex count ranging from 10 to 150 in increments of 10. Every edge in
the graph has been randomly generated as well, with weights ranging from
5 to 200. In every test, the Landingpoint Finder has been run with 500
as the maximum weight. Furthermore, the Landingpoint Finder has been
modified such that only 1 edge is pruned in every iteration. A graph of the
data from the test can be seen in Figure 6.1, and the actual data can be

56

CHAPTER 6. EXPERIMENTS

found in Appendix F.

800

1000

1200

ds

0

200

400

600

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Se
co
nd

Vertices

Figure 6.1: Performance of the Landingpoint Finder approach.

Looking at the results from the test, shown in Figure 6.1, the time it
takes to find the landing point seems to roughly double for every 10 vertex.
Initially, finding the traveling salesman path takes negligible time, but as the
number of vertices increase, the NP-hardness of the problem starts showing.
Therefore, as the number of vertices increase, the time to calculate the
traveling salesman path starts being the main factor in finding the landing
point. Because of that, it is important to ensure that as low a number
of paths are calculated as possible. This is where our approach shows its
strength. The data in Figure 6.2 shows the difference in the worst-case
number of paths that have to be calculated.

10 20 30 40 50 60 70 80 90 100 110
0 0 1 2 6 14 28 50 89 149 238

1 2 3 4 5 6 7 8 9 10 11

Vertices:
Seconds:

Vertices:
S d 200140

160

Seconds:

800

1000

1200

ds80

100

120

140

200

400

600

Se
co
nd

20

40

60

0

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Vertices

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Vertices: 10 20 30 40 50 60 70 80
LPFinder TSP Count: 90 380 870 1560 2450 3540 4830 6320
Exact TSP Count 1024 1048576 1,074E+09 1,1E+12 1,1259E+15 1,1529E+18 1,1806E+21 1,2089E+24

Vertices: 90 100 110 120 130 140 150
LPFinder TSP Count: 8010 9900 11990 14280 16770 19460 22350
Exact TSP Count 1E+27 1,27E+30 1,298E+33 1,329E+36 1,3611E+39 1,3938E+42 1,4272E+45

Figure 6.2: Comparison of worst-case number of TSP calculations.

By comparing the data in Figure 6.2, it is obvious that our approach
requires significantly less traveling salesman calculations in order to find the
landing point. Both approaches however, can be optimized further; the ex-
act approach, as described in Section 4.2.3.1, and the prune approach by
not calculating the traveling salesman path more than once per component.
The incredibly large amount of subgraphs that has to be calculated using

57

6.1. LANDINGPOINT FINDER

the exact approach has led us to not implement the exact approach. We
have decided so, as we doubt that it would be possible to get any results
within reasonable time with more than 20 vertices, and therefore the ap-
proach has no real use. Our decision is further supported by the fact that
our approach requires more than 1000 seconds with 150 nodes, 22350 trav-
eling salesman paths, whereas the exact would require more than 1 billion
traveling salesman paths to be calculated at only 20 vertices.

This huge difference in number of traveling salesman paths to calculate,
supports our belief in the pruning method as a viable approach to finding a
good estimate to the optimal landing point in a short amount of time.

6.1.2 Score

To test how well the Landingpoint Finder performs regarding the score, it is
necessary to have something to compare it to. To do this, the two methods
Barycentric and Gauss, described in Section 4.1, have been implemented
in Jetpack Attack , so the general functionality is the same, only the land-
ingpoint calculations are different. Each of the three methods of finding a
landing point is tested in three maps, with no opponents. The outcome of
these tests will be three scores for each method, which can be compared
to evaluate the Landingpoint finder. The maps are the official maps from
Project Hoshimi, used in the final stages of the competition. Table 6.1
summarizes the tests, and the detailed results can be seen in Appendix E.

All Objectives Solved Score
Barycentric 18 14755

Gauss 16 17740
LPFinder 20 18570

Table 6.1: Cumulative Scores

As the table shows, the Landingpoint Finder scored a higher total than
the other two methods, along with completing more objectives. If we look at
the results in Appendix E, the Landingpoint Finder was beaten once on the
score by a 100 points, but in general, the Landingpoint Finder always scores
a high amount of points, compared to the others whose score fluctuates
more. The reason for these fluctuations, is the inherent flaws in the methods,
mentioned in Section 4.1. The results of the experiments performed on the
Landingpoint Finder, show that our implementation fulfills its purpose. A

58

CHAPTER 6. EXPERIMENTS

landing point is found within a reasonable amount of time, and regarding
the score, it also outperforms the other methods presented. This concludes
the experiments on the Landingpoint Finder.

6.2 Mission Analyzer

This section describes the experiments performed on the mission analyzer,
i.e. the Bayesian network described in Section 4.3. The basic idea behind
the experiments, is to gather data from different missions, and then insert
this as evidence into the network. This data taken from six official maps,
used both in the later stages of the competition, and in a series of minor
small competitions.

The data gathered from the different maps can be seen in Appendix G,
and the results produced by inserting this evidence for the different maps,
can be seen in Table 6.2.

Map Factories Hoshimi Navigation Unique Navigation
Round2-1 3.51 39.96 33.56 22.97
Round2-2 12.17 64.16 18.41 5.26
Round2-3 11.52 60.76 17.43 10.26

SC1 9.81 51.71 8.75 29.73
SC2 10.26 54.07 9.15 26.53*
SC3 21.12 42.37 12.16 24.36

Table 6.2: Bayesian Results

It should be noted that the maps SC1, SC2 and SC3 are older maps,
which had a different version of the Factory objective, where all factories
had to be destroyed, to receive points. The kill percentage value has there-
fore been set to Medium which was the value for the other three missions.
The value marked with a ’*’, signifies that there was no Unique Navigation
objectives in this map, so this should be disregarded. The chosen focus
point for each map, has been marked with bold typeface. As mentioned in
Section 4.3 and as the table shows, the Hoshimi focus point, is chosen for
every map. The reason for this is, that in all maps, the number of hoshimi
points is so high, that it is always possible to score a high number of points,
just from placing needles at hoshimi points, and then filling them with OXY
gas.

Because of these results, it was decided not to implement the Bayesian

59

6.3. COMPETITION

network in Jetpack Attack , because if there was not a radical change in the
types of maps used, the outcome of the mission analysis would always be
the same, i.e. that hoshimi points should be the main focus. Therefore,
using the Bayesian network to analyze the mission, and assign priorities to
different tasks, would just add an unnecessary computational overhead. In a
game like Project Hoshimi where it is already necessary to use efficient tech-
niques to accommodate the time-restricted, turn-based gameplay, it would
be undesirable to introduce more overhead. Besides, focusing on hoshimi
points also makes sense, since in every map seen so far, they have been
the number one, undisputed point giver in the game. This concludes the
experiments performed on the mission analyzer.

6.3 Competition

This section describes the results produced by Jetpack Attack in the official
competition part of Project Hoshimi. The competition is structured as four
rounds, where the teams are divided in to pools of four to six players, and
the best in the pool goes through to the next round. The competitors in
these four rounds, are the top three of each country, but since we were the
only team from Denmark, we were automatically qualified for this stage.

The final results of the Project Hoshimi competition can be seen in [3],
but it should be mentioned that Jetpack Attack finished in the top 20 of all
competitors. If we compare it to the others which did not make it into top
10, based solely on points, Jetpack Attack finished 17th. Some of the reasons
for not going further in the competition, became apparent after watching
the replays of the matches we lost. First of all, two simple features were not
implemented, which should have resulted in more points. The first is the
fact that when InjectorNeedle placed on hoshimi points are destroyed, the
hoshimi point is not added to the queue of hoshimi points, which do not have
needles. Therefore, no new needle will be built on that point. The second
problem occurs if the enemy has built his landing point close to, or on an
OXY point. This point should be removed from the list of available OXY
point, since the Transporters can not defend themselves, and if they keep
trying to go to the OXY point in question, they will most likely be killed, and
new ones will be built, thus preventing the AI bot from performing other
tasks. These two errors in design could easily have been avoided, as they

60

CHAPTER 6. EXPERIMENTS

would most likely have been noticed, if we would have had more opponents
to test our strategy on. Another thing which would have helped in scor-
ing points, or at least prevented the opponent from scoring as many points,
would have been to send out Destroyers or Hunters to hoshimi points, to
guard them, and kill any enemy bots which might be there. This was one
of the strategies of some of the opponents we encountered. Another thing
keeping Jetpack Attack out of the top 10, was the quality of our opponents
in the later rounds. Two of the teams we faced in the last pool, went in to
the top six and thus won a spot in the final. These players have also partic-
ipated in Project Hoshimi for several years, and as mentioned in Chapter 1,
it was expected that these competitors would beat us.

This concludes the description of the experiments performed to evaluate
the outcome of this project. The next chapter concludes upon the entire
project as a whole.

61

Chapter 7

Conclusion

This chapter serves as an evaluation and conclusion upon this project, deal-
ing with implementing a multi-agent AI, for Project Hoshimi. The impor-
tant results will be presented and discussed, and the project will be con-
cluded upon and evaluated as a whole. Finally, a discussion of what could
be improved in Jetpack Attack is presented.

As described in the introduction to this report, this project is a general
study in implementing a multi-agent AI system. Through both competing in
the Imagine Cup, and also seeing some of the other competitors play, we have
gained valuable insight in how multi-agent systems work, and what pitfalls
and caveats this presents. One of the goals of this project was creating a
competitive AI for the competition, and by finishing as one of the top 20
players, this goals has been fulfilled. It also further adds to the evaluation
of the implementation, since one of the reasons for not advancing further in
the competition, was a couple bugs, which could have been corrected, had
we had more opponents to test the implementation on.

Another goal of this project was to design and implement solutions for
the two focus points, i.e. finding a good landing point and being able to an-
alyze any given mission, to derive a strategy for scoring the highest possible
number of points. As for finding a good landing point, we have shown in
Section 6.1, that our implementation of the Landingpoint Finder performs
reasonably well both in terms of score and performance. In regards to the
mission analysis, we have shown that our solution was not worthwhile, be-
cause of the lack of variation in the maps of Project Hoshimi. However, in a
general game setting, similar to Project Hoshimi but with more variation in

62

CHAPTER 7. CONCLUSION

the missions, our method of analyzing the mission to find focus points, would
be valid. The problem of gathering enough data for populating the CPTs,
would still persist, but in most cases, games are not part of a competition,
and it should therefore be easier to get players involved.

7.1 Future Work

Among the things which could be improved in Jetpack Attack , besides the
obvious of fixing the bugs mentioned earlier, improving the current algorithm
used for finding a landing point in one of them. Specifically, there are two
main points, where it could be improved. One would be using a better
algorithm for solving the TSP, and the other would be to improve the Prune
algorithm, as it currently spends a lot time, searching every edge in the
graph in each iteration. Instead, edges and their weights could be saved in a
sorted list, to make selection of the highest weighted edge, faster. Another
improvement could be taking airstreams into account, which would make
the pathfinding more accurate and therefore also the landing point finder.

The optimal improvement would be developing an exact solution for
finding the optimal subgraphs, which runs in reasonable time, compared to
the brute-force approach. Whether a such method exists, is at the time of
writing, unknown to the authors.

63

Chapter 8

Bibliography

[1] Margherita Barile. Taxicab Metric. http://mathworld.wolfram.com/
TaxicabMetric.html. Online: 28/05-2008.

[2] Richard Clark. Project Hoshimi. http://www.project-hoshimi.com/.
Online: 06/02-2008.

[3] Richard Clark. Project Hoshimi 2008 Results. http://

project-hoshimi.com/2008/PH2008Results.aspx, 2008. Online:
31/05-2008.

[4] Microsoft Corporation. Microsoft XNA Game Studio Contest. http:

//dreambuildplay.com/main/default.aspx. Online: 30/05-2008.

[5] Olav Geil. The Mathematical Foundation of A*. http://www.

math.aau.dk/~olav/undervisning/dat06/astar.pdf, 2006. Online:
23/05-2007.

[6] Michael Hardy. Gaussian Function. http://en.wikipedia.org/wiki/
Gaussian_function. Online: 31/05-2008.

[7] Canut Ki in club de go de Lyon. Simulateur d’influence / Interactive go
maps. http://canut-ki-in.jeudego.org/simul_influence/, 2007.
Online: 17/12-2007.

[8] Helge Langseth and Thomas D. Nielsen. Classification using Hier-
archical Näıve Bayes models. http://www.cs.aau.dk/~tdn/papers/

LangsethNielsen-HNB.pdf, 2006. Online: 27/05-2008.

64

http://mathworld.wolfram.com/TaxicabMetric.html
http://mathworld.wolfram.com/TaxicabMetric.html
http://www.project-hoshimi.com/
http://project-hoshimi.com/2008/PH2008Results.aspx
http://project-hoshimi.com/2008/PH2008Results.aspx
http://dreambuildplay.com/main/default.aspx
http://dreambuildplay.com/main/default.aspx
http://www.math.aau.dk/~olav/undervisning/dat06/astar.pdf
http://www.math.aau.dk/~olav/undervisning/dat06/astar.pdf
http://en.wikipedia.org/wiki/Gaussian_function
http://en.wikipedia.org/wiki/Gaussian_function
http://canut-ki-in.jeudego.org/simul_influence/
http://www.cs.aau.dk/~tdn/papers/LangsethNielsen-HNB.pdf
http://www.cs.aau.dk/~tdn/papers/LangsethNielsen-HNB.pdf

CHAPTER 8. BIBLIOGRAPHY

[9] Microsoft. Imagine Cup - Home. http://imaginecup.com/, 2007.
Online: 06/02-2008.

[10] et al Mike Dickheiser. Game Programming Gems 6. Charles River
Media, 2006.

[11] RaptorXP. Finding the good Injection Point (Part 1 & 2). http://

www.project-hoshimi.com/lstArticles.aspx?filter=dev. Online:
31/05-2008.

[12] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[13] Eric W. Weisstein. Gaussian Function. http://mathworld.wolfram.

com/TaxicabMetric.html. Online: 31/05-2008.

65

http://imaginecup.com/
http://www.project-hoshimi.com/lstArticles.aspx?filter=dev
http://www.project-hoshimi.com/lstArticles.aspx?filter=dev
http://mathworld.wolfram.com/TaxicabMetric.html
http://mathworld.wolfram.com/TaxicabMetric.html

Appendix A

List of Acronyms

AI Artificial Intelligence

CPT Conditional Probability Table

FSM Finite State Machine

SDK Software Development Kit

TSP Traveling Salesman Problem

66

Appendix B

Bot Characteristics

This appendix contains the template of each type of bot.

B.1 AI Bot

Characteristic Value Actions
ContainerCapacity 0 Self Destruct
CollectTransferSpeed 0 Move
Scan 5 Stop Moving
MaxDamage 0 Build Bot
DefenseDistance 0
Constitution 50
Shield 100
Total NA

Table B.1: AI Template

B.2 Collector Bot

Characteristic Value Actions
ContainerCapacity 20 Self Destruct
CollectTransferSpeed 5 Move
Scan 5 Stop Moving
MaxDamage 5 Defend
DefenseDistance 12 Collect OXY
Constitution 50 Transfer OXY
Total 50

Table B.2: Collector Template

68

APPENDIX B. BOT CHARACTERISTICS

B.3 Container Bot

Characteristic Value Actions
ContainerCapacity 60 Self Destruct
CollectTransferSpeed 5 Move
Scan 0 Stop Moving
MaxDamage 0 Collect OXY
DefenseDistance 0 Transfer OXY
Constitution 60
Total 70

Table B.3: Container Template

B.4 LPCreator Bot

Characteristic Value Actions
ContainerCapacity 0 Self Destruct
CollectTransferSpeed 0 Move
Scan 30 Stop Moving
MaxDamage 0 Open Landing Point
DefenseDistance 0 Close Landing Point
Constitution 20
Total 40

Table B.4: LPCreator Template

B.5 Explorer Bot

Characteristic Value Actions
ContainerCapacity 0 Self Destruct
CollectTransferSpeed 0 Move
Scan 30 Stop Moving
MaxDamage 0
DefenseDistance 0
Constitution 20
Total 40

Table B.5: Explorer Template

69

B.6. NEEDLE BOT

B.6 Needle Bot

Characteristic Value Actions
ContainerCapacity 100 Self Destruct
CollectTransferSpeed 0 Defend
Scan 10
MaxDamage 5
DefenseDistance 10
Constitution 150
Shield 100
Total 150

Table B.6: Needle Template

B.7 Blocker Bot

Characteristic Value Actions
ContainerCapacity 0 Self Destruct
CollectTransferSpeed 0
Scan 10
MaxDamage 0
DefenseDistance 0
Constitution 100
Total 90

Table B.7: Blocker Template

B.8 Wall Bot

Characteristic Value Actions
ContainerCapacity 0 Self Destruct
CollectTransferSpeed 0
Scan 10
MaxDamage 0
DefenseDistance 0
Constitution 100
Total 90

Table B.8: Wall Template

70

Appendix C

Conditional Probability

Tables

C.1 Factories

Factories Low Medium High
Low 0.05 0.1 0.7

Medium 0.25 0.8 0.25
High 0.7 0.1 0.05

Table C.1: FacCount CPT

Factories Low Medium High
Low 0.7 0.1 0.05

Medium 0.25 0.8 0.25
High 0.05 0.1 0.7

Table C.2: FacScore CPT

Factories Low Medium High
Low 0.05 0.1 0.7

Medium 0.25 0.8 0.25
High 0.7 0.1 0.05

Table C.3: FacNoOfBots CPT

72

APPENDIX C. CONDITIONAL PROBABILITY TABLES

Factories Low Medium High
Low 0.7 0.1 0.05

Medium 0.25 0.8 0.25
High 0.05 0.1 0.7

Table C.4: FacKillPercent CPT

Strategy Factories Hoshimi Navigation Unique Navigation
Low 0.05 0.333333 0.333333 0.333333

Medium 0.15 0.333333 0.333333 0.333333
High 0.8 0.333333 0.333333 0.333333

Table C.5: Factories CPT

C.2 Hoshimi

Hoshimi Low Medium High
Low 0.7 0.1 0.05

Medium 0.25 0.8 0.25
High 0.05 0.1 0.7

Table C.6: HoshimiScore CPT

Strategy Factories Hoshimi Navigation Unique Navigation
Low 0.333333 0.05 0.333333 0.333333

Medium 0.333333 0.15 0.333333 0.333333
High 0.333333 0.8 0.333333 0.333333

Table C.7: Hoshimi CPT

73

C.3. NAVIGATION

C.3 Navigation

Navigation Low Medium High
Low 0.7 0.1 0.05

Medium 0.25 0.8 0.25
High 0.05 0.1 0.7

Table C.8: NavScore CPT

Navigation Low Medium High
Low 0.05 0.1 0.7

Medium 0.25 0.8 0.25
High 0.7 0.1 0.05

Table C.9: NavNoOfBots CPT

Strategy Factories Hoshimi Navigation Unique Navigation
Low 0.333333 0.333333 0.05 0.333333

Medium 0.333333 0.333333 0.15 0.333333
High 0.333333 0.333333 0.8 0.333333

Table C.10: Navigation CPT

74

APPENDIX C. CONDITIONAL PROBABILITY TABLES

C.4 Unique Navigation

Unique Navigation Low Medium High
Low 0.7 0.1 0.05

Medium 0.25 0.8 0.25
High 0.05 0.1 0.7

Table C.11: UNavDist CPT

Unique Navigation Low Medium High
Low 0.7 0.1 0.05

Medium 0.25 0.8 0.25
High 0.05 0.1 0.7

Table C.12: UNavScore CPT

Strategy Factories Hoshimi Navigation Unique Navigation
Low 0.333333 0.333333 0.333333 0.05

Medium 0.333333 0.333333 0.333333 0.15
High 0.333333 0.333333 0.333333 0.8

Table C.13: UniqueNavigation CPT

75

Appendix D

Bayesian Network Values

D.1 Factories

Factories Low Medium High
Score Less than 1500 Between 1500 and 3000 Greater than 3000

No. of bots Less than 7 Between 7 and 12 Above 12
Kill Percentage 50% - 55% 56%-60% Above 60%

Table D.1: Factories Values

D.2 Hoshimi

Hoshimi Low Medium High
Score Less than 1500 Between 1500 and 3000 Greater than 3000

Table D.2: Hoshimi Values

D.3 Navigation

Navigation Low Medium High
Score Less than 1500 Between 1500 and 3000 Greater than 3000

No. of bots Less than 5 Between 5 and 8 Greater than 8

Table D.3: Navigation Values

76

APPENDIX D. BAYESIAN NETWORK VALUES

D.4 Unique Navigation

Unique Nav. Low Medium High
Score Less than 1500 Between 1500 and 3000 Greater than 3000

Distance Less than 500 Between 500 and 1200 Greater than 1200

Table D.4: Unique Navigation Values

77

Appendix E

Score Experiment Results

The following shows the results of the experiments regarding the score of the
Landingpoint Finder. The Navigation, Factory and Other columns, shows
how many of the given type of objectives have been solved. Navigation
covers both regular and unique navigation objectives. The top left corner
of the tables, hold the names of the maps.

SC4 Navigation Factory Other Score
Barycentric 4 1 1 5920

Gauss 1 1 1 2730
LPFinder 4 1 1 5820

Table E.1: SC4 Scores

Round2-2 Navigation Factory Other Score
Barycentric 3 1 1 2300

Gauss 4 1 1 5360
LPFinder 5 1 1 5790

Table E.2: Round2-2 Scores

Round2-3 Navigation Factory Other Score
Barycentric 5 1 1 6535

Gauss 5 1 1 6560
LPFinder 5 1 1 6960

Table E.3: Round2-3 Scores

78

Appendix F

LPFinder Performance Test

This example contains the data from the Landingpoint Finder performance
test.

Vertices: 10 20 30 40 50 60 70 80
Seconds: 0,0174 0,1049 0,5965 2,2762 6,1705 14,0720 27,6506 50,1712

Vertices: 90 100 110 120 130 140 150
S d 88 6033 149 3675 238 3566 366 2042 542 2150 764 7058 1060 2496Seconds: 88,6033 149,3675 238,3566 366,2042 542,2150 764,7058 1060,2496

1

1,2

0,4

0,6

0,8

Se
co
nd

s

0

0,2

VerticesVertices

Figure F.1: Landingpoint Finder performance test data.

80

Appendix G

Bayesian Data

Round2-1 Value
FacScore 800

FacKillPercent 57%
FacNoOfBots 13
HoshimiScore 7920

NavScore 1600
NavNoOfBots 3

UNavDist 1270
UNavScore 500

Table G.1: Round2-1 Data

Round2-2 Value
FacScore 800

FacKillPercent 57%
FacNoOfBots 7
HoshimiScore 7920

NavScore 1600
NavNoOfBots 5

UNavDist 330
UNavScore 500

Table G.2: Round2-2 Data

82

APPENDIX G. BAYESIAN DATA

Round2-3 Value
FacScore 800

FacKillPercent 57%
FacNoOfBots 7
HoshimiScore 9020

NavScore 1700
NavNoOfBots 4

UNavDist 699
UNavScore 500

Table G.3: Round2-3 Data

SC1 Value
FacScore 500

FacKillPercent 100%
FacNoOfBots 6
HoshimiScore 4400

NavScore 600
NavNoOfBots 6

UNavDist 2016
UNavScore 1000

Table G.4: SC1 Data

SC2 Value
FacScore 1000

FacKillPercent 100%
FacNoOfBots 7
HoshimiScore 6600

NavScore 1200
NavNoOfBots 5

UNavDist 0
UNavScore 0

Table G.5: SC2 Data

SC3 Value
FacScore 600

FacKillPercent 100%
FacNoOfBots 6
HoshimiScore 7260

NavScore 2000
NavNoOfBots 8

UNavDist 1722
UNavScore 600

Table G.6: SC3 Data

83

	Introduction
	Project Hoshimi
	Bots
	Missions

	AI Design
	Common Strategies
	Jetpack Attack Behavior

	AI Techniques
	Related Work
	Landing Point
	Mission Analysis
	Bot Behavior

	Implementation
	Design
	Landing Point Finder
	Mission Controller
	Bot Example

	Experiments
	Landingpoint Finder
	Mission Analyzer
	Competition

	Conclusion
	Future Work

	Bibliography
	List of Acronyms
	Bot Characteristics
	AI Bot
	Collector Bot
	Container Bot
	LPCreator Bot
	Explorer Bot
	Needle Bot
	Blocker Bot
	Wall Bot

	Conditional Probability Tables
	Factories
	Hoshimi
	Navigation
	Unique Navigation

	Bayesian Network Values
	Factories
	Hoshimi
	Navigation
	Unique Navigation

	Score Experiment Results
	LPFinder Performance Test
	Bayesian Data

