
Model Weaving and Pedagogy
Mapping Abstraction Levels in Instructional Design Languages

Keywords: Model Weaving, MetaModeling, Model Transformation, Instructional Design

Abstract: The GraphiT project aims at providing teachers with an operationalizable instructional design language. To
provide compatibility with existing e-learning platforms, the produced learning scenarios have to comply with
a platform specific metamodel. The issue addressed in this paper is about mapping high level pedagogical
elements captured from teachers’ practices to low-level platform features. We propose to use model weaving
to specify the mappings between different abstraction levels. Weaving models can then be used to generate
model transformations that will effectively perform modifications on the model at runtime.

1 INTRODUCTION

GraphiT is a research project funded by the French
research agency. Its main goal is to study the pos-
sibilities and limits of the pedagogical expressive-
ness of operationalizable visual instructional design
languages. The operationalizable property relates to
the possibility to exploit learning scenarios in Learn-
ing Management Systems(Chou and Liu, 2005). The
original approach of the project is to propose a plat-
form dependant architecture to guarantee compatibil-
ity. The challenge is about providing a pedagogically
relevant modeling language without adding features
to the targeted platform. We propose to address it
by building a multi-layered language where the first
layer includes platform specific features and each sub-
sequent layer is a higher abstraction level. The project
methodology consists in exploring how Model Driven
Engineering and more particularly Domain Specific
Modeling(Kelly and Tolvanen, 2008) techniques and
tools can be relevant and useful to achieve our goal.
From a DSM point of view, the abstract syntax of the
language will be specified using a metamodel in the
Ecore format, the concrete syntax will make use of
the Graphical Modeling Framework from the Eclipse
Modeling Project.

2 RESEARCH CONTEXT

2.1 Visual Instructional Design
Languages

Educational Modeling Languages (EML), were the
first generation of languages to allow formalization

of learning scenarios. IMS-LD (Botturi and Stubbs,
2008) is the de facto standard of this domain, but
has two main issues: it is mainly a machine under-
standable language (XML format) thus cannot be di-
rectly used by teachers, and it is currently not com-
patible with the main e-learning platforms (Moodle,
Ganesha. . . ). Visual Instructional Design Languages
(VIDL) address the first issue by providing teachers
with a graphical notation (for example Flexo (Dodero
et al., 2010)) but the platform full compatibility issue
has yet to be tackled.

Previous works tried to achieve LMS compati-
bility through model transformations (Burgos et al.,
2007)(Abdallah et al., 2008) but suffered semantic
loss in the process. This issue appeared because the
instructional design language was designed indepen-
dently of the operationalizing system. By designing
our instructional design language with platform com-
patibility in mind in the first place, we want to avoid
these semantic losses.

In this context, we aim at specifying a new VIDL
based on teachers needs and practices while providing
Learning Management System compatibility. With
regards to the first point, we gathered information
from interviews and surveys from local teachers com-
munity. They expressed the need for a graphical tool
and language to design their learning scenarios, and
being able to import it on the Moodle platform.

2.2 Moodle

Moodle is one of the most wide spread Learning
Management System (LMS) in academic institutions.
Teachers use this platform to set up fully distant
courses or as an additional medium to teach in class-
rooms. Moodle is also the main e-learning platform



deployed in our university making it the priority target
of our system.

To achieve platform compatibility we rely on
a platform specific instructional design metamodel
(Abedmouleh et al., 2012). This metamodel includes
every pedagogically relevant concept found through
an identification process including database and user
interfaces analysis. An API to import scenarios was
developed, based on the XSD schema extracted from
the previous metamodel. The API concretely parses
the XML based scenario and populates the database
according to it.

2.3 A Need for Mapping

The teachers we interviewed expressed some difficul-
ties trying to set-up their previously designed learning
scenarios on the LMS. Each teachers community will
often have its own ”pedagogical language”, as well as
the platform. This ”translation” issue can be tackled
by mapping each concept from one language to one or
many concepts from the other. In this study we focus
on one community (local teachers) and one platform
(Moodle).

In fact, platform features can be seen as tools and
each tool can be used to implement many pedagog-
ical activities that teachers are used to work with.
This first level of abstraction (pedagogical activity
from platform tool) was identified in a previous study
(Loiseau and Laforcade, 2013). This study identified
the relevance of one specific approach to model this
abstraction: extending the platform metamodel to in-
clude pedagogical activities from teachers practices.

In our current work we aim at generalizing this ab-
straction technique to several levels. The multiplicity
of these abstraction layers makes the mapping task
even more complex. The more obvious way to map
from one level to another is using model transforma-
tion, but considering the number of transformations to
write and the complexity of each mapping, we had to
find a solution to reduce development costs.

2.4 Mapping examples

To illustrate our approach, we will use two examples
of mapping, simplified versions of real case pedagog-
ical elements.

The first one is a pedagogical activity (a specific
use of one or many platform features): to complete the
Write A Report activity, students have to write a text
relating a real world activity they experienced, de-
pending on the course context. Several Moodle tools
could support this activity, but each one has specific
constraints, for example:

• Does the text have to be written online?

• Is it a group work (collaborative)?

• Does the text have to be written in one time or is
it more like a log (iterative)?

These properties depend on the pedagogical activity
the teacher wants to set up, and the appropriate tool
to use depends on these properties (conditional map-
ping). The decision table 1, explain how to choose
the right tool. Note that two options rely on the same
feature: assignment. The difference is ate the settings
of these tools, on the platform when creating an as-
signment you have to set many parameters including
whether students have to upload a file or write a text
online to complete the assignment. These parameter
settings have to be taken into account when designing
the mapping (parameter settings).

The second example is the Debate, it is a peda-
gogical pattern that will be mapped as following:

• Debate

– Label (platform tool)
– Exchange (pedagogical activity)
∗ Chat (if synchronous)
∗ Forum (if not)

The Debate will be mapped to an Exchange activity,
which in turn will be mapped to a Chat or a Forum
depending on the synchronous property. This exam-
ple illustrates once again the conditional mapping, but
also highlights the need to mix abstraction levels:
Debate is also mapped to a Label, an element from
an even lower level.

3 MODEL WEAVING

Model weaving can be defined as ”the operation
for setting fine-grained relationships between mod-
els or metamodels and executing operations on them
based on the semantics of the weaving associations
specifically defined for the considered application do-
main.”(Di Ruscio, 2007)

Model weaving produce a model, called weaving
model, linking several other models, called woven
models. The semantic of the weaving associations,
also referred as links or mappings, depends on the ap-
plication domain, but every type of weaving associa-
tion as to be defined in a weaving metamodel.

The model weaving task can either be achieved
manually, by a domain expert through a weaving
model editor (or model weaver), or automatically us-
ing model matching algorithms.

In an example model weaving use case, the user
will weave two metamodels (source and target), then



Journal Wiki Assignment (file upload) Assignment (online text)
Online Y Y N Y
Collaborative N Y / N
Iterative Y / / N

Table 1: Write A Report mapping decision table (/ means either yes or no).

execute a High Order Transformation on the weav-
ing model to produce a model transformation. This
transformation can then be applied to a source model
to obtain a model conforming to the targeted meta-
model. In this case, the weaving model captures the
transformation semantics.

3.1 Weave to Map

In our use case, users will design their learning sce-
nario at a specific level of abstraction then run a
model transformation to add the corresponding ele-
ments from a lower level to the global model. Run-
ning these transformations at each level will refine the
model to the point where every element is linked to
elements from the lowest level (platform tools).

The weaving model will capture the mappings
between elements from different abstraction layers,
keeping track of what become what. This model will
be defined together with pedagogical engineers and
teachers from the targeted community to ensure its
relevance regarding the pedagogical aspects.

Applied to our instructional design issues, the
model weaving process described in 3 can be used
to automate the generation of model transformations,
thus reducing the cost induced by their development.

4 MODEL WEAVERS

In the following subsections, we present two frame-
works to achieve model weaving. The first one was
developed in an academic research context and the
second one is an adhoc use of several existing lan-
guages and tools from an Eclipse foundation project.

4.1 Atlas Model Weaver

Atlas Model Weaver (AMW) (Didonet Del Fabro
and Valduriez, 2009) is a model weaving framework
developed by the AtlanMod research team. It is
part of the ATLAS Model Management Architecture
(AMMA) platform.

The framework provides a reflexive weaving
model editor, a base weaving metamodel and numer-
ous use cases and examples: matching transforma-

tions, semi-automatic generation of weaving mod-
els. . .

In a typical model weaving application, users will
extend the basic weaving metamodel with its own
weaving associations semantic in KM3 (Kernel Meta
Meta Model) files; write a High Order Transformation
(HOT) in ATL(ATL Transformation Language); de-
fine the weaving model with a domain expert and ex-
ecute the HOT to generate the final ATL model trans-
formation.

AMW seems to be an appropriate model weav-
ing framework for our use case, as it fulfills every re-
quirements we had. Unfortunately the project is not
supported anymore and several of its plugins depend
on outdated components of the Eclipse platform and
old versions of the Eclipse Modeling Framework.

4.2 Using Eclipse Epsilon To Achieve
Model Weaving

Epsilon (Paige et al., 2009) is a project supported
by the Eclipse foundation. It features multiple lan-
guages and tools to perform specific tasks on models:
model migration, model merging, Model-to-Model
and Model-to-Text transformations, model validation,
model comparison. . . Epsilon has a wide and active
community of users and developers and has a deep
compatibility with other frameworks from the Eclipse
Modeling Project.

Combining several languages and tools from the
Epsilon project, we were able to recreate a model
weaving toolchain similar to the AMW one while
benefiting from up to date compatibility with Eclipse
platform and modeling plugins.

One of the tools provided by Epsilon is Mod-
eLink, it is a 3-pane EMF-compatible model edi-
tor. The main feature of ModeLink is its ability to
capture links between different models using EMF
cross-source references. In combination with Exeed,
a reflective customizable model editor from Epsilon,
ModeLink can be used to weave heterogeneous mod-
els. Setting up the woven models on the left and right
panes and the weaving model in the center, one can
simply obtain a weaving model editor with no con-
straints on the weaving metamodel.

As writing High Order Transformation is a criti-
cal and complex task, we chose to take a different ap-



proach on generating the final model transformations.
Using Epsilon model-to-text transformation language
EGL (Rose et al., 2008) (Epsilon Generation Lan-
guage) one can generate any text file, including model
transformations. EGL is a template based language,
similar to PHP or ASP, relying on the multi-purpose
language EOL (Epsilon Object Language). Consid-
ering that each transformation has a similar structure,
in our case, writing a template is an easier task: write
an example model-to-model transformation manually,
keep the fixed section in the template and get variable
ones from the input weaving model.

Our application differs from traditional use cases
of model transformation: the transformation has to be
run while the model is being edited, the source and
target models are the same and the source elements
should be preserved by the transformation. To avoid
unnecessary copying of source elements in transfor-
mation rules, the simplest way to go was to imple-
ment rule body as an operation and run it as an EOL
program modifying the currently edited model.

5 MODEL WEAVING APPLIED

We propose to use the technical framework pre-
sented in 4.2, to provide users with a ”mapping ed-
itor” (or weaving editor) and a ”mapping execution”
solution. Figure 2 summarize the architecture of our
proposition. Unlike the learning scenario editor, our
weaving editor does not directly target teachers as
main users, as it requires computer skills to under-
stand how the system operates.

To clarify the use of this mapping solution, here is
a typical use scenario: prior to distributing the learn-
ing scenario editor to teachers, a pedagogical engi-
neer along with a teacher from the targeted commu-
nity define their own mapping semantics using the
weaving editor. Once done, a computer engineer
will run the High Order Transformation to gener-
ate Model Transformations based on the weaving
model. The engineer will then integrate the transfor-
mations in the learning scenario editor. As explained
before, the generated model transformations will be
launched inside the learning scenario editor, at run-
time, to operate the mappings previously defined in
the weaving model.

5.1 Weaving Metamodel

In order to define mappings for our instructional de-
sign language, we must first specify a weaving meta-
model. The weaving metamodel has to be generic
enough to capture every mapping we already know

(fulfilling the requirements presented in 2.4) and po-
tential evolutions and additions. The figure 1 illustrate
our weaving metamodel proposition.

The Weaving Model is the root of the model and
contains many Bindings. Each Binding represents the
mapping of one element from the language to one or
many Targets. Each Target may have a Condition con-
trolling whether it must be added to the model or not.
These Conditions relate to the value of the source ele-
ment attributes and can be composed with logical op-
erators. Attributes of the Target element can be set to
constant values (SetAttr) or retrieved from source at-
tributes (BindAttr). Again, setting of these attributes
can be subject to conditions. Note that, since we are
weaving metamodels, the weaving metamodel only
references EClasses.

5.2 Weaving Model Example

Figure 4 is a screenshot of a ModeLink editor show-
ing the mappings of the examples from section 2.4.
These mappings were modeled using the metamodel
presented in 5.1. The central pane shows the weaving
model, with custom labels defined with annotations
in the weaving metamodel. The left and right pan-
els display the metamodel of the instructional design
language. By right-clicking on the Weaving Model el-
ement, users can easily add more bindings and set the
source or target elements and attributes by dragging
and droping them from the left and right panes.

5.3 Generative Template

The generative template, expressed in EGL, replaces
the High Order Transformation as used in the AMW
framework. Code between [% tags is executable and
will be replace by the result of its evaluation in the
generated transformation. An excerpt of the template
is presented in figure 3.

Figure 3: Generative template.



Figure 1: Weaving metamodel.

Figure 2: Global architecture.



Figure 4: Weaving model example.

6 Conclusion

We proposed a generic weaving metamodel, a high
order model-to-text transformation, and a specific
weaving model to capture mappings of pedagogical
elements from an LMS centered instructional design
language. We used an innovative model weaving en-
vironment making use of existing open-source lan-
guages and tools. We validated the expressiveness of
our weaving metamodel by testing it on real mapping
provided by teachers or from literature: from a textual
description of how to implement a particular activity
or pedagogical pattern on Moodle, we tried to design
an equivalent weaving model using our solution. The
few missing mapping features were then added to the
weaving metamodel.

6.1 Further work

The learning scenario editor has to be tweaked in or-
der to automatically run the generated transforma-
tions, also high level elements still remain in the
model, breaking compatibility with the Moodle im-
port API. To circumvent this last issue, we will have
to write a global ”cleaning” transformation that will
delete these elements. Another issue is about struc-
ture blocks: teachers can structure their learning sce-
nario using sequences of activities but since mapping
transformations are run just-in-time and the high level
elements are kept, the global transformation will also
have to restore the general structure of the scenario,
replacing the sequences with their Moodle counter-
parts (sections, indented content etc.). Unfortunatly

we could not yet try the model weaver in real con-
ditions with real users, as they lack interest until a
suitable version of the learning scenario editor is re-
leased.

REFERENCES

Abdallah, F., Toffolon, C., and Warin, B. (2008). Mod-
els transformation to implement a project-based col-
laborative learning (pbcl) scenario : Moodle case
study. In 8th IEEE International Conference on Ad-
vanced Learning Technologies (ICALT 08), Santander
(Spain).

Abedmouleh, A., Oubahssi, L., Laforcade, P., and Choquet,
C. . (2012). Expressing the implicit instructional de-
sign language embedded in an lms: motivations and
process. In Computers and Advanced Technology in
Education, Naples (Italie).

Botturi, L. and Stubbs, S. (2008). Handbook of Visual Lan-
guages for Instructional Design: Theories and Prac-
tices. Gale virtual reference library. Information Sci-
ence Reference.

Burgos, D., Tattersall, C., Dougiamas, M., Vogten, H., and
Koper, R. (2007). A first step mapping ims learning
design and moodle. Journal of Universal Computer
Science, 13(7):924–931.

Chou, S.-W. and Liu, C.-H. (2005). Learning effective-
ness in a web-based virtual learning environment: a
learner control perspective. Journal of Computer As-
sisted Learning, 21(1):65–76.

Di Ruscio, D. (2007). Specification of Model Transforma-
tion and Weaving in Model Driven Engineering. PhD
thesis, University of L’Aquila.



Didonet Del Fabro, M. and Valduriez, P. (2009). Towards
the efficient development of model transformations
using model weaving and matching transformations.
Software & Systems Modeling, 8(3):305–324.

Dodero, J. M., lvaro Martnez del Val, and Torres, J.
(2010). An extensible approach to visually editing
adaptive learning activities and designs based on ser-
vices. Journal of Visual Languages & Computing,
21(6):332–346. Special Issue on Visual Instructional
Design Languages.

Kelly, S. and Tolvanen, J. (2008). Domain-Specific Model-
ing: Enabling Full Code Generation. Wiley.

Loiseau, E. and Laforcade, P. (2013). Specification of learn-
ing management system-centered graphical instruc-
tional design languages - a dsm experimentation about
the moodle platform. In ICSOFT’13, Reykjavik (Ice-
land).

Paige, R. F., Kolovos, D. S., Rose, L. M., Drivalos, N.,
and Polack, F. A. C. (2009). The design of a concep-
tual framework and technical infrastructure for model
management language engineering. In Proceedings
of the 2009 14th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS
’09, pages 162–171, Washington, DC, USA. IEEE
Computer Society.

Rose, L., Paige, R., Kolovos, D., and Polack, F. (2008).
The epsilon generation language. In Schieferdecker, I.
and Hartman, A., editors, Model Driven Architecture
Foundations and Applications, volume 5095 of Lec-
ture Notes in Computer Science, pages 1–16. Springer
Berlin Heidelberg.


