

Pyrometallurgy for Recycling of Spent Batterires

Guozhu Ye, Xianfeng Hu, Astrid Robles Dept. of Process Metallurgy, Swerim

Metallurgical principle for recycling

SWERIM

A: CaO, SiO2, Al2O3, MgO, Li2O
B: Ni, FeO, MnO, V2O3, Cr2O3, P2O5, Cu, Co, Mo
C: Zn, Pb, Na, K, Cl, F, Cd, Hg, Li
D: C-H-O, plastics/textile/fluff, C

Pilot trials with DC furnace technology

		Fe, Ni, Cr
Dust/Sludge	→	Zn, Pb, Cd
	\rightarrow	Slag cement
Steel slags	\longrightarrow	Fe, Mn, V, Ni, Cr
	$ \longrightarrow $	Slag cement
Catalyst	\longrightarrow	Fe, Ni, Cu, Co
	$ \longrightarrow $	V-slag for FeV production
Ashas		Na, K rich fume
Asnes		Slag product \rightarrow Road construction
Sludge	\rightarrow	Syngas
	$ \longrightarrow $	Slag product
Mn-Sludge	\rightarrow	Zn, Na, K rich dust
	$ \rightarrow $	Mn-slag for FeMn/SiMn production

Recovery of V from Steel Slag

Spent Alkaline batteries

•DC furnace processing (Battery Foundation)

•EBaR (MISTRA)

Black mass, chemical analysis SWERIM

DC furnace processing (1550-1600C, reducing, molten slag)

MnO-slag (>40%) Metal for Mn-alloy

3 MWDC-furnace

Test results from pilot test campaign, 2015

		Feed	Temp		K ₂ O-	ZnO-	Mn-	K ₂ O-	ZnO-
	Energy	rate	tap	B2*	slag	slag	slag	dust	dust
Heat	kWh/ton			EV	y				
no	BM	ton/h	°C		wt-%	wt-%	wt-%	wt%	wt-%
DC627	1118	1.0	1703	1.09	1.19	0.03	19.70	9.87	71.40
DC628	1053	1.0	1636	1.08	1.46	0.08	25.72	8.31	79.60
DC629	1022	0.9	1662	1.09	1.22	0.04	30.36	8.98	74.20
DC630	913	1.0	1673	1.25	1.27	0.03	32.74	15.80	64.40
DC631	893	1.0	1600	0.51	1.37	0.07	36.43	6.69	67.80
DC632	1219	0.9	1621	0.45	1.71	0.04	39.94	8.27	77.90
DC633	1191	0.8	1651	0.40	1.71	0.03	42.29	8.82	76.20
Avg	1058	0.9	1649	0.84	1.42	0.05	32.46	9.53	73.07

DC furnace for processing spent alkaline batteries

- □ +Full recovery of batteries
- \square +2-3 products (ZnO, MnO and metal)
- □ +Zero waste
- □ +Aiming for a low-cost and flexible furnace
- □ +Possible for co-processing of Mn-sludge
- □ +Possible to feed "whole batteries" directly
- Higher CAPEX

MISTRA project – EBaR (7.95 MSEK)

Black mass, chemical analysis

A-fraction

D-fraction

Hg-content, ppm Hg

Hg - analysis

SWERIM

EBaR Pilot testing

2h oxidation, BM

Vacuum destillation

SWERIM

Table 3. The chemical analysis of Mn-rich fraction

Residues	Zn/%	Mn%	Ni%	Cd/%	C/%	Hg/%
1000°C	0.20	70.18	1.38	< 0.005	1.28	< 0.005
1200°C	0.079	66.03	1.35	< 0.005	0.64	< 0.005

Table 4 The chemical analysis of condensed product

he + The cher	inical analysis c	of condense	a product			
ondense	Zn/%	Mn%	Ni%	Cd/%	C/%	Hg/%
000°C	73.59	0.12	< 0.005	1.86	0.72	< 0.005
200°C	60.07	0.10	0.0054	1.19	0.93	< 0.005

Kunming University of Science and Technology

Before

After

The Re-Lion Project

Composition (Mass %)
25
25
17
10
8
5
4
Balance

The Cu-Al foil fraction

Unmelt powder fraction<0.5 mm

With quite high C content

Coarse fraction, >0.5 mm

Remelting

73%Cu 9.3%Fe 8.7%Al 3.25%Ni 1.73%Co 1.78%Cr

58.13%

Cu foits

As received

23.93%

Smelting

Black mass, chemical analysis swering

	Со	Cu	Ni	Fe	Mn	Al	Si	Li	С	F	Cl
BM ALS-Poland	22.40%	0.74%	2.49%	0.90%	1.93%	2.03%	0.34%	3.91%	43.30%	1.10%	0.07%
BM ALS-High	21.30%	0.83%	4.87%	0.38%	1.93%	0.76%	0.75%	3.86%	45.10%	1.10%	0.03%
BM ALS-Low	2.62%	1.56%	4.43%	1.26%	1.88%	1.57%	3.88%	4.15%	47.80%	2.10%	0.02%

XRD - blackmass

Confirm the high content of graphite
The other dominating

SWERIN

mineral phase is LiCoO₂

Because of the high C content it was decided to remove some C first before the smelting test

Black mass before and after decoking

	01 BM	02 BM	03 BM
С	45.10%	47.80%	43.30%
Co	21.30%	2.62%	22.40%
Ni	4.87%	4.43%	2.49%
Mn	1.93%	5.84%	1.93%
Li	3.86%	4.15%	3.91%
Al	0.76%	1.57%	2.03%
Si	0.75%	3.88%	0.34%
Ca	0.03%	0.11%	0.04%
Cu	0.84%	1.56%	0.74%
Fe	0.38%	1.26%	0.90%
Na	0.13%	0.12%	0.08%
Р	0.48%	0.93%	0.63%
S	0.11%	0.13%	0.06%
F	1.10%	2.10%	1.10%

	01 BM	02 BM	03 BM
С	0.04%	0.15%	0.02%
Со	39.52%	5.88%	41.13%
Ni	9.04%	9.94%	4.57%
Mn	3.58%	13.10%	3.54%
Li	7.16%	9.31%	7.18%
Al	1.42%	3.52%	3.73%
Si	1.40%	8.70%	0.62%
Ca	0.06%	0.26%	0.08%
Cu	1.55%	3.50%	1.36%
Fe	0.70%	2.83%	1.65%
Na	0.24%	0.26%	0.14%
Р	0.89%	2.08%	1.16%
S	0.12%	0.06%	0.02%

120-gram-scale smelting trials in the tamman furnace

- 'Black mass + graphite' in MgO crucible without slag forming materials
- Ar atmosphere;
- 10 °C/min to 1575 °C.

The obtained metal and slag samples

03 black mass (metal)

03 black mass (metal)

No slag formed from the smelting of 01 black mass and 02 black mass.

Chemical analysis of the obtained metal samples

	01 black mass		02 black mass		03 black mass
С	0.69 %	С	2.49 %	С	0.81 %
Si	0.01 %	Si	1.1 %	Si	0.04.%
Mn	5.81 %	Mn	30.7 %	Mn	4.07 %
Р	0.90 %	Р	3.1 %	P	0.49 %
S	0.001 %	S	0.045 %	S	0.002 %
Cr	0.327 %	Cr		Cr	0.155.%
Ni	14.389 %	Ni	25.8 %	Ni	7.292 %
Mo	0.005 %	Mo	< 0.002 %	Mo	< 0.001 %
Ti	0.003 %	Ti	0.31 %	Ti	0.009 %
Nb	0.002 %	Nb	0.03 %	Nb	0.004 %
Cu	3.78 %	Cu	5.3 %	Cu	4.43 %
Со	69.1 %	Co	13.4 %	Co	73.0 %
W	% 10.0	w	< 0.005 %	W	< 0.01 %
V	0.009 %	V	0.04 %	V	0.002 %
Al	0.005 %	Al	5.0 %	Al	0.47 %
Fe	3.27 %	Fe	4.7 %	Fe	7.46 %
Zr	0.012 %	Zr	0.03 %	Zr	0.020 %

Conclusion

Pyrometallurgy provides a wide range of possibilities for efficient recovery and/or enrichment of valuables from spent batteries

A hybrid flexible system with Pyro- and Hydrometallurgy is foreseen to be the future option for efficient recycling of spent batteries

