

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Andrew Brust, Leonard Lobel, and Stephen Forte

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008935426

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, BizTalk, Excel, Expression Blend, IntelliSense, Internet Explorer, MS, MSDN, MSN,
Outlook, PerformancePoint, PivotChart, PivotTable, ProClarity, SharePoint, Silverlight, SQL Server, Virtual Earth, Visio,
Visual Basic, Visual C#, Visual Studio, Win32, Windows, Windows Live, Windows Mobile, Windows Server, Windows
Server System, and Windows Vista are either registered trademarks or trademarks of the Microsoft group of companies.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney
Project Editor: Kathleen Atkins
Editorial Production: Waypoint Press
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-12263

To my partner, Mark, and our children, Adam, Jacqueline, and Joshua, for
 standing by me through every one of life’s turns.

—Leonard Lobel

To my wife, Lauren, and my sons, Sean and Miles. Thank you for your love,
your support, and your accommodation of the unreasonable.

—Andrew Brust

To Kathleen, thanks for your support and making me run marathons, which
are more painful than book writing and building beta machines.

—Stephen Forte

 v

Contents at a Glance

Part I Core Fundamentals

 1 Overview . 3

 2 T-SQL Enhancements . 13

 3 Exploring SQL CLR . 111

 4 Server Management . 161

 5 Security in SQL Server 2008 . 189

Part II Beyond Relational

 6 XML and the Relational Database . 231

 7 Hierarchical Dataand the Relational Database 281

 8 Using FILESTREAM for Unstructured Data Storage 307

 9 Geospatial Data Types . 341

Part III Reach Technologies

 10 The Microsoft Data Access Machine . 377

 11 The Many Facets of .NET Data Binding . 419

 12 Transactions . 449

 13 Developing Occasionally Connected Systems 491

Part IV Business Intelligence

 14 Data Warehousing . 563

 15 Basic OLAP . 611

 16 Advanced OLAP . 639

 17 OLAP Queries, Tools, and Application Development 717

 18 Expanding Your Business Intelligence with Data Mining 793

 19 Reporting Services . 879

 vii

Table of Contents

Acknowledgments .xxi

Introduction . xxv

Part I Core Fundamentals

 1 Overview . 3

Just How Big Is It?. 3

A Book for Developers . 5

A Book by Developers . 6

A Book to Show You the Way. 6

Core Technologies . 7

Beyond Relational . 8

Reaching Out . 9

Business Intelligence Strategies . 10

Summary . 12

 2 T-SQL Enhancements . 13

Common Table Expressions . 14

Creating Recursive Queries with CTEs . 18

The PIVOT and UNPIVOT Operators. 21

Using UNPIVOT . 22

Dynamically Pivoting Columns . 23

The APPLY Operator . 25

TOP Enhancements . 26

Ranking Functions . 28

The ROW_NUMBER Function . 28

The RANK Function . 32

The DENSE_RANK and NTILE Functions . 34

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

viii Table of Contents

Using All the Ranking Functions Together . 36

Ranking over Groups Using PARTITION BY . 37

Exception Handling in Transactions . 40

The varchar(max) Data Type. 42

The WAITFOR Statement . 43

DDL Triggers . 43

SNAPSHOT Isolation . 45

Table-Valued Parameters . 45

More than Just Another Temporary Table Solution. 46

Working with a Multiple-Row Set . 48

Using TVPs for Bulk Inserts and Updates. 49

Working with a Single Row of Data . 51

Creating Dictionary-Style TVPs . 54

Passing TVPs Using ADO.NET . 56

TVP Limitations . 59

New Date and Time Data Types . 59

Separation of Dates and Times . 59

More Portable Dates and Times . 60

Time Zone Awareness . 61

Date and Time Accuracy, Storage, and Format. 62

New and Changed Functions. 65

The MERGE Statement . 68

Defining the Merge Source and Target . 70

The WHEN MATCHED Clause . 71

The WHEN NOT MATCHED BY TARGET Clause . 72

Using MERGE for Table Replication . 73

The WHEN NOT MATCHED BY SOURCE Clause . 74

MERGE Output . 76

Choosing a Join Method. 78

MERGE DML Behavior . 79

Doing the “Upsert” . 81

The INSERT OVER DML Syntax. 90

Extending OUTPUT…INTO . 90

Consuming CHANGES. 94

The GROUPING SETS Operator . 97

Rolling Up by Level . 99

Rolling Up All Level Combinations . 101

Returning Just the Top Level . 103

 Table of Contents ix

Mixing and Matching . 104

Handling NULL Values. 105

New T-SQL Shorthand Syntax . 109

Summary . 110

 3 Exploring SQL CLR . 111

Getting Started: Enabling CLR Integration. 112

Visual Studio/SQL Server Integration . 113

SQL Server Projects in Visual Studio . 114

Automated Deployment. 117

SQL CLR Code Attributes . 117

Your First SQL CLR Stored Procedure . 118

CLR Stored Procedures and Server-Side Data Access . 120

Piping Data with SqlDataRecord and SqlMetaData 123

Deployment . 125

Deploying Your Assembly . 125

Deploying Your Stored Procedures. 127

Testing Your Stored Procedures . 129

CLR Functions . 131

CLR Triggers . 136

CLR Aggregates . 140

SQL CLR Types. 145

Security . 150

Examining and Managing SQL CLR Types in a Database 152

Best Practices for SQL CLR Usage . 159

Summary . 160

 4 Server Management . 161

What Is SMO? . 161

What About SQL-DMO? . 162

Latest Features in SMO . 166

Working with SMO in Microsoft Visual Studio . 167

Iterating Through Available Servers . 169

Retrieving Server Settings . 171

Creating Backup-and-Restore Applications . 175

Performing Programmatic DBCC Functions with SMO 181

Policy-Based Management. 183

A Simple Policy . 184

Summary . 188

x Table of Contents

 5 Security in SQL Server 2008 . 189

Four Themes of the Security Framework . 189

Secure by Design . 189

Secure by Default. 190

Secure by Deployment . 190

Secure Communications . 190

SQL Server 2008 Security Overview . 191

SQL Server Logins . 192

Database Users. 193

The guest User Account . 194

Authentication and Authorization. 195

How Clients Establish a Connection . 195

Password Policies . 197

User-Schema Separation. 198

Execution Context . 200

Encryption Support in SQL Server. 203

Encrypting Data on the Move . 204

Encrypting Data at Rest . 206

Transparent Data Encryption in SQL Server 2008. 211

Creating Keys and Certificates . 211

Enabling TDE. 213

Querying TDE Views . 213

Backing Up the Certificate . 214

Restoring an Encrypted Database. 215

SQL Server Audit . 216

Creating an Audit Object . 216

Auditing Options . 217

Recording Audits to the File System. 219

Recording Audits to the Windows Event Log . 220

Auditing Server Events . 220

Auditing Database Events. 221

Viewing Audited Events . 222

Querying Audit Catalog Views . 224

How Hackers Attack SQL Server . 225

Direct Connection to the Internet. 225

Weak System Administrator Account Passwords 226

SQL Server Browser Service . 226

 Table of Contents xi

SQL Injection. 226

Intelligent Observation . 227

Summary . 228

Part II Beyond Relational

 6 XML and the Relational Database . 231

XML in SQL Server 2000 . 233

XML in SQL Server 2008—the xml Data Type. 234

Working with the xml Data Type as a Variable . 234

Working with XML in Tables. 235

XML Schemas . 237

XML Indexes . 244

FOR XML Commands. 247

FOR XML RAW . 248

FOR XML AUTO . 248

FOR XML EXPLICIT . 250

FOR XML Enhancements. 253

OPENXML Enhancements in SQL Server 2008 . 261

XML Bulk Load . 262

Querying XML Data Using XQuery . 263

Understanding XQuery Expressions and XPath . 263

SQL Server 2008 XQuery in Action . 266

SQL Server XQuery Extensions . 275

XML DML. 276

Converting a Column to XML . 278

Summary . 280

 7 Hierarchical Data and the Relational Database 281

The hierarchyid Data Type . 282

Creating a Hierarchical Table . 283

The GetLevel Method . 284

Populating the Hierarchy . 285

The GetRoot Method. 286

The GetDescendant Method . 286

The ToString Method. 288

The GetAncestor Method . 293

xii Table of Contents

Hierarchical Table Indexing Strategies . 296

Depth-First Indexing . 297

Breadth-First Indexing . 298

Querying Hierarchical Tables . 299

The IsDescendantOf Method . 299

Reordering Nodes Within the Hierarchy . 301

The GetReparentedValue Method . 301

Transplanting Subtrees . 303

More hierarchyid Methods . 305

Summary . 306

 8 Using FILESTREAM for Unstructured Data Storage 307

BLOBs in the Database . 307

BLOBs in the File System . 309

What’s in an Attribute? . 309

Enabling FILESTREAM . 310

Enabling FILESTREAM for the Machine . 311

Enabling FILESTREAM for the Server Instance . 312

Creating a FILESTREAM-Enabled Database. 313

Creating a Table with FILESTREAM Columns. 315

The OpenSqlFilestream Native Client API. 318

File-Streaming in .NET. 319

Understanding FILESTREAM Data Access . 321

The Payoff . 331

Creating a Streaming HTTP Service . 333

Building the WPF Client . 338

Summary . 340

 9 Geospatial Data Types . 341

SQL Server 2008 Spaces Out . 341

Spatial Models . 342

Planar (Flat-Earth) Model . 342

Geodetic (Round-Earth) Model . 343

Spatial Data Types .344

Defining Space with Well-Known Text .344

Working with geometry. 345

The Parse Method . 346

The STIntersects Method . 347

 Table of Contents xiii

The ToString Method. 349

The STIntersection Method. 350

The STDimension Method . 350

Working with geography. 351

On Your Mark … . 352

The STArea and STLength Methods . 355

Spatial Reference IDs. 355

Building Out the EventLibrary Database . 355

Creating the Event Media Client Application . 357

The STDistance Method . 363

Integrating geography with Microsoft Virtual Earth 364

Summary . 374

Part III Reach Technologies

 10 The Microsoft Data Access Machine . 377

ADO.NET and Typed DataSets . 378

Typed DataSet Basics. 378

TableAdapter Objects . 380

Connection String Management. 381

Using the TableAdapter Configuration Wizard. 382

More on Queries and Parameters . 385

DBDirect Methods and Connected Use of Typed DataSet Objects . . . 387

“Pure” ADO.NET: Working in Code . 387

Querying 101 . 388

LINQ: A New Syntactic Approach to Data Access. 392

LINQ to DataSet . 392

LINQ Syntax, Deconstructed . 393

LINQ to SQL and the ADO.NET Entity Framework: ORM Comes to .NET. . . . 395

Why Not Stick with ADO.NET? . 396

Building an L2S Model . 397

The Entity Framework: Doing ORM the ADO.NET Way 402

XML Behind the Scenes. 405

Querying the L2S and EF Models . 406

Adding Custom Validation Code. 410

Web Services for Data: Using ADO.NET Data Services Against EF Models . . 411

Creating the Service . 412

xiv Table of Contents

Testing the Service. 414

Building the User Interface. 414

Data as a Hosted Service: SQL Server Data Services . 415

Summary: So Many Tools, So Little Time . 417

 11 The Many Facets of .NET Data Binding . 419

Windows Forms Data Binding: The Gold Standard . 420

Getting Ready. 420

Generating the UI . 421

Examining the Output. 423

Converting to LINQ to SQL . 424

Converting to Entity Framework . 425

Converting to ADO.NET Data Services. 426

Data Binding on the Web with ASP.NET. 427

L2S and EF Are Easy. 428

Beyond Mere Grids . 429

Data Binding Using Markup. 430

Using AJAX for Easy Data Access . 430

ASP.NET Dynamic Data . 435

Data Binding for Windows Presentation Foundation . 438

Design Time Quandary . 439

Examining the XAML. 441

Grand Finale: Silverlight. 445

Summary . 447

 12 Transactions . 449

What Is a Transaction?. 450

Understanding the ACID Properties . 450

Local Transaction Support in SQL Server 2008 . 453

Autocommit Transaction Mode. 453

Explicit Transaction Mode . 453

Implicit Transaction Mode . 456

Batch-Scoped Transaction Mode . 457

Using Local Transactions in ADO.NET . 459

Transaction Terminology. 461

Isolation Levels . 462

Isolation Levels in SQL Server 2008 . 462

Isolation Levels in ADO.NET. 467

 Table of Contents xv

Distributed Transactions . 468

Distributed Transaction Terminology . 469

Rules and Methods of Enlistment . 470

Distributed Transactions in SQL Server 2008 . 472

Distributed Transactions in the .NET Framework 473

Writing Your Own Resource Manager . 477

Using a Resource Manager in a Successful Transaction 481

Transactions in SQL CLR (CLR Integration) . 485

Putting It All Together . 489

Summary . 490

 13 Developing Occasionally Connected Systems 491

Comparing Sync Services with Merge Replication . 492

Components of an Occasionally Connected System . 493

Merge Replication . 494

Getting Familiar with Merge Replication . 494

Creating an Occasionally Connected Application with
Merge Replication . 496

Configuring Merge Replication .499

Creating a Mobile Application Using Microsoft Visual Studio 2008 . . . 520

Sync Services for ADO.NET. 533

Sync Services Object Model. 534

Capturing Changes for Synchronization . 538

Creating an Application Using Sync Services . 543

Additional Considerations . 557

Summary . 560

Part IV Business Intelligence

 14 Data Warehousing . 563

Data Warehousing Defined . 563

The Importance of Data Warehousing . 564

What Preceded Data Warehousing. 566

Lack of Integration Across the Enterprise . 567

Little or No Standardized Reference Data . 568

Lack of History . 568

Data Not Optimized for Analysis. 568

As a Result… . 569

Data Warehouse Design . 570

xvi Table of Contents

The Top-Down Approach of Inmon . 572

The Bottom-Up Approach of Kimball . 574

What Data Warehousing Is Not . 580

OLAP . 580

Data Mining . 581

Business Intelligence . 582

Dashboards and Scorecards. 583

Performance Management . 585

Practical Advice About Data Warehousing . 585

Anticipating and Rewarding Operational Process Change. 586

Rewarding Giving Up Control . 586

A Prototype Might Not Work to Sell the Vision . 586

Surrogate Key Issues . 587

Currency Conversion Issues . 587

Events vs. Snapshots . 588

SQL Server 2008 and Data Warehousing. 589

T-SQL MERGE Statement . 589

Change Data Capture . 592

Partitioned Table Parallelism . 600

Star-Join Query Optimization . 603

SPARSE Columns . 604

Data Compression and Backup Compression . 605

Learning More . 610

Summary . 610

 15 Basic OLAP . 611

Wherefore BI? . 611

OLAP 101. 613

OLAP Vocabulary . 614

Dimensions, Axes, Stars, and Snowflakes. 615

Building Your First Cube . 617

Preparing Star Schema Objects . 617

A Tool by Any Other Name . 618

Creating the Project. 619

Adding a Data Source View . 621

Creating a Cube with the Cube Wizard . 625

Using the Cube Designer . 626

Using the Dimension Wizard . 629

 Table of Contents xvii

Using the Dimension Designer . 632

Working with the Properties Window and Solution Explorer 634

Processing the Cube . 635

Running Queries. 636

Summary . 637

 16 Advanced OLAP . 639

What We’ll Cover in This Chapter .640

MDX in Context .640

And Now a Word from Our Sponsor… .640

Advanced Dimensions and Measures . 641

Keys and Names. 641

Changing the All Member .644

Adding a Named Query to a Data Source View. 645

Parent/Child Dimensions . 647

Member Grouping. 651

User Table Time Dimensions, Attribute Relationships,
Best Practice Alerts, and Dimension/Attribute Typing 652

Server Time Dimensions . 660

Fact Dimensions . 661

Role-Playing Dimensions . 664

Advanced Measures . 665

Calculations . 667

Calculated Members . 668

Named Sets. 673

More on Script View . 674

Key Performance Indicators . 677

KPI Visualization: Status and Trend . 678

A Concrete KPI . 679

Testing KPIs in Browser View . 681

KPI Queries in Management Studio . 683

Other BI Tricks in Management Studio . 688

Actions . 689

Actions Simply Defined. 690

Designing Actions . 690

Testing Actions . 692

Partitions, Storage Settings, and Proactive Caching . 693

Editing and Creating Partitions . 694

xviii Table of Contents

Partition Storage Options. 696

Proactive Caching . 697

Additional Features and Tips . 699

Aggregations. 700

Algorithmic Aggregation Design . 700

Usage-Based Aggregation Design . 701

Manual Aggregation Design (and Modification) 702

Aggregation Design Management . 704

Aggregation Design and Management Studio. 705

Perspectives. 705

Translations . 707

Roles . 712

Summary . 715

 17 OLAP Queries, Tools, and Application Development 717

Using Excel . 719

Connecting to Analysis Services . 719

Building the PivotTable . 723

Exploring PivotTable Data . 725

Scorecards . 727

Creating and Configuring Charts . 729

In-Formula Querying of Cubes . 732

Visual Studio Tools for Office and Excel Add-Ins 737

Excel Services . 738

Beyond Excel: Custom OLAP Development with .NET. 743

MDX and Analysis Services APIs . 744

Moving to MDX . 744

Management Studio as an MDX Client . 745

OLAP Development with ADO MD.NET. 758

Using Analysis Management Objects . 769

XMLA at Your (Analysis) Service . 771

Analysis Services CLR Support: Server-Side ADO MD.NET 782

Summary . 792

 18 Expanding Your Business Intelligence with Data Mining 793

Why Mine Your Data? . 793

SQL Server 2008 Data Mining Enhancements. 797

Getting Started . 798

Preparing Your Source Data. 798

 Table of Contents xix

Creating an Analysis Services Project .800

Using the Data Mining Wizard and Data Mining Structure Designer. 802

Creating a Mining Structure. .804

Creating a Mining Model . 805

Editing and Adding Mining Models . 810

Deploying and Processing Data Mining Objects 816

Viewing Mining Models . 818

Validating and Comparing Mining Models . 827

Nested Tables . 830

Using Data Mining Extensions . 836

Data Mining Modeling Using DMX . 837

Data Mining Predictions Using DMX . 848

DMX Templates . 856

Data Mining Applied . 856

Data Mining and API Programming . 857

Using the Windows Forms Model Content Browser Controls 858

Executing Prediction Queries with ADO MD.NET 860

Model Content Queries . 860

ADO MD.NET and ASP.NET . 861

Using the Data Mining Web Controls. 862

Developing Managed Stored Procedures . 863

XMLA and Data Mining . 865

Data Mining Add-ins for Excel 2007. 866

Summary . 877

 19 Reporting Services . 879

Using the Report Designer . 880

Creating a Basic Report. 883

Applying Report Formatting . 887

Adding a Report Group . 890

Working with Parameters . 892

Writing Custom Report Code . 897

Creating an OLAP Report .900

Creating a Report with a Matrix Data Region. 906

Tablix Explained . 910

Adding a Chart Data Region . 915

Making a Report Interactive . 917

Delivering Reports . 919

Deploying to the Report Server . 919

xx Table of Contents

Accessing Reports Programmatically . 928

Administering Reporting Services . 937

Using Reporting Services Configuration Manager. 937

Using Report Manager and Management Studio 940

Integrating with SharePoint . 949

Summary . 951

 Index . 953

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

 xxi

Acknowledgments

Working on this book has truly been the most rewarding experience of my professional
 career thus far, and I need to thank a great many people who have made it possible.

I first met Andrew Brust about 10 years ago, and we’ve enjoyed a close working relationship
and growing friendship for the past 7 of those. I can’t count the number of times Andrew has
opened doors for me with project, writing, and speaking opportunities—and now, of course,
this book. Andrew introduced me to Stephen Forte back in 2004, and after 30 years in the
industry, I’ve learned to find new appreciation for the art of software development through
Stephen’s enthusiastic (that is, wacky and wild) personality. Andrew and Stephen both made
this project significantly easier by producing the original edition of this book—an excellent
treatment of Microsoft SQL Server 2005 that set the starting point for this new 2008 edition.
It’s been an absolute thrill and honor that they invited me to join them this time around and
to assume the role of lead author for the new edition. Thanks to you both for entrusting me
with that responsibility, as well as for your own hard work on this edition.

We could never have produced a book so broad and deep in scope without the additional
aid of the other guest authors. Elsie Pan, Paul Delcogliano, Mark Frawley, and Jeff Bolton
each did an outstanding job writing brand-new chapters, and Elsie also revised material from
the last edition. Heartfelt thanks go out as well to Kenn Scribner, who performed an incred-
ibly detail-oriented tech review of the entire book, and especially for helping out with updat-
ing important material at the bottom of the ninth with two men out and three men on. I’m
very grateful for their contributions and professionalism, and I feel privileged to have worked
with each of them. I’d also like to thank Jay Rabin, and all the wonderful folks at twentysix
New York, for their continuous stream of support and encouragement throughout this whole
project.

I was very lucky to have worked closely with Kathleen Atkins, Sally Stickney, and Ken Jones
of Microsoft Press; Steve Sagman from Waypoint Press; and copy editor Jennifer Harris. Their
superb editorial contributions, project planning, and overall guidance were vital to the pro-
duction of this book. Double thanks go to Sally, who was always available to me (weekends
too) for much-needed guidance as I entered the world of book writing. And the assistance
provided by a number of people from various Microsoft product teams helped tackle the
challenge of writing about new software as it evolved through several beta releases. So thank
you to Steve Lasker, for support with Compact and Sync Services, and to Roger Doherty and
Isaac Kunen for support with the “beyond relational” features. In particular, Roger inspired
several of the FILESTREAM and geospatial demos found in those chapters. George Sobhy was
also a great help with geospatial—he even arranged for a shared desktop demo between
New York and Cairo (and thanks to Stephen Forte too, for the introduction).

xxii Acknowledgments

This would all be moot, of course, without the love and support of my family. Almost all
of my spare time over the past year was spent working on this project in one form or
 another—researching and writing new material, editing the whole book, and coordinat-
ing its production—which at times transformed me into an absentee partner and father. I
owe an enormous debt of gratitude to my wonderful partner, Mark, and my awesome kids,
Adam, Jacqueline, and Josh, for putting up with it all. So thanks, gang, I’m back home now!
And thanks most of all to dear Mom, bless her soul, for always encouraging me to write with
“ expression” since the first grade.

—Leonard Lobel

Writing a book is hard, especially for the people in the authors’ lives who lend heroic
 support. Revising a book is hard too, especially for the people in the authors’ lives who lend
that support again.

With that in mind, I’d like to thank my wife, Lauren (who endured this project while at the
same time earning her master’s degree and being an amazing mom to our two boys). And
I thank our boys as well: Miles (who, though only four years old, is nonetheless a veteran of
both editions of this book) and Sean (who, at age 18 months, has endured yet another thing
that his older brother experienced first). All three have tolerated my intolerable absences
from their events and their lives. Each one has my gratitude for the patience and understand-
ing shown to me.

I’d also like to thank everyone at twentysix New York, especially Jay Rabin, for granting me a
period of calm, with unprecedented duration, to get the work on this edition done.

Finally, but certainly not least of all, I’d like to thank Leonard Lobel for “taking the wheel”
on this edition of the book. Had he not done so, we simply would not have this edition of
the book. Lenni is prone to thanking me for exposing him to opportunity. What he fails to
understand is that by repeatedly succeeding, he makes me look good simply for having the
good taste to recommend him.

—Andrew Brust

 Acknowledgments xxiii

It’s nice to have your name on the cover of a book, but without help from various people,
this book never would have happened. I’ll start with Andrew and Lenni, my wonderful co-
authors, both easy to work with, dedicated, and also very patient with me. The folks at
Microsoft Press were all great to work with and had considerable energy and flexibility.

I would not have been able to take on this project if I did not have the support of the folks at
Telerik, Triton Works, and Dash Soft, three companies that I work very closely with. I would
like to give special thanks to the leaders of those firms, Vassil Terziev, Mark Storen, and
Remon “FGD” Zakaria, for their understanding and support when deadlines for the book
loomed.

We have also had tons of great reviewers. I was blessed to have folks like Kimberly Tripp,
Peter DeBetta, and Roman Rehak help out with reading my chapters, as well as Kevin Collins,
Remi Caron, Joel Semeniuk, Eileen Rumwell, Steve Lasker, Kirk Haselden, Ted Lee, Sergei
Ivanov, Richard Campbell, Goksin Bakir, Malek Kemmou, Jason Gideon, Julie Lerman, Bill
Ramos, Tom Halligan, and finally Jack Prilook—who looked at my manuscript 13 times.

I started this book on the first day of classes of my second year of my MBA education. Some
days I had to choose whether to write on Policy-Based Management or macroeconomic
trends in China and India. I’d like to thank all my group members at EMBA 26, most especially
Dr. Ian Miller, Rosa Alvarado, Jason Nocco, Dmitriy Malinovskiy, and Cyrus Kazi. As fate would
have it, I type these words on my last day of school. How fitting to finish a book and an MBA
in the same weekend.

—Stephen Forte

 xxv

Introduction

Welcome, developer!

The book you are holding, much like Microsoft SQL Server 2008 itself, builds on a great
“ previous release.” SQL Server 2005 was—architecturally speaking—a groundbreaking
 upgrade from earlier versions of the product, and the 2005 edition of this book was a new
printed resource that provided comprehensive coverage of the revamped platform. This
new edition includes thoroughly updated coverage of the most important topics from the
past edition, plus brand-new coverage of all the new exciting and powerful features for
developers in SQL Server 2008. As with the 2005 edition, we set out to produce the best
book for developers who need to program SQL Server 2008 in the many ways that it can be
programmed.

To best understand our approach, we ask that you consider likening SQL Server 2008 to, of
all things, a Sunday newspaper. A Sunday newspaper is made up of multiple sections, each
of which is written separately and appeals to a distinct audience. The sections do have overlap-
ping content and share some readership, of course, but most people don’t read the whole
paper, and they don’t need to. Meanwhile, the entire paper is considered a single publication,
and those who read it think of themselves as readers of the paper rather than of one or more
of its sections. Likewise, SQL Server has many pieces to it: few people will use them all, and
people will need to learn about them gradually, over time, as their business needs dictate.

Our book reflects this reality and in many ways replicates the structure of a Sunday newspaper.
For one thing, a great number of authors have been involved in producing the book, drawing
on their expertise in their chapters’ specific subject matter. For another, the context of certain
chapters differs markedly from those of other chapters. Some chapters cover specific subject
matter deeply. Others cover a broader range of material, and do so at a higher level. That’s
an approach we didn’t anticipate when we authored the 2005 edition of this book. But it’s
the approach we found most effective by the time we finished it, and one which we continue
to follow in this new edition for SQL Server 2008. We have found that it makes an otherwise
overwhelming set of technologies much more approachable and makes the learning process
much more modular.

Make no mistake, though—the overall vision for the book is a cohesive one: to explore the
numerous programmability points of SQL Server 2008 and, in so doing, provide widespread
coverage of the great majority of the product’s features, in a voice that caters to developers’
interests. Whether you read every chapter in the book or just some of them and whether you
read the book in or out of order, our goal has been to provide you with practical information,
numerous useful samples, and a combination of high-level coverage and detailed discussion,
depending on how deep we thought developers would want to go.

xxvi Introduction

Just as the Sunday newspaper doesn’t cover everything that’s going on in the world, this
book won’t teach you everything about SQL Server. For example, we don’t cover high-
availability/fault tolerance features such as replication, clustering, or mirroring. We don’t
discuss query plans and optimization, nor do we investigate SQL Server Profiler, SQL Trace,
or the Database Engine Tuning Advisor. Some features covered in the 2005 edition have not
changed significantly in SQL Server 2008, such as native XML Web Services, Service Broker,
Integration Services, and cross-tier debugging. These topics are also not covered, in order to
make room for new SQL Server 2008 features. (The 2005 edition chapters that cover those
topics are available for you to download from this book’s companion Web site, which we ex-
plain toward the end of this introduction.)

We discovered as we wrote the book that covering everything in the product would result
in a book unwieldy in size and unapproachable in style. We hope we struck the right bal-
ance, providing a digestible amount of information with enough developer detail and enough
 pointers to other material to help you become a seasoned SQL Server professional.

Who This Book Is For

Now that we have established what the book does and does not cover, we’d like to clarify just
who we believe will be most interested in it and best served by it. In a nutshell, this book is
for .NET and SQL Server developers who work with databases and data access, at the busi-
ness logic/middle-tier layer as well as the application level.

In our perhaps self-centered view of the development world, we think this actually describes
most .NET developers, but clearly some developers are more interested in database program-
ming in general, and SQL Server specifically, than others, and it is this more interested group
we want to reach.

We assume that you have basic, working knowledge of .NET programming on the client and
Transact-SQL (T-SQL) on the server, although SQL experience on any platform can easily sub-
stitute. We also assume that you are comfortable with the basics of creating tables, views, and
stored procedures on the server. On the client tools side, we assume that you are familiar with
the prior generation of SQL Server and .NET development tools. If you’ve already been work-
ing with SQL Server Management Studio in SQL Server 2005, you’ll feel right at home with the
2008 version, which has been extended to support new server features (and now even includes
IntelliSense for T-SQL!). If you’re still running SQL Server 2000 or earlier, you’ll definitely appreci-
ate SQL Server Management Studio as a vast improvement over the two primary tools that pre-
ceded it—Enterprise Manager and Query Analyzer. SQL Server Management Studio essentially
represents the fusion of those two tools, packaged in a modern user interface (UI) shell very
similar to that provided by Microsoft Visual Studio—complete with customizable menus and
toolbars, floatable and dockable panes, solutions, and projects. The primary tool for .NET devel-

 Introduction xxvii

opment is, of course, Visual Studio 2008, and experience with any version will also be beneficial
for you to have.

Having said all that, we have a fairly liberal policy regarding these prerequisites. For example,
if you’ve only dabbled with SQL and .NET, that’s OK, as long as you’re willing to try and pick
up on things as you read along. Most of our code samples are not that complex. However,
our explanations do assume some basic knowledge on your part, and you might need to do
a little research if you lack the experience.

Note For the sake of consistency, all the .NET code in this book is written in C#. (The only
 exceptions to this rule will be found in Chapter 19 for Reporting Services, since only Visual Basic
.NET is supported for scripting report expressions and deployments.) However, this book is in
no way C#-oriented, and there is certainly nothing C#-specific in the .NET code provided. As
we just stated, the code samples are not very complex, and if you are more experienced with
Visual Basic .NET than you are with C#, you should have no trouble translating the C# code
to Visual Basic .NET on the fly as you read it.

In addition to covering the SQL Server core relational engine, its latest breed of “beyond
 relational” capabilities, and its ancillary services, this book also provides in-depth coverage of
SQL Server’s business intelligence (BI) features, including Reporting Services, and the online
analytical processing (OLAP) and data mining components of Analysis Services. Although
ours is not a BI book per se, it is a database developer’s book, and we feel strongly that all
these features should be understood by mainstream database developers. BI is really one
of the cornerstone features of SQL Server 2008, so the time is right for traditional database
 developers to “cross over” to the world of BI.

Realizing that these technologies, especially OLAP and data mining, will be new territory for
many readers, we assume no knowledge of them on your part. Any reader who meets the
prerequisites already discussed should feel comfortable reading about these BI features and,
more than likely, feel ready and excited to start working with BI after reading the BI-focused
chapters.

How This Book Is Organized

This book is broken down into four parts. Each part follows a specific SQL Server “theme,” if
you will.

Part I begins with an overview that gives you a succinct breakdown of the chapters in all four
parts of the book. Then it dives right in to core SQL Server technologies. We explore the
many powerful enhancements made to Transact-SQL (T-SQL), both in SQL Server 2005 and
2008 (in that order). We also introduce you to SQL Server’s .NET Common Language Runtime
(CLR) integration features, which cut across our discussions of data types and server-side

xxviii Introduction

programming. You’ll learn how to programmatically administer the server using Server
Management Objects (SMO), which were introduced in SQL Server 2005, and how to use the
new administrative framework called Policy-Based Management (PBM) in SQL Server 2008.
Then we tackle security. After quickly covering basic SQL Server security concepts, we show
how to encrypt your data both while in transit (traveling across the network) and at rest (on
disk). We’ll also teach the latest security features in SQL Server 2008, including Transparent
Data Encryption (TDE) and SQL Server Audit, which you will find extremely useful in today’s
world of regulatory compliance.

Part II is dedicated to the SQL Server 2008 “beyond relational” release theme, which is all
about working with semistructured and unstructured data. This is a concept that broadens
our traditional view of relational databases by getting us to think more “outside the box” in
terms of all the different types of data that SQL Server can be used to manage, query, and
manipulate. We begin with a chapter on XML support (which was spearheaded in SQL Server
2005), and provide detailed coverage that includes the recent XML enhancements made in
SQL Server 2008. All the remaining chapters in Part II cover nonrelational features that are
brand new in SQL Server 2008. These include hierarchical tables, native file streaming, and
geospatial capabilities. These features are designed to enrich the native database engine by
bringing unprecedented intelligence and programming convenience down to the database
level.

In Part III, we move away from the server and discuss concepts relating to actual database
software development, be it in the middle tier or at the application level. This includes data
access using “traditional” ADO.NET, language-integrated query (LINQ), the ADO.NET Entity
Framework, and the latest innovations, ADO.NET Data Services and SQL Server Data Services.
After you succeed in accessing your data, you’ll need to deliver that data to your users, and
that means data binding. We’ll dig in to data binding for Microsoft Windows and ASP.NET
Web applications, as well as the newest UI platforms, Windows Presentation Foundation
(WPF) and Silverlight. We also cover transactions and various other topics relevant to ex-
tending your databases’ reach with technologies such as merge replication, Sync Services for
ADO.NET, and mobile database application development with SQL Server Compact 3.5.

Part IV is our BI section. In it, we provide efficient, practical coverage of SQL Server Analysis
Services and Reporting Services. We are particularly proud of this section because we as-
sume virtually no BI or OLAP knowledge on your part and yet provide truly deep coverage
of SQL Server BI concepts, features, and programming. We have a chapter dedicated to the
topic of data warehousing. In it, you’ll see how to use a new SQL Server 2008 feature called
Change Data Capture (CDC) to facilitate incremental updating of large data warehouses.
Furthermore, we cover all the new important BI features in SQL Server 2008, expanded to
include the latest data mining add-ins for Microsoft Office Excel 2007. The Reporting Services
chapter has been written from scratch for the completely reworked and enhanced Report
Designer, and also teaches you the many ways that Reporting Services can be programmed
and managed.

 Introduction xxix

Together, the four parts of the book provide you with a broad inventory of a slew of SQL
Server 2008 developer-relevant features and the conceptual material necessary to un-
derstand them. We don’t cover everything in SQL Server 2008, but we will arm you with
a significant amount of core knowledge and give you the frame of reference necessary to
research the product further and learn even more. Where appropriate, we refer you to SQL
Server Books Online, which is the complete documentation library for SQL Server 2008 (avail-
able from the Start Menu under Programs, Microsoft SQL Server 2008, Documentation And
Tutorials).

Code Samples and the Book’s Companion Web Site

All the code samples discussed in this book can be downloaded from the book’s companion
Web site at the following address:

http://www.microsoft.com/mspress/companion/9780735625990/

Important This book and its sample code were written for, and tested against, the Release
Candidate (RC0) version of SQL Server 2008 Developer edition, released in June 2008. If and
when we discover any incompatibilities with the Release To Manufacturer (RTM) version, or any
further service packs that are later released, our intent is to update the sample code and post
errata notes on the book’s companion Web site, available at http://www.microsoft.com/mspress/
companion/9780735625990/. Please monitor that site for new code updates and errata postings.

In addition to all the code samples, the book’s companion Web site also contains several
chapters from the 2005 edition of this book that were not updated for the 2008 edition.
These include the chapters on native XML Web Services and Service Broker, which are fea-
tures that have not been widely adopted since they were introduced in SQL Server 2005 but
that continue to be supported in SQL Server 2008. The 2005 edition chapters covering SQL
Server Management Studio (the primary graphical tool you’ll use for most of your database
development work), SQL Server 2005 Express edition, Integration Services, and debugging
are posted on the companion Web site as well. With the inclusion of all the new SQL Server
2008 coverage, space constraints simply did not permit us to include these topics (which
have not changed significantly in SQL Server 2008) in this new edition. And while we provide
completely new coverage on the latest data binding techniques, the 2005 edition covers
ADO.NET programming techniques against then-new SQL Server features, and so it is posted
on the companion Web site as well. This book’s chapter on OLAP Application development
has also been revised to include Excel 2007 coverage, and the 2005 edition is available on
the companion Web site for those developers who are still working with Excel 2003 against
Analysis Service OLAP cubes.

xxx Introduction

Because this is a developer book, we often include one or more Visual Studio projects as
part of the sample code, in addition to SQL Server Management Studio projects containing
T-SQL or Analysis Services script files. Within the companion materials parent folder is a child
folder for each chapter. Each chapter’s folder, in turn, contains either or both of the following
two folders: SSMS and VS. The former contains a SQL Server Management Studio solution
(.ssmssln file), the latter contains a Visual Studio solution (.sln file). Some chapters might have
multiple Visual Studio solutions. After you’ve installed the companion files, double-click a
solution file to open the sample scripts or code in the appropriate integrated development
environment (IDE).

Because most of the code is explained in the text, you might prefer to create it from scratch
rather than open the finished version supplied in the companion sample code. However, the
finished version will still prove useful if you make a small error along the way or if you want
to run the code quickly before reading through the narrative that describes it.

Some of the SQL Server Management Studio projects contain embedded connections that
are configured to point to a default instance of SQL Server running on your local machine.
Similarly, some of the Visual Studio source code contains connections or default connection
strings (sometimes in code, sometimes in settings or configuration files, and other times in
the Text property of controls on the forms in the sample projects) that are configured like-
wise. If you have SQL Server 2008 installed as the default instance on your local machine with
Windows-integrated security and the AdventureWorks2008 sample database, the majority
of the sample code should run without modification. If not, you’ll need to modify the server
name, instance name, or user credentials accordingly to suit your environment. You’ll also
need to install AdventureWorks2008 if you have not already done so. (Download instructions
for all the sample databases are given in the sections ahead.)

A number of chapters rely on various popular sample databases available for SQL Server.
These include the Northwind and just-mentioned AdventureWorks2008 sample transactional
databases, the AdventureWorksDW2008 sample data warehouse database, and the Adventure
Works DW 2008 Analysis Services sample database. None of our examples use the pubs data-
base, which has been around since long before SQL Server 2000.

Using the Sample Northwind Database

You can use the version of Northwind that came with SQL Server 2000, if you have it, and
attach it to your SQL Server 2008 server. Microsoft has also published a Windows Installer
file (.msi) that will install the Northwind sample database on your server (even the older
pubs sample database is included). The installer provides both the primary database file and
the log file that can be directly attached, as well as T-SQL scripts, which can be executed

 Introduction xxxi

to create the databases from scratch. At press time, the download page for the Northwind
installer file is http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-
46a0-8da2-eebc53a68034&DisplayLang=en. An Internet shortcut to this URL is included with
this chapter’s sample code. If the link does not work for you, try running a Web search on
“Northwind and pubs Sample Databases for SQL Server 2000.”

Using the Sample AdventureWorks2008 Databases

As of SQL Server 2005, and updated for SQL Server 2008, Microsoft provides the
AdventureWorks family of databases. You can download these sample databases from
CodePlex, which is Microsoft’s open source Web site (in fact, all of Microsoft’s official product
code samples are hosted on CodePlex). This book uses the AdventureWorks2008 relational
online transaction processing (OLTP) database, the AdventureWorksDW2008 relational data
warehouse database, and the AdventureWorksAS2008 Analysis Services database. The latest
version of these sample databases are designed for use only with SQL Server 2008 and will
not work with SQL Server 2005. (The older AdventureWorks databases for SQL Server 2005
are still available on CodePlex at the time of this writing, however.)

At press time, the download location for all sample AdventureWorks2008 databases is
http://www.codeplex.com/MSFTDBProdSamples. Click the Releases tab on this page to select
any of the sample databases for downloading to your machine. An Internet shortcut to this
URL is included on the book’s companion Web site. If the link does not work for you, try run-
ning a Web search on “SQL Server 2008 product sample databases.”

The AdventureWorks2008 OLTP database uses the new FILESTREAM feature in SQL Server
2008, and therefore requires that FILESTREAM be enabled for the instance on which
AdventureWorks2008 is installed. Chapter 8 is devoted to FILESTREAM, and you should
refer to the “Enabling FILESTREAM” section in that chapter, which shows how to enable
FILESTREAM in order to support AdventureWorks2008.

Important The samples for this book are based on the 32-bit version of the sample
AdventureWorks2008 databases, which is almost—but not exactly—identical to the 64-bit
 version. If you are using the 64-bit version of these sample databases, some of your query
 results might vary slightly from those shown in the book’s examples.

xxxii Introduction

System Requirements

To follow along with the book’s text and run its code samples successfully, we recommend
that you install the Developer edition of SQL Server 2008, which is available to a great num-
ber of developers through Microsoft’s MSDN Premium subscription, on your PC. You will also
need Visual Studio 2008; we recommend that you use the Professional edition or one of the
Team edition releases, each of which is also available with the corresponding edition of the
MSDN Premium subscription product.

Important To cover the widest range of features, this book is based on the Developer edition
of SQL Server 2008. The Developer edition possesses the same feature set as the Enterprise edi-
tion of the product, although Developer edition licensing terms preclude production use. Both
editions are high-end platforms that offer a superset of the features available in other editions
(Standard, Workgroup, Web, and Express). We believe that it is in the best interest of developers
for us to cover the full range of developer features in SQL Server 2008, including those available
only in the Enterprise and Developer editions.

Most programmability features covered in this book are available in every edition of SQL Server
2008. One notable exception is the lack of Analysis Services support in the Workgroup, Web,
and Express editions. Users of production editions other than the Enterprise edition should con-
sult the SQL Server 2008 Features Comparison page at http://msdn.microsoft.com/en-us/library/
cc645993.aspx for a comprehensive list of features available in each edition, in order to under-
stand which features covered in the book are available to them in production.

To run these editions of SQL Server and Visual Studio, and thus the samples in this book,
you’ll need the following 32-bit hardware and software. (The 64-bit hardware and software
requirements are not listed here but are very similar.)

 600-MHz Pentium III–compatible or faster processor (1-GHz minimum, but 2GHz or
faster processor recommended).

 Microsoft Windows 2000 Server with Service Pack (SP) 4 or later; Windows 2000
Professional Edition with SP4 or later; Windows XP with SP2 or later; Windows Server
2003 (any edition) with SP1 or later; Windows Small Business Server 2003 with SP1 or
later; or Windows Server 2008 (any edition).

 For SQL Server 2008, at least 512 MB of RAM (1 GB or more recommended).

 For Visual Studio 2008, 192 MB (256 MB recommended).

 For SQL Server 2008, approximately 1460 MB of available hard disk space for the
recommended installation. Approximately 200 MB of additional available hard disk
space for SQL Server Books Online.

 For Visual Studio 2008, maximum of 20 GB of available space required on installation
drive. This includes space for the installation of the full set of MSDN documentation.

 Introduction xxxiii

 Internet connection required to download the code samples for each chapter from the
companion Web site. A few of the code samples require an Internet connection to run
as well.

 CD-ROM or DVD-ROM drive recommended.

 Super VGA (1024 × 768) or higher resolution video adapter and monitor
recommended.

 Microsoft Mouse or compatible pointing device recommended.

 Microsoft Internet Explorer 6.0 SP1 or later. Microsoft Internet Explorer 7.0
recommended.

 For SQL Server Reporting Services, Microsoft Internet Information Services (IIS) 6.0 or
later and ASP.NET 2.0 or later.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the companion content.
As corrections or changes are collected, they will be added to a Microsoft Knowledge Base
article.

Microsoft Press provides support for books and companion content at the following Web
site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content,
or questions that are not answered by visiting the preceding sites, please send them to
Microsoft Press via e-mail to:

mspinput@microsoft.com

Or send them via postal mail to

Microsoft Press
Attn: Programming Microsoft SQL Server 2008 Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the
preceding addresses.

 563

Chapter 14

Data Warehousing

—Mark Frawley

This chapter is all about data warehousing. If you’ve been avoiding this topic—dismissing it
perhaps as being too advanced, esoteric, or abstract to be applicable—this chapter will help
you cast those excuses aside and embrace data warehousing. The practical advice and guid-
ance we give will empower you and your end users to glean more useful information and
intelligence from your data. We will begin with an explanation of exactly what data ware-
housing is and why you should care about it, and then we’ll show how to take advantage of
specific Microsoft SQL Server 2008 data warehousing features.

Data Warehousing Defined

You’re in good company if you wonder exactly what is meant by data warehousing—and
 indeed you might even wonder whether it has any precise meaning at all. The term has ex-
isted for almost two decades, and you might have seen a variety of definitions. Here is ours:

Data warehousing is both a vision of and a methodological approach toward organizing and
managing enterprise data for the purpose of providing a trustworthy, consistent, integrated,
and comprehensive data foundation for an enterprise’s data-driven requirements and
applications, both tactical and strategic.

Why does our definition not include any technical references? Well, that’s just the point!
While technology is essential to actually realizing the vision, data warehousing is not—or
should not be—fundamentally about technology. It is about laying the data foundation
needed to run an enterprise. Run as in making informed decisions. And enterprise rather than
business because data warehousing is equally relevant whether the work is for-profit, not-for-
profit, or in the public sector (a subtle distinction resulting from the unfortunate fact that the
word business is embedded in the term business intelligence, or BI)—and, increasingly, wheth-
er the entity is small, medium, or large. Compared with what was true in the past, Microsoft’s
data warehousing–related offerings under the SQL Server product umbrella have made it
particularly feasible for data warehousing goals to be attainable by small and medium-size
enterprises. Of course, Microsoft continues to deliver industrial-strength data warehousing
performance for the largest enterprises—especially with the 2008 release of SQL Server.

564 Part IV Business Intelligence

The Importance of Data Warehousing

Today, data warehousing in some form has become a given, a must, for running an enterprise
of any significant size. At its best, it enables actual competitive advantage, but even when
focused more tactically or departmentally, it is now considered essential to being competi-
tive—as basic and essential as the general ledger or payroll system. While it is often difficult
to quantify the benefits of data warehousing in terms of return on investment (ROI), no one
these days seriously questions its value and necessity. As a database developer, you are likely
to be involved with data warehousing in one way or another—if not directly, at least in inter-
facing to a data warehouse. So it’s important for you to understand what data warehousing
is all about.

Developing a data warehouse is in some ways a very different undertaking from traditional
online transactional processing (OLTP) database development, with which you are probably
more familiar. Two of the most notable differences are that data warehousing essentially
emphasizes data and its relationships—as opposed to the emphasis on process found in
the typical OLTP application—and that hard experience by practitioners has evolved spe-
cialized ways of modeling data that are particularly useful in achieving the goals of data
warehousing.

Even if your role is primarily technical, you will be able to do a much better job of building or
interfacing to a data warehouse if you know something about these differences from OLTP
and the reasons for them. This will also help you appreciate the perspective of decision mak-
ers who rely on accurate data storage and analysis (see the next chapter), which will be very
likely different from that of typical OLTP application stakeholders.

Data warehousing is an essential foundation for what has come to be known as business in-
telligence (BI). We’ll learn more about the close relationship between data warehousing and
BI later in this chapter, but for now, appreciate that they are not synonymous. At the same
time, in keeping with our earlier observation, mentally substitute enterprise when you hear
business.

The remainder of this chapter consists of five sections that build upon one another as we
progress through our treatment of data warehousing. Instead of immediately focusing on
technical details and step-by-step procedures in SQL Server 2008, we review the history lead-
ing up to why data warehousing is today a distinct practice and how SQL Server 2008 repre-
sents an excellent data warehousing platform.

The first section, “What Preceded Data Warehousing,” focuses on the origins of data ware-
housing to help you appreciate why data warehousing emerged as a distinct practice re-
sponding to industry issues. The second section, “Data Warehouse Design,” describes the two
principal approaches to data warehouse design. The third section, “What Data Warehousing

 Chapter 14 Data Warehousing 565

Is Not,” considers various terms often confused with data warehousing and gives them
 distinct definitions. The fourth section, “Practical Advice About Data Warehousing,” alerts you
to various common but nonobvious issues that you might encounter when building a data
warehouse. Last, the fifth section, “SQL Server 2008 and Data Warehousing,” discusses SQL
Server 2008–specific details as they relate to data warehousing.

With this ambitious agenda to cover in just a single chapter, we will not actually tell you
much about “how” to build the perfect data warehouse—dozens of entire books are avail-
able for that. Rather, what we aim to provide is a unique combination of background, clari-
fication of terms, identification of tricky spots, and finally some technical details about the
specific data warehousing platform offered by SQL Server 2008.

Data vs. Information
At the risk of sounding pedantic, fully appreciating why data warehousing is valuable
requires drawing the distinction between data and information. Data consists of re-
corded, characterized “facts”—for example, sale amounts initiated by customer A at
store B on date C, paid for with credit card D. These facts are the amounts of the sale
(numbers), while the characteristics give these numbers meaning or context. This is the
sort of transactional data typically captured by an operational application.

Such characterized facts are essential, but information involves interpreting facts, iden-
tifying the relationships between them, and finding the more abstract “meaning” (if it
exists) implied by them. Each characteristic, such as customer, store, date, and so on,
could serve as a predicate in a query. For example, what is the pattern of sales vs. store
for this customer? Or what stores have the highest sales by date? Of course, there are
countless others. These sorts of questions are higher order, or value adding, because
their answers enable informed decision making for the future, as opposed to mere
question answering of the sort that a customer service representative might do from
the facts themselves (for example, when answering the question, “what is this charge
on my statement that I don’t recognize?”).

This might not seem an important distinction, but historically, it often simply wasn’t
technically feasible to assemble the available data in a form suitable for informed deci-
sion making. Often, what passed for that instead was instinct and educated guesswork.
In contrast, data warehousing emphasizes organizing, standardizing, and formatting
facts in such a way as to enable deriving such “information” from them. Building on
that, BI is then concerned with defining, extracting, delivering, and acting on that
information.

566 Part IV Business Intelligence

What Preceded Data Warehousing

Depending on your experience, you might remember the term electronic data processing,
also known as EDP or DP, which was used to describe the use of computers in enterprise ap-
plications for much of the 55+ years of computing history. Over the last 15 to 20 years, the
term has morphed into today’s information technology, commonly referred to simply as IT.
Although unintentional, the timing of the change and the implication of the two terms could
also stand for “pre–data warehousing” and “post–data warehousing.”

Until the early to mid-1990s (when the client/server architectural paradigm reached its peak),
the application of computers to enterprise needs had a strong emphasis on streamlining or
automating manual clerical processes and relatively simple, repetitive high-volume tasks such
as billing, payroll, inventory, and maintaining the general ledger (GL). Such applications were
obvious initial targets for the application of computers in the business environment for at
least three reasons:

 Their repetitive, highly constrained nature (making them relatively easy to model and
suitable for automation)

 The presumed cost savings associated with that automation

 The technical feasibility given the state of the art at the time

Early input and output formats were very crude. For a long time, batch-mode processing—
based on input via punched cards and output on green-bar lined printer paper—was the
norm. Eventually, the state of the art advanced to allow interactive activities (giving us the
now quaint and superfluous but persistent adjective online). Still, the application of com-
puters to the enterprise remained largely driven by the aforementioned factors. A natural
consequence was that each DP-targeted application was closely aligned with the operational
process it supported, and marginally if at all with other processes. DP was about recording
the basic facts of enterprise transactions while ensuring data integrity and then summarizing
the results in fixed reports. The well-known term online transaction processing (OLTP) devel-
oped as a label for all of this.

Electronic data processing was an apt description of what computers and their users were do-
ing during the pre–data warehousing period—processing data as transactions electronically
(as opposed to manually)—and also what they were frequently not doing—turning data into
information (as previously defined).

While this focus in many cases addressed operational needs adequately, it also led to a host
of issues that impeded extracting a higher level of value from the data being collected. Data
warehousing evolved, among other things, as a way of addressing these impediments. Let’s
explore how.

 Chapter 14 Data Warehousing 567

Lack of Integration Across the Enterprise

The emphasis on operational processes inevitably created nonintegrated, stand-alone appli-
cations. From both enterprise and technical perspectives, each application defined essential
entities as it saw fit—not just the entities unique to itself but also those “master data” entities
such as customers and products that exist across the enterprise. There was typically no com-
mon understanding of what was meant by these key entities, so each application kept its own
version, leading to lots of data duplication.

With this state of affairs, it was difficult or impossible to create a meaningful enterprise-wide
view of just about anything. When attempted, such views were necessarily at a high level of
summarization, time-consuming, and expensive to create and therefore were created only
infrequently. Enterprise decision making, especially at the operational and tactical level, still
depended greatly on intuition, experience, and instinct. It often simply wasn’t possible to
base decisions on hard, accurate, up-to-date information. Late in the pre–data warehous-
ing age, there were attempts to address this in the form of applications known as executive
information systems (EIS) and decision support systems (DSS). These were generally ineffec-
tive because relative to their cost, they didn’t deliver enough value to their small, high-level
audience.

Management Reporting and the GL

The one application that typically was enterprise-wide was the general ledger (GL).
Every other major application concerned with financial information (which was many, if
not most applications) had to feed accounting entries to the GL. As a result, the GL of-
ten was the single point of integration between applications because it existed and had
those connections already. Also, it was accepted as an enterprise-wide single version of
“the truth” by its very nature. For these reasons, most early attempts at enterprise-wide
reporting were driven from the GL.

There was value in this, but there were grave limitations as well. A GL is not well suited
to “management reporting,” except possibly at the highest aggregated levels, such as
annual report line items. Management reporting is mostly focused on measurements of
enterprise performance at much lower levels, levels which are irrelevant to the concerns
of a GL—such as the profitability of specific customers. Yet once the GL became the
single point of integration and thereby the source of management reporting, it started
getting abused. All sorts of accounts and subledgers to support detailed manage-
ment reporting proliferated in the GL, and modifications to the GL interface of source
systems were made to feed them. Over time, this situation had a tendency to collapse
under its own maintenance weight, especially when the GL chart of accounts needed
to be restructured in the event of a merger. One of the impetuses of data warehousing
was to address all this by providing a separate, appropriate environment for manage-
ment reporting.

568 Part IV Business Intelligence

Little or No Standardized Reference Data

Closely related to lack of integration, there typically existed no single, agreed-upon “system
of record” for key or master referential data across the enterprise, such as customer and
product. Problems that stemmed from this included incomplete and inaccurate data, dupli-
cated data entry (and resultant errors), and wasted effort synchronizing multiple versions
from different applications. Most important of all was the inability to derive, except possibly
at great effort, a consistent, comprehensive, and up-to-date view of the enterprise. In addi-
tion to these obvious consequences were some less obvious ones—for example, the embar-
rassment of severing a relationship with a customer who is unprofitable in one region but is
overall very profitable, because you could not see the “big picture” of all your relationships
with the customer across all regions, products, and organizational units.

To be sure, these problems and the reasons behind them were well recognized by the DP
 department and by the operational level of the enterprise almost from the beginning, and
this led to attempts to create “master file” versions of the most important referentials—
typically, customers, rates, products, and the organizational hierarchy. But technical limita-
tions, political turf battles, and a lack of recognition at senior management levels of the costs
of this fragmentation generally kept such efforts suboptimal.

Lack of History

Operational applications (let’s call them “OpApps”) by their very nature tend to neither
 require nor maintain historical data going back very far—often not more than a year or two.
There are exceptions of course, such as an application that manages mortgage loans at a
bank or life insurance at an insurer. These are certainly operational in nature and must also
retain historical activity going back even decades perhaps. But in most cases, OpApps main-
tain a minimum of history in order to optimize their OLTP performance and minimize storage
cost, and because there is simply no requirement to do more.

In any case, within the same enterprise, OpApps differ in the length of history maintained, its
periodicity (that is, hourly, daily, weekly, monthly, and so on), and the way changes in referen-
tial data over time are handled (that is, whether a history of changes is maintained, and if so,
on which attributes, and how many versions; for example, is the history of marital status or
address of a customer maintained). These differences make integrating the historical data of
multiple OpApps difficult, to say the least.

Data Not Optimized for Analysis

There are more significant differences between OpApps and analytical applications (”AApps,”
for short). As described so far, OpApps—especially in the pre–data warehousing era—were
and still are concerned mainly with reliably recording the facts of current transactions. They

 Chapter 14 Data Warehousing 569

have limited concern with past history or with other OpApps, which is why they came to be
referred to as “islands of automation.”

In contrast, AApps are concerned with “digesting” OpApp data to provide actionable insights,
predictions, and an apples-to-apples view of the entire enterprise. Sometimes such appli-
cations even combine internal and external data, such as benchmarks regarding competi-
tors, providing a view of how the enterprise looks in a larger context. Achieving these goals
requires solving all kinds of problems that OpApps do not need to be concerned with. In
 addition to these general differences, here are some more specific ones:

 Given their uses, OpApps are physically optimized for insert, update, and delete
 operations, while AApps require read or query optimization.

 The amount of data required to answer a typical OpApps query is quite small, while the
amount required to answer a typical AApp query can be huge. Imagine the amount of
atomic data that must be digested to answer a query such as “Who were the top 5 cus-
tomers by purchases for 2007, and what were the top 5 products purchased by each of
them?”

 Among the various OpApps that must be integrated for an enterprise-wide view, there
are many impediments to integration, in addition to those mentioned earlier. Here are
a few:

 Entities that mean the same thing but that are named differently

 Entities that mean different things but that are named the same

 Different encodings of the same thing (for example, country codes)

 Different scale and precision of measures

 Different lengths of descriptive text for the same thing

 Different conventions for the primary key of the same entity

 “Smart keys”—where information is encoded in primary keys

As a Result…

 Creating any particular view of enterprise data, especially one integrated across multi-
ple applications, was a very technical undertaking that only the DP staff could perform.
Usually, there was a large backlog of requests for such views or reports.

 Many such requests (the fulfillment of which might have helped run the enterprise
better) never materialized in the first place. That was because users knew that by the
time the DP department could fulfill them, it would be too late to meet the business
opportunity.

570 Part IV Business Intelligence

 Each request that was fulfilled was usually implemented through a new report or
extract, even if its requirements varied only slightly from an existing one. Given the
technology of the time, even something as simple (as we would consider it today) as
aggregating the data at a different level—say, quarterly rather than monthly—resulted
in a new report. Further, even when a report already existed that could fulfill a request,
there was typically no way to know that because no effective metadata was maintained
about existing reports—and so a new one would be created.

 Every report or extract would become permanently enshrined in the system
 infrastructure, forever. There was often no way to track who was using what report for
what purpose (if it was being used at all), so once a report was running, it was easier
and safer to just keep supporting it.

 Eventually, there were extracts of extracts—one “report” would become the source for
another. Keeping track of the dependencies became difficult if not impossible.

It should be obvious how all this represented a huge maintenance nightmare. But up through
the early 1990s, this situation was all too common in the average “DP shop,” and it just kept
getting worse. It became increasingly evident that this was a crisis in the making, and what
we today call data warehousing was born in response.

In fairness, it should be noted that there were efforts to build what effectively were data
warehouses long before the term was coined. But in those days, such efforts essentially re-
invented the wheel each time. They could not benefit from what is available today now that
techniques have matured and become codified and, thanks to the advent of the Internet,
shared. It is also true that hardware advances in the form of drastically lower storage costs
and fantastically improved CPU capacities have had a profound impact on the practice of
data warehousing and are essential to its viability today.

Data Warehouse Design

The preceding discussion gives you an idea of the issues that data warehousing evolved
to address. In this section, we only scratch the surface of design considerations in bring-
ing a data warehouse into existence and hope that will whet your appetite to learn more.
Fortunately, it has never been easier to learn more about data warehousing than it is today.

Note The value of data warehousing was not always widely accepted. In its early days, it was
viewed suspiciously and considered to be just a fad or an expensive waste of time by many IT
practitioners. At best it was thought of as “nice to have” and something that only the largest,
best funded, and mostly for-profit enterprises could consider. Fortunately, none of this is true
any longer.

 Chapter 14 Data Warehousing 571

Building a data warehouse requires addressing a myriad of technical and nontechnical issues,
including the following:

 Determination of enterprise goals and objectives to be served by the data warehouse
and gaining organizational buy-in for them.

 Identification of the various audiences for the data and their varying requirements.

 Addressing of latency requirements with the appropriate data architecture.

 Extract, transform, and load (ETL)—the process and tools by which data is extracted
from source OpApps, cleaned and otherwise transformed as needed, and then loaded
into the data warehouse. SQL Server Integration Services (SSIS) is Microsoft’s primary
ETL tool for data warehousing.

 Design of entitlement, backup, mobility, scalability, delivery, and training schemes.

 Methods of end-user access to the information, including the distinction often made
between reporting and analysis. The tools and products for this usually receive a dis-
proportionate amount of attention in a data warehousing project because they are so
visible.

 The embedding of an organizational ethos that the data warehouse will constantly
evolve with the ever-changing needs it supports. The effort is never “done.”

The primary goal of any data warehouse is to integrate data from disparate sources into a
centralized store (at least logically speaking), in a form that can be used across the enterprise
for decision support by all who need it. Merely dumping all the data from various stand-
alone applications into a common database is not the sort of integration we mean. Rather,
a data warehouse requires a schema of some sort to which all the data brought in is made
to conform. The data also needs to be “clean”—meaning that all the different ways of repre-
senting the “same” thing in the various source systems have been converted to a single con-
sistent form. Both of these tasks are ETL responsibilities, as previously mentioned.

Based on what we’ve said so far, the 35,000-foot view of a data warehouse is shown in
Figure 14-1.

572 Part IV Business Intelligence

OpApps Data Warehouse

FIGURE 14-1 The generic data warehouse architecture

With this background in place, we can now consider the two predominant data warehousing
architectures guiding practice today.

The Top-Down Approach of Inmon

William Inmon is recognized as “the father of data warehousing,” having invented the term
in 1990. The data warehousing features he characterized can seem self-evident today, but no
one had codified them previously as he did. According to his definition, the essential charac-
teristics of data in a data warehouse are as follows:

 Subject-oriented Major entities are common across multiple OpApps. Customer,
Product, Shipment, and Account are typical subject areas.

 Integrated Data sources are consistent with one another along common themes.

 Nonvolatile Data, once loaded, is usually never changed (updated or deleted).

 Time-variant Time is part of the key to everything—“as it was at this point in time,”
also known as “history,” is preserved.

These features enable the previously stated goals of any data warehouse.

While an oversimplification, the Inmon style of data warehousing presumes that an enter-
prise data model has been or will be created—one that identifies all the “subject-oriented”
entities common across multiple OpApps, the required numeric measures, the required detail
level of each, and the relationships between them. It is posited that the logical data model
representing this within the data warehouse is a normalized relational model of the sort as-
sociated with OLTP applications. Inmon refers to this as the “enterprise data warehouse” and
to the data as being “architected.” The emphasis is on a centralized, normalized data store.

Since the typical complexity of a normalized model does not lend itself to direct query from
ease of use and performance perspectives, this architecture also posits various datamarts,

 Chapter 14 Data Warehousing 573

which are additional derived databases whose structure is optimized for query, and which
generally contain only aggregated data derived from the data warehouse. The key point is
that their architecture is secondary and separate from the data warehouse proper. A refine-
ment of Figure 14-1 that represents Inmon’s datamart concept is shown Figure 14-2.

OpApps ETL Queries

Datamart

Datamart

Datamart

Data Warehouse

FIGURE 14-2 An Inmon-inspired data warehouse

Because this approach generally insists that a large-scale model already exists or will be
created before construction of the data warehouse begins, it is usually characterized as top-
down.

Inmon has written several books elaborating the principles and refinements of this architec-
ture, and along with Claudia Imhoff (a long-term associate), he has elucidated an even larger
architecture, the Corporate Information Factory (CIF), of which data warehousing is only a
part. Space constraints preclude us from delving into further detail about the Inmon and CIF
approaches. We do want to make two points before moving on, however.

The first you are probably already thinking—that requiring the existence or creation of an
enterprise data model is impractical in many organizations. It has been successfully done,
typically in larger enterprises, but many would find it impossible to justify the time and ex-
pense required to develop the model (with nothing to show at the end but documentation).
No doubt when it can be done, it lays a very powerful foundation for informational applica-
tions, but in many cases, it is not feasible.

The second point is that many find this approach relatively abstract—useful in articulating
high-level architecture but less helpful with practical details during actual development.
The next approach to data warehousing that we’ll discuss, at the other end of the design
 spectrum, evolved to address both these realities.

574 Part IV Business Intelligence

The Bottom-Up Approach of Kimball

From the mid 1990s to the present, Ralph Kimball has publicized an alternative to the Inmon
approach to data warehousing, the heart of which he called the Dimensional Model. If the
Inmon approach can be called top-down, Kimball’s is definitely bottom-up, although both
advocate a step-by-step approach. Just as Inmon articulated and formalized concepts that
were already in use by practitioners, Kimball codified several practices already in use but
lacking an integrative vision.

The first is the Dimensional Model, held to represent the most elegant tradeoffs between
end-user intelligibility, ease of use, good performance for both predefined and ad hoc que-
ries, and easy extensibility. The second is the idea of building the data warehouse incremen-
tally, something most enterprises find much more palatable than the all-at-once, “big bang”
approach implied by Inmon’s architecture. A key part of this is the concept of “conformed
dimensions” (which we’ll define in a moment) to ensure that each new incremental data
warehouse development could be integrated with what was already built, as opposed to each
effort becoming the next-generation “island of automation,” or as it is usually called today,
“stovepipe,” application. Third, Kimball emphasizes implementation practicality, with very
specific advice on a host of data design issues advanced through his books, Web site, regular
seminars, and training offerings.

Many indeed seem to find this approach desirable, as evidenced by the fact that most data
analysis tools on the market today, including Microsoft SQL Server Analysis Services (which
we cover in Chapters 15 through 18), have a definite affinity for the Dimensional Model. For
this reason, as well as because it is less abstract, we will devote the rest of this section to an
overview of this approach.

Important Inmon and Kimball are by far the best-known data warehousing pundits. For better
or worse, because their approaches are often seen as so different, each has developed a “camp”
of supporters who criticize each others’ views of data warehousing best practices with sometimes
religious zeal. Nonetheless, both share an emphasis on adhering to an architecture for the data
warehousing design and on a step-by-step approach to design and construction. Most data
warehousing projects in fact combine elements of the two approaches, which is as it should be,
because each has excellent ideas to contribute. This is why it is prudent for you to be aware of
them both.

This section does not purport to teach the Kimball approach. Space permits us merely to
expose you to a few key concepts associated with it. This should make your further investiga-
tions easier and more effective.

 Chapter 14 Data Warehousing 575

Terminology

You should be aware of several useful data warehousing terms that—while closely associ-
ated with (if not always originated by) Kimball and the Dimensional Model—have come to be
more broadly understood due to their representation in many tools (especially OLAP tools).
You’ll see most of these terms again in the chapters that cover SQL Server Analysis Services
(Chapters 15 through 18).

 Measure A typically numeric value of interest in reporting and analysis, such as price,
balance, or inventory. As stored in a data warehouse, the relevant measures are defined
by the industry of the enterprise and come from the OpApps that are its data sources.
A measure is also characterized by grain, defined later in this list.

 Dimension The heart of the Dimensional Model, a dimension is variously described
as an “axis of analysis” or a “what” qualifier. A dimension helps qualify a measure and
give it context (discussed in the next section). In a query, a dimension can be part of the
query result and/or part of the query constraints. The most fundamental dimension is
Time, essential in almost any context. Others are industry-specific but typically include
at a minimum Customer, Product, and Geography. Dimensions are typically recognized
as referential or master data entities. A dimension is a collection of related values
called members—for example, 2008 might be a member of the Time dimension and
John Smith a member of the Customer dimension. In a Dimensional Model, the dimen-
sions are considered to be independent of one another, even if they really are not. For
example, Customer and Product are not independent, since not every customer buys
every product, but by modeling each as a dimension, we treat them as if they are inde-
pendent because doing so simplifies the conceptual model on which queries are based.
Few if any dimensions have zero correlation with any other dimensions.

 Hierarchy A particular parent-child organization of members within a dimension.
Each distinct set of parents is called a level of the hierarchy. For example, a Time dimen-
sion might have levels named Year and Month. The Year level might have members like
2007 and 2008, while the Month level might have members like Jan 2007 and Jan 2008,
with parent members at the Year level of 2007 and 2008. Hierarchies occur naturally in
a wide range of applications and are nothing more than a way of grouping members
for summarization. A hierarchy reflects the fact that different members of the same
 dimension represent different levels of detail.

 Dimension table A relational table containing (typically) one row per member of
the dimension (depending on what form of history, if any, is maintained in the dimen-
sion). A dimension table usually has a minimum of two columns, one representing the
key or identifier that uniquely defines members of the dimension and another giving a
 descriptive name for the member.

 Fact table A relational table that functions, from a data modeling perspective, as
an associative entity between various dimensions. It contains one or more measure
 columns, and key columns of all related dimensions. It is populated (by ETL) in such a

576 Part IV Business Intelligence

way that the measure values are completely described by the related dimensional keys.
A fact table is also characterized by its grain (defined later in this list), and all measures
in the same fact table (should) have the same grain.

 Star schema Based on what an Entity Relationship (E/R) diagram of a fact table and
its related dimension tables look like, this has become a generic term for that pattern
(discussed later in this section).

 Grain A characteristic of a measure that is defined in terms of its related dimensions.
Grain has two properties: first, precisely those dimensions that define the context of the
measure; second, for each such dimension, the level within a hierarchy from the dimen-
sion that defines the level of detail of the measure. These two properties together de-
fine the measure’s grain. For example, if all measures in a fact table pertain to values of
the Month level of the Year-Month hierarchy of the Time dimension, the Time grain of
that fact table is Month. The overall grain of the fact table, referred to as its granularity,
is defined by such characteristics for all its dimensions.

 Conformed dimension A dimension, as previously defined, that has been designed
and built in such a way that each star schema that includes the dimension can be
meaningfully joined (logically) on such dimension. From a practical perspective, this
means that all occurrences of such dimension in various fact tables mean the same
thing—each includes exactly the same members, and each member has exactly the
same meaning in relation to the facts whose context it helps define. Kimball refers to
this state of affairs as the “Bus Architecture.”

It is not the case that each fact table using the dimension must use it at the same level
(if it has a hierarchy). For example, if one fact table is at the Year level of the Time di-
mension and another is at the Month level, data from the two can still be meaningfully
combined—it is simply necessary to aggregate the Month data to the level of Year
first. Without conformed dimensions, various star schemas cannot be meaningfully
combined along their common dimensions—in which case, the incremental approach
to building up the data warehouse is not possible. Creating conformed dimensions is
probably the most difficult part of the Dimensional Model approach, and where it most
intersects with the Inmon approach—it is here that organizational agreement about
which dimensions can be conformed, and what they will mean, must be secured. This is
also where a lack of needed data (that is, at the required grain) in source OpApps will
become apparent.

Note While the term conformed dimension concentrates on dimensions, the grain of the
 measures to be given context by such dimensions is equally important. To define conformed
 dimensions, there must exist measure definitions whose grain in the proposed conformed
 dimensions is the same in all existing or contemplated fact tables.

 Chapter 14 Data Warehousing 577

Context and the Star Schema

As mentioned earlier, dimensions provide the context of a measure. Figure 14-3 depicts an
imaginary conversation that demonstrates how context is needed to make sense of data.

What does 492 mean?

Not much. Could be a count, or an amount…

How about 492.00?

Looks like it’s a financial amount…

It occurred on February 1, 2004.

Well…

The Central Division organization …?

OK, 492.00 on Feb 1, 2004 associated with Central Division---
what am I supposed to do with that?

Corporate Department …?

Yes, but …

Travel Lodging …?

OK, now we’re getting somewhere. That sounds like an expense.
So, on Feb 1, 2004, the Corporate department of the Central Division

incurred 492.00 in Travel Lodging expense. But wait a minute,
expenses can be actual or budgeted …

 It’s an Actual…

Now I know what 492.00 means!

FIGURE 14-3 Determining the context of a measure

Note Actually, do we really now know everything necessary to give 492.00 complete context? Not
unless we make a further assumption. Can you guess what? Of course—what currency is this in?

Now let’s diagram this conversation, as shown in Figure 14-4.

578 Part IV Business Intelligence

Date

Department

Scenario Organization

Account

Corporate

February 1, 2004

Travel Lodging

Actual Central Division

492.00

FIGURE 14-4 A representation of what we know about 492.00 (currency is assumed)

We can examine an actual implementation of the preceding example. Run the code shown in
Listing 14-1 against the AdventureWorksDW2008 sample database to retrieve our exact case.

LISTING 14-1 Querying AdventureWorksDW2008 for the value of a particular measure

USE AdventureWorksDW2008

GO

SELECT

 dd.FullDateAlternateKey,

 do.OrganizationName,

 ddg.DepartmentGroupName,

 da.AccountDescription,

 ds.ScenarioName,

 ff.Amount

 FROM

 FactFinance ff

 INNER JOIN DimDate AS dd

 ON ff.DateKey = dd.DateKey

 INNER JOIN DimOrganization AS do

 ON ff.OrganizationKey = do.OrganizationKey

 INNER JOIN DimDepartmentGroup AS ddg

 ON ff.DepartmentGroupKey = ddg.DepartmentGroupKey

 INNER JOIN DimScenario AS ds

 ON ff.ScenarioKey = ds.ScenarioKey

 INNER JOIN DimAccount AS da

 ON ff.AccountKey = da.AccountKey

 WHERE

 dd.FullDateAlternateKey = '2/1/2004' AND

 do.OrganizationName = 'Central Division' AND

 ddg.DepartmentGroupName = 'Corporate' AND

 da.AccountDescription = 'Travel Lodging' AND

 ds.scenarioName = 'Actual'

 Note The sample AdventureWorksDW2008 database implements a schema that illustrates a
Kimball-inspired data warehouse. Refer to this book’s Introduction for instructions on locating
and downloading this sample database.

USE AdventureWorksDW2008

GO

SELECT

 dd.FullDateAlternateKey,

 do.OrganizationName,

 ddg.DepartmentGroupName,

 da.AccountDescription,

 ds.ScenarioName,

 ff.Amount

 FROM

 FactFinance ff

 INNER JOIN DimDate AS dd

 ON ff.DateKey = dd.DateKey

 INNER JOIN DimOrganization AS do

 ON ff.OrganizationKey = do.OrganizationKey

 INNER JOIN DimDepartmentGroup AS ddg

 ON ff.DepartmentGroupKey = ddg.DepartmentGroupKey

 INNER JOIN DimScenario AS ds

 ON ff.ScenarioKey = ds.ScenarioKey

 INNER JOIN DimAccount AS da

 ON ff.AccountKey = da.AccountKey

WHERE

 dd.FullDateAlternateKey = '2/1/2004' AND

 do.OrganizationName = 'Central Division' AND

 ddg.DepartmentGroupName = 'Corporate' AND

 da.AccountDescription = 'Travel Lodging' AND

 ds.scenarioName = 'Actual'

 Chapter 14 Data Warehousing 579

From this query and the E/R diagram that represents the tables involved, we can see in
Figure 14-5 what is meant by a star schema.

FactFinance

DimDate

DimAccount

DimOrganizationDimScenario

DimDepartmentGroup

FIGURE 14-5 A star schema from AdventureWorksDW2008

Surrogate Keys

The surrogate key concept is not original to Kimball or the Dimensional Model, but it is
something they strongly advocate. A surrogate key is a system-assigned, typically integer,
primary key to a table. In SQL Server, the surrogate key would typically be an identity col-
umn, although sometimes a particular architecture might find it preferable to have a central
key generator that gives out surrogate keys as needed. Surrogate keys have two important
characteristics, as follows:

 They have no embedded encodings—that is, they are not “smart” keys. This makes
them immune to changes in the source data that would plague nonsurrogate primary
keys. One reasonable exception to this is the surrogate key of the Time dimension,
where making the surrogate integer key smart by representing YYYYMMDD (when
applicable to the grain of the fact tables) can make partitioning the fact tables much
easier.

 As integers, they are the most efficient possible primary keys, both from performance
and storage perspectives.

This concludes our brief review of the Kimball approach to data warehousing. You are strong-
ly encouraged to consult the references at the end of this section, as well as appropriate Web
searches, for a great deal more information. We’ll close here with Figure 14-6, which illus-
trates what a data warehouse built to Kimball principles looks like. An important aspect to
observe in this figure is that the data warehouse is the collection of star schemas—there are
no separate datamarts, as in the Inmon approach. (And by the way, in an Inmon data ware-
house, there is no objection to the datamarts following the Kimball architecture.) Although
not shown in this figure, it is assumed that the various star schemas are not disjoint, mean-
ing that wherever they share a functional dimension such as Customer or Product, they have
been constructed in such a way as to actually share a single version of the dimension. When
this is done, the data in the various star schemas can be validly combined along the common

580 Part IV Business Intelligence

dimensions—a property derived from them having been constructed to be “conformable,” in
the parlance of the Dimensional Model.

Data
WarehouseOpApps ETL Queries

FIGURE 14-6 A Kimball-oriented data warehouse

What Data Warehousing Is Not

Much confusion exists in the literature and among practitioners because many terms are
regularly conflated with data warehousing, even now when the maturity of the field should
preclude this. A charitable view is that this was at least understandable in the past when the
field was evolving rapidly in theory, practice, and product. But today, there ought to be more
clarity, precision, and common understanding. In furtherance of this, we feel it is worth as-
serting that there are worthwhile distinctions still represented by certain overused and mis-
used terms. This section provides a brief summary of some of these terms.

OLAP

The term online analytical processing, or OLAP, was coined by Dr. E. F. Codd (the originator
of the relational model) in 1994 to distinguish a set of properties that analytical applications
should satisfy (in contrast with his famous 1985 publication of “12 Rules” that a relational da-
tabase management system should satisfy; see http://en.wikipedia.org/wiki/Codd’s_12_rules).
The term was intended to draw distinctions between the at-the-time well-known proper-
ties of OLTP applications and the less-well-defined properties of analytical applications. It
is probably most valuable simply for emphasizing that such a distinction should be made.
Today the term can be understood also as referring to a response to the limitations of
spreadsheet-based approaches. While not strictly part of the definition, as a practical matter,
cube-based technology is now usually associated with OLAP.

 Chapter 14 Data Warehousing 581

Note As with data warehousing, there were OLAP-like efforts long before the term OLAP was
coined that were recognizable precursors, going back to the 1960s.

An OLAP application often, although not of necessity, draws its data from some form of star
schema. The various OLAP tools on the market today form a spectrum in the degree to which
they require a recognizable star schema as their data source. At one end, some tools can de-
liver OLAP functionality, with relatively simple calculations, from just about any data source
with any organization, while at the other end are tools that can use only cubes (a data struc-
ture designed to facilitate fast analysis, further described in Chapter 15) as their data source
(and hopefully can fully exploit their power). A data warehouse is very helpful as the source
anywhere on this spectrum and is a virtual necessity on the cube-oriented end of it.

More Info The Fast Analysis of Shared Multidimensional Information (FASMI) test is a more
precise, alternative definition of the properties that the term OLAP aspired to distinguish, devel-
oped by the authors of The OLAP Report. For a detailed definition of FASMI, as well as links to
a wealth of other excellent OLAP information (much of it free), see http://www.olapreport.com/
fasmi.htm.

In the context of SQL Server, Analysis Services is Microsoft’s full-featured OLAP engine; it is
covered in detail in Chapters 15 through 18.

Data Mining

The traditional way of extracting information from data requires a skilled analyst with a deep
understanding of the enterprise who formulates ad hoc queries, the answers to which he
or she think would be interesting—for example, “What was the impact of last month’s sales
promotion on sales?” or “Which stores in the top 10 by sales this year were also in the top 10
by sales last year?” In effect, the analyst forms hypotheses of cause and effect and then tests
them against the data. To be effective, this rather hit-or-miss style of information discovery
requires tools that permit easily formulating the queries and fast response so that the analyst
can maintain his or her train of thought. OLAP technology is ideally suited for this.

In contrast, data mining is an approach in which correlations that might exist in a data set are
automatically “discovered” using specialized data models and statistical algorithms. Because
it is automated, it is more thorough in finding correlations, and it is unaffected by the preju-
dices and blind spots that an analyst would have using an ad hoc approach. The analyst still
needs to evaluate each correlation found to determine whether it is meaningful or merely
correlative, however.

In principle, data mining does not require a data warehouse for its source data. However, a
well-crafted data warehouse with clean data could be an ideal source. The intended analysis

582 Part IV Business Intelligence

and the allowable latency also affect whether a data warehouse as an analysis source is feasi-
ble. For example, in detecting credit card fraud, is the data warehouse updated often enough
to be useful?

Starting with SQL Server 2000, Microsoft has invested much effort in giving SQL Server
Analysis Services data mining capabilities that are much easier for relative nonspecialists to
use than what has previously been available on the market. These capabilities are covered in
detail in Chapter 18.

Business Intelligence

The term business intelligence (BI), coined by analyst Howard Dressner in 1989, has turned
out to be quite popular. Today it is applied in so many contexts that you would be right to
wonder whether it distinguishes anything anymore. Some argue that it doesn’t, but we think
that it still does. It is unfortunate that the business in BI obscures the fact that BI can be valu-
able in any enterprise, not just the for-profit ones implied by the B. So as suggested earlier,
think enterprise intelligence when you hear business intelligence.

The most important thing to be clear about is that BI, properly understood, is not about any
particular technology—although its implementation certainly depends on technology. BI
is fundamentally a management approach and philosophy. Like most good ideas, its basic
premise sounds so obvious when stated that it hardly seems worth noting: management
decisions should be based on facts, not on educated guesswork, politics, or other subjec-
tive bases. Of course, management of an enterprise has always been based at some level
on objective information—accounting being the most elemental form. But in the past, such
objective measures, especially at the enterprise level, were at a summary level, produced in-
frequently (if periodically), rigidly structured, and incapable of easily revealing the detail from
which they were derived.

BI aims to change all this by ensuring that information is accurate, reliable, updated as fre-
quently as necessary, and readily accessible to whoever needs it, regardless of their level
in the organization. One focus of BI is on the technologies required to achieve these goals,
which generally include some form of data warehouse—hence the association. But the tech-
nology focus, especially on user interfaces (UIs), tends to receive disproportionate attention.
An equally important focus should be on the vision of fact-based decision making that is
supported by senior management and influences the way the enterprise will be run.

Initially, BI often faced significant resistance in the enterprise. If knowledge is power, losing
control of knowledge feels like (and often is) losing power. BI threatened this with its empha-
sis on making information available to a much broader audience. Fortunately by now, the
value of BI is recognized in most enterprises.

Last, we must mention that historically, many BI projects and their supporting data ware-
house implementations have overpromised and underdelivered, giving BI a bad reputation

 Chapter 14 Data Warehousing 583

for being expensive and risky. As a result, some are beginning to rethink the necessity of
creating a data warehouse to support BI and instead are using existing reports and other ex-
isting data sources directly as BI sources. While this approach has its appeal, only time will tell
whether it becomes an important theme in BI implementation.

Dashboards and Scorecards

The terms dashboard and scorecard are often used synonymously. They both represent in-
formation graphically, summarizing it with various elements showing relative magnitudes,
trends, and other meaningful relationships. But they are not synonymous.

Dashboards

A dashboard, like its automobile namesake, displays measures without the context of related
goals. It has a “just the facts” tactical orientation and is updated as often as necessary for the
(typically) operational process that it supports. It is more generic than a proper scorecard in
that it can display anything (including a scorecard). Figure 14-7 shows a typical dashboard.

FIGURE 14-7 A typical dashboard

584 Part IV Business Intelligence

Scorecards

A scorecard displays base measures in the context of related goals, objectives, or target mea-
sures and provides at-a-glance visual cues as to whether each such base measure is lagging,
achieving, or surpassing its goal measure. Obviously, therefore, a scorecard is not possible
unless such goal measures exist in addition to the base measures. A strategy must be devised
for such goal measures to exist. It follows that a scorecard is strategic, whereas a dashboard is
tactical and operational.

The term key performance indicator (KPI) is closely associated with scorecards. The traffic
light and trend indicators in Figure 14-8 are KPIs. A KPI encapsulates a measure, a related
goal measure, a calculation about the relationship of the two, and a graphic that expresses a
“good or bad” indication based on the calculation.

FIGURE 14-8 A typical scorecard

Goal measures are usually not defined at lower levels of detail. Consider the difference in
grain between Actual and Plan measures—the former derive from individual transactions,
while the latter are created at a much more summarized level, at least in the Time dimen-
sion. For this reason, scorecards tend to report at a more summarized level than dashboards,
which is consistent with their strategic vs. tactical orientation. This in turn also means that
changes occur more slowly, so scorecards are usually refreshed less often than dashboards.
In a financial scorecard like the one shown in Figure 14-8, an Actual vs. Plan KPI exhibits all

 Chapter 14 Data Warehousing 585

these principles and is seen as a traffic light in the Plan columns. Notice the Trend indicator,
which is also a KPI that uses some calculation between prior-period Actual and Plan values.

Since SQL Server 2005, Analysis Services provides KPI objects that can be stored in cubes.
They can be consumed and displayed by Microsoft Office Excel 2007, Microsoft Office
SharePoint Server, and Microsoft Performance Point, each of which also allows creating and
storing KPIs within its respective environment.

More Info See Chapter 16 for advanced OLAP coverage that includes KPIs.

Performance Management

Performance management is a relatively recent term that is a particular flavor of BI but rates
its own discussion because of its currency in the literature and market today as a distinct
entity. Performance management implies BI—but the converse is not true, because BI is the
more general term. As noted earlier, BI’s techniques can be focused in many different direc-
tions. Performance management is a specific application of BI. It is first about establishing
organizational goals and objectives and ways of measuring progress toward meeting them—
often using BI techniques to help determine what those goals and measures should be. Once
these goals are established, it is then about gathering past, current, and projected perfor-
mance, explicitly measuring these against the established goals, and widely disseminating
how well goals are being met. This is usually achieved in the form of scorecards, which are
again facilitated by BI tools and techniques.

The Balanced Scorecard (BSC) is a well-known example of performance management that
predates the term. It is worth becoming familiar with the BSC approach, not least because it
can help you better understand the factors driving enterprise strategy, and how to ensure
that the strategy is enacted.

More Info Start by reading the seminal book that originated the term: The Balanced Scorecard:
Translating Strategy into Action, by Robert S. Kaplan and David P. Norton (Harvard Business
School Press, 1996).

Practical Advice About Data Warehousing

A data warehousing effort requires both theory and discovery. Although the theory associ-
ated with building a data warehouse could be considered a rather well understood topic to-
day, practical experience still has much to offer. In this section, we’ll look at a few of the data
warehousing best practices that we have found most valuable.

586 Part IV Business Intelligence

Anticipating and Rewarding Operational Process Change

It is almost certain that a data warehousing effort will identify data elements and relation-
ships essential to realizing the enterprise goals that are not currently captured in the op-
erational processes. It is also likely that those who would be most directly affected in their
day-to-day work by addressing this will feel that they have nothing to gain by doing so, and
often something to lose. For example, an enterprise goal might be to capture which sales
groups should get credit, and in what proportion, for working together to make a sale hap-
pen—the better to apportion the bonus pool of the sales force. Enabling this requires cap-
turing information about which sales groups were involved at the time the sales transaction is
recorded. This is information that is likely not currently available in the workflow of the back-
office staff who record the transaction, and moreover, even if it is (or is made to be), the extra
time it would take them to record it will reduce the number of transactions they can process
per hour. They will most likely resist, given the impact on their productivity, unless this effort
is officially recognized and proper incentives are put in place to motivate their cooperation.

Rewarding Giving Up Control

As suggested earlier in this chapter in the section ”Business Intelligence,” a successful data
warehousing/BI effort often requires those who have traditionally been in control of key data
to relinquish that control in the interest of the greater good. Any organizational change ef-
fort will threaten those who perceive themselves the losers in some way (often correctly), and
it is only natural for them to resist the change. If the enterprise recognizes this and provides
positive motivators to take this risk, the chances of success are increased. How feasible this is,
of course, depends greatly on the organizational culture. The BSC approach can be particu-
larly valuable in this regard.

A Prototype Might Not Work to Sell the Vision

Building a prototype or proof of concept (POC) for a data warehousing/BI approach is often
recommended as a way to achieve buy-in from important stakeholders. It is easy to assume
that a representative POC will do the trick. By representative, we mean that the important
technical capabilities are demonstrated as feasible (such as whether particular relation-
ships can be modeled successfully), even if this is illustrated with fictitious data such as the
AdventureWorksDW2008 database.

What you might not realize until it is too late is that stakeholders can find it difficult to ap-
preciate such an approach, particularly when the POC is not based on measures they recog-
nize or the values used are not realistic. If you hear people in your audience calling out “Hey,
that number isn’t right!” while you are demonstrating the POC, that’s exactly what’s hap-
pening. Logically, in a POC, it might not matter whether the data is accurate, but once your

 Chapter 14 Data Warehousing 587

stakeholders lose interest or faith, it can be very difficult to regain. Focusing on such issues is
also a favored tactic of those who oppose the data warehouse for whatever reason.

For a POC to have the best chance of success, it should be as realistic and as attuned to the
work of the stakeholders who will be judging it as possible. This often runs counter to the
idea that a POC requires a minimal investment, which is exactly why we are making this
point. The data warehousing project can get shot down before it even gets off the ground
with an ill-conceived POC.

Surrogate Key Issues

The value of using integer surrogate keys in a data warehouse was discussed earlier in this
chapter in the section “Data Warehouse Design.” But their use is not without issues, as
 described here:

 In general, surrogate keys should not be “smart“—that is, they should not have any
significant meaning encoded in their values. However, an exception might be worth
considering for the Time dimension. At the physical level, there can be value in the
Time surrogate key taking the form YYYYMMDD, YYYYMM, or YYYYWW (where Y, M,
D, and W are year, month, day, and week values), all of which are easily represented
as an integer. Two reasons justify this violation of the normal best practice. First, if the
Time surrogate key column is the first in the composite primary key of the fact table (as
it usually should be) and the primary key has a clustered index, the fact data will be op-
timally organized for the Time constraint of the typical query—which is usually either
a point in time or a range. Second, such a smart Time key will make it much easier to
implement and maintain physical partitioning of the Time dimension at the relational
database level.

 Surrogate keys can be generated in several ways, two principal ones being IDENTITY
columns or a row-by-row assignment facility—for example, SELECT MAX(Id) + 1—us-
ing appropriate locking mechanisms. Regardless of the method, complications can arise
in the typical multienvironment setting—that is, development, quality assurance (QA),
and production. Assume that at the start of a development cycle, your development
environment is refreshed from production. Then you also copy over ETL input files from
production and run the ETL process in development (perhaps as part of a parallel test).
Depending on how surrogate keys are assigned, there can be a good chance that the
same data (from a business key perspective) is assigned different surrogate keys in de-
velopment and production. This can greatly complicate reconciliation between the two.

Currency Conversion Issues

Particularly in larger, multinational enterprises, financial applications usually require currency
conversion in order to compare similar items (apples to apples). Be aware that this is a subject

588 Part IV Business Intelligence

fraught with business rule and design conundrums. Since SQL Server 2005, Analysis Services
has provided features that can make implementation of currency conversion calculations in
the cube easier.

But this does not address the issues we want to highlight here, which relate to the tension
between designing for ad hoc, not-known-in-advance queries and needing to know some-
thing, possibly a lot, about likely queries, if a suitable design is to be derived. Issues around
currency conversion illustrate this particularly well. There are no “right” answers to the fol-
lowing questions, but you would do well to consider all of them if currency conversion is in
any way a part of your business perspective:

 What flexibility is required? Will there be one master currency in which all comparisons
are expressed, several standard currencies, or in any existing currency?

 Closely related to the preceding questions, does it make sense to precalculate and store
converted amounts, or must this be done on the fly?

As with all rates and ratios, care must be taken where aggregation is involved to force
the currency conversion to be at the appropriate leaf level of detail, followed by aggre-
gation to the required summary level. The capabilities of your OLAP tool influence this
greatly.

 Are converted amounts to be at the rate in effect at their original point in time only, or
should amounts also be convertible based on the rates at any point in time?

 At what rates should future values (for example, Budget) be converted: the rates in
 effect when the budget is finalized, never after to be adjusted? Or should current
rates be used, adjusting the projections every period? Must you be able to distinguish
how much of a variance between Actual and Budget is due to currency conversion vs.
changes in the Budget measure itself?

The design driven by answers to these business questions has profound effects on both the
questions that can be answered later and the technical complexity required.

Events vs. Snapshots

There are two complementary approaches to data warehouse logical design: the event-driv-
en approach and the snapshot approach. Both involve tradeoffs in complexity and in the sort
of inquiries they can support.

On the one hand, it can be argued that everything of analytical interest in an enterprise can
be represented as an event. Events are items like a payment or an order being received or a
shipment getting delivered. Events by definition occur asynchronously at points in time. In
principle at least, if all relevant events can be identified and captured, it is possible to de-
duce the state of affairs at any point in time, as well as how that state came to be. For some
 informational applications, this is critical. Constructing the point in time from events can,
however, be exceedingly complex.

 Chapter 14 Data Warehousing 589

On the other hand, a snapshot-based approach does not record events at all. Instead, it sim-
ply periodically records the aggregate effect of events. Answering queries about the points
in time where snapshots were taken is obviously much easier than it would be with a purely
event-based approach, where the state at the point in time would need to be reconstructed.

These approaches sometimes need to be combined. For example, with an Account entity,
often the only thing of interest is the account balance at periodic points in time, such as
month-end. On the other hand, it is also imperative to be able to query each and every event
(debit or credit) that affected the balance since the previous snapshot.

Events and snapshots have considerations in addition to which functional questions they sup-
port. There is the question of what the source system can provide in terms of either events
or snapshots, which has an impact on how much work must be done in the data warehouse
ETL to create one or the other. Also, a snapshot approach that takes a snapshot of every-
thing, regardless of how much or little has changed since the last snapshot can lead to data
proliferation and can be inefficient compared with an event-based approach when changes
are relatively few—although this can be addressed with techniques such as Change Data
Capture, detailed later in this chapter.

It is well worth spending considerable time during the design phase thinking through the
implications of both approaches before determining the best choices for your requirements.

SQL Server 2008 and Data Warehousing

Earlier versions of SQL Server had new features related to data warehousing, most notably
Analysis Services, Reporting Services, and in SQL Server 2005, certain features of SQL Server
Integration Services such as the Slowly Changing Dimensions task. But these earlier versions
had very little at the level of the relational engine specifically targeting the particular needs
of data warehousing. SQL Server 2008 delivers new features that squarely target data ware-
housing, particularly in relation to making very large databases more manageable and cost
effective. This section will review the most important of the data warehousing–oriented en-
hancements in SQL Server 2008, starting with the Transact-SQL (T-SQL) enhancements aimed
at working with data warehousing.

T-SQL MERGE Statement

The MERGE statement is covered in more depth in Chapter 2 and is applicable to many more
scenarios than data warehousing. We cover it here too because it is also very relevant to data
warehousing, specifically in the ETL context.

The MERGE statement provides what’s commonly referred to as upsert—meaning update the
row if it already exists; otherwise, insert it. But there is more as well. MERGE requires a target
table, which is joined in some relationship to a source table. The source table contains the
data to be merged or synchronized with the target table. The MERGE statement supports

590 Part IV Business Intelligence

up to three types of clauses defining the row-by-row action to be taken on the target table
based on how it compares with the source table:

 WHEN MATCHED The row exists in both merge and target tables (performs an inner
join and allows UPDATE or DELETE).

 WHEN NOT MATCHED BY TARGET The row exists in the source table but not the
 target table (performs a left outer join and allows INSERT).

 WHEN NOT MATCHED BY SOURCE The row exists in the target table but not the
source table (performs a right outer join and allows UPDATE or DELETE).

More Info Each merge clause can also state constraints in addition to the implied join, such
as another condition comparing column values between source and target. However, there are
some very particular rules governing the use of multiple merge clauses and their various combi-
nations. We cover those in the full treatment given to the new MERGE statement in Chapter 2.

In the data warehousing context, the MERGE statement is particularly suited to the mainte-
nance of the dimension tables of star schemas. It is also very helpful in maintaining Type 1
slowly changing dimensions (SCDs), where changes simply overlay existing values, and Type 2
SCDs, where MERGE can do part of the job (a separate INSERT operation is still needed when
an existing row is updated, to create the new version of it.) See the section entitled “Data
Warehouse Design” earlier in this chapter for more details. (A full treatment of SCDs is be-
yond the scope of this chapter.)

In SQL Server 2008 Integration Services, MERGE can streamline and simplify the insert/up-
date pattern that would be required under SQL Server 2005 Integration Services. Previously,
the decision to insert or update in SQL Server 2005 Integration Services had to be based on a
lookup of the source row using a Lookup task that was loaded with the target rows and two
output data flows based on the failure or success of the lookup: one doing inserts and one
doing updates against the target. With MERGE, the Lookup task is no longer needed, which
simplifies the Integration Services package and avoids the performance, memory, and dead-
lock issues that can arise with the Lookup task if the target table is large.

Syntactically, MERGE requires two joinable tables or table-equivalents. (The target must be
either a table or an updatable view; the source can be any table-equivalent.) For Integration
Services, this means that the source table must exist or must be created in the package (as a
temporary table, common table expression [CTE], or other equivalent).

The code in Listing 14-2 shows a series of representative T-SQL expressions using MERGE
against the AdventureWorksDW2008 database. Run each statement by hand as direct-
ed by the comments, followed by running the MERGE statement at the end. Note that
GeographyKey is an identity column in DimGeography, so the column list must be explicit in
the INSERT statement in the MERGE statement’s WHEN NOT MATCHED BY TARGET clause.
Also note that the ending semicolon is required to terminate the MERGE statement.

 Chapter 14 Data Warehousing 591

 More Info All the data manipulation language (DML) statements in T-SQL (INSERT, UPDATE,
DELETE, and MERGE) support an OUTPUT clause, which can be quite useful for archiving
changed data. In addition, the new INSERT OVER DML feature in SQL Server 2008 enhances the
OUTPUT clause with fi ltering capabilities. See Chapter 2 for details of the OUTPUT clause and
INSERT OVER DML.

LISTING 14-2 Using MERGE for a data warehousing update

USE AdventureWorksDW2008

GO

-- Make a copy of the table.

SELECT * INTO DimGeographyTest FROM DimGeography

-- Create "Changes" table as another copy of same data.

SELECT * INTO Changes FROM DimGeography

-- If you now run the MERGE statement below, no changes will be reported. Note

-- the condition on the UPDATE clause, which prevents unnecessary updates.

-- Now force some UPDATES (53):

UPDATE Changes

 SET SalesTerritoryKey = 11

 WHERE SalesTerritoryKey = 10

-- Now running MERGE reports 53 updates.

-- Now force DELETES (empty table will effectively delete every row in

-- DimGeographyTest):

DELETE Changes

-- Now running MERGE will delete all 653 rows in DimGeographyTest.

-- Testing INSERT is left as an exercise for the reader.

-- MERGE statement:

MERGE DimGeographyTest AS dg

 USING (SELECT * FROM Changes) AS c

 ON dg.GeographyKey = c.GeographyKey

 WHEN MATCHED and dg.SalesTerritoryKey <> c.SalesTerritoryKey THEN

 UPDATE SET dg.SalesTerritoryKey = c.SalesTerritoryKey

 WHEN NOT MATCHED BY TARGET THEN

 INSERT (City, StateProvinceCode, StateProvinceName,

 CountryRegionCode, EnglishCountryRegionName,

 SpanishCountryRegionName, FrenchCountryRegionName,

 PostalCode, SalesTerritoryKey)

USE AdventureWorksDW2008

GO

-- Make a copy of the table.

SELECT * INTO DimGeographyTest FROM DimGeography

-- Create "Changes" table as another copy of same data.

SELECT * INTO Changes FROM DimGeography

-- If you now run the MERGE statement below, no changes will be reported. Note

-- the condition on the UPDATE clause, which prevents unnecessary updates.

-- Now force some UPDATES (53):

UPDATE Changes

 SET SalesTerritoryKey = 11

 WHERE SalesTerritoryKey = 10

-- Now running MERGE reports 53 updates.

-- Now force DELETES (empty table will effectively delete every row in

-- DimGeographyTest):

DELETE Changes

-- Now running MERGE will delete all 653 rows in DimGeographyTest.

-- Testing INSERT is left as an exercise for the reader.

-- MERGE statement:

MERGE DimGeographyTest AS dg

 USING (SELECT * FROM Changes) AS c

 ON dg.GeographyKey = c.GeographyKey

 WHEN MATCHED and dg.SalesTerritoryKey <> c.SalesTerritoryKey THEN

 UPDATE SET dg.SalesTerritoryKey = c.SalesTerritoryKey

 WHEN NOT MATCHED BY TARGET THEN

 INSERT (City, StateProvinceCode, StateProvinceName,

 CountryRegionCode, EnglishCountryRegionName,

 SpanishCountryRegionName, FrenchCountryRegionName,

 PostalCode, SalesTerritoryKey)

592 Part IV Business Intelligence

 VALUES (c.City, c.StateProvinceCode, c.StateProvinceName,

 c.CountryRegionCode, c.EnglishCountryRegionName,

 c.SpanishCountryRegionName, c.FrenchCountryRegionName,

 c.PostalCode, c.SalesTerritoryKey)

 WHEN NOT MATCHED BY SOURCE THEN

 DELETE

 OUTPUT $action, INSERTED.*, DELETED.*;

 The deletion possibilities of MERGE would be rare in a data warehousing scenario except in
single-instance fi xes of erroneous data, but it is worth knowing about for that purpose alone.
In general, beware of using DELETE with MERGE. If your source table is inadvertently empty
(as it is eventually in our example), MERGE with a WHEN NOT MATCHED BY SOURCE clause
specifying DELETE could unintentionally delete every row in the target (depending on what
other conditions were in the WHEN NOT MATCHED BY SOURCE clause).

Change Data Capture

Like one use of MERGE, the new Change Data Capture (CDC) feature in SQL Server 2008
targets the ETL component of data warehousing. CDC is available only in the Enterprise edi-
tion of SQL Server 2008 (and of course, the functionally equivalent Developer and Evaluation
editions).

 Note SQL Server 2008 provides a number of change tracking features—each one tailored for
a specifi c purpose. In particular, CDC addresses data warehousing, SQL Server Audit addresses
security (see Chapter 5), and SQL Server Change Tracking targets synchronization of occasionally
connected systems and mobile devices using ADO.NET Sync Services (see Chapter 13).

CDC is designed to effi ciently capture and record relevant changes in the context of a data
warehouse. Traditionally, detecting changes in an OpApp table that need to be applied to a
data warehouse has required relatively brute force methods such as the following:

 For updates, using the CHECKSUM function as a shortcut to detecting inequality of col-
umns between source and target rows (SQL Server only), or comparing time stamps.

 For inserts, outer-joining source and target rows and testing for NULL on the target.

 For inserts and updates, implementing triggers on the source table to detect changes
and take appropriate action against the target, or performing a lookup (perhaps using
an Integration Services Lookup task) to compare source against target and then driving
the update or insert by the success or failure of the lookup.

 For inserts and updates, using the OUTPUT clause (SQL Server 2005 and 2008) or
INSERT OVER DML (SQL Server 2008 only), which we cover in Chapter 2.

 VALUES (c.City, c.StateProvinceCode, c.StateProvinceName,

 c.CountryRegionCode, c.EnglishCountryRegionName,

 c.SpanishCountryRegionName, c.FrenchCountryRegionName,

 c.PostalCode, c.SalesTerritoryKey)

 WHEN NOT MATCHED BY SOURCE THEN

DELETE

 OUTPUT $action, INSERTED.*, DELETED.*;

 Chapter 14 Data Warehousing 593

The CDC feature introduced in SQL Server 2008 provides a valuable new way of laying
the groundwork for maintaining changing data in a data warehouse. Without resorting to
 triggers or other custom code, it allows capturing changes that occur to a table into a sepa-
rate SQL Server Change Tracking table (the change table). This table can then be queried by
an ETL process to incrementally update the data warehouse as appropriate. Querying the
change table rather than the tracked table itself means that the ETL process does not affect
the performance of applications that work with the transactional tables of your database in
any way. CDC is driven by a SQL Server Agent job that recognizes changes by monitoring
the SQL Server transaction log. This provides much better performance than using triggers,
especially in bulk load scenarios typical in a data warehouse—and there’s no code to write or
maintain with CDC. The tradeoff is somewhat more latency, which in a data warehouse is of-
ten perfectly acceptable. Figure 14-9 depicts a high-level view of CDC architecture using an
illustration taken from SQL Server Books Online.

OLTP

Source
tables

Log

Capture
process

Change
tables

Data warehouse

Change data capture
query functions

Extraction, transformation,
and loading

FIGURE 14-9 High-level architecture of CDC

594 Part IV Business Intelligence

Several new system stored procedures and table-valued functions (TVFs) are provided to
enable, monitor, and consume SQL Server Change Tracking output. To begin, you execute
the sp_cdc_enable_db procedure to enable CDC on the current database. (You must be in
the sysadmin role to do this.) When you run this procedure, a new cdc user, cdc schema, and
CDC_admin role are created. These names are hard-coded, so in the event that you already
have a user or schema named cdc, you will need to rename it before using CDC.

Once the database is CDC-enabled, you enable CDC on a given table by executing
sp_cdc_enable_table. (You must be in the db_owner role to do this.) When you do that, several
objects are created in the cdc schema: a change table and at least one (but possibly two)
TVFs. Let’s look at each of these objects in turn.

When CDC is enabled on a table, SQL Server creates a change table in the cdc schema cor-
responding to the table on which CDC is being enabled. The change table will be populated
with change data automatically by CDC and is assigned a name based on both the schema
and the table being tracked. For example, when you enable CDC on the Employee table in
the dbo schema (as we’ll do shortly), SQL Server creates a corresponding change table named
cdc.dbo_Employee_CT that will record all changes to the dbo.Employee table. The schema
of the tracked table (dbo in this case) is part of the change table name so that same-named
tables from different schemas can all be unambiguously tracked in the cdc schema. It is also
possible to explicitly name the change table, as long as it’s unique in the database.

The ETL process will query this change table for change data in order to populate your data
warehouse, but it will not normally do so by selecting directly from it. Instead, the ETL pro-
cess will call a special TVF to query the change table for you. This TVF is also created for you
by SQL Server automatically when the change table is created, and—like the change table—
the TVF is also created in the cdc schema with a name based on the schema and table name
of the tracked table. So again, if we’re tracking the dbo.Employee table, SQL Server creates a
TVF named cdc.fn_cdc_get_all_changes_dbo_Employee that accepts parameters to select all
changes that occur to dbo.Employee between any two desired points in time.

If you specify @supports_net_changes=1 when calling sp_cdc_enable_table, a second TVF is
created for the change table as well. Like the first TVF, this one allows you to select changes
between any two points in time, except that this TVF returns just the net (final) changes that
occurred during that time frame. This means, for example, that if a row was added and then
deleted within the time frame being queried using this second TVF, data for that row would
not be returned—whereas the first TVF would return data that reflects both the insert and
the delete. This second TVF is named in a similar fashion as the first, except using the word
net instead of all. For dbo.Employee, this TVF is named cdc.fn_cdc_get_net_changes_dbo_
Employee. Note that querying for net changes requires the tracked table to have a primary
key or unique index.

Neither of these TVFs accept start and end times directly but instead require the range to be
expressed as log sequence numbers (LSNs) by first calling sys.fn_cdc_map_time_to_lsn. So to

 Chapter 14 Data Warehousing 595

query between two points in time, you call sys.fn_cdc_map_time_to_lsn twice—once for the
start time and once for the end time—and then use the LSN values returned by this function
as input values to the TVFs for querying change data. This might seem unnecessarily cum-
bersome, but in fact has good reason related to supporting two change tables on the same
table, one feeding the production systems and another supporting ongoing development.

Tip The start and end times this function is called with are not required to fall within the range
of time actually represented in the log. If either time falls outside the boundaries in the log, the
function “does the right thing”: it returns the earliest existing LSN if the specified start time is
prior to the earliest LSN, and it returns the latest existing LSN if the specified end time is after the
latest LSN. This will be implicitly illustrated shortly in Listing 14-3 for both start and end times.

The sp_cdc_enable_table stored procedure has several optional parameters that give you a
lot of flexibility. You can, among other options, specify your own name for the change table,
a role that a user must belong to in order to query changes (if not in sysadmin or db_owner),
which columns of the table should be tracked (you don’t need to track all of them), the file-
group on which to create the change table, and whether the SWITCH_PARTITION option of
ALTER TABLE can be executed against the tracked table (which has very important implica-
tions). Consult SQL Server Books Online for more details of sp_cdc_enable_table parameters.

When you no longer require CDC on a particular table, you can call the sp_cdc_disable_table
stored procedure on the table. This procedure drops the change table and the TVFs and up-
dates the system metadata to reflect that the table is no longer tracked. When you no longer
require CDC on the database, call the sp_cdc_disable_db stored procedure to completely dis-
able CDC for the entire database.

Important You should be aware of several considerations before dropping a database on which
CDC has been enabled. To drop a CDC-enabled database, you must either stop SQL Server Agent
or first disable CDC by running sp_cdc_disable_db on the database to be dropped. If you take
the former approach, the SQL Server Agent jobs will be deleted automatically when SQL Server
Agent is next started upon detecting that the database the jobs were associated with is no lon-
ger present. Of course, SQL Server Change Tracking for other databases running on the server
instance will also be suspended while SQL Server Agent is stopped. The latter approach is the
preferred method, since it does not interfere with other CDC-enabled databases and will remove
all CDC artifacts related to the database being dropped.

The change table records all changes to the requested columns, including intermediate states
(per DML statement) between two points in time. Note that CDC supports sparse columns
(covered later in this section) but not sparse column sets. Each change table row also includes
five metadata columns of great value for change-consuming processes to determine what
type of change (insert, update, or delete) each row represents and to group and order all
changes belonging to the same transaction. One item it cannot capture is who made the

596 Part IV Business Intelligence

change, which is why it is not ideal for maintaining audit trails. For that, you can use SQL
Server Audit, which will track and record which users are performing data modifi cations as
well as any other activity of interest. (We cover SQL Server Audit in Chapter 5.)

As we mentioned earlier, CDC relies on SQL Server Agent for automating the capture process.
The fi rst time sp_cdc_enable_table is executed on any table in a database, SQL Server also
creates two SQL Server Agent jobs for that database. The fi rst is a change-capture job, which
performs the actual transaction log monitoring to apply changes on the tracked table to the
corresponding change table. The second is a cleanup job, which deletes rows from change
tables after a confi gurable interval (three days, by default) and removes all CDC artifacts if
the tracked table is dropped. Therefore, SQL Server Agent must be running the fi rst time this
procedure is run to CDC-enable a table on any database in the server instance. Subsequently,
if SQL Server Agent stops running, changes to tracked tables will accumulate in the transac-
tion log but not be applied to the change tables until SQL Server Agent is restarted.

 CDC can at fi rst appear rather cumbersome to use, but it is well thought out in terms of its
confi guration fl exibility and support for various scenarios. Some of these might not be im-
mediately obvious—for example, what happens if a tracked table is dropped, or its structure
changed, after CDC is enabled on it? We lack the space to delve into these essential aspects,
but you’ll fi nd comprehensive details in SQL Server Books Online. The code in Listing 14-3
shows a complete example of using CDC.

LISTING 14-3 Using Change Data Capture

-- Create test database

CREATE DATABASE CDCDemo

GO

USE CDCDemo

GO

-- Enable CDC on the database

EXEC sp_cdc_enable_db

-- Show CDC-enabled databases

SELECT name, is_cdc_enabled FROM sys.databases

-- View the new "cdc" user and schema

SELECT * FROM sys.schemas WHERE name = 'cdc'

SELECT * FROM sys.database_principals WHERE name = 'cdc'

-- Create Employee table

CREATE TABLE Employee(

 EmployeeId int NOT NULL PRIMARY KEY,

 EmployeeName varchar(100) NOT NULL,

 EmailAddress varchar(200) NOT NULL)

-- Enable CDC on the table (SQL Server Agent *should* be running when you run this)

-- Create test database

CREATE DATABASE CDCDemo

GO

USE CDCDemo

GO

-- Enable CDC on the database

EXEC sp_cdc_enable_db

-- Show CDC-enabled databases

SELECT name, is_cdc_enabled FROM sys.databases

-- View the new "cdc" user and schema

SELECT * FROM sys.schemas WHERE name = 'cdc'

SELECT * FROM sys.database_principals WHERE name = 'cdc'

-- Create Employee table

CREATE TABLE Employee(

 EmployeeId int NOT NULL PRIMARY KEY,

 EmployeeName varchar(100) NOT NULL,

 EmailAddress varchar(200) NOT NULL)

-- Enable CDC on the table (SQL Server Agent *should* be running when you run this)

 Chapter 14 Data Warehousing 597

EXEC sp_cdc_enable_table

 @source_schema = N'dbo',

 @source_name = N'Employee',

 @role_name = N'CDC_admin',

 @capture_instance = N'dbo_Employee',

 @supports_net_changes = 1

-- Show CDC-enabled tables

SELECT name, is_tracked_by_cdc FROM sys.tables

-- Insert some employees...

INSERT INTO Employee VALUES(1, 'John Smith', 'john.smith@ourcorp.com')

INSERT INTO Employee VALUES(2, 'Dan Park', 'dan.park@ourcorp.com')

INSERT INTO Employee VALUES(3, 'Jay Hamlin', 'jay.hamlin@ourcorp.com')

INSERT INTO Employee VALUES(4, 'Jeff Hay', 'jeff.hay@ourcorp.com')

-- Select them from the table and the change capture table

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- Delete Jeff

DELETE Employee WHERE EmployeeId = 4

-- Results from Delete

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- (Note: result of DELETE may take several seconds to show up in CT table)

-- Update Dan and Jay

UPDATE Employee SET EmployeeName = 'Dan P. Park' WHERE EmployeeId = 2

UPDATE Employee SET EmployeeName = 'Jay K. Hamlin' WHERE EmployeeId = 3

-- Results from update

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct -- See note above

-- Give the CDC job a chance to initialize before accessing the TVFs

WAITFOR DELAY '00:00:20'

-- To access change data, use the CDC TVFs, not the change tables directly

DECLARE @begin_time datetime

DECLARE @end_time datetime

DECLARE @from_lsn binary(10)

DECLARE @to_lsn binary(10)

SET @begin_time = GETDATE() - 1

SET @end_time = GETDATE()

-- Map the time interval to a CDC LSN range

SELECT @from_lsn =

 sys.fn_cdc_map_time_to_lsn('smallest greater than or equal', @begin_time)

SELECT @to_lsn =

 sys.fn_cdc_map_time_to_lsn('largest less than or equal', @end_time)

SELECT @begin_time AS BeginTime, @end_time AS EndTime

EXEC sp_cdc_enable_table

 @source_schema = N'dbo',

 @source_name = N'Employee',

 @role_name = N'CDC_admin',

 @capture_instance = N'dbo_Employee',

 @supports_net_changes = 1

-- Show CDC-enabled tables

SELECT name, is_tracked_by_cdc FROM sys.tables

-- Insert some employees...

INSERT INTO Employee VALUES(1, 'John Smith', 'john.smith@ourcorp.com')

INSERT INTO Employee VALUES(2, 'Dan Park', 'dan.park@ourcorp.com')

INSERT INTO Employee VALUES(3, 'Jay Hamlin', 'jay.hamlin@ourcorp.com')

INSERT INTO Employee VALUES(4, 'Jeff Hay', 'jeff.hay@ourcorp.com')

-- Select them from the table and the change capture table

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- Delete Jeff

DELETE Employee WHERE EmployeeId = 4

-- Results from Delete

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- (Note: result of DELETE may take several seconds to show up in CT table)

-- Update Dan and Jay

UPDATE Employee SET EmployeeName = 'Dan P. Park' WHERE EmployeeId = 2

UPDATE Employee SET EmployeeName = 'Jay K. Hamlin' WHERE EmployeeId = 3

-- Results from update

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct -- See note above

-- Give the CDC job a chance to initialize before accessing the TVFs

WAITFOR DELAY '00:00:20'

-- To access change data, use the CDC TVFs, not the change tables directly

DECLARE @begin_time datetime

DECLARE @end_time datetime

DECLARE @from_lsn binary(10)

DECLARE @to_lsn binary(10)

SET @begin_time = GETDATE() - 1

SET @end_time = GETDATE()

-- Map the time interval to a CDC LSN range

SELECT @from_lsn =

 sys.fn_cdc_map_time_to_lsn('smallest greater than or equal', @begin_time)

SELECT @to_lsn =

 sys.fn_cdc_map_time_to_lsn('largest less than or equal', @end_time)

SELECT @begin_time AS BeginTime, @end_time AS EndTime

598 Part IV Business Intelligence

SELECT @from_lsn AS FromLSN, @to_lsn AS ToLSN

-- Return the changes occurring within the query window.

-- First, all changes that occurred...

SELECT *

 FROM cdc.fn_cdc_get_all_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

-- Then, net changes, that is, final state...

SELECT *

 FROM cdc.fn_cdc_get_net_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

 Let’s examine this code closely. After creating our sample database CDCDemo, we enable
CDC on that database by calling EXEC sp_cdc_enable_db. The next several SELECT queries
demonstrate how to retrieve various kinds of CDC-related information. The fi rst SELECT
query shows how the is_cdc_enabled column in sys.databases returns true (1) or false (0),
making it easy to fi nd out which databases are CDC-enabled and which aren’t. The next two
SELECT queries show how the new cdc schema and user can be found in sys.schemas and sys.
database_principals.

 The code then proceeds to create the Employee table, which has only three columns to keep
our example simple. CDC is then enabled on the Employee table by calling EXEC sp_cdc_en-
able_table and passing parameters that identify the Employee table in the dbo schema for
change capture. (Remember that SQL Server Agent must be running at this point.) The next
SELECT statement shows how to query the is_tracked_by_cdc column in sys.tables to fi nd out
which tables are CDC-enabled and which aren’t.

 Recall that enabling CDC on the Employee table creates a TVF for retrieving all changes
made to the table between any two points in time. Recall too that by specifying @supports_
net_changes = 1, this also creates a second TVF for retrieving only the net changes made
between any two points in time. The difference between all changes and net changes will be
very clear in a moment, when we call both of these TVFs and compare their results. But fi rst
the code performs a mix of INSERT, UPDATE, and DELETE operations against the Employee
table to simulate database activity and engage the capture process. In Listing 14-3, these
operations are accompanied by SELECT statements that query the change table cdc.dbo_em-
ployee_ct. This is done purely to demonstrate that change data for the Employee table is be-
ing captured to the change table. However, you should normally not query the change tables
directly in this manner and should instead use the generated TVFs to extract change infor-
mation about the Employee table, as demonstrated by the rest of the code.

 Our code then executes a WAITFOR statement to pause for 20 seconds before calling the
TVFs, in order to give the SQL Server Agent change capture job a chance to initialize. This is
a one-time latency only; it does not represent the normal latency for CDC-tracked changes
to be recorded, which is on the order of 2 to 3 seconds. Without this delay, or if SQL Server

SELECT @from_lsn AS FromLSN, @to_lsn AS ToLSN

-- Return the changes occurring within the query window.

-- First, all changes that occurred...

SELECT *

 FROM cdc.fn_cdc_get_all_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

-- Then, net changes, that is, final state...

SELECT *

 FROM cdc.fn_cdc_get_net_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

 Chapter 14 Data Warehousing 599

Agent is not running when you call the TVFs, you will receive a rather misleading error mes-
sage that unfortunately does not describe the actual problem.

To call either of the generated TVFs, you need to provide a value range that defines the win-
dow of time during which you want change data returned. As already explained, this range
is expressed using LSN values, which you can obtain by calling sys.fn_cdc_map_time_to_lsn
and passing in the desired start and end points in time. So first we establish a time range for
the past 24 hours, which we obtain by assigning GETDATE() – 1 and GETDATE() to the start
and end time variables. Then we call sys.fn_cdc_map_time_to_lsn on the start and end time
variables to obtain the LSN values corresponding to the last 24 hours. (Note that the starting
LSN gets adjusted automatically to compensate for the fact that there are no LSNs from 24
hours ago, as does the ending LSN, since there might not be any from a moment ago either.)
We then issue two SELECT statements so that we can view the time and LSN range values, an
example of which is shown here:

BeginTime EndTime

----------------------- -----------------------

2008-07-08 23:42:55.567 2008-07-09 23:42:55.567

(1 row(s) affected)

FromLSN ToLSN

---------------------- ----------------------

0x0000001A0000001E0039 0x00000020000000A50001

(1 row(s) affected)

Equipped with the LSN range values, we issue two more SELECT statements. (These are
the last two statements in Listing 14-3.) The first statement queries the range against the
all changes TVF, and the second statement queries the range against the net changes TVF.
Comparing the results of these two queries clearly illustrates the difference between the
TVFs, as shown here:

__$start_lsn __$seqval __$operation __$update_mask EmployeeId

EmployeeName EmailAddress

---------------------- ---------------------- ------------ -------------- ---------- -------

---------- --------------------------

0x0000001E0000007C0013 0x0000001E0000007C0012 2 0x07 1 John

Smith john.smith@ourcorp.com

0x0000001E000000800003 0x0000001E000000800002 2 0x07 2 Dan

Park dan.park@ourcorp.com

0x0000001E000000810003 0x0000001E000000810002 2 0x07 3 Jay

Hamlin jay.hamlin@ourcorp.com

0x0000001E000000820003 0x0000001E000000820002 2 0x07 4 Jeff

Hay jeff.hay@ourcorp.com

0x0000001E000000850004 0x0000001E000000850002 1 0x07 4 Jeff

Hay jeff.hay@ourcorp.com

0x0000001E000001AC0004 0x0000001E000001AC0002 4 0x02 2 Dan P.

Park dan.park@ourcorp.com

0x0000001E000001AE0004 0x0000001E000001AE0002 4 0x02 3 Jay K.

600 Part IV Business Intelligence

Hamlin jay.hamlin@ourcorp.com

(7 row(s) affected)

__$start_lsn __$operation __$update_mask EmployeeId EmployeeName EmailAddress

---------------------- ------------ -------------- ---------- ----------------- ------------

0x0000001E0000007C0013 2 NULL 1 John Smith john.smith@

ourcorp.com

0x0000001E000001AC0004 2 NULL 2 Dan P. Park steven.

jones@ourcorp.com

0x0000001E000001AE0004 2 NULL 3 Jay K. Hamlin jay.hamlin@

ourcorp.com

(3 row(s) affected)

The first result set includes all the information about all changes made during the speci-
fied LSN range, including all interim changes. Thus, the information returned from the first
all changes TVF shows every stage of change, or seven changes in total. In our scenario,
John was inserted once and then never changed. So only his insert (__$operation value 2) is
shown. Dan and Jay were inserted (__$operation value 2) and updated (__$operation value 4),
so both changes (insert and update) are returned for each of them. Jeff, on the other hand,
was deleted (__$operation value 1) after being inserted, so both changes (insert and delete)
are returned for Jeff.

The second result set includes only the final changes made during the specified LSN range.
So for the same LSN range, we receive only three change records from the second net
changes TVF, each of which provides the final column values in the specified LSN range.
John appears only once as in the previous query, since he was inserted only once and never
modified or deleted within the LSN range. However, although Dan and Jay were inserted and
updated, they each appear only once (with their final values for the LSN range), and not twice
as in the previous query. And since Jeff was inserted and deleted within the window of time
specified by the LSN range, no change data for Jeff is returned at all by the net changes TVF.

Partitioned Table Parallelism

In SQL Server, a partitioned table is a table whose physical storage is divided horizontally
(that is, as subsets of rows) into multiple filegroups (invisibly to queries and DML) for the pur-
pose of improved manageability and isolation of various kinds of otherwise potentially con-
flicting access. For example, different partitions of the same table can have different backup
and compression strategies and indexes, each optimized to the use of the partition. Given the
large size of many data warehouses, this flexibility can be invaluable.

 Chapter 14 Data Warehousing 601

The typical (although by no means required) partition key is Time, since that is so often the
natural horizontal dividing line. Partitioning by Time allows, for example, “old” data to be in-
dexed more lightly than current, more frequently accessed data. Old data can also be backed
up and deleted without affecting simultaneous queries against more recent data. Partitioning
is an important tool of physical implementation, particularly when building a very large data
warehouse.

Another potential benefit of well-designed partitioning is more efficient query plans. Queries
specifying the partitioning key that involve only a single partition benefit from having less
data to traverse (and potentially more optimized indexes if the partition is for newer data). In
addition, when SQL Server is running on multiple-core or multiple-CPU hardware and con-
figured appropriately, multiple worker threads are available and can achieve parallelism in
processing a query by assigning multiple threads to it.

Note For maximum partitioning benefit, it is crucial to physically isolate each partition of a table
from each of the others. In practice, this means that each filegroup of each partition should be
on a different physical disk and, in extreme cases, even on a different disk controller. In general,
however, this book does not explain the mechanics of partitioned tables, which are well covered
in SQL Server Books Online.

Thread Management

SQL Server 2005 optimized parallelism for queries involving only a single partition, by
 allocating all available threads to the one partition. However, on a multipartition query,
 performance could suffer badly because then only one thread is allocated per partition—
leading to some parallelism for the query as a whole but none per partition. The result was
that queries varying only slightly in their partitioning key constraint could exhibit vastly
 different degrees of performance.

The new Partitioned Table Parallelism feature in SQL Server 2008 directly addresses this
shortcoming by allocating all available threads to a multipartition query in round-robin fash-
ion. The result is that each partition, as well as the query as a whole, achieves some degree
of parallelism. This is automatic when applicable. The best gains will be achieved when the
number of threads (that is, cores or CPUs) is significantly larger than the number of parti-
tions on the table. The difference between SQL Server 2005 and 2008 in thread allocation
for multipartition queries is illustrated in Figure 14-10. Under the latter in this example, three
times as many threads per partition operate on the Feb YTD query, and with all else being
equal, this should translate to a 200 percent performance improvement.

602 Part IV Business Intelligence

SQL Server 2005

SQL Server 2008

Jan YTD Query Feb YTD Query

Jan YTD Query Feb YTD Query

JAN FEB

JAN FEB

JAN FEB

JAN FEB

FIGURE 14-10 The difference between SQL Server 2005 and 2008 in how threads are allocated to
 multipartition queries

Note Partitioned Table Parallelism is available only in the Enterprise edition of SQL Server 2008.

Lock Escalation

Another important feature of Partitioned Table Parallelism relates to table locking behavior.
Previously, when deciding whether to elevate to a table-level lock on a partitioned table, the
database engine did not take into account whether concurrent statements against the same
table were each accessing a different partition. When they were, each was logically indepen-
dent and there would be no reason for one to block another. But by not recognizing this and
escalating one of the statements to a table lock, the database engine could unnecessarily
block the remaining statements, in the process also enhancing the possibility of deadlocks
among them. In SQL Server 2008, the default behavior on a partitioned table behaves as be-
fore, but Partitioned Table Parallelism enables a new ALTER TABLE option, which directs the
database engine to use partition-level lock escalation, instead of table-level, on a partitioned
table. The syntax is shown here:

ALTER TABLE MyTable SET (LOCK_ESCALATION = <option>)

 Chapter 14 Data Warehousing 603

The LOCK_ESCALATION option can be specified as TABLE, AUTO, or DISABLE. The default is
TABLE, which means that only table-level lock escalation will occur. If you specify AUTO, you
get partition-level locking on partitioned tables, table-level otherwise. With DISABLE, no lock
escalation will occur (in most cases).

Star-Join Query Optimization

Star-Join Query Optimization is an important new feature in SQL Server 2008 (again, avail-
able in Enterprise edition only) in the context of data warehouse–oriented performance
enhancements, but it does not lend itself to deep explanation in a book like this because it
does not offer any user-adjustable properties and its operation is largely buried within the
database engine. The good news is that you need not do anything to get the benefit of it
when applicable.

As noted earlier, the star schema is a common physical data model in Kimball-style data
warehousing architectures. Queries against such a physical model are typically characterized
by a central fact table joined to multiple dimension tables, each on single-column equijoins
(joins based on equality), where the fact table has much higher cardinality than the dimen-
sion tables (more rows in the fact table as compared with the dimension table), and the
constraints of the query are all on the dimension tables—a pattern now known as a star-join.
Since this pattern is common across a large range of data warehousing scenarios, it became
apparent that a query optimizer that could recognize such a pattern could potentially pro-
duce more efficient query plans than otherwise.

Here’s the basic idea. Eliminate as many candidate rows from the fact table as early as pos-
sible in the query-resolution pipeline, since the fact table typically has by far the highest
cardinality of the tables involved. In practice, this means determining the candidate join keys
from the dimension tables first (taking advantage of the winnowing effect of the constraints
typically on them) and then using this information to eliminate candidate rows from the fact
table ahead of, and more efficiently than, the actual join process further down the pipeline
would. The heuristics—or in other words the rules by which the optimizer recognizes a star-
join query—are important to the effectiveness of this strategy.

Such mechanisms are complex and, for our purposes, largely opaque. SQL Server 2005 intro-
duced some star-join optimization based on these principles, but SQL Server 2008 extends
the degree to which it can recognize and optimize this pattern. Microsoft benchmarks assert
that the degree of performance improvement on typical data warehouse queries at which
this feature is targeted can range from 10% to 30%. The SQL Server 2008 enhancements in
this area also include more detailed information in query plans, which help the designer to
understand when or if this feature is being applied to particular queries.

604 Part IV Business Intelligence

Note This enhancement will be of most value when a significant part of the SQL Server work-
load involves ad hoc SQL queries against a star schema. If your architecture directs most ad hoc
queries to an OLAP cube, it will be of lesser, if any, benefit, unless your cube is hosted by SQL
Server Analysis Services and uses the Relational OLAP (ROLAP) or Hybrid OLAP (HOLAP) storage
mode (since in these cases a significant number of cube queries might become SQL star schema
queries).

Space considerations preclude us from discussing this feature in more detail here. To learn
more, we recommend that you visit the links provided at the end of this section.

SPARSE Columns

Not all practitioners are happy with NULL values in a relational database schema, but for
 better or worse, they are widely used in practice. Without engaging that debate, some will
rationalize allowing nullable columns when physically modeling a type (for example, Product)
that has many subtypes that have few attributes in common and many attributes unique
to each subtype. It can be convenient, despite going against the grain of normalization, to
physically model this situation as a single table with a column for every attribute across all
subtypes. In such a case, each attribute column must be nullable and will be sparse—that is,
containing NULL in a high percentage of cases. It would be beneficial if the storage for such
sparsely populated nullable columns were optimized, particularly in the data warehousing
context, given the often large database sizes involved.

In versions earlier than SQL Server 2008, storing NULL values was not optimized—it re-
quired storage for every NULL occurrence. SQL Server 2008 introduces the notion of the
SPARSE column, a nullable column whose storage is optimized for NULL values—at the cost
of increased storage overhead for non-NULL values. With this option enabled, occurrences
of NULL use no storage. (Note that this is also true when SQL Server Data Compression,
detailed in the next section, is used—although the two are not equivalent.) The density of
a column’s NULL values required to achieve a 40 percent space saving using the SPARSE at-
tribute, the nominal space saving value as reported by SQL Server Books Online, depends on
the column’s data type and ranges from 42 percent for 38-digit high-precision numeric types
to 98 percent for bit. The SPARSE attribute in particular benefits Microsoft Office SharePoint
Server, which by its generic and end-user-driven nature is a particular case of the preceding
scenario—needing to store many user-defined attributes that are sparse by nature.

A few data types cannot be SPARSE, and there are other, potentially significant, restric-
tions on using SPARSE columns—for example, they cannot have default values or rules or
be part of a clustered index or unique primary key index. SQL Server Books Online provides
full details.

This feature is enabled by decorating column definitions in your CREATE TABLE and ALTER
TABLE statements with the new SPARSE attribute. Obviously, the column must also be de-
clared NULL. Listing 14-4 shows an example of usage.

 Chapter 14 Data Warehousing 605

LISTING 14-4 Declaring SPARSE columns

CREATE TABLE SparseTest

(ID int IDENTITY(1,1),

 LastName varchar(50) SPARSE NULL,

 Salary decimal(9,2) NULL)

GO

ALTER TABLE SparseTest

 ALTER COLUMN Salary decimal(9,2) SPARSE

GO

 SQL Server 2008 introduces two other new features that have a relationship to the SPARSE
feature but do not depend on it. The fi rst is the column set, an optionally declared set of
specifi ed columns on a table that, once declared, associates an xml column with the table
as metadata (that is, no additional storage is used). This column represents the specifi ed
columns as an XML document and allows querying and updating of the columns as a group
using XQuery and XML DML (which we cover in depth in Chapter 6). The individual columns
can still be referenced in the usual way, but the column set representation can be a more
convenient method when a table has a large number of columns and might provide perfor-
mance improvements in some cases. SPARSE columns relate to column sets in that a column
set cannot be added to an existing table already containing any SPARSE columns, and if
SPARSE columns are later added to a table with a column set, they automatically become
part of the column set.

 The second new feature is the fi ltered index. A fi ltered index is an optimized nonclustered
index whose declaration includes a WHERE clause that restricts the values included in the
index to those specifi ed. This can have wide-ranging implications for index maintenance,
index storage, and query plan optimization. This feature is most useful when the query pat-
terns against the table are well understood and they naturally relate to distinct subsets of
rows. SPARSE columns are good candidates to participate in a fi ltered index because they
represent distinct, well-defi ned subsets (rows with NULLs in the columns and rows with non-
NULLs). For more details of both these features, which involve considerable complexity in
their own right, see SQL Server Books Online.

 A fi nal benefi t of SPARSE columns is that, by their nature, they can reduce the size of large
backups, potentially more so than any of the new compression features we cover in the next
section.

Data Compression and Backup Compression

 Data compression and backup compression are long-awaited enhancements to SQL Server—
not surprisingly, also available only in the Enterprise edition (with one exception, as we’ll see
when we discuss backup compression). They are of benefi t in all scenarios, but especially for
large data warehouses. Many factors cause a data warehouse to grow at least linearly with

CREATE TABLE SparseTest

(ID int IDENTITY(1,1),

 LastName varchar(50) SPARSE NULL,

 Salary decimal(9,2) NULL)

GO

ALTER TABLE SparseTest

 ALTER COLUMN Salary decimal(9,2) SPARSE

GO

606 Part IV Business Intelligence

time: the desire to facilitate trend analyses, personalization, and data mining; the fact that
most data warehouses increase the number of data sources included over time; and last that
multiple copies of the data warehouse often exist for redundancy and development and QA
purposes. SQL Server 2008 provides both data compression, targeting the database itself,
and backup compression, targeting the backup/restore process.

As the size of the data warehouse increases, it affects the cost and complexity of maintaining
the online version and of taking backups of it. SQL Server 2008 Data Compression provides
many benefits. It aids online query performance by increasing the number of rows stored per
page, lessening disk I/O and saving costs in disk space. It improves performance for a given
amount of memory, as more rows can be held in memory at the same time. It can benefit the
backup/restore process by minimizing the I/O and therefore time and media required, since
less physical data needs to be transferred. Last, replication and mirroring scenarios can also
benefit for all the same reasons.

Data Compression

SQL Server 2005 made a start at targeting data compression concerns with both its table-
level vardecimal storage format (in Service Pack 2 for the Enterprise edition) and its ability
to use NTFS file system file compression on SQL Server read-only secondary data files (or all
files, including log files, if the database is read-only).

These enhancements remain supported in SQL Server 2008, although use of the vardecimal
option is deprecated and use of NTFS compression for SQL Server data files is mostly not rec-
ommended. Instead, SQL Server 2008 goes considerably beyond these earlier enhancements
in the features it provides for data compression.

The most basic form of data compression uses a storage format that eliminates unneeded
precision in fixed-length data types—that is, representing each value in a column with the
minimal number of bits necessary. For example, any value of 255 or less stored in an integer
data type could be stored in one byte instead of four (neglecting some slight overhead). SQL
Server 2005 provided such compression or variable-length storage only for the decimal and
numeric data types, but SQL Server 2008 provides it for all formerly fixed-length data types
(including decimal and numeric). Note that what is changing is storage format, not data type,
so the semantics of each data type remain the same to T-SQL queries as well as applications.

Data compression comes in two forms: row compression (RC) and page compression (PC).
RC is another name for the variable-length storage approach just detailed. With RC, all oc-
currences of 0 (zero) and NULL consume no space. RC is not effective for variable-length
data types (they are already effectively compressed), for some shorter data types (where the
overhead of compression outweighs the benefit), and for some other data types for technical
reasons.

 Chapter 14 Data Warehousing 607

 Note To summarize, RC does not apply to tinyint, smalldatetime, date, time, varchar, text, nvar-
char, ntext, varbinary, image, cursor, sql_variant, uniqueidentifi er, table, xml, and user-defi ned
types (UDTs).

 PC is a superset of RC and provides potentially greater overall compression than RC alone, at
the cost of greater CPU overhead. Where RC is concerned with compressing scale and preci-
sion on each individual row-column value, PC is concerned with compressing redundancy
across all the rows and their columns on a particular page. PC can be used with all the same
database objects as RC. It applies three steps to the enabled object, in the order indicated:

 1. RC to the leaf level of a table and to all levels of an index.

 2. PC—on each page, for each column of each row on that the page, any common prefi xes
among all values stored in that column (if any) are identifi ed and tokenized. Each such
prefi x value is stored once in the new Compression Information (CI) section of the page
(by column), and values in each column are replaced with short encoded values that
identify the prefi x and how much of it applies (as a prefi x to the remainder of the value).

 3. Dictionary compression—on each page, repeating values from any column in any row
on the page are identifi ed and stored in the CI area, and the values are replaced with
a pointer to the repeated value. This can further compress the results of the fi rst two
steps.

 As data is added to a PC-enabled object, these operations are initiated only when a page be-
comes full. If PC is enabled on an existing object containing data, that object must be rebuilt,
a potentially expensive operation.

 The code in Listing 14-5 shows an example of creating a table enabled for PC.

LISTING 14-5 Enabling PC on a table

CREATE TABLE RowCompressionDemo

 (FirstName char(10),

 LastName char(30),

 Salary decimal(8,2))

 WITH (DATA_COMPRESSION = PAGE)

 SQL Server 2008 provides a system stored procedure associated with both forms of com-
pression aptly named sp_estimate_data_compression_savings, which can be used to evaluate
whether compression is worth applying to a given object. It can be run for a given uncom-
pressed table, index, or partition to estimate the size it would be, using both RC and PC. It
can also do the reverse; reporting the size a compressed object would be if uncompressed.
This procedure works by sampling the data of the indicated object into a temporary store
and running the indicated compression or decompression on it. It is possible for it to report
a larger size for compressed than uncompressed data, which indicates clearly that the nature

CREATE TABLE RowCompressionDemo

 (FirstName char(10),

 LastName char(30),

 Salary decimal(8,2))

WITH (DATA_COMPRESSION = PAGE)

608 Part IV Business Intelligence

of the data is such that the storage overhead associated with compression outweighs any
benefit.

Of course, these forms of compression require more CPU cycles to use than would otherwise
be required, both when writing (compressing) and reading (decompressing) data. Each rep-
resents a tradeoff between saving space (disk and memory) and increasing CPU use. In addi-
tion, the effectiveness of any compression scheme is sensitive to the data type and statistical
distribution of the values being compressed. For example, compression of an int column (4
bytes) in which most values do not exceed 255 (which fit in 1 byte) would exhibit much more
benefit from RC than if the values were evenly distributed or if the column were already de-
clared as a tinyint (1 byte). For these reasons, as well as the fine grain of data types that this
feature allows to be individually tuned for compression, it is advisable to experiment with the
various compression options to determine the optimal combination of settings.

Data compression must be enabled—it is disabled by default. It can be enabled on an entire
table (which applies to all of its partitions), on individual partitions of a table, on individual
indexes of a table, on individual index partitions, and on the clustered index of an indexed
view. These features, together with the separately selectable options of row or page com-
pression, give the database administrator great flexibility in tuning the use of compression to
achieve the best tradeoffs.

Data compression is enabled by CREATE TABLE (as shown earlier) and CREATE INDEX state-
ments, and also by ALTER TABLE and ALTER INDEX. Note that SQL Server Data Compression
is not automatically enabled on existing or subsequently created nonclustered indexes of a
table on which data compression is enabled—each such index must be separately and explic-
itly enabled. The one exception to this is that a clustered index does inherit the compression
setting of its table.

Last but not least, an uncompressed table can be rebuilt with either form of compression
via the new ALTER TABLE…REBUILD WITH (DATA_COMPRESSION=xxx) statement, where
xxx is either ROW or PAGE. As the compression process is CPU intensive, it lends itself to
parallelism, and SQL Server 2008 can take advantage of the availability of multiple CPUs.
The REBUILD clause therefore supports a MAXDOP option to control how many CPUs are
 allocated to the process.

Backup Compression

SQL Server Backup Compression is a new option with the BACKUP statement. Although only
the Enterprise edition can create a compressed backup, any edition can restore one.

Compared with data compression, backup compression is extremely coarse grained. It is
 either enabled or it isn’t for the entire backup—there are no options to tune the compres-
sion, and the compression methods are opaque. Nevertheless, it is a welcome enhancement
since no earlier version of SQL Server provided any form of backup compression, forcing
practitioners to compress backups in a separate step with other, non–SQL Server, utilities.

 Chapter 14 Data Warehousing 609

 The option is disabled by default, but the default can be changed via server-level confi gura-
tion or overridden in the BACKUP statement. It should be noted that an uncompressed 2008
backup operation (both create and restore) can benefi t when SQL Server Data Compression
has been used on a signifi cant scale in the database being backed up, as a direct result of
reduced I/O. If data compression has been used, backup compression will likely provide a
smaller (possibly much smaller) space-saving benefi t, and because of the additional CPU
overhead, backup/restore time might perform worse than without backup compression. This
feature is therefore most valuable when the database being backed up has not had signifi -
cant data compression applied—your own experimentation is warranted.

 Note Compressed and uncompressed backups cannot be mixed in a backup media set.

 As a simple example of the potential effi ciency of backup compression, compare the size and
time required to back up and restore the AdventureWorksDW2008 database, as shown in
Listing 14-6. The CHECKPOINT and DBCC DROPCLEANBUFFERS statements are used to en-
sure that all cache buffers are empty so that one test does not misleadingly improve the per-
formance of the next. Create the directory C:\Backups prior to running the following code.

LISTING 14-6 Comparing the time and size between compressed and uncompressed backups

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWUncompressed.bak'

-- 10.661 sec, 71 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWCompressed.bak'

 WITH COMPRESSION

-- 6.408 sec, 13 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWUncompressed FROM DISK = 'C:\Backups\AWDWUncompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWUncompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWUncompressed.ldf'

-- 9.363 sec

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWCompressed FROM DISK = 'C:\Backups\AWDWCompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWCompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWCompressed.ldf';

-- 6.101 sec

 In this example, you can see that there is much more improvement in the backup (com-
pression) stage than the restore stage, but in both cases, performance for the compressed

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWUncompressed.bak'

-- 10.661 sec, 71 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWCompressed.bak'

WITH COMPRESSION

-- 6.408 sec, 13 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWUncompressed FROM DISK = 'C:\Backups\AWDWUncompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWUncompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWUncompressed.ldf'

-- 9.363 sec

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWCompressed FROM DISK = 'C:\Backups\AWDWCompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWCompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWCompressed.ldf';

-- 6.101 sec

610 Part IV Business Intelligence

backup is superior to the uncompressed backup. This is due to the reduction in I/O required
for processing the smaller (compressed) backup file. Of course, experiments are warranted in
your particular scenario to determine exactly what improvements you will see for yourself.

Learning More

We’ve made several references to SQL Server Books Online for more detailed information
about many of the new data warehousing features in SQL Server 2008. In addition, you can
learn more about all of these SQL Server 2008 data warehousing–oriented features by visit-
ing the following links:

 http://msdn.microsoft.com/en-us/library/cc278097(SQL.100).aspx#_Toc185095880

 http://technet.microsoft.com/en-us/magazine/cc434693(TechNet.10).aspx

These links were valid as of press time, but if they don’t work, you can perform a Web search
on “SQL Server 2008 data warehouse enhancements.”

We can also recommend these additional resources to learn more about the recommended
practices of data warehousing:

 Building the Data Warehouse, 4th ed., W. H. Inmon (Wiley, 2005)

 The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd ed.,
Ralph Kimball and Margy Ross (Wiley, 2002), and The Data Warehouse Lifecycle Toolkit,
Ralph Kimball et al. (Wiley, 2008)

 The Data Warehousing Institute, http://www.tdwi.org/TDWI

Summary

Data warehousing has become a key component of any enterprise-wide data architecture
and is no longer only practical for the largest enterprises. Data warehousing developed as
a response to the many impediments to creating actionable information from the data col-
lected by operational applications, impediments that only gradually became recognized as
significantly undermining the potential of computers to help turn data into information. The
issues existed not only because of historical technical limitations but also because of funda-
mental differences in optimum design between operational and informational applications.

A data warehouse provides the foundation for many data-driven applications. SQL Server
2008 provides a full-featured, powerful, and cost-effective platform on which to build a data
warehouse. You’ve seen how SQL Server 2008 is particularly targeted to data warehousing
issues and provides a number of long-awaited features in that sphere. In addition, Microsoft
also offers a wide range of integrated and complementary technology, including Microsoft
Office SharePoint, Microsoft Performance Point, and the 2007 Microsoft Office system, which
enable you to build informational applications on top of your SQL Server data warehouse
foundation.

 953

A
access, cube. See roles (OLAP cubes)
access level for FILESTREAM feature, 311, 313
Accordion controls, 432
Accumulate method (aggregate classes), 141
accuracy of date-time values, 62
ACID properties, 449, 450–452
actions (OLAP cubes), 689–693

designing, 690
testing, 692

actions, report, 918
ADD MINING MODEL clause, ALTER MINING

STRUCTURE, 839
adjacent groups, tablix data regions, 912
administering Reporting Services, 937–951

Report Manager and Management Studio,
940–949
caching reports, 943
data-driven report subscriptions, 942
securing reports, 944–949
standard report subscriptions, 940–942

Reporting Services Configuration Manager,
937–939

SharePoint integration, 949–951
ADO MD.NET data provider, 758–769

cell references, 763
executing MDX queries, 760
exploring metadata, 763–769
fetching metadata in cubes, 764
prediction queries with, 860
server-side, 782–792

calling managed code from MDX, 786
debugging managed code, 786
result set–returning functions, 789–792
void functions, 788

working with multiple axes, 761–763
XMLA response content from, manipulating,

780
AdomdCommand objects, 760

ExecuteXmlReader method, 780
AdomdConnection objects, 760

Cubes collection of, 764
GetSchemaDataSet method, 765

AdomdDataAdapter objects, 760
ADO.NET, 377

coding, 387–392

connected DataReader objects, 390
typed DataSet objects, 389
untyped DataSet objects, 388–389
validation logic in typed DataSets, 391

Entity Framework (EF) model. See Entity
Framework (EF) model, ADO.NET

LINQ, reasons to use, 396–397. See also LINQ
local transactions in, 459–461
native, why not to use, 396–397
passing TVPs using, 56
Sync Services. See Sync Services for ADO.NET
typed DataSet objects, 378–387

adding validation logic to, 391
connected use of, 387
connection string management, 381
data binding example, 420–424
TableAdapter Configuration Wizard, 382–385
TableAdapter objects, 380
using DataSet designer, 379

ADO.NET Data Services, 377, 411–415
AJAX client library for, 434
binding to, 426

ADO.NET Entity Data Model. See Entity
Framework (EF) model, ADO.NET

AFTER trigger, MERGE statement and, 79
aggregates (SQL CLR), 140–145

managing with Object Explorer, 152
aggregations (OLAP), 700

algorithmic design, 700
design management, 704
Management Studio for, 705
manual design, 702–704
special aggregates, 665
usage-based design, 701

AJAX Control Toolkit, 432
AJAX-enabled Web pages, 367

for data access, 430–435
ADO.NET Data Services client, 434

algorithmic aggregation design, 700
All Tables diagram (Analysis Services), 623
alphabetical format for date-time values, 64
ALTER DATABASE statement

AUDIT SPECIFICATION clause, 221
SET ENCRYPTION ON clause, 213

ALTER INDEX statement, enabling data
compression, 608

ALTER MINING STRUCTURE statement, 839

Index

954

ALTER SERVER AUDIT SPECIFICATION statement,
220

ALTER SERVER AUDIT statement, 217
WITH AUDIT_GUID option, 218
WITH ON_FAILURE option, 218
WITH QUEUE_DELAY option, 217
WITH STATE option, 218

ALTER SERVICE MASTER KEY REGENERATE
statement, 207

ALTER TABLE statement
CHANGE_TRACKING option, 541
enabling data compression, 608
LOCK_ESCALATION option, ALTER TABLE, 603
AS TYPE, TVPs and, 59

ambient transactions, 476
AMO (Analysis Management Objects), 769–770
Analysis Manager, 618
analysis optimization, lack of, 568
Analysis Services, 611, 618–619. See also OLAP

adding data source views, 621–625
APIs for custom OLAP development, 744
BPAs (best practice alerts), 654–656
Calculation Tools, 671
CLR support with server-side ADO MD.NET,

782–792
calling managed code from MDX, 786
debugging managed code, 786
result set–returning functions, 789–792
void functions, 788

connecting to (Excel), 719–723
creating projects, 619, 800
data mining with. See data mining
key performance indicators (KPIs), 677–689

queries in Management Studio, 683–688
status and trend expressions, 678
testing in Browser View, 681–683

MDX queries, building, 748
MDX queries, opening, 747
member grouping, 651
partitions, 693–700

editing and creating, 694
proactive caching, 697–699

perspectives, 705–707
proactive caching, 697–699
processing cubes, 635
roles, 712–715
server time dimensions, 660–685

fact dimensions, 661–664
role-playing dimensions, 664

Time Series algorithm, 797
translations, 707–711
XMLA queries. See XMLA
XMLA scripts, 688

analytical applications, 568
anchor member, CTE, 18

anchor value, Sync Services, 543
API programming, data mining and, 857
application mobilization. See mobile application

(example), creating
APPLY operator, T-SQL, 25
area calculations, geospatial data, 355
articles (Merge Replication), 495
ASP.NET

data binding with, 427–438
alternatives to GridView controls, 429
ASP.NET Dynamic Data, 435–438
using AJAX, 430–435

data mining and, 861
ReportViewer controls, 930

ASP.NET Dynamic Data, 435–438
assemblies (SQL CLR)

deploying, 119, 125–127
loading (server-side ADO MD.NET), 783
security, 150

association properties (L2S models), 399
Association Rules algorithm, 846
associations (L2S models), 399
Astoria. See ADO.NET Data Services
asymmetric key encryption, 204
atomicity, 451, 452
attack surface, 191
attribute profiles, 826
attribute-based XML, creating, 248

OPENXML function with, 261
AttributeHierarchies collection (Dimension

objects), 764
attributes, dimension. See dimensions
attributes, SQL CLR, 117–118
AUDIT_GUID option, ALTER SERVER AUDIT

statement, 218
auditing, 216–224

creating audit objects, 216
of database events, 221–222
options for, 217
querying audit catalog views, 224
recording audits

to file system, 219
to Windows event log, 220

of server events, 217
viewing audited events, 222

authentication and authorization, 195–203
creating client connections, 195
execution context, 200–203
guest account, 195
mobile application synchronization, 513, 518
password policies, 197
user-schema separation, 198–200

authorities (SQL Server Data Services), 415
authorization. See authentication and

authorization

 ALTER SERVER AUDIT SPECIFICATION statement

 955

AUTHORIZATION clause, CREATE ASSEMBLY, 125,
127

AUTO mode (FOR XML statement), 248
ELEMENTS keyword, 260

AUTO_CLEANUP option, 539
autocommit transaction mode, 453
automated deployment, 117
axes in MDX queries, 754

B
BACKUP CERTIFICATE statement, 215

backup compression options, 608–610
DECRYPTION BY PASSWORD clause, 215

backup compression with data warehousing, 605,
608–610

BACKUP SERVICE MASTER KEY statement, 207
backup-and-restore applications, creating with

SMO, 175–181
backups of certificates, 214
balanced scorecard (BSC), 585
Basic Authentication. See authentication and

authorization
batch-scoped transaction mode, 457–459
BEGIN DISTRIBUTED TRANSACTION statement,

472
BEGIN TRANSACTION statement, 462
beginning transactions, defined, 461
BeginTransaction method (SqlConnection), 487
best practice alerts (BPAs), 654–656
BI (business intelligence), 611–612

data mining and. See data mining
key performance indicators (KPIs), 583, 677–689

status and trend expressions, 678
testing in Browser View, 681–683

Management Studio for, 683, 688–689
with PivotTables. See PivotTables in Excel
prototype for, building, 586

bidirectional data synchronization, 494
binary large data. See BLOB data
BinaryReader objects, hierarchyid types with, 306
BinaryWriter objects, hierarchyid types with, 306
binding. See data binding
BindingNavigator component (example), 423, 424
BindingSource component (example), 423, 424
Blend, 439
BLOB data, 307. See also FILESTREAM feature

in databases, 307
in file streams, 309

blocking (transactions), 451
bottom-up approach to data warehousing,

574–580
context and star schema, 577

Star-Join Query Optimization, 603–604

surrogate keys, 579
BPAs (best practice alerts), 654–656
breadth-first index, 296, 298
browsing mining models (Data Mining Client add-

in), 876
BSC (balanced scorecard), 585
built-in fields, reports, 888
bulk inserts and updates with TVPs, 48, 49
bulkadmin server role, 193
business intelligence (BI), 582, 611–612

data mining and. See data mining
key performance indicators (KPIs), 583, 677–689

status and trend expressions, 678
testing in Browser View, 681–683

Management Studio for, 683, 688–689
with PivotTables. See PivotTables in Excel
prototype for, building, 586

Business Intelligence Projects, creating new, 619

C
caching, OLAP cubes, 697–699
caching reports, 943
calculated members in MDX queries, 757
Calculation Tools (Analysis Services), 671
calculations. See also aggregations (OLAP)

calculated measures, 668–673
named sets, 673
Script view, 674–676

CALL command (MDX), 789
canonical (element-based) XML, producing, 260

OPENXML function with, 261
cascading parameters, reports, 896
CascadingDropdown controls, 433
CASE construct, GROUPING function, 107
case tables in mining models, 805
CAST function

converting columns to XML, 278–279
extracting from datetime2 data, 64

CATCH block. See TRY and CATCH blocks, T-SQL
CDC (Change Data Capture), 592–600
CellSet objects, 760

cell references, 763
certificates, 204

backing up, 214
creating, 206

Change Data Capture (CDC), 592–600
change tracking for Sync Services, 538–543

changing tracking functions, 542
configuring database for, 538–543

CHANGE_RETENTION option, 539
CHANGE_TRACKING_CURRENT_VERSION

function, 542

CHANGE_TRACKING_CURRENT_VERSION function

956

CHANGE_TRACKING_MIN_VALID_VERSION
function, 542

CHANGES keyword, INSERT OVER DML syntax,
94–97

CHANGETABLE function, 542
Chaos isolation level (ADO.NET), 467
CHAPTERS axis (MDX queries), 754
chart data regions in reports, 915–917
charts (Excel), creating from PivotTables, 729
CHECK constraint, XML schemas vs., 239
CheckAllocations method, 182
CheckAllocationsDataOnly method, 182
CheckCatalog method, 182, 183
CHECKPOINT statement, 609
CheckTables methoc, 182
CheckTablesDataOnly method, 182
child groups, tablix data regions, 911
CIF (Corporate Information Factory), 573
Class Library projects, 118

CLR functions, 134
CREATE PROCEDURE commands, 128
deployment, 125
removing SQL CLR objects, 157
testing stored procedures, 129

client connections. See also occasionally
connected systems

creating, 195
direct Internet connections, 225
encrypting, 205

client file I/O streaming, FILESTREAM for, 312
ClientDeleteServerUpdate conflict

(synchronization), 550
ClientID property (SyncSession), 535
ClientInsertServerInsert conflict (synchronization),

550
ClientUpdateServerDelete conflict

(synchronization), 550
ClientUpdateServerUpdate conflict

(synchronization), 550
CLR. See SQL CLR feature
cluster characteristics, 822
cluster diagrams, 819
cluster discrimination, 822
cluster profiles, 820
clustering models, 807, 811

viewing with Cluster Viewer, 818–823
ViewerMode property, 862

Clustering Sequence algorithm, 848
code attributes, SQL CLR, 117–118
COLLATE statement, xml data type and, 236
collections of XML schemas, 237
column function (sql), 275
column sets, 605
columns

defined as XML, 235–237

converting columns to XML, 278–279
default and constraints, 236
primary and secondary XML indexes,
244–247
querying. See XQuery language

encrypting data within, 206
FILESTREAM columns, 315–318
pivoting dynamically, 23
statements without explicit column lists, TVPs

and,
53, 54

COLUMNS axis (MDX queries), 754
<Command> element, XMLA, 774
command-line report deployment, 923–927
comment test function (XML PATH), 257
Commit method (IEnlistmentNotification), 478
commit phase (transactions), 470
committing transactions, defined, 461
Common Language Runtime. See SQL CLR feature
common table expressions (CTEs), 14–20

creating recursive queries with, 18–20
ranking functions with GROUP BY function,

30–33
communications security, 190. See also security
Compact version, SQL Server, 496–497

binding data to Pocket PC forms, 523
comparing data mining models, 827–829
comparing instances of xml data type, 234, 235
comparison operations in indexed hierarchical

tables, 297
compensated transactions, 450
compile errors, statement-level, 41
Complete method (TransactionScope), 476
complex MDX expressions, 670
compression (backup) with data warehousing,

605, 608–610
compression (data) with data warehousing,

605–608
condition (PBM), defined, 184
configuring Report Services, 937–951

Report Manager and Management Studio,
940–949
caching reports, 943
data-driven report subscriptions, 942
securing reports, 944–949
standard report subscriptions, 940–942

Reporting Services Configuration Manager,
937–939

SharePoint integration, 949–951
ConflictResolver property

(SqlCeClientSyncProvider), 552
conflicts, synchronization, 543–552
conformed dimensions (in data warehousing), 576
CONNECT permissions, 196
Connection property (TableAdapter), 381

 CHANGE_TRACKING_MIN_VALID_VERSION function

 957

connection string management (DataSets), 381
connections (client). See also occasionally

connected systems
creating, 195
direct Internet connections, 225
encrypting, 205

ConnectionString property (SqlConnection), 389
consistency (transactions), 451, 452
containers (SQL Server Data Services), 415
context of measures, 575, 576, 577. See also star

schemas
continuous data, defined, 796
Control Toolkit (AJAX), 432
CONVERT function

converting columns to XML, 278–279
extracting from datetime2 data, 64

Convert To Formulas option (Excel), 733
coordinate-based cel references, 763
Corporate Information Factory (CIF), 573
corrency conversion issues in data warehousing,

587
CREATE ASSEMBLY statement, 119, 125

WITH PERMISSION_SET clause, 126, 127, 152
CREATE CERTIFICATE statement, 215

ENCRYPTION BY PASSWORD clause, 215
CREATE DATABASE statement

AUDIT SPECIFICATION clause, 221
FILEGROUP...CONTAINS FILESTREAM clause, 313
FOR SERVER AUDIT clause, 222

CREATE FUNCTION statement, 132
ORDER clause, 135

CREATE INDEX statement, enabling data
compression, 608

CREATE LOGIN statement, 193, 197
CREATE MASTER KEY statement, 207
CREATE MINING MODEL statement, 839
CREATE MINING STRUCTURE statement, 838
CREATE PROCEDURE statement, EXTERNAL NAME

clause, 127
CREATE SCHEMA statement, 199
CREATE SERVER AUDIT SPECIFICATION statement,

220
CREATE SERVER AUDIT statement, 216

TO APPLICATION_LOG and TO SERVER_LOG
options, 220

WITH AUDIT_GUID option, 218
WITH ON_FAILURE option, 218
WITH QUEUE_DELAY option, 217
WITH STATE option, 218
STATE option, 220

CREATE TABLE statement
enabling data compression, 608
ROWGUIDCOL attribute, 315

CREATE TRIGGER statements, 138
CREATE USER statement, 194

CROSS APPLY operator, 25
CROSS JOIN queries, with geospatial data, 347
CROSSJOIN function (MDX), 756
CTEs (common table expressions), 14–20

creating recursive queries with, 18–20
ranking functions with GROUP BY function,

30–33
Cube Designer, 626–629. See also cubes, OLAP
CUBE keyword, GROUP BY clause, 104. See also

WITH CUBE operator
Cube Wizard, 625
CUBEMEMBER function (Excel), 733
cubes, OLAP. See also OLAP

actions, 689–693
designing, 690
testing, 692

building, 617–635
adding data source view, 621–625
creating project, 619
with Cube Designer, 626–629
with Cube Wizard, 625
preparing star schema objects, 617
Properties Windows and Solution Explorer,
634
using Dimension Designer, 632
using Dimension Wizard, 629

defined, 614
dimensions. See dimensions
Excel with

connecting PivotTables to cubes, 719
querying in Excel formulas, 732–737

measures. See measures
partitions, 693–700

editing and creating, 694
proactive caching, 697–699

perspectives, 705–707
proactive caching, 697–699
processing, 635
roles, 712–715
server time dimensions, 660–685

fact dimensions, 661–664
role-playing dimensions, 664

translations, 707–711
CUBEVALUE function (Excel), 733, 735
Current property (Transaction), 486
CurrentDatabaseName property (Context), 791
CURRENTMEMBER property (MDX), 674
CurrentServerId property (Context), 791

D
dashboards, 583
data, information vs., 565

data, information vs.

958

data access, 377–418
ADO.NET. See ADO.NET
LINQ (Language Integrated Query). See LINQ
typed DataSet objects, 378–387

adding validation logic to, 391
connected use of, 387
connection string management, 381
data binding example, 420–424
TableAdapter Configuration Wizard, 382–385
TableAdapter objects, 380
using DataSet designer, 379

data access infrastructure. See also data binding
ADO.NET Data Services. See ADO.NET Data

Services
LINQ (Language Integrated Query). See LINQ
models for, 395–411. See also ORM
SQL Server Data Services, 377, 415

data binding, 419–447
to ADO.NET Data Services, 426
ASP.NET, 427–438

alternatives to GridView controls, 429
ASP.NET Dynamic Data, 435–438
using AJAX, 430–435

Silverlight 2.0, 438, 445–446
Windows Forms, 420–427
WPF (Windows Presentation Foundation),

438–445
lack of design support, 439–514
XAML for, 441–445

data compression with data warehousing,
605–608

data conflicts in synchronization, 543–552
data definition language. See DDL triggers
data encryption. See encryption
data hierarchies. See hierarchical data
data mining, 581, 793–878

applications of, 856
API programming, 857
ASP.NET and, 861
Excel 2007 add-ins, 866–877
managed stored procedures, 863
model content queries, 860
prediction queries with ADO MD.NET, 860
Web controls, 862
Windows Forms Model content browser
controls, 858
XMLA scripts, 865

getting started, 798–802
mining models, 805–816

adding, 811–813
changing column usage, 813
creating new, 805–809
data types and, 813
editing, 811
filtering, 815

validating and comparing, 827–829
viewing, 818–826

mining structures, creating, 804
nested tables, 830–836

DMX statements for, 843, 851
reasons for, 793–796
SQL Server 2008 enhancements, 797
using DMX, 836–856

for modeling, 837–848
for predictions, 848–855
templates, 856

Data Mining Client add-in (Excel 2007), 867,
873–877

Data Mining Extensions. See DMX
Data Mining Structure Designer, 802. See also

data mining
Data Mining Wizard, 802. See also data mining
data regions (reports), 886

chart data regions in reports, 915–917
formatting, 889
matrix data regions in reports, 906–910

subtotals and totals, 908
tablix data region, 881, 886, 910–915

extending with groups, 910–912
fixed columns and rows, adding, 913
report actions, 918

Data Source View designer, 623–624
Data Source View Wizard, 621–625
Data Source Views

adding named queries to, 645
adding tables to, 628

data sources
adding to Analysis Services projects, 621–625
for mobile applications, 521–523
for reports, 883

Data Sources window, 421
data storage, unstructured. See FILESTREAM

feature
data synchronization, 493

for mobile applications. See Web
Synchronization

data test function (XML PATH), 257
data types

data mining models, 813
with Sync Services, 559

data warehousing, 563–610
defined, 563
design

bottom-up approach (Kimball), 574–580
technical and nontechnical issues, 571
top-down approach (Inmon), 572–573

design of, 570–580
history of shortcomings before, 566–570
importance of, 564–565
practical advice on, 585–589

 data access

 959

data warehousing (continued)
with SQL Server 2008, 589–610

Change Data Capture (CDC), 592–600
data and backup compression, 605–610
Partitioned Table Parallelism, 600–603
SPARSE columns, 604–605
Star-Join Query Optimization, 603–604

data warehousing (continued
T-SQL MERGE statement, 589–592

what it isn’t, 580–585
database encryption key (DEK), 212
database integrity check with SMO, 181
database master keys (DMKs), 206
database roles, logins with, 194
database schemas. See schemas, XML
Database task (Reporting Services Configuration

Manager), 938
database users, 193

authenticating. See authentication and
authorization

guest account, 194
user-schema separation, 198–200

databases
BLOBs in, 307. See also BLOB data; FILESTREAM

feature
encrypted, restoring, 215
encrypting data within, 206
event auditing, 221–222. See also auditing
FILESTREAM-enabled, creating, 313–315. See

also FILESTREAM feature
data-driven report subscriptions, 942
DataGridView controls (examples), 422, 424

alternative approaches, 429
viewing schema DataSet objects, 765

datamarts, 572, 617
DataReader objects, coding with, 390
DataSet, LINQ to. See L2S (LINQ to SQL) models
DataSet designer, 379
DataSet objects, typed, 378–387, 424

adding validation logic to, 391
coding against, 389
connected use of, 387
connection string management, 381
data binding example, 420–424
schema DataSet objects, 765–769
TableAdapter Configuration Wizard, 382–385
TableAdapter objects, 380
using DataSet designer, 379

DataSet objects, untyped, 388–389
DataTable objects in typed DataSets, 379
datatime data type, replacing, 59
date and time data types, T-SQL, 59–67

accuracy, storage, and format, 62–64
new and changed since SQL Server 2000, 65
separation of dates and times, 59

time zone awareness, 61–62
date data type, 59

storage and precision, 60, 62
DATEADD function, 65
DATEDIFF function, 65
DATENAME function, 65, 67
DATEPART function, 65, 67
dateTime data type, 240
datetime2 data type, 59, 60

storage and precision, 60, 62
datetimeoffset data type, 59, 61–62, 65

storage and precision, 60, 62
DateTimePicker control (example), 423
db_accessadmin role, 194
db_backupoperator role, 194
db_datareader role, 194
db_datawriter role, 194
db_ddladmin role, 194
db_denydatareader role, 194
db_denydatawriter role, 194
db_owner role, 194
db_securityadmin role, 194
DBCC functions

DROPCLEANBUFFERS statement, 609
performing with SMO, 181

dbcreator server role, 193
DBDirect methods, 387
dbo schema, 198
DbServerSyncProvider class, 534
DbSyncServerProvider class, 536
DDL statements, 836. See also DMX (Data Mining

Extensions)
DDL triggers, 43, 136
Debug toolbar (Calculations tab), 675
debugging server-side managed code, 786
Decision Trees model, 806, 812

DMX statements for, 840
viewing with Tree Viewer, 823–825

ViewType property, 862
DECLARE statement, 235
decryption. See encryption
DECRYPTION BY PASSWORD clause, BACKUP

CERTIFICATE statement, 215
Default property (Properties.Settings), 389
DEK (database encryption key), 212
DELETE statements

bulk deletes with TVPs, 51
INSERT INTO...SELECT statement around, 90–94
merges, 79. See also MERGE statement
OUTPUT clause, 90
TOP parameter in, 26–27
WAITFOR statement with, 43

DELETED pseudo-table
merges and, 76, 90
querying with DML triggers, 137

DELETED pseudo-table

960

delivering reports, 919–937
accessing reports programmatically, 928–937

ReportViewer controls, 929
URL access, 928

deploying to report server, 919–927
using command line, 923–927
using Report Manager, 921–923
using Visual Studio, 920

scripting report generation with Integration
Services, 930–937

denial of service, 226
DENSE_RANK function, 34–36

using with other ranking functions, 36
DENY permission, setting using schemas, 199
dependency networks, 824, 826
deployment

automated, 117
of data mining objects, 816
of mobile applications (example), 530–532
to report server, 919–927

using command line, 923–927
using Report Manager, 921–923
using Visual Studio, 920

security, 190. See also security
SQL CLR assembly security, 151
user-defined aggregates, 142
user-defined types (UDTs), 149

depth-first indexing, 284, 296, 297
descriptive data mining models, 806
deserialization, with hierarchyid data type, 306
DetailsView control (example), 429
Diagram Organizer pane (Analysis Services), 623
dictionary compression, 607
dictionary-style TVPs, 54
Dimension Designer, 632. See also dimensions

attribute relationships, 656–659
dimension tables

defined, 575
in OLAP cubes, 615
Star-Join Query Optimization, 603–604

Dimension Wizard, 629
server time dimensions, 660

Dimensional Model (data warehousing), 574–580
context and star schema, 577

Star-Join Query Optimization, 603–604
surrogate keys, 579

dimensions, 614, 626, 641–659. See also cubes,
OLAP

adding named queries to Data Source Views,
645

attribute relationships, 656–659
attribute typing, 652
creating with Dimension Wizard, 629
defined (in data warehousing), 575
geospatial, 350

key performance indicators (KPIs), 677–689
queries in Management Studio, 683–688
status and trend expressions, 678
testing in Browser View, 681–683

keys and names, 641
member grouping, 651
multidimensional OLAP databases (MOLAP),

615, 640
parent/child dimensions, 647–651
role-playing, 712–715
server time dimensions, 660–685

fact dimensions, 661–664
role-playing dimensions, 664

user table time dimensions, 652
writeback dimensions, 699

direct file I/O streaming, FILESTREAM for, 312
direct Internet connections, 225
dirty reads, 451, 462

defined, 461
Disabled value (TransactionOption attribute), 473
<Discover> element, XMLA, 773
discrete data, defined, 796
discretization, 651
disk space for audit files, 220
diskadmin server role, 193
Dispose method (TransactionScope), 476
distance calculations, geospatial data, 355, 363
distributed transaction coordators (DTCs). See

transaction managers (TMs)
distributed transactions, 453, 468–484

in .NET Framework, 473
terminology of, 461, 469

distribution, defined, 796
distributors (Merge Replication), 495

configuring, 499–503
DMKs (database master keys), 206
DML statements, 836. See also DMX (Data Mining

Extensions)
DML triggers, 136–140
DMX (Data Mining Extensions), 836–856

for modeling, 837–848
for predictions, 848–855
query window, 837
templates, 856

documenting mining structures and models (Excel
2007), 877

DP (electronic data processing), 566
DRILLDOWNMEMBER function (MDX), 756
drillthrough feature, 842

with Excel PivotTables, 726
with schema DataSet objects, 766–769

DTCs (distributed transaction coordators). See
transaction managers (TMs)

Dundas charting controls, 354
Dundas Data Visualization, 881

 delivering reports

 961

duplicates, finding with self-joins vs. CTEs, 16, 282
durability, 451, 452
durable enlistment, 471
Dynamic Data Web Applications, 435
dynamic properties (SQL Server Data Services),

415

E
Edit Relationship dialog box (Analysis Services),

623
editing data mining models, 811
EDP (electronic data processing), 566
EF (Entity Framework) model. See Entity

Framework (EF) model, ADO.NET
electronic data processing (EDP), 566
element-based (canonical) XML, producing, 260

OPENXML function with, 261
ELEMENTS keyword, FOR XML clause, 260
E-Mail Settings task (Reporting Services

Configuration Manager), 938
encryption, 203–210. See also Transparent Data

Encryption (TDE)
ENCRYPTION BY PASSWORD clause, CREATE

CERTIFICATE statement, 215
Encryption Keys task (Reporting Services

Configuration Manager), 938
endpoints, 195
enlisting within a transaction, 470, 471–472
enterprise integration, lack of, 567
EnterpriseServices namespace, 473
entities (SQL Server Data Services), 415
Entity Data Model Wizard, 402
Entity Framework (EF) model, ADO.NET, 395–397,

402–405
adding validation logic to, 410
data binding, 425

with ASP.NET, 428
querying, 406–409
XML in, 405

EnumAvaiableSqlServers method
(SmoApplication), 169

enumerating SQL Server instances, 169
error handling, in T-SQL transactions, 40–42
ErrorsOccurred conflict (synchronization), 550
ETL step of data mining, 794
event log, recording audits to, 220
Event Viewer, 222
EVENTDATA function, 43
EventData property (SqlTriggerContext), 139
event-driven data warehouse design, 588
Excel 2007

data mining add-ins, 866–877

Data Mining Client add-in (Excel 2007), 867,
873–877
Table Analysis Tools add-in (Excel 2007),
867–873

OLAP with, 719–743
building PivotTable interface, 723–724
connecting to Analysis Services, 719–723
creating and configuring charts, 729
Excel Services, 738–743
exploring PivotTable data, 725–727
in-formula querying of cubes, 732–737
scorecards, 727–729
Visual Studio Tools for, 737

Excel Services, 719, 738–743
exception handling, in T-SQL transactions, 40–42
EXECUTE AS <login> context, 200
EXECUTE AS CALLER context, 200
EXECUTE AS OWNER context, 190
EXECUTE AS SELF context, 200
<Execute> element, XMLA, 774

calling Execute programmatically from .NET,
778

ExecuteAndSend method (SqlPipe), 121
ExecuteCellSet method (AdomdCommand), 760
ExecuteNonQuery method (SqlCommand), 113
ExecuteReader method (SqlCommand), 121
ExecuteXmlReader method (AdomdCommand),

780
Execution Account task (Reporting Services

Configuration Manager), 938
execution context, 200–203
execution modes, SMO, 186
exist method (xml data type), 266, 269
expectations. See key performance indicators

(KPIs)
EXPLICIT mode (FOR XML statement), 250
EXPLICIT option, 233
explicit transaction mode, 453–456
Express edition, SQL Server 2008, 496–497
Expression Blend, 439
expressions, report, 889
External Access permission set (SQL CLR

assemblies), 150, 785
EXTERNAL NAME clause, CREATE PROCEDURE,

127

F
fact dimensions, 661–664
fact tables

defined, 575
in OLAP cubes, 615
Star-Join Query Optimization, 603–604

fanouts, 282

fanouts

962

file I/O streaming, FILESTREAM for, 312
file streams, BLOBs in, 309. See also BLOB data;

FILESTREAM feature
file system, recording audits to, 219
FILEGROUP...CONTAINS FILESTREAM clause,

CREATE DATABASE statement, 313
FILEPATH option, TO FILE clause (CREATE SERVER

AUDIT), 219
FILESTREAM feature, 307–340

about, 307, 309
enabling, 310–318

creating databases, 313–315
creating tables with FILESTREAM columns,
315–318
for machine, 311–312
for server instance, 312

OpenSqlFilestream function, 316, 318–340
building WPF client, 338
creating streaming HTTP service, 333–338
data access, about, 321–331
file streaming in .NET, 319

spatial features with (example), 352–373
Fill method (SqlDataAdapter), 389
Fill method (TableAdapter), 423
FillComboWithDatabases method (SMOUtilities),

173
FillRowMethodName parameter, SqlFunction

attribute, 134
filtered data mining models, 815
filtered indexes, 605
filtered views of cubes, 705–707
fixed columns and rows, tablix regions, 913
fixed database roles, logins with, 194
fixed server roles, logins with, 193
flat XML output, 248
flat-earth (planar) model, 342. See also geometry

data type
FLATTENED keyword (DMX), 854, 860
FLWOR expressions, 264
for keyword (XQuery), 264
FOR PATH clause (USING XML INDEX), 246
FOR PROPERTY clause (USING XML INDEX), 246
FOR SERVER AUDIT clause

CREATE DATABASE AUDIT SPECIFICATION
statement, 222

CREATE SERVER AUDIT SPECIFICATION
statement, 220

FOR VALUE clause (USING XML INDEX), 246
FOR XML clause, SELECT statement, 233, 247–263,

248, 250
FOR XML AUTO, 248
FOR XML EXPLICIT, 250
FOR XML PATH, 255–258
FOR XML RAW, 248
element-based (canonical) XML, 260

ELEMENTS keyword, 260
~ FOR XML PATH, 253
inline XSD schemas, 259
ROOT option, 258
TYPE option, 253, 254
XMLSCHEMA option, 259

Force Protocol Encryption option, 206
ForceRollBack method (PreparingEnlistment), 481
forcing encryption, 205
formats for date-time values, 64
formatting measures, 665
formatting reports, 887–890

subtotals and totals, 909
FormView control, 429
fractional-second precision, 60, 62
FROM clause, CREATE ASSEMBLY, 126
FROM query

APPLY operator, 25
PIVOT and UNPIVOT operators, 21–24

G
general ledger (GL), 567
GenerateDBDirectMethods property, 387
geodetic (round-earth) model, 343. See also

geography data type
geography data type, 150, 351

integrating with Microsoft Virtual Earth,
364–373

loading data with Parse method, 346
Parse method, 346
spatial reference IDs, 355
STArea and STLength methods, 355
STDimension method, 350
STDistance method, 363
STIntersection method, 350
STIntersects method, 347
ToString method, 349

geometry data type, 150, 345–351
Parse method, 346
STDimension method, 350
STIntersection method, 350
STIntersects method, 347
ToString method, 349

geospatial data types, 341–374
geography data type, 351

integrating with Microsoft Virtual Earth,
364–373
spatial reference IDs, 355
STArea and STLength methods, 355
STDistance method, 363

geometry data type, 345–351
Parse method, 346
STDimension method, 350

 file I/O streaming, FILESTREAM for

 963

geospatial data types (continued)
STIntersection method, 350
STIntersects method, 347
ToString method, 349

spatial data types, 344
spatial models, 342–343
Well-Known Text (WKT) markup language, 344

GET_FILESTREAM_TRANSACTION_CONTEXT
function, 318, 327

GetAncestor method (hierarchcal tables), 293–
296, 300

GetDescendant method (hierarchcal tables), 286
GetLevel method (hierarchical tables), 284
GetMembers method (Level), 764
GetReparentedValue method (hierarhical tables),

301–303
GetRoot method (hierarchcal tables), 286, 301
GetSchemeDataSet method (AdomdConnection),

765–769
giving up control (data warehousing), 586
GLArgumentException exception, 351
globals, report, 888
goals. See key performance indicators (KPIs)
grains (in data warehousing), 576
GRANT permission, setting using schemas, 199
GridView controls, 422, 424

alternative approaches, 429
viewing schema DataSet objects, 765

GROUP BY clause, SELECT statement, 97, 99
ROLLUP and CUBE keywords, 104

GROUP BY function, ranking functions with, 30
GROUPING function, 106
GROUPING SETS operator, T-SQL, 97–109

NULL values, handling, 105–109
returning top level only, 103
rolling up all level combinations, 101
rolling up by level, 99
rollup and cube operations together, 103

groups, adding to tablix data regions, 910–912
fixed columns and rows in, 913

guest user account, 194

H
hacker attacks, types of, 225–227
header on report pages, 888
hierarchical data, 281

creating hierarchical tables, 283–285
hierarchyid data type, about, 282
indexing strategies, 296
Parse, Read, and Write methods, 305
populating hierarchies, 285–296

GetAncestor method, 293–296, 300
GetDescendant method, 286

GetLevel method, 284
GetRoot method, 286, 301
ToString method, 288–292

querying hierarchical tables, 299
indexing strategies and, 296

reordering nodes, 301
XML output as, 248

hierarchical queries with CTEs, 18–20
hierarchies

creating with Dimension Designer, 632
defined (in data warehousing), 575
dimension attribute relationships, 656–659
in OLAP cubes, 614. See also cubes, OLAP

Hierarchies collection (Dimension objects), 764
hierarchyid data type, 282. See also hierarchical

data
GetAncestor method, 293–296, 300
GetDescendant method, 286
GetLevel method, 284
GetReparentedValue method, 301–303
GetRoot method, 286, 301
IsDescendantOf method, 299–301
Parse method, 305
Read method, 306
ToString method, 288–292
Write method, 306

historical data, lack of, 568
HOLAP (Hybrid OLAP), 688
hosted data services. See SQL Server Data Services
HTTP service, FILESTREAM storage as, 333–338
Hybrid OLAP (HOLAP), 688

I
IDENTITY values, 284
IEnlistmentNotification interface, 478
IEnumerable interface, 133
IIS, configuring for Web Synchronization, 514–516
implicit transaction mode, 456
inconsistent state, 451
indexes, XML, 244–247
indexing hierarchical tables, 296

breadth-first index, 296, 298
depth-first indexing, 284, 296, 297
filtered indexes, 605

InDoubt method (IEnlistmentNotification), 478
information vs. data, 565
Init method (aggregate classes), 141
initiating transactions, 470

enlistment, 470, 471–472
injection attacks, 162, 226
inline XSD schemas, 259
Inmon approach to data warehousing, 572–573
INSERT INTO statements (DMX), 840

INSERT INTO statements (DMX)

964

INSERT INTO...SELECT statement, 90–94
SHAPE clause with, 847, 854

INSERT OVER DML syntax (T-SQL), 90–97
CHANGES keyword, 94–97
OUTPUT...INTO, extending, 90–94

INSERT statements
bulk inserts with TVPs, 49
editing BLOB data, 316
INSERT INTO...SELECT statement around, 90–94
merges, 79. See also MERGE statement
OUTPUT clause, 90
TOP parameter in, 26–27
WAITFOR statement with, 43
without explicit column lists, TVPs and, 53
XML Bulk Load with, 262

INSERTED pseudo-table
merges and, 76, 90
querying with DML triggers, 137

INSTEAD OF trigger, MERGE statement and, 79
Integrated Authentication. See authentication and

authorization
integration across enterprise, lack of, 567
Integration Services to script report generation,

930–937
integrity check with SMO, 181
intelligent observation, 227
IntelliSense technology

for connection string management, 381
with Excel, 733

interactive reports, 917–919
Internet connections, direct, 225
intersections, geospatial, 347, 350
IsDescendantOf method (hierarchical tables),

299–301
ISO8601 format for date-time values, 64
isolation (transactions), 451, 452
isolation levels, 462–468

in ADO.NET
Chaos isolation level (ADO.NET), 467
ReadCommitted isolation level (ADO.NET),
468
ReadUncommitted isolation level (ADO.NET),
467
RepeatableRead isolation level (ADO.NET),
468
Serializable isolation level (ADO.NET), 468
Snapshot isolation level (ADO.NET), 468
Unspecified isolation level (ADO.NET), 468

in SQL Server 2008
read committed isolation level, 464
read uncommitted isolation level, 462
repeatable read isolation level, 464
serializable isolation level, 465
snapshot isolation level, 45, 465

J
join method, choosing with MERGE, 78

K
key generators, 579
key performance indicators (KPIs), 583, 677–689

status and trend expressions, 678
testing in Browser View, 681–683

keys, dimension, 641
keys, encryption, 204

creating master key, 211
Service Master Key (SMK), 206

Kimball approach to data warehousing, 574–580
context and star schema, 577

Star-Join Query Optimization, 603–604
surrogate keys, 579

KPIs (key performance indicators), 583, 677–689
with MDX (multidimensional expression

language), 757
queries in Management Studio, 683–688
testing in Browser View, 681–683

L
L2S (LINQ to SQL) model, 395–401

adding validation logic to, 410
building, 397–401
data binding, 424
querying, 406–409

L2S (LINQ to SQL) models
data binding, 424

with ASP.NET, 428
Lat property (SqlGeography), 370
lattitudes, obtaining, 351. See also geography

data type
lax validation, XSD support for, 241
length calculations, geospatial data, 355, 363
length for passwords, setting minimum, 197
let keyword (XQuery), 264
Level Naming Template dialog box, 651
LEVEL property (MDX), 672
Levels collection (Hierarchy objects), 764
lift charts, 829
LINQ (Language Integrated Query), 377, 392–395

LINQ to SQL (L2S) models, 395–401
adding validation logic to, 410
building, 397–401
data binding, 424
querying, 406–409

syntax of, 393–395
list data type (XSD), 242

 INSERT INTO...SELECT statement

 965

local data caches with Sync Services, 557
Local Security Settings applet (example), 197
local transactions, 452, 453–461

in ADO.NET, 459–461
autocommit transaction mode, 453
batch-scoped transaction mode, 457–459
explicit transaction mode, 453–456
implicit transaction mode, 456
terminology of, 461

lock escalation, 602
LOCK_ESCALATION option, ALTER TABLE, 603
LOG ON clause, CREATE DATABASE statement,

314
logging. See also auditing
LOGINPROPERTY function, 198
logins, 192

encrypting, 204
as execution context, 200
password policies, 197
permissions. See authentication and

authorization
Long property (SqlGeography), 370
longitudes, obtaining, 351. See also geography

data type

M
management facet (PBM), defined, 184
management reporting, 567
Management Studio

as MDX client, 744, 745–758
Reporting Services administration, 940–949

caching reports, 943
data-driven report subscriptions, 942
securing reports, 944–949
standard report subscriptions, 940–942

with spatial data, 354
using XMLA from, 772–778
viewing audited events with, 223

manual aggregation design, 702–704
mash-up, Virtual Earth (example), 364–373
master key, creating, 211
matrix data regions in reports, 906–910

subtotals and totals, 908
MAX_ROLLOVER_FILES option, TO FILE clause

(CREATE SERVER AUDIT), 219
maximum audit file size, 219
MAXRECURSION option, 19
MAXSIZE option, TO FILE clause (CREATE SERVER

AUDIT), 219
MDX (multidimensional expression language),

615, 640, 897–900
actions (OLAP cubes), 689–693

designing, 690

testing, 692
building queries, 748
calculated members and named sets, 757
custom OLAP development, 744
expressions, storing for queries, 667. See also

calculations
important concepts of, 751–756
in key performance indicators. See KPIs
KPIs with, 757
Management Studio for, 684
OLAP development with ADO MD.NET. See

ADO MD.NET data provider
opening queries, 747
queries, writing

with MDX Query Designer, 901–904
in text mode, 904–906
via XMLA. See XMLA

server-side ADO MD.NET, 782–792
calling managed code, 786
debugging managed code, 786
result set–returning functions, 789–792
void functions, 788

SQL Server Management Studio (SSMS) as
client, 744, 745–758

MDX Query Designer, 901–904
text mode, 904–906

MDX templates, 748
mean, defined, 796
measures, 614, 625, 627. See also cubes, OLAP

calculated, 668–673
defined (in data warehousing), 575
display folders, 666
formatting, 665
key performance indicators (KPIs), 677–689

queries in Management Studio, 683–688
status and trend expressions, 678
testing in Browser View, 681–683

in OLAP cubes, 641–659
special aggregates, 665
writeback measure groups, 699

median, defined, 796
member grouping (Analysis Services), 651
MEMBERS function (MDX), 751
Merge Agents, 513
Merge method (aggregate classes), 141, 144
Merge Replication, 492, 494–532

configuring, 499–520
configuring distribution, 499–503
creating publications, 504–512
verifying subscription, 520
Web Synchronization. See Web
Synchronization

mobile application (example), creating, 520–532
binding data to Pocket PC forms, 523
deployment, 530–532

Merge Replication

966

Merge Replication (continued)
programmatic synchronization, 526–530
setting control properties, 524–526
setting up data source, 521–523

occasionally connected application (example),
496–498

replication term glossary, 494
vs. Sync Services for ADO.NET, 492

MERGE statement, 68–90
in data warehousing, 589–592
defining merge source and target, 70
DML behavior, 79–81
INSERT INTO...SELECT statement around, 90–94
join method, choosing, 78
OUTPUT clause, 68, 76, 90
for table replication, 73
upsert operations, 81–90
WHEN MATCHED clause, 71
WHEN NOT MATCHED BY SOURCE clause, 74
WHEN NOT MATCHED BY TARGET clause, 72

metadata, 204
Microsoft Clustering algorithm, 811
Microsoft IIS, configuring for Web

Synchronization, 514–516
Microsoft SQL Server 2008 Reporting Services.

See Reporting Services
Microsoft Streets & Trips 2008, 351
Microsoft Virtual Earth, 364–373
Microsoft Visual Studio, SMO with, 167–183

backup and restore applications, 175–181
interacting through available servers, 169
programmatic DBCC functions, 181
retrieving server settings, 171–174

Microsoft.AnalysisServices.AdomdClient assembly,
759

Microsoft.SqlServer.Server namespace, 121
Microsoft.SqlServer.Types namespace, 283
millisecond accuracy, 60, 62
minimum password length, 197
Mining Accuracy Chart view, 827
mining models, 805–816. See also data mining

adding, 811–813
changing column usage, 813
creating new, 805–809
data types and, 813
documenting (Data Mining Client add-in), 877
editing, 811
filtering, 815
validating and comparing, 827, 827–829
viewing, 818–826

mining structures, 804, 808. See also data mining
mobile application (example), creating, 520–532.

See also occasionally connected systems
binding data to Pocket PC forms, 523
deployment, 530–532

programmatic synchronization, 526–530
setting control properties, 524–526
setting up data source, 521–523

modify method (xml data type), 266, 276–277
MODIFY NAME clause, ALTER SERVER AUDIT

statement, 217
MOLAP (Multidimensional OLAP), 615, 640, 696
moving hierarchical subtrees, 303
multidimensional expression language. See MDX
multidimensional OLAP databases (MOLAP), 615,

640
multipartition query, 601
multiple-row sets, TVPs with, 48

N
Naïve Bayes algorithm, 813

ViewerMode property, 862
viewing with Naïve Bayes Viewer, 826

named queries, adding to Data Source Views, 645
named sets (Analysis Services), 673

with MDX (multidimensional expression
language), 757

names, dimension, 641
NativeSqlClient class, 321
NATURAL PREDICTION JOIN (DMX), 850
navigation properties (EF models), 403
nested tables in data mining, 805, 830–836

DMX statements for, 843, 851
.NET Framework

calling XMLA Execute programmatically, 778
code attributes, 117–118
data access. See data access infrastructure
data binding. See data binding
distributed transactions in, 473
file streaming in, 319

network connections. See client connections
NEWSEQUENTIALID function, 315
node test function (XML PATH), 257
nodes method (xml data type), 266, 275
NONEMPTY function (MDX), 756
NONEMPTYCROSSJOIN function (MDX), 756
nonrepeatable reads, 464

defined, 461
preventing, 464

nonvolatile, data warehouses as, 572
NotSupported value (TransactionOption

attribute), 473
N-tier applications with Sync Services, 554
NTILE functions, 34–36

using with other ranking functions, 36
NULL values

in rollup rows, handling, 105
SPARSE columns, 604–605

 Merge Replication (continued)

 967

numeric format for date-time values, 64
nvarchar(max) data type, 42

O
Object Explorer, SQL CLR types with, 152
occasionally connected systems, 491–560

components of, 493
configuring Merge Replication, 499–520

configuring distribution, 499–503
creating publications, 504–512
verifying subscription, 520
Web Synchronization. See Web
Synchronization

creating (example), 496–498
mobile application (example), creating, 520–532

binding data to Pocket PC forms, 523
deployment, 530–532
programmatic synchronization, 526–530
setting control properties, 524–526
setting up data source, 521–523

Sync Services for ADO.NET, 492, 533–560
capturing changes for synchronization,
538–543
creating applications that use, 543–557
data type considerations, 559
local data caches, 557
vs. Merge Replication, 492
object model for, 534–537
security considerations, 560
SqlSyncAdapterBuilder class, 558

ODBC format for date-time values, 64
.odc files, 721
Office Data Connection files, 721
OLAP (online analytical processing), 580, 611–792

actions, 689–693
aggregations, 700

algorithmic design, 700
design management, 704
manual design, 702–704
usage-based design, 701

building a cube, 617–635
adding data source view, 621–625
creating project, 619
with Cube Designer, 626–629
with Cube Wizard, 625
preparing star schema objects, 617
Properties Windows and Solution Explorer,
634
using Dimension Designer, 632
using Dimension Wizard, 629

calculations, 667–676

custom development with .NET, 743–792
ADO MD.NET. See ADO MD.NET data
provider
AMO (Analysis Management Objects),
769–770
MDX and Analysis Services APIs, 744
server-side ADO MD.NET, 782–792
XMLA for. See XMLA

data mining vs., 856
dimensions in. See dimensions
with Excel, 719–743

building PivotTable interface, 723–724
connecting to Analysis Services, 719–723
creating and configuring charts, 729
Excel Services, 738–743
exploring PivotTable data, 725–727
in-formula querying of cubes, 732–737
scorecards, 727–729
Visual Studio Tools for, 737

introduction to, 613–617
key performance indicators (KPIs), 677–689

queries in Management Studio, 683–688
status and trend expressions, 678
testing in Browser View, 681–683

measures in. See measures, in OLAP cubes
partitions, 693–700

editing and creating, 694
proactive caching, 697–699

perspectives, 705–707
proactive caching, 697–699
processing cubes, 635
reports, 900–906

using MDX Query Designer, 901
roles, 712–715
running queries, 636
server time dimensions, 660–685

fact dimensions, 661–664
role-playing dimensions, 664

translations, 707–711
On Change execution modes (SMO), 186
ON COLUMNS clause, 751
On Demand execution mode (SMO), 186
ON keyword, MERGE statement, 70
ON PRIMARY clause, CREATE DATABASE

statement, 314
ON ROWS clause, 751
On Schedule execution mode (SMO), 186
ON_FAILURE option, ALTER SERVER AUDIT

statement, 218
one-way data synchronization, 493
Open Geospatial Consortium (OGC), 342
OpenGIS Simple Features for SQL standard, 342
OPENROWSET function, 263

OPENROWSET function

968

OpenSqlFilestream function, 316, 318–340
building WPF client, 338
creating streaming HTTP service, 333–338
file streaming in .NET, 319
FILESTREAM data access, about, 321–331

OPENXML function, 233
SQL Server 2008 enhancements, 261–262

operational applications, 568–569
operational process change, anticipating, 586
optimistic concurrency checks, 84
ORDER BY clause, DMX statements, 849
order by keyword (XQuery), 264
ORDER BY statement, ranking functions, 28–30,

36
ORDER clause, CREATE FUNCTION, 135
ordinal cell references, 763
ORDINAL property (MDX), 672
ORM (Object Relational Mapping), 395–411

ADO.NET Entity Framework. See Entity
Framework (EF) model, ADO.NET

L2S (LINQ to SQL) model, 395–401
adding validation logic to, 410
building, 397–401
data binding, 424
querying, 406–409

OUTER APPLY operator, 25
OUTPUT clause

INSERT, UPDATE, and DELETE statements, 90
MERGE statement, 68, 76, 90

CHANGES keyword with, 94–97
TVPs and, 59

OUTPUT...INTO clause, extending with INSERT
OVER DML syntax, 90–94

OVER clause, ORDER BY statement, 29, 36
owner execution context, 190

P
page compression (PC), 606
page header, reports, 888
PAGES axis (MDX queries), 754
parallelism of partitioned tables, 600
parameters in reports, 892–897

adding to OLAP reports, 902
cascading parameters, 896

parent groups, tablix data regions, 911
parent/child dimensions, 647–651
parents for subtrees, changing, 303
Parse method

geometry and geography data types, 346
hierarchyid data type, 305

partial page updates, 431
PARTITION BY statement, ranking over groups

with, 37–40

Partitioned Table Parallelism feature, 600–603
lock escalation, 602
thread management, 601

partitions in OLAP cubes, 693–700
editing and creating, 694
proactive caching, 697–699

passwords. See also authentication and
authorization

policies for, 197
weak, for system administrators, 226

path expressions. See XPath expression
path index (XML), 246
PATH mode (FOR XML statement), 253, 255–258
PBM (policy-based management), 161, 183–188,

191
defined, 184

PC (page compression), 606
PERCENT option, TOP parameter, 26
PercentComplete event, 178
performance

audit file disk space, 220
BLOB data storage, 308, 309. See also

FILESTREAM feature
caching reports, 943
Compact vs. Express edition, 496–497
data compression methods, 608
indexing hierarchical tables, 296
transactions

reliability, 449
resource management, 470

performance management, 585
permissions. See also authentication and

authorization
execution context, 200–203
guest account, 195
setting using schemas, 199

perspectives (OLAP cubes), 705–707
phantom reads

defined, 461
preventing, 465
with read committed isolation level, 464
with repeatable read isolation level, 465

PIVOT operator (T-SQL), 21–24
dynamically pivoting columns, 23

PivotCharts, 729
PivotTables in Excel

building, 723–724
connecting to cubes, 719
creating charts from, 729
exploring data in, 725–727
in-formula querying of cubes, 732–737
scorecards, building, 727–729

planar (flat-earth) model, 342. See also geometry
data type

 OpenSqlFilestream function

 969

Pocket PC. See mobile application (example),
creating

policies for passwords, 197
policy-based [server] management. See PBM
populating hierarchies, 285–296

GetAncestor method, 293–296, 300
GetDescendant method, 286
GetLevel method, 284
GetRoot method, 286, 301
ToString method, 288–292

preallocating disk space for audit files, 220
precision of date-time values, 60, 62
predictive data mining models, 806

DMX statements for, 848–855
prediction queries with ADO MD.NET, 860

Prepare method (IEnlistmentNotification), 478,
481

prepare phase (transactions), 470
Prepared method (PreparingEnlistment), 481
PreparingEnlistment class, 481
PREVMEMBER property (MDX), 674
primary keys, hierarchical tables, 284
primary XML indexes, 244
proactive caching, OLAP cubes, 697–699
processadmin server role, 193
processing data mining objects, 816
processing OLAP cubes, 635
processing-instructiontest function (XML PATH),

257
progress meter, implementing with SMO, 178
promotable single-phase enlistment, 471–472
proof of concept for data warehousing, 586
Properties window (Analysis Services), 634, 665
<Properties> element, XMLA, 773
Properties.Settings objects, 389
property index (XML), 246
Protocols For MSSQLSERVER Properties dialog

box, 205
prototypes for data warehousing, 586
PSPE (promotable single-phase enlistment),

471–472
public database role, 194
public server role, 193
publications (Merge Replication), 495

creating, 504–512
publishers (Merge Replication), 495

synchronizing database for. See Web
Synchronization

publishing Excel content at SharePoint. See Excel
Services

Q
queries

added to TableAdapter objects, 385
in ADO.NET, code for, 387–392

connected DataReader objects, 390
typed DataSet objects, 389
untyped DataSet objects, 388–389
validation logic in typed DataSets, 391

of audit catalog views, 224
DMX queries. See DMX
of hierarchical tables, 299

indexing strategies and, 296
LINQ, syntax of, 393–395. See also LINQ
MDX queries. See MDX
named, adding to Data Source views, 645
on OLAP cubes, 636. See also OLAP (online

analytical processing)
from Excel formulas, 732–737

Partitioned Table Parallelism feature, 601
performance of. See performance
Report Designer, importing into, 885
Star-Join Query Optimization, 603–604
of TDE views, 213
of XML data with XQuery. See XQuery language

query method (xml data type), 266, 272–274
Query objects, 385
query parameters (reports), 892

adding to OLAP reports, 902
cascading parameters, 896

QUEUE_DELAY option, ALTER SERVER AUDIT
statement, 217

R
range, defined, 796
RANK function, 32

using with other ranking functions, 36
ranking functions, T-SQL, 28–40

DENSE_RANK and NTILE functions, 34–36
RANK function, 32
ROW_NUMBER function, 28–31
using all together, 36
windowing functions with, 37–40

RAW mode (FOR XML statement), 248
ELEMENTS keyword, 260

RC (row compression), 606
RDL (report definition language), 880

uploading files, 919–927
using command line, 923–927
using Report Manager, 921–923
using Visual Studio, 920

read committed isolation level (SQL Server 2008),
464

read committed isolation level (SQL Server 2008)

970

read committed snapshot isolation level (SQL
Server 2008), 466

Read method, hierarchyid data type, 306
read uncommitted isolation level (SQL Server

2008), 462
ReadCommitted isolation level (ADO.NET), 468
ReadFile function, with BLOB data, 316, 319
READONLY keyword, TVPs and, 59
ReadUncommitted isolation level (ADO.NET), 467
REBUILD WITH clause, ALTER TABLE statement,

608
recording audits. See auditing
RecoveryInformation method

(PreparingEnlistment), 481
recursive queries with CTEs, 18–20
reference data standardization, lack of, 568
relational databases

hierarchical tables in. See hierarchical data
SPARSE columns, 604–605

Relational OLAP (ROLAP), 688
reliability, 449. See also transactions
remote client file I/O streaming, FILESTREAM for,

312
reordering nodes in hierarchical tables, 301
reorganizing hierarchical data, 301
reparenting subtrees, 284, 303
repeatable read isolation level (SQL Server 2008),

464
RepeatableRead isolation level (ADO.NET), 468
replicating tables, MERGE statement for, 73
replication. See Merge Replication; Sync Services

for ADO.NET
report definition language (RDL), 880

uploading files, 919–927
using command line, 923–927
using Report Manager, 921–923
using Visual Studio, 920

Report Designer, 880–919
chart data regions, 915–917
creating reports

basic reports, 883–887
interactive reports, 917–919
OLAP reports, 900–906

formatting reports, 887–890
subtotals and totals, 909

report groups, 890–892
tablix data region, 881, 886, 910–915

extending with groups, 910–912
fixed columns and rows, adding, 913
report actions, 918

working with parameters, 892–897
adding parameters to OLAP reports, 902
cascading parameters, 896

writing custom code, 897–900
report groups, 890–892

Report Manager, 940–949
caching reports, 943
creating report subscriptions, 940
data-driven report subscriptions, 942
deploying reports, 921–923
securing reports, 944–949
security of reports, 944
standard report subscriptions, 940–942

Report Manager URL task (Reporting Services
Configuration Manager), 938

report parameters, 892, 894
cascading parameters, 896

Report Server Web Services, 938
Report Wizard, templates in, 897–900
Reporting Services, 879–951

administering, 937–951
Report Manager and Management Studio,
940–949
Reporting Services Configuration Manager,
937–939
SharePoint integration, 949–951

chart data regions, 915–917
creating reports

basic reports, 883–887
interactive reports, 917–919
with matrix data regions, 906–910
OLAP reports, 900–906

delivering reports, 919–937
accessing reports programmatically, 928–937
deploying to report server, 919–927

formatting reports, 887–890
subtotals and totals, 909

report groups, 890–892
tablix data region, 881, 886, 910–915

extending with groups, 910–912
fixed columns and rows, adding, 913
report actions, 918

working with parameters, 892–897
adding parameters to OLAP reports, 902
cascading parameters, 896

writing custom code, 897–900
Reporting Services Configuration Manager,

937–939
ReportViewer controls, 929
<RequestType> element, XMLA, 773
Required value (TransactionOption attribute), 473
RequiresNew value (TransactionOption attribute),

473
RESERVE_DISK_SPACE option, TO FILE clause

(CREATE SERVER AUDIT), 220
ResolveAction enumeration, 552
resource managers (RMs), 469

how to use, 481–484
performance of, 470
writing, 477–481

 read committed snapshot isolation level (SQL Server 2008)

 971

restore applications, creating with SMO, 180
RESTORE SERVER MASTER KEY statement, 207
restoring encrypted databases, 215
<Restrictions> element, XMLA, 773
return keyword (XQuery), 264
REVOKE permission, setting using schemas, 199
RMs. See resource managers (RMs)
ROLAP (Relational OLAP), 688
role-playing dimensions, 664
roles (OLAP cubes), 712–715
roles (server), logins with, 193
roles (user). See user roles
ROLLBACK command (T-SQL), 486
Rollback method (IEnlistmentNotification), 478
rolling back transactions

defined, 461
issued by resource managers, 482

ROLLUP keyword, GROUP BY clause, 104. See also
WITH ROLLUP operator

rollup rows, 99–103
NULL values in, 105

ROOT option, FOR XML clause, 258
round-earth (geodetic) model, 343. See also

geography data type
row compression (RC), 606
row groups in reports, 890–892
row visibility in reports, 917
ROW_NUMBER function, 28–31

ORDER BY options, 29–30
with PARTITION BY statement, 37
using with other ranking functions, 36

ROWGUIDCOL attribute, CREATE TABLE
statement, 315

ROWS axis (MDX queries), 754
rs utility, 923–927

S
Safe permission set (SQL CLR assemblies), 150, 785
SafeFileHandle class, 324
Scale-Out Deployment task (Reporting Services

Configuration Manager), 938
schema DataSet objects, 765–769

executing actions with, 766–769
Schema Generation Wizard, 631
schemas, separated from users, 198–200
schemas, XML, 237–244

inline XSD schemas, 259
lax validation, 241
SQL Server collections of, 237
union and list types, 242
xsl:dateTime enhancements, 240

scorecards, 583–585, 677. See also key
performance indicators (KPIs)

BSC (balanced scorecard), 585
OLAP with Excel, 727–729

Script Tasks (Integration Services), 930–937
Script view, Analysis Services, 674–676
ScriptManager controls, 367, 431
secondary XML indexes, 244, 246
SECTIONS axis (MDX queries), 754
Secure by Default approach, 190
Secure by Deployment approach, 190
Secure by Design approach, 189
secure communications, 190
security, 189–228

auditing, 216–224
authentication and authorization, 195–203
encryption support, 203–210

Transparent Data Encryption (TDE), 211–216
how hackers attack, 225–227
overview of, 191–195
reports, 944–949
SMO and, 162
SQL CLR assemblies, 150
Sync Services for ADO.NET, 560
themes of security framework, 189–191

securityadmin server role, 193
SELECT clause (T-SQL), XQuery and, 273
SELECT INTO statements (DMX), 849
SELECT statement

FOR XML clause, 233, 247–263, 248, 250
FOR XML AUTO, 248
FOR XML EXPLICIT, 250
FOR XML PATH, 253, 255–258
FOR XML RAW, 248
element-based (canonical) XML, 260
ELEMENTS keyword, 260
inline XSD schemas, 259
ROOT option, 258
TYPE option, 253, 254
XMLSCHEMA option, 259

GROUP BY function, 97, 99
GROUPING SETS operator, 97–109
merges, 79. See also MERGE statement
TOP parameter, 26–27
viewing BLOB data (example), 331
WAITFOR statement with, 43
without explicit column lists, TVPs and, 54

self-joining, 282
CTEs and, 16, 282

self-signed certificates, 204
Send method (SqlPipe), 122
Serializable isolation level (ADO.NET), 468
serializable isolation level (SQL Server 2008), 465
serialization, with hierarchyid data type, 306
server event auditing, 217
server instance, FILESTREAM access level for, 312

server instance, FILESTREAM access level for

972

server logins, 192
encrypting, 204
as execution context, 200
password policies, 197
permissions. See authentication and

authorization
server management, 161–188

policy-based management, 183–188
SMO in Microsoft Visual Studio, 167–183

creating backup and restore applications,
175–181
interacting through available servers, 169
programmatic DBCC functions, 181
retrieving server settings, 171–174

Server Management Objects. See SMO
server roles, logins with, 193
server time dimensions (OLAP), 660–685

fact dimensions, 661–664
role-playing dimensions, 664

serveradmin server role, 193
ServerConnection object, 168
server-side ADO MD.NET, 782–792

calling managed code from MDX, 786
debugging managed code, 786
result set–returning functions, 789–792
void functions, 788

server-side data access (SQL CLR), 120–125
ServerSyncProviderProxy class, 534, 537
Service Account task (Reporting Services

Configuration Manager), 938
Service Master Key (SMK), 206
service-based synchronization, 556
services without components, 474
session variables (Sync Services), 535
SessionId property (SyncSession), 535
SET ENCRYPTION ON clause, ALTER DATABASE

statement, 213
SET TRANSACTION ISOLATION LEVEL statement,

462
setupadmin server role, 193
SHAPE clause, with DMX statements, 846, 854
SharePoint

publishing Excel content to. See Excel Services
Reporting Services integration with, 949–951

shred and compose (XML solution), 233
Silverlight 2.0, data binding with, 438, 445–446
single-row operations, TVPs with, 51–54
size, audit file, 219
SKIP keyword, 847
smalldatetime data type, replacing, 59
SMK. See Service Master Key
SMO (Server Management Objects), 161–167

latest features in, 166
in Microsoft Visual Studio, 167–183

creating backup and restore applications,
175–181
interacting through available servers, 169
programmatic DBCC functions, 181
retrieving server settings, 171–174

namespace map (partial), 162
SQL-DMO vs., 162–166

Snapshot isolation level (ADO.NET), 468
snapshot isolation level (SQL Server 2008), 45,

465–467
SQL Server Change Tracking, 539

snapshot-based data warehouse design, 588
snapshots (Merge Replication), 495

configuring for mobile application delivery. See
Web Synchronization

snowflake schemas, 616
Solution Explorer (Analysis Services), 634
sort order, report groups, 891
sorting hierarchical data, 301
source data, preparing for mining, 798
source of MERGE statement, 70. See also MERGE

statement
WHEN NOT MATCHED BY SOURCE clause,

74–76
sp_addlogin procedure, 197
sp_configure procedure, 191
sp_estimate_data_compression_savings

procedure, 607
sp_xml_preparedocument procedure, 261
SPARSE columns, 604–605
spatial data types, 344. See also geospatial data

types
spatial models, 342–343
spatial reference IDs (SRIDs), 355
Specify Relationship dialog box (Analysis

Services), 623
splits, 813
SQL, LINQ and. See LINQ (Language Integrated

Query)
SQL CLR feature, 111–160, 283

aggregates, 140–145
assemblies, deploying, 119, 125–127
best practices, 159
deployment, 125–131
enabling CLR integration, 112
functions, 131–135
managing types in database, 152–158
security, 150
server-side ADO MD.NET, 782–792

calling managed code from MDX, 786
debugging managed code, 786
result set–returning functions, 789–792
void functions, 788

stored procedures
creating (example), 118

 server logins

 973

SQL CLR feature (continued)
deploying, 127–128
server-side data access and, 120–125
testing, 129–131
usage guidelines, 124

transactions, 485–488
example of, 489–490

triggers, 136–140
types, 145–150
Visual Studio/SQL Server integration, 113–118

SQL injection attacks, 162, 226
SQL Server 2000, XML in, 233
SQL Server 2008

about, 3–5
Express edition, 496–497
integration with Visual Studio, 113–118
XML in. See XML

SQL Server 2008 Reporting Services. See
Reporting Services

SQL Server Audit feature. See auditing
SQL Server Browser service, 196, 226
SQL Server Change Tracking

changing tracking functions, 542
configuring database for, 538–543

SQL Server Compact 3.5, 496–497
SQL Server Configuration Manager tool, 205

access level for FILESTREAM feature, 311, 313
SQL Server Data Services, 377, 415
SQL Server instances. See also entries at server

connections to, 168
enumeating available, 169
settings of, retrieving, 171

SQL Server Integration Services, 930–937
SQL Server logins, 192

encrypting, 204
as execution context, 200
password policies, 197
permissions. See authentication and

authorization
SQL Server Management Studio (SSMS)

as MDX client, 744, 745–758
Reporting Services administration, 940–949

caching reports, 943
data-driven report subscriptions, 942
securing reports, 944–949
standard report subscriptions, 940–942

with spatial data, 354
using XMLA from, 772–778
viewing audited events with, 223

SQL Server projects, 114–116
SQL Slammer virus, 226
sql:column function, 275
sql:variable function, 276
SqlCeClientSyncProvider class, 534, 536, 552
SqlCommand objects

avoiding creating with SqlDataAdapter, 388,
389

preventing SQL injection attacks, 227
SqlConnection objects, 487

avoiding creating with SqlDataAdapter, 388,
389

SqlContext class, 121
SqlDataRecord class, 123–124
SqlDbType.Structured enumeration, 56
SQL-DMO (Distributed Management Objects), 161

SMO (Server Management Objects) vs.,
162–166

SqlFunction attribute, 131
SqlGeography class, 370
SqlMetaData class, 123–124
SqlPipe class, 121
SqlProcedure attribute (StoredProcedures), 127
SqlSyncAdapterBuilder class, 558
SqlTrigger attribute, 137
SqlUserDefinedAggregate attribute, 141
SqlUserDefinedType attribute, 147
SRIDs (spatial reference IDs), 355
SSL, for mobile application synchronization, 513
SSMS. See SQL Server Management Studio
standard deviation, defined, 796
standardized reference data, lack of, 568
star schemas, 576, 577

preparing to build OLAP cubes, 617
Star-Join Query Optimization, 603–604

STArea method, geography data type, 355
Star-Join Query Optimization, 603–604
STATE option

ALTER SERVER AUDIT statement, 218
CREATE SERVER AUDIT SPECIFICATION

statement, 220
statement-level recompile errors, 41
static properties (SQL Server Data Services), 415
status expressions, KPI, 678
StatusGraphic property (Kpis collection), 764
STDimension method, geometry and geography

data types, 350
STDistance method, geography data type, 363
STIntersection method, geometry and geography

data types, 350
STIntersects method, geometry and geography

data types, 347
STLength method, geography data type, 355
storage of date-time values, 60, 62
stored procedures

for data mining, 863
in EF models, 404–405
in L2S models, 399–401
managed (server-side ADO MD.NET)

calling code from MDX, 782
debugging, 786

 stored procedures

974

stored procedures (continued)
result set–returning functions, 789
void functions, 788
writing code for, 782

parameters, TableAdapter objects and, 385
SQL CLR stored procedures

creating (example), 118
deploying, 127–128
managing with Object Explorer, 152
server-side data access, 120–125
testing, 129–131
usage guidelines, 124

TVPs with. See TVPs (table-valued parameters)
storing BLOBs. See BLOB data; FILESTREAM

feature
streamed file access, FILESTREAM for, 312. See

also FILESTREAM feature
as HTTP service, 333–338

streams, BLOBs in, 309. See also BLOB data;
FILESTREAM feature

Streets & Trips 2008, 351
string formats for date-time values, 64
strings, converting to XML, 278–279
strongly typed DataSet objects. See typed

DataSet objects
structured and unstructured data storage. See

BLOB data; FILESTREAM feature
Structured enumeration (SqlDbType), 56
structures, mining, 804, 808. See also data mining

documenting (Data Mining Client add-in), 877
validating models in, 812

subject-orientation of data warehouses, 572
subscribers (Merge Replication), 495

synchronizing database for, 517–519. See also
Web Synchronization

subscriptions, Merge Replication, 495, 520
subscriptions, reports

data-driven subscriptions, 942
standard subscriptions, 940–942

subtotals in matrix reports, 908
subtrees, transplanting. See also hierarchical data
subtrees, transplanting (reparenting), 303
Supported value (TransactionOption attribute),

473
surface area for attack, 191
surrogate keys, 579, 587
switching execution context, 203
SWITCHOFFSET function, 66, 67
symmetric key encryption, 204

Service Master Key (SMK), 206
Sync Services for ADO.NET, 492, 533–560

capturing changes for synchronization,
538–543
changing tracking functions, 542
configuring database for, 538–543

creating applications that use, 543–557
data conflicts, handling, 543–552
N-tier applications, 554–556
service-based synchronization, 556

data type considerations, 559
local data caches, 557
vs. Merge Replication, 492
object model for, 534–537
security considerations, 560
SqlSyncAdapterBuilder class, 558

SyncAdapter class, 534, 536
SyncAgent class, 534
SyncGroup class, 534, 537
synchronization, 493

for mobile applications. See Web
Synchronization

SyncInitialized constant, 536
SyncLastReceivedAnchor constant, 536
SyncNewReceivedAnchor constant, 536
SyncParameters property (SyncSession), 535
SyncRowCount constant, 536
SyncSession class, 534, 535
SyncSessionId constant, 536
SyncStatistics class, 534
SyncTable class, 534, 537
syntax errors, TRY/CATCH blocks and, 41
sysadmin server role, 193
sys.certificates view, 212
sys.database_audit_specification_details view, 225
sys.database_audit_specifications view, 225
sys.databases view, 213
SYSDATETIME function, 65
SYSDATETIMEOFFSET function, 65
sys.dm_audit_actions view, 225
sys.dm_audit_class_type_map view, 225
sys.dm_database_encryption_keys view, 214
sys.dm_server_audit_status view, 225
sys.fn_get_audit_file function, 224
sys.server_audit_specification_details view, 225
sys.server_audit_specifications view, 225
sys.server_file_audits view, 225
sys.sql_logins view, 198
system administrator passwords, 226
System.Data.SqlClient namespace, 122, 388
System.EnterpriseServices namespace, 473
System.Transactions namespace, 474, 476
SYSUTCDATETIME function, 65

T
Table Analysis Tools add-in (Excel 2007), 867–873
table columns

defined as XML, 235–237
converting columns to XML, 278–279

 stored procedures (continued)

 975

table columns (continued)
default and constraints, 236
primary and secondary XML indexes,
244–247
querying. See XQuery language

pivoting dynamically, 23
statements without explicit column lists, TVPs

and, 53, 54
table join types, MERGE with, 78
table locking, with Partitioned Table Parallelism,

602
table replication, MERGE statement for (T-SQL), 73
TableAdapter Configuration Wizard, 382–385
TableAdapter objects, 380

adding queries to, 385
data binding examples, 423, 424
GenerateDBDirectMethods property, 387

TableAdapterManager class (example), 424
TableCreationOption enumeration, 537
tables

adding to Data Source View pane, 628
for data mining models, 805
with FILESTREAM columns, 315–318
hierarchical. See hierarchical data

table-valued functions (TVFs), 132
table-valued parameters (TVPs), 45–59

bulk inserts and updates, 49
dictionary-style TVPs, 54
limitations of, 59
multiple-row sets, 48
passing TVPs using ADO.NET, 56
single rows of data, 51–54

tablix data region, 881, 886, 910–915
extending with groups, 910–912
fixed columns and rows, adding, 913
report actions, 918

target of MERGE statement, 70. See also MERGE
statement

WHEN NOT MATCHED BY TARGET, 72
target type (PBM), defined, 184
TCs (transaction coordinators). See transaction

managers (TMs)
TDE. See Transparent Data Encryption
templates

for DMX queries, 856
for reports, 897–900

Terminate method (aggregate classes), 141
testing

actions, 692
data mining, test sets for, 808
data web services (ADO.NET), 414
KPIs (key performance indicators), 681–683
SQL CLR stored procedures, 120, 129–131

text test function (XML PATH), 257

thread management (data warehousing), 601
time data type, 59
time data types, T-SQL. See date and time data

types, T-SQL
time dimensions (OLAP). See dimensions; server

time dimensions
Time Series algorithm (Analysis Services), 797
time zone awareness

T-SQL data types, 61–62, 65
xsd:dateTime data type, 240

time-variant, data warehouses as, 572
TMs. See transaction managers (TMs)
TO APPLICATION_LOG option, CREATE SERVER

AUDIT statement, 220
TO FILE clause, CREATE SERVER AUDIT, 216, 219
TO SECURITY_LOG option, CREATE SERVER AUDIT

statement, 220
TODATETIMEOFFSET function, 66
TOP clause

DMX statements, 849
MERGE statement and, 79

TOP parameter, T-SQL, 26–27
top-down approach to data warehousing,

572–573
ToString method

geometry and geography data types, 349
hierarchyid data type, 288–292

totals in matrix reports, 908
TRACK_COLUMNS_UPDATED option, 540
tracking changes for Sync Services, 538–543

changing tracking functions, 542
configuring database for, 538–543

training sets for data mining, 808
transaction abort error, 41
transaction coordinators. See transaction

managers (TMs)
transaction managers (TMs), 469
TransactionOption attribute, 473
transactions, 449–490. See also T-SQL

ACID properties, 449, 450–452
defined, 450
distributed transactions, 453, 468–484

in .NET Framework, 473
terminology of, 461, 469

isolation levels. See isolation levels
local transactions, 452, 453–461

autocommit transaction mode, 453
batch-scoped transaction mode, 457–459
explicit transaction mode, 453–456
implicit transaction mode, 456

reliability of, 449
in SQL CLR (CLR integration), 485–488

example of, 489–490
terminology of, 461, 469–470

transactions

976

Transactions namespace, 477
TransactionScope class, 476, 487

example of, 489–490
translations (OLAP cubes), 707–711
Transparent Data Encryption (TDE), 211–216

backing up certificates, 214
enabling, 213
querying views, 213
restoring encrypted databases, 215

transplanting subtrees (hierarchical data), 303
tree structures. See hierarchical data
Tree Viewer, 823–825

ViewType property, 862
trend expressions, KPI, 678
TrendGraphic property (Kpis collection), 764
TriggerAction property (TriggerContext), 139
triggers

DDL triggers, 43, 136
SQL CLR triggers, 136–140

TRUSTWORTH property, 151
TRY and CATCH blocks, T-SQL, 40–42
T-SQL, 13–111, 111. See also transactions

aggregations, 140
APPLY operator, 25
CAST function

converting columns to XML, 278–279
extracting from datetime2 data, 64

common table expressions (CTEs), 14–20
creating recursive queries with, 18–20

CONVERT function
converting columns to XML, 278–279
extracting from datetime2 data, 64

date and time data types, 59–67
accuracy, storage, and format, 62–64
new and changed since SQL Server 2000, 65
separation of dates and times, 59
time zone awareness, 61–62

DDL triggers, 43
enhancements in SQL Server 2008, 4
FILESTREAM access, enabling, 311
GROUPING SETS operator, 97–109

NULL values, handling, 105–109
returning top level only, 103
rolling up all level combinations, 101
rolling up by level, 99
rollup and cube operations together, 103

INSERT OVER DML syntax, 90–97
CHANGES keyword, 94–97
OUTPUT...INTO, extending, 90–94

MERGE statement, 68–90
defining merge source and target, 70
DML behavior, 79–81
join method, choosing, 78
OUTPUT clause, 76

for table replication, 73
upsert operations, 81–90
WHEN MATCHED clause, 71
WHEN NOT MATCHED BY SOURCE clause, 74
WHEN NOT MATCHED BY TARGET clause, 72

PIVOT and UNPIVOT operators, 21–24
dynamically pivoting columns, 23

ranking functions, 28–40
DENSE_RANK and NTILE functions, 34–36
RANK function, 32
ROW_NUMBER function, 28–31
using all together, 36
windowing functions with, 37–40

shorthand syntax, 109
SNAPSHOT isolation level, 45, 465–467

SQL Server Change Tracking, 539
table-valued parameters (TVPs), 45–59

bulk inserts and updates, 49
dictionary-style TVPs, 54
limitations of, 59
multiple-row sets, 48
passing TVPs using ADO.NET, 56
single rows of data, 51–54

TOP parameter, 26–27
triggers, 43, 136
TRY and CATCH blocks, 40–42
varchar(max) data type, 42
WAITFOR statement, 43
xml data type as variable, 234

tuples, 752, 753
TVFs (table-valued functions), 132
TVPs (table-valued parameters), 45–59

bulk inserts and updates, 49
dictionary-style TVPs, 54
limitations of, 59
multiple-row sets, 48
passing TVPs using ADO.NET, 56
single rows of data, 51–54

two-phase commit transactions, 470. See also
transactions

two-way data synchronization, 494
TYPE option, FOR XML clause, 253, 254
typed DataSet objects, 378–387

adding validation logic to, 391
connected use of, 387
connection string management, 381
data binding example, 420–424
TableAdapter Configuration Wizard, 382–385
TableAdapter objects, 380
using DataSet designer, 379

types, user-defined, 145–150
examining and managing in database, 152–158
managing with Object Explorer, 152

 Transactions namespace

 977

U
UDM (unified domensional model) paradigm, 705
UDTs (user-defined types), 145–150

examining and managing in database, 152–158
managing with Object Explorer, 152

UNION ALL operator, recursive queries with CTEs,
18

union data type (XSD), 242
UNION statement, FOR XML EXPLICIT with, 250
Unknown conflict (synchronization), 550
UNLIMITED option (audit file size), 219
UNPIVOT operator (T-SQL), 21–24

dynamically pivoting columns, 23
UNSAFE ASSEMBLY permission, 151
Unsafe permission set (SQL CLR assemblies), 151,

785
Unspecified isolation level (ADO.NET), 468
unstructured storage, FILESTREAM for. See

FILESTREAM feature
UPDATE statements

bulk updates with TVPs, 51
INSERT INTO...SELECT statement around, 90–94
merges, 79. See also MERGE statement
OUTPUT clause, 90
TOP parameter in, 26–27
WAITFOR statement with, 43

UpdatePanel controls, 431
upsert operations, 79

MERGE statement (T-SQL) for, 81–90
URL access for viewing reports, 928
usage-based aggregation design, 701
user interface

for data web services (ADO.NET), 414
Windows Forms data binding, 421

user roles
logins with, 194
for report security, 944–949

user table time dimensions, 652
user-defined aggregates, 140–145

managing with Object Explorer, 152
user-defined types (UDTs), 145–150

examining and managing in database, 152–158
managing with Object Explorer, 152

users, 193
authenticating. See authentication and

authorization
guest account, 194

user-schema separation, 198–200
USING keyword, MERGE statement, 70
USING XML INDEX statement, 247

V
validating data mining models, 827–829
validating mining models, 812
validation logic, adding

to ORM models, 410
to typed DataSets, 391

validation of XML. See schemas, XML
value index (XML), 246
value method (xml data type), 266, 270
varbinary(max) data type, 42
varchar(max) data type, T-SQL, 42
variable function (sql), 276
vector objects, 344
verifying backups (example application), 178
ViewerMode property (Naïve Bayes and Cluster

Viewer controls), 862
viewing data mining models, 818–826

Cluster Viewer, 818–823
ViewerMode property, 862

Naïve Bayes Viewer, 826
Tree Viewer, 823–825

viewing reports. See delivering reports
ViewType property (Tree Viewer), 862
Virtual Earth, 364–373
Visual Studio Analysis Services. See Analysis

Services
Visual Studio, deploying reports with, 920
Visual Studio Tools for Office, 737
Visual Studio/SQL Server integration, 113–118
visualization of KPIs, 678
void functions in server-side managed code, 788
volatile enlistment, 471

W
W3C XML format for date-time values, 64
WAITFOR statement, T-SQL, 43
Web controls for data mining, 862
Web Service URL task (Reporting Services

Configuration Manager), 938
Web services for data. See ADO.NET Data Services
Web services operations for deploying reports,

924
Web Services, Report Server, 938
Web Synchronization, 513–519

configuring IIS for, 514–516
configuring subscriber database for, 517–519
programmatic, 526–530
Sync Services for ADO.NET and, 538–543

changing tracking functions, 542
configuring database for, 538–543

Web Synchronization

978

Well-Known Text (WKT) markup language, 344
WHEN MATCHED clause, MERGE statement, 71,

78
WHEN NOT MATCHED clause, MERGE statement,

78
WHEN NOT MATCHED BY SOURCE clause, MERGE

statement, 74–76, 78
WHEN NOT MATCHED BY TARGET clause, MERGE

statement, 72, 78
WHERE clause (MDX queries), 752
WHERE clause (T-SQL), XQuery and, 273
where keyword (XQuery), 264
windowing functions with ranking functions

(T-SQL), 37–40
Windows Authentication. See authentication and

authorization
Windows event log, recording audits to, 220
Windows Forms data binding, 420–427
Windows Forms Model content browser controls,

858
Windows logins, 192
Windows Presentation Foundation (WPF)

building client, 338
data binding for, 438–445

lack of design support, 439–514
XAML for, 441–445

WITH ALGORITHM clause, CREATE DATABASE
ENCRYPTION statement, 212

WITH CHANGE_TRACKING_CONTEXT clause, 542,
548

WITH CUBE operator, 97, 99
WITH DRILLTHOUGH clause, 842
WITH EXECUTE AS CALLER clause, CREATE

FUNCTION, 132
WITH PERMISSION_SET clause, CREATE

ASSEMBLY, 126, 127, 152
WITH ROLLUP operator, 97, 99
WKT (Well-Known Text) markup language, 344
WPF (Windows Presentation Foundation)

building client, 338
data binding for, 438–445

lack of design support, 439–514
XAML for, 441–445

Write method, hierarchyid data type, 306
writeback measure groups and dimensions, 699
WriteFile function, with BLOB data, 316, 319
WSDL for report server endpoint, 939

X
XAML (Extensible Application Markup Language),

438
for WPF data binding, 441–445

XML (Extensible Markup Language), 231
FOR XML clause, SELECT statement, 233,

247–259
AUTO keyword, 248
ELEMENTS keyword, 260
EXPLICIT keyword, 250
PATH keyword, 253, 255–258
RAW keyword, 248
ROOT option, 258
TYPE option, 253, 254
XMLSCHEMA option, 259

element-based (canonical), producing, 260
indexes, 244–247
OPENXML function, 249, 261–262
querying data using XQuery. See XQuery

language
schemas, 237–244

inline XSD schemas, 259
lax validation, 241
SQL Server collections of, 237
union and list types, 242
xsl:dateTime enhancements, 240

in SQL Server 2000, 233
XML BULK LOAD, 262
xml type. See xml data type
XQuery. See XQuery language

xml data type, 234–247
inability to compare instances of, 234, 235
querying. See XQuery language
for table columns, 235–237

converting columns to XML, 278–279
default and constraints, 236

as variable, 234
XML DML language, 276
XMLA (XML for Analysis), 688, 755, 771–781, 863

as API, 771
calling Execute from .NET, 778
data mining and, 865
manipulating ADO MD.NET response content,

780
using from SQL Server Management Studio,

772–778
xml.exist method, 266, 269

 Well-Known Text (WKT) markup language

 979

xml.modify method, 266, 276–277
xml.nodes method, 266, 275
xml.query method, 266, 272–274
XMLSCHEMA option, FOR XML clause, 259
xml.value method, 266, 270
XPath expression, 263

FOR XML PATH statement, 253, 255–258
XQuery language, 263–279

converting columns to XML, 278–279
SQL Server extensions, 275–276
XML DML language, 276

xml.exist method, 266, 269
xml.modify method, 266, 276–277
xml.nodes method, 266, 275
xml.query method, 266, 272–274
xml.value method, 266, 270

XSD (XML Schema Definition), 237. See also
schemas, XML

inline schemas, 259
xsd:list data type, 242
xsd:union data type, 242

xsd:union data type

	Cover
	Copyright page

	Dedication
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Organized
	Code Samples and the Book’s Companion Web Site
	Using the Sample Northwind Database
	Using the Sample AdventureWorks2008 Databases

	System Requirements
	Support for This Book
	Questions and Comments

	Chapter 14: Data Warehousing
	Data Warehousing Defined
	The Importance of Data Warehousing
	What Preceded Data Warehousing
	Lack of Integration Across the Enterprise
	Little or No Standardized Reference Data
	Lack of History
	Data Not Optimized for Analysis
	As a Result…

	Data Warehouse Design
	The Top-Down Approach of Inmon
	The Bottom-Up Approach of Kimball

	What Data Warehousing Is Not
	OLAP
	Data Mining
	Business Intelligence
	Dashboards and Scorecards
	Performance Management

	Practical Advice About Data Warehousing
	Anticipating and Rewarding Operational Process Change
	Rewarding Giving Up Control
	A Prototype Might Not Work to Sell the Vision
	Surrogate Key Issues
	Currency Conversion Issues
	Events vs. Snapshots

	SQL Server 2008 and Data Warehousing
	T-SQL MERGE Statement
	Change Data Capture
	Partitioned Table Parallelism
	Star-Join Query Optimization
	SPARSE Columns
	Data Compression and Backup Compression
	Learning More

	Summary

	Index
	A
	B, C
	D
	E, F
	G
	H, I
	J, K, L
	M
	N
	O
	P
	Q, R
	S
	T
	U, V, W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

