

Programming Microsoft®
SQL Server® 2012

Leonard Lobel
Andrew Brust

Copyright © 2012 by Sleek Technologies Inc., and Blue Badge Insights, Inc.
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-5822-6

1 2 3 4 5 6 7 8 9 M 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Russell Jones

Developmental Editor: Russell Jones

Production Editor: Melanie Yarbrough

Editorial Production: Christian Holdener, S4Carlisle Publishing Services

Technical Reviewer: John Paul Meuller

Copyeditor: Andrew Jones

Indexer: WordCo Indexing Services

Cover Design: Twist Creative • Seattle

Cover Composition: ContentWorks, Inc.

Illustrator: Rebecca Demarest

To my partner, Mark, and our children, Adam, Jacqueline,
Joshua, and Sonny. With all my love, I thank you guys, for all of
yours.

— Leonard LobeL

For my three boys: Miles, Sean, and Aidan. And for my sister,
Valerie Hope.

— andrew brust

Contents at a Glance

Introduction xxi

PART I CoRE SQL SERvER DEvELoPmEnT

ChAPter 1 Introducing SQL Server Data tools 3

ChAPter 2 t-SQL enhancements 45

ChAPter 3 exploring SQL CLr 125

ChAPter 4 Working with transactions 169

ChAPter 5 SQL Server Security 207

PART II GoInG BEyonD RELATIonAL

ChAPter 6 XML and the relational Database 255

ChAPter 7 hierarchical Data and the relational Database 299

ChAPter 8 Native File Streaming 323

ChAPter 9 Geospatial Support 367

PART III APPLIED SQL

ChAPter 10 the Microsoft Data Access Juggernaut 427

ChAPter 11 WCF Data Access technologies 509

ChAPter 12 Moving to the Cloud with SQL Azure 579

ChAPter 13 SQL Azure Data Sync and
 Windows Phone Development 619

ChAPter 14 Pervasive Insight 675

ChAPter 15 xVelocity In-Memory technologies 701

Index 737

 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction . xxi

Acknowledgements .xxxvii

PART I CoRE SQL SERvER DEvELoPmEnT

Chapter 1 Introducing SQL Server Data Tools 3
Introducing SSDT . 4

Database Tooling Designed for Developers . 4

Declarative, Model-Based Development . 5

Connected Development . 6

Disconnected Development . 7

Versioning and Snapshots . 8

Targeting Different Platforms . 9

Working with SSDT . 9

Connecting with SQL Server Object Explorer10

Gathering New Requirements .16

Using the Table Designer (Connected) . 17

Working Offline with a SQL Server Database Project22

Taking a Snapshot .25

Using the Table Designer (Offline Database Project)25

Introducing LocalDB .27

Refactoring the Database . 31

Testing and Debugging. .33

Comparing Schemas .35

Publishing to SQL Azure .39

Adopting SSDT .42

Summary. .43

viii Contents

Chapter 2 T-SQL Enhancements 45
Table-Valued Parameters .46

More Than Just Another Temporary Table Solution46

Submitting Orders .47

Using TVPs for Bulk Inserts and Updates .49

Passing TVPs Using ADO.NET .52

Passing Collections to TVPs Using Custom Iterators54

TVP Limitations .57

Date and Time Data Types .58

Separation of Dates and Times .58

More Portable Dates and Times .58

Time Zone Awareness .59

Date and Time Accuracy, Storage, and Format60

Date and Time Functions .62

The MERGE Statement .65

Defining the Merge Source and Target .67

The WHEN MATCHED Clause .68

The WHEN NOT MATCHED BY TARGET Clause 69

Using MERGE for Table Replication .70

The WHEN NOT MATCHED BY SOURCE Clause71

MERGE Output .73

Choosing a Join Method . 74

MERGE DML Behavior .75

The INSERT OVER DML Syntax . 76

A Filterable Alternative to OUTPUT…INTO .77

Consuming CHANGES . 80

The GROUPING SETS Operator .83

Rolling Up by Level .85

Rolling Up All Level Combinations .86

Returning Just the Top Level .88

Mixing and Matching .89

Handling NULL Values .90

 Contents ix

Windowing (OVER Clause) Enhancements .93

Sliding Aggregations .96

Using RANGE versus ROWS . 97

New T-SQL Functions in SQL Server 2012 .97

New Analytic Functions .98

New Conversion Functions .103

New Date and Time Functions .104

New Logical Functions .106

New String Functions .107

Changed Mathematical Function .109

The THROW Statement .109

Re-Throwing Exceptions .110

Comparing THROW and RAISERROR .111

Server-Side Paging .113

Using ROW_NUMBER .113

Using OFFSET/FETCH NEXT .114

The SEQUENCE Object .115

Sequence Limitations .117

Metadata Discovery .118

Summary. .122

Chapter 3 Exploring SQL CLR 125
Getting Started: Enabling CLR Integration .126

Visual Studio/SQL Server Integration .126

SQL Server Database Projects in Visual Studio127

Automated Deployment .129

SQL CLR Code Attributes .129

Your First SQL CLR Stored Procedure .130

CLR Stored Procedures and Server-Side Data Access132

Piping Data with SqlDataRecord and SqlMetaData 134

Deployment .136

x Contents

Getting Ready .137

Deploying Your Assembly .138

Deploying Your Stored Procedures .141

Testing Your Stored Procedures .142

CLR Functions .143

CLR Triggers .148

CLR Aggregates .151

SQL CLR Types .156

Security .161

Examining and Managing CLR Types in a Database162

Best Practices for SQL CLR Usage .168

Summary. .168

Chapter 4 Working with Transactions 169
What Is a Transaction? .170

Understanding the ACID Properties .170

Local Transaction Support in SQL Server .172

Autocommit Transaction Mode .173

Explicit Transaction Mode. .173

Implicit Transaction Mode .176

Batch-Scoped Transaction Mode .176

Isolation Levels .179

Read Uncommitted Isolation Level .179

Read Committed Isolation Level .181

Repeatable Read Isolation Level .182

Serializable Isolation Level .182

Snapshot Isolation Level .182

Read Committed Snapshot Isolation Level .183

Isolation Levels in ADO.NET .184

Distributed Transactions .186

Distributed Transaction Terminology .186

Rules and Methods of Enlistment .187

Distributed Transactions in SQL Server .189

 Contents xi

Distributed Transactions in the .NET Framework190

Using a Resource Manager in a Successful Transaction 198

Transactions in SQL CLR (CLR Integration) .201

Putting It All Together .204

Summary. .206

Chapter 5 SQL Server Security 207
Four Themes of the Security Framework .208

Secure by Design .208

Secure by Default .208

Secure by Deployment .208

Secure Communications .208

SQL Server Security Overview .209

SQL Server Logins .210

Database Users .211

The guest User Account .212

Authentication and Authorization .213

How Clients Establish a Connection .213

Password Policies .215

User-Schema Separation .216

Execution Context .218

Encryption Support .222

Encrypting Data on the Move .223

Encrypting Data at Rest. .224

Transparent Data Encryption .229

SQL Server Audit .234

Creating an Audit Object .235

Auditing Options .236

Recording Audits to the File System .238

Recording Audits to the Windows Event Log239

Auditing Server Events .239

Auditing Database Events .240

Viewing Audited Events .242

Querying Audit Catalog Views .244

xii Contents

Partially Contained Databases .244

Creating a Partially Contained Database .245

Creating a Contained User .245

Other Partially Contained Database Features246

How Hackers Attack SQL Server .249

Direct Connection to the Internet .249

Weak System Administrator Account Passwords249

SQL Server Browser Service .249

SQL Injection .250

Intelligent Observation .250

Summary. .251

PART II GoInG BEyonD RELATIonAL

Chapter 6 XmL and the Relational Database 255
Character Data as XML .256

The xml Data Type .257

Working with the xml Data Type as a Variable257

Working with XML in Tables .258

XML Schema Definitions (XSDs) .259

XML Indexes .266

FOR XML Commands .268

FOR XML RAW . 269

FOR XML AUTO . 269

FOR XML EXPLICIT . 271

Additional FOR XML Features .276

The TYPE Option .276

FOR XML PATH . 277

Emitting a ROOT Element .280

Producing an Inline XSD Schema .281

Producing Element-Based XML .282

Shredding XML Using OPENXML .284

Querying XML Data Using XQuery .285

Understanding XQuery Expressions and XPath285

 Contents xiii

SQL Server XQuery in Action .288

XML DML .296

Summary. .298

Chapter 7 Hierarchical Data and the Relational Database 299
The hierarchyid Data Type .300

Creating a Hierarchical Table .301

The GetLevel Method .302

Populating the Hierarchy .303

The GetRoot Method .303

The GetDescendant Method .304

The ToString Method .305

The GetAncestor Method .310

Hierarchical Table Indexing Strategies .313

Depth-First Indexing .314

Breadth-First Indexing .314

Querying Hierarchical Tables .315

The IsDescendantOf Method .315

Reordering Nodes within the Hierarchy .317

The GetReparentedValue Method .318

Transplanting Subtrees .319

More hierarchyid Methods .321

Summary. .322

Chapter 8 native File Streaming 323
Traditional BLOB Strategies .323

BLOBs in the Database .324

BLOBs in the File System .324

Introducing FILESTREAM .325

Enabling FILESTREAM .326

Enabling FILESTREAM for the Machine .326

Enabling FILESTREAM for the Server Instance 328

xiv Contents

Creating a FILESTREAM-Enabled Database .329

Creating a Table with FILESTREAM Columns330

Storing and Retrieving FILESTREAM Data. .331

Deleting FILESTREAM Data .334

Direct Streaming in .NET with SqlFileStream .335

Understanding SqlFileStream . 335

Building the Windows Forms Client .337

Programming SqlFileStream Data Access. .338

Creating a Streaming HTTP Service .348

Building a WPF Client .352

FILESTREAM Limitations and Considerations .355

Introducing FileTable .357

Creating a FileTable .360

Manipulating a FileTable .362

Searching Documents .365

Summary. .366

Chapter 9 Geospatial Support 367
SQL Server Spaces Out .367

Spatial Models .368

Planar (Flat-Earth) Model .368

Geodetic (Ellipsoidal Sphere) Model .368

Spatial Data Standards .370

Importing Well-Known Text (WKT) .370

Importing WKB .373

Importing Geography Markup Language (GML)374

Spatial Data Types .374

Working with geometry .375

Working with geography. .388

Spatial Enhancements in SQL Server 2012 .400

New Spatial Data Classes .401

New Spatial Methods .405

Other Enhancements .411

 Contents xv

Integrating with Microsoft Bing Maps .413

Summary. .423

PART III APPLIED SQL

Chapter 10 The microsoft Data Access Juggernaut 427
.NET Data Access Evolution .427

Preparing the Sample Database .430

Monitoring Database Activity with SQL Server Profiler435

Conventional ADO.NET .436

Using the Raw Data Access Objects .436

Working with DataSets . 455

Language-Integrated Query (LINQ) .472

LINQ to DataSet .473

Object Relational Modeling (ORM) Comes to .NET477

Multiple ORM Offerings from Redmond .479

LINQ to SQL: Then and Now .479

Entity Framework: Now and in the Future .482

Summary. .508

Chapter 11 WCF Data Access Technologies 509
Defining Services .509

WCF Data Access Options .510

WCF Data Services .511

Building a WCF Data Service .512

Creating the Entity Data Model .513

Testing WCF Data Services with Internet Explorer515

Building Client Applications for WCF Data Services 518

Extending WCF Data Services . 544

WCF RIA Services. .548

Establishing a WCF RIA Services Link .549

Creating the Entity Data Model .551

Building the Domain Service and Metadata Classes552

Building the Silverlight Client .561

xvi Contents

Inspecting the .NET Framing Protocol with Fiddler569

Testing the Complete WCF RIA Services Solution 569

Making the Right WCF Data Access Choice .577

Summary. .578

Chapter 12 moving to the Cloud with
SQL Azure 579

History .581

But What Is SQL Azure? .581

Why the Limitations? .582

Pricing .583

The First One’s Free .583

Getting Set Up .584

Beyond the Prerequisites .585

Provisioning Your Server .586

Provisioning Your Database .589

Managing Your Database .589

Creating Tables and Entering Data .590

Querying in the Browser .592

Index Design .592

Management and Visualizations .593

Connecting from Down Below .596

Migrating and Syncing Between Earth and Cloud599

DACPACs to the Rescue .600

Extract, Deploy, Export, and Import DAC files 600

Scenarios .602

SQL Azure Federations .607

A SQL Azure Federations Lexicon .607

Creating a Federation .608

Federated Tables .609

Using a Federation Member .610

Splitting and Dropping Federation Members610

Central Tables and Reference Tables .610

Fan-Out Queries and Multi-Tenancy .611

 Contents xvii

Federations Support in SSMS and SSDT .611

Federations Make Sense in the Cloud .612

SQL Azure Reporting .612

Provisioning .613

Report Authoring .614

Deploying Reports .615

Getting Your Bearings .617

Summary. .617

Chapter 13 SQL Azure Data Sync and
Windows Phone 7 Development 619

Characteristics of an Occasionally Connected System620

Data Management .620

Getting to Know SQL Azure Data Sync .621

Capabilities and Features .621

Data Sync Terminology .622

Sync Groups .623

The Client Sync Agent .624

SQL Azure Data Sync Considerations .625

Creating an Occasionally Connected System .626

Prerequisites .629

Configuring SQL Azure Data Sync .630

Provisioning the SQL Azure Data Sync Server 630

Creating the Sync Group .631

Hosting WCF Data Services in Windows Azure .641

About Windows Azure .641

Creating the FlixPoll Solution .642

Adding the FlixPoll Data Service .643

Adding the Entity Data Model . 644

Creating the FlixPoll Client .647

Consuming OData on Windows Phone .662

SQL Server on the Phone .666

Deploying to Windows Azure .672

Summary. .674

xviii Contents

Chapter 14 Pervasive Insight 675
The Microsoft BI Stack: What’s It All About? .676

Master Data Services .677

Data Quality Services .680

Integration Services .681

SQL Server RDBMS, Fast Track DW, and SQL Server PDW683

Data Marts and Data Warehouses .683

The Star Schema .684

SQL Server Data Warehouse Appliances .684

Analysis Services .686

The Multidimensional Engine .686

PowerPivot and SSAS Tabular Mode .687

Data Mining .690

Power View .691

Reporting Services .692

Report Parts .693

Alerting .693

Dashboard Components .694

Excel and Excel Services .694

Using Excel Services .694

PerformancePoint Services .696

StreamInsight .697

SQL Server Editions and SharePoint Version Requirements697

Summary. .699

Chapter 15 xvelocity In-memory Technologies 701
Column Store Databases .702

Column Store Tech in the BI Industry .703

xVelocity in the RDBMS: Columnstore Indexes .704

Building a Columnstore Index .704

What You Can’t Do .704

How Columnstore Indexes Work .706

 Contents xix

xVelocity for Analysis: PowerPivot and SSAS Tabular Models709

Clearing Up the Analysis Services Vocabulary 710

The Lowdown on BISM .711

Friends, Countrymen, Bring Me Your Data .711

Building the BISM .712

Dial M for Modeling .715

Modeling, Part Deux .718

Querying in Excel .724

PowerPivot for SharePoint .726

Moving to SSAS Tabular .727

Power View Here We Come .732

Welcome Back to VertiPaq .734

Summary. .735

Index 737

About the Authors 773

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xxi

Introduction

—Leonard Lobel

Welcome! This is a book about Microsoft SQL Server 2012 written just for you, the
 developer. Whether you are programming against SQL Server directly at the

 database level or further up the stack using Microsoft .NET, this book shows you the way.

The latest release of Microsoft’s flagship database product delivers an unprecedented,
highly scalable data platform capable of handling the most demanding tasks and
 workloads. As with every release, SQL Server 2012 adds many new features and
 enhancements for developers, administrators, and (increasingly) end users alike. Col-
lectively, these product enhancements reinforce—and advance—SQL Server’s position
as a prominent contender in the industry. As the product continues to evolve, its stack of
offerings continues to expand. And as the complete SQL Server stack is too large for any
one book to cover effectively, our emphasis in this book is on programmability. Specifically,
we explore the plethora of ways in which SQL Server (and its cloud cousin, Microsoft SQL
Azure) can be programmed for building custom applications and services.

How Significant Is the SQL Server 2012 Release?

SQL Server, particularly its relational database engine, matured quite some time ago.
So the “significance” of every new release over recent years can be viewed—in some
ways—as relatively nominal. The last watershed release of the product was actually
SQL Server 2005, which was when the relational engine (that, for years, defined SQL
Server) stopped occupying “center stage,” and instead took its position alongside a
set of services that today, collectively, define the product. These include the Business
 Intelligence (BI) components Reporting Services, Analysis Services, and Integration
Services—features that began appearing as early as 1999 but, prior to SQL Server
2005, were integrated sporadically as a patchwork of loosely coupled add-ons,
 wizards, and management consoles. SQL Server 2005 changed all that with a complete
 overhaul. For the first time, the overall SQL Server product delivered a broader, richer,
and more consolidated set of features and services which are built into—rather than
bolted onto—the platform. None of the product versions that have been released
since that time—SQL Server 2008, 2008 R2, and now 2012—have changed underlying
 architecture this radically.

That said, each SQL Server release continues to advance itself in vitally significant
ways. SQL Server 2008 (released August 6, 2008) added a host of new features to the

xxii Introduction

relational engine—T-SQL enhancements, Change Data Capture (CDC), Transparent Data
Encryption (TDE), SQL Audit, FILESTREAM—plus powerful BI capabilities with Excel
PivotTables, charts, and CUBE formulas. SQL Server 2008 R2 (released April 21, 2010),
internally dubbed the “BI Refresh” while in development, added a revamped version of
Reporting Services as well as PowerPivot for Excel and SharePoint, Master Data Services,
and StreamInsight, but offered little more than minor tweaks and fixes to the relational
engine.

The newest release—SQL Server 2012—officially launched on March 7, 2012.
Like every new release, this version improves on all of the key “abilities” (availability,
 scalability, manageability, programmability, and so on). Among the chief reliability
improvements is the new High Availability Disaster Recovery (HADR) alternative to
database mirroring. HADR (also commonly known as “Always On”) utilizes multiple
secondary servers in an “availability group” for scale-out read-only operations (rather
than forcing them to sit idle, just waiting for a failover to occur). Multisubnet failover
clustering is another notable new manageability feature.

SQL Server 2012 adds many new features to the relational engine, most of which
are covered in this book. There are powerful T-SQL extensions, most notably the
 windowing enhancements, plus 22 new T-SQL functions, improved error handling,
server-side paging, sequence generators, rich metadata discovery techniques, and
contained databases. There are also remarkable improvements for unstructured data,
such as the FileTable abstraction over FILESTREAM and the Windows file system API,
full-text property searching, and Statistical Semantic Search. Spatial support gets a
big boost as well, with support for circular data, full-globe support, increased perfor-
mance, and greater parity between the geometry and geography data types. And new
“ columnstore” technology drastically increases performance of extremely large cubes
(xVelocity for PowerPivot and Analysis Services) and data warehouses (using an xVeloci-
ty-like implementation in the relational engine).

The aforementioned relational engine features are impressive, but still amount to lit-
tle more than “additives” over an already established database platform. A new release
needs more than just extra icing on the cake for customers to perceive an upgrade as
 compelling. To that end, Microsoft has invested heavily in BI with SQL Server 2012, and
the effort shows. The BI portion of the stack has been expanded greatly, delivering key
 advances in “pervasive insight.” This includes major updates to the product’s analytics,
data visualization (such as self-service reporting with Power View), and master data
 management capabilities, as well Data Quality Services (DQS), a brand new data quality
engine. There is also a new Business Intelligence edition of the product that includes
all of these capabilities without requiring a full Enterprise edition license. Finally, SQL
Server Data Tools (SSDT) brings brand new database tooling inside Visual Studio. SSDT

 Introduction xxiii

provides a declarative, model-based design-time experience for developing databases
while connected, offline, on-premise, or in the cloud.

Who Should Read This Book

This book is intended for developers who have a basic knowledge of relational
 database terms and principles.

Assumptions
In tailoring the content of this book, there are a few assumptions that we make
about you. First, we expect that you are a developer who is already knowledgeable
about relational database concepts—whether that experience is with SQL Server or
 non-Microsoft platforms. As such, you already know about tables, views, primary and
foreign keys (relationships), stored procedures, user-defined functions, and triggers.
These essentials are assumed knowledge and are not covered in this book. Similarly, we
don’t explain proper relational design, rules of data normalization, strategic indexing
practices, how to express basic queries, and other relational fundamentals. We also
 assume that you have at least basic familiarity with SQL statement syntax—again, either
T-SQL in SQL Server or SQL dialects in other platforms—and have a basic working
knowledge of .NET programming in C# on the client.

Having said all that, we have a fairly liberal policy regarding these prerequisites. For
example, if you’ve only dabbled with T-SQL or you’re more comfortable with Microsoft
Visual Basic .NET than C#, that’s okay, as long as you’re willing to try and pick up on
things as you read along. Most of our code samples are not that complex. However, our
explanations assume some basic knowledge on your part, and you might need to do a
little research if you lack the experience.

Note For the sake of consistency, all the .NET code in this book is written
in C#. However, this book is in no way C#-oriented, and there is certainly
 nothing C#-specific in the .NET code provided. As we just stated, the code
samples are not very complex, and if you are more experienced with Visual
Basic .NET than you are with C#, you should have no trouble translating the
C# code to Visual Basic .NET on the fly as you read it.

With that baseline established, our approach has been to add value to the SQL
Server documentation by providing a developer-oriented investigation of its features,

xxiv Introduction

especially the new and improved features in SQL Server 2012. We start with the brand
new database tooling, and the many rich extensions made to T-SQL and the relational
database engine. Then we move on to wider spaces, such as native file streaming,
 geospatial data, and other types of unstructured data. We also have chapters on
 security, transactions, client data access, security, mobile/cloud development, and more.

Within these chapters, you will find detailed coverage of the latest and most
 important SQL Server programming features. You will attain practical knowledge
and technical understanding across the product’s numerous programmability points,
empowering you to develop the most sophisticated database solutions for your end
users. Conversely, this is not intended as a resource for system administrators, database
administrators, project managers, or end users. Our general rule of thumb is that we
don’t discuss features that are not particularly programmable.

Who Should not Read This Book

This book is not intended for SQL Server administrators; it is aimed squarely at
developers—and only developers who have mastery of basic database concepts.

organization of This Book

The chapters of this book are organized in three sections:

■■ Core SQL Server features

■■ Beyond relational features

■■ Applied SQL for building applications and services

By no means does this book need to be read in any particular order. Read it from
start to finish if you want, or jump right in to just those chapters that suit your needs or
pique your interests. Either way, you’ll find the practical guidance you need to get your
job done.

The following overview provides a summary of these sections and their chapters.
After the overview, you will find information about the book’s companion website, from
which you can download code samples and work hands-on with all the examples in the
book.

 Introduction xxv

Core SQL Server Development
In Part I, we focus on core SQL Server features. These include brand new tooling
(SSDT), enhancements to T-SQL, extended programmability with SQL CLR code in .NET
 languages such as Microsoft Visual Basic .NET and C#, transactions, and security.

■■ Chapter 1 Introducing SQL Server Data Tools

Our opening chapter is all about SQL Server Data Tools (SSDT). With the release
of SQL Server 2012, SSDT now serves as your primary development environment
for building SQL Server applications. While SQL Server Management Studio
(SSMS) continues to serve as the primary tool for database administrators,
SSDT represents a brand new developer experience. SSDT plugs in to Microsoft
Visual Studio for connected development of on-premise databases or SQL
Azure databases running in the cloud, as well as a new database project type
for offline development and deployment. Using practical, real-world scenarios,
you will also learn how to leverage SSDT features such as code navigation,
 IntelliSense, refactoring, schema compare, and more.

■■ Chapter 2 T-SQL Enhancements

In Chapter 2, we explore the significant enhancements made to Transact-SQL
 (T-SQL)—which still remains the best programming tool for custom SQL Server
development. We cover several powerful extensions to T-SQL added in SQL
Server 2008, beginning with table-valued parameters (TVPs). You learn how
to pass entire sets of rows around between stored procedures and functions
on the server, as well as between client and server using Microsoft ADO.NET.
Date and time features are explored next, including separate date and time
data types, time zone awareness, and improvements in date and time range,
storage, and precision. We then show many ways to use MERGE, a flexible data
 manipulation language (DML) statement that encapsulates all the individual
 operations typically involved in any merge scenario. From there, you learn
about INSERT OVER DML for enhanced change data capture from the OUTPUT
clause of any DML statement. We also examine GROUPING SETS, an extension
to the traditional GROUP BY clause that increases your options for slicing and
dicing data in aggregation queries.

We then dive in to the new T-SQL enhancements introduced in SQL Server 2012,
starting with windowing features. The first windowing functions to appear in
T-SQL date back to SQL Server 2005, with the introduction of several ranking
functions. Windowing capabilities have been quite limited ever since, but SQL
Server 2012 finally delivers some major improvements to change all that. First

xxvi Introduction

you will grasp windowing concepts and the principles behind the OVER clause,
and then leverage that knowledge to calculate running and sliding aggregates
and perform other analytic calculations. You will learn about every one of the
22 new T-SQL functions, including 8 analytic windowing functions, 3 conversion
functions, 7 date and time related functions, 2 logical functions, and 2 string
functions. We also examine improved error handling with THROW, server-side
paging with OFFSET/FETCH NEXT, sequence generators, and rich metadata
discovery techniques. We explain all of these new functions and features, and
provide clear code samples demonstrating their use.

■■ Chapter 3 Exploring SQL CLR

Chapter 3 provides thorough coverage of SQL CLR programming—which lets
you run compiled .NET code on SQL Server—as well as guidance on when and
where you should put it to use. We go beyond mere stored procedures, triggers,
and functions to explain and demonstrate the creation of CLR types and
 aggregates—entities that cannot be created at all in T-SQL. We also cover the
different methods of creating SQL CLR objects in SQL Server Database Projects
in Visual Studio and how to manage their deployment, both from SSDT/Visual
Studio and from T-SQL scripts in SQL Server Management Studio and elsewhere.

■■ Chapter 4 Working with Transactions

No matter how you write and package your code, you must keep your data
consistent to ensure its integrity. The key to consistency is transactions, which
we cover in Chapter 4. Transactions can be managed from a variety of places,
like many SQL Server programmability features. If you are writing T-SQL code
or client code using the ADO.NET SqlClient provider or System.Transactions, you
need to be aware of the various transaction isolation levels supported by SQL
Server, the appropriate scope of your transactions, and best practices for writing
transactional code. This chapter gets you there.

■■ Chapter 5 SQL Server Security

Chapter 5 discusses SQL Server security at length and examines your choices
for keeping data safe and secure from prying eyes and malicious intent.
We begin with the basic security concepts concerning logins, users, roles,
 authentication, and authorization. You then go on to learn about key-based
encryption support, which protects your data both while in transit and at rest.
We then examine other powerful security features, including Transparent
Data Encryption (TDE) and SQL Server Audit. TDE allows you to encrypt entire
databases in the background without special coding requirements. With SQL

 Introduction xxvii

Server Audit, virtually any action taken by any user can be recorded for auditing
in either the file system or the Windows event log. We also show how to create
contained databases, a new feature in SQL Server 2012 that eliminates host
instance dependencies by storing login credentials directly in the database. The
chapter concludes by providing crucial guidance for adhering to best practices
and avoiding common security pitfalls.

Going Beyond relational
With the release of SQL Server 2012, Microsoft broadens support for semi- structured
and unstructured data in the relational database. In Part II, we show how to leverage
the “beyond relational” capabilities in SQL Server 2012—features that are becoming
increasingly critical in today’s world of binary proliferation, and the emergence of high-
performance so-called “No SQL” database platforms.

■■ Chapter 6 XML and the Relational Database

SQL Server 2005 introduced the xml data type, and a lot of rich XML support to
go along with it. That innovation was an immeasurable improvement over the
use of plain varchar or text columns to hold strings of XML (which was common
in earlier versions of SQL Server), and thus revolutionized the storage of XML in
the relational database. It empowers the development of database applications
that work with hierarchical data natively—within the environment of the rela-
tional database system—something not possible using ordinary string columns.
In Chapter 6, we take a deep dive into the xml data type, XQuery extensions to
T-SQL, server-side XML Schema Definition (XSD) collections, XML column index-
ing, and many more XML features.

■■ Chapter 7 Hierarchical Data and the Relational Database

But XML is not your only option for working with hierarchical data in the
 database. In Chapter 7, we explore the hierarchyid data type that enables
you to cast a hierarchical structure over any relational table. This data type
is implemented as a “system CLR” type, which is nothing more really than a
SQL CLR user-defined type (UDT), just like the ones we show how to create on
your own in Chapter 3. The value stored in a hierarchyid data type encodes
the complete path of any given node in the tree structure, from the root down
to the specific ordinal position among other sibling nodes sharing the same
 parent. Using methods provided by this new type, you can now efficiently build,
query, and manipulate tree-structured data in your relational tables. This data
type also plays an important role in SQL Server’s new FileTable feature, as we
explain in the next chapter on native file streaming.

xxviii Introduction

■■ Chapter 8 Native File Streaming

In Chapter 8, you learn all about the FILESTREAM, an innovative feature that
integrates the relational database engine with the NTFS file system to provide
highly efficient storage and management of large binary objects (BLOBs)— images,
videos, documents, you name it. Before FILESTREAM, you had to choose between
storing BLOB data in the database using varbinary(max) (or the now-deprecated
image) columns, or outside the database as unstructured binary streams (typically,
as files in the file system). FILESTREAM provides a powerful abstraction layer that
lets you treat BLOB data logically as an integral part of the database, while SQL
Server stores the BLOB data physically separate from the database in the NTFS file
system behind the scenes. You will learn everything you need to program against
FILESTREAM, using both T-SQL and the high-performance SqlFileStream .NET class.
The walkthroughs in this chapter build Windows, web, and Windows Presentation
 Foundation (WPF) applications that use FILESTREAM for BLOB data storage.

You will also see how FileTable, a new feature in SQL Server 2012, builds on
FILESTREAM. FileTable combines FILESTREAM with the hierarchyid (covered in
Chapter 7) and the Windows file system API, taking database BLOB management to
new levels. As implied by the two words joined together in its name, one FileTable
functions as two distinct things simultaneously: a table and a file system—and you
will learn how to exploit this new capability from both angles.

■■ Chapter 9 Geospatial Support

Chapter 9 explores the world of geospatial concepts and the rich spatial support
provided by the geometry and geography data types. With these system CLR
types, it is very easy to integrate location-awareness into your applications—
at the database level. Respectively, geometry and geography enable spatial
 development against the two basic geospatial surface models: planar (flat) and
geodetic (round-earth). With spatial data (represented by geometric or geographic
 coordinates) stored in these data types, you can determine intersections and
 calculate length, area, and distance measurements against that data.

The chapter first quickly covers the basics and then provides walkthroughs in
which you build several geospatial database applications, including one that
integrates mapping with Microsoft Bing Maps. We also examine the significant
spatial enhancements added in SQL Server 2012. Although entire books have
been written on this vast and ever-expanding topic, our chapter delves into
 sufficient depth so you can get busy working with geospatial data right away.

 Introduction xxix

Applied SQL
After we’ve covered so much information about what you can do on the server and
in the database, we move to Part III of the book, where we explore technologies and
 demonstrate techniques for building client/server, n-tier, and cloud solutions on top of
your databases. Whatever your scenario, these chapters show you the most effective
ways to extend your data’s reach. We then conclude with coverage of SQL Azure, the BI
stack, and the new columnstore technology known as xVelocity.

■■ Chapter 10 The Microsoft Data Access Juggernaut

Chapter 10 covers every client/server data access strategy available in the
.NET Framework today. We begin with earliest Microsoft ADO.NET techniques
using raw data access objects and the DataSet abstraction, and discuss the
 ongoing relevance of these .NET 1.0 technologies. We then examine later data
 access technologies, including the concepts and syntax of language-integrated
query (LINQ). We look at LINQ to DataSet and LINQ to SQL, and then turn
our focus heavily on the ADO.NET Entity Framework (EF), Microsoft’s current
 recommended data access solution for .NET. You will learn Object Relational
Mapping (ORM) concepts, and discover how EF’s Entity Data Model (EDM)
provides a powerful abstraction layer to dramatically streamline the application
development process.

■■ Chapter 11 WCF Data Access Technologies

After you have mastered the client/server techniques taught in Chapter 10, you
are ready to expose your data as services to the world. Chapter 11 provides you
with detailed explanations and code samples to get the job done using two
technologies based on Windows Communications Foundation (WCF).

The first part of Chapter 11 covers WCF Data Services, which leverages
 Representational State Transfer Protocol (REST) and Open Data Protocol
(OData) to implement services over your data source. After explaining these
key concepts, you will see them put to practical use with concrete examples.
As you monitor background network and database activity, we zone in and
lock down on the critical internals that make it all work. The second part of
the chapter demonstrates data access using WCF RIA Services, a later technol-
ogy that targets Silverlight clients in particular (although it can support other
clients as well). We articulate the similarities and differences between these two
 WCF-based technologies, and arm you with the knowledge of how and when to
use each one.

xxx Introduction

■■ Chapter 12 Moving to the Cloud with SQL Azure

In Chapter 12, we look at the world of cloud database computing with SQL
Azure. We explain what SQL Azure is all about, how it is similar to SQL Server
and how it differs. We look at how SQL Azure is priced, how to sign up for
it, and how to provision SQL Azure servers and databases. We examine the
SQL Azure tooling and how to work with SQL Azure from SSMS and SSDT.
We explain the many ways that Data-Tier Applications (DACs) can be used to
migrate databases between SQL Server and SQL Azure, using SSMS, SSDT, and
the native tooling of SQL Azure as well. We finish up the chapter by examining
a special partitioning feature called SQL Azure Federations and we look at SQL
Azure Reporting, too.

■■ Chapter 13 SQL Azure Data Sync and Windows Phone Development

Chapter 13 covers the broad topic of so-called occasionally connected systems
by building out a complete solution that incorporates SQL Azure Data Sync,
Windows Azure, and the Windows Phone 7 development platform. On the back
end, an on-premise SQL Server database is kept synchronized with a public-facing
SQL Azure database in the cloud using SQL Azure Data Sync. The cloud data-
base is exposed using WCF Data Services (also hosted in the cloud by deploying
to Windows Azure), and consumed via OData by a mobile client application
running on a Windows Phone 7 device. The end-to-end solution detailed in this
chapter demonstrates how these technologies work to keep data in sync across
on-premise SQL Server, SQL Azure databases in the cloud, and local storage on
Windows Phone 7 devices.

■■ Chapter 14 Pervasive Insight

In Chapter 14, we provide an overview of the entire SQL Server BI stack,
 including SQL Server Fast Track Data Warehouse appliances, SQL Server Parallel
Data Warehouse edition, SQL Server Integration Services, Analysis Services,
Master Data Services, Data Quality Services, Reporting Services, Power View,
PowerPivot, and StreamInsight. In the interest of completeness, we also provide
brief overviews of Excel Services and PerformancePoint Services in SharePoint
and how they complement SQL Server. We explain what each BI component
does, and how they work together. Perhaps most important, we show you how
these technologies from the BI arena are relevant to your work with relational
data, and how, in that light, they can be quite approachable. These technologies
shouldn’t be thought of as segregated or tangential. They are integral parts of
SQL Server, and we seek to make them part of what you do with the product.

 Introduction xxxi

■■ Chapter 15 xVelocity In-Memory Technologies

In Chapter 15, we look at Microsoft’s xVelocity column store technology, and how
to use it from the SQL Server relational database, as well as PowerPivot and Analysis
Services. We explain how column-oriented databases work, we examine the new
columnstore indexes in SQL Server 2012, and discuss its batch processing mode,
too. We look at how easy it is for relational database experts to work with Power-
Pivot and SSAS Tabular mode, and we show how to bring all these technologies
together with the SQL Server Power View data analysis, discovery, and visualization
tool.

Conventions and Features in This Book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ Code elements in text (apart from code blocks) appear in italic.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close), means
that you should select the first menu or menu item, then the next, and so on.

System Requirements

To follow along with the book’s text and run its code samples successfully, we
 recommend that you install the Developer edition of SQL Server 2012, which is available
to a great number of developers through Microsoft’s MSDN Premium subscription,
on your PC. You will also need Visual Studio 2010; we recommend that you use the
 Professional edition or one of the Team edition releases, each of which is also available
with the corresponding edition of the MSDN Premium subscription product. All the
code samples will also work with the upcoming Visual Studio 11, in beta at the time of
this writing.

xxxii Introduction

Important To cover the widest range of features, this book is based on the
Developer edition of SQL Server 2012. The Developer edition possesses the
same feature set as the Enterprise edition of the product, although Developer
edition licensing terms preclude production use. Both editions are high-end
platforms that offer a superset of the features available in other editions
(Standard, Workgroup, Web, and Express). We believe that it is in the best
 interest of developers for us to cover the full range of developer features
in SQL Server 2012, including those available only in the Enterprise and
Developer editions.

To run these editions of SQL Server and Visual Studio, and thus the samples in this
book, you’ll need the following 32-bit hardware and software. (The 64-bit hardware
and software requirements are not listed here but are very similar.)

■■ 1 GHz or faster (2 GHz recommended) processor.

■■ Operating system, any of the following:

• Microsoft Windows Server 2008 R2 SP1

• Windows 7 SP1 (32- or 64-bit)

• Windows Server 2008 SP2

• Windows Vista SP2

■■ For SQL Server 2012, 4 GB or more RAM recommended for all editions (except
the Express edition, which requires only 1 GB).

■■ For SQL Server 2012, approximately 1460 MB of available hard disk space for the
recommended installation. Approximately 375 MB of additional available hard
disk space for SQL Server Books Online, SQL Server Mobile Everywhere Books
Online, and sample databases.

■■ For Visual Studio 2010, maximum of 20 GB available space required on
 installation drive. Note that this figure includes space for installing the full set of
MSDN documentation.

■■ A working Internet connection (required to download the code samples from
the companion website). A few of the code samples also require an Internet
 connection to run.

 Introduction xxxiii

■■ Super VGA (1024 × 768) or higher resolution video adapter and monitor
 recommended.

■■ Microsoft Mouse or compatible pointing device recommended.

■■ Microsoft Internet Explorer 9.0 or later recommended.

Installing SQL Server Data Tools

SSDT does not get installed with either Visual Studio or SQL Server. Instead, SSDT ships
separately via the Web Platform Installer (WebPI). This enables Microsoft to distribute
timely SSDT updates out-of-band with (that is, without waiting for major releases of)
Visual Studio or SQL Server. Before you follow along with the procedures in Chapter 1,
download and install SSDT from http://msdn.microsoft.com/en-us/data/hh297027.

Using the Book’s Companion Website

Visit the book’s companion website at the following address:

http://www.microsoftpressstore.com/title/9780735658226

Code Samples
All the code samples discussed in this book can be downloaded from the book’s
 companion website.

Within the companion materials parent folder on the site is a child folder for each
chapter. Each child folder, in turn, contains the sample code for the chapter. Because
most of the code is explained in the text, you might prefer to create it from scratch
rather than open the finished version supplied in the companion sample code. However,
the finished version will still prove useful if you make a small error along the way or if
you want to run the code quickly before reading through the narrative that describes it.

Sample AdventureWorks Databases
As of SQL Server 2005, and updated through SQL Server 2012, Microsoft provides the
popular AdventureWorks family of sample databases. Several chapters in this book
reference the AdventureWorks2012 online transaction processing (OLTP) database, and
Chapter 15 references the AdventureWorksDW2012 data warehousing database.

http://www.microsoftpressstore.com/title/9780735658226

xxxiv Introduction

To follow along with the procedures in these chapters, you can download these
databases directly from the book’s companion website. The databases posted there
are the exact versions that this book was written against, originally obtained from
 CodePlex, which is Microsoft’s open source website (in fact, all of Microsoft’s official
product code samples are hosted on CodePlex). To ensure you receive the same results
as you follow along with certain chapters in this book, we recommend downloading
the AdventureWorks2012 OLTP and AdventureWorksDW2012 data warehousing data-
bases from the book’s companion website rather than from CodePlex (where updated
 versions may cause different results than the original versions).

You can find the directions to attach (use) the sample databases on the sample
 database download page.

Previous edition Chapters
In addition to all the code samples, the book’s companion website also contains several
chapters from the 2008 and 2005 editions of this book that were not updated for this
edition in order to accommodate coverage of new SQL Server 2012 features.

You can download SQL Server 2005 chapters that cover Service Broker, native XML
Web Services, SQL Server Management Studio, SQL Server Express edition, Integration
Services, and debugging, as well as SQL Server 2008 chapters on data warehousing,
online analytical processing (OLAP), data mining, and Reporting Services.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735658226

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/ 9780735658226

 Introduction xxxv

We Want to Hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 xxxvii

Acknowledgements

It’s hard to believe I first began research for this book at an early Software Design
Review for SQL Server “Denali” in Redmond back in October 2010. This is my second

edition as lead author of this book, and although I enjoyed the work even more this
time around, it was certainly no easier than the 2008 edition. My goal—upfront—was
to produce the most comprehensive (yet approachable) SQL Server 2012 developer
resource that I could, one that best answers, “How many ways can I program SQL
Server?” I could not have even contemplated pursuing that goal without the aid of
numerous other talented and caring individuals—folks who deserve special recognition.
Their generous support was lent out in many different yet equally essential ways. So the
order of names mentioned below is by no means an indication of degree or proportion;
simply put, I couldn’t have written this book without everyone’s help.

With so many people to thank, Craig Branning (CEO of Tallan, Inc.) is at the top of
my most wanted list. Back in mid-2010, Craig was quick to approach me about taking
on this project. Next thing I knew, I was on board and we were scarfing down lunch
(smooth work!). Thank you (and all the other wonderful folks at Tallan) for getting this
book off the ground in the first place, and providing a continuous source of support
throughout its production.

I’m also extremely fortunate to have teamed up with my colleague and friend,
 co-author Andrew Brust (Microsoft MVP/RD). This is actually Andrew’s third time
around contributing his knowledge and expertise to this resource; he not only
 co-authored the 2008 edition, but was lead author of the first edition for SQL Server
2005. So I thank him once again for writing four stellar chapters in this new 2012
 edition. And Paul Delcogliano (who also contributed to the 2008 edition) did a superb
job confronting the topic of end-to-end cloud development with SQL Azure Data Sync,
Windows Azure, and Windows Phone 7—all in a single outstanding chapter. Paul, your
ambition is admirable, and I thank you for your tireless work and the great job done!

Ken Jones, my pal at O’Reilly Media, gets special mention for his expert guidance,
plus his steady patience through all the administrative shenanigans. Thank you Ken, and
to your lovely wife, Andrea, as well, for her insightful help with the geospatial content. I
was also very lucky to have worked closely with Russell Jones,Melanie Yarbrough, John
Mueller, and Christian Holdener, whose superb editorial contributions, technical review,
and overall guidance were vital to the successful production of this book.

The assistance provided by a number of people from various Microsoft product
teams helped tackle the challenge of writing about new software as it evolved through

xxxviii Acknowledgements

several beta releases. Thank you to Roger Doherty, for inviting me out to Redmond
for the SDR in 2010, as well as for connecting me with the right people I needed to
get my job done. Gert Drapers and Adam Mahood were particularly helpful for the
 inside scoop on SSDT as it changed from one CTP to the next. Adam’s always direct
and always available lines of communication turned an entire chapter’s hard work into
fun work. Doug Laudenschlager also provided valuable insight, which enhanced new
 coverage of unstructured FILESTREAM data. And naturally, a great big thank you to the
entire product team for creating the best release of SQL Server ever!

I’m also particularly proud of all the brand new .NET data access coverage in this
book, and would like to give special thanks to my pal Marcel de Vries, Microsoft MVP
and RD in the Netherlands. Marcel is a master of distributed architectures, and his
 invaluable assistance greatly helped shape coverage in the WCF data access chapter. Ik
ben heel dankbaar voor jouw inbreng!

This book could not have been written, of course, without the love and support
of my family. I have been consumed by this project for much of the past eighteen
months—which has at times transformed me into an absentee. I owe an enormous debt
of gratitude to my wonderful partner Mark, and our awesome kids Adam, Jacqueline,
Josh, and Sonny, for being so patient and tolerant with me. And greatest thanks of
all go out to my dear Mom, bless her soul, for always encouraging me to write with
 “expression.”

—Leonard Lobel

When you’re not a full-time author, there’s really never a “good” time to write a
book. It’s always an added extra, and it typically takes significantly more time than
anticipated. That creates burdens for many people, including the author’s family, the
book’s editors, and co-authors as well. When one of the authors is starting a new busi-
ness, burdens double, all around. I’d like to thank my family, the Microsoft Press team
and especially this book’s lead author, Lenni Lobel, for enduring these burdens, with
flexibility and uncommonly infinite patience.

—Andrew Brust

 1

Part I

Core SQL Server
Development

CHAPTER 1 Introducing SQL Server Data Tools. 3

CHAPTER 2 T-SQL Enhancements. .45

CHAPTER 3 Exploring SQL CLR .125

CHAPTER 4 Working with Transactions .169

CHAPTER 5 SQL Server Security .207

 3

C H A P T E R 1

Introducing SQL Server Data tools

—Leonard Lobel

With the release of SQL Server 2012, Microsoft delivers a powerful, new integrated development
environment (IDE) for designing, testing, and deploying SQL Server databases—locally,

 offline, or in the cloud—all from right inside Microsoft Visual Studio (both the 2010 version and the
 upcoming Visual Studio 11, currently in beta at the time of this writing). This IDE is called SQL Server
Data Tools (SSDT), and it represents a major step forward from previously available tooling—notably,
SQL Server Management Studio (SSMS) and Visual Studio Database Professional edition (DbPro).

SSDT is not intended to be a replacement for SSMS, but instead can be viewed much more as a
greatly evolved implementation of DbPro. Indeed, SSMS is alive and well in SQL Server 2012, and
it continues to serve as the primary management tool for database administrators who need to
 configure and maintain healthy SQL Server installations. And although DbPro was a good first step
towards offline database development, its relatively limited design-time experience has precluded
its widespread adoption. So for years, programmers have been primarily using SSMS to conduct
 development tasks (and before SQL Server 2005, they typically used two database administrator
[DBA] tools—SQL Enterprise Manager and Query Analyzer). It’s always been necessary for
 programmers to use management-oriented tools (such as SSMS) rather than developer-focused tools
(such as Visual Studio) as a primary database development environment when building database
 applications—until now.

The release of SSDT provides a single environment hosted in Visual Studio, with database
 tooling that specifically targets the development process. Thus, you can now design and build your
 databases without constantly toggling between Visual Studio and other tools. In this chapter, you’ll
learn how to use SSDT inside Visual Studio to significantly enhance your productivity as a SQL Server
 developer. We begin with an overview of key SSDT concepts and features, and then walk you through
 demonstrations of various connected and disconnected scenarios.

4 PArt I Core SQL Server Development

Introducing SSDT

Database tooling Designed for Developers
The inconvenient truth is: database development is hard. Getting everything done correctly is a
huge challenge—proper schema and relational design, the intricacies of Transact-SQL (T-SQL) as a
language, performance tuning, and more, are all difficult tasks in and of themselves. However, with
respect to the development process—the way in which you create and change a database—there are
some particular scenarios that the right tooling can improve greatly. SSDT delivers that tooling.

the SSDt Umbrella of Services and tools
SSDT encompasses more than just the new database tooling covered in this chapter; it is
actually a packaging of what was formerly the Visual Studio 2008–based Business Intelligence
Developer Studio (BIDS) tool. SSDT supports the traditional BIDS project types for SQL Server
Analysis Services (SSAS), Reporting Services (SSRS), and Integration Services (SSIS), in addition
to the new database tooling. So with SSDT, Microsoft has now brought together all of the SQL
Server database development experiences inside a single version of Visual Studio.

Despite its broader definition, this chapter uses the term SSDT specifically as it pertains to
the new database development tools that SSDT adds to the Visual Studio IDE.

Here are some of the challenges that developers face when designing databases.

■■ Dependencies By its very nature, the database is full of dependencies between different
kinds of schema objects. This complicates development, as even the simplest changes can very
quickly become very complex when dependencies are involved.

■■ Late Error Detection You can spend a lot of time building complex scripts, only to find out
that there are problems when you try to deploy them to the database. Or, your script may
deploy without errors, but you have an issue somewhere that doesn’t manifest itself until the
user encounters a run-time error.

■■ “Drift“ Detection The database is a constantly moving target. After deployment, it’s fairly
common for a DBA to come along and tweak or patch something in the production database;
for example, adding indexes to improve query performance against particular tables. When
the environments fall out of sync, the database is in a different state than you and your
 application expect it to be—and those differences need to be identified and reconciled.

■■ versioning Developers have grown so accustomed to working with “change scripts“ that it
makes you wonder, where is the definition of the database? Of course you can rely on it being
in the database, but where is it from the standpoint of preserving and protecting it? How do
you maintain the definition across different versions of your application? It’s very difficult to
revert to a point in time and recall an earlier version of the database that matches up with an

 CHAPTER 1 Introducing SQL Server Data Tools 5

earlier version of an application. So you can’t easily synchronize versions and version history
between your database and application.

■■ Deployment Then there are the challenges of targeting different versions, including most
recently, SQL Azure. You may need to deploy the same database out to different locations,
and must account for varying compatibility levels when different locations are running
 different versions of SQL Server (such as SQL Server 2005, 2008, 2008 R2, 2012, and SQL
Azure).

Many of these pain points are rooted in the notion that the database is “stateful.“ Every time you
build and run a .NET application in Visual Studio, it is always initialized to the same “new“ state but
as soon as the application goes off to access the database, it’s the same “old“ database with the
same schema and data in it. Thus, you are forced to think not only about the design of the database,
but also about how you implement that design—how you actually get that design moved into the
 database given the database’s current state.

If the root of these problems lies in the database being stateful, then the heart of the solution lies
in working declaratively rather than imperatively. So rather than just working with change scripts,
SSDT lets you work with a declaration of what you believe (or want) the database to be. This allows
you to focus on the design, while the tool takes care of writing the appropriate change scripts that
will safely apply your design to an actual target database. SSDT takes a declarative, model-based
 approach to database design—and as you advance through this chapter, you’ll see how this approach
remedies the aforementioned pain points.

Declarative, Model-Based Development
We’ve started explaining that SSDT uses a declarative, model-based approach. What this means is
that there is always an in-memory representation of what a database looks like—an SSDT database
 model—and all the SSDT tools (designers, validations, IntelliSense, schema compare, and so on)
operate on that model. This model can be populated by a live connected database (on-premise or
SQL Azure), an offline database project under source control, or a point-in-time snapshot taken of an
offline database project (you will work with snapshots in the upcoming exercises). But to reiterate,
the tools are agnostic to the model’s backing; they work exclusively against the model itself. Thus,
you enjoy a rich, consistent experience in any scenario—regardless of whether you’re working with
 on-premise or cloud databases, offline projects, or versioned snapshots.

The T-SQL representation of any object in an SSDT model is always expressed in the form of
a CREATE statement. An ALTER statement makes no sense in a declarative context—a CREATE
 statement declares what an object should look like, and that’s the only thing that you (as a developer)
need to be concerned with. Depending on the state of the target database, of course, a change
script containing either a CREATE statement (if the object doesn’t exist yet) or an appropriate
 ALTER statement (if it does) will be needed to properly deploy the object’s definition. Furthermore,
if dependencies are involved (which they very often are), other objects need to be dropped and
 re-created in the deployment process. Fortunately, you can now rely on SSDT to identify any changes
(the “difference“) between your model definition and the actual database in order to compose the

6 PArt I Core SQL Server Development

necessary change script. This keeps you focused on just the definition. Figure 1-1 depicts the SSDT
model-based approach to database development.

Database Snapshot File (.dacpac)

SQL Server 2005,
2008, 2008 R2,

2012

Database Model

SQL Server Database Project

SQL Server Data Tools (SSDT)

LocalDB SQL Azure

FIGURE 1-1 SSDT works with a model backed by connected databases (on-premise or in the cloud), offline
 database projects, or database snapshot files.

Connected Development
Although SSDT places great emphasis on the declarative model, it in no way prevents you from
 working imperatively against live databases when you want or need to. You can open query windows
to compose and execute T-SQL statements directly against a connected database, with the assistance
of a debugger if desired, just as you can in SSMS.

The connected SSDT experience is driven off the new SQL Server Object Explorer in Visual
 Studio. You can use this new dockable tool window to accomplish common database development
tasks that formerly required SSMS. Using the new SQL Server Object Explorer is strikingly similar to
 working against a connected database in SSMS’s Object Explorer—but remember that (and we’ll risk
 overstating this) the SSDT tools operate only on a database model. So when working in connected
mode, SSDT actually creates a model from the real database—on the fly—and then lets you edit that
model. This “buffered“ approach is a subtle, yet key, distinction from the way that SSMS operates.

When you save a schema change made with the new table designer, SSDT works out the necessary
script needed to update the real database so it reflects the change(s) made to the model. Of
course, the end result is the same as the connected SSMS experience, so it isn’t strictly necessary to
 understand this buffered behavior that’s occurring behind the scenes. But after you do grasp it, the
tool’s offline project development and snapshot versioning capabilities will immediately seem natural
and intuitive to you. This is because offline projects and snapshots are simply different backings of

 CHAPTER 1 Introducing SQL Server Data Tools 7

the very same SSDT model. When you’re working with the SQL Server Object Explorer, the model’s
 backing just happens to be a live connected database.

There’s an additional nuance to SSDT’s buffered-while-connected approach to database
 development that bears mentioning. There are in fact two models involved in the process of applying
schema changes to a database. Just before SSDT attempts to apply your schema changes, it actually
creates a new model of the currently connected database. SSDT uses this model as the target for
a model comparison with the model you’ve been editing. This dual-model approach provides the
“drift detection“ mechanism you need to ensure that the schema compare operation (upon which
SSDT will be basing its change script) accounts for any schema changes that may have been made by
another user since you began editing your version of the model. Validation checks will then catch any
problems caused by the other user’s changes (which would not have been present when you began
making your changes).

Disconnected Development
The new SQL Server Object Explorer lets you connect to and interact with any database right from
inside Visual Studio. But SSDT offers a great deal more than a mere replacement for the connected
SSMS experience. It also delivers a rich offline experience with the new SQL Server Database Project
type and local database runtime (LocalDB).

The T-SQL script files in a SQL Server Database Project are all declarative in nature (only CREATE
statements; no ALTER statements). This is a radically different approach than you’re accustomed to
when “developing“ databases in SSMS (where you execute far more ALTER statements than CREATE
statements). Again, you get to focus on defining “this is how the database should look,“ and let the
tool determine the appropriate T-SQL change script needed to actually update the live database to
match your definition.

If you are familiar with the Database Professional (DbPro) edition of Visual Studio, you will instantly
recognize the many similarities between DbPro’s Database Projects and SSDT’s SQL Server Database
Projects. Despite major overlap however, SSDT project types are different than DbPro project types,
and appear as a distinct project template in Visual Studio’s Add New Project dialog. The new table
designer, buffered connection mechanism, and other SSDT features covered in this chapter work
only with SSDT SQL Server Database Projects. However, and as you may have guessed, it’s easy to
upgrade existing DbPro projects to SSDT projects. Just right-click the project in Solution Explorer and
choose Convert To SQL Server Database Project. Note that this is a one-way upgrade, and that DbPro
 artifacts that are not yet supported by SSDT (such as data generation plans, see the following Note)
will not convert.

Note There are several important features still available only in DbPro, most notably
data generation, data compare, schema view, and database unit testing. Eventually, SSDT
plans on providing key elements of the DbPro feature set and will completely replace the
Database Professional edition of Visual Studio. For now though, you must continue to rely
on DbPro for what’s still missing in SSDT.

8 PArt I Core SQL Server Development

The new SQL Server Database Project type enjoys many of the same capabilities and features as
other Visual Studio project types. This includes not only source control for each individual database
object definition, but many of the common code navigation and refactoring paradigms that
 developers have grown to expect of a modern IDE (such as Rename, Goto Definition, and Find All
 References). The SSDT database model’s rich metadata also provides for far better IntelliSense than
what SSMS has been offering since SQL Server 2008, giving you much more of that “strongly-typed“
confidence factor as you code. You can also set breakpoints, single step through T-SQL code, and
work with the Locals window much like you can when debugging .NET project types. With SSDT,
application and database development tooling has now finally been unified under one roof: Visual
Studio.

A major advantage of the model-based approach is that models can be generated from many
different sources. When connected directly via SQL Server Object Explorer, SSDT generates a model
from the connected database, as we explained already. When you create a SQL Server Database
Project (which can be imported from any existing database, script, or snapshot), you are creating
an offline, source-controlled project inside Visual Studio that fully describes a real database. But it’s
 actually a project—not a real database. Now, SSDT generates a model that’s backed by your SQL
Server Database Project. So the experience offline is just the same as when connected—the designers,
IntelliSense, validation checks, and all the other tools work exactly the same way.

As you conduct your database development within the project, you get the same “background
compilation“ experience that you’re used to experiencing with typical .NET development using C#
or Visual Basic (VB) .NET. For example, making a change in the project that can’t be submitted to the
database because of dependency issues will result in design-time warnings and errors in the Error List
pane. You can then click on the warnings and errors to navigate directly to the various dependencies
so they can be dealt with. Once all the build errors disappear, you’ll be able to submit the changes to
update the database.

Versioning and Snapshots
A database project gives you an offline definition of a database. As with all Visual Studio projects,
each database object (table, view, stored procedure, and every other distinct object) exists as a
text file that can be placed under source code control. The project system combined with source
 control enables you to secure the definition of a database in Visual Studio, rather than relying on the
 definition being stored in the database itself.

At any point in time, and as often as you’d like, you can create a database snapshot. A snapshot
is nothing more than a file (in the Data-tier Application Component Package, [dacpac] format) that
holds the serialized state of a database model, based on the current project at the time the snapshot
is taken. It is essentially a single-file representation of your entire database schema. Snapshots
can later be deserialized and used with any SSDT tool (schema compare, for example). So you can
develop, deploy, and synchronize database structures across local/cloud databases and differently
versioned offline database projects, all with consistent tooling.

 CHAPTER 1 Introducing SQL Server Data Tools 9

Pause for a moment to think about the powerful capabilities that snapshots provide. A snaphot
encapsulates an entire database structure into a single .dacpac file that can be instantly deserialized
back into a model at any time. Thus, they can serve as either the source or target of a schema
 compare operation against a live database (on-premise or SQL Azure), an offline SQL Server Database
Project, or some other snapshot taken at any other point in time.

Snapshots can also be helpful when you don’t have access to the target database, but are expected
instead to hand a change script off to the DBA for execution. In addition to the change script, you
can also send the DBA a snapshot of the database project taken just before any of your offline work
was performed. That snapshot is your change script’s assumption of what the live database looks like.
So the DBA, in turn, can perform a schema compare between your snapshot and the live database
(this can be done from SSDT’s command-line tool without Visual Studio). The results of that schema
 compare will instantly let the DBA know if it’s safe to run your change script. If the results reveal
discrepancies between the live database and the database snapshot upon which your change script is
based, the DBA can reject your change script and alert you to the problem.

targeting Different Platforms
SQL Server Database Projects have a target platform switch that lets you specify the specific
SQL Server version that you intend to deploy the project to. All the validation checks against the
 project-backed model are based on this setting, making it trivial for you to test and deploy your
database to any particular version of of SQL Server (2005 and later), including SQL Azure. It’s simply
a matter of choosing SQL Azure as the target to ensure that your database can be deployed to the
cloud without any problems. If your database project defines something that is not supported in SQL
Azure (a table with no clustered index, for example), it will get flagged as an error automatically.

Working with SSDT

Our introduction to the SSDT toolset is complete, and it’s now time to see it in action. The rest of
this chapter presents a sample scenario that demonstrates, step-by-step, how to use many of the
SSDT features that you’ve just learned about. Practicing along with this example will solidify your
knowledge and understanding of the tool, and prepare you for using SSDT in the real world with real
database projects.

Important SSDT does not get installed with either Visual Studio or SQL Server. Instead,
SSDT ships separately via the Web Platform Installer (WebPI). This enables Microsoft to
 distribute timely SSDT updates out-of-band with (that is, without waiting for major releases
of) Visual Studio or SQL Server. Before proceeding, download and install SSDT from
http://msdn.microsoft.com/en-us/data/hh297027.

http://msdn.microsoft.com/en-us/data/hh297027

10 PArt I Core SQL Server Development

Connecting with SQL Server Object explorer
The journey will start by creating a database. You will first use SSDT to execute a prepared script
that creates the database in a query window connected to a SQL Server instance. Then you will
start working with SSDT directly against the connected database. This experience is similar to using
 previous tools, so it’s the perfect place to start. Later on, you’ll switch to working disconnected using
an offline database project.

Launch Visual Studio 2010, click the View menu, and choose SQL Server Object Explorer. This
displays the new SQL Server Object Explorer in a Visual Studio panel (docked to the left, by default).
This new tool window is the main activity hub for the connected development experience in SSDT.
From the SQL Server Object Explorer, you can easily connect to any server instance for which you
have credentials. In our scenario, the localhost instance running on the development machine is a full
SQL Server 2012 Developer edition installation. This instance is assuming the role of a live production
database server that you can imagine is running in an on-premise datacenter. You’re now going to
connect to that “production“ database server.

Right-click the SQL Server node at the top of the SQL Server Object Explorer, choose Add SQL
Server, and type in your machine name as the server to connect to. Although you can certainly,
alternatively, type localhost instead (or even simply the single-dot shorthand syntax for localhost),
we’re directing you to use the machine name instead. This is because you’ll soon learn about the new
local database runtime (LocalDB) that SSDT provides for offline testing and debugging. The LocalDB
instance always runs locally, whereas the production database on the other hand just happens to
be running locally. Because it can be potentially confusing to see both localhost and (localdb) in the
SQL Server Object Explorer, using the machine name instead of localhost makes it clear that one
 represents the production database while the other refers to the database used for local (offline)
development and testing with SSDT. The screen snapshots for the figures in this chapter were taken
on a Windows Server 2008 R2 machine named SQL2012DEV, so we’ll be using that machine name
throughout the chapter when referring to the production database running on localhost. Of course,
you’ll need to replace the assumed SQL2012DEV machine name with your own machine name
 wherever you see it mentioned.

If you have installed SQL Server to use mixed-mode authentication and you are not using
 Windows authentication, then you’ll also need to choose SQL Server authentication and supply your
 credentials at this point, before you can connect. Once connected, SQL Server Object Explorer shows
the production server and lets you drill down to show all the databases running on it, as shown in
Figure 1-2.

 CHAPTER 1 Introducing SQL Server Data Tools 11

FIGURE 1-2 The new SQL Server Object Explorer in Visual Studio expanded to show several connected databases.

Once connected, right-click the server instance node SQL2012DEV and choose New Query. Visual
Studio opens a new T-SQL code editor window, like the one shown in Figure 1-3.

FIGURE 1-3 A connected query window.

This environment should seem very familiar to anyone experienced with SSMS or Query Analyzer.
Notice the status bar at the bottom indicating that the query window is currently connected to the
SQL2012DEV instance (again, it will actually read your machine name). The toolbar at the top includes
a drop-down list indicating the current default database for the instance you’re connected to. As with
previous tools, this will be the master database (as shown at the top of Figure 1-3). You must still take
care to change this setting (or issue an appropriate USE statement) so that you don’t inadvertently
 access the master database when you really mean to access your application’s database. In this
 exercise, you’re creating a brand new database, so it’s fine that the current database is set to master at
this time.

12 PArt I Core SQL Server Development

tip This concern stems from the fact that, by default, the master database is established as
every login’s default database. A great way to protect yourself from accidentally trampling
over the master database when working with SSDT (or any other tool) is to change your
login’s default database to be your application’s database, which will then become the
 default database (rather than master) for every new query window that you open. This
will greatly reduce the risk of unintentional data corruption in master, which can have
 disasterous consequences.

When you navigate to your login from the Security node in SQL Server Object Explorer,
you’ll be able to see its default database set to master in the Properties window, but you
won’t be able to change it. This is a management task that is not supported in the SSDT
tooling, although you can still use SSDT to execute the appropriate ALTER LOGIN statement
in a query window. Alternatively, you can easily make the change in SSMS as follows. Start
SSMS, connect to your server instance, and drill down to your login beneath the Security
and Logins nodes in the SSMS Object Explorer. Then right-click the login and choose
Properties. Click the default database drop-down list, change its value from master to your
application’s database, and click OK. From then on, your database (not master) will be set as
the default for every new SSDT query window that you open.

Type the code shown in Listing 1-1 into the query window (or open the script file available in
the downloadable code on this book’s companion website; see the section “Code Samples“ in the
 “Introduction“ for details on how to download the sample code). You might next be inclined to press
F5 to execute the script, but that won’t work. With SSDT in Visual Studio, pressing F5 builds and
deploys a SQL Server Database Project to a debug instance (you’ll be creating such a project later on,
but you don’t have one yet). This is very different to the way F5 is used in SSMS or Query Analyzer to
immediately execute the current script (or currently selected script).

SSDT uses a different keyboard shortcut for this purpose. In fact, there are two keyboard shortcuts
(with corresponding toolbar buttons and right-click context menu items); one to execute without
a debugger (Ctrl+Shift+E) and one to execute using an attached debugger (Alt+F5). You’ll practice
 debugging later on, so for now just press Ctrl+Shift+E to immediately execute the script and create
the database (you can also click the Execute Query button in the toolbar, or right-click anywhere
within the code window and choose Execute from the context menu).

LISTInG 1-1 T-SQL script for creating the SampleDb database

CREATE DATABASE SampleDb
GO

USE SampleDb
GO

-- Create the customer and order tables
CREATE TABLE Customer(

 CHAPTER 1 Introducing SQL Server Data Tools 13

 CustomerId bigint NOT NULL PRIMARY KEY,
 FirstName varchar(50) NOT NULL,
 LastName varchar(50) NOT NULL,
 CustomerRanking varchar(50) NULL)

CREATE TABLE OrderHeader(
 OrderHeaderId bigint NOT NULL,
 CustomerId bigint NOT NULL,
 OrderTotal money NOT NULL)

-- Create the relationship
ALTER TABLE OrderHeader ADD CONSTRAINT FK_OrderHeader_Customer
 FOREIGN KEY(CustomerId) REFERENCES Customer(CustomerId)

-- Add a few customers
INSERT INTO Customer (CustomerId, FirstName, LastName, CustomerRanking) VALUES
 (1, 'Lukas', 'Keller', NULL),
 (2, 'Jeff', 'Hay', 'Good'),
 (3, 'Keith', 'Harris', 'so-so'),
 (4, 'Simon', 'Pearson', 'A+'),
 (5, 'Matt', 'Hink', 'Stellar'),
 (6, 'April', 'Reagan', '')

-- Add a few orders
INSERT INTO OrderHeader(OrderHeaderId, CustomerId, OrderTotal) VALUES
 (1, 2, 28.50), (2, 2, 169.00), -- Jeff's orders
 (3, 3, 12.99), -- Keith's orders
 (4, 4, 785.75), (5, 4, 250.00), -- Simon's orders
 (6, 5, 6100.00), (7, 5, 4250.00), -- Matt's orders
 (8, 6, 18.50), (9, 6, 10.00), (10, 6, 18.00) -- April's orders
GO

-- Create a handy view summarizing customer orders
CREATE VIEW vwCustomerOrderSummary WITH SCHEMABINDING AS
 SELECT
 c.CustomerID, c.FirstName, c.LastName, c.CustomerRanking,
 ISNULL(SUM(oh.OrderTotal), 0) AS OrderTotal
 FROM
 dbo.Customer AS c
 LEFT OUTER JOIN dbo.OrderHeader AS oh ON c.CustomerID = oh.CustomerID
 GROUP BY
 c.CustomerID, c.FirstName, c.LastName, c.CustomerRanking
GO

This is a very simple script that we’ll discuss in a moment. But first, notice what just happened.
SSDT executed the script directly against a connected SQL Server instance, and then split the code
window horizontally to display the resulting server messages in the bottom pane. The green icon
 labeled Query Executed Successfully in the lower-left corner offers assurance that all went well
with the script execution. Because of the two multi-row INSERT statements used to create sample
 customers and order data, you can see the two “rows affected“ messages in the bottom Message
pane, as shown in Figure 1-4. Overall, the experience thus far is very similar to previous tools, ensuring
a smooth transition to SSDT for developers already familiar with the older tooling.

14 PArt I Core SQL Server Development

FIGURE 1-4 The query window after successfully executing a T-SQL script.

This simple script created a database named SampleDb, with the two tables Customer and
 OrderHeader. It also defined a foreign key on the CustomerId column in both tables, which establishes
the parent-child (one-to-many) relationship between them. It then added a few customer and related
order rows into their respective tables. Finally, it created a view summarizing each customer’s orders
by aggregating all their order totals.

Now run two queries to view some data. At the bottom of the code window, type the following
two SELECT statements:

SELECT * FROM Customer
SELECT * FROM vwCustomerOrderSummary

Notice the IntelliSense as you type. After you finish typing, hover the cursor over Customer,
and then again over vwCustomerOrderSummary. Visual Studio displays tooltips describing those
 objects respectively as a table and a view. Now hover the cursor over the star symbol in each SELECT
 statement. Visual Studio displays a tooltip listing all the fields represented by the star symbol in each
query. This functionality is provided by the SSDT T-SQL language services running in the background
that continuously query the database model backed by the connected SampleDb database.

Now select just the two SELECT statements (leave the entire script above them unselected) and
press Ctrl+Shift+E. The result is similar to pressing F5 in SSMS or Query Analyzer: only the selected
text is executed (which is what you’d expect). SSDT runs both queries and displays their results, as
shown in Figure 1-5.

You don’t need the query window any longer, so go ahead and close it now (you also don’t need
to save the script). Right-click the Databases node in SQL Server Object Explorer and choose Refresh.
You’ll see the new SampleDb database node appear. Expand it to drill down into the database. As
 Figure 1-6 shows, the environment is similar to the Object Explorer in SSMS, and lets you carry out
most (but not all) of the developer-oriented tasks that SSMS lets you perform.

 CHAPTER 1 Introducing SQL Server Data Tools 15

FIGURE 1-5 Viewing the results of selected statements executed in the query window.

FIGURE 1-6 The SampleDb database in SQL Server Object Explorer expanded to show several of its objects.

16 PArt I Core SQL Server Development

The database is now up and running on SQL2012DEV. Everything is perfect—until that email from
marketing arrives. Their team has just put together some new requirements for you, and now there’s
more work to be done.

Gathering New requirements
The new requirements pertain to the way customers are ranked in the Customer table. Originally, the
marketing team had requested adding the CustomerRanking column as a lightweight mechanism for
data entry operators to rank customer performance. This ad-hoc rating was supposed to be loosely
based on the customer’s total purchases across all orders, but you can see from the CustomerRanking
values in Figure 1-5 that users followed no consistency whatsoever as they entered data (no surprise
there). They’ve typed things like A+, so-so, and Good. And some customers have no meaningful data
at all, such as empty strings, whitespace, or NULL values.

To improve the situation, the marketing team would like to retire the ad-hoc data entry column
and replace it with a formalized customer ranking system that is more aligned with their original
intent. In their change request email (which is naturally flagged Urgent), they have attached the
spreadsheet shown in Figure 1-7 containing new reference data for various pre-defined ranking levels.
They’ve scribbled something about deploying to SQL Azure as well, and then they sign off with “P.S.,
We need it by Friday“ (and no surprise there, either).

FIGURE 1-7 Reference data for the new customer ranking system.

After giving the matter some thought, you organize a high-level task list. Your list itemizes the
development steps you plan on taking to fulfill the marketing department’s requirements:

1. Remove the CustomerRanking column from the Customer table.

2. Create a new CustomerRanking table based on the spreadsheet in Figure 1-7, with a primary
key column CustomerRankingId storing the values 1 through 5.

3. Add a new column CustomerRankingId to the Customer table.

4. Create a foreign key on the CustomerRankingId column to establish a relationship between
the Customer table and the new CustomerRanking table.

 CHAPTER 1 Introducing SQL Server Data Tools 17

5. Update the vwCustomerOrderSummary view to join on the new CustomerRanking table.

6. Create a new uspRankCustomers stored procedure to update the Customer table’s new foreign
key column, based on each customer’s total order value.

7. Validate for SQL Azure, then deploy to the cloud.

The rest of this chapter walks through this procedure in detail, step by step. Along the way, you’ll
learn to leverage many important SSDT features and will gain insight into the way the new tooling
works. It’s time to get started with the first step: removing a column from a table.

Note The scenario we’ve presented here is admittedly somewhat artificial. We are not
necessarily advocating these particular steps as the best way to solve a given problem, and
certainly hope you are working with better designs than this in your own database. But for
the purpose of this exercise—namely, learning how to use SSDT—we ask that you go along
with it. The premise may be contrived, but the steps we’ve outlined for the solution are in
fact quite representative of typical recurring activities in the everyday life of an average SQL
Server developer.

Using the table Designer (Connected)
In SQL Server Object Explorer, right-click the Customer table and choose View Designer to open the
SSDT table designer, as shown in Figure 1-8.

FIGURE 1-8 The new SSDT table designer.

The top-left pane of this designer window lists the defined columns in a grid just as in the SSMS
table designer, but the similarity ends there. A very different mechanism is at play with the new SSDT
 designer, one that should be easy to understand after all the discussion we’ve had around declarative,
model-based design. The CREATE TABLE statement in the bottom T-SQL pane gives it away. Know-
ing that the table already exists in the database, why is this a CREATE statement? Well, that’s because

18 PArt I Core SQL Server Development

this isn’t actually T-SQL code that you intend to execute against the database as-is (which would fail
of course, because the table exists). Rather, it’s a T-SQL declaration of “how this table should look,“
whether it exists or not—and indeed, whether it exists with a different schema or not—in the target
database.

Here’s what’s actually happening. The designer is operating over a memory-resident database
model inside its working environment. Because you are connected at the moment, that model is
backed by the live SampleDb database. But when you switch to working offline with a SQL Server
 Database Project (as you will in the next section of this chapter), you’ll interact with the very same
table designer over a model backed by a project instead of a real database. A model can also be
backed by a database snapshot. Because the table designer just operates over a model, the same tool
works consistently in any of these scenarios.

You want to remove the CustomerRanking column, and that can be done either by deleting it from
the grid in the top pane or editing it out of the declarative T-SQL code in the bottom pane. Both
panes are merely views into the same table, so any changes appear bidirectionally. Throughout this
exercise, you’ll experiment with different editing techniques in the table designer, starting with the
quickest method. Just right-click CustomerRanking in the top grid and choose Delete. The column is
removed from the grid and, as you’d expect, the T-SQL code is updated to reflect the change.

That was a pretty easy change. Applying that change to the database should be easy, too. Go
ahead and click the Update button on the toolbar. Unfortunately, instead of just working as you’d like,
you receive the following error message:

Update cannot proceed due to validation errors.
Please correct the following errors and try again.

SQL71501 :: View: [dbo].[vwCustomerOrderSummary] contains an unresolved reference to an
object. Either the object does not exist or the reference is ambiguous because it could refer
to any of the following objects: [dbo].[Customer].[c]::[CustomerRanking], [dbo].[Customer].
[CustomerRanking] or [dbo].[OrderHeader].[c]::[CustomerRanking].
SQL71501 :: View: [dbo].[vwCustomerOrderSummary] contains an unresolved reference to an
object. Either the object does not exist or the reference is ambiguous because it could refer
to any of the following objects: [dbo].[Customer].[c]::[CustomerRanking], [dbo].[Customer].
[CustomerRanking] or [dbo].[OrderHeader].[c]::[CustomerRanking].
SQL71558 :: The object reference [dbo].[Customer].[CustomerID] differs only by case from the
object definition [dbo].[Customer].[CustomerId].
SQL71558 :: The object reference [dbo].[OrderHeader].[CustomerID] differs only by case from the
object definition [dbo].[OrderHeader].[CustomerId].

What went wrong? Referring back to Listing 1-1, notice that the view definition for vwCustomer-
OrderSummary specifies the WITH SCHEMABINDING clause. This means that the columns of the
view are bound to the underlying tables exposed by the view, which protects you from “breaking“
the view with schema changes—as you’ve done just now. The problem, as reported by the first two
errors, is that the schema-bound view’s CustomerRanking column has suddenly been removed from
the Customer table that underlies the view. The second two errors are actually only case-sensitivity
warnings that, on their own, would not prevent the update from succeeding. We will explain these
 case-sensitivity warnings a bit later; for now, remain focused on the dependency issue that’s blocking
the update.

 CHAPTER 1 Introducing SQL Server Data Tools 19

The interesting thing worth noting at this point is that SSDT caught the condition before even
attempting to apply your changes to the live database (which would certainly have thrown an
 error). In fact, you could have been aware of this issue even before clicking Update if you had
 previously opened the Error List pane, because SSDT constantly validates changes to the model in the
 background while you edit it in the designer.

Click the Cancel button to dismiss the error window. Then click the View menu and choose Error
List to open the pane. Notice how the errors and warnings appear, just like compilation errors
 appear for C# and VB .NET projects. And just like those project types, you can double-click items in
the Error List and instantly navigate to the offending code to deal with the errors. In this case, both
 dependency errors are in vwCustomerOrderSummary, so double-click either one now to open a code
editor into the view, as shown in Figure 1-9.

FIGURE 1-9 Detecting and navigating validation errors.

You want to revise this view to join against the new CustomerRanking table, but that’s not coming up
until step 4 in your task list. So for now, just perform the minimum edits necessary to clear the validation
errors (which are identified by red squigglies like you’ve seen in other Visual Studio code windows)
so you can update the database and move on. Delete (by commenting out) the two references to
c.CustomerRanking column from the view (one is in the column list, the other in the GROUP BY clause).
Notice how the errors disappear from the Error List pane as you correct the code. You’re now beginning to
experience the effects of model-based development with SSDT in Visual Studio.

With a clear Error List, you know that all your changes are valid. You have altered a table and a
view, but those changes have been made only to the memory-resident model. The changed objects
are currently open in separate Visual Studio windows, and both windows have an Update button.

20 PArt I Core SQL Server Development

Yet it makes no difference which of the two buttons you click—in either case, Update means that all
changes that have been buffered get sent to the database. So whichever Update button you click,
your edits to both the table and the view are going to get applied to the database at once.

How is that going to happen? The edits were simple enough, but the T-SQL change script needed
to apply those edits is actually a bit more complex. And therein lay the beauty of this new tooling—all
of that scripting complexity is handled for you by SSDT. The tool compares the edited model with a
brand-new model based on the live database, and then works out the change script automatically.
Creating a fresh model from the database at this time makes sure you’re working with its latest state,
in case it drifted because it was modeled for the current editing session. Then it runs an internal
schema compare operation between the edited model (the source) and the latest model based on the
live database (the target) to identify all their differences. Finally, SSDT generates a change script that
can be executed on the live database to apply the changes. Click Update now to generate the change
script.

Before running the change script, SSDT displays an informative report of all the actions that the
change script is going to take. Click Update now to display the Preview Database Updates window, as
shown in Figure 1-10.

FIGURE 1-10 The Preview Database Updates window.

You should always scrutinize this preview to make sure it’s consistent with the actions and results
you would expect of the edits you’ve made. In this case, you’re being warned about data loss in the
Customer table by dropping the CustomerRanking column. You’re also being told that the script will
drop and then re-create the schema binding of the vwCustomerOrderSummary view, before and after
the table is altered. All of this is expected. Now you can click Update Database to immediately execute
the change script, or you can click Generate Script to load the change script into a code editor so you
can view, possibly modify, and choose to either execute it or not.

In most cases, you’ll feel comfortable just clicking Update Database, particularly if you’ve reviewed
the warnings and actions reported by the database update preview. Doing so will immediately

 CHAPTER 1 Introducing SQL Server Data Tools 21

 execute the change script to update the live database. But being that this is your very first update,
click Generate Script instead so you can examine the script before you run it. The script is shown in
Listing 1-2 (to conserve space, error-checking code has been commented out).

LISTInG 1-2 The change script for the altered table and view automatically generated by SSDT.

/*
Deployment script for SampleDb
*/

// ...
:setvar DatabaseName "SampleDb"
GO
// ...
USE [$(DatabaseName)];
GO
// ...
BEGIN TRANSACTION
GO
PRINT N'Removing schema binding from [dbo].[vwCustomerOrderSummary]...';
GO
ALTER VIEW [dbo].[vwCustomerOrderSummary]
AS
SELECT c.CustomerID,
 c.FirstName,
 c.LastName,
 c.CustomerRanking,
 ISNULL(SUM(oh.OrderTotal), 0) AS OrderTotal
FROM dbo.Customer AS c
 LEFT OUTER JOIN
 dbo.OrderHeader AS oh
 ON c.CustomerID = oh.CustomerID
GROUP BY c.CustomerID, c.FirstName, c.LastName, c.CustomerRanking;
// ...
GO
PRINT N'Altering [dbo].[Customer]...';
GO
ALTER TABLE [dbo].[Customer] DROP COLUMN [CustomerRanking];
GO
// ...
PRINT N'Adding schema binding to [dbo].[vwCustomerOrderSummary]...';
GO

-- Create a handy view summarizing customer orders
ALTER VIEW vwCustomerOrderSummary WITH SCHEMABINDING AS
 SELECT
 c.CustomerID, c.FirstName, c.LastName,
 ISNULL(SUM(oh.OrderTotal), 0) AS OrderTotal
 FROM
 dbo.Customer AS c
 LEFT OUTER JOIN dbo.OrderHeader AS oh ON c.CustomerID = oh.CustomerID
 GROUP BY
 c.CustomerID, c.FirstName, c.LastName

22 PArt I Core SQL Server Development

GO
// ...
IF @@TRANCOUNT>0 BEGIN
PRINT N'The transacted portion of the database update succeeded.'
COMMIT TRANSACTION
END
ELSE PRINT N'The transacted portion of the database update failed.'
GO
DROP TABLE #tmpErrors
GO
PRINT N'Update complete.'
GO

It’s great that you didn’t have to write the change script, but it’s still important that you understand
the change script. Let’s look it over quickly now.

Using variable substitution, the script first issues a USE statement that sets SampleDb as the current
database and then it begins a transaction. The transaction will get committed only if the entire
change script completes successfully. Then the script issues an ALTER VIEW statement that removes
the schema binding from vwCustomerOrderSummary without yet changing its definition. So it still
contains those two references to the CustomerRanking column that’s about to get dropped from
the Customer table, but that will not present a problem because WITH SCHEMABINDING has been
removed from the view. Next, the script issues the ALTER TABLE statement that actually drops the
column from the table. After the column is dropped, another ALTER VIEW statement is issued on
vwCustomerOrderSummary with the new version that no longer references the dropped column and
is once again schemabound. Finally, the transaction is committed and the update is complete.

Press Ctrl+Shift+E. The script is executed and output describing actions taken by the script are
displayed in the Messages pane:

Removing schema binding from [dbo].[vwCustomerOrderSummary]...
Altering [dbo].[Customer]...
Adding schema binding to [dbo].[vwCustomerOrderSummary]...
The transacted portion of the database update succeeded.
Update complete.

You can close all open windows now. Visual Studio will prompt to save changes, but it’s not
 necessary to do so because the database has just been updated. Right-click on the database and
choose Refresh, and then drill down into SampleDb in SQL Server Object Explorer to confirm that the
table and view changes have been applied. You will see that the CustomerRanking column has been
 removed from the database, and that completes step 1.

Working Offline with a SQL Server Database Project
With SQL Server Database Projects, you can develop databases with no connection whatsoever to a
SQL Server instance. A SQL Server Database Project is a project that contains individual, declarative,
T-SQL source code files. These source files collectively define the complete structure of a database.

 CHAPTER 1 Introducing SQL Server Data Tools 23

Because the database definition is maintained this way inside a Visual Studio project, it can be
preserved and protected with source code control (SCC) just like the artifacts in all your other Visual
Studio project types. SSDT generates a model from the project structure behind the scenes, just like it
generates a model from the live database when working connected. This lets you use the same SSDT
tools whether working offline or connected.

You carried out your first task online while connected directly to a live database. Now you’ll create
a SQL Server Database Project for the database so that you can continue your work offline. Although
(as you’ve seen) it’s easy to use SSDT for connected development, you should ideally develop your
databases offline with SQL Server Database Projects, and publish to live servers whenever you’re
ready to deploy your changes. By doing so, you will derive the benefits of source control, snapshot
versioning, and integration with the rest of your application’s code through the Visual Studio solution
and project system.

There are several ways to create a SQL Server Database Project. You can start with an empty
project, design a database structure from the ground up, and then publish the entire structure to a
new database on a SQL Server instance locally or in the cloud on SQL Azure. Or, as in this scenario,
you have an existing database on a local SQL Server instance from which you want to generate a SQL
Server Database Project. And you want this project populated with all the declarative T-SQL source
files that completely define the existing database structure.

It’s easy to do this with the Import Database dialog. Right-click the SampleDb database under the
SQL2012DEV instance in SQL Server Object Explorer and choose Create New Project to display the
Import Database dialog, as shown in Figure 1-11.

FIGURE 1-11 Creating a SQL Server Database Project from an existing database.

24 PArt I Core SQL Server Development

The source database connection confirms that your new project will be generated from the
 SampleDb database on SQL2012DEV. Change the target project name from Database1 to SampleDb
(and set the location, too, if you wish). Check the Create New Solution checkbox, and if you have an
SCC provider for Visual Studio, check Add To Source Control as well. Then click Start.

If you checked Add To Source Control, you will be prompted at this point to supply credentials
and server information (this will depend on your default SCC provider in Visual Studio). It takes a few
 moments for Visual Studio to scour the database, discover its schema, and generate the declarative
T-SQL source files for the new project. When done, Visual Studio displays a window with information
describing all the actions it took to create the project. Click Finish to close this window. The new
 project is then opened in the Solution Explorer automatically (docked to the right, by default). The
dbo folder represents the dbo schema in the database. Expand it, and then expand the Tables and
Views folders, as shown in Figure 1-12.

FIGURE 1-12 The source-controlled SQL Server Database Project after importing a database.

SSDT set up your project this way because the Folder Structure setting in the Import Database
dialog (Figure 1-11) was set to Schema\Object Type. This tells SSDT to create a folder for each
 schema, and then a folder for each object type (table, view, and so on) contained in that schema. You
are free to create additional folders as you extend your project. Unless you have a very specific or
unique convention, it is best practice to maintain a consistent project structure based on the schema
 organization in the database like we’ve shown here.

More Information Schemas in SQL Server bear similarity to namespaces in .NET. Our
simple example database has only a single namespace (dbo, short for database owner), but
more complex databases typically consolidate database objects into multiple schemas. Just
as namespaces are used to organize many classes in large .NET applications, schemas help
manage many objects defined in large databases.

Like classes and namespaces, two database objects can be assigned the same name if
they are contained in two different schemas. For example, both Sales.Person and Billing.
Person refer to two completely different Person tables (one in the Sales schema and one in
the Billing schema). SQL Server schemas can define objects at just a single level however,
whereas .NET namespaces can be nested in as many levels as desired to define an elaborate
hierarchy of classes.

 CHAPTER 1 Introducing SQL Server Data Tools 25

taking a Snapshot
Before you make any offline database changes, take a snapshot. This will create a single-file image of
the current database schema that you can refer to or revert to at any time in the future. You’ll take
another snapshot when you’ve completed all your database changes, and thereby preserve the two
points in time— just before, and just after, the changes are made. And because they are maintained
as part of the project, snapshot files are also protected under source control.

Right-click the SampleDb project in Solution Explorer and choose Snapshot Project. After
 validating the project, Visual Studio creates a new Snapshots folder and, inside the Snapshots folder,
it creates a new .dacpac file with a filename based on the current date and time. You’ll usually want to
give the snapshot a better name, so rename the file to version1Baseline.dacpac.

Using the Table Designer (Offline Database Project)
With your “baseline“ snapshot saved, you’re ready to create the new CustomerRanking table. Recall
that this is the new reference table based on the spreadsheet in Figure 1-7. In Solution Explorer,
 right-click the project’s Tables folder (under the dbo schema folder) and choose Add | Table. Name
the table CustomerRanking and click Add.

A new offline table designer window opens. You’ll find that it looks and feels exactly the same as
the one in Figure 1-8 that you used when working online. That’s because it is the same tool, only this
time it’s the designer over a model backed by a source-controlled project file (CustomerRanking.sql)
rather than a model backed by a live table. Because there’s no connected database, the table designer
has no Update button—instead, when working offline, schema changes are saved to the project
script file for that table. This in turn updates the model, and then the same validation checks and
 IntelliSense you experienced when working while connected are run against the project. So you can
find out right away if and when you make a breaking change, before deploying to a real database.

Earlier, when you removed the CustomerRanking column from the Customer table, we mentioned that
you can design the table using either the grid in the top pane or the T-SQL code window in the bottom
pane. You can also view and change parts of the schema definition from the Properties grid. We’ll
 demonstrate all of these techniques now as you lay out the schema of the new CustomerRanking table.

SSDT starts you off with a new table that has one column in it: an int primary key named Id. To
rename this column to CustomerRankingId, select the column name Id in the top pane’s grid, replace
it with CustomerRankingId, and press Enter. Beneath it, add the Rankname column, set its data
type to varchar(20), and uncheck Allow Nulls. You can see that SSDT updates the T-SQL code in the
bottom pane with a CREATE TABLE statement that reflects the changes made in the top pane.

Add the third column by editing the T-SQL code in the bottom pane. Append a comma after the
second column and type [Description] vARCHAR(200) noT nULL. As expected, the grid in the top
pane is updated to show the new Description column you just added in code.

Finally, tweak the data type using the Properties grid. Click the Description column in the top
pane and scroll to the Length property in the Properties grid (to display the Properties grid if it’s not
 currently visible, click View and choose Properties Window). Click the drop-down list and select MAX

26 PArt I Core SQL Server Development

to change the data type from varchar(200) to varchar(max). When you’re done, the table designer
should look similar to Figure 1-13.

FIGURE 1-13 The table designer for the new CustomerRanking table in an offline SQL Server Database Project.

Save CustomerRanking.sql and close the table designer. This completes step 2. You are now ready
to add the foreign key column to the Customer table (step 3) that joins to this new CustomerRanking
table. Double-click Customer.sql in Solution Explorer to open the table designer for the Customer
table. Use any technique you’d like to add a new nullable int column named CustomerRankingId
(it must be nullable at this point, because it doesn’t have any data yet).

Now you can establish the foreign key relationship to the CustomerRanking table (step 4). In the
upper-righthand corner of the Table Designer is a Context View area that summarizes other pertinent
objects related to the table. In the Context View, right-click Foreign Keys and choose Add New
 Foreign Key. Name the new foreign key FK_Customer_CustomerRanking (it is best practice to assign
foreign key names that indicate which tables participate in the relationship). Then edit the FOREIGN
KEY template code added to the T-SQL code window in the bottom pane to be FoREIGn KEy
(CustomerRankingID) REFEREnCES CustomerRanking(CustomerRankingId). The table designer
window should now look similar to Figure 1-14. After reviewing the table schema, save the Customer.sql
file and close the designer.

 CHAPTER 1 Introducing SQL Server Data Tools 27

FIGURE 1-14 The table designer for the Customer table after creating the foreign key on CustomerRankingId.

Introducing LocalDB
Your next tasks involve altering a view (step 5) and creating a stored procedure (step 6). It will be very
helpful to have a test SQL Server environment available as you implement these steps. You don’t want
to use SQL2012DEV, because that’s the “live“ server. You need another SQL Server that can be used
just for testing offline.

LocalDB gives you that test environment. This is a new, lightweight, single-user instance of SQL
Server that spins up on demand when you build your project. This is extremely handy when working
offline and there is no other development server available to you. The official name for this new
 variant of SQL Server is “SQL Express LocalDB,“ which can be misleading because it is distinct from the
Express edition of SQL Server. To avoid confusion, we refer to it simply as “LocalDB.“

Note The new LocalDB does not support every SQL Server feature (for example, it can’t be
used with FILESTREAM). However, it does support most functionality required for typical
database development.

Press F5 to build the project. This first validates the entire database structure defined by the
project and then deploys it to LocalDB. Note, however, that this is just the default behavior; you can
change the project properties to target another available server for testing if you require features not
supported by LocalDB (for example, FILESTREAM, which we cover in Chapter 8).

The deployment is carried out by performing a schema compare between the project and
 LocalDB on the target server. More precisely, and as already explained, models of the source project
and target database are generated, and the schema compare actually works on the two models.
 Being your very first build, the database does not exist yet on the target server, so the schema
 compare generates a script that creates the whole database from scratch. As you modify the project,

28 PArt I Core SQL Server Development

 subsequent builds will generate incremental change scripts that specify just the actions needed to
bring the target database back in sync with the project.

Look back over in SQL Server Object Explorer and you’ll see that SSDT has started a new LocalDB
instance. The host name is (localdb)\SampleDb, and it is a completely separate instance than the
SQL2012DEV instance (which has not yet been updated with the new CustomerRanking table and
the CustomerRankingId foreign key in the Customer table). Figure 1-15 shows SampleDb deployed to
LocalDB, expanded to reveal its tables. Notice that it does include the new CustomerRanking table.

FIGURE 1-15 The local database runtime (LocalDB) after building and deploying the SQL Server Database Project.

Now you have a test database to play around with, but of course there’s no data in it. You will add
some now so that you can test the view you’re about to alter and the stored procedure you’re about
to create. Using simple copy/paste, SSDT lets you import small sets of rows from any “table“ source
(including Microsoft Word and Excel) into a database table that has compatible columns.

First, bring in the reference data from the ranking definitions provided by the spreadsheet in
Figure 1-7. You can easily grab the data straight out of the spreadsheet and dump it right into the
new CustomerRanking table. Open the spreadsheet in Excel, select the five rows of data (complete

 CHAPTER 1 Introducing SQL Server Data Tools 29

rows, not cells or columns), then right-click the selection and choose Copy. Back in SQL Server Object
Explorer, right-click the CustomerRanking table and choose View Data. The Editable Data Grid in
SSDT opens with a template for inserting a new row. Right-click the row selector for the new row
template and choose Paste (be sure to right-click the row selector in the left gray margin area, and
not a cell, before pasting). As shown in Figure 1-16, SSDT faithfully copies the data from Excel into the
 CustomerRanking table.

FIGURE 1-16 Reference data imported into a database table from Excel via the clipboard.

You also need a few customers to work with. Using the same copy/paste technique, you will transfer
rows from the Customer table in the production database to the test database on LocalDB (for this
 exercise, you won’t transfer related order data in the OrderHeader table). There are only a handful of
customers, so you’ll just copy them all over. Typically though, you’d extract just the subset of data that
provides a representative sampling good enough for testing purposes. Expand the production server
(SQL2012DEV) node in SQL Server Object Explorer and drill down to the Customer table. Right-click the
table and choose View Data. Select all the customer rows, then right-click the selection and choose Copy.
Next, right-click the Customer table in the test database on (localdb)\SampleDb and choose View Data.
Right-click the new row selector and choose Paste to copy in the six customer rows.

You are now at step 5, which is to update the vwCustomerOrderSummary view. Recall that this is
the same view you edited back in step 1 (while connected), when you removed the schema-bound
reference to the old CustomerRanking column that was being dropped from the Customer table. With
the new reference table and foreign key relationship now in place, you will revise the view once again
(offline, this time) to join with the CustomerRanking table on CustomerRankingId, so that it can expose
the display name in the reference table’s RankName column.

In Solution Explorer, double-click vwCustomerOrderSummary.sql in the project’s Views folder
 (under the dbo schema folder). The view opens up in a new code window, and your attention may
first be drawn to several squigglies that Visual Studio paints in the view’s code. They’re not red,
 because there is really nothing significantly wrong with the view, and so these are just warnings.
 Hover the cursor over one of them to view the warning text in a tooltip (you can also see all of them
listed as warning items in the Error List pane). The warnings indicate that the view uses CustomerID
(ending in a capital D) to reference a column that is actually defined as CustomerId (ending in a
 lowercase d). These are the same case-sensitivity warnings you saw earlier when attempting to update
the database with dependency issues. Object names in SQL Server are normally not case-sensitive

30 PArt I Core SQL Server Development

(like VB .NET), but non-default collation settings can change that behavior so that they are case-sensitive
(like C#). This would cause a problem if you deployed the view to a SQL Server instance configured for
a case-sensitive collation of object names.

Add another LEFT OUTER JOIN to the view to add in the CustomerRanking table joined on
the CustomerRankingId of the Customer table, and add RankName to the SELECT and GROUP BY
 column lists. You want your code to be squeaky-clean, so now is also a good time to resolve those
 case-sensitivity warnings. Replace CustomerID with CustomerId in the four places that it occurs (once
in the SELECT column list, twice in the first JOIN, and once more in the GROUP BY column list).
Listing 1-3 shows the view definition after making the changes.

LISTInG 1-3 The updated vwCustomerOrderSummary view definition joining on the new CustomerRanking table.

-- Create a handy view summarizing customer orders
CREATE VIEW vwCustomerOrderSummary WITH SCHEMABINDING AS
 SELECT
 c.CustomerId, c.FirstName, c.LastName, r.RankName,
 ISNULL(SUM(oh.OrderTotal), 0) AS OrderTotal
 FROM
 dbo.Customer AS c
 LEFT OUTER JOIN dbo.OrderHeader AS oh ON c.CustomerId = oh.CustomerId
 LEFT OUTER JOIN dbo.CustomerRanking AS r ON c.CustomerRankingId =
 r.CustomerRankingId
 GROUP BY
 c.CustomerId, c.FirstName, c.LastName, r.RankName

Save the vwCustomerOrderSummary.sql file to update the offline project. You know that pressing
F5 now will deploy the changed view to the test database on LocalDB. But what if you attempt to
 execute the script directly by pressing Ctrl+Shift+E, right here in the code window? Go ahead and
try. You’ll receive this error message in response:

Msg 2714, Level 16, State 3, Procedure vwCustomerOrderSummary, Line 2
There is already an object named 'vwCustomerOrderSummary' in the database.

Here’s what happened. First, SSDT connected the query window to the (localdb)\SampleDb
 instance. Then it attempted to execute the script imperatively against the connected database, just as
you’ve already seen with Ctrl+Shift+E. But being part of an offline project, this script is declarative and
so it’s expressed as a CREATE VIEW statement. The view already exists in the database, so the error
message makes perfect sense. Again, the proper way to update the database is to deploy it via an
incremental deployment script by debugging with F5.

However, you are indeed connected to the test database on LocalDB, even though you’re working
inside the query window of an offline project that hasn’t yet been deployed to LocalDB. This means
that you can actually test the view before you deploy it. Select all the text from SELECT until the
end of the script (that is, leave only the CREATE VIEW portion of the window unselected) and press
Ctrl+Shift+E again. This time, you get a much better result. Only the chosen SELECT statement
executes, which is perfectly valid T-SQL for the connected database. The query results show you what

 CHAPTER 1 Introducing SQL Server Data Tools 31

the view is going to return, and you got that information without having to deploy first. In this mode,
you are actually working connected and offline simultaneously! You can select any T-SQL to instantly
execute it, test and debug stored procedures, and even get execution plans, all while “offline.“

refactoring the Database
The view is ready to be deployed, but now you decide to change some names first. Customers
are the only thing being ranked, so shortening the table name CustomerRanking to Ranking and
 column names CustomerRankingId to RankingId is going to make your T-SQL more readable (which is
 important!). Without the proper tooling, it can be very tedious to rename objects in the database. But
the refactoring capabilities provided by SSDT make this remarkably easy.

In the new LEFT OUTER JOIN you just added, right-click on the CustomerRanking table reference,
and then choose Refactor, Rename. Type Ranking for the new table name and click OK. You are
presented with a preview window (Figure 1-17) that will appear very familiar if you’ve ever used the
refactoring features in Visual Studio with ordinary .NET projects.

FIGURE 1-17 Previewing changes before refactoring is applied to the database.

This dialog shows all the references to the CustomerRanking table that will be changed to Ranking
when you click Apply (notice that checkboxes are provided so that you can also choose which
 references should get updated and which should not). Scroll through the change list to preview each
one, and then click Apply to immediately invoke the rename operation. Every affected project file is
updated accordingly, but Visual Studio won’t actually rename project files themselves. The project
script file defining the newly renamed Ranking table is still named CustomerRanking.sql. Right-click
the file in Solution Explorer, choose Rename, and change the filename to Ranking.sql.

Now rename the primary key column in the Ranking table along with its corresponding foreign
key column in the Customer table, both of which are currently named CustomerRankingId. The two
key columns are referenced on the same LEFT OUTER JOIN line, so this will be easy. Right-click the
r.CustomerRankingId key column in the join and choose Refactor, Rename. Type RankingId for the
new name, click OK, preview the changes, and click Apply to update the primary key column name

32 PArt I Core SQL Server Development

in the Ranking table. Then repeat for the c.CustomerRankingId key column to update the foreign key
column name in the Customer table (the actual order in which you refactor the column names in
these tables is immaterial).

There’s one more thing to rename, and that’s the foreign key definition in the Customer table. This
isn’t strictly necessary of course, but the (self-imposed) convention to name foreign keys definitions
after the tables they join dictates that FK_Customer_CustomerRanking should be renamed to
 FK_ Customer_Ranking. The Customer table is specified first in the view’s FROM clause, so right-click
on it now and choose Go to Definition. This navigates directly to the Customer table definition in a
new query window. In the CONSTRAINT clause, right-click FK_Customer_CustomerRanking and choose
Refactor, Rename. Type FK_Customer_Ranking for the new name, click OK, preview the changes
(just one, in this case), and click Apply.

You’re all set to deploy the changes with another build, so press F5 once again. After the build
completes, click Refresh in the SQL Server Object Explorer toolbar and look at the test database
running under (localdb)\SampleDb to confirm that the CustomerRanking table has been renamed
to Ranking. Right-click the Ranking table and choose View Data to confirm that all the data in the
renamed table is intact. When you rename objects in a SQL Server Database Project, SSDT generates
a change script with corresponding EXECUTE sp_rename statements in it, as opposed to dropping one
object and creating another (which, for tables, would result in irrevocable data loss). So the tool does
the right thing, relying ultimately on the SQL Server sp_rename stored procedure to properly change
the object’s name internally within the database.

It’s time to create the stored procedure that ranks the customers. First, create a Stored
 Procedures folder beneath the dbo folder in Solution Explorer (to do this, right-click the dbo folder,
and choose Add | New Folder). This folder would have already been created when you imported the
database into the project, had there been any stored procedures in the database at the time. Then
right-click the new Stored Procedures folder and choose Add | Stored Procedure. Name the stored
procedure uspRankCustomers and click Add. SSDT creates a new file named uspRankCustomers.
sql and opens it in a new T-SQL editor window. Replace the template code with the script shown in
 Listing 1-4 and save it, but keep the window open. Now press F5 to perform another build and push
the new stored procedure out to the test database on LocalDB.

LISTInG 1-4 The stored procedure to rank customers based on their total order amount.

CREATE PROCEDURE uspRankCustomers
AS
 DECLARE @CustomerId int
 DECLARE @OrderTotal money
 DECLARE @RankingId int

 DECLARE curCustomer CURSOR FOR
 SELECT CustomerId, OrderTotal FROM vwCustomerOrderSummary

 OPEN curCustomer
 FETCH NEXT FROM curCustomer INTO @CustomerId, @OrderTotal

 CHAPTER 1 Introducing SQL Server Data Tools 33

 WHILE @@FETCH_STATUS = 0
 BEGIN
 IF @OrderTotal = 0 SET @RankingId = 1
 ELSE IF @OrderTotal < 100 SET @RankingId = 2
 ELSE IF @OrderTotal < 1000 SET @RankingId = 3
 ELSE IF @OrderTotal < 10000 SET @RankingId = 4
 ELSE SET @RankingId = 5

 UPDATE Customer
 SET RankingId = @RankingId
 WHERE CustomerId = @CustomerId

 FETCH NEXT FROM curCustomer INTO @CustomerId, @OrderTotal
 END

 CLOSE curCustomer
 DEALLOCATE curCustomer

This stored procedure “ranks“ the customers, examining them individually and assigning each a
value based on their order total. It does this by opening a cursor against the order summary view,
which returns one row per customer with their individual orders aggregated into a single order total.
Based on the dollar value of the total, it then updates the customer with a ranking value between one
and five. Then it advances to the next customer until it reaches the end of the cursor. As mentioned
at the outset, this solution may be a bit contrived (and we’re sure you can think of a better approach),
but it suits our demonstration purposes here just fine.

testing and Debugging
Are you in the habit of running new or untested code on live databases? We certainly hope not.
Though you could, you should not simply push all of the changes you’ve made in the project (steps
2 through 6) back to the live database on SQL2012DEV, and then run the stored procedure there for
the very first time. It’s much safer to test the stored procedure offline first with LocalDB. You will now
learn how to do that using the integrated debugger in Visual Studio. Then you can confidently deploy
everything back to SQL2012DEV, and finally (step 7), to the cloud!

The uspRankCustomers stored procedure is still open in the code editor. Click inside the left margin
on the OPEN curCustomer line to set a breakpoint just before the cursor is opened. The breakpoint
appears as a red bullet in the margin where you clicked. This is exactly how breakpoints are set in C#
or VB .NET code, and SSDT now delivers a similar debugging experience for T-SQL code as well. In
SQL Server Object Explorer, expand the Stored Procedures node (located beneath Programmability,
just as in SSMS) for SampleDb beneath the LocalDB instance. Right-click the Stored Procedures node,
choose Refresh, and you will see the uspRankCustomers stored procedure you just deployed. Right-
click on the stored procedure and choose Debug Procedure. SSDT generates an EXEC statement to
invoke uspRankCustomers and opens it in a new query window. The debugger is already started, and
is paused on the USE [SampleDb] statement above the EXEC statement.

34 PArt I Core SQL Server Development

More Info The debugging session began instantly in this case because the
 uspRankCustomers stored procedure being debugged has no parameters. When stored
procedure parameters are expected, SSDT will first display a dialog to solicit the parameter
values, and then plug those values into the EXEC statement before starting the debugger.

Press F5 to continue execution. The debugger reaches the EXEC statement, enters the stored
procedure, and then breaks on the OPEN curCustomer statement where you previously set the
breakpoint. Now start single stepping through the stored procedure’s execution with the debugger’s
F10 keystroke. Press F10 three times to step over the next three statements. This opens the cursor,
fetches the first customer from it, and you are now paused on the first IF statement that tests the first
customer’s order total for zero dollars.

Earlier, you copied six customer rows from the SQL2012DEV database to LocalDB, but we
 specifically instructed you not to copy any order data. So this loop will iterate each customer, and
(based on an order total of zero dollars) assign a ranking value of 1 for every customer. Rather than
interrupting your debugging session now to import some sample order data and start over, you will
use the debugger’s Locals window to simulate non-zero order totals for the first two customers. Click
the Debug menu, and then choose Windows | Locals.

In the Locals window, you can see that @CustomerId is 1 (this is the first customer) and
 @ OrderTotal is 0 (expected, because there’s no sample order data). @RankingId is not yet set, but if
you allow execution to continue as-is, the customer will be ranked with a 1. Double-click the 0.0000
value for @OrderTotal in the Locals window, type 5000 and press Enter. Now the stored procedure
thinks that the customer actually has $5,000 in total orders. Press F10 to single step. Because
@OrderTotal no longer equals zero, execution advances to the next IF condition that tests the order
total for being under $100. Press F10 again and execution advances to the next IF condition that
tests for under $1,000. Press F10 once more to reach the IF condition testing for under $10,000.
This condition yields true (there are $5,000 in total orders), so pressing F10 to single step once more
advances to the SET statement that assigns a ranking value of 4. This is the correct value for orders in
the range of $1,000 to $10,000. Figure 1-18 shows the debugging session paused at this point.

Continue pressing F10 to single step through the remaining SET, UPDATE, and FETCH NEXT
 statements, and then back up again to the first IF statement testing the second customer’s order total
value for zero dollars. Use the Locals window to fake another amount; this time change @OrderTotal
to 150. Single step a few more times to make sure that this results in the stored procedure assigning
a ranking value of 3 this time, which is the correct value for orders in the range of $100 to $1,000.
Now press F5 to let the stored procedure finish processing the rest of the customers with no more
 intervention on your part.

When the stored procedure completes execution, right-click the Customer table in SQL Server
Object Explorer (be sure to pick the LocalDB instance and not SQL2012DEV) and choose View Data.
The table data confirms that the first customer’s ranking was set to 4, the second customer’s ranking
was set to 3, and all the other customer rankings were set to 1 (if you already have a Customer table

 CHAPTER 1 Introducing SQL Server Data Tools 35

window open from before, the previous values will still be displayed; you need to click the Refresh
button in the toolbar to update the display).

FIGURE 1-18 T-SQL debugging session of a stored procedure in Visual Studio.

This was by no means exhaustive testing, but it will suffice for demonstration purposes. The key
point is that SSDT provides an environment you can use for debugging and testing as you develop
your database offline, until you’re ready to deploy to a live environment (as you are now).

Comparing Schemas
You are ready to deploy to the database back to the live server on SQL2012DEV. As you may have
correctly surmised by now, the process is fundamentally the same as working offline with LocalDB
each time F5 is pressed: SSDT runs a schema compare to generate a change script. The project
 properties (by default) specify a connection string that points to LocalDB. So building with F5 uses the
test database as the target for the schema compare with the project as the source, and then executes
the generated change script against the test database on LocalDB. This all happens as a completely
unattended set of operations every time you press F5.

Now you will carry out those very same steps once again, only this time you’ll get more involved
in the process. In particular, you will specify the live SQL2012DEV instance as the target for the
schema compare, rather than LocalDB. You will also review the results of the schema compare, and
have the chance to choose to deploy or not deploy specific detected changes. Finally, you’ll get the
 opportunity to view, edit, save, and execute the change script after it is generated, rather than having

36 PArt I Core SQL Server Development

it execute automatically. So there’s a bit more intervention involved in the process now, but you want
it that way. The schema compare process itself is the same as the F5 build—you just get to exercise
more control over it to support different deployment scenarios.

Right-click the SampleDb project in Solution Explorer and choose Schema Compare to open a new
schema compare window. You need to specify a source and target for any schema compare, naturally.
Because you launched the window from the SQL Server Database Project context menu in Solution
Explorer, Visual Studio sets the source to the project automatically, leaving you to set just the target.
To set the target, click its drop-down list and choose Select Target to display the Select Target Schema
dialog, shown in Figure 1-19.

FIGURE 1-19 SSDT lets you choose between projects, databases, and snapshots for schema compare operations.

Notice how you can choose between three schemas for the target—a project, a database, or a data-tier
application file (snapshot). The same choices are also supported for the source, although the SQL Server
Database Project was assumed as the source automatically in this case. Any combination of source and
target source schemas is supported; SSDT simply creates source and target models from your choice of
backings. Then, working off the models, it shows you the differences and generates a change script for
you. This flexibility is a major benefit of model-based database development with SSDT.

The Select Target Schema dialog has correctly assumed that you want to use a database as the
target. All you need to do is choose the live SampleDb database running on SQL2012DEV. Click New
Connection to open a Connection Properties dialog, type your actual machine name for the server
name (which is SQL2012DEV in the current example), choose SampleDb from the database name
drop-down list, and click OK. (Visual Studio will remember this connection for the future, and make
it available for recall in the database dropdown the next time you run a schema compare.) Click OK
once more, and then click the Compare button in the toolbar to start the schema compare.

It takes just a few moments for the operation to complete. When it finishes, the schema compare
displays all the changes you’ve made offline since creating the project (steps 2 through 6). The report
lets you see each added, changed, and dropped object, and it can be organized by type (table, view,
and so on), schema, or action (change, add, or delete). Selecting any object in the top pane presents
its T-SQL declaration in the bottom pane, side-by-side (source on the left, target on the right), with
synchronized scrollbars. The T-SQL is color-coded to highlight every one of the object’s differences.

 CHAPTER 1 Introducing SQL Server Data Tools 37

If desired, you can exclude specific objects from the change script (which hasn’t been generated yet)
by clearing their individual checkboxes back up in the top pane.

Select the vwCustomerOrderSummary view in the top pane to see the source and target versions
of the view in the bottom pane. As shown in Figure 1-20, the rich visual display rendered by the
schema compare tool makes it easy to identify all the changes made to the view.

FIGURE 1-20 Viewing the schema differences between a SQL Server Database Project and a live database.

As with the table designer, you can choose to update the live database immediately by generating
and running the change script without previewing it. Or you can choose to be more cautious, and
just generate the change script. Then you can view, edit, and ultimately decide whether or not to
execute it. Your confidence level should be very high by now, so just click the Update button in the
toolbar (and then click Yes to confirm) to let it run. SSDT updates the target database and displays a
 completion message when it’s done. Click OK to dismiss the message. The differences from before
the update are still displayed in the window, now dimmed in gray (you can click Compare again
to confirm that there are no longer any differences between the project and the live database on
SQL2012DEV). In SQL Server Object Explorer, drill down on SampleDb under SQL2012DEV (or refresh
already drilled down nodes) to verify that it reflects all the work performed in the project for steps 2
through 6 on your task list.

You are almost ready to run the new uspRankCustomers stored procedure and update the live
 Customer table, but there’s one more thing to do before that. Although the deployment created the
schema of the Ranking table, it didn’t copy its data. You need to import the reference data from the
spreadsheet in Figure 1-7 again, this time into the live database on SQL2012DEV. You can certainly use the
same copy/paste trick we showed earlier when you imported the spreadsheet into the test database on
LocalDB, but we’ll take this opportunity now to show you how to script table data with SSDT.

38 PArt I Core SQL Server Development

Note The Ranking table is a typical example of reference data. Databases often rely
on reference data, which are usually small sets of read-only entries, to help define their
structure. Although technically not schema, it would certainly be convenient to mark the
contents of the Ranking table as such, so that the five entries it contains become part of
the SSDT database model and travel with the schema definition wherever you deploy it
to. Unfortunately, this feature could not make it in time for the final product release, but
Microsoft is evaluating plans to add this capability to a future version of SSDT.

Under the (localdb)\SampleDb node (the LocalDB instance) in SQL Server Object Explorer,
 right-click the Ranking table and choose View Data to open a window showing the five rows in the
table. Next, click the Script button on the toolbar (the next to the last button). SSDT generates INSERT
statements for the five rows of data in the Ranking table, and displays them in a new query window.
You want to execute these INSERT statements in a query window connected to the live database on
SQL2012DEV, so select all the INSERT statements and press Ctrl+C to copy them to the clipboard.
Then under the SQL2012DEV node in SQL Server Object Explorer, right-click the SampleDb database
and choose New Query. Press Ctrl+v to paste the INSERT statements into the new query window and
then press Ctrl+Shift+E to execute them. The reference data has now been imported into the live
database and you’re ready to update the customers.

In the same query window, type EXEC uspRankCustomers, select the text of the statement, and
press Ctrl+Shift+E. The stored procedure executes and updates the customers. (You can ignore the
null value warning; it refers to the SUM aggregate function in the view, which does not affect the
result.) To see the final result, type SELECT * FRom vwCustomerorderSummary, select it, and
press Ctrl+Shift+E once again. As shown in Figure 1-21, each customer’s ranking is correctly assigned
based on their total order amount.

FIGURE 1-21 Viewing the final results of offline development in the live database.

 CHAPTER 1 Introducing SQL Server Data Tools 39

Publishing to SQL Azure
The marketing team’s last request was that you deploy a copy of the database to SQL Azure. To ensure
that the database is cloud-ready, you just need to tell SSDT that you are targeting the SQL Azure platform
by changing a property of the project. Then, if any SQL Azure compatibility issues are identified, they can
be resolved before you deploy. As you might expect by now, you will use the very same techniques you’ve
learned throughout this chapter to deploy the SQL Server Database Project to SQL Azure.

Note Our discussion in this section assumes you already have an available SQL Azure
server instance that you can publish to. SQL Azure server names always begin with a unique
identifier randomly assigned just to you, followed by .database.windows.net. Chapter 12
(which is dedicated to SQL Azure) explains how to use the Azure Management Portal to
create your own cloud databases on SQL Azure, after setting up a Windows Azure account.

Right-click the SampleDb project in Solution Explorer and choose Properties. In the Project
 Settings tab, you’ll notice that the Target Platform is currently set to SQL Server 2012. Change it to
SQL Azure as shown in Figure 1-22, press Ctrl+S to save the properties, and then close the properties
window.

FIGURE 1-22 Changing the target platform of a SQL Server Database Project to SQL Azure.

40 PArt I Core SQL Server Development

Now press F5 to once again build the project and deploy it to LocalDB. The build fails, and the
 Error List pane shows the following error:

SQL71560: Table [dbo].[OrderHeader] does not have a clustered index. Clustered indexes are
required for inserting data in this version of SQL Server.

This error informs you that the OrderHeader table is missing a clustered index. The astute reader
might have noticed back in Listing 1-1 that the OrderHeaderId column in this table does not specify
PRIMARY KEY (like the Customer table does on its CustomerId column), and so OrderHeader has no
clustered index. This was an oversight that might not have been caught so easily because tables in on-
premise editions of SQL Server do not require a clustered index. But SQL Azure databases absolutely
require a clustered index on every table, so now that you’re targeting the cloud specifically, the prob-
lem is brought to your attention inside the project.

This is a quick and easy fix to make using the table designer. Back in the SQL Server Database
 Project (in Solution Explorer), double-click the OrderHeader.sql table (under the dbo and Tables
folders) to open the project’s definition of the table in the designer. Right-click the OrderHeaderId
column, choose Set Primary Key, save, and then close the table designer. The primary key definition
results in the creation of a clustered index on the table. This resolves the issue, and you’ll see the error
disappear from the Error List pane immediately.

Now that you know the database is cloud-compatible, you’re ready to deploy it to SQL Azure.
Right-click the SQL Server Database Project in Solution Explorer and choose Publish to display
the Publish Database dialog. Click Edit, enter the server and login information for your SQL Azure
 database, and click OK. Figure 1-23 shows the Publish Database dialog with the target connection
string pointing to a SQL Azure database.

FIGURE 1-23 The Publish Database dialog set to deploy the project to a SQL Azure target instance.

As we’ve been noting all along, you can script the deployment without executing it by clicking
Generate Script. But you’re ready to deploy to SQL Azure right now. Click Publish, and Visual Studio

 CHAPTER 1 Introducing SQL Server Data Tools 41

spins up the same familiar process. It performs a schema compare between the source SQL Server
 Database Project and target SQL Azure instance, and then generates and executes the resulting
change script on the target. As with your very first build to LocalDB, the database does not exist yet
on the target, so the change script creates the whole database in the cloud from scratch. Subsequent
deployments will generate incremental change scripts that specify just the actions needed to synchro-
nize the SQL Azure database with the project.

During the deployment process, the Data Tools Operations window in Visual Studio provides a
dynamic display of what’s happening. Figure 1-24 shows the Data Tools Operations window after the
publish process is complete.

FIGURE 1-24 The Data Tools Operations pane reports all the actions taken to deploy to SQL Azure.

A really nice feature of the Data Tools Operations pane is the ability to see the scripts that were
just executed inside query windows and view their execution results. Click the various links (View
Preview, View Script, and View Results) to review the deployment you just ran.

After deploying, SSDT automatically adds your SQL Azure server instance to the SQL Server
Object Explorer, as shown in Figure 1-25. You can drill down on SQL Azure databases in SQL Server
Object Explorer and work with them using the very same development tools and techniques that
we’ve shown throughout this chapter. It’s exactly the same model-based, buffered experience you
have with connected development of on-premise databases, only now it’s a SQL Azure database
 backing the model. Thus, SQL Server Object Explorer functions as a single access point for connected
 development against any SQL Server database, wherever it’s located.

You’ve used SSDT to successfully implement all the tasks to fulfill your requirements. Before
concluding your work, take another snapshot. Right-click the project in Solution Explorer one last
time and choose Snapshot Project. SSDT serializes the database model (based on the project’s
current state) into another .dacpac file in the Snapshots folder, which you should rename to
 version1Complete.dacpac.

Now your project has two snapshots, Version1Baseline.dacpac and Version1Complete.dacpac, and
each represents the database structure at two different points in time. The collection will grow over
time as you take new snapshots during future development, and thus your project accumulates an
historical account of its database structure as it changes with each new version. And because any
snapshot can serve as either the source or target model of a schema compare operation, it’s very easy

42 PArt I Core SQL Server Development

to difference between any two points in time, or between any single point in time and either a live
database (on-premise or SQL Azure) or an offline SQL Server Database Project.

FIGURE 1-25 A SQL Azure database connected in SQL Server Object Explorer.

Adopting SSDt
No tool is perfect, and SSDT is no exception. Yet even as we call out those areas where the tool is
lacking, we’ll still emphasize what big believers we are in this new technology, and that we greatly
encourage SSDT adoption over traditional database development methods. The SSDT team has done
a fantastic job with the model-based design, and there is a lot more tooling still that can be provided
by leveraging the model’s rich metadata, such as database diagrams and query designers that are not
yet provided. There is also no spatial viewer to graphically display spatial query results, such as the
one provided in SQL Server Management Studio (we cover spatial queries and the spatial viewer in
Chapter 9).

Although SSDT is intimately aware of database schema, it does not provide data-oriented
 functionality. So it can’t generate data or compare data in the database, nor does it support database
unit testing. These are important features supported by the Visual Studio Database Professional edition
(DbPro) that are still missing from SSDT. This means that, although SSDT is positioned to obsolesce
 DbPro, that won’t happen until it achieves parity with key components of the DbPro feature set.

 CHAPTER 1 Introducing SQL Server Data Tools 43

Summary

This chapter began with a high-level overview describing the many challenges developers face
 working with databases during the development process. Through hands-on exercises, you then
saw how the new SQL Server Data Tools (SSDT) provides features that can help you tackle those
 challenges.

You worked through a number of scenarios using SSDT for connected development, offline
 development with the local database runtime (LocalDB), source control, debugging, and testing—and
then deployed to a local environment as well as the cloud—all from within Visual Studio. Along the
way, you learned how to use many important SSDT features, such as schema compare, refactoring,
snapshot versioning, and multi-platform targeting. Although you can always learn more about the
new tools just by using them, this chapter has prepared you to use SSDT as you encounter the many
challenging SQL Server development tasks that lie ahead.

 255

C H A P T E R 6

XML and the relational Database

—Leonard Lobel

Ever since it exploded on the world scene in 1998, eXtensible Markup Language (XML) has served
(and continues to serve) as the de facto text-based standard for exchanging information between

different systems and across the Internet. XML is a markup language (derived from SGML) for
 documents that contain semi-structured hierarchical information. In XML, data is organized as a
tree of parent and child nodes, which is quite different than the way data is structured in the tables
and columns of a traditional relational database. The emerging relevance of this markup format first
inspired the database to support XML in Microsoft SQL Server 2000, which was capable of reading
XML into tables using the OPENXML function, and returning query results as XML using the FOR XML
clause. But it was SQL Server 2005 that really positioned XML as a first-class citizen in the relational
database world with the native xml data type, and all of the rich XML support that comes along with
it, such as XML Schema Definition (XSD) validation, querying with the XML Query (XQuery) and XML
Path (XPath) languages, and updating with XML DML (all of which we explore in this chapter).

Why would you want to store and work with XML in the database? Database purists would
insist that you should never store XML in the database because they view XML strictly as a transfer
 mechanism, not a storage mechanism. They would argue that you should only use XML to transport
data from one database or application to another, deconstruct the XML on import and store it in
relational tables, and reconstruct it on export from the relational tables back to XML for transport. On
the extreme other end of the spectrum, XML proponents view the world as just a bunch of XML files
and use XML technologies (such as XSD, XQuery, XPath) to store and manipulate their data, with little
interest in relational technologies and Transact SQL (T-SQL).

Both camps have good arguments and valid points. A relational database has features such as
 primary keys, indexes, and referential integrity that make it a far superior storage and querying
mechanism for raw data. Some applications, or even databases themselves, shred XML data into
relational data to store it in the database and compose XML when data is retrieved. At other times,
the XML data is simply persisted as (unstructured) text in the database. When Microsoft SQL Server
2000 was introduced, it offered both of these options, yet neither is necessarily the desirable solution
today. Today, the rich XML support in SQL Server 2012 makes it a compelling feature to exploit in a
variety of situations.

So which do you use, a “pure” relational approach or a hybrid approach where you store XML in
the database and work with it there? The answer, as with so much in SQL Server, is “it depends.” When
you are architecting a highly transactional application system (traditionally referred to as an online

256 PArt II Going Beyond relational

transaction processing, or OLTP, system) where many simultaneous reads and writes are performed
by users, the most suitable choice is a full relational database technology that includes features such
as primary keys, referential integrity, and transactions. Or, if you have a massive data warehouse and
want to provide users with access to trend analysis and data mining algorithms, you will still use the
traditional relational model in conjunction with the online analytical processing (OLAP) technology.

Conversely, there are certain times when you should definitely consider using XML in your
 database. One situation that’s particularly suited to XML storage is when you are persisting objects
that are being serialized and deserialized as XML in the application layer. Using the xml data type, as
you’ll learn in this chapter, provides a natural storage space for such data. It’s particularly well-suited
for XML-centric applications—that is, applications that work heavily with XML content storage and
retrieval. XML in the database can also provide a vastly simpler solution than attribute (key/value pair)
tables, when you require a flexible schema that can change without disturbing the schemas of your
relational tables. And regardless of the nature or source of your XML content, you can seamlessly
query against it at the database level by extending the WHERE clause of your ordinary relational
 queries with the XQuery functions that you will learn about in this chapter.

Even if you never actually store data using the xml data type in your underlying tables, the rich
XML support in SQL Server offers powerful benefits. So conversely, you can design views, stored
 procedures, and table-valued functions (TVFs) that package and return complex structures (such
as child entities) inside a single XML snippet as a scalar xml data-typed column in the query result
set—while the source data is all persisted relationally in the database. For example, you can write
a stored procedure that returns a single result set of orders, where each order has an OrderDetails
column describing multiple detail rows as a single xml data-typed value. The stored procedure can
easily manufacture the OrderDetails column on the fly from the related detail rows it joins on for
each order. Thus you can return a set of orders with details in a single result set, rather than the more
 conventional approach of returning multiple result sets or making additional round-trips to the server
to retrieve child entities. Similarly, you can accept hierarchical structures as an xml data type and
shred them into rows inserted into relational tables. These are just a few of many examples where
 using a native xml data type in SQL Server can greatly simplify the processing (including storage,
query, manipulation, and transport) of complex data structures.

Character Data as XmL

XML, in all its dialects, is stored ultimately as string (character) data. Before the xml data type, XML
data could only be stored in SQL Server using ordinary string data types, such as varchar(max) and
text, and doing so raises several challenges. The first issue is validating the XML that is persisted (and
by this we mean validating the XML against an XSD schema). SQL Server has no means of performing
such a validation using ordinary strings, so the XML data can’t be validated except by an outside
application which can be a risky proposition (the true power of a relational database management
system, or RDBMS, is applying rules at the server level).

The second issue is querying the data. Sure, you could look for data using character and pattern
matching by using functions such as CharIndex or PatIndex, but these functions cannot efficiently or

 CHAPTER 6 XML and the Relational Database 257

dependably find specific data in a structured XML document. The developer could also implement
full-text search, which could also index the text data, but this solution would make things only a
little better while adding the overhead of the full-text search engine. It would still be very difficult to
extract data from a specific attribute in a specific child element in the XML content, and it certainly
wouldn’t be very efficient. You would not be able to write a query that said “Show me all data where
the ‘Author’ attribute is set to ‘Lukas Keller’.”

The third issue is modifying the XML data. The developer could simply replace the entire XML
 contents—which is not at all efficient—or use the UpdateText function to do in-place changes.
However, UpdateText requires that you know the exact locations and length of data you are going to
replace, which, as we just stated, would be difficult and slow to do.

The natural evolution of persisting native XML data in the database has been realized since SQL
Server 2005, with powerful T-SQL extensions that address all three of the aforementioned issues. Not
only can SQL Server persist native XML data in the database, but it can index the data, query it using
XPath and XQuery, and even modify it efficiently.

The xml Data Type

Using the xml data type, you can store XML in its native format, query the data within the XML,
 efficiently and easily modify data within the XML without having to replace the entire contents, and
index the data in the XML. You can use xml as any of the following:

■■ A variable

■■ A parameter in a stored procedure or a user-defined function (UDF)

■■ A return value from a UDF

■■ A column in a table

There are some limitations of the xml data type to be aware of. Although this data type can contain
and be checked for null values, unlike other native types, you cannot directly compare an instance of an
xml data type to another instance of an xml data type. (You can, however, convert that instance to a text
data type and then do a compare.) Any such equality comparisons require first casting the xml type to a
character type. This limitation also means that you cannot use ORDER BY or GROUP BY with an xml data
type. There are several other restrictions, which we will discuss in more detail later.

These might seem like fairly severe restrictions, but they don’t really affect the xml data type when
it is used appropriately. The xml data type also has a rich feature set that more than compensates for
these limitations.

Working with the xml Data type as a Variable
Let’s start by writing some code that uses the xml data type as a variable. As with any other T-SQL
variable, you simply declare it and assign data to it. Listing 6-1 shows an example that uses a generic
piece of XML to represent basic order information.

258 PArt II Going Beyond relational

LISTInG 6-1 Creating XML and storing it in an xml variable using T-SQL.

DECLARE @XmlData AS xml = '
<Orders>
 <Order>
 <OrderId>5</OrderId>
 <CustomerId>60</CustomerId>
 <OrderDate>2008-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>25.90</OrderAmount>
 </Order>
</Orders>'

SELECT @XmlData

Listing 6-1 shows an xml variable being declared and assigned like any other native SQL Server
character data type by using the DECLARE statement. The XML is then returned to the caller via a
SELECT statement, and the results appear with the XML in a single column in a single row of data.
Another benefit of having the database recognize that you are working with XML (rather than raw
text that happens to be XML) is that XML results in SQL Server Developer Tools (SSDT) and SQL Server
Management Studio (SSMS) are rendered as a hyperlink. Clicking the hyperlink then opens a new
window displaying nicely formatted XML with color-coding and collapsible/expandable nodes.

Working with XML in tables
Now you will define an actual column as XML in a new AdventureWorks database table. Execute the
code shown in Listing 6-2 to create the new OrdersXML table.

LISTInG 6-2 Creating a table to store XML in the database.

USE AdventureWorks2012
GO

CREATE TABLE OrdersXML(
 OrdersId int PRIMARY KEY,
 OrdersDoc xml NOT NULL DEFAULT '<Orders />')
GO

As we stated earlier, the xml data type has a few other restrictions—in this case, when it is used as
a column in a table:

■■ It cannot be used as a primary key.

■■ It cannot be used as a foreign key.

■■ It cannot be declared with a UNIQUE constraint.

■■ It cannot be declared with the COLLATE keyword.

 CHAPTER 6 XML and the Relational Database 259

We also stated earlier that you can’t compare two instances of the xml data type. Primary keys,
foreign keys, and unique constraints all require that you must be able to compare any included data
types; therefore, XML cannot be used in any of those situations. The SQL Server COLLATE statement is
meaningless with the xml data type because SQL Server does not store the XML as text; rather, it uses
a distinct type of encoding particular to XML. Note however that you can designate a DEFAULT value,
as in this case, where an empty <Orders /> element will be assigned by default if no value is supplied
for OrdersDoc in an INSERT statement.

Now get some data into the column. Listing 6-3 takes some simple static XML and inserts it into
the OrdersXML table you just created, using the xml data type as a variable.

LISTInG 6-3 Storing XML in the database.

DECLARE @XmlData AS xml = '
<Orders>
 <Order>
 <OrderId>5</OrderId>
 <CustomerId>60</CustomerId>
 <OrderDate>2008-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>25.9O</OrderAmount>
 </Order>
</Orders>'

INSERT INTO OrdersXML (OrdersId, OrdersDoc) VALUES (1, @XmlData)

You can insert data into xml columns in a variety of other ways: XML Bulk Load (which we will
discuss later in this chapter), loading from an XML variable (as shown here), or loading from a
 SELECT statement using the FOR XML TYPE feature, which we will discuss shortly. Only well-formed
XML (including fragments) can be inserted—any attempt to insert malformed XML will result in an
 exception, as shown in this fragment where there is a case-sensitivity problem in the end tag (the
word Orders is not capitalized, as it is in the start tag):

INSERT INTO OrdersXML (OrdersId, OrdersDoc) VALUES (2, '<Orders></orders>')

The results produce the following error from SQL Server:

Msg 9436, Level 16, State 1, Line 1
XML parsing: line 1, character 17, end tag does not match start tag

XML Schema Definitions (XSDs)
One very important feature of XML is its ability to strongly type data in an XML document. The XSD
language—itself composed in XML—defines the expected format for all XML documents validated
against a particular XSD. You can use XSD to create an XML schema for your data, requiring that your
data conform to a set of rules that you specify. This gives XML an advantage over just about all other
data transfer/data description methods and is a major contributing factor to the success of the XML
standard.

260 PArt II Going Beyond relational

Without XSD, your XML data would just be another unstructured, text-delimited format. An XSD
defines what your XML data should look like, what elements are required, and what data types those
elements will have. Analogous to how a table definition in SQL Server provides structure and type
validation for relational data, an XML schema provides structure and type validation for the XML data.

We won’t fully describe all the features of the XSD language here—that would require a book of its
own. You can find the XSD specifications at the World Wide Web Consortium (W3C), at
http://www.w3.org/2001/XMLSchema. Several popular schemas are publicly available, including
one for Really Simple Syndication (RSS), Atom Publishing Protocol (APP, based on RSS), which are
 protocols that power weblogs, blogcasts, and other forms of binary and text syndication, as well as
one for SOAP, which dictates how XML Web Services exchange information.

You can choose how to structure your XSD. Your XSD can designate required elements and set
limits on what data types and ranges are allowed. It can even allow document fragments.

SQL Server Schema Collections
SQL Server lets you create your own schemas and store them in the database as database objects, and
to then enforce a schema on any XML instance, including columns in tables and SQL Server variables.
This gives you precise control over the XML that is going into the database and lets you strongly type
your XML instance.

To get started, you can create the following simple schema and add it to the schemas collection in
AdventureWorks2012, as shown in Listing 6-4.

LISTInG 6-4 Creating an XML Schema Definition (XSD).

CREATE XML SCHEMA COLLECTION OrdersXSD AS '
 <xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:simpleType name="OrderAmountFloat" >
 <xsd:restriction base="xsd:float" >
 <xsd:minExclusive value="1.0" />
 <xsd:maxInclusive value="5000.0" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="Orders">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="OrderId" type="xsd:int" />
 <xsd:element name="CustomerId" type="xsd:int" />
 <xsd:element name="OrderDate" type="xsd:dateTime" />
 <xsd:element name="OrderAmount" type="OrderAmountFloat" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 CHAPTER 6 XML and the Relational Database 261

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>'

This schema is named OrdersXSD, and you can use it on any xml type, including variables,
 parameters, return values, and especially columns in tables. This schema defines elements named
OrderId, CustomerId, OrderDate, and OrderAmount. The OrderAmount element references the
 OrderAmountFloat type, which is defined as a float data type whose minimum value is anything
greater than (but not including) 1 and whose maximum value is 5000.

Next, create a simple table and apply the schema to the XML column by referring to the schema
name in parentheses after your xml data type in the CREATE TABLE statement, as shown in Listing 6-5.

LISTInG 6-5 Creating a table with an xml column bound to an XML Schema Definition (XSD).

IF EXISTS(SELECT name FROM sys.tables WHERE name = 'OrdersXML' AND type = 'U')
 DROP TABLE OrdersXML

CREATE TABLE OrdersXML(
 OrdersId int PRIMARY KEY,
 OrdersDoc xml(OrdersXSD) NOT NULL)

As you can see in this example, the OrdersDoc column is defined not as simply xml, but as
xml(OrdersXSD). The xml data type has an optional parameter that allows you to specify the bound
schema. This same usage also applies if you want to bind a schema to another use of an xml data
type, such as a variable or a parameter. SQL Server now allows only a strongly typed XML document
in the OrdersDoc column. This is much better than a CHECK constraint (which you can still add to this
column, but only with a function). An advantage of using an XML schema is that your data is validated
against it and you can enforce xml data types (at the XML level) and make sure that only valid XML
data is allowed into the particular elements. If you were using a CHECK constraint, for example, you
would need a separate CHECK constraint for each validation you wanted to perform. In this example,
without an XSD, several CHECK constraints would be needed just to enforce the minimum and
maximum ages. You would need one constraint requiring the element and then another constraint to
verify the allowed low end of the range and another one to verify the high end of the allowed range.

To see the schema in action, execute the code in Listing 6-6.

LISTInG 6-6 Validating XML data against an XSD.

-- Works because all XSD validations succeed
INSERT INTO OrdersXML VALUES(5, '
 <Orders>
 <Order>

262 PArt II Going Beyond relational

 <OrderId>5</OrderId>
 <CustomerId>60</CustomerId>
 <OrderDate>2011-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>25.90</OrderAmount>
 </Order>
 </Orders>')
GO

-- Won't work because 6.0 is not a valid int for CustomerId
UPDATE OrdersXML SET OrdersDoc = '
 <Orders>
 <Order>
 <OrderId>5</OrderId>
 <CustomerId>6.0</CustomerId>
 <OrderDate>2011-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>25.9O</OrderAmount>
 </Order>
 </Orders>'
 WHERE OrdersId = 5
GO

-- Won't work because 25.9O uses an O for a 0 in the OrderAmount
UPDATE OrdersXML SET OrdersDoc = '
 <Orders>
 <Order>
 <OrderId>5</OrderId>
 <CustomerId>60</CustomerId>
 <OrderDate>2011-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>25.9O</OrderAmount>
 </Order>
 </Orders>'
 WHERE OrdersId = 5
GO

-- Won't work because 5225.75 is too large a value for OrderAmount
UPDATE OrdersXML SET OrdersDoc = '
 <Orders>
 <Order>
 <OrderId>5</OrderId>
 <CustomerId>60</CustomerId>
 <OrderDate>2011-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>5225.75</OrderAmount>
 </Order>
 </Orders>'
 WHERE OrdersId = 5
GO

SQL Server enforces the schema on inserts and updates, ensuring data integrity. The data provided
for the INSERT operation at the top of Listing 6-6 conforms to the schema, so the INSERT works just
fine. Each of the three UPDATE statements that follow all attempt to violate the schema with various
invalid data, and SQL Server rejects them with error messages that show the offending data (and
location) that’s causing the problem:

 CHAPTER 6 XML and the Relational Database 263

Msg 6926, Level 16, State 1, Line 106
XML Validation: Invalid simple type value: '6.0'. Location: /*:Orders[1]/*:Order[1]/*:Customer
Id[1]
Msg 6926, Level 16, State 1, Line 119
XML Validation: Invalid simple type value: '25.9O'. Location: /*:Orders[1]/*:Order[1]/*:Order
Amount[1]
Msg 6926, Level 16, State 1, Line 132
XML Validation: Invalid simple type value: '5225.75'. Location: /*:Orders[1]/*:Order[1]/*:Order
Amount[1]

Lax Validation
XSD also supports lax validation. Say that you want to add an additional element to the XML from
the preceding example, after <OrderAmt>, that is not part of the same schema. Schemas can use
processContents values of skip and strict for any and anyAttribute declarations as a wildcard (if you’re
unfamiliar with these schema attributes and values, they’re used to dictate how the XML parser
should deal with XML elements not found in the schema). If processContents is set to skip, SQL Server
will skip completely the validation of the additional element, even if a schema is available for it. If
processContents is set to strict, SQL Server will require that it has an element or namespace defined in
the current schema against which the element will be validated. Lax validation provides an additional
“in-between” validation option. By setting the processContents attribute for this wildcard section to
lax, you can enforce validation for any elements that have a schema associated with them but ignore
any elements that are not defined in the schema.

Consider the schema you just worked with in Listing 6-4. You can modify this XSD to tolerate
 additional elements after OrderAmount that are defined in another schema, whether or not that
schema is available. A schema needs to be dropped before you can re-create a modified version of
it, and objects bound to the schema must be dropped before you can drop the schema. Therefore,
before re-creating the schema for lax validation, you must execute the following statements:

DROP TABLE OrdersXML
DROP XML SCHEMA COLLECTION OrdersXSD

Now re-create the XSD in Listing 6-4 with one small difference—add the following additional line
just after the last xsd:element line for OrderAmount:

<xsd:any namespace="##other" processContents="lax"/>

With this small change in place, arbitrary XML elements following <OrderAmt> will be allowed
to be stored without failing validation, if the external XSD is not accessible. To see this in action, first
 re-create the same test table as shown in Listing 6-5. Then run the code in Listing 6-7, which inserts
an order containing an additional <Notes> element not defined as part of the OrdersXSD schema.

LISTInG 6-7 Using lax schema validation with XML data.

-- Works because all XSD validations succeed
INSERT INTO OrdersXML VALUES(6, '
 <Orders>

264 PArt II Going Beyond relational

 <Order>
 <OrderId>6</OrderId>
 <CustomerId>60</CustomerId>
 <OrderDate>2011-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>25.90</OrderAmount>
 <Notes xmlns="sf">My notes for this order</Notes>
 </Order>
 </Orders>')

Because of the processContents=”lax” setting in the XSD, SQL Server permits additional elements
 defined in another XSD (the sf namespace in this example, as denoted by the xmlns attribute). The lax
setting in the XSD tells SQL Server to validate the <Notes> element in the XML using the sf namespace if
available, but to allow the element without any validation if the sf namespace is not available.

Union and List types
SQL Server also supports the union of lists with xsd:union, so you can combine multiple lists into one
simple type. For example, in the schema shown in Listing 6-8, the shiptypeList accepts strings such as
FastShippers but also allows alternative integer values.

LISTInG 6-8 Using union and list types in XSD.

-- Cleanup previous objects
DROP TABLE OrdersXML
DROP XML SCHEMA COLLECTION OrdersXSD
GO

-- Union and List types in XSD
CREATE XML SCHEMA COLLECTION OrdersXSD AS '
 <xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:simpleType name="shiptypeList">
 <xsd:union>
 <xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:enumeration value="1" />
 <xsd:enumeration value="2" />
 <xsd:enumeration value="3" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

 CHAPTER 6 XML and the Relational Database 265

 <xsd:enumeration value="FastShippers" />
 <xsd:enumeration value="SHL" />
 <xsd:enumeration value="PSU" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
 <xsd:element name="Orders">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Order">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="OrderId" type="xsd:int" />
 <xsd:element name="CustomerId" type="xsd:int" />
 <xsd:element name="OrderDate" type="xsd:dateTime" />
 <xsd:element name="OrderAmount" type="xsd:float" />
 <xsd:element name="ShipType" type="shiptypeList"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>'

If you use this XSD to validate an XML instance with either a numeric value or a string value in the
enumerated list, it will validate successfully, as demonstrated by the code in Listing 6-9.

LISTInG 6-9 Referencing an XSD list type in XML.

-- Works with 1 or FastShippers in ShipType
DECLARE @OrdersXML xml(OrdersXSD) = '
 <Orders>
 <Order>
 <OrderId>6</OrderId>
 <CustomerId>60</CustomerId>
 <OrderDate>2011-10-10T14:22:27.25-05:00</OrderDate>
 <OrderAmount>25.90</OrderAmount>
 <ShipType>1</ShipType>
 </Order>
 </Orders>'

This example is fairly basic, but it is useful if you have more than one way to describe something
and need two lists to do so. One such possibility is metric and English units of measurement. This
technique is useful when you need to restrict items and are writing them from a database.

266 PArt II Going Beyond relational

We have touched only the surface of using XML schemas in SQL Server. These schemas can get
quite complex, and further discussion is beyond the scope of this book. You can easily enforce
 sophisticated XML schemas in your database once you master the syntax. We believe that you should
always use an XML schema with your XML data to guarantee consistency in your XML data.

XML Indexes
You can create an XML index on an XML column using almost the same syntax as for a standard SQL
Server index. There are four types of XML indexes: a single primary XML index that must be created, and
three types of optional secondary XML indexes that are created over the primary index. An XML index is a
little different from a standard SQL index—it is a clustered index on an internal table used by SQL Server
to store XML data. This table is called the node table and cannot be accessed by programmers.

To get started with an XML index, you must first create the primary index of all the nodes. The primary
index is a clustered index (over the node table, not the base table) that associates each node of your XML
column with the SQL Primary Key column. It does this by indexing one row in its internal representation
(a B+ tree structure) for each node in your XML column, generating an index usually about three times as
large as your XML data. For your XML data to work properly, your table must have an ordinary clustered
primary key column defined. That primary key is used in a join of the XQuery results with the base table.
(XQuery is discussed later on in the section “Querying XML Data Using XQuery.”)

To create a primary XML index, you first create a table with a primary key and an XML column, as
shown in Listing 6-10.

LISTInG 6-10 Creating a primary XML index for XML storage in a table.

IF EXISTS(SELECT name FROM sys.tables WHERE name = 'OrdersXML' AND type = 'U')
 DROP TABLE OrdersXML
GO

CREATE TABLE OrdersXML(
 OrdersId int PRIMARY KEY,
 OrdersDoc xml NOT NULL)

CREATE PRIMARY XML INDEX ix_orders
 ON OrdersXML(OrdersDoc)

These statements create a new primary XML index named ix_orders on the OrdersXML table’s
OrdersDoc column. The primary XML index, ix_orders, now has the node table populated. To examine
the node table’s columns, run the T-SQL shown in Listing 6-11.

LISTInG 6-11 Creating a primary XML index for XML storage in a table.

-- Display the columns in the node table (primary XML clustered index)
SELECT
 c.column_id, c.name, t.name AS data_type

 CHAPTER 6 XML and the Relational Database 267

 FROM
 sys.columns AS c
 INNER JOIN sys.indexes AS i ON i.object_id = c.object_id
 INNER JOIN sys.types AS t ON t.user_type_id = c.user_type_id
 WHERE
 i.name = 'ix_orders' AND i.type = 1
 ORDER BY
 c.column_id

The results are shown in Table 6-1.

TABLE 6-1 Columns in a Typical Node Table.

column_id name data_type

1 id varbinary

2 nid int

3 tagname nvarchar

4 taguri nvarchar

5 tid int

6 value sql_variant

7 lvalue nvarchar

8 lvaluebin varbinary

9 hid varchar

10 xsinil bit

11 xsitype bit

12 pk1 int

The three types of secondary XML indexes are path, value, and property. You can implement a
secondary XML index only after you have created a primary XML index because they are both actually
indexes over the node table. These indexes further optimize XQuery statements made against the
XML data.

A path index creates an index on the Path ID (hid in Table 6-1) and Value columns of the primary
XML index, using the FOR PATH keyword. This type of index is best when you have a fairly complex
document type and want to speed up XQuery XPath expressions that reference a particular node in
your XML data with an explicit value (as explained in the section “Understanding XQuery Expressions
and XPath” later in this chapter). If you are more concerned about the values of the nodes queried
with wildcards, you can create a value index using the FOR VALUE XML index. The VALUE index
 contains the same index columns as the PATH index, Value, and Path ID (hid), but in the reverse
order (as shown in Table 6-1). Using the property type index with the PROPERTY keyword optimizes
 hierarchies of elements or attributes that are name/value pairs. The PROPERTY index contains the
 primary key of the base table, Path ID (hid), and Value, in that order. The syntax to create these

268 PArt II Going Beyond relational

 indexes is shown here; you must specify that you are using the primary XML index by using the USING
XML INDEX syntax as shown in Listing 6-12.

LISTInG 6-12 Creating secondary XML indexes on path, value, and property data.

-- Create secondary structural (path) XML index
CREATE XML INDEX ix_orders_path ON OrdersXML(OrdersDoc)
 USING XML INDEX ix_orders FOR PATH

-- Create secondary value XML index
CREATE XML INDEX ix_orders_val ON OrdersXML(OrdersDoc)
 USING XML INDEX ix_orders FOR VALUE

-- Create secondary property XML index
CREATE XML INDEX ix_orders_prop ON OrdersXML(OrdersDoc)
 USING XML INDEX ix_orders FOR PROPERTY

Be aware of these additional restrictions regarding XML indexes:

■■ An XML index can contain only one XML column, so you cannot create a composite XML index
(an index on more than one XML column).

■■ Using XML indexes requires that the primary key be clustered, and because you can have only
one clustered index per table, you cannot create a clustered XML index.

With the proper XML indexing in place, you can write some very efficient queries using XQuery.
Before we get to XQuery, however, let’s take a look at some other XML features that will help you get
XML data in and out of the database.

FOR XML Commands

SQL Server supports an enhancement to the T-SQL syntax that enables normal relational queries to
output their result set as XML, using any of these four approaches:

■■ FOR XML RAW

■■ FOR XML AUTO

■■ FOR XML EXPLICIT

■■ FOR XML PATH

The first three of these options were introduced with the very first XML support in SQL Server
2000. We’ll start with these options and then cover later XML enhancements added in SQL Server
2008, which includes the fourth option (FOR XML PATH).

 CHAPTER 6 XML and the Relational Database 269

FOR XML RAW
FOR XML RAW produces attribute-based XML. FOR XML RAW essentially creates a flat representation
of the data in which each row returned becomes an element and the returned columns become
the attributes of each element. FOR XML RAW also doesn’t interpret joins in any special way. (Joins
become relevant in FOR XML AUTO.) Listing 6-13 shows an example of a simple query that retrieves
customer and order header data.

LISTInG 6-13 Using FOR XML RAW to produce flat, attribute-based XML.

SELECT TOP 10
 Customer.CustomerID, OrderHeader.SalesOrderID, OrderHeader.OrderDate
 FROM
 Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderHeader
 ON OrderHeader.CustomerID = Customer.CustomerID
 ORDER BY
 Customer.CustomerID
 FOR XML RAW

Both SSDT in Visual Studio and SSMS render the query results as a hyperlink that you can click
on to see the output rendered as properly formatted XML in a color-coded window that supports
expanding and collapsing nodes.

<row CustomerID="11000" SalesOrderID="43793" OrderDate="2005-07-22T00:00:00" />
<row CustomerID="11000" SalesOrderID="51522" OrderDate="2007-07-22T00:00:00" />
<row CustomerID="11000" SalesOrderID="57418" OrderDate="2007-11-04T00:00:00" />
<row CustomerID="11001" SalesOrderID="43767" OrderDate="2005-07-18T00:00:00" />
<row CustomerID="11001" SalesOrderID="51493" OrderDate="2007-07-20T00:00:00" />
<row CustomerID="11001" SalesOrderID="72773" OrderDate="2008-06-12T00:00:00" />
<row CustomerID="11002" SalesOrderID="43736" OrderDate="2005-07-10T00:00:00" />
<row CustomerID="11002" SalesOrderID="51238" OrderDate="2007-07-04T00:00:00" />
<row CustomerID="11002" SalesOrderID="53237" OrderDate="2007-08-27T00:00:00" />
<row CustomerID="11003" SalesOrderID="43701" OrderDate="2005-07-01T00:00:00" />

As you can see, you get flat results in which each row returned from the query becomes a single
element named row and all columns are output as attributes of that element. Odds are, however, that
you will want more structured XML output, which leads us to FOR XML AUTO.

FOR XML AUTO
FOR XML AUTO also produces attribute-based XML (by default), but its output is hierarchical rather
than flat—that is, it can create nested results based on the tables in the query’s join clause. For
 example, using the same query just demonstrated, you can simply change the FOR XML clause to FOR
XML AUTO, as shown in Listing 6-14.

270 PArt II Going Beyond relational

LISTInG 6-14 Using FOR XML AUTO to produce hierarchical, attribute-based XML.

SELECT TOP 10 -- limits the result rows for demo purposes
 Customer.CustomerID, OrderHeader.SalesOrderID, OrderHeader.OrderDate
 FROM
 Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderHeader
 ON OrderHeader.CustomerID = Customer.CustomerID
 ORDER BY
 Customer.CustomerID
 FOR XML AUTO

Execute this query, click the XML hyperlink in the results, and you will see the following output:

<Customer CustomerID="11000">
 <OrderHeader SalesOrderID="43793" OrderDate="2005-07-22T00:00:00" />
 <OrderHeader SalesOrderID="51522" OrderDate="2007-07-22T00:00:00" />
 <OrderHeader SalesOrderID="57418" OrderDate="2007-11-04T00:00:00" />
</Customer>
<Customer CustomerID="11001">
 <OrderHeader SalesOrderID="43767" OrderDate="2005-07-18T00:00:00" />
 <OrderHeader SalesOrderID="51493" OrderDate="2007-07-20T00:00:00" />
 <OrderHeader SalesOrderID="72773" OrderDate="2008-06-12T00:00:00" />
</Customer>
<Customer CustomerID="11002">
 <OrderHeader SalesOrderID="43736" OrderDate="2005-07-10T00:00:00" />
 <OrderHeader SalesOrderID="51238" OrderDate="2007-07-04T00:00:00" />
 <OrderHeader SalesOrderID="53237" OrderDate="2007-08-27T00:00:00" />
</Customer>
<Customer CustomerID="11003">
 <OrderHeader SalesOrderID="43701" OrderDate="2005-07-01T00:00:00" />
</Customer>

As you can see, the XML data has main elements named Customer (based on the alias assigned in
the query) and child elements named OrderHeader (again from the alias). Note that FOR XML AUTO
determines the element nesting order based on the order of the columns in the SELECT clause. You
can rewrite the SELECT clause so that an OrderHeader column comes before a Customer column, by
changing the order of the columns returned by the query, as shown in Listing 6-15.

LISTInG 6-15 Changing the hierarchy returned by FOR XML AUTO by reordering query columns.

SELECT TOP 10
 OrderHeader.SalesOrderID, OrderHeader.OrderDate, Customer.CustomerID
 FROM
 Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderHeader
 ON OrderHeader.CustomerID = Customer.CustomerID
 ORDER BY
 Customer.CustomerID
 FOR XML AUTO

 CHAPTER 6 XML and the Relational Database 271

The output (as viewed in the XML viewer) now looks like this:

<OrderHeader SalesOrderID="43793" OrderDate="2005-07-22T00:00:00">
 <Customer CustomerID="11000" />
</OrderHeader>
<OrderHeader SalesOrderID="51522" OrderDate="2007-07-22T00:00:00">
 <Customer CustomerID="11000" />
</OrderHeader>
<OrderHeader SalesOrderID="57418" OrderDate="2007-11-04T00:00:00">
 <Customer CustomerID="11000" />
</OrderHeader>
<OrderHeader SalesOrderID="43767" OrderDate="2005-07-18T00:00:00">
 <Customer CustomerID="11001" />
</OrderHeader>
<OrderHeader SalesOrderID="51493" OrderDate="2007-07-20T00:00:00">
 <Customer CustomerID="11001" />
</OrderHeader>
<OrderHeader SalesOrderID="72773" OrderDate="2008-06-12T00:00:00">
 <Customer CustomerID="11001" />
</OrderHeader>
<OrderHeader SalesOrderID="43736" OrderDate="2005-07-10T00:00:00">
 <Customer CustomerID="11002" />
</OrderHeader>
<OrderHeader SalesOrderID="51238" OrderDate="2007-07-04T00:00:00">
 <Customer CustomerID="11002" />
</OrderHeader>
<OrderHeader SalesOrderID="53237" OrderDate="2007-08-27T00:00:00">
 <Customer CustomerID="11002" />
</OrderHeader>
<OrderHeader SalesOrderID="43701" OrderDate="2005-07-01T00:00:00">
 <Customer CustomerID="11003" />
</OrderHeader>

These results are probably not what you wanted. To keep the XML hierarchy matching the table
 hierarchy, you must list at least one column from the parent table before any column from a child
table. If there are three levels of tables, at least one other column from the child table must come
before any from the grandchild table, and so on.

FOR XML EXPLICIT
FOR XML EXPLICIT is the most complex but also the most powerful and flexible of the three original
FOR XML options. We cover it now for completeness, but recommend using the simpler FOR XML
PATH feature added in SQL Server 2008 (covered shortly). As you’ll see, FOR XML PATH can shape
query results into virtually any desired XML with much less effort than using FOR XML EXPLICIT.

With FOR XML EXPLICIT, SQL Server constructs XML based on a UNION query of the various
levels of output elements. So, if again you have the Customer and SalesOrderHeader tables and you
want to produce XML output, you must have two SELECT statements with a UNION. If you add the
 SalesOrderDetail table, you must add another UNION statement and SELECT statement.

As we said, FOR XML EXPLICIT is more complex than its predecessors. For starters, you are
 responsible for defining two additional columns that establish the hierarchical relationship of the

272 PArt II Going Beyond relational

XML: a Tag column that acts as a row’s identifier and a Parent column that links child records to the
parent record’s Tag value (similar to EmployeeID and ManagerID). You must also alias all columns to
indicate the element, Tag, and display name for the XML output, as shown in Listing 6-16. Keep in
mind that only the first SELECT statement must follow these rules; any aliases in subsequent SELECT
statements in a UNION query are ignored.

LISTInG 6-16 Shaping hierarchical XML using FOR XML EXPLICIT.

SELECT
 1 AS Tag, -- Tag this resultset as level 1
 NULL AS Parent, -- Level 1 has no parent
 CustomerID AS [Customer!1!CustomerID], -- level 1 value
 NULL AS [SalesOrder!2!SalesOrderID], -- level 2 value
 NULL AS [SalesOrder!2!OrderDate] -- level 2 value
 FROM Sales.Customer AS Customer
 WHERE Customer.CustomerID IN(11077, 11078)
 UNION ALL
 SELECT
 2, -- Tag this resultset as level 2
 1, -- Link to parent at level 1
 Customer.CustomerID,
 OrderHeader.SalesOrderID,
 OrderHeader.OrderDate
 FROM Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderHeader
 ON OrderHeader.CustomerID = Customer.CustomerID
 WHERE Customer.CustomerID IN(11077, 11078)
 ORDER BY
 [Customer!1!CustomerID], [SalesOrder!2!SalesOrderID]
 FOR XML EXPLICIT

Execute this query and click the XML hyperlink to see the following output:

<Customer CustomerID="11077">
 <SalesOrder SalesOrderID="44407" OrderDate="2005-10-16T00:00:00" />
 <SalesOrder SalesOrderID="51651" OrderDate="2007-07-29T00:00:00" />
 <SalesOrder SalesOrderID="60042" OrderDate="2007-12-14T00:00:00" />
</Customer>
<Customer CustomerID="11078">
 <SalesOrder SalesOrderID="52789" OrderDate="2007-08-19T00:00:00" />
 <SalesOrder SalesOrderID="53993" OrderDate="2007-09-08T00:00:00" />
 <SalesOrder SalesOrderID="54214" OrderDate="2007-09-12T00:00:00" />
 <SalesOrder SalesOrderID="54268" OrderDate="2007-09-13T00:00:00" />
 <SalesOrder SalesOrderID="56449" OrderDate="2007-10-21T00:00:00" />
 <SalesOrder SalesOrderID="57281" OrderDate="2007-11-02T00:00:00" />
 <SalesOrder SalesOrderID="57969" OrderDate="2007-11-15T00:00:00" />
 <SalesOrder SalesOrderID="58429" OrderDate="2007-11-23T00:00:00" />
 <SalesOrder SalesOrderID="58490" OrderDate="2007-11-24T00:00:00" />
 <SalesOrder SalesOrderID="61443" OrderDate="2008-01-04T00:00:00" />
 <SalesOrder SalesOrderID="62245" OrderDate="2008-01-17T00:00:00" />
 <SalesOrder SalesOrderID="62413" OrderDate="2008-01-20T00:00:00" />
 <SalesOrder SalesOrderID="67668" OrderDate="2008-04-05T00:00:00" />

 CHAPTER 6 XML and the Relational Database 273

 <SalesOrder SalesOrderID="68285" OrderDate="2008-04-15T00:00:00" />
 <SalesOrder SalesOrderID="68288" OrderDate="2008-04-15T00:00:00" />
 <SalesOrder SalesOrderID="73869" OrderDate="2008-06-27T00:00:00" />
 <SalesOrder SalesOrderID="75084" OrderDate="2008-07-31T00:00:00" />
</Customer>

This result resembles the output generated by the FOR XML AUTO sample in Listing 6-14. So what
is gained by composing a more complex query with FOR XML EXPLICIT? Well, FOR XML EXPLICIT
 allows for some alternative outputs that are not achievable using FOR XML AUTO. For example,
you can specify that certain values be composed as elements instead of attributes by appending
 !ELEMENT to the end of the aliased column, as shown in Listing 6-17.

LISTInG 6-17 Using !ELEMENT to customize the hierarchical XML generated by FOR XML EXPLICIT.

SELECT
 1 AS Tag, -- Tag this resultset as level 1
 NULL AS Parent, -- Level 1 has no parent
 CustomerID AS [Customer!1!CustomerID], -- level 1 value
 NULL AS [SalesOrder!2!SalesOrderID], -- level 2 value
 NULL AS [SalesOrder!2!OrderDate!ELEMENT] -- level 2 value rendered as an
element
 FROM Sales.Customer AS Customer
 WHERE Customer.CustomerID IN(11077, 11078)
 UNION ALL
 SELECT
 2, -- Tag this resultset as level 2
 1, -- Link to parent at level 1
 Customer.CustomerID,
 OrderHeader.SalesOrderID,
 OrderHeader.OrderDate
 FROM Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderHeader
 ON OrderHeader.CustomerID = Customer.CustomerID
 WHERE Customer.CustomerID IN(11077, 11078)
 ORDER BY
 [Customer!1!CustomerID], [SalesOrder!2!SalesOrderID]
 FOR XML EXPLICIT

Only one minor change was made (the OrderDate column alias has !ELEMENT appended to the
end of it). Aliasing a column with !ELEMENT in a FOR XML EXPLICIT query results in that column
 being rendered as an element instead of an attribute, as shown here:

<Customer CustomerID="11077">
 <SalesOrder SalesOrderID="44407">
 <OrderDate>2005-10-16T00:00:00</OrderDate>
 </SalesOrder>
 <SalesOrder SalesOrderID="51651">
 <OrderDate>2007-07-29T00:00:00</OrderDate>
 </SalesOrder>
 <SalesOrder SalesOrderID="60042">
 <OrderDate>2007-12-14T00:00:00</OrderDate>
 </SalesOrder>

274 PArt II Going Beyond relational

</Customer>
<Customer CustomerID="11078">
 <SalesOrder SalesOrderID="52789">
 <OrderDate>2007-08-19T00:00:00</OrderDate>
 </SalesOrder>
 <SalesOrder SalesOrderID="53993">
 <OrderDate>2007-09-08T00:00:00</OrderDate>
 </SalesOrder>
 <SalesOrder SalesOrderID="54214">
 <OrderDate>2007-09-12T00:00:00</OrderDate>
 </SalesOrder>
 :

Notice that the OrderDate is now being rendered as a child element of the SalesOrder element.
Thus, FOR XML EXPLICIT mode enables greater customization, but it also requires creating complex
queries to achieve custom results. For example, to add a few more fields from OrderHeader and to
add some additional fields from OrderDetail (a third hierarchical table), you would have to write the
query as shown in Listing 6-18.

LISTInG 6-18 Using FOR XML EXPLICIT to produce three-level hierarchical XML order data.

SELECT
 1 AS Tag,
 NULL AS Parent,
 CustomerID AS [Customer!1!CustomerID],
 NULL AS [SalesOrder!2!SalesOrderID],
 NULL AS [SalesOrder!2!TotalDue],
 NULL AS [SalesOrder!2!OrderDate!ELEMENT],
 NULL AS [SalesOrder!2!ShipDate!ELEMENT],
 NULL AS [SalesDetail!3!ProductID],
 NULL AS [SalesDetail!3!OrderQty],
 NULL AS [SalesDetail!3!LineTotal]
 FROM Sales.Customer AS Customer
 WHERE Customer.CustomerID IN(11077, 11078)
 UNION ALL
 SELECT
 2,
 1,
 Customer.CustomerID,
 OrderHeader.SalesOrderID,
 OrderHeader.TotalDue,
 OrderHeader.OrderDate,
 OrderHeader.ShipDate,
 NULL,
 NULL,
 NULL
 FROM Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderHeader
 ON OrderHeader.CustomerID = Customer.CustomerID
 WHERE Customer.CustomerID IN(11077, 11078)
 UNION ALL
SELECT
 3,

 CHAPTER 6 XML and the Relational Database 275

 2,
 Customer.CustomerID,
 OrderHeader.SalesOrderID,
 OrderHeader.TotalDue,
 OrderHeader.OrderDate,
 OrderHeader.ShipDate,
 OrderDetail.ProductID,
 OrderDetail.OrderQty,
 OrderDetail.LineTotal
 FROM Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderHeader
 ON OrderHeader.CustomerID = Customer.CustomerID
 INNER JOIN Sales.SalesOrderDetail AS OrderDetail
 ON OrderDetail.SalesOrderID = OrderHeader.SalesOrderID
 WHERE Customer.CustomerID IN(11077, 11078)
 ORDER BY [Customer!1!CustomerID], [SalesOrder!2!SalesOrderID]
 FOR XML EXPLICIT

This query produces the following XML:

<Customer CustomerID="11077">
 <SalesOrder SalesOrderID="44407" TotalDue="3729.3640">
 <OrderDate>2005-10-16T00:00:00</OrderDate>
 <ShipDate>2005-10-23T00:00:00</ShipDate>
 <SalesDetail ProductID="778" OrderQty="1" LineTotal="3374.990000" />
 <SalesDetail ProductID="781" OrderQty="1" LineTotal="2319.990000" />
 <SalesDetail ProductID="880" OrderQty="1" LineTotal="54.990000" />
 </SalesOrder>
 <SalesOrder SalesOrderID="51651" TotalDue="2624.3529">
 <OrderDate>2007-07-29T00:00:00</OrderDate>
 <ShipDate>2007-08-05T00:00:00</ShipDate>
 </SalesOrder>
 <SalesOrder SalesOrderID="60042" TotalDue="2673.0613">
 <OrderDate>2007-12-14T00:00:00</OrderDate>
 <ShipDate>2007-12-21T00:00:00</ShipDate>
 <SalesDetail ProductID="969" OrderQty="1" LineTotal="2384.070000" />
 <SalesDetail ProductID="707" OrderQty="1" LineTotal="34.990000" />
 </SalesOrder>
</Customer>
<Customer CustomerID="11078">
 <SalesOrder SalesOrderID="52789" TotalDue="71.2394">
 <OrderDate>2007-08-19T00:00:00</OrderDate>
 <ShipDate>2007-08-26T00:00:00</ShipDate>
 <SalesDetail ProductID="923" OrderQty="1" LineTotal="4.990000" />
 <SalesDetail ProductID="707" OrderQty="1" LineTotal="34.990000" />
 <SalesDetail ProductID="860" OrderQty="1" LineTotal="24.490000" />
 <SalesDetail ProductID="922" OrderQty="1" LineTotal="3.990000" />
 <SalesDetail ProductID="877" OrderQty="1" LineTotal="7.950000" />
 </SalesOrder>
 :

276 PArt II Going Beyond relational

As you can see, the code has become quite complex, and will become even more complex as
you add additional data to the output. Although this query is perfectly valid, the same result can be
achieved with far less effort using the FOR XML PATH statement.

Additional FOR XML Features

Just about all of the original XML support first introduced in SQL Server 2000 XML support revolves
around FOR XML, a feature that is still very much underused by developers. Since then, SQL Server
has enhanced FOR XML in the following ways:

■■ Using the TYPE option, FOR XML can output to an xml data type (as opposed to streamed
results) from a SELECT statement, which in turn allows you to nest the results of SELECT…FOR
XML into another SELECT statement.

■■ The FOR XML PATH option allows you to more easily shape data and produce element-based
XML than the FOR XML EXPLICIT option that we just covered.

■■ You can explicitly specify a ROOT element for your output.

■■ You can produce element-based XML with FOR XML AUTO.

■■ FOR XML can produce XML with an embedded, inferred XSD schema.

the TYPE Option
As of SQL Server 2005, xml is an intrinsic data type of SQL Server. Thus, you can cast the XML output
from a FOR XML query directly into an xml data type instance, as opposed to streaming XML results
directly or immediately to the client. You accomplish this by using the TYPE keyword after your FOR
XML statement, as shown in Listing 6-19.

LISTInG 6-19 Using the TYPE option with FOR XML AUTO to cast a subquery result set as an xml data type.

SELECT
 CustomerID,
 (SELECT SalesOrderID, TotalDue, OrderDate, ShipDate
 FROM Sales.SalesOrderHeader AS OrderHeader
 WHERE CustomerID = Customer.CustomerID
 FOR XML AUTO, TYPE) AS OrderHeaders
 FROM
 Sales.Customer AS Customer
 WHERE
 CustomerID IN (11000, 11001)

This query returns two columns. The first is the integer CustomerID and the second is an
 OrderHeaders column of type xml. The second column is constructed by a subquery that generates

 CHAPTER 6 XML and the Relational Database 277

XML using FOR XML AUTO, and the TYPE option casts the generated XML from the subquery into an
xml data type that gets returned as the OrderHeaders column of the main query.

FOR XML PATH
As we already mentioned, FOR XML PATH gives you fine control over the generated XML much like
FOR XML EXPLICIT does, but is much simpler to use. With FOR XML PATH, you simply assign column
aliases with XPath expressions that shape your XML output, as shown in Listing 6-20.

LISTInG 6-20 Using FOR XML PATH to shape XML output with XPath-based column aliases.

SELECT
 BusinessEntityID AS [@BusinessEntityID],
 FirstName AS [ContactName/First],
 LastName AS [ContactName/Last],
 EmailAddress AS [ContactEmailAddress/EmailAddress1]
 FROM
 HumanResources.vEmployee
 FOR XML PATH('Contact')

The output looks like this:

<row BusinessEntityID="263">
 <ContactName>
 <First>Jean</First>
 <Last>Trenary</Last>
 </ContactName>
 <ContactEmailAddress>
 <EmailAddress1>jean0@adventure-works.com</EmailAddress1>
 </ContactEmailAddress>
</row>
<row BusinessEntityID="78">
 <ContactName>
 <First>Reuben</First>
 <Last>D'sa</Last>
 </ContactName>
 <ContactEmailAddress>
 <EmailAddress1>reuben0@adventure-works.com</EmailAddress1>
 </ContactEmailAddress>
</row>
 :

Notice that the BusinessEntityID column is rendered as an attribute. This is because it was aliased
as @BusinessEntityID, and the @-symbol in XPath means “attribute.” Also notice that the FirstName
and LastName columns are rendered as First and Last elements nested within a ContactName
 element. This again is due to the XPath-based syntax of the column aliases, ContactName/First and
ContactName/Last.

278 PArt II Going Beyond relational

Now let’s revisit the three-level hierarchical example we recently demonstrated with FOR XML EXPLICIT
in Listing 6-18. Using the TYPE option in conjunction with FOR XML PATH, you can reproduce that awful
and complex query with a much simpler version, as shown in Listing 6-21.

LISTInG 6-21 Using FOR XML PATH to shape XML output for a three-level hierarchy.

SELECT
 CustomerID AS [@CustomerID],
 (SELECT
 SalesOrderID AS [@SalesOrderID],
 TotalDue AS [@TotalDue],
 OrderDate,
 ShipDate,
 (SELECT
 ProductID AS [@ProductID],
 OrderQty AS [@OrderQty],
 LineTotal AS [@LineTotal]
 FROM Sales.SalesOrderDetail
 WHERE SalesOrderID = OrderHeader.SalesOrderID
 FOR XML PATH('OrderDetail'), TYPE)
 FROM Sales.SalesOrderHeader AS OrderHeader
 WHERE CustomerID = Customer.CustomerID
 FOR XML PATH('OrderHeader'), TYPE)
 FROM Sales.Customer AS Customer
 INNER JOIN Person.Person AS Contact
 ON Contact.BusinessEntityID = Customer.PersonID
 WHERE CustomerID BETWEEN 11000 AND 11999
 FOR XML PATH ('Customer')

Isn’t that much better than the contorted UNION-based approach taken by FOR XML EXPLICIT in
Listing 6-18? In this simpler version that produces the same result, subqueries are used with the XML
PATH statement in conjunction with TYPE to produce element-based XML nested inside a much larger
FOR XML PATH statement. This returns each separate Order for the customer as a new child node of
the CustomerID node. And again, XPath syntax is used in the column aliases to define element and
attribute structure in the generated XML. Here are the results of the query:

<Customer CustomerID="11480">
 <OrderHeader SalesOrderID="51053" TotalDue="2288.9187">
 <OrderDate>2007-06-28T00:00:00</OrderDate>
 <ShipDate>2007-07-05T00:00:00</ShipDate>
 <OrderDetail ProductID="779" OrderQty="1" LineTotal="2071.419600" />
 </OrderHeader>
 <OrderHeader SalesOrderID="52329" TotalDue="2552.5169">
 <OrderDate>2007-08-10T00:00:00</OrderDate>
 <ShipDate>2007-08-17T00:00:00</ShipDate>
 <OrderDetail ProductID="782" OrderQty="1" LineTotal="2294.990000" />
 <OrderDetail ProductID="870" OrderQty="1" LineTotal="4.990000" />
 <OrderDetail ProductID="871" OrderQty="1" LineTotal="9.990000" />
 </OrderHeader>
 <OrderHeader SalesOrderID="62813" TotalDue="612.1369">
 <OrderDate>2008-01-26T00:00:00</OrderDate>
 <ShipDate>2008-02-02T00:00:00</ShipDate>

 CHAPTER 6 XML and the Relational Database 279

 <OrderDetail ProductID="999" OrderQty="1" LineTotal="539.990000" />
 <OrderDetail ProductID="872" OrderQty="1" LineTotal="8.990000" />
 <OrderDetail ProductID="870" OrderQty="1" LineTotal="4.990000" />
 </OrderHeader>
</Customer>
<Customer CustomerID="11197">
 <OrderHeader SalesOrderID="57340" TotalDue="46.7194">
 :

If you are familiar and comfortable with XPath, you will appreciate some additional XML PATH features.
You can use the following XPath node functions to further control the shape of your XML output:

■■ data

■■ comment

■■ node

■■ text

■■ processing-instruction

The following example uses the data and comment methods of XPath. The data method takes the
results of the underlying query and places them all inside one element. The comment method takes
data and transforms it into an XML comment, as demonstrated in Listing 6-22.

LISTInG 6-22 Using FOR XML PATH with the comment and data XPath methods.

SELECT
 Customer.BusinessEntityID AS [@CustomerID],
 Customer.FirstName + ' ' + Customer.LastName AS [comment()],
 (SELECT
 SalesOrderID AS [@SalesOrderID],
 TotalDue AS [@TotalDue],
 OrderDate,
 ShipDate,
 (SELECT ProductID AS [data()]
 FROM Sales.SalesOrderDetail
 WHERE SalesOrderID = OrderHeader.SalesOrderID
 FOR XML PATH('')) AS [ProductIDs]
 FROM Sales.SalesOrderHeader AS OrderHeader
 WHERE CustomerID = Customer.BusinessEntityID
 FOR XML PATH('OrderHeader'), TYPE)
 FROM Sales.vIndividualCustomer AS Customer
 WHERE BusinessEntityID IN (11000, 11001)
 FOR XML PATH ('Customer')

As you can see from the results, the concatenated contact name becomes an XML comment, and
the subquery of Product IDs is transformed into one element:

<Customer CustomerID="11000">
 <!--Mary Young-->
 <OrderHeader SalesOrderID="43793" TotalDue="3756.9890">

280 PArt II Going Beyond relational

 <OrderDate>2005-07-22T00:00:00</OrderDate>
 <ShipDate>2005-07-29T00:00:00</ShipDate>
 <ProductIDs>771</ProductIDs>
 </OrderHeader>
 <OrderHeader SalesOrderID="51522" TotalDue="2587.8769">
 <OrderDate>2007-07-22T00:00:00</OrderDate>
 <ShipDate>2007-07-29T00:00:00</ShipDate>
 <ProductIDs>779 878</ProductIDs>
 </OrderHeader>
 <OrderHeader SalesOrderID="57418" TotalDue="2770.2682">
 <OrderDate>2007-11-04T00:00:00</OrderDate>
 <ShipDate>2007-11-11T00:00:00</ShipDate>
 <ProductIDs>966 934 923 707 881</ProductIDs>
 </OrderHeader>
</Customer>
<Customer CustomerID="11001">
 <!--Amber Young-->
 <OrderHeader SalesOrderID="43767" TotalDue="3729.3640">
 <OrderDate>2005-07-18T00:00:00</OrderDate>
 :

emitting a ROOT element
Technically, an XML document must be contained inside of a single root element. You’ve seen many
applied uses of FOR XML that generate all types of XML, but without a root element, the generated
XML can only represent a portion of an XML document. The ROOT option allows you to add a main,
or root, element to your FOR XML output so that the query results can be consumed as a complete
XML document. You can combine ROOT with other FOR XML keywords. In Listing 6-23, ROOT is used
with FOR XML AUTO to wrap a single Orders root element around the results of the query.

LISTInG 6-23 Using FOR XML with ROOT to generate a root element.

SELECT
 Customer.CustomerID,
 OrderDetail.SalesOrderID,
 OrderDetail.OrderDate
 FROM
 Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderDetail
 ON OrderDetail.CustomerID = Customer.CustomerID
 WHERE
 Customer.CustomerID IN (11000, 11001)
 ORDER BY
 Customer.CustomerID
 FOR XML AUTO, ROOT('Orders')

The output looks like this:

<Orders>
 <Customer CustomerID="11000">
 <OrderDetail SalesOrderID="43793" OrderDate="2005-07-22T00:00:00" />

 CHAPTER 6 XML and the Relational Database 281

 <OrderDetail SalesOrderID="51522" OrderDate="2007-07-22T00:00:00" />
 <OrderDetail SalesOrderID="57418" OrderDate="2007-11-04T00:00:00" />
 </Customer>
 <Customer CustomerID="11001">
 <OrderDetail SalesOrderID="43767" OrderDate="2005-07-18T00:00:00" />
 <OrderDetail SalesOrderID="51493" OrderDate="2007-07-20T00:00:00" />
 <OrderDetail SalesOrderID="72773" OrderDate="2008-06-12T00:00:00" />
 </Customer>
</Orders>

The code output here is the same as any FOR XML AUTO output for this query, except that the
XML ROOT we specified with the ROOT keyword now surrounds the data. In this example, we used
ROOT (‘Orders’), so our output is surrounded with an <Orders> XML element.

Producing an Inline XSD Schema
As you’ve seen, schemas provide an enforceable structure for your XML data. When you export data
using the FOR XML syntax, you might want to include an inline XML schema for the recipient so that
the recipient can enforce the rules on their end as well. When you use the RAW and AUTO modes,
you can produce an inline XSD schema as part of the output by using the XMLSCHEMA keyword, as
shown in Listing 6-24.

LISTInG 6-24 Using FOR XML with XMLSCHEMA to generate an inline XSD schema with the query results.

SELECT
 Customer.CustomerID,
 OrderDetail.SalesOrderID,
 OrderDetail.OrderDate
 FROM
 Sales.Customer AS Customer
 INNER JOIN Sales.SalesOrderHeader AS OrderDetail
 ON OrderDetail.CustomerID = Customer.CustomerID
 WHERE
 Customer.CustomerID IN (11000, 11001)
 ORDER BY
 Customer.CustomerID
 FOR XML AUTO, ROOT('Orders'), XMLSCHEMA

The output looks like this:

<Orders>
 <xsd:schema targetNamespace="urn:schemas-microsoft-com:sql:SqlRowSet4"
xmlns:schema="urn:schemas-microsoft-com:sql:SqlRowSet4" xmlns:xsd="http://www.w3.org/2001/
XMLSchema" xmlns:sqltypes="http://schemas.microsoft.com/sqlserver/2004/sqltypes"
elementFormDefault="qualified">
 <xsd:import namespace="http://schemas.microsoft.com/sqlserver/2004/sqltypes"
schemaLocation="http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd" />
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="schema:OrderDetail" minOccurs="0" maxOccurs="unbounded" />

282 PArt II Going Beyond relational

 </xsd:sequence>
 <xsd:attribute name="CustomerID" type="sqltypes:int" use="required" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="OrderDetail">
 <xsd:complexType>
 <xsd:attribute name="SalesOrderID" type="sqltypes:int" use="required" />
 <xsd:attribute name="OrderDate" type="sqltypes:datetime" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <Customer xmlns="urn:schemas-microsoft-com:sql:SqlRowSet4" CustomerID="11000">
 <OrderDetail SalesOrderID="43793" OrderDate="2005-07-22T00:00:00" />
 <OrderDetail SalesOrderID="51522" OrderDate="2007-07-22T00:00:00" />
 <OrderDetail SalesOrderID="57418" OrderDate="2007-11-04T00:00:00" />
 </Customer>
 <Customer xmlns="urn:schemas-microsoft-com:sql:SqlRowSet4" CustomerID="11001">
 <OrderDetail SalesOrderID="43767" OrderDate="2005-07-18T00:00:00" />
 <OrderDetail SalesOrderID="51493" OrderDate="2007-07-20T00:00:00" />
 <OrderDetail SalesOrderID="72773" OrderDate="2008-06-12T00:00:00" />
 </Customer>
</Orders>

SQL Server infers the schema based on the underlying data types of the result set. For example,
the SalesOrderID field is set to an int and is a required field (as per the inline schema based on the
properties of the field in the underlying SQL table).

Producing element-Based XML
Element-based XML is more verbose than attribute-based XML but is usually easier to view and
work with. Initially, in SQL Server 2000, FOR XML RAW and FOR XML AUTO could only generate
 attribute-based XML (as shown in Listings 6-13 and 6-14). As we’ve demonstrated in Listings 6-17
and 6-20, you can customize the generated XML and produce element-based XML using FOR XML
EXPLICIT and (later) FOR XML PATH.

Both FOR XML RAW and FOR XML AUTO were later enhanced to support the ELEMENTS keyword,
enabling them to alternatively produce element-based XML rather than attribute-based XML. When
all you need is element-based XML, and you require no other customization over the shape of
 generated XML, you will find it much easier to use FOR XML RAW/AUTO with ELEMENT rather than
FOR XML EXPLICIT (and even FOR XML PATH). Listing 6-25 demonstrates this.

LISTInG 6-25 Using FOR XML AUTO with ELEMENTS to produce element-based hierarchical XML.

SELECT
 Customer.CustomerID,
 OrderDetail.SalesOrderID,
 OrderDetail.OrderDate
 FROM
 Sales.Customer AS Customer

 CHAPTER 6 XML and the Relational Database 283

 INNER JOIN Sales.SalesOrderHeader AS OrderDetail
 ON OrderDetail.CustomerID = Customer.CustomerID
 WHERE
 Customer.CustomerID IN (11000, 11001)
 ORDER BY
 Customer.CustomerID
 FOR XML AUTO, ROOT('Orders'), ELEMENTS

Here are the query results:

<Orders>
 <Customer>
 <CustomerID>11000</CustomerID>
 <OrderDetail>
 <SalesOrderID>43793</SalesOrderID>
 <OrderDate>2005-07-22T00:00:00</OrderDate>
 </OrderDetail>
 <OrderDetail>
 <SalesOrderID>51522</SalesOrderID>
 <OrderDate>2007-07-22T00:00:00</OrderDate>
 </OrderDetail>
 <OrderDetail>
 <SalesOrderID>57418</SalesOrderID>
 <OrderDate>2007-11-04T00:00:00</OrderDate>
 </OrderDetail>
 </Customer>
 <Customer>
 <CustomerID>11001</CustomerID>
 <OrderDetail>
 <SalesOrderID>43767</SalesOrderID>
 <OrderDate>2005-07-18T00:00:00</OrderDate>
 </OrderDetail>
 <OrderDetail>
 <SalesOrderID>51493</SalesOrderID>
 <OrderDate>2007-07-20T00:00:00</OrderDate>
 </OrderDetail>
 <OrderDetail>
 <SalesOrderID>72773</SalesOrderID>
 <OrderDate>2008-06-12T00:00:00</OrderDate>
 </OrderDetail>
 </Customer>
</Orders>

You can see that each column of the query becomes a nested element in the resulting XML, as
opposed to an attribute of one single element. The ELEMENTS keyword used in conjunction with
FOR XML RAW or FOR XML AUTO converts each column from your result set to an individual XML
 element. FOR XML AUTO also converts each row from a joined table to a new XML element, as just
demonstrated.

284 PArt II Going Beyond relational

Shredding XmL Using OPENXML

Up to this point, you have been using FOR XML to compose XML from rows of data, but what if you
already have XML data and want to shred it back into relational data? SQL Server 2000 introduced
a feature called OPENXML for this purpose. The OPENXML system function is designed for this
 purpose, and allows an XML document file to be shredded into T-SQL rows as we’ll explain next. Since
the introduction of the native xml data type in SQL Server 2005, XQuery (covered in the next section)
offers even more choices for extracting data from XML input.

To shred data XML into relational rows using OPENXML, you first create a handle to the XML
 document using the system stored procedure sp_xml_preparedocument. This system-stored
 procedure takes an XML document and creates a representation that you can reference using a
 special handle, which it returns via an OUTPUT parameter. OPENXML uses this handle along with a
specified path and behaves like a database view to the XML data, so you simply choose SELECT from
the OPENXML function just as you would SELECT from a table or a view. The code in Listing 6-26
shows an example of OPENXML in action.

LISTInG 6-26 Using FOR XML AUTO with ELEMENTS to produce element-based hierarchical XML.

DECLARE @handle int
DECLARE @OrdersXML varchar(max)
SET @OrdersXML = '
<Orders>
 <Customer CustomerID="HERBC" ContactName="Charlie Herb">
 <Order CustomerID="HERBC" EmployeeID="5" OrderDate="2011-11-04">
 <OrderDetail OrderID="10248" ProductID="16" Quantity="12"/>
 <OrderDetail OrderID="10248" ProductID="32" Quantity="10"/>
 </Order>
 <Order CustomerID="HERBC" EmployeeID="2" OrderDate="2011-11-16">
 <OrderDetail OrderID="10283" ProductID="99" Quantity="3"/>
 </Order>
 </Customer>
 <Customer CustomerID="HINKM" ContactName="Matt Hink">
 <Order CustomerID="HINKM" EmployeeID="3" OrderDate="2011-11-23">
 <OrderDetail OrderID="10283" ProductID="99" Quantity="3"/>
 </Order>
 </Customer>
</Orders>'

-- Get a handle onto the XML document
EXEC sp_xml_preparedocument @handle OUTPUT, @OrdersXML

-- Use the OPENXML rowset provider against the handle to parse/query the XML
SELECT *
 FROM OPENXML(@handle, '/Orders/Customer/Order')
 WITH (
 CustomerName varchar(max) '../@ContactName',
 OrderDate date)

 CHAPTER 6 XML and the Relational Database 285

This code allows you to query and work with the XML text as if it were relational data. The output
looks like this:

CustomerName OrderDate
--------------- --------------
Charlie Herb 2011-11-04
Charlie Herb 2011-11-16
Matt Hink 2011-11-23

This code first calls sp_xml_preparedocument to get a handle over the XML of customer orders. The
handle is passed as the first parameter to OPENXML. The second parameter is an XPath expression
that specifies the row pattern, and this identifies the nodes within the XML that are to be processed
as rows. In this example, the XPath expression /Orders/Customer/Order drills down to the order level
for each customer. There are three orders in the XML, so the query produces three rows with order
dates (one for each order). The customer name is not available at the order level; it must be retrieved
by reaching “up” one level for the Customer element’s ContactName attribute using a column pattern.
This is achieved using the WITH clause. In this example, the CustomerName column is based on the
column pattern ../@ContactName to obtain the ContactName attribute (remember that in XPath an
@-symbol means “attribute”) from the parent Customer node (as denoted by the ../ path syntax).

Querying XmL Data Using XQuery

Storing XML in the database is one thing; querying it efficiently is another. Prior to the xml data
type in SQL Server 2005, you had to deconstruct the XML and move element and attribute data into
 relational columns to perform a query on the XML data residing in the text column. You could also
resort to some other searching mechanism, such as character pattern matching or full-text search,
neither of which provides completely reliable parsing capability. Today, XQuery provides a native and
elegant way to parse and query XML data in SQL Server.

Understanding XQuery expressions and XPath
XQuery is a language used to query and process XML data. XQuery is a W3C standard, and its
 specification is located at http://www.w3.org/TR/xquery/. The XQuery specification contains
 several descriptions of requirements, use cases, and data models. We encourage you to review the
 specification to get a full understanding of what XQuery is all about. For now, we will explain enough
to cover the basics. After reading this section, you will be able to select, filter, and update XML data
using XQuery.

Because XQuery is an XML language, all the rules of XML apply. XQuery uses lowercase element
names (“keywords”), and because XML itself is case-sensitive, you must take this into account when
writing queries. Although XQuery has some powerful formatting and processing commands, it is
 primarily a query language (as its name suggests), so we will focus here on writing queries. The body
of a query consists of two parts: an XPath expression and a FLWOR (pronounced “flower”) expression.
(FLWOR is an acronym based on the primitive XQuery keywords for, let, where, order by, and return.)

286 PArt II Going Beyond relational

XPath expressions
XPath, another W3C standard (http://www.w3.org/TR/xpath), uses path expressions to identify specific
nodes and attributes in an XML document. These path expressions are similar to the syntax you see
when you work with a computer file system (for example, C:\folder\myfile.doc). Take a look at the
 following XML document:

<catalog>
 <book category="ITPro">
 <title>Windows Step By Step</title>
 <author>Jeff Hay</author>
 <price>49.99</price>
 </book>
 <book category="Developer">
 <title>Learning ADO .NET</title>
 <author>Holly Holt</author>
 <price>39.93</price>
 </book>
 <book category="ITPro">
 <title>Administering IIS</title>
 <author>Jed Brown</author>
 <price>59.99</price>
 </book>
</catalog>

The following XPath expression selects the root element catalog:

/catalog

This XPath expression selects all the book elements of the catalog root element:

/catalog/book

And this XPath expression selects all the author elements of all the book elements of the catalog
root element:

/catalog/book/author

XPath enables you to specify a subset of data within the XML (via its location within the XML
 structure) that you want to work with. XQuery is more robust and allows you to perform more
 complex queries against the XML data using FLWOR expressions combined with XPath.

FLWOR expressions
Just as SELECT, FROM, WHERE, GROUP BY, and ORDER BY form the basis of the SQL selection logic,
the for, let, where, order by, and return (FLWOR) keywords form the basis of every XQuery query you
write. You use the for and let keywords to assign variables and iterate through the data within the
context of the XQuery query. The where keyword works as a restriction and outputs the value of the
variable.

For example, the following basic XQuery query uses the XPath expression /catalog/book to obtain
a reference to all the <book> nodes, and the for keyword initiates a loop, but only of elements where

 CHAPTER 6 XML and the Relational Database 287

the category attribute is equal to “ITPro”. This simple code snippet iterates through each /catalog/
book node using the $b variable with the for statement only where the category attribute is “ITPro”
and then returns as output the resulting information in descending order by the author’s name using
the order keyword:

for $b in /catalog/book
 where $b/@category="ITPro"
 order by $b/author[1] descending
 return ($b)

Listing 6-27 shows a simple example that uses this XQuery expression on an xml data type variable.
XML is assigned to the variable, and then the preceding XQuery expression is used in the query
method (explained in the next section) of the xml data type.

LISTInG 6-27 A simple XQuery example.

DECLARE @Books xml = '
<catalog>
 <book category="ITPro">
 <title>Windows Step By Step</title>
 <author>Jeff Hay</author>
 <price>49.99</price>
 </book>
 <book category="Developer">
 <title>Learning ADO .NET</title>
 <author>Holly Holt</author>
 <price>39.93</price>
 </book>
 <book category="ITPro">
 <title>Administering IIS</title>
 <author>Ted Bremer</author>
 <price>59.99</price>
 </book>
</catalog>'

SELECT @Books.query('
 <ITProBooks>
 {
 for $b in /catalog/book
 where $b/@category="ITPro"
 order by $b/author[1] descending
 return ($b)
 }
 </ITProBooks>')

The results are as follows:

<ITProBooks>
 <book category="ITPro">
 <title>Administering IIS</title>
 <author>Ted Bremer</author>
 <price>59.99</price>

288 PArt II Going Beyond relational

 </book>
 <book category="ITPro">
 <title>Windows Step By Step</title>
 <author>Jeff Hay</author>
 <price>49.99</price>
 </book>
</ITProBooks>

Notice that Ted’s record is first because the order is descending by the author element. Holly’s
 record is not in the output because the category element is restricted to “ITPro”. There is a root
 element wrapped around the XQuery statement with <ITProBooks> and </ITProBooks>, so all the
results for IT books extracted from source XML having a catalog root element are contained inside of
an ITProBooks root element.

SQL Server XQuery in Action
SQL Server has a standards-based implementation of XQuery that directly supports XQuery functions
on the xml data type by using five methods of the xml data type, as shown here:

■■ xml.exist Uses XQuery input to return 0, 1, or NULL, depending on the result of the query.
This method returns 0 if no elements match, 1 if there is a match, and NULL if there is no XML
data on which to query. The xml.exist method is often used for query predicates.

■■ xml.value Accepts an XQuery query that resolves to a single value as input and returns a
SQL Server scalar type.

■■ xml.query Accepts an XQuery query that resolves to multiple values as input and returns an
xml data type stream as output.

■■ xml.nodes Accepts an XQuery query as input and returns a single-column rowset from the
XML document. In essence, this method shreds XML into multiple smaller XML results.

■■ xml.modify Allows you to insert, delete, or modify nodes or sequences of nodes in an xml
data type instance using an XQuery data manipulation language (DML).

We will discuss all of these methods shortly. But first, you’ll create some sample data in a simple
table that contains speakers at a software developer conference and the corresponding classes they
will teach. Traditionally, you would normalize such data and have a one-to-many relationship between
a speakers table and a classes table. Taking an XML approach instead, you will model this as one table
with the speakers’ information and one XML column with the speakers’ classes. In the real world, you
might encounter this scenario when you have a speaker and his or her classes represented in a series
of one-to-many tables in a back-office database. Then for the web database, you might “publish” a
database on a frequent time interval (such as a reporting database) or transform normalized data and
use the XML column for easy HTML display with extensible stylesheet transformation (XSLT).

First, create a schema for the XML data, as shown in Listing 6-28. The schema defines the data
types and required properties for particular XML elements in the list of classes that will be maintained
for each speaker.

 CHAPTER 6 XML and the Relational Database 289

LISTInG 6-28 Creating an XML schema definition for speaker classes.

USE master
GO

IF EXISTS(SELECT name FROM sys.databases WHERE name = 'SampleDB')
 DROP DATABASE SampleDB
GO

CREATE DATABASE SampleDB
GO

USE SampleDB
GO

CREATE XML SCHEMA COLLECTION ClassesXSD AS '
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="class">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="classes">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="class" minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="speakerBio" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
</xs:schema>'

Next, create the Speaker table (and indexes), as shown in Listing 6-29. Notice that the xml column,
ClassesXML, uses the ClassesXSD XSD schema we just created in Listing 6-28.

LISTInG 6-29 Creating the Speaker table with the typed (XSD schema-based) indexed XML column ClassesXML.

CREATE TABLE Speaker(
 SpeakerId int IDENTITY PRIMARY KEY,
 SpeakerName varchar(50),
 Country varchar(25),
 ClassesXML xml(ClassesXSD) NOT NULL)

-- Create primary XML index
CREATE PRIMARY XML INDEX ix_speakers
 ON Speaker(ClassesXML)

-- Create secondary structural (path) XML index
CREATE XML INDEX ix_speakers_path ON Speaker(ClassesXML)
 USING XML INDEX ix_speakers FOR PATH

290 PArt II Going Beyond relational

XQuery runs more efficiently when there is an XML index on the XML column. As you learned
 earlier, an XML index works only if there is a primary key constraint on the table (such as the
 SpeakerId primary key column in the Speaker table). The code in Listing 6-29 creates a primary and
then a structural (PATH) index because our examples will apply a lot of where restrictions on the
values of particular elements. It’s also important to remember that XQuery works more efficiently
if it is strongly typed, so you should always use a schema (XSD) on your XML column for the best
 performance. Without a schema, the SQL Server XQuery engine assumes that everything is untyped
and simply treats it as string data.

You’re now ready to get data into the table by using some INSERT statements, as shown in Listing 6-30.
The final INSERT statement, ‘Bad Speaker’, will fail because it does not contain a <classes> element as
required by the ClassesXSD schema. (Because XML is case sensitive, its <CLASSES> element is not a match
for the <classes> element specified as required in the schema.)

LISTInG 6-30 Populating the Speaker table with sample data.

INSERT INTO Speaker VALUES('Jeff Hay', 'USA', '
 <classes speakerBio="Jeff has solid security experience from years of hacking">
 <class name="Writing Secure Code for ASP .NET" />
 <class name="Using XQuery to Manipulate XML Data in SQL Server 2012" />
 <class name="SQL Server and Oracle Working Together" />
 <class name="Protecting against SQL Injection Attacks" />
 </classes>')

INSERT INTO Speaker VALUES('Holly Holt', 'Canada', '
 <classes speakerBio="Holly is a Canadian-born database professional">
 <class name="SQL Server Profiler" />
 <class name="Advanced SQL Querying Techniques" />
 <class name="SQL Server and Oracle Working Together" />
 </classes>')

INSERT INTO Speaker VALUES('Ted Bremer', 'USA', '
 <classes speakerBio="Ted specializes in client development">
 <class name="Smart Client Stuff" />
 <class name="More Smart Client Stuff" />
 </classes>')

INSERT INTO Speaker VALUES('Bad Speaker', 'France', '
 <CLASSES SPEAKERBIO="Jean has case-sensitivity issues">
 <class name="SQL Server Index" />
 <class name="SQL Precon" />
 </CLASSES>')

Now that you have some data, it’s time to start writing some XQuery expressions in T-SQL. To do
this, you will use the query-based methods of the xml data type inside a regular T-SQL query.

 CHAPTER 6 XML and the Relational Database 291

xml.exist
Having XML in the database is almost useless unless you can query the elements and attributes of the
XML data natively. XQuery becomes very useful when you use it to search XML based on the values of
a particular element or attribute. The xml.exist method accepts an XQuery query as input and returns
0, 1, or NULL, depending on the result of the query: 0 is returned if no elements match, 1 is returned
if there is a match, and NULL is returned if there is no data to query on. For example, Listing 6-31
shows how to test whether a particular node exists within an XML document.

LISTInG 6-31 A simple xml.exist example.

DECLARE @SomeData xml = '
<classes>
 <class name="SQL Server Index"/>
 <class name="SQL Precon"/>
</classes>'

SELECT
 @SomeData.exist('/classes') AS HasClasses,
 @SomeData.exist('/dogs') AS HasDogs

This query produces the following output:

HasClasses HasDogs
---------- -------
1 0

You will most likely use the return value of xml.exist (0, 1, or NULL) as part of a WHERE clause. This
lets you run a T-SQL query and restrict the query on a value of a particular XML element. For example,
here is an XQuery expression that finds every <class> element beneath <classes> with a name
 attribute containing the phrase ”SQL Server”:

/classes/class/@name[contains(., "SQL Server ")]

Listing 6-32 shows how you put this expression to work.

LISTInG 6-32 Using xml.exist to test for an attribute value.

SELECT * FROM Speaker
 WHERE
 ClassesXML.exist('/classes/class/@name[contains(., "SQL Server")]') = 1

The results look like this:

SpeakerId SpeakerName Country ClassesXML
--------- ----------- ------- ----------
1 Jeff Hay USA <classes speakerBio="Jeff has solid security...
2 Holly Holt Canada <classes speakerBio="Holly is a Canadian-bor...

292 PArt II Going Beyond relational

Jeff and Holly (but not Ted) each give one or more SQL Server classes. The XML returned in these
results look like this for Jeff:

<classes speakerBio="Jeff has solid security experience based on years of hacking">
 <class name="Writing Secure Code for ASP .NET" />
 <class name="Using XQuery to Manipulate XML Data in SQL Server 2012" />
 <class name="SQL Server and Oracle Working Together" />
 <class name="Protecting against SQL Injection Attacks" />
</classes>

Listing 6-33 shows a query similar to the previous one. This version demonstrates how to
 seamlessly integrate XQuery with ordinary filtering of relational columns, by simply building out the
WHERE clause to further restrict by Country for USA only.

LISTInG 6-33 Combining XQuery with relational column filtering.

SELECT * FROM Speaker
 WHERE
 ClassesXML.exist('/classes/class/@name[contains(., "SQL Server")]') = 1
 AND Country = 'USA'

Executing this query returns only Jeff. SQL Server will filter out the other two rows because Ted
does not have any SQL Server classes and Holly is from Canada.

xml.value
The xml.value method takes an XQuery expression that resolves to a single value and returns it, cast
as the SQL Server data type you specify. You can leverage this very powerful method to completely
shield the internal XML representation of your data, and expose ordinary scalar values with ordinary
SQL Server data types instead. Consider the query in Listing 6-34.

LISTInG 6-34 Using xml.value to represent XML data elements as scalar SQL Server data typed-columns

.SELECT
 SpeakerName,
 Country,
 ClassesXML.value('/classes[1]/@speakerBio','varchar(max)') AS SpeakerBio,
 ClassesXML.value('count(/classes/class)', 'int') AS SessionCount
 FROM
 Speaker
 ORDER BY
 ClassesXML.value('count(/classes/class)', 'int')

From the output generated by this query, there is no indication that—behind the scenes—the
source for some of the output comes from an embedded XML document, stored in an xml data type
column, and then shredded with XQuery:

 CHAPTER 6 XML and the Relational Database 293

SpeakerName Country SpeakerBio SessionCount
----------- ------- -- ------------
Ted Bremer USA Ted specializes in client development 2
Holly Holt Canada Holly is a Canadian-born database professional 3
Jeff Hay USA Jeff has solid security experience from years of hacking 4

The SpeakerName and Country columns came right out of the Speaker table. However, the
SpeakerBio and SessionCount columns were each extracted from the ClassesXML column using xml.
value with an XQuery expression and a SQL Server data type that the expression’s result was cast to.
Because you are requesting a specific data type, the XQuery expression must resolve to a single value.
That value can come from a node element’s inner text, attribute, or XQuery function, but it must be
a single value. For SpeakerBio, the XQuery drills into the classes element for the speakerBio attribute,
extracts its value, and casts it as a varchar(max) type. The XQuery for SessionCount invokes the count
function to return the number of class elements nested beneath the classes element cast as an int.
The same XQuery is used again in the ORDER BY clause, so that the results of the query themselves
are sorted by a value derived from data embedded in XML content.

You can build views and TVFs over queries such as this, and create an effective abstraction layer
over the way XML is stored internally in your database. This means you can alter the XSD schemas and
then adjust the XQuery expressions in your views and TVFs accordingly, such that consumers remain
 unaffected. Indeed, you could even transparently switch from XML storage to traditional column
 storage and back again, without disturbing any existing clients. SQL Server thus provides extremely
flexible abstraction in both directions, because you’ve seen the myriad of ways to dynamically construct
and serve XML from relational column data with the various FOR XML options earlier in the chapter.
This flexibility means you can choose just the right degree of XML integration in your database that best
suits your needs—whether that involves persisting XML data, constructing XML data, or both.

xml.query
The xml.query method accepts and executes an XQuery expression much like the xml.value method, but it
always returns an xml data type result. So unlike xml.value, the XQuery expression doesn’t need to resolve
to a single value, and can easily return multiple values as a subset of the source XML. But furthermore,
it can transform that source XML and produce entirely different XML—even injecting values from other
 non-xml columns living the in same row as the xml column being queried. Listing 6-35 demonstrates how
this is achieved using FLWOR expressions and sql:column (a SQL Server XQuery extension).

LISTInG 6-35 Using xml.query with FLWOR expressions and sql:column for XML transformations.

SELECT
 SpeakerId,
 ClassesXML.query('
 let $c := count(/classes/class)
 let $b := data(/classes[1]/@speakerBio)
 return
 <SpeakerInfo>
 <Name>{sql:column("SpeakerName")}</Name>
 <Country>{sql:column("Country")}</Country>

294 PArt II Going Beyond relational

 <Bio>{$b}</Bio>
 <Sessions count="{$c}">
 {
 for $s in /classes/class
 let $n := data($s/@name)
 order by $n
 return
 <Session>{$n}</Session>
 }
 </Sessions>
 </SpeakerInfo>
 ') AS SpeakerInfo
 FROM
 Speaker

The XML returned in these results looks like this for Jeff:

<SpeakerInfo>
 <Name>Jeff Hay</Name>
 <Country>USA</Country>
 <Bio>Jeff has solid security experience from years of hacking</Bio>
 <Sessions count="4">
 <Session>Protecting against SQL Injection Attacks</Session>
 <Session>SQL Server and Oracle Working Together</Session>
 <Session>Using XQuery to Manipulate XML Data in SQL Server 2012</Session>
 <Session>Writing Secure Code for ASP .NET</Session>
 </Sessions>
</SpeakerInfo>

Let’s explain the code in detail. The XQuery expression in the xml.query method on the ClassesXML
column begins with a FLWOR expression. The two let statements use XPath expressions to capture
the speaker’s number of classes (using the count function) and bio text (using the data function),
and stores the results into the variables $c and $b respectively. Then the return statement defines
the shape of the XML to be constructed, starting with the root node’s <SpeakerInfo> element. Inside
the root node, the <Name> and <Country> elements are returned, with values extracted from the
 SpeakerName and Country columns. These are values that are not present in the XML being parsed
by xml.query, but are available as ordinary columns elsewhere in the same row, and are exposed using
the special sql:column SQL Server extension to XQuery.

Next, the <Sessions> element is returned with a count attribute that returns the number of class
elements beneath the source XML’s classes element. Within <Sessions>, a new (nested) FLWOR
 expression is used to iterate the speaker’s classes and build a sequence of <Session> elements. The for
statement loops through the source XML’s classes element for each nested class element and stores
it into the variable $s. The let statement then uses the data function to capture the string value inside
the name attribute of the class element in $s and stores it into the variable $n. The inner FLWOR
expression results (that is, the sequence of elements returned by the upcoming return statement) are
sorted by name using the order by statement. Finally, the return statement generates a new <Session>
element. The session name is rendered as the inner text of the <Session> element. This XQuery has

 CHAPTER 6 XML and the Relational Database 295

essentially transformed the <Classes> and <Class name=”title”> structure of the source XML to a
<Sessions> and <Session>title</Session> structure.

The sql:variable function is another very powerful SQL Server extension to XQuery. With it, you
can easily parameterize your XQuery expressions using ordinary T-SQL parameters. This technique is
demonstrated in Listing 6-36.

LISTInG 6-36 Using xml.query with sql:variable for parameterized transformations.

DECLARE @Category varchar(max) = 'SQL Server'

SELECT
 SpeakerName,
 Country,
 ClassesXML.query('
 <classes
 category="{sql:variable("@Category")}"
 speakerBio="{data(/classes[1]/@speakerBio)}">
 {
 for $c in /classes/class
 where $c/@name[contains(., sql:variable("@Category"))]
 return $c
 }
 </classes>') AS ClassesXML
 FROM
 Speaker
 WHERE
 ClassesXML.exist
 ('/classes/class/@name[contains(., sql:variable("@Category"))]') = 1

The results look like this:

SpeakerName Country ClassesXML
----------- ------- ----------
Jeff Hay USA <classes category="SQL Server" speakerBio="Jeff has solid e...
Holly Holt Canada <classes category="SQL Server" speakerBio="Holly is a Canad...

The XML returned in these results looks like this for Jeff:

<classes category="SQL Server"
 speakerBio="Jeff has solid security experience from years of hacking">
 <class name="Using XQuery to Manipulate XML Data in SQL Server 2012" />
 <class name="SQL Server and Oracle Working Together" />
</classes>

In this example, the T-SQL @Category parameter is assigned the value SQL Server, and the
sql:variable is then used in several places to reference @Category. The first reference adds a category
attribute to the classes element. The second reference applies filtering against the name attribute
 using contains in the inner FLWOR expression’s where statement, and the last reference applies
 filtering at the resultset row level in the SELECT statement’s WHERE clause. Thus, only rows having
SQL Server in the name of at least one class are returned in the resultset, and within those rows, only

296 PArt II Going Beyond relational

classes having SQL Server in their name are returned as elements in ClassesXML (all other non-SQL
Server classes are filtered out).

Our last xml.query example demonstrates how to combine child elements into a delimited string
value, as shown in Listing 6-37.

LISTInG 6-37 Using xml.query with CONVERT to combine child elements.

SELECT
 SpeakerName,
 Country,
 CONVERT(varchar(max), ClassesXML.query('
 for $s in /classes/class
 let $n := data($s/@name)
 let $p := concat($n, "|")
 return $p')) AS SessionList
 FROM
 Speaker

The SessionList column produced by this query contains a single pipe-delimited string containing
the names of all the classes given by the speaker:

SpeakerName Country SessionList
----------- ------- --
Jeff Hay USA Writing Secure Code for ASP .NET| Using XQuery to Manipulate XML Da...
Holly Holt Canada SQL Server Profiler| Advanced SQL Querying Techniques| SQL Server a...
Ted Bremer USA Smart Client Stuff| More Smart Client Stuff|

This XQuery expression in Listing 6-37 simply iterates each class element, extracts the name
 attribute, and concatenates it with a pipe symbol, appending each result to build a single string.
Although the elements are ultimately combined to form a single value, they are still multiple values
from an XPath perspective, and so xml.value cannot be used. Instead, xml.query produces the
 concatenated string, and CONVERT is used to cast the result as a varchar(max) data type.

XML DML
The W3C XQuery specification does not provide a way for you to modify XML data as you can modify
relational table data using the INSERT, UPDATE, and DELETE keywords in T-SQL. So Microsoft has created
its own XML data manipulation language, XML DML, which is included in its own XQuery implementation.

XML DML gives you three ways to manipulate the XML data of a column via the xml.modify method:

■■ xml.modify(insert) Allows you to insert a node or sequence of nodes into the xml data type
instance you are working with.

■■ xml.modify(delete) Allows you to delete zero or more nodes that are the result of the
 output sequence of the XQuery expression you specify.

■■ xml.modify(replace) Modifies the value of a single node.

 CHAPTER 6 XML and the Relational Database 297

xml.modify(insert)
The xml.modify(insert) method allows you to insert a node or sequence of nodes into the xml data
type instance you are working with. You use the xml.modify method in conjunction with a T-SQL
 UPDATE statement and, if necessary, a T-SQL or XQuery where clause (or both). For example, the code
in Listing 6-38 adds another <class> element to Jeff’s <classes> element in ClassesXML.

LISTInG 6-38 Using xml.modify to insert a new element.

UPDATE Speaker
 SET ClassesXML.modify('
 insert
 <class name="Ranking and Windowing Functions in SQL Server" />
 into
 /classes[1]')
 WHERE SpeakerId = 1

xml.modify(delete)
The xml.modify(delete) method deletes zero or more nodes based on the criteria you specify. For
example, the code in Listing 6-39 deletes the fourth <class> element from Jeff’s <classes> element in
ClassesXML.

LISTInG 6-39 Using xml.modify to delete an element.

UPDATE Speaker
 SET ClassesXML.modify('delete /classes/class[4]')
 WHERE SpeakerId = 1

xml.modify(replace)
Finally, the xml.modify(replace) method allows you to replace XML data with new information. For
example, the code in Listing 6-40 updates the name attribute in the third <class> element of Jeff’s
<classes> element in ClassesXML.

LISTInG 6-40 Using xml.modify to update an element.

UPDATE Speaker
 SET ClassesXML.modify('
 replace value of /classes[1]/class[3]/@name[1]
 with "Getting SQL Server and Oracle to Work Together"')
 WHERE SpeakerId = 1

298 PArt II Going Beyond relational

Summary

XML is ubiquitous nowadays, and in this chapter, we have taken a fairly extensive tour of the FOR XML
clause and its various options, as well as the xml data type and its data manipulation mechanisms,
XQuery and XML DML. As you have seen, SQL Server provides a rich feature set of XML technologies.
At times, you will want to store XML in the database, other times you will want to serve XML from
the database, and still other times you may want to do both. Whatever your XML needs are, the xml
data type allows you to work with XML natively at the database level. Armed with this data type and
the ability to query it using XQuery, you can fully exploit the power of XML inside your SQL Server
 databases and build smart, XML-aware applications.

 737

ADO.NET, conventional, 436–471
DataSets, 455–473
ORM vs., 479
raw data objects, using, 436–455

ADO.NET data access
SQL CLR stored procedures vs., 132

ADO.NET Entity Framework. See Entity Framework (EF)
ADO.NET transactions

isolation levels in, 184–186
setting isolation level in explicit, 185
setting isolation levels in implicit, 185–186
SqlTransaction object, 185
TransactionScope object (ADO.NET), 185

Advanced Mode (PowerPivot), 723–724
Default Field Set button, 723
Perspectives button, 723
Show Implicit Members button, 723
Summarize By button, 723
Table Behavior button, 723

AdventureWorks2012 sample database, 130
aggregates (SQL CLR), 151–155

creating, 152–153
Merge method, 155
multiple input parameters and, 155
required methods in, 152
SqlUserDefinedAggregate attribute, 151–152
warnings and responsibilities with, 155

aggregations
running, 95–96
sliding, 96–97

Alerting feature (SSRS)
Sharepoint, requirement for, 693

ALTER DATABASE AUDIT SPECIFICATION statement (SQL
Server Audit), 240
ALTER DATABASE command

EDITION parameter, 599
MAXSIZE parameter, 599

Index

Symbols
$filter option (WFC Data Services), 518
.DACPAC files

contents of, 600
.NET Framework

distributed transactions and, 190–198
evolution of, 427–430
Language-Integrated Query (LINQ), 428
System.EnterpriseServices namespace, 190
System.Transactions namespace, 186, 191

.NET functions
SqlTrigger attribute, 149

@SortOrder parameter
metadata discovery, use in, 120

:: syntax, 303
@@TRANCOUNT function, 174–176
@ (XPath), 277

A
ACID properties, 170–172

atomicity, 171–172
consistency, 171–172
durability, 171–172
isolation, 171–172

ActiveX Data Objects (ADO), 428
Add Firewall Rule dialog (Windows Azure Management
Portal), 645
Add New Domain Service Class dialog, 552–556
AddRelatedObject method (DataServiceContext), 526
AddWithValue method (SqlCommand object), 441
Adobe PDF files

Full-Text Search (FTS) and, 365
ADO.NET

passing TVPs using, 52–54

ALTER PRoCEDURE statement

738 Index

ALTER PROCEDURE statement, 220
ALTER SEQUENCE statement, 117
ALTER SERVER AUDIT SPECIFICATION statement
(SQL Server Audit), 239
ALTER statement

CREATE statement vs., 5
analytic functions, 98–103

CUME_DIST function, 98, 100–102
FIRST_VALUE function, 98–99
LAG function, 98–100
LAST_VALUE function, 98–99
LEAD function, 98–100
PERCENTILE_CONT function, 98, 100, 102
PERCENTILE_DISC function, 98, 100, 102
PERCENT_RANK function, 98, 100–101

anonymous methods (DataServiceCollection<T>
class), 664
App class (Windows Phone), 661

ViewModel property, 651, 661
Application class (Windows Phone), 661
AsDataView method (LINQ to DataSet), 476
AsEnumerable method (System.Data namespace), 475

querying typed DataSets with, 477
ASP.NET, 518

Visual Studio Development Web Server
(Cassini), 513
WCF services vs., 348

ASP.NET Development Web Server, 516
assemblies

AUTHORIZATION clause, 139
backup/restore and, 140
CREATE ASSEMBLY command, 139
dependent on other assemblies, 139
deploying, 138–140
deploying with SSMS, 140
FROM clause, 139
PERMISSION_SET value, 139
WITH PERMISSION_SET clause, 139

assemblies (SQL CLR)
security settings in Visual Studio, 161
TRUSTWORTHY property, 161
UNSAFE ASSEMBLY permission, 161

asymmetric key encryption, 222
Asynchronous JavaScript and XML (AJAX)

Microsoft Bing and, 416
AsyncState property (DataServiceQuery<T>
class), 665
atomicity (ACID property), 171–172
AtomPub

viewing response feed from, 516–517

Atom Publishing Protocol (APP)
as XSD schema, 260

Atom Publishing Protocol (AtomPub), 509
AttachAsModified method (ChangeSet), 560
AttachAsModified method (DomainServices
class), 560–561
Attribute Groups (MDS), 677
Attributes (MDS), 677
audit actions, database level, 240
audited events, viewing, 242
AUDIT_GUID option (SQL Server Audit), 237
audit objects, 235–244

ALTER SERVER AUDIT statement, 235–236
AUDIT_GUID option, 237
CREATE SERVER AUDIT statement, 235
FILEPATH option, 238
MAX_FILES option, 238
MAX_ROLLOVER_FILES option, 238
MAXSIZE option, 238
ON_FAILURE option, 237
pointing to destination, 235
QUEUE_DELAY option, 236
recording audits to file system, 238–239
RESERVE_DISK_SPACE option, 238–246
STATE option, 237–238
TO FILE clause, 238–239

authentication
Windows Azure Management Portal and, 625

authentication/authorization, 213–221
establishing a connection, 213–214
execution context, 218–221
password policies, 215–216
user-schema seperation, 216–218

AUTHORIZATION clause (Class Library project), 139
autocommit transaction mode, 173
auto-deployment (SQL CLR), 129

SqlProcedure attribute and, 141
AVERAGEX function (DAX), 717
Azure Storage Explorer

uploading BACPACs with, 604

B
BACKUP CERTIFICATE statement, 233
backups

encryption of, with TDE, 231
backwards compatibility

CurveToLineWithTolerance method, 409–410
MinDbCompatibilityLevel method and, 408
STCurveToLine method and, 409–410

 Class Library project

 Index 739

BACPAC files
contents of, 600

batch execution environment, 176–179
Batch execution mode, 706–707

forcing, with UPDATE STATISTICS command, 708
MDOP configuration option, 707
processor allocation for, 707
virtual machines and, 707

batch-scoped transaction mode, 176–179
BEGIN DISTRIBUTED TRANSACTION statement,
189–190
BEGIN DISTRIBUTED TRANSACTION statement (T-SQL)

System.Transactions namespace vs., 194
BeginExecute method (DataServiceQuery<T> class), 665
BeginTransaction method (ADO.NET)

setting isolation level with, 185
BeginTransaction method (SqlConnection object), 450
BEGIN TRANSACTION statement, 173–176

mutliple databases and, 186
Bi-Directional sync direction (Data Sync), 620, 621
BLOB data (Binary Large Object), 323–325

backup concerns with, 325
in the database, 324
in the file system, 324–325
remote BLOB storage (RBS), 356
varbinary(max) data type, 324

breadth-first indexing, 314–315
breakpoints

setting, 33
BufferWithCurves method (geometry class), 406–408

STBuffer method vs., 406–408
bulkadmin (fixed server roll), 211
business entities represented as objects, 478
business intelligence capabilities (BI), 675–700

analysis sercvices, 686–691
Analysis Services, 686–687
data mining, 690–691
Data Quality Services (DQS), 680–681
Excel Services, 694–695
Integration Services, 681–683
Master Data Services (MDS), 677–680
Microsoft BI Stack, 676
PerformancePoint Services (PPS), 696
Power View report, 691–692
Relational Database Management System
(RDBMS), 683–685
Reporting Services, 692–694
SQL Server/SharePoint version requirements
for, 697–698
StreamInsight, 697

Business Intelligence Semantic Model (BISM), 702
building, 712–715
data source compatibility, 711–712
hierarchies and, 720–722
SSAS and, 711, 712
star schemas and, 711

byte[] RecoveryInformation method (System.
Transactions.PreparingEnlistment class), 198

C
C#

Microsoft Visual Basic .NET vs., 141
cached_file_size (FileTable column name), 358
calculated columns (PowerPivot), 716–717

DAX formulas and, 716
CASE construct, 92–93
CATCH block

and THROW statements, 110–111
CellValueChanged event, 538
certificates, 223

backing up for TDE, 232–233
DEK and, 230

certificates, security, 222
certificates, self-signed, 222
change interceptor, 548
ChangeObjectState method (DataService class), 560
ChangeOperation enumeration value (DataService
class), 560
change scripts

implementation of, in SSDT, 20
ChangeSet property (DomainServices class), 560
CHANGES keyword

consuming using INSERT OVER DML syntax, 80–83
implemenation of, 81–82

Chaos (ADO.NET isolation level), 184
CharIndex method, 256
CHOOSE function, 106
“Choosing an Encryption Algorithm” (TechNet), 225
CIRCULARSTRING keyword, 370–371
CIRCULARSTRING object, 401–402
Class Library project, 139–140

AUTHORIZATION clause, 139
CREATE ASSEMBLY command, 139
FROM clause, 139
PERMISSION_SET value, 139
stored procedures, deploying in, 141
T-SQL CREATE FUNCTION statement, 144
WITH EXECUTE AS CALLER clause, 144
WITH PERMISSION_SET clause, 139

Class Library projects

740 Index

Class Library projects
UDFs, dependencies for, 143

Client Wins (Data Sync conflict resolution), 624
Close method (SqlConnection class), 440
Cloud project template (Visual Studio)

Enable Windows Azure Tools option, 642
cloud services

infrastructure as a service (IaaS), 580
IT department, alternative to, 579
on-premises software vs., 580

CloudSync_Completed method, 665
CLR assembly

security levels, 161
CLR entities

examining/managing in SQL Server Object
Explorer, 162–168
examining/managing in SSMS Object
Explorer, 162–168
removing, 166

CLR functions
SqlType as return value for, 143
T-SQL functions and, 145–147

CLR stored procedures, 130–132
ADO.NET data access vs., 132
AdventureWorks2012 sample database, 130
deploying, 141–142
ExecuteReader method (SqlCommand object), 133
guidelines for, 136
making available, 131
Microsoft.SqlServer.Server namespace, 133
.NET CLR and, 132
opening connections to databases from, 133
piping data, 134–136
server-side data access, 132–136
SqlDataRecord type, 134–136
SqlMetaData type, 134–136
testing, 142–168
T-SQL triggers vs., 148

clustered index
SQL Azure requirement for, 40

Code-first design (EDM), 484
COLLATE keyword

xml (data type) and, 258, 259
collations

JOINs between incompatable, 247
collections

IEnumerable interface, use with, 54–57
passing, using TVPs, 54–57

columns
renaming, 31–32

column store databases, 702, 702–703
aggregation queries and, 703
analytical queries, performance of, 703
BI industry and, 703
columnstore indexes, 704–709

columnstore indexes, 704–709
Batch execution mode, 706–707
building, 704
data stores, as, 704
Filestream data and, 704
limitations on, 704–705
MDOP configuration option, 707
page structure of, 706
precision of decimal/numeric columns, 705
query processor (QP), 706
read-only limitation, work-arounds for, 705
restricted data types in, 705
size limit on, 705
working with, 706–709

COM+, 190
CommandText property (SqlCommand class), 447
comment (XPath node function), 279
Commit method (IEnlistmentNotification interface), 195
COMMIT TRANSACTION statement, 173–176
common table expressions (CTEs), 299
Common Table Expressions (CTEs), 46
comparison operations

order of comparison in heirarchical tables, 314
Complete method (TransactionScope object),
193, 198–199
complex event processing (CEP) engine, 697
Component Object Model (COM), 132
Component Object Model (COM) platform, 428
COMPOUNDCURVE keyword (WKT), 370–371
COMPOUNDCURVE object, 403–404
compound curves

curve polygons vs., 405
storage overhead of, geometry collection vs.,, 404

Compute capacity, 641
Compute resources, 641
COMTI (third party TCs), 190
CONCAT function, 107
conceptual schema (EDM), 482
conflict resolution policy

setting, 636
connected data reader. See DataReaders
Connection Managers (SSIS packages), 682
connections (to SQL Server), 213–221
ConnectionString property (SqlConnection
object), 439

 data definition language (DDL) triggers

 Index 741

consistency (ACID property), 171–172
containment

breaking, 245
Control Flows (SSIS packages), 682
conversion functions, 103–104

data validation using, 104
PARSE function, 103–104
TRY_CONVERT function, 103
TRY_PARSE function, 103–104

CopyToDataTable method (LINQ to DataSet), 476
CREATE AGGREGATE statement (T-SQL), 155
CREATE ASSEMBLY command (Class Library
project), 139
CREATE CERTIFICATE statement, 233
CREATE DATABASE AUDIT SPECIFICATION statement
(SQL Server Audit), 240
Create Database dialog (Create Server wizard), 589
CREATE DATABASE statement

FILEGROUP...CONTAINS FILESTREAM clause,
329–331

CREATE FUNCTION statement (T-SQL), 144
CREATE SEQUENCE statement, 116
CREATE SERVER AUDIT SPECIFICATION statement
(SQL Server Audit), 239
Create Server wizard (SQL Azure), 587–588

administrative user, creating, 587–588
Create Database dialog, 589
firewall, configuring, 587–588

CREATE statement
ALTER statement vs., 5
T-SQL object representation, 5

CreateYourOwnRM solution, 195
creation_time (FileTable column name), 357
Cristofor, Laurentiu, 228
CRUD stored procedures, creating, 433–435
cubes (SSAS), 686–687
CUME_DIST function, 98, 100–102

RANK function as basis for, 101
CURVEPOLYGON keyword (WKT), 370–371
CURVEPOLYGON object, 404–405
curve polygons

compound curves vs., 405
CurveToLineWithTolerance method (geometry
class), 409–410

D
DACPACs

deploying with SSMS, 600

DACs
BACPAC files, contents of, 600
.DACPAC files, contents of, 600
SQL Azure Management Portal, managing
with, 602
SSDT, managing with, 601

data access, 427–508
abstraction's cost to performance, 437
ActiveX Data Objects (ADO), 428
ADO.NET raw data, 436–471
creating forms for data entry, 438–440
Data access objects (DAO), 428
DataAdapters, 428–429
DataSets (ADO.NET), 455–473
entity framework, 482–508
language-integrated query (LINQ), 472–477
.NET, evolution of, 427–430
Object Relational Modeling (ORM), 477–507
Open Database Connectivity (ODBC) API, 428
Remote Data Objects (RDO), 428
server-side, with SQL CLR stored
procedures, 132–136
SQL Server Profiler, monitoring activity
with, 435–436

Data access objects (DAO), 428
DataAdapters, 428–429, 456–457

DataContext vs., 479
TableAdapters vs., 465

Data Analysis eXpressions (DAX), 702
database

snapshots and FILESTREAM, 356
database encryption key (DEK), 230
database master key (DMK), 224

encrypted databases, restoring with, 233
SMK and, 225
TDE and, 229

database users, 211–212
fixed rolls of, 212
SSMS, creating in, 211–212
T-SQL, creating in, 211–212

data binding, 531
BindingSource object, 536
_context variable, 536
DataBoundItem property, 536
INotifyPropertyChanged interface, 660
removing objects from, 537

DataBoundItem property, 536
data centers (SQL Azure), 586–587
DataContext object (LINQ to SQL), 479
data definition language (DDL) triggers, 148

data encryption. See encryption support

742 Index

data encryption. See encryption support
Data Flows (SSIS packages), 682
DataGrid control (Silverlight)

Visual Studio, adding to project in, 561
data mart, 683
data mining

SSAS engine for, 690–691
data, piping

SqlDataRecord and SqlMetaData, with, 134–136
Data Quality Projects, types of, 681
DataReaders

closing, 445
creation and use of, 443
DataSets vs., performance, 457
end-of-stream conditions, testing for, 446–447
iterating, 443–447

DataServiceCollection<T> class
anonymous methods, 664
LoadAsync method, 664–665
LoadCompleted event, 664–665

DataServiceContext (WCF Data Services), 523
AddRelatedObject method, 526
SaveChanges method, 526–527
UpdateObject method, 526

DataServiceQuery<T> class, 665
AsyncState property, 665
BeginExecute method, 665
EndExecute method, 665
Single method, 665

DataService<T> class (EDM), 515
Add New Domain Service Class dialog, 552–556
AttachAsModified method (ChangeSet),
560–561
ChangeObjectState method, 560
ChangeOperation enumeration value, 560
ChangeSet property, 560
EnableClientAccess attribute, 559
GetAssociatedChanges method, 560
GetChangeOperation method, 560
GetOriginal method, 560
HandleException method, overriding, 546
OnStartProcessingRequest method,
overriding, 546
POCOs, exposing to WCF RIA Services, 559
Submit method, 560
TransactionScope object, 556

DataSets, 455–473
appropriate usage of, 456
DataReaders vs., performance, 457
DataTable objects, 456

Entity Framework vs., 456
generic vs. strongly typed, 458
LINQ to DataSet, 473–477
object-oriented programing and, 477–478
System.Data.DataSetExtensions.dll, 475

DataSets, generic
filling/updating, 459–462
implementing, 461–462
querying with LINQ, 474–476
typed vs., 458
use of, 458

datasets (SQL Azure Data Sync)
defining, 636–638
filters on, 636

DataSets, strongly typed. See DataSets, typed
DataSets, typed

benefits of using, 470–471
building, 462–465
building in Visual Studio, 462
generic vs., 458
mapping stored procedures to, 465–471
querying with LINQ, 476–477
TableAdapter Configuration Wizard, 465–468
Visual Studio, creating projects for, 463
XML Schema Definition (XSD) and, 463

data stores
columnstore indexes and, 704

Data Sync. See SQL Azure Data Sync (Data Sync)
data center location and latency issues, 625
failures, possible causes of, 640–641
SQL Azure fees and, 626
SQL Server/SQL Azure, lack of sync support for, 626

Data Sync button (Windows Azure Management
Portal), 631
DataTable objects (DataSets), 456
Data-Tier Applications (DACs), 599–606

DACPACs and, 600
SSMS, managing with, 600–601
Windows Azure Management Porta, 601

data/time functions
DATEFROMPARTS function, 105
DATETIME2FROMPARTS function, 105
DATETIMEFROMPARTS function, 105
DATETIMEOFFSETFROMPARTS function, 105
TIMEFROMPARTS function, 105

Data Tools Operations window
properties of, 41

Data View mode (PowerPivot Excell add-in), 688
DataView object

RowFilter property, 473

 DistributedIdentifier property (System.Transactions namespace)

 Index 743

data warehouse(s)
column store databases, 702–703

data warehouses, 683
Fast Track Data Warehouse, 684
SQL PDW, 684–685

data (XPath node function), 279
DATEADD function, 62
date data type, 58
DATEDIFF function, 62
DATEFROMPARTS function, 94, 105
DATENAME function, 62
DATEPART function, 62
datetime2 data type, 58

accuracy of, 58
extracting date/time using CAST/CONVERT, 61–62
range of values for, 58

DATETIME2FROMPARTS functions, 105
datetime data type, 58
date/time data types, 58–65

accuracy of, 60–62
date, 58–65
datetime, 58
datetime2, 58
datetimeoffset, 58–59
format of, 60–61
functions of, 62–65
portablity of, 58–59
seperation of, 58
smalldatetime, 58
storage space, usage of, 60
time, 58
time zone awareness with, 59–60

date/time formatting codes, 108
DATETIMEFROMPARTS function, 105
date/time functions

DATEFROMPARTS function, 94
EOMONTH function, 105–106
new functionality, 104–106
SMALLDATETIMEFROMPARTS function, 105

datetimeoffset data type, 58, 59–60
DATETIMEOFFSETFROMPARTS functions, 105
DAX

formulas and calculated columns, 716
db_accessadmin (fixed database roll), 212
db_backupoperator (fixed database roll), 212
dbcreator (fixed server roll), 211
db_datareader (fixed database roll), 212
db_datawriter (fixed database roll), 212
db_ddladmin (fixed database roll), 212

db_denydatareader (fixed database roll), 212
db_denydatawriter (fixed database roll), 212
db_owner (fixed database roll), 212
db_securityadmin (fixed database roll), 212
DDL changes, auditing, 241
DDL triggers, 150–151
debugger

setting breakpoints in, 521
DECRYPTION BY PASSWORD clause (BACKUP
CERTIFICATE statement), 233
DEFAULT constraint on SEQUENCE objects, 117
deferred execution (LINQ to Entities), 489
DEK

restoring encrypted databases and, 233
DeleteCommand property (SqlDataAdapter
class), 457–458
Denial of Service (DoS) attack

UDP as vulnerabiltiy to, 213
DENSE_RANK function, 93
deployment (SQL CLR), 136–143

assembly, of, 138–140
preperation for, 137–138
SQL Server Database Projects, 137–138
stored procedures, 141–142
testing stored procedures, 142–168

depth-first indexing, 314
Derived Hierarchies (MDS), 677
Diagram View mode(PowerPivot Excell add-in), 688
Direction property (Parameter object), 448
DirectQuery feature (SSAS Tabular mode), 729–730
DirectQuery mode

limitations on usage of, 729
DirectQuery Mode property, 729
direct SQL

stored procedures vs., 493
Direct SQL

stored procedures vs., 442–443
dirty data

DQS, cleaning up with, 680
dirty reads (transaction), 178, 179

preventing with read uncommitted isolation
level, 181
serializable isolation level and, 182

diskadmin (fixed server roll), 211
Dispose method

calling on TransactionScope instances, 193
Dispose method (IDisposable interface), 439
DistributedIdentifier property (System.Transactions
namespace), 194

distributed transaction coordinator (DTC)

744 Index

distributed transaction coordinator (DTC), 187
Microsoft Distributed Transaction Coordinator
(MS DTC), 187

distributed transactions, 186–200
BEGIN DISTRIBUTED TRANSACTION
statement, 189–190
COM+, 190
COMTI, 190
enlistment, rules/methods of, 187–189
Microsoft Transaction Server (MTS), 190
.NET Framework and, 190–198
resource manager, 186
resource managers, usage, 198–200
SQL Server and, 189–190
System.EnterpriseServices namespace, 190
terminology, 186–187
transaction manager/coordinator, 186–187
two-phase commit, 187

DML action, auditing, 241
DML queries

autocommit transaction mode and, 173
DML triggers (SQL CLR), 148–150

deploying automatically, 149
SqlTrigger attribute (.NET functions), 149

Domain Service Class template (Visual Studio), 552
DQS

MDS and, 681
SSIS and, 681

drift detection
SQL Server Object Explorer and, 7

DROP SEQUENCE statement, 118
durability (ACID property), 171–172
durable enlistment, 188

E
eager-loading queries, 498
EARLIER function (DAX), 717
EDITION parameter (ALTER DATABASE
command), 599
EDM designer/design surface (Visual Studio), 482–488

C# code, viewing background, 488
XML, viewing background, 487

ELEMENTS keyword (FOR XML syntax), 282–285
ellipsoidal sphere spatial model. See geodetic spatial
model
EnableClientAccess attribute (WCF RIA), 559
Encrypted File System (EFS), 229
ENCRYPTION BY PASSWORD clause (CREATE
CERTIFICATE statement), 233

encryption services
restoring encrypted databases, 233–234

encryption support, 222–234
algorithm availability for, 225
asymmetric key encryption, 222
blogs on, 228
building blocks for, 224
certificates, 222, 223
certificates, backing up, 232–233
data at rest, encrypting, 224–228
database master key (DMK), 224
data on the move, encrypting, 223–224
encrypted databases, obtaining information
on, 231
Encrypted File System (EFS), 229
encryption keys, 222
encryption_state method, 232
Force Protocol Encryption option (SQL Native
Client), 224
indexing encrypted data, 228
performance testing and, 228
self-signed certificate, 222
self-signed certificates, 223
Service Master Key (SMK), 224
SET ENCRYPTION ON clause, 231
SQL Server Configuration Manager tool, 223
SQL Server Native Access Client API, 223
symmetric key encryption, 222
transparent data encryption, 229–234

EndExecute method (DataServiceQuery<T> class), 665
endpoints, 213
enlistment, 187–189

durable, 188
portable single-phase, 188–189
volatile, 188

Enlistment variable (System.Transactions
namespace), 197
entities

logins as, 210–211
updating, 495
users/roles as, in SQL Server, 209–210

Entities collection
State property, 537

Entities (MDS), 677
Attributes, 677
Members, 677

EntityClient property value (Textbox), 505
EntityClient (System.Data.Entity assembly), 505–507
EntityCommand class (EntityClient), 506
EntityConnection class (EntityClass), 506

 Extract, Transform, and Load (ETL) tool

 Index 745

Entity Data Model (EDM), 482–508
adding to Windows Azure project, 644–647
best practices for, 552
building, 482–488
conceptual schema, 482
creating in Visual Studio, 483–488
DataService<T> class, 515
EDM design surface, 482
EntityClient, querying with, 505–507
Entity Data Model Wizard, 483
Entity SQL as native language for, 503
exposing to REST clients, 514
InitializeService method, configuring with, 515
LINQ to SQL vs., 480
many-to-many relationships, 483
Mapping Details pane, 500, 501
mapping schema, 482
mapping stored procedures to, 490–494
MetadataType attribute, 557
Model Browser, 486–487
ObjectContext property, 559
one-to-one correspondence and, 483
storage schema, 482
WCF Data Services, creating for, 513–515

Entity Data Model Wizard (Visual Studio), 483
Code-first design, 484
model-first developement, 484

EntityDataReader (EntityClient), 506, 507
Entity Framework

TVP support, lack of, 57
Entity Framework (EF), 482–508

CellValueChanged event, 538
client-side WCF Data Services applications and, 526
context of entities, 537
DataSets vs., 456
eager-loading queries, 498
ensuring reasonable queries from, 490
Entities collection, 537
EntityClient, 505–507
EntityState property, 498, 499
fill and update actions with, 499–500
impedance mismatch, resolving, 500–501
LinqToEntitiesDomainService<T>, 559
LINQ to Entities, using, 488–490
LinqToSqlDomainService<T>, 559
LINQ to SQL, migrating from, 481
LINQ to SQL vs., 478, 480–482
many-to-many relationships, 501–503
n-Tier and, 499–500
runtime behavior of, 485–486

saving entity changes, 495–498
WCF Data Services and, 500
WCF Data Services without, 511
WCF RIA Services and, 500

Entity SQL, 503–505
Entity Framework, as native language for,
488–490, 503–505
languages capable of communicating with, 481
LINQ to SQL vs., 480
T-SQL, resemblance to, 504–505

EntityState property (EF), 498, 499
EOMONTH function, 105–106
error handling

FORMATMESSAGE function, 112
THROW statements, using, 109–113

EventData property (SqlTriggerContext object), 150
Event parameter (CLR triggers)

FOR UPDATE, INSERT, 149
events

hooking up to handlers, 535–536
Excel

PowerPivot and, 717
querying in, 724–726
SQL Server databases and, 694

ExecuteAndSend method (SqlPipe object), 133
ExecuteScalar method (SqlCommand class), 447–450
execution context, 218–221

ALTER PROCEDURE statement, 220
WITH EXECUTE AS clauses, 220

expand option (WFC Data Services), 518
Explicit Hierarchies (MDS), 677
explicit transaction mode, 173–176

BEGIN TRANSACTION statement, 173–176
COMMIT TRANSACTION statement, 173–176
naming transactions, 173
nested transactions, 175
ROLLBACK TRANSACTION T-SQL statement, 174
savepoints, 175–176
SAVE TRANSACTION statement, 175–177
@@TRANCOUNT function, 174–176

explicit transactions
data access and, 450–453

Export feature (Windows Azure Management
Portal), 606
ExportSqlCe utility (SQL Server CE), 666
extended stored procedures (XPs), 132
eXtensible Markup Language (XML), 509. See XML
External_Access (CLR assembly security level), 161
Extract, Transform, and Load (ETL) tool

SSIS as, 681–683

Fast Track Data Warehouse

746 Index

F
Fast Track Data Warehouse, 684
Federation

SQL Server Object Explorer tools for, 611
federations

Distribution, 609
Federated Table, 609
Federation Key column, restrictions on, 609
Federation Member, 609

Federations
SSMS Object Explorer as tool for, 611

Federations (SQL Azure), 607–612
Atomic Unit, 607
central/reference tables, 610
and the cloud, 612
creating, 608
Distribution, 607
fan-out queries, 611
Federation Key, 607
Federation Members, 607
Federation Members, splitting and dropping, 610
Federation Memebers, using, 610
Federation Root, 607
lexicon for, 607
multi-tenancy, 611
support for, in SSMS and SSDT, 611–612
tables, 609

Fiddler
adding support for WCF RIA Services
inspecting, 569
monitoring network activity with, 510
WCF Data Services, watching with, 523

Field<T> method (System.Data.Data
namespace), 475

querying typed DataSets and, 477
FILEPATH option (SQL Server Audit), 238
FILESTREAM, 325–335, 355–357

backing up data and, 326
BULK option (OPENROWSET), 334
considerations with, 355–357
creating tables with, 330–331
database snapshots and, 356
data, deleting, 334–335
data, storing/retrieving, 331–334
enabling procedure for, 326–366
FILEGROUP...CONTAINS FILESTREAM clause
(CREATE DATABASE statement), 329
FILESTREAM data container, 329–330
FILESTREAM-enabled database, creating, 329–331

file system, restrictions on, 356
FileTable and, 359
FileTable feature and, 357–365
FTS and, 356
and garbage collector, triggering, 335
GET_FILESTREAM_TRANSACTION_CONTEXT
function, 336
HADR and, 355
INSERT statement and, 331–332
limitations on, 355–357
LocalDB (SSDT), lack of support in, 356
log shipping and, 356
mirroring and, 355
multiple filegroups and, 330
PathName method, 336
replication, restrictions on, 355–356
ROWGUIDCOL attribute, 330–331
SINGLE_BLOB option (OPENROWSET), 334
snapshot isolation level and, 356
SQL Server Express edition, support for, 356
TDE and, 355
Windows API and, 360

Filestream data
columnstore indexes and, 704

FILESTREAM data container, 329–330
fast access using SqlFileStream, 335
internal behavior of, 332–333

FILESTREAM, enabling, 326–329
levels of access, 327
locally, 326–328
server instance, 328–329
sp_configure system stored procedure and, 328
SQL Server Configuration Manager, 326–328
SQL Server Configuration Manager, VB alternative
to, 328
SSDT and, 328
SSMS and, 328

FILESTREAM feature
NTFS and databases, coordination between, 188

file_stream (FileTable column name), 357
file streaming, 323–366

BLOB data, 323–325
FILESTREAM, 325–335, 355–357
FileTable feature, 357–365
Full-Text Search (FTS), 365
SqlFileStream class (.NET), 335
Statistical Semantic Search, 365

FileTable feature, 357–365
catalog views for, 365
creating, 360–361

 geometry collection

 Index 747

FILESTREAM and, 359
hierarchyid class (data type), 357
manipulating, 362–365
required CREATE DATABASE statements for, 360
System.IO.FileStream and, 359
Windows Explorer and, 359

FILETABLEROOTPATH function (SQL Server)
FileTable access and, 362

file_type (FileTable column name), 358
Fill method (SqlDataAdapter class), 457–458, 461
FILTER function (DAX), 717
firehose cursor. See DataReaders
firewalls

Client Sync Agent and, 624
FIRST_VALUE function, 98–99
fixed server rolls of logins, 211
flat-earth spatial model. See planar spatial model
FlixPoll sample application, 627–674
Force Protocol Encryption option (SQL Native
Client), 224
ForceRollBack(Exception) (System.Transactions.
PreparingEnlistment class), 198
ForceRollBack() method (System.Transactions.
PreparingEnlistment class), 198
foreign key relationship

establishing, 26
FORMAT function, 107

date/time formatting codes, 108
FORMATMESSAGE function

and error handling, 112
Format parameter (SqlUserDefinedAggregate
attribute), 151
FOR SERVER AUDIT clause (SQL Server Audit), 239, 241
FOR XML AUTO, 269–271

ELEMENTS keyword, 282–283
FOR XML EXPLICIT vs., 273
join clause and, 269–270
XMLSCHEMA keyword and, 281

FOR XML commands, 268–280
element-based XML, producing with, 282–283
ELEMENTS keyword, 282–283
FOR XML AUTO, 269–271
FOR XML EXPLICIT, 271–276
FOR XML PATH, 277–280
FOR XML RAW, 269
inline XSD schemas, producing with, 281–282
ROOT elements and, 280–281
ROOT option, 280–281
TYPE option, 276–277
XMLSCHEMA keyword and, 281

FOR XML EXPLICIT, 271–276
!ELEMENT flag, 273
FOR XML AUTO vs., 273
FOR XML PATH vs., 271

FOR XML PATH
data (node function), 279
FOR XML EXPLICIT vs., 271
XPath expressions and, 277–280

FOR XML RAW, 269
ELEMENTS keyword, 282–285
query results in SSDT and SSMS, 269
XMLSCHEMA keyword and, 281

for (XQuery keyword), 286
FROM clause (Class Library project), 139
FULLGLOBE class, 412–413
FULLGLOBE keyword (WKT), 370–371
Full outer join type, 74
Full-Text Search (FTS), 365

and FILESTREAM, 356
LIKE operator vs., 365
Microsoft Word documents and, 365
NEAR keyword, 365
supported file types for, 365

functions (SQL CLR), 143–147

G
garbage collection (.NET Framework)

Dispose method (IDisposable interface), 439
using statement (IDisposable objects), 439

Garcia, Raul, 228
geodetic spatial model, 368–369

geography data type and, 374
Geographic Information System (GIS), 367
geography data type, 388–400

building map regions with, 388–391
geodetic spatial model and, 374
instance size, support for, 411–412
MinDbCompatibilityLevel method, 408–409
STArea method, 391–392
STCurveN method, 405–406
STDistance method, 400
STLength method, 391–392
STNumCurves method, 405–406
vertex order, importance of, 412

Geography Markup Language (GML), 374
GeomFromGml method, importing shapes
with, 374

geometry collection
storage overyead of, compound curves vs., 404

GEomETRyCoLLECTIon keyword (WKT)

748 Index

GEOMETRYCOLLECTION keyword (WKT), 371
geometry data type, 375–387

BufferWithCurves method, 406–408
creating tables with, 375–378
CurveToLineWithTolerance method, 409–410
IsValidDetailed method, 410–411
MakeValid method, 410–411
MinDbCompatibilityLevel method, 408–409
overlapping regions, manipulating, 384–387
planar spatial model and, 374
STBuffer method, 378–379
STCentroid method, 380–381
STCurveN method, 405–406
STCurveToLine method, 409–410
STDifference method, 384–387
STDimension method, 383–384
STEnvelope method, 380–381
STGeomFromText, importing shapes with, 372
STGeomFromWKB, importing shapes with, 373
STIntersection method, 382–383
STIntersects method, 382–383
STIsValid method, 410–411
STNumCurves method, 405–406
STSymDifference method, 384–387
STUnion method, 384–387
STxxxFromText, importing shapes with
validation, 372–373

GeomFromGml method (geometry class), 374
geospatial data, 367–424

Bing Maps, integrating with, 413–422
circles, creating with CIRCULARSTRING, 402
enhancements to, in SQL Server 2012, 400–413
geodetic model for, 368–369
Geographic Information System (GIS), 367
geography data type, 388–400
Geography Markup Language (GML), 374
geometry data type, 375–387
Global Positioning Satellite (GPS) technology, 367
planar model for, 368
spatial equality, testing for, 404
SRID and, 392
standards for, 370–374
STCentroid method, 380
STDimension method, 383
STEquals method, 404
Well-Known Binary (WKB), 373–374
Well-Known Text (WKT), 370–373

geospatial data (enhancements in SQL Server
2012), 400–413

backwards compatability for SQL Server
and, 408–410
BufferWithCurves method, 406–408
CIRCULARSTRING object, 401–402
COMPOUNDCURVE object, 403–404
CURVEPOLYGON object, 404–405
CurveToLineWithTolerance method, 409–410
FULLGLOBE class, 412–413
geography instance size, increase in, 411–412
increased precision, 413
IsValidDetailed method, 410–411
MakeValid method, 410–411
MinDbCompatibilityLevel method, 408–409
STCurveN method, 405–406
STCurveToLine method, 409–410
STIsValid method, 410–411
STNumCurves method, 405–406
Unit Sphere SRID, 413

GetAncestor method (hierarchyid class), 310–313, 357
IsDescendentOf vs., 316

GetAssociatedChanges method (DataService
class), 560
GetChangeOperation method (DataService class), 560
GetDataTypeName method (SqlDataReader class), 446
GETDATE function, 62
GetDescendant method (hierarchyid class), 357
GetDescendant Method (hierarchyid class), 304–310
GET_FILESTREAM_TRANSACTION_CONTEXT function
(FILESTREAM), 336
GetLevel method (hierarchyid class), 302
GetOriginal method (DomainServices class), 560
GETPATHLOCATOR function

FileTable access and, 363–364
GetReparentedValue method (hierarchyid
class), 318–319, 357
GetRoot method (hierarchyid class), 303–304
GetSchemaTable method (SqlDataReader class), 446
GETUTCDATE function, 62
global assembly cache (GAC), 190

missing dependent assemblies and, 139
Global Positioning Satellite (GPS) technology, 367
GROUP BY

xml (data type) and, 257
GROUP BY clause, 83–93

GROUPING SETS operator, 88
WITH CUBE operator, 86–88
WITH ROLLUP operator, 85–86

GROUPING SETS operator, 88
combining operations using, 89–90

 Indexes And Keys link (SQL Azure management Portal)

 Index 749

NULL values, handling, 90–93
use combining WITH ROLLUP and WITH CUBE, 89

guest user account, 212–213

H
hackers, 249–251

administrator passwords and, 249
direct connections to Internet and, 249
intelligent observation and, 250–251
search engines and, 250–251
SQL injection and, 250
SQL Server Browser Service and, 249–250

HandleException method (DataService class)
Exception property, 547
HandleExceptionArgs parameter, 547
overriding, 546
UseVerboseErrors property, 547

hierarchical tables, 299–322
adding nodes with GetDescendant, 304–310
creating tables, 301–302
GetReparentedValue method, 318–319
IDENTITY values and, 302
indexing strategies for, 313–315
IsDescendantOf method, 315–317
orphaned nodes and, 319
populating hierarchies, 303–313
primary key of, 301
querying, 315–317
reordering nodes within, 317–321
subtrees, transplanting, 319–321
using transactions to prevent collisions, 311

hierarchical tables, creating, 301–302
GetAncestor method, 310–313
GetDescendant method, 304–305
GetLevel method, 302
ToString method, 305

Hierarchies (MDS), 677
Derived, 677
Explicit, 677
Recursive, 677

hierarchyid class (data type), 357
GetAncestor method, 357
GetDescendant method, 357
GetReparentedValue method, 357
IsDescendantOf method, 357

hierarchyid data type, 300–301
GetAncestor method, 310–313
GetDescendant method, 304–310
GetLevel method, 302

GetReparentedValue method, 318–319
GetRoot method, 303–304
namespace location of, 301
Parse method, 321–322
Read method, 321–322
:: syntax for, 303
ToString method, 305
T-SQL extensions for, 300
Write method, 321–322
XML vs., 299

High-Availability Disaster Recovery (HADR)
FILESTREAM attribute and, 355

HttpContext.Current.User property, 548
Hub Database (Data Sync term), 622
Hub Wins (Data Sync conflict resolution), 624

I
IDataServiceStreamProvider interface (WCF Data
Services), 512
IDbCommand interface (System.Data namespace), 436
IDbConnection interface (System.Data
namespace), 436
IDbDataReader interface (System.Data
namespace), 436
IDbParameter interface (System.Data namespace), 436
IDbTransaction interface (System.Data namespace), 436
IDENTITY attribute

and SEQUENCE objects, 115
IDENTITY values

assigning key values with, 302
IDisposable interface

Dispose method, 439
using statement and, 439

IEnlistmentNotification interface, 195
IEnumerable interface, 54–57
IEnumerable methods

use in LINQ to Entities queries, 490
IEnumerable (.NET interface)

arrays vs., as return value for TVFs, 145–147
IIF function, 106
impedance mismatch, resolving, 500–501
IMPERSONATE permission (login), 221
implicit transactions

data access, runtime behavior for, 454
data access with, 453–455

Include attribute (metadata classes), 558
Indexes And Keys link (SQL Azure Management
Portal), 592

indexing strategies, hierarchical tables

750 Index

indexing strategies, hierarchical tables, 313–315
breadth-first, 314–315
depth-first, 314

InDoubt method (IEnlistmentNotification
interface), 195
infrastructure as a service (IaaS), 580
InitializeService method (EDM), 515
injection attacks

avoiding, using parameters, 442
sanitizing inputs to avoid, 440

in-memory BI (IMBI). See VertiPaq
inner join type, 74
INotifyPropertyChanged interface (MVVM), 660
InsertCommand property (SqlDataAdapter
class), 457–458
INSERT OVER DML syntax, 76–83

CHANGES, consuming, 80–83
managing size of log files using, 79
OUTPUT...INTO, as filterable alternative to, 77–80

inserts
bulk, using TVPs, 49–51

Integration Services (SSIS)
SQL Server Data Tools (SSDT) support for, 4

interceptor(s)
change, 548
HttpContext.Current.User property, 548
query, 547
writing, 547–548

interleaved transactions, 176–179
Internet Explorer

AtomPub respons feeds, configuring for, 516–517
RSS feeds in 64-bit version, 516
WCF Data Services, testing in, 515–518

is_archive (FileTable column name), 357
IsDescendantOf method (hierarchyid class),
315–317, 357

GetAncestor vs., 316–317
return value of, 315

is_directory (FileTable column name), 357
values for, 358

is_hidden (FileTable column name), 357
is_offline (FileTable column name), 357
isolation (ACID property), 171–172
IsolationLevel property (TransactionOptions
object), 185
isolation levels

SET TRANSACTION ISOLATION LEVEL
statement, 179

isolation levels (of transactions), 179–186
ADO.NET transactions and, 184–186

read committed, 181
read committed snapshot, 183–184
read uncommitted, 179–181
repeatable read, 182
serializable, 182
snapshot, 182–183

is_readonly (FileTable column name), 357
is_system (FileTable column name), 357
is_temporary (FileTable column name), 357
IsValidDetailed method (geometry class), 410–411

J
JavaScript Object Notation (JSON), 509
join methods

chosing, 74–75
types of, 67

K
keyboard shortcuts

execute a script, 12
execute script with debugger, 12
stepping through code in debugger, 34

key encryption (asymmetric), 222
key encryption (symmetric), 222
key performance indicator (KPI), 688
Knowledge Bases, in DQS, 680–681
known performance indicators (KPIs)

building, 720

L
LAG function, 98–100
language-integrated query (LINQ), 472–477

LINQ to DataSet, 473–477
LINQ to Objects, 472
T-SQL vs., 472–473

last_access_time (FileTable column name), 357
LAST_VALUE function, 98–99
last_write_time (FileTable column name), 357
lax validation (XSDs), 263–264

anyAttribute declarations and, 263
processContents and, 263

lazy loading queries, 481
Entity Framework and, 498–499

LEAD function, 98–100
Left outer join type, 74
let (XQuery keyword), 286

 master Data Services (mDS)

 Index 751

Lightweight Transaction Manager (LTM), 187
MS DTC, promoting to, 188–189
volatile enlistment and, 188

LIKE operator (T-SQL)
FTS engine vs., 365

LINESTRING keyword (WKT), 370
converting to POLYGON with STBuffer, 378–379

LINQ Pocket Reference (Albahari and Albahari), 472
LINQ to DataSet, 473–477

AsDataView method, 476
CopyToDataTable method, 476
generic DataSets, querying, 474–476
IEnumerable<DataRow> objects as return
value, 476
System.Data.DataSetExtensions.dll, 475
typed DataSet, querying, 476–477

LINQ to Entities, 480, 488–490
change tracking, 498–499
deferred execution, 489
IEnumerable methods, use in queries, 490
object context lazy loading, 498–499
runtime (mis)behavior of queries, 492

LinqToEntitiesDomainService<T> (EF), 559
LINQ to Entities Query (Direct SQL) property value
(textbox), 488
LINQ to Entities Query (Stored Procedure) property
value (textbox), 492
LINQ to Generic DataSet property (Textbox), 474
LINQ to Objects, 472
LINQ to REST, 518

runtime dynamic behavior of, 523
LINQ to SQL

DataContext object, 479
Entity Framework vs., 478, 480–482
Entity SQL vs., 480
languages capable of communicating with, 481
migrating to Entity Framework, 481
SQL CE and, 667
SQL CE databases, queries against, 671
unsuppored features in Windows Phone, 667
WCF RIA Services, exposing to, 559
Windows Phone 7 and, 482, 667

LinqToSqlDomainService<T> (EF), 559
LINQ to Strongly Typed DataSet property value
(textbox), 476
LoadAsync method (DataServiceCollection<T>
class), 664–665

runtime behavior of, 664
LoadCompleted event (DataServiceCollection<T>
class), 664–665

LocalDB
deploying to, 30–31
SQL Server Data Tools, use in, 27–31

LOG function, 109
logical functions, 106–107

CHOOSE function, 106
CONCAT function, 107
FORMAT function, 107
IIF function, 106

LOGINPROPERTY function, 216
logins, 210–213

auditing, 239–240
checking credentials during authentication, 214
database users, 211–212
fixed server rolls of, 211
guest user account, 212–213
IMPERSONATE permission, 221
LOGINPROPERTY function and, 216
sys.sql_logins system view and, 216

log shipping
FILESTREAM and, 356

m
MakeValid method (geometry class), 410–411
Management Portal. See SQL Azure Management
Portal
Many To Many Relationships property value
(textbox), 501
Mapping Details pane (EDM), 500, 501
mapping schema (EDM), 482
mash-up

defined, 413
Massively Parallel Processing (MPP), 685
Master Data Management (MDM), 677
Master Data Services (MDS), 677–680

Attribute Groups, 677
Attributes (of Entities), 677
Business Rules, defining, 678
DQS and, 681
Entities, defining in, 677
Excel add-in, 678–679
exporting member data, 679
Hierarchies of Members, 677
Master Data Management (MDM), 677
Models, 677
security controls in, 678
Web Services interface, 679
Workflow facilities in, 678

mathematical functions

752 Index

mathematical functions, 109–123
LOG function, 109

max degree of parallelism (MDOP) configuration
option, 707
MAX_FILES option (SQL Server Audit), 238
MAX_ROLLOVER_FILES option (SQL Server Audit), 238
MAXSIZE option (SQL Server Audit), 238
MAXSIZE parameter (ALTER DATABASE command), 599
measures, 718–724

creating, 718–720
MediaElement control (WPF client applications), 354
Member Database (Data Sync term), 622
Members (MDS)

Excel add-in, entering with, 678–679
exporting data, 679
Web Services interface, entering data with, 679

memory-mapped files
support for, in FileTable, 364

Merge method (SQL CLR aggregates), 155
MERGE statement, 65–76

and consistant trigger behavior, 75
implementation of, 75–76
join method, chosing, 74–75
join methods, types of, 67
output of, 73–74
source requirements for, 67
source/target of, defining, 67
table replication using, 70
target requirements for, 67
WHEN MATCHED clause, 68–69
WHEN NOT MATCHED BY SOURCE clause, 71–73
WHEN NOT MATCHED BY TARGET clause, 69

Message Transmission Optimization Mechanism (MTOM)
BLOBs and, 348

metadata classes, 557–559
Composition attribute, 558
Include attribute, 558
MetadataType attribute, 557
nesting, 557
RoundtripOriginal attribute, 558

metadata discovery, 118–122
parameterized queries for, 120–121
@SortOrder parameter, 120
sys.dm_exec_describe_first_result_set_for_object
procedure, 118
sys.dm_exec_describe_first_result_set
function, 118–119
sys.sp_describe_first_result_set procedure, 118
sys.sp_describe_undeclared_parameters
procedure, 118, 122

MetadataType attribute (EDM), 557
Microsoft ADO.NET Data Services, 527
Microsoft Bing Maps

AJAX and, 416–417
geospatial data in SQL Server and, 413–422

Microsoft BI Stack, 676
Microsoft Books Online

columnstore indexes in, 704
Microsoft Distributed Transaction Coordinator
(MS DTC), 187

blocking promotion to, in linked databases, 190
LTM, promoting from, 188–189
performance issues with, 187

Microsoft Excel spreadsheets
Full-Text Search (FTS) and, 365

Microsoft PowerPoint decks
Full-Text Search (FTS) and, 365

Microsoft SQL Server Compact edition
(SQL CE), 666–672

creating, 667–671
ExportSqlCe utility, 666
LINQ to SQL and, 667
LINQ to SQL queries against, 671
SQL Server Compact Toolbox, 666
WCF Data Services, running against local, 671

Microsoft.SqlServer.Server namespace
classes for local server/remote client data access
in, 132
.NET code attributes for SQL CLR projects in, 129
Send method, parameters for, 133
SqlContext object, 133
SqlPipe object, 133
System.Data.dll .NET Framework and, 132

Microsoft’s SQL Server 2012 Developer Training
Kit, 708
Microsoft Sync Framework Toolkit, 627
Microsoft Sync Service Framework

Microsoft Sync Framework Toolkit, 627
SQL Azure Data Sync and, 621
SQL Azure Data Sync vs., 627

Microsoft Transaction Server (MTS), 190
Microsoft Visual Basic .NET

C# vs., 141
MinDbCompatibilityLevel method (geometry
class), 408–409
Model Browser

stored procedures, mapping in, 490–494
Model Browser (Visual Studio), 486, 486–487
modeling, 715–718, 718–724
Models (MDS), 677

 ovER clause

 Index 753

Model-View-ViewModel (MVVM) pattern, 651–661
INotifyPropertyChanged interface, 660
LoadData method, 651
WCF Data Services, calling, 662–674

MSDN
SQL CLR attribute coverage in, 129

MSSQLSERVER Properties dialog box (SQL Server
Network Configuration), 223
MultiDimensional eXpressions (MDX), 687
MULTILINESTRING keyword (WKT), 371
multiple active result sets (MARS), 176–179

savepoints and, 178–185
transactions and, 177

MULTIPOINT keyword (WKT), 371
MULTIPOLYGON keyword (WKT), 371
multi-tenancy

Federations, support in, 611

n
name (FileTable column name), 357
NEAR keyword (Full-Text Search), 365
nested transactions

behavior of ROLLBACK statements in, 175
network latency

SQL Azure data centers, choosing to reduce, 630
New Table link (SQL Azure Management Portal), 590
nHibernate library, 478
node (XPath node function), 279
nonrepeatable reads

read uncommitted isolation level and, 181
repeatable read isolation level and, 182
serializable isolation level and, 182

Nonrepeatable read (transaction), 178
NTILE function, 93
NULL values

as handled by GROUPING SETS, 90

o
object-oriented programing

DataSets and, 477–478
Object Relational Modeling (ORM), 477–507

ADO.NET vs., 479
defining, 478
Entity Data Model (EDM), 482–508
entity framework, 482–508
LINQ to SQL, 479–482
nHibernate library, 478

occasionally connected systems
bi-directional synchronization, 620
characteristics of, 620–621
creating, 626–629
data management for, 620–621

OData
Windows Phone 7, consuming on, 662–674

OData URI specifications, location of, 518
OFFSET/FETCH NEXT syntax

ROW_NUMBER function vs., 115
usage, 114–115

ON_FAILURE option (SQL Server Audit), 237
OnLine Analytical Processing (OLAP), 686–687
online analytical processing (OLAP) queries

WITH ROLLUP and WITH CUBE clauses vs., 83
OnLine Transactional Processing (OLTP)

OLAP vs., 686
online transaction processing (OLTP) system, 255–256
OnStartProcessingRequest method (DataService
class), overriding, 546

IsBatchRequest flag, 546
ProcessRequestArgs parameter, 546

Open Database Connectivity (ODBC) API, 428
Open Data Protocol (OData)

WCF Data Services and, 511
Open Geospatial Consortium (OGC)

WKT, WKB, and GML and, 370
Open method (SqlConnection object), 439
OPENROWSET

BULK option, 334
SINGLE_BLOB option, 334

OpenSqlFilestream function (SQL Server), 335
Open statement (SqlConnection instance), 193
OPENXML system function, 284–285

sp_xml_preparedocument stored procedure
and, 284–285

Oracle database(s)
accessing through SQL statements, 53–54

OracleDataReader object, 53–54
ORDER BY

xml (data type) and, 257
outbound data, defined (SQL Azure), 583
OUTPUT...INTO

historical logs, use in creating, 76
INSERT OVER DML as filterable alternative
to, 77–80

Output Parameter property (Textbox), 448
OVER clause, 93–97

aggregate functions, traditional, 94
aggregations, running, 95–96

Parameterized Direct SQL (text box property)

754 Index

OVER clause, Continued
aggregations, sliding, 96–97
DENSE_RANK function, 93
NTILE function, 93
PARTITION BY clause, 94
RANGE vs. ROWS, using, 97
RANK function, 93
ROW_NUMBER function, 93

P
Parameterized Direct SQL (text box property), 441
Parameters collection

configuring, 449
Parameters collection (SqlCommand object), 441
parent_path_locator (FileTable column name), 358
PARSE function, 103, 104
Parse method (hierarchyid class), 321–322

ToString and, 321
partially contained databases, 244–249

collations, 247–249
contained user, creating, 245–246
creating, 245
features of, 246–249
Initial Catalog clause and, 246
sys.dm_db_uncontained_entities DMV and, 246
tempdb, 247–249
uncontained entities view, 246–247

PARTITION BY clause, 94
password policies, 215–216

setting with Security Policy applet, 215
passwords

auditing, 239
path_locator (FileTable column name), 357

stream_id vs., as permenant reference, 358
PathName method (varbinary(max)), 336

return value of, 336
PatIndex method, 256
PERCENTILE_CONT function, 98, 100, 102
PERCENTILE_DISC function, 98, 100, 102
PERCENT_RANK function, 98, 100–101
performance issues

DTC and, 187
PerformancePoint dashboards

SSRS reports and, 694
PerformancePoint Services (PPS), 696
PERMISSION_SET value, 139
PERMISSION_SET value (Class Library project), 139
permissions for users

execution context to set, 220

phantom reads (transaction), 178
read uncommitted isolation level and, 181
repeatable read isolation level and, 182
serializable isolation level and, 182

Ping Sync Service button (Client Sync Agent), 634
Pipe object (SqlContext)

Send method, overloading, 134
Pipe property (SqlContext object), 133
piping data

SqlDataRecord and SqlMetaData, with, 134–136
plain old CLR object (POCO), 478, 481
planar spatial model, 368

geometry data type and, 374
platform as a service (PaaS), 580
POCOs

exposing to WCF RIA Services with
DomainService class, 559

POINT keyword (WKT), 370–371
Policy Based Management Framework (PBM), 209
POLYGON keyword (WKT), 370–371
portability of databases with partial containment, 244
PowerPivot

Advanced Mode, 723–724
BISM and, 711–712
calculated columns, 716–717
Connect To A Data Source page, 714
Create Hierarchy option, 721
Create PivotChart dialog box, 724
Create Relationship button, 718
Diagram view, 720
download source for, 712
Excel and, 717
Excel, querying in, 724–726
From Other Sources button, 714
hierarchies and, 720–722
KPIs, building, 720
Manage Relationships button, 717
measures, 718–724
modeling with, 715–718
PivotTable button, 724
PivotTable (Horizontal) dialog box, 724
relationships, managing, 717–718
row/column manipulation in, 715–716
SharePoint, for, 726–727
SSAS Tabular, importing into, 727–728
Table Import Wizard, 714

PowerPivot (Excel add-in), 687–690
key performance indicator (KPI), 688
SharePoint as required by, 687
SSAS BI Semantic Model vs., 689

 resource manager(s) (Rm)

 Index 755

PowerPivot Gallery
Documents tab, 731
Power View Reports, creating in, 732

Power View
BISM data sources and, 691

Power View Report, 732–734
Predixion Software, 690
Prepared method (System.Transactions.
PreparingEnlistment class), 198
Prepare method (IEnlistmentNotification
interface), 195
processadmin (fixed server roll), 211
processContents, 263
processing-instruction (XPath node function), 279
Pro Cycling Tour (Philadelphia, PA), 388
Programming Entity Framework, Second Edition
(Lerman), 487
promotable single-phase enlistment (PSPE), 188–189
public (fixed server roll), 211
public roll (database roll)

security risks with, 212
Publish function (SSDT), 137–138

Q
Query interceptors, 547
query performance

depth vs. breadth indexing and, 314
Query Performance page (SQL Azure Management
Portal), 596
query processor (QP), 706
QUEUE_DELAY option (SQL Server Audit), 236–237

R
RAISERROR statement

requirements for, 112
THROW vs., 110, 111–113

RANGE clause
ROWS clause vs., 97

RANK function, 93
CUME_DIST function and, 101
PERCENT_RANK function and, 101

raw data objects (ADO.NET), 436–455
connections/commands, creating, 437–440
data readers, iterating, 443–447
parameters, using, 440–442
scalar values, returning, 447–455
stored procedures, calling, 442–508
updates/transactions, batching, 450–455

ReadCommitted (ADO.NET isolation level), 185
read committed isolation level, 181
read committed snapshot isolation level, 183–184

USE master statement, 184
Read method (hierarchyid class), 321–322
ReadUncommitted (ADO.NET isolation level), 184
read uncommitted isolation level, 179–181

dirty reads and, 179
Really Simple Syndication (RSS)

as XSD schema, 260
Really Simply Syndication [RSS], 509
RecordSet object vs. DataSets, 455
recursive common table expressions

autocommit transaction mode and, 173
Recursive Hierarchies (MDS), 677
Reflection provider (WCF Data Services), 512
remote BLOB storage (RBS), 356
Remote Data Objects (RDO), 428
RepeatableRead (ADO.NET isolation level), 185
replication

FILESTREAM, limitations with, 355–356
Report Builder

SAR reports, deploying, 616
Report Builder 3.0 (SSRS), 693
reporting

authoring, 614–615
provisioning for, 613–614

Reporting Services project tooling (Visual Studio)
SQL Azure Reporting (SAR) and, 615

Reporting Services (SSRS)
SQL Server Data Tools (SSDT) support for, 4

reporting (SQL Azure), 612–617
reports

deploying, 615–617
Report Wizard

SAR reports and, 614
Representational State Transfer (REST) protocol, 509

exposing EDMs to, 514
WCF Data Services and, 511

RESERVE_DISK_SPACE option (SQL Server
Audit), 238–239
resource manager

SqlConnection as, 200
resource manager (RM)

IEnlistmentNotification interface, requirement
for, 195

resource manager(s)
best practices for, 199

resource manager(s) (RM), 186, 198–200
CreateYourOwnRM solution, 195

Results As Grid (SSDT)

756 Index

resource manager(s) (RM), Continued
creating, 194–198
relations between two, 199–200
rollback calls, use in, 198–199
rollback, issuing from, 199
TransactionScope and, 198

Results As Grid (SSDT), 134
Results As Text (SSDT), 134
Results To Grid (SSMS), 134
Results To Text option (SSMS), 134
Right outer join type, 74
role (Compute resource), 641
Rollback method (IEnlistmentNotification
interface), 195
ROLLBACK TRANSACTION T-SQL statement, 174

behavior of, in nested transactions, 175
ROOT element

requirement for in XML documents, 280
RoundtripOiginal attribute (metadata classes), 558
RowFilter property (DataView object), 473
ROWGUIDCOL attribute (FILESTREAM), 330–331
ROW_NUMBER function, 93, 113–114

OFFSET/FETCH NEXT syntax vs., 115
WHERE clause and, 113

ROWS clause
RANGE clause vs., 97

S
Safe (assemby security level), 161
SampleRiaContext class (WCF RIA Services), 566
SARASPNETTest sample application, 597
SaveChanges method (DataServiceContext), 526
savepoints

explicit transactions and, 175–176
MARS and, 178–185
SAVE TRANSACTION statement, 175–177

schemas
change propigation, implementation of, 6–7
comparing, 35–38
.NET namespaces vs., 24
scope of, 24
use in transfering ownership of database
objects, 216–218

search engines
hackers and, 250–251

security, 207–252
asymmetric key encryption, 222
authentication/authorization, 213–221
blogs on, 228

certificates, 222, 223
certificates, self-signed, 222
databases, hiding behind firewalls/SQL Azure
databases, 626
database users, fixed rolls of, 212
Data Sync and, 625
demilitarized zone (DMZ), setting up, 626
Encrypted File System (EFS), 229
encryption support, 222–234
fixed server rolls of logins, 211
guest user account and, 212–213
hackers and, 249–251
logins, 210–211
MDS, controls in, 678
partially contained databases, 244–249
Policy Based Management Framework (PBM), 209
principals/entities, 209–210
public roll (database roll). security risks with, 212
reducing the surface area for attack, 209
Secure by Default, 208
Secure by Deployment, 208
Secure by Design, 208
Secure Communications, 208–252
Security Framework, 208–209
self-signed certificates, 223
SET ENCRYPTION ON clause, 231
sp_configure stored procedure, 209
SQL Azure connection settings, 597
SQL CLR, specifying level of, 161–162
SQL Server Audit, 234–244
SQL Server Configuration Manager tool, 223
SQL Server Native Access Client API, 223
SQL Server Surface Area Configuration Tool, 209
SSAS Tabular mode, 728
symmetric key encryption, 222
transparent data encryption, 229–234
Trustworthy Computing initiative (Microsoft), 207
Windows login support in SQL Server, 210
Windows Phone and, local data on, 667

securityadmin (fixed server roll), 211
security certificates, 222
Security Framework, 208–209
Select a Database link (SQL Azure Management
Portal), 594
SelectCommand property (SqlDataAdapter
class), 457–458
Select Target Schema dialog, 36
self-signed certificates, 222, 223
semantic zoon, 594
Send method (SqlPipe object), 133

 sp_configure stored procedure

 Index 757

SendResultsEnd method (SqlPipe object), 133
SendResultsRow method (SqlPipe object), 133
SendResultsStart method (SqlPipe object), 133
SEQUENCE object, 115–118

ALTER SEQUENCE statement, 117
CREATE SEQUENCE statement, 116
DEFAULT constraint on, 117
DROP SEQUENCE statement, 118

sequences
limitations on, 117–123
SEQUENCE object, 115–118

Serializable (ADO.NET isolation level), 185
Serializable attribute

UDTs and, 158
serveradmin (fixed server roll), 211
server roles

logins and, 211
server-side paging, 113–115

OFFSET/FETCH NEXT syntax, 114–115
ROW_NUMBER function, 113–114

Service Master Key (SMK), 224
services

Atom Publishing Protocol (AtomPub), 509
defining, 509–510
Really Simply Syndication [RSS], 509
Representational State Transfer (REST) protocol, 509
Simple Object Access Protocol (SOAP), 509
Virtual Private Network [VPN], 509

SET ENCRYPTION ON clause, 231
SET IMPLICIT_TRANSACTIONS T-SQL statement, 176
SET TRANSACTION ISOLATION LEVEL
statement, 179
setupadmin (fixed server roll), 211
sharding scheme, 607
SharePoint

PPS and, 696
SharePoint Enterprise 2010, 726–727

PowerPivot and, 726–727
SharePoint versions

requirements for, 697
Silverlight, 518

DataGrid control, adding to project in Visual
Studio, 561
LINQ to REST, 518
Silverlight Application template, 549–551
System.Runtime.Serialization (WCF assembly), 550
System.ServiceModel assembly, 550
System.ServiceModel.DomainServices.Client
assembly, 550

System.ServiceModel.DomainServices.Client.Web
assembly, 550
System.ServiceModel.eb.Extensions assembly, 550
WCF RIA Services and, 549
WCF RIA Services client, building for, 561–568

Silverlight Developer Runtime, 549
Silverlight For Windows Phone template (Visual
Studio), 647
SilverLight Toolkit

location of and installing, 648
Simple Object Access Protocol (SOAP), 509
Single method (DataServiceQuery<T> class), 665
smalldatetime data type, 58
SMALLDATETIMEFROMPARTS function, 105
Smart Business Intelligence Solutions with Microsoft®
SQL Server® 2008 (Langit, Goff, et al),Z 676
SMK

APIs used to encrypt, 225
backing up/restoring, 225
DMK and, 225

snapshot
saving, 25

Snapshot (ADO.NET isolation level), 185
snapshot isolation level, 182–183

enabling, 183
FILESTREAM and, 356

SOAP
as XSD schema, 260

software as a service (SaaS), 611
Solution Explorer

adding WCF Data Services to project in, 519
ASP.NET Development Web Server, 516
deploying Windows Phone applications to
Windows Azure with, 672–674
Windows Forms Application template, 519

source code control (SCC)
in SSDT, 23

spatial data types, 374–400
full listing of all methods, location of, 370
geography data type, 388–400
geometry data type, 375–387

spatial instance validation, 410–411
STIsValid, IsValidDetailed, and MakeValid
methods, 410–411

Spatial Reference IDs (SRID)
comparing, requirements for, 392
geospatial data and, 392
Unit Sphere SRID, 413

sp_configure stored procedure, 209

sp_xml_preparedocument (system stored procedure)

758 Index

sp_xml_preparedocument (system stored
procedure), 284–285
SQL Azure, 579–618

accounts required for, 584
administrative user, configuring, 587–588
checking database for compatibility with, 40
clients, connecting to, 596–599
clustered index, requirements for, 40
Create Server wizard, 587–588
database, provisioning, 589
data centers, locations of, 586–587
data, entering, 590–592
deploying to, 602–604
Deploy to SQL Azure feature (SSMS), 603
Export Data-Tier Application function (SSMS), 603
Federations, 607–612
firewall, configuring, 587–588
firewall, setting up with T-SQL, 588
free trial membership for, 583–584
history of, 581
hostname for database, 588
index design, 592–593
limitations on databases in, 581–582
management/visualizations in, 593–618
managing databases, 589–599
migrating to/synching with, 599–606
outbound data, charges for, 583
platform as a service (PaaS), 580
pricing, 583–584
publishing to, using SQL Server Object
Explorer, 39–42
querying in a browser, 592
restriction list, source for, 582
SARASPNETTest sample application, 597
scalability requirements for, 582
servers, provisioning, 586–588
setting up for, 584–589
size limit on, 581
SQL Azure Client Sync Agent, 624
SQL Azure Data Sync (Data Sync), 621–626
SQL Azure Management Portal, 589–599
SQL Azure Reporting (SAR), 612–617
SQL Server Data-Tier Applications (DACs), 599–606
SQL Server, migration from, 605–606
SQL Server, migration to, 606
SQL Server vs., 582, 599
SSDS as predecessor for, 581
subscription rates for, 583
tables, creating, 590–592
Tabular Data Stream (TDS) protocol, 581

trial account, setting up, 585
updates, deploying to, 604
updates, deploying with SSDT, 604
updates, deploying with SSMS, 604
Windows Azure Management Portal, 586–588
Windows Live ID, requirement for, 584
XML support in, 581

SQL Azure Client Sync Agent (Data Sync), 622, 624
configuring, 633–634
installing, 632–633
Ping Sync Service button, 634
Submit Agent Key button, 634
Test Connection button, 634

SQL Azure, connecting to, 596–599
encryption settings, 597
firewall, client IP settings in, 597
from SSMS, 597–599
host name settings, 596
SQL Server Authentication settings, 597
SSDT, 597–599
SSDT SQL Server Object Explorer and, 599
SSMS Object Explorer and, 599
TCP settings, 597

SQL Azure Data Sync (Data Sync), 621–626
capabilies/features of, 621–622
Client Sync Agent, 624
configuring, 630–641
conflict resolution policies, 624
datasets, defining, 636
hub database, setting up, 635
limitations on while in preview release, 621
manual synchronization, 623
Microsoft Sync Service Framework vs., 627
Microsoft Sync Services Framework and, 621
performance/costs with, 625–626
provisioning the server, 630
requirements for, 629
security, 625
sync directions supported by, 621–622
Sync Groups, 623–624
Sync Groups, creating, 631–641
Sync Now button (Windows Azure Management
Portal), 639
terminology for, 622
Windows Azure Management Portal, 631

SQL Azure Management Portal, 589, 589–599
DACs and, 602
dashboard, viewing, 593–596
Data screen, 591
deploying databases with, 604

 SqlFacet attribute (SQL CLR)

 Index 759

Design tab, 590
Federation Members, splitting/dropping, 610
Federations, creating in, 608
Indexes And Keys link, 592
New Table link, 590
query execution plans, visualizing in, 594–618
Query Performance page, 596
Select a Database link, 594
tables, creating, 590–592
T-SQL query tool, 592
Upgrade feature, to deploy updates, 604

SQL Azure Reporting (SAR), 612–617
East US data center and, 587
limitations/restrictions on, 613
report authoring for, 614–615
Report Builder to deploy reports, 616
Reporting Services project tooling, deploying
with, 615
reports, deploying, 615–617
Report Wizard, using, 614
SAR credentials, 616
SSRS vs., 617
Windows Azure Management Portal tools
for, 613–614

SQL Azure, setting up, 584–589
accounts for, 584–589
administrative user, creating, 587–588
Azure account, setting up, 585
Create Database dialog, 589
Create Server wizard, 587–588
firewall, configuring, 587–588
server, provisioning, 586
Windows Azure Management Portal, 586–588

SqlClient (.NET Framework), 429
SQL CLR, 125–168

AdventureWorks2012 sample database, 130
aggregates, 151–155
best practices for, 168
code attributes, 129
deployment, 136–143
distributed transactions and, 202–204
entities, examining/managing, 162–168
functions, 143–147
integration, enabling, 126
.NET developers and, 130
sample code, 130
security, 161–162
SQLCLRDemo sample project, 144
stored procedures, 130–132

System.Transactions.TransactionScope, using
with, 203–204
transactions and, 201–202
triggers, 148–151
T-SQL functions and, 145–147
TVFs in, 145–147
types, 156–160
Visual Studio/SQL Server integration, 126–130

SQLCLRDemo sample project, 144
sql:column (SQL Server XQuery extension), 293
SqlCommand class (System.Data.SqlClient
namespace), 436

AddWithValue method, 441
CommandText property, 447
ExecuteScalar method, 447–450
Parameters collection, 441
stored procedures, calling with, 442–443
Transaction property, 450

SqlConnection
RM, as, 200

SqlConnection class (System.Data.SqlClient
namespace), 436

BeginTransaction method, 450
Close method, 440
ConnectionString property, 439
Open method, 439

SqlConnection instance
Open statement, 193
TransactionScope and, 193

SqlContext object (Microsoft.SqlServer.Server
namespace), 133
SqlDataReader

SqlPipe objects and, 133
SqlDataReader class (System.Data.SqlClient
namespace), 437, 457

behavior of, 444
column value extraction with indexed notation, 445
DeleteCommand property, 457–458
EntityDataReader vs., 507
Fill method, 457–458, 461
GetDataTypeName method, 446
GetSchemaTable method, 446
InsertCommand property, 457–458
SelectCommand property, 457–458
UpdateCommand property, 457–458
Update method, 457–458

SqlDbType enumeration (System.Data.SqlTypes
namespace), 135
SqlFacet attribute (SQL CLR), 129

SqlFileStream class (.nET)

760 Index

SqlFileStream class (.NET), 335–355
and fast BLOB transactions, 335
data access, 338–347
forms client, building, 337–338
GET_FILESTREAM_TRANSACTION_CONTEXT
function, 336
internal behavior of, 335–336
PathName method and, 336
security considerations with, 356
streaming HTTP service, creating with, 348–352
System.Data.SqlTypes namespace, 341
System.Data.SqlTypes namespace and, 341
WPF client, building with, 352–355

SqlFunction attribute (SQL CLR)
paramaters of, 129

SqlHierarchyId type
unsuppored hierarchyid functionality in, 322

SqlMethod attribute (SQL CLR), 129
SqlParameter class (System.Data.SqlClient
namespace), 437
SqlPipe object (Microsoft.SqlServer.Server
namespace), 133

ExecuteAndSend method, 133
Send method, 133
SendResultsEnd method, 133
SendResultsRow method, 133
SendResultsStart method, 133
SqlDataReader objects and, 133

SqlProcedure attribute (StoredProcedures class), 141
SQL Server

xml data type and, 288–297
XQuery and, 288–296

SQL Server Analysis Services (SSAS)
BI Semantic Model (BISM) type, 689
BISM and, 711, 712
data mining, 690–691
data mining engine for, 690
deployment properties, setting, 730–731
MultiDimensional eXpressions (MDX), 687
OLAP and, 686–687
OLAP cubes, 686–687
PowerPivot, 687–690
Predixion Software data mining software for, 690
SQL Server Data Tools (SSDT) support for, 4
SSAS Tabular Mode, 687–690
SSIS and, 682
SSRS and, 692
storage options in, 710
Tabular mode, 689–690
Tabular Mode, 687–690

VertiPaq storage model, 688
xVelocity and, vocabulary for, 710–711

SQL Server Audit, 234–244
ALTER DATABASE AUDIT SPECIFICATION
statement, 240
ALTER SERVER AUDIT SPECIFICATION
statement, 239
ALTER SERVER AUDIT statement, 235–236
audit actions, database-level, 240
AUDIT_GUID option, 237
availability of, 234
catalog views, querying, 244
CREATE DATABASE AUDIT SPECIFICATION
statement, 240
CREATE SERVER AUDIT SPECIFICATION
statement, 239
CREATE SERVER AUDIT statement, 235
creating an audit object, 235–236
database events, auditing, 240–241
events, viewing, 242–244
Event Viewer (Administrative Tools), 242
FILEPATH option, 238
FOR SERVER AUDIT clause, 239, 241
logs, viewing in SSMS, 242
MAX_FILES option, 238
MAX_ROLLOVER_FILES option, 238
MAXSIZE option, 238
ON_FAILURE option, 237
QUEUE_DELAY option, 236–237
recording to file system, 238–239
recording to Windows event log, 239
RESERVE_DISK_SPACE option, 238–239
server events, auditing, 239–240
SQL Server Audit Action Groups and Actions
post, 240
STATE option, 237–238
sys.fn_get_audit_file function, viewing logs
with, 243–244
TO FILE clause, 238

SQL Server Authentication
SQL Azure, connecting to, 597

SQL Server Books Online, 173
Access Control topics, 213
CLR aggregates in, 151
SQL CLR attribute coverage in, 129

SQL Server Browser service
UDP, replaced by, 213

SQL Server Common Language Runtime integration
(SQL CLR)

T-SQL vs., 45

 SQL Server Profiler

 Index 761

SQL Server Compact Toolbox, 666
SQL Server Configuration Manager

FILESTREAM, enabling, 326–328
SQL Server Configuration Manager tool, 223
SQL Server Database Project

build errors, 137
building, with SQL CLR, 137–138
deploying, 138–140
importing databases into, 137–138

SQL Server Database Project C# template, 143
SQL Server Database Projects (SSDT)

DACPACs and, 600
SQL Server Database Project type, 7
SQL Server Data Quality Services (DQS), 680–681
SQL Server Data Services (SSDS), 581
SQL Server Data Tools (SSDT), 3–44

adopting, 42–43
Business Itelligence Developer Studio (BIDS) and, 4
change scripts generated by, 20
change scripts, implementation of, 20
connected development in, 6–7
CREATE statements, 5
creating disconnected database project with, 7–8
creating new connected database project
with, 10–16
data-oriented functionality, lack of, 42
designing table changes using, 16–17
Integration Services (SSIS) support in, 4
LocalDB as test environment for, 27–31
managing development/design challenges with, 4–5
model-based development in, 5–6
offline table designer, 25–27
publishing to SQL Azure, 39–42
refactoring, 31–33
Reporting Services (SSRS) support in, 4
running only selected statements in, 14
schemas, comparing, 35–38
services/tooling in, 4–5
snapshots, taking, 25
source code control (SCC) and, 23
source for, 9
spatial viewer, lack of, 378
SQL Server Analysis Services (SSAS) support in, 4
SQL Server Database Project type in, 7–8
SQL Server Management Studio (SSMS) vs., 3
SQL Server Object Explorer and, 6
SQL Server Object Explorer, connecting with, 10–16
Table Designer (connected case), using, 17–22
targeting platforms, 9
testing/debugging in, 33–35

T-SQL object representation, 5
versioning/snapshots, 8–9
Visual Studio and, 3
Visual Studio Database Professional (DbPro) vs., 3
working with offline databases, 22–24

SQL Server Developer Tools (SSDT)
xml (data type) and, 258

SQL Server Express edition
FILESTREAM support in, 356

SQL Server Integration Services (SSIS), 681–683
Connection Managers, 682
Control Flows, 682
Data Flows, 682
DQS and, 681
SSAS and, 682
Transforms, 682

SQL Server Management Studio (SSMS)
audit logs, viewing in, 242
database users, creating in, 211–212
FILESTREAM, enabling with, 328
setting default database with, 12
spatial viewer in, 378
SQL Server Data Tools (SSDT) vs., 3
xml (data type) and, 258

SQL Server Native Access Client API, 223
SQL Server Object Explorer

applying schema changes in, 6–7
converting databases from Visual Studio
Database Professional edition (DbPro), 7
creating a connected database project with, 10–16
drift detection in, 7
Federation tools in, 611
importing data using copy/paste, 28
importing data using scripts, 38
IntelliSense behavior in, 14
master vs. application database in, 11
pushing changes from LocalDB to live
database, 36–38
Select Target Schema dialog, 36
setting default database, 12
SQL Server Database Project type in, 7–8
SSMS’s Object Explorer vs., 6
Stored Procedures node, location of, 33
table designer, use in connected database, 17–22
TVP types, display location in, 47

SQL Server Parallel Data Warehouse edition
(PDW), 684–685

MPP and, 685
SQL Server Profiler

launching, 435

SQL Server Relational Database management System (RDBmS)

762 Index

SQL Server Profiler Continued
monitoring database activity with, 435–436
templates, saving settings in, 436

SQL Server Relational Database Management System
(RDBMS), 683–685

data marts/warehouses, 683
data warehouse appliances and, 684–685
Fast Track Data Warehouse, 684
SQL PDW, 684–685
star schema and, 684

SQL Server Reporting Services (SSRS), 692–694
Alerting feature, 693
PerformancePoint dashboards and, 694
Report Builder 3.0, 693
SSAS and, 692

SQL Server Stored Procedure template, 135
SQL Server Surface Area Configuration Tool, 209
SqlTransaction class (System.Data.SqlClient
namespace), 437

data access, use in, 450
SqlTrigger attribute (.NET functions), 149
SqlTriggerContext object

EventData property, 150
SqlType (System.Data.SqlTypes namespace), 143

CLR functions, return values in, 143
SqlUserDefinedAggregate attribute, 151–152

Format parameter, 151
SqlUserDefinedType attribute

UDTs and, 158
sql:variable function (SQL Server extension of
XQuery), 295
SSAS BI Semantic Model, 689
SSAS Tabular mode

BI Semantic Model Connection file, 731
deployment, 730–731
DirectQuery feature, 729–730
DirectQuery mode and partitions, 729
Partition Manager dialog, 728–729
partitions and, 728–729
Power View reports, creating, 732–734
role-based security in, 728
Visual Studio and, 727–732

SSDT
Connection Properties dialog box, 139
DACPACs, deploying from, 601
DACs and, 601
FILESTREAM, lack of support in LocalDB, 356
Publish Database dialog box, 138–139
Publish function, 137–138
Publish profiles, saving, 139

Results As Grid, 134
Results As Text, 134
SQL Azure, connecting to, 597–599
SQL Azure, deploying to, 602–603
SQL Azure, migration to, 605
SQL CLR, enabling in, 126
T-SQL vs., 126–127
updates to SQL Azure, deploying, 604

SSDT SQL Server Database Project type (Visual
Basic), 127–130

automated deployment, 129
entities, adding to, 128
SQL CLR code attributes, 129

SSIS Toolbox, 682
Transforms, 682

SSMS
Assembly Properties dialog box, 162
CLR entities, examining/managing in Object
Explorer, 162–168
DACPACs and, 600–601
deploying assemblies with, 140
Deploy to SQL Azure feature, 603
Execute Procedure dialog box, 166
Export Data-Tier Application function, 603
New Assembly dialog box, 140, 162
Results To Grid, 134
Results To Text option, 134
SQL Azure, connecting to, 597–599
SQL Azure, deploying to, 603
SQL Azure, migrating to, 605–606
SQL Azure updates, deploying with, 604
SQL CLR, enabling in, 126
testing stored procedures in, 142

SSMS Object explorer
Script object type As option, 166

SSMS Object Explorer
Federation support in, 611

SSMS’s Object Explorer
SQL Server Object Explorer vs., 6

SSRS
SQL Azure Reporting (SAR) vs., 617

STArea method (geography class), 391–392
star schema, 684
STATE option (SQL Server Audit), 237–238
State property (Entities), 537
Statistical Semantic Search, 365

Semantic Language Statistics Database for, 365
STBuffer method (geometry class), 378–379

BufferWithCurves method vs., 406–408
output of, 380

 sys.server_audit_specification_details (audit catalog view)

 Index 763

STCentroid method (geometry class), 380–381
STCurveN method (geometry class), 405–406
STCurveToLine method, 409–410
STDifference method (geometry class), 384–387
STDimension method (geometry class), 383–384
STDistance method (geography class), 400
STEnvelope method (geometry class), 380–381
STGeomFromText method (geometry class), 372–373
STGeomFromWKB method (geometry class), 373–374
STIntersection method (geometry class), 382–383
STIntersects method (geometry class), 382–383
STIsValid method (geometry class), 410–411
STLength method (geography class), 391–392
STNumCurves method (geometry class), 405–406
storage requirements, finding

DATALENGTH function, 404
storage schema (EDM), 482
stored procedures

calling with SqlCommand objects, 442–443
conceptual schema, mapping to, 490
creating, 32–33
CRUD operations wrapped by, 433–435
direct SQL vs., 493
Direct SQL vs., 442–443
execution context and, 220–221
mapping to typed DataSets, 465–474
Model Browser, mapping in, 490–494
primary key value, limits on return of, 495
properties of mapped, setting, 467
runtime behavior of ORM mapped, 497–498

StoredProcedures class
SqlProcedure attribute, 141

Stored Procedures node
location of in SQL Server Object Explorer, 33

Stored Procedure with Reader property (Text boxes), 446
stream_id (FileTable column name), 357

path_locator vs., as permenant reference, 358
streaming HTTP service

access to storage areas with, 351
creating pages for, 349
creating with SqlFileStream, 348–352

Streaming provider
IDataServiceStreamProvider interface, 512

Streaming provider (WCF Data Services), 512
string functions, 107–109
Strongly Typed DataSet property (Textbox), 468
STSymDifference method (geometry class), 384–387
STUnion method (geometry class), 384–387
STxxxFromText method (geometry class), 372–373
STxxxFromWKB method (geometry class), 373–374

Submit Agent Key button (Client Sync Agent), 634
Submit method (DataService class)

overriding, 560
SWITCHOFFSET function, 63
symmetric key encryption, 222
Sync From The Hub sync direction (Data Sync), 621
Sync Group (Data Sync), 622, 623–624

architecture of, 623
configuring schedules/conflict resolution, 636
conflict resolution policy, 624
creating, 631–641
dataset, defining, 636–638
deploying, 638–641
infinite loops, avoiding, 626
limiting datasets for, to increase performance, 625
manual synchronization, 623
naming, 632
on-premise database, adding, 632–635
SQL Azure hub database, setting up, 635
synchronization with, 623–624
Sync Loop, 626

Synchronization Conflict (Data Sync term), 622
Sync Job

setting frequency of, 636
Sync Job (SQL Azure)

checking status of, 639
Sync Loop (Data Sync term), 622, 626
Sync Now button (Windows Azure Management
Portal), 639
Sync Schedule (Data Sync term), 622

intervals, limits on, 623
Sync To The Hub sync direction (Data Sync), 621
sysadmin (fixed server roll), 211
sys.database_audit_specification_details (audit
catalog view), 244
sys.database_audit_specifications (audit catalog
view), 244
SYSDATETIME function, 62
SYSDATETIMEOFFSET function, 62
sys.dm_audit_actions (audit catalog view), 244
sys.dm_audit_class_type_map (audit catalog view), 244
sys.dm_db_uncontained_entities DMV and, 246
sys.dm_exec_describe_first_result_set_for_object
function, 118, 122
sys.dm_exec_describe_first_result_set function,
118–119
sys.dm_server_audit_status (audit catalog view), 244
sys.fn_get_audit_file function (SQL Server Audit), 243
sys.server_audit_specification_details (audit catalog
view), 244

sys.server_audit_specifications (audit catalog views)

764 Index

sys.server_audit_specifications (audit catalog
views), 244
sys.server_file_audits (audit catalog views), 244
sys.sp_describe_first_result_set procedure, 118
sys.sp_describe_undeclared_parameters
procedure, 118, 122
System.Data.DataSetExtensions.dll, 475

AsEnumerable method, 475
Field<T> method, 475

System.Data.Entity assembly, 506
System.Data.IsolationLevel enumeration (ADO.NET
2.0), 184–185

Chaos, 184
ReadCommitted, 185
ReadUncommitted, 184
RepeatableRead, 185
Serializable, 185
Snapshot, 185
Unspecified, 185

System.Data namespace, 436
System.Data.DataSetExtensions.dll and, 475

System.Data.SqlClient namespace, 133, 436
directing compiler to, 438

System.Data.SqlTypes namespace
SqlDbType enumeration, 135
SqlType, 143

System.EnterpriseServices namespace (.NET
Framework), 190

TransactionOption attribute, 190
System.IO.FileStream

FileTable and, 359
System.Runtime.Serialization (WCF assembly), 550
System.ServiceModel assembly (WCF), 550
System.ServiceModel.DomainServices.Client
assembly (WCF), 550
System.ServiceModel.DomainServices.Client.Web
assembly (WCF), 550
System.ServiceModel.Web.Extensions assembly
(WCF), 550
System.Transactions assembly, 556
System.Transactions namespace

BEGIN DISTRIBUTED TRANSACTION statement
(T-SQL) vs., 194
DistributedIdentifier property, 194
Enlistment variable, 197

System.Transactions namespace (.NET
Framework), 191–198

Transaction Management API, 186, 191–192
System.Transactions namespace (TransactionScope
class), 341

System.Transactions.PreparingEnlistment class, 198
byte[] RecoveryInformation method, 198
ForceRollBack(Exception) method, 198
ForceRollBack() method, 198
Prepared method, 198

System.Transactions.Transaction.Current vs.
SqlTransaction, 203
SYSUTCDATETIME function, 62

T
TableAdapter Configuration Wizard, 465–468
TableAdapterManager

serializing updates with, 471
TableAdapters (Visual Studio), 463–465

DataAdapters vs., 465
TableAdapter Configuration Wizard, 465–468

table designer
adding columns to tables in, 25
connected database, usage, 17–22
foreign key relationship, establishing, 26
offline database, usage, 25–27
renaming columns, 31–32

tables
modifying in Object Expolorer, 17–22

table-valued functions (TVFs), 145–147, 256
xml.value method, building with, 293

Table-Valued Parameters (TVPs), 46–57
bulk inserts/updates using, 49–51
limitations on, 57
passing collections using, 54–57
passing using ADO.NET, 52–54
simplifying data insertion with, 47–49
and tempdb, 46

Tabular mode (SSAS), 710–734
TCP clients

User Datagram Protocol (UDP), 213
Test Connection button (Client Sync Agent), 634
testing/debugging

Locals window, use in, 34
setting breakpoints, 33

text box controls
modifying properties of, 441

textbox(es)
EntityClient property value, 505
LINQ to Entities Query (Direct SQL) property
value, 488
LINQ to Entities Query (Stored Procedure)
property value, 492

 Transact SQL (T-SQL)

 Index 765

LINQ to Generic DataSet property value, 474
LINQ to Strongly Typed DataSet property, 476
LINQ to Strongly Typed DataSet property
value, 476
Many To Many Relationships property value, 501
Output Parameter property value, 448
Stored Procedure with Reader property value, 446
Strongly Typed DataSet property value, 468
Update with Explicit Transaction property
value, 451
Update with Implicit Transaction property
value, 453

text (XPath node function), 279
THROW statement, 109–113

CATCH block, use in, 110–111
FORMATMESSAGE function and, 112
RAISERROR vs., 110, 111–113
TRY blocks and, 110–113
usage, 110–111

time data type, 58
TIMEFROMPARTS function, 105
time zone awareness

SWITCHOFFSET function, 63
TODATETIMEOFFSET function, 63
using datetimeoffset data type, 59–60

Tips, Tricks, and Advice from the SQL Server Query
Optimization Team (blog), 708
TLA (Three-Letter Acronym), 548
TODATETIMEOFFSET function, 63
TO FILE clause (SQL Server Audit), 238–239
ToString method (hierarchyid class), 305–310

Parse and, 321
return value of, 306

TRANCOUNT function. See @@TRANCOUNT function
transaction coordinator (TC), 187

COMTI, 190
IEnlistmentNotification interface and, 195
Lightweight Transaction Manager (LTM), 187

Transaction Management API (.NET Framework
System.Transactions namespace), 186
Transaction Management API (System.Transactions
namespace), 191
transaction manager (TM), 186–187
TransactionOption attribute (System.
EnterpriseServices namespace), 190

Disabled, 190
NotSupported, 190
Required, 190
RequiresNew, 190
Supported, 190

TransactionOptions object (ADO.NET)
IsolationLevel property, setting, 185

Transaction property (SqlCommand object), 450–455
transactions, 169–206

ACID properties, 170–172
autocommit mode, 173
batch execution environment, 176–179
batching updates with, 450–455
batch-scoped mode, 176–179
defined, 170
Dirty read, 178
distributed, 186–200
explicit mode, 173–176
implicit mode, 176
interleaved, 176–179
isolation levels, 179–186
local support for, in SQL Server, 172–178
marking, 173
naming, 173
nonrepeatable read, 178
phantom read, 178
SET IMPLICIT_TRANSACTIONS T-SQL
statement, 176
SQL CLR and, 201–204
terminology for, 178
tracing with SQL Profiler, 435

TransactionScope
Complete() statement, 198–199
RMs and, 198
SqlConnection instances and, 193

TransactionScope class
as replacement for SqlTransaction object, 450
nesting blocks, 454–455
System.Transactions namespace, 341

TransactionScope object, 185
TransactionScope object (ADO.NET), 185

Complete method, 193
TransactionScope object (System.Transactions
assembly), 556
Transact SQL (T-SQL), 45–124

analytic functions, 98–103
bulk inserts/updates using TVPs, 49–51
conversion functions, 103–104
date/time data types, 58–65
date/time functions, 104–106
GROUPING SETS operator, 83–93
INSERT OVER DML syntax, 76–83
limitations on TVPs in, 57
logical funtions, 106–107
mathematical functions, 109–123

Transact-SQL (T-SQL)

766 Index

Transact SQL (T-SQL) Continued
MERGE statement, 65–76
metadata discovery, 118–122
Oracle databases, access using, 53–54
OVER clause, 93–97
passing collections using TVPs, 54–57
passing TVPs using ADO.NET, 52–54
SEQUENCE object, 115–118
server-side paging, 113–115
SQL Server Common Language Runtime
integration (SQL CLR), 45
string functions, 107–109
table replication using MERGE statement, 70
Table-Valued Parameters (TVPs), 46–57
THROW statement, 109–113
WHEN MATCHED clause, 68–69
WHEN NOT MATCHED BY SOURCE clause, 71–73
WHEN NOT MATCHED BY TARGET clause, 69

Transact-SQL (T-SQL)
database users, creating in, 211–212
explicit transaction mode and, 173

Transforms (SSIS), 682
transparent data encryption (TDE), 229–234

certificates, backing up, 232–233
creating keys/certificates for, 229–230
DMKs and, 229
enabling, 231–232
encryption_state method, 232
restoring encrypted databases, 233–234

Transparent Data Encryption (TDE)
FILESTREAM and, 355

TriggerAction property (TriggerContext object),
149, 150
TriggerContext object

TriggerAction property, 149, 150
triggers

using, vs MERGED output, 73
triggers (SQL CLR), 148–151

deploying automatically, 149
DML triggers, 148–150

Trustworthy Computing initiative (Microsoft), 207
TRUSTWORTHY property (CLR assemblies), 161
TRY block

and THROW statements, 110–113
TRY/CATCH construct

and THROW statements, 109–110
TRY_CONVERT function, 103
TRY_PARSE function, 103–104
T-SQL

CREATE AGGREGATE statement, 155

CREATE FUNCTION statement, 144
Federated Tables, creating in, 609
Federation Members, splitting and dropping, 610
Federations, creating in, 608
firewall rules for SQL Azure, setting with, 588
functions, possible return values for, 145
LINQ vs., 472–473
setting security level in, 162
SQL Azure Management Portal, querying in, 592
SSDT vs., 126–127
WITH EXECUTE AS CALLER clause, 144

T-SQL code
wrapping in transactions, 201–204

T-SQL triggers
CLR stored procedures vs., 148

TVFs
returning data in a particular order, 147

TVPs
ALTER TABLE...AS TYPE, lack of, 57
Common Table Expressions (CTEs), 46
Entity Framework, lack of support in, 57

type casting
xml.value method and, 292

typed DataSet
building, 462–465

TYPE option (FOR XML commands), 276–277
SELECT statements and, 276

U
UDFs

CREATE FUNCTION statement (Class Library
projects), 144
WITH EXECUTE AS CALLER clause (Class Library
projects), 144

UDTs
byte size limits on, 158
conceptualizing, 160
deploying, 160
Serializable attribute, 158
SqlUserDefinedType attribute, 158
syntax for, in T-SQL, 156
Using CLR Integration in SQL Server 2005
(Rathakrishnan), 156

UNIQUE constraint
xml (data type) and, 258

Unit Sphere SRID, 413
UNSAFE ASSEMBLY permission (CLR assemblies), 161
Unsafe (CLR assembly security level), 161
Unspecified (ADO.NET isolation level), 185

 WCF custom services

 Index 767

UpdateCommand property (SqlDataAdapter
class), 457–458
Update method (SqlDataAdapter class), 457–458
UpdateObject method (DataServiceContext), 526
updates

bulk, using TVPs, 49–51
UPDATE STATISTICS (T-SQL command), 708
UpdateText function

use for updating XML, 257
Update with Explicit Transaction property
(Textbox), 451
Update with Implicit Transaction property
(Textbox), 453
USE master statement, 184
User-defined aggregates. See aggregates (SQL CLR)
user-defined functions (UDFs), 143–147

SQL Server Database Project C# template, 143
user-defined types (UDTs), 156–160
users

benefits of seperating from schemas, 218
modifying with schemas., 216–218

Using CLR Integration in SQL Server 2005
(Rathakrishnan), 156
using statement (IDisposable objects), 439

v
varbinary(max)

PathName method, 336
varbinary(max) data type, 324

empty string vs. null value in, 343
FILESTREAM attribute, 325–335

VertiPaq, 709–734
VertiPaq storage model (SSAS), 688
ViewModel property (App class), 651, 661
views

xml.value, building with, 293
Virtual Machine (Compute resource), 641
virtual machines

allocating additional processors for, 707
Batch execution mode, 707

Virtual Private Network [VPN], 509
Visual C# node

WCF Service Web Role, 644
Visual Studio

Add New Domain Service Class dialog, 552–556
ASP.NET Empty Web Application template, 512
Azure developement and, 642–643
Business Intelligence\Analysis Services node, 727
Class Library project, 139–140

client proxies, automatic generation of for WCF
RIA Services, 565
Cloud project template, 642
CLR entities, examining/managing in SQL Server
Object Explorer, 162–168
DirectQuery Mode property, 729
Domain Service Class template, 552
EDM design surface, 482
Entity Data Model Wizard, 483
events, hooking up to handlers, 535–536
Generated_Code folder, viewing, 565
generating XML in, for ORM, 479
Mapping Details pane, 500
Model Browser, 486–487
Permission Level combo box, 161
Query Mode setting (Property Pages dialog), 730
Reporting Services project tooling, 615
Silverlight Application template, 549–551
SQL Server, integration with, 126–130
SSDT SQL Server Database Project type, 127–130
TableAdapter Configuration Wizard, 465–468
TableAdapters, 463–465
text box controls, modifying properties of, 441
typed DataSets, building in, 462–465
Visual Studio Development Web Server
(Cassini), 513
WCF Data Service, building, 512–515
WCF Service Web Role (Visual C# node), 644
Web template (C# node), 646
Windows Azure Project type, 643–644
Windows Azure Tools for Visual Studio, 642–643

Visual Studio Database Professional edition (DbPro)
converting databases to SQL Server Object
Explorer, 7
SQL Server Data Tools (SSDT) vs., 3

Visual Studio Development Web Server (Cassini), 513
Visual Studio SQL Server Database Projects

UDFs, dependencies for, 143

W
WCF configurations

setting up, 509–510
WCF custom services, 544–546

creating, 544
raw coding for, 510
regenerating proxies after modifying, 545
WCF Data Services client proxy generator tool
and, 545

WCF Data Access

768 Index

WCF Data Access, 509–578
options, 510
WCF Data Services, 511–548
WCF RIA Services, 548–577

WCF Data Services
$filter option, 518
asynchronous vs. synchronous calls in, 525
authentication support in, 548
batch updates, runtime behavior of, 539–543
BLOBs and, 348
building, 512–513
client applications, building, 518–543
client-side applications and Entity Framework, 526
Content-ID header, batch requests and, 541
custom service operations, creating, 544–546
data binding and, 536
data entry client, building, 530–543
DataServiceContext, 523
DataService<T> class (EDM), 515
data type, conveying in AtomPub, 518
Entity Data Model, creating for, 513–515
Entity Framework and, 500, 511–512
Entity Framework, without, 512
expand option, 518
extending, 544–548
hierarchical updates in, 538
hosting in Windows Azure, 641–662
InitializeService method (EDM), 515
inserting new entities in, 528–530
interceptors, writing, 547–548
layers of abstraction in, 524
LINQ to REST, 518
Microsoft ADO.NET Data Services, 527
multi-user conflicts, checking for, 528
OData, 511
overriding service methods, 546–547
Reflection provider, 512
REST and, 511
SQL CE databases, running against local, 671
Streaming provider, 512
testing with Internet Explorer, 515–518
T-SQL queries and, 525
WCF RIA services vs., 548
WCF RIA Services vs., 577–578
Windows Phone 7.1 SKD, client library in, 652

WCF Data Services client proxy generator tool
custom services and, 545

WCF RIA Services, 548–577
asynchronous calls, working around for Windows
Phone 7 and Silverlight, 566–568

automatic validation of data in, 569
client-domain services synchronization with, 550
Composition attribute (metadata classes), 558
domain service, building, 552–556
domain service class, 559–560
EDM, building solution to recognize, 552
EnableClientAccess attribute, 559
Entity Data Model, creating, 551–552
Entity Framework and, 500
establishing links with, 549–551
exposing POCOs with DomainService class, 559
Include attribute (metadata classes), 558
installing on Visual Studio, 549
LinqToEntitiesDomainService<T>, 559
LinqToSqlDomainService<T>, 559
LINQ to SQL, exposing to, 559
metadata classes, 557–559
metadata classes, building, 552–556
MetadataType attribute, 557
.NET Framing protocol, inspecting with Fiddler, 569
ObjectContext property (EDM), 559
proxy code, examination of, 566
RoundtripOiginal attribute (metadata
classes), 558
SampleRiaContext class, 566
Silverlight and, 549
Silverlight Application template, 549–551
Silverlight client, building, 561–568
System.Runtime.Serialization assembly, 550
System.ServiceModel assembly, 550
System.ServiceModel.DomainServices.Client
assembly, 550
System.ServiceModel.DomainServices.Client.Web
assembly, 550
System.ServiceModel.eb.Extensions assembly, 550
testing complete solutions, 569–577
WCF Data Services vs., 548, 577–578

WCF Service Web Role (C# node, Visual Studio), 644
Web (Compute resource), 641
Web template (C# node, Visual Studio), 646
Well-Known Binary (WKB), 373–374

STGeomFromWKB, importing shapes with, 373–374
STxxxFromWKB, importing shapes with
validation, 373–374
Well-Known Text (WKT) vs., 373

Well-Known Text (WKT), 370–373
CIRCULARSTRING keyword, 370
COMPOUNDCURVE keyword, 370–371
CURVEPOLYGON keyword, 370–371
FULLGLOBE keyword, 370–371

 WITH CUBE operator

 Index 769

GEOMETRYCOLLECTION keyword, 371
LINESTRING keyword, 370
MULTILINESTRING keyword, 371
MULTIPOINT keyword, 371
MULTIPOLYGON keyword, 371
POINT keyword, 370–371
POLYGON keyword, 370–371
STGeomFromText, importing shapes with, 372–373
STxxxFromText, importing shapes with
validation, 372–373
Well-Known Binary (WKB) vs., 373

WHEN MATCHED clause, 68–69
limits on, 68–69

WHEN NOT MATCHED BY SOURCE clause
and MERGE statement, 71–73
limits on, 71

WHEN NOT MATCHED BY TARGET clause, 69
limits on, 69

WHERE clause
ROW_NUMBER function and, 113
xml.exist method and, 291

where (XQuery keyword), 286
windowing. See OVER clause
Windows Azure

best practices for, 642
clients, creating for Windows Phone 7, 647–666
Compute capacity, 641
Compute resources, 641
data service, adding, 643–644
deploying, 672–674
Enity Data Model, adding, 644–647
solutions, creating in, 642–643
WCF Data Services, hosting in, 641–662
WCF Service Web Role (Visual C# node), 644
Windows Azure Project type, 643–644
Windows Azure Tools for Visual Studio, 642–643

Windows Azure Management Portal, 586–588
Add Firewall Rule dialog, 645
authentication and, 625
DACs and, 601
Export feature, 606
manual synchronization of Sync Groups in, 623
migrating/synching with, 601–602
Silverlight and, 586
Sync Between On-Premise And SQL Azure
Databases option, 631
Sync Between SQL Azure Databases option, 631
Sync Now button, 639
WCF Data Services, deploying Windows Phone
application with, 673

Windows Azure Project type (Visual Studio),
643–644
Windows Azure Tools for Visual Studio, 642–643
Windows Communications Foundation (WCF) service

ASP.NET vs., 348
Message Transmission Optimization Mechanism
(MTOM), 348
WCF Data Services, 348

Windows Explorer
and FileTable, 359

Windows Forms Application template (Solution
Explorer), 519
Windows Forms user interface, 530
Windows Live ID

SQL Azure requirement for, 584
Windows Phone 7, 518, 619–674

App class, modifying, 661–662
ApplicationBar control, modifying, 649
Application class, 661
CloudSync_Completed method, 665
creating applications, 647–666
databases, creating for OCS, 628–629
LINQ to REST, 518
LINQ to SQL and, 482, 667
Model-View-ViewModel (MVVM) pattern, 651–661
occasionaly connected systems and, 620
OData, consuming, 662–674
securing local data on, 667
SQL Azure Data Sync (Data Sync), 621–626
SQL CE database, creating, 667–671
SQL CE databases, embeding as resource in, 666
SQL server on, 666–672
storage capacity on, 666
synchronous queries and, 663
view, creating, 647–651
WCF Data Services and, 662–674
Windows Phone Emulator, 671

Windows Phone 7.1 SDK
location of and installing, 647
Silverlight For Windows Phone template (Visual
Studio), 647
SilverLight Toolkit, 648
WCF Data Services client library, 652
Windows Phone Databound Application project
(Visual Studio), 647

Windows Phone Databound Application project
(Visual Studio), 647
Windows Phone Emulator, 671
Windows Presentation Foundation (WPF), 518
WITH CUBE operator, 86–88

WITH EXECUTE AS CALLER clause (Class Library project)

770 Index

WITH EXECUTE AS CALLER clause (Class Library
project), 144
WITH EXECUTE AS CALLER (WITH EXECUTE AS
clause), 221
WITH EXECUTE AS clauses, 220
WITH EXECUTE AS OWNER (WITH EXECUTE AS
clause), 221
WITH EXECUTE AS SELF (WITH EXECUTE AS
clause), 221
WITH EXECUTE AS <username> (WITH EXECUTE AS
clause), 221
WITH PERMISSION_SET clause (Class Library
project), 139
WITH ROLLUP operator, 85–86
Worker (Compute resource), 641
WPF client applications

MediaElement control, 354
port numbers, setting for, 352

Write method (hierarchyid class), 321–322

X
XML, 255–298

character data as, 256–257
design considerations for, in relational
database, 255–256
FOR XML commands, 268–280
hierarchyid data type vs., 299
indexes, 266–268
schema definitions (XSDs), 259–266
shredding, using OPENXML, 284–285
stored procedures and, 256
UpdateText function to update, 257
xml (data type), 257–268
XML DML, 296–297
XQuery and, 285–297

xml (data type), 257–268
COLLATE keyword and, 258, 259
GROUP BY and, 257
ORDER BY and, 257
SQL Server Developer Tools (SSDT) and, 258
SQL Server Management Studio (SSMS) and, 258
UNIQUE constraint and, 258
working with, as variable, 257–258
working with, in tables, 258–259
XML schema definitions (XSDs), 259–266

XML DML, 296–297
xml.modify(delete) method, 297
xml.modify(insert) method, 297
xml.modify(replace), 297

xml.exist method, 291–292
WHERE clause and, 291

XML indexes, 266
creating, 266
PROPERTY keyword of, 267
restrictions on, 268
USING XML INDEX syntax for, 268

xml.modify(delete) method, 297
xml.modify(insert) method, 297
xml.modify(replace) method, 297
xml.query method, 293–296

sql:column and, 293
sql:variable function, 295

XML schema definitions (XSDs), 259–266
CHECK constraint and, 261
data integrity, ensuring with, 262
data typing data objects with, 260–263
inline, producing with FOR XML commands,
281–282
lax validation and, 263–264
list types and, 262
specifications, source for, 260
SQL Server schema collections and, 260–263
xsd:union, 264–266

XML Schema Definition (XSD), 463
XML Schema Definition (XSD) files

viewing, 468
XMLSCHEMA keyword (FOR XML syntax), 281
xml.value method, 292–293

TVFs, building with, 293
XPath

comment (node function), 279
data (node function), 279
@ (flag), 277
FOR XML PATH and, 277–280
location of standards for, 286
node (node function), 279
processing-instruction (node function), 279
text (node function), 279
XQuery vs., 286

XQuery, 285–297
expressions, 285–288
FLWOR expressions, 286–288
for (keyword), 286
let (keyword), 286
location of specification, 285
SQL Server and, 288–296
where (keyword), 286
XML DML, 296–297
xml.exist method, 291–292

 Zhou, Joe

 Index 771

xml.query method, 293–296
xml.value method, 292–293
XPath expressions, 286
XPath vs., 286

xVelocity in-memory analytics engine. See VertiPaq
vocabulary for, 710–716

xVelocity technologies, 701–736
Business Intelligence Semantic Model (BISM), 702

columnstore indexes, 704–709
Data Analysis eXpressions (DAX), 702
PowerPivot, 709–734
SASS and, 709–734

Z
Zhou, Joe, 569

About the Authors

Leonard Lobel is a Microsoft MVP in SQL Server and a Principal Consultant at
Tallan, Inc., a Microsoft National Systems Integrator and Gold Competency
Partner. With over 30 years of experience, Lenni is one of the industry’s
 leading .NET and SQL Server experts, having consulted for Tallan’s clients in a
variety of domains, including publishing, financial services, retail, health care,
and e-commerce. Lenni has served as chief architect and lead developer on
large scale projects, as well as advisor to many high-profile clients.

About tallan
Tallan (http://www.tallan.com) is a, national technology consulting
firm that provides web development, business intelligence, customer
 relationship management, custom development, and integration
 services to customers in the financial services, health care, government,
retail, education, and manufacturing industries.

Tallan is one of 40 Microsoft National Systems Integrators (NSI) in
the United States, and a member of Microsoft’s Business Intelligence
Partner Advisory Council. For more than 25 years, Tallan’s hands-on,
 collaborative approach has enabled its clients to obtain real cost and
time savings, increase revenues, and generate competitive advantage.

Lenni is also chief technology officer (CTO) and cofounder of Sleek
 Technologies, Inc., a New York-based development shop with an early adopter
philosophy toward new technologies. He is a sought after and highly rated
speaker at industry conferences such as Visual Studio Live!, SQL PASS, SQL
Bits, and local technology user group meetings. He is also lead author of this
book’s previous edition, Programming Microsoft SQL Server 2008. Lenni can be
reached at lenni.lobel@tallan.com or lenni.lobel@sleektech.com.

Andrew J. Brust is Founder and CEO of Blue Badge Insights
(http://www.bluebadgeinsights.com), an analysis, strategy and advisory firm
serving Microsoft customers and partners. Brust pens ZDNet’s “Big on Data”
blog (http://bit.ly/bigondata); is a Microsoft Regional Director and MVP; an
advisor to the New York Technology Council; Co-Chair of Visual Studio Live!;

http://www.tallan.com
http://lenni.lobel@tallan.com
http://lenni.lobel@sleektech.com

a frequent speaker at industry events and a columnist for Visual Studio Magazine.
He has been a participant in the Microsoft ecosystem for 20 years; worked closely
with both Microsoft's Redmond-based corporate team and its field organization
for the last 10; has served on Microsoft’s Business Intelligence Partner Advisory
Council; and is a member of several Microsoft "insiders" groups that supply him
with insight around important technologies out of Redmond.

Paul Delcogliano is a technology director at Broadridge Financial Services, Inc.
Paul has been working with the Microsoft .NET Framework since its first public
 introduction and has been developing Microsoft SQL Server applications even
longer. He builds systems for a diverse range of platforms including Microsoft
Windows, the Internet, and mobile devices. Paul has authored many articles and
columns for various trade publications on a variety of topics. He can be reached by
email at pdelco@hotmail.com.

Paul would like to thank his family for their patience and understanding while
he was frantically trying to meet his deadlines. He would also like to thank Lenni
for offering him another opportunity to contribute to the book. The second time
around was better than the first.

http://pdelco@hotmail.com

	Introduction
	Acknowledgements
	Chapter 1: Introducing SQL Server Data Tools
	Introducing SSDT
	Database Tooling Designed for Developers
	Declarative, Model-Based Development
	Connected Development
	Disconnected Development
	Versioning and Snapshots
	Targeting Different Platforms

	Working with SSDT
	Connecting with SQL Server Object Explorer
	Gathering New Requirements
	Using the Table Designer (Connected)
	Working Offline with a SQL Server Database Project
	Taking a Snapshot
	Using the Table Designer (Offline Database Project)
	Introducing LocalDB
	Refactoring the Database
	Testing and Debugging
	Comparing Schemas
	Publishing to SQL Azure
	Adopting SSDT

	Summary

	Chapter 6: XML and the Relational Database
	Character Data as XML
	The xml Data Type
	Working with the xml Data Type as a Variable
	Working with XML in Tables
	XML Schema Definitions (XSDs)
	XML Indexes

	FOR XML Commands
	FOR XML RAW
	FOR XML AUTO
	FOR XML EXPLICIT

	Additional FOR XML Features
	The TYPE Option
	FOR XML PATH
	Emitting a ROOT Element
	Producing an Inline XSD Schema
	Producing Element-Based XML

	Shredding XML Using OPENXML
	Querying XML Data Using XQuery
	Understanding XQuery Expressions and XPath
	SQL Server XQuery in Action
	XML DML

	Summary

	Index

