
IBM Americas Advanced Technical Support        

     
 
 

  
  
  

  
  
  

IIBBMM  SSAAPP  TTeecchhnniiccaall  BBrriieeff  
 

 

 

 

TTuunniinngg  SSAAPP  //  DDBB22  //  zzSSeerriieess  
  

 

 

 

 

 

 

 

 

 

 

MMaarrkk  GGoorrddoonn  
                          

IIBBMM  SSoolluuttiioonnss  AAddvvaanncceedd  TTeecchhnniiccaall  SSuuppppoorrtt  
  

 

 

 

 

VVeerrssiioonn::    11..00  
DDaattee::    JJuunnee  11,,  22000022



IBM Americas Advanced Technical Support    

      
 

Page 2 

 
1. Acknowledgements............................................................................................................................. 5 
2. Disclaimers ......................................................................................................................................... 5 
3. Copyrights........................................................................................................................................... 5 
4. Feedback ............................................................................................................................................. 5 
5. Introduction......................................................................................................................................... 5 
6. DB2/390 and SAP background information ....................................................................................... 7 

6.1. SAP ..................................................................................................................................................... 7 
6.2. DB2..................................................................................................................................................... 7 

7. Solving a performance problem for a specific program or transaction .............................................. 9 
7.1. Check STAT records for components of SAP elapsed time................................................................... 9 

7.1.1. Description of STAT record time components............................................................................... 9 
7.1.1.1. Description of STAT “missing time” ....................................................................................... 10 
7.1.1.2. Description of STAT detailed database request time ............................................................... 11 
7.1.1.3. Description of stat/tabrec and rsdb/stattime parameters .......................................................... 13 

7.2. Actions from STAT record analysis ..................................................................................................... 15 
7.3. Examples of problem indicators in STAT records ............................................................................... 17 

7.3.1. Low CPU time example................................................................................................................ 18 
7.3.2. High CPU time example ............................................................................................................... 18 
7.3.3. High RFC+CPIC time example .................................................................................................... 19 
7.3.4. Response time ............................................................................................................................... 20 
7.3.5. Wait for work process example .................................................................................................... 20 
7.3.6. Processing time examples ............................................................................................................. 22 
7.3.7. High load time example ................................................................................................................ 24 
7.3.8. Roll (in+wait) time example ......................................................................................................... 25 
7.3.9. Database Request time.................................................................................................................. 26 
7.3.10. Enqueue examples ........................................................................................................................ 26 
7.3.11. Frontend example.......................................................................................................................... 32 
7.3.12. Missing time in STAT – suggested actions .................................................................................. 33 

7.4. Transaction............................................................................................................................................ 34 
7.4.1. Analysis process for transactions.................................................................................................. 34 
7.4.2. Sample transaction analysis - MIRO ............................................................................................ 34 
7.4.3. Sample transaction analysis – ME21L.......................................................................................... 48 
7.4.4. Sample transaction analysis - MB51............................................................................................. 58 

7.5. Batch ..................................................................................................................................................... 65 
7.5.1. Analysis process for batch ............................................................................................................ 65 
7.5.2. Batch analysis starting from STAT records.................................................................................. 66 
7.5.3. Sample of SQL cycle analysis in batch......................................................................................... 69 
7.5.4. Sample end-to-end batch time analysis......................................................................................... 74 

8. Check for inefficient use of DB resources........................................................................................ 77 
8.1. DB2 accounting data – delay analysis .................................................................................................. 77 

8.1.1. Components of DB2 delay............................................................................................................ 79 
8.1.2. Key indicators in DB2 Times ....................................................................................................... 80 
8.1.3. Actions to take for DB2 times indicators...................................................................................... 80 

8.2. DB2 delay analysis examples ............................................................................................................... 82 
8.2.1. Good ST04 times .......................................................................................................................... 82 



IBM Americas Advanced Technical Support    

      
 

Page 3 

8.2.2. Rather suspicious ST04 times....................................................................................................... 83 
8.2.3. ST04 Times points to constraint on DB server............................................................................. 84 

8.3. Process for Identifying slow or inefficient SQL................................................................................... 86 
8.3.1. High getpages and low rows processed (per execution)............................................................... 89 
8.3.2. High rows examined and low rows processed (per execution)..................................................... 90 
8.3.3. Long “average elapsed time” per execution ................................................................................. 90 

8.4. Examples of searching for slow or inefficient SQL.............................................................................. 90 
8.4.1. Using SE11 “where used”............................................................................................................. 90 
8.4.2. Predicates do not match available indexes.................................................................................... 98 
8.4.3. Incorrect use of SAP tables......................................................................................................... 105 
8.4.4. Impact of dynamic SQL on access path chosen by DB2 ............................................................ 113 
8.4.5. I/O constraint on table................................................................................................................. 125 
8.4.6. Index screening ........................................................................................................................... 128 
8.4.7. Growing pains - catalog statistics out of date ............................................................................. 133 
8.4.8. Evaluating whether a new index is needed ................................................................................. 142 
8.4.9. Logical row lock contention ....................................................................................................... 148 
8.4.10. DB2 page latch contention.......................................................................................................... 149 

9. Health Check................................................................................................................................... 151 
9.1. Check for SAP instance-level or system-level problems.................................................................... 151 

9.1.1. Application server OS paging..................................................................................................... 151 
9.1.2. Application server CPU constraint ............................................................................................. 151 
9.1.3. SAP managed memory areas ...................................................................................................... 151 
9.1.4. Table buffering............................................................................................................................ 152 
9.1.5. Wait time..................................................................................................................................... 152 
9.1.6. Number ranges ............................................................................................................................ 153 

9.2. Sample SAP instance-level and system-problems.............................................................................. 154 
9.2.1. Application server paging ........................................................................................................... 154 
9.2.2. Application Server CPU constraint............................................................................................. 155 
9.2.3. Roll Area shortage ...................................................................................................................... 157 
9.2.4. ST02 buffer area shortage........................................................................................................... 159 
9.2.5. Find table buffering candidates................................................................................................... 160 
9.2.6. Table buffered with wrong attributes.......................................................................................... 162 
9.2.7. Number range buffered by quantity that is too small ................................................................. 164 

9.3. Check for network performance problems ......................................................................................... 167 
9.3.1. Lost packets indicators................................................................................................................ 167 
9.3.2. Slow network indicators ............................................................................................................. 168 

9.4. Sample network performance problems ............................................................................................. 168 
9.4.1. Slow network performance example .......................................................................................... 168 
9.4.2. Lost packets example.................................................................................................................. 170 

9.5. Check for global DB server problems ................................................................................................ 170 
9.5.1. CPU constraint ............................................................................................................................ 171 
9.5.2. Bufferpool and hiperpool memory allocation............................................................................. 171 
9.5.3. DB2 sort ...................................................................................................................................... 172 
9.5.4. DB2 rid processing ..................................................................................................................... 172 
9.5.5. DB2 EDM and local statement cache ......................................................................................... 173 
9.5.6. Memory constraint on DB server................................................................................................ 174 



IBM Americas Advanced Technical Support    

      
 

Page 4 

9.5.6.1. ES constraint ........................................................................................................................... 174 
9.5.6.2. CS constraint........................................................................................................................... 174 

9.6. Sample global DB server problems .................................................................................................... 175 
9.6.1. Example of ES constraint on DB server ..................................................................................... 175 
9.6.2. Example of CS constraint on DB server ..................................................................................... 176 
9.6.3. CPU constraint ............................................................................................................................ 176 
9.6.4. I/O constraint .............................................................................................................................. 176 

Estimating the impact of fixing problems............................................................................................... 179 
9.7. ST04 cache analysis............................................................................................................................ 179 

9.7.1. Estimate system impact of inefficient SQL ................................................................................ 179 
9.7.2. Estimating the opportunity for improvement in inefficient SQL................................................ 183 

9.8. ST10 table buffering ........................................................................................................................... 184 
9.9. STAT- evaluating performance in an identified program................................................................... 185 

10. How to tell when you are making progress ................................................................................ 187 
10.1. SAP ................................................................................................................................................. 187 
10.2. DB2 and S/390................................................................................................................................ 187 

11. Appendix 1: summary of performance monitoring tools............................................................ 188 
11.1. SAP ................................................................................................................................................. 188 

11.1.1. DB02 ........................................................................................................................................... 188 
11.1.2. SE11............................................................................................................................................ 188 
11.1.3. SE30............................................................................................................................................ 188 
11.1.4. SM12........................................................................................................................................... 188 
11.1.5. SM50........................................................................................................................................... 189 
11.1.6. SM51........................................................................................................................................... 189 
11.1.7. SM66........................................................................................................................................... 189 
11.1.8. STAT........................................................................................................................................... 189 
11.1.9. STAD .......................................................................................................................................... 189 
11.1.10. ST02........................................................................................................................................ 189 
11.1.11. ST03........................................................................................................................................ 189 
11.1.12. ST04........................................................................................................................................ 190 
11.1.13. ST05........................................................................................................................................ 190 
11.1.14. ST06........................................................................................................................................ 190 
11.1.15. ST10........................................................................................................................................ 190 
11.1.16. RSINCL00 .............................................................................................................................. 190 
11.1.17. SQLR0001 .............................................................................................................................. 190 

11.2. OS/390 ............................................................................................................................................ 190 
11.2.1. RMF I.......................................................................................................................................... 190 
11.2.2. RMF II ........................................................................................................................................ 190 
11.2.3. RMF III ....................................................................................................................................... 190 

11.3. DB2................................................................................................................................................. 191 
11.3.1. DB2PM ....................................................................................................................................... 191 

12. Appendix 2: Reference Materials ............................................................................................... 192 
12.1. SAP Manuals .................................................................................................................................. 192 
12.2. IBM manuals................................................................................................................................... 192 



IBM Americas Advanced Technical Support    

      
 

Page 5 

 

1. Acknowledgements 
First and foremost, thank you to Namik Hrle, who wrote and was the original instructor of the course “SAP R/3 
on DB2 for OS/390 Performance Workshop”, on which this white paper is based.   My goal was to take his 
course materials, which were designed to be taught by an instructor, and make them into a paper showing the 
processes and tools for analyzing performance problems with SAP on a DB2 database for OS/390.  I have 
added examples of solving specific problems, to demonstrate the process for starting from SAP performance 
indicators to drill-down to DB2 and OS/390 indicators.  Namik also reviewed this whitepaper, and offered many 
suggestions for improvements. 
 
Several other people also provided valuable contributions to the paper.  Thank you to Lynn Nagel, Phil Hardy 
and Don Geissler who edited or reviewed the paper and made numerous suggestions for improvements.  Thanks 
also to Mark Keimig, who showed me the process for SQL analysis with catalog statistics.  Thank you to Walter 
Orb, who showed me how to interpret symptoms of many SAP and AIX performance problems. 
 

2. Disclaimers 
The paper contains examples from systems ranging from SAP 3.1I and DB2 V5 and OS/390 2.5 up to SAP 
6.10, DB2 V7 and OS/390 2.9 
 
The processes and guidelines in this paper are the compilation of experiences analyzing performance on a 
variety of  SAP systems.  Your results may vary in applying them to your system.   Most examples have been 
taken verbatim from productive or stress test systems.  A few have been edited to create clearer examples for 
the paper.  
 
Sysplex performance issues, and z/OS 64-bit real performance issues are both out of the scope of this version of 
the document, and are discussed only briefly.  

3. Copyrights 
SAP and R/3 are copyrights of SAP A.G. 
DB2, Universal Database, MVS, OS/390, and z/OS are copyrights of IBM corp. 
Oracle is a copyright of Oracle corp. 

4. Feedback 
Please send comments or suggestions for changes to gordonmr@us.ibm.com.   

5. Introduction 
There are two intended audiences for this paper – DB2 DBAs and SAP BASIS administrators.  Either may be 
doing performance analysis on an SAP system with DB2 for OS/390 database.  The goal of the paper is that 
each can find a part of the material that is new and useful – an SAP BASIS administrator with experience on 
other databases will see some of the DB2 specific tuning tools and techniques, and DB2 DBAs with experience 
in traditional DB2 environments will see some SAP specific tools and techniques.   
 



IBM Americas Advanced Technical Support    

      
 

Page 6 

When doing performance monitoring for SAP on DB2 for OS/390, there are many different layers (SAP 
BASIS, SAP functional, DB, OS, network) and a variety of tools involved.  Some problems can be solved in 
one layer, but some require monitoring and analysis in several layers.  One of the goals of this paper is to show 
how to follow a problem through the various layers to the source.  If different people monitor every layer, it is 
hard to have an integrated view of performance issues.  While nobody can be an expert in all areas, if someone 
such as a DBA or BASIS administrator has an end-to-end view, they can call on an expert in a specific area, 
when a problem needs further investigation.  
 
This paper has a process-based approach, where different goals are pursued via different processes and tools.  

• To fix a problem reported for a specific program, we will perform elapsed time analysis of programs, 
determine where time is spent, and optimize these long running parts.  This includes interpretation of 
STAT records, using ST05, SE30, SM50, SM51, SM66, etc.  It will demonstrate how to drill-through 
the SAP stats to obtain database performance statistics, identify I/O bottlenecks and SAP problems, etc.  
The benefit of this approach is that it is focused on an area that has been identified as a business 
problem. 

• To check for inefficient use of DB resources and improve overall database server performance, we 
will use ST04 statement cache analysis.  The value of this approach is that it offers a very big potential 
payoff in reducing resource usage and increasing system efficiency.  The disadvantage is that one may 
be finding and solving problems that no end-user cares about.  For example, if we can improve the 
elapsed time of a batch job from 2 hours to 10 minutes, but the job runs at 2:00 AM, and nobody needs 
the output until 8:00 AM, it may not really be a problem. Even if it is not a business problem, it may still 
be beneficial to address a problem of this type as part of optimizing resource consumption. 

• To do a system health check, review OS paging, CPU usage, and ST04 times (delay analysis in DB), 
SAP waits, ST10 and ST02 buffering.  The operating environment needs to be running well for good 
performance, but problems in these areas can be symptoms of other problems.  For example, inefficient 
SQL can cause high CPU usage or high I/O activity.  A health check should be done together with 
analysis of SQL.  

 
This paper has many examples, and it describes what is good or bad in each example.  There are not always 
specific rules given on what is good or bad, such as “Database request time” over 40% of “elapsed time” is bad 
and under 40% is good.  Rather, this paper tries to focus on an opportunity-based approach, such as: 

• Look for where a program (or the SAP and database system) spends time. 
• Ask “If I fix a problem in this area, will people notice and care that it has been fixed?”       

 
It will discuss how to estimate the impact of solving a problem.  System wide performance analysis (such as a 
statement of cache analysis, or ST03 analysis) will generally turn up several candidates.  By estimating the 
impact of fixing these problems, one can decide which to address first.  
 
When doing this analysis, it is important to identify and track specific issues.  Often, a performance issue is not 
important enough to merit a new index, or an ABAP change.  In this case, we want to track that we have 
analyzed it, and chosen not to do anything, so that we don’t waste time discovering it again next year.  
 
This paper refers to a number of SAPnotes.  An OSS userid, or userid that allows access to service.sap.com, is a 
prerequisite for anyone doing performance analysis on an SAP system, whether the person is a DB2 DBA, 
systems programmer, SAP BASIS Administrator, etc. 



IBM Americas Advanced Technical Support    

      
 

Page 7 

6. DB2/390 and SAP background information 
 
The architecture and components of the connection between SAP and DB2 vary from release to release.  There 
are several R/3 release-dependent “Planning Guides” that describe the architecture in detail.  See section 12 for 
manual numbers and names. 
 
Here are a few points that are important in understanding the way that SAP uses the DB2 database.  The way 
that SAP uses DB2 is somewhat different than traditional DB2 applications. 

6.1. SAP 
• SAP transaction, user, and security management – end users send transactions to the 

application server.  SAP manages the dispatch of transactions into SAP work processes. SAP 
does security checking from its data base tables to determine the rights of an SAP user.   

• SAP Unit-of-Work vs. DB2 Unit-of-Work (UOW) – an SAP UOW, such as a transaction, can 
be made up of one or more SAP dialog steps.  There is at least one DB2 UOW in each dialog 
step.  In order to have transactional integrity across multiple DB2 UOWs, SAP has its own 
locking system, called “Enqueue”.  SAP uses change queue tables (called VBLOG tables) to 
hold changes across multiple DB2 UOWs, until they are ready to be committed to application 
tables.  As part of SAP UOW processing, subsequent SAP dialog steps for a transaction may add 
to the queued information in the VBLOG tables.  At SAP commit time, all the changes for an 
SAP UOW are read from the VBLOG tables, and applied to the tables containing the business 
data. 

• Background job updates – Background (SAP Batch) jobs may use the VBLOG tables, or may 
do updates directly into the business tables.  

• SAP caching -- for performance reasons, SAP caches many SAP objects on the application 
servers.  This includes SAP programs, transaction screens, and even some table data. 

• Commits required for read-only jobs – SAP programs, which at the application level are read 
only, may be taking locks in the database during a statement prepare, program re-generation, etc.  
For this reason, it is important that all batch or long running programs issue periodic commits. 

• Referential integrity – SAP manages all foreign key relationships and referential integrity 
constraints, though DB2 has the capability to do it.  

6.2. DB2 
 

• DB2 security management -- at the DB2 level, there is only one userid (by default SAPR3) that 
owns all objects in the SAP database, executes all SQL, etc.  There is no way to use DB2 
facilities to track object accesses back to a specific user in SAP. 

• Long running DB2 threads -- SAP work processes connect to DB2 by sending a connect 
request to the ICLI (Integrated Command Level Interface).  The ICLI can be thought of as a 
remote SQL server for SAP.  When it receives the connection request, the ICLI creates a thread 
in DB2.  Many SAP transactions, batch jobs, updates, etc., may be executed in each thread 
between thread creation and termination.  Starting with SAP 4.5B, all threads use the same DB2 
PLAN.  (Previously, each thread had a uniquely named plan.) Thus, DB2 plan-based and thread-



IBM Americas Advanced Technical Support    

      
 

Page 8 

based accounting cannot be easily used for analyzing performance of specific transactions or 
reports. 

• All dynamic SQL -- SAP uses DB2 dynamic SQL, where the SQL is prepared and executed at 
program runtime, rather than SQL that is prepared (bound) before program runtime.  Since 
prepared statements are prepared with parameter markers, the DB2 optimizer does not (by 
default) use some optimizer statistics, such as SYSCOLDIST data.   

• Execution time re-optimization -- there are SAP programming hints which tell DB2 to re-
optimize statements at execution time, when the variables are available.  When statements are re-
optimized at execution, DB2 can use all available optimizer statistics.   

• Thread local thread statement cache – the SQL statements that a thread is executing are kept 
in a “local statement cache” in DBM1.  Since each prepared statement takes on average 10KB, 
this local cache can cause a large demand for DBM1 VSTOR.  It is common for large SAP 
systems to have only 400MB-600MB of bufferpools, with the rest of the 2GB of VSTOR in 
DBM1 used for thread local cache, EDM pool, etc.  Hiperpools (or dataspaces for systems with 
64-bit real support) are used to make additional buffer memory available to DB2. 

• Table structure – most tables have MANDT (client) as the leftmost column.  In most systems, 
there is only one productive client, so MANDT has low cardinality, and will not filter rows well.   

.  
 



IBM Americas Advanced Technical Support    

      
 

Page 9 

7. Solving a performance problem for a specific program or 
transaction 

7.1. Check STAT records for components of SAP elapsed time 
 
 
Each time a program, transaction dialog step, or RFC finishes, a statistics record is saved by SAP.  These 
statistics contain information about the components of elapsed time: CPU, database requests, etc.  The 
response time breakdown for dialog steps can be viewed via the STAT or STAD transactions.  The detailed 
statistics are periodically aggregated into the ST03 report.  As described below in section 11.1.11, ST03 can 
be used to search for transactions or batch jobs that may need improvement.  Since some of the detailed 
information in the STAT records is lost during ST03 aggregation, if a program is being investigated, the 
statistics records should be extracted for evaluation soon after the program runs.  
 
If a performance problem has been reported for a program or transaction, one can use STAT data as a filter 
to examine performance, and build an action plan for doing more detailed analysis via traces, or other tools.  
STAT data shows symptoms of problems, and not causes.  
 

7.1.1. Description of STAT record time components 
 

Earlier releases of SAP (3.1, 4.0, 4.5) may not have all the statistics categories shown on the following 
sample.   

 
Figure 1: Sample STAT record 

Following is a summary of the components of response time.  See SAPnote 8963 for a more detailed 
description for SAP releases up to 4.5B, SAPnote 364625 for SAP 4.6 interpretation.   

• CPU time is CPU time used on the application server.  On long running batch jobs, this counter 
may wrap and be invalid.   See SAPnote 99584 for details.     



IBM Americas Advanced Technical Support    

      
 

Page 10 

• RFC+CPIC - time spent, as a client, waiting for RFC and CPIC calls. 
• Time in workprocs is “response time” – “Wait for work process”.  The time the dialog step is 

queued waiting to be dispatched in a work process is not included. 
• Response time elapsed time from start to end of dialog step 
• Wait for work process is the time a dialog step was queued waiting to be dispatched in an SAP 

work process. 
• Processing time is “Response time” – “Database request time” – “Wait for work process” – 

“Roll (in+wait) time” – “Load time” – “Generating time”.  One can think of it as “application is 
processing in the work process” time.  “Processing time” is the time that SAP views the dialog 
step as being in a work process, and not waiting for data or programs required for execution.  
Since the counters for the component times used to calculate processing time can overflow on 
long jobs, and GUI RFC may or may not be included in Roll Wait, this indicator should be 
interpreted with care.  See below for examples.  

• Load time is time loading programs, screens, and CUA interfaces, which are individually broken 
out on the right of the STAT report. 

• Generating time is time required to generate the executable version of program.  If any of the 
components that make up a program have been changed since the last generation, then the 
program will be regenerated before execution. 

• Roll (in+wait) time: an SAP context switch moves a dialog step into or out of a work process.   
This is called roll-in and roll-out.  Roll wait is time spent when a dialog step is waiting for an 
RFC response, and rolled out to make the work process available to another dialog step. 

o Roll-in delay blocks a dialog step from running.   
o Roll-out does not block the dialog step from finishing, but it blocks another dialog step 

from using the work process. 
o Roll wait is a side effect of making an RFC call.  Roll wait does not block subsequent 

dialog steps from using the work process.  If it is high, one can examine the performance 
of the RFCs made by the dialog step.  GUI RFC time is sometimes included, and 
sometimes not included in roll wait. 

• Database request time: database request time includes three elements 
o time on the database server spent executing an SQL request 
o time on the application server spent processing requests for buffered tables 
o time spent on the network sending SQL to and getting replies from the database server.   

On long running batch jobs, the “Database request time” counter often overflows and is invalid, 
as can occur with CPU time above. 

• Enqueue is time to process enqueues, which are SAP locks.  Since an SAP Logical Unit of 
Work (LUW) may span several DB LUWs, SAP uses enqueues to serialize access to SAP 
objects, such as sales orders, customers, materials, etc. 

• GUI time is time to execute “GUI control RFCs” sent from application server to GUI. 
• Net time is time sending GUI data across the network. 

7.1.1.1. Description of STAT “missing time” 
As described above, SAP gathers elapsed time information on many components of dialog step elapsed 
time.  In some cases, you will note that the components of elapsed time do not account for all the 
elapsed time.  The “processing time” field is a key in determining whether there is “missing time” that 
was not captured in the SAP STAT record.  Processing time is Response time – Database request time – 



IBM Americas Advanced Technical Support    

      
 

Page 11 

Wait for work process – Roll (in+wait) time – Load time – Generating time.   The main components of 
elapsed time that are left in processing time are CPU time on the application server, enqueue time, and 
RFC/CPIC time (if not counted in roll wait).      
 
Since statistics counters can wrap, there can be delays that are not accounted for in the STAT records. 
Wen you are examining the STAT data for long running jobs, it is useful to compare processing time to 
the sum of (CPU time + Enqueue time + RFC/CPIC time).  If processing time is much greater than this 
sum, it indicates that the dialog step occupied the work process, but was not doing activities in the SAP 
application layer.  One of the following may be the cause: 

 
• The statistics of some components (usually Database request time or CPU time) have wrapped, and 

the statistics are invalid.  This happens with long running jobs.  
• There is operating system paging problem on the application server.    
• There is a CPU overload on the application server.   
• The program being executed is doing I/O to a file on the application server, e.g. an interface program 

that reads or writes UNIX files.   
• The ABAP program is sorting a large internal table, and the sort has spilled over to sort on disk on 

the application server.  This is just a variant of the previous problem with writing to an application 
server file, but is not under programmer control, but is done automatically by SAP. 

• A batch job is using “Commit work and wait”.   
• A batch job is trying to acquire an enqueue for a locked object, failing to get the enqueue and 

retrying.  (If a transaction cannot acquire an enqueue, it usually issues an error message to the user.) 
• A job that creates and dispatches other jobs (e.g. a driver using RFC processing of IDOCs) is 

sleeping waiting for the end of the jobs it created.    

7.1.1.2. Description of STAT detailed database request time 
In addition to the STAT overview shown in Figure 1, one can display detailed database request 
information in STAT.   Depending on your release of SAP, this stanza will look like Figure 2, where 
database time per request is reported, or Figure 3, where time per row is reported. 

 
Figure 2: STAT database request with time per request 

 



IBM Americas Advanced Technical Support    

      
 

Page 12 

 
Figure 3: STAT database request time with time per row 

 
• Direct read is data read via the ABAP “SELECT SINGLE” call.  This should be fully qualified 

primary index access.  Direct reads may be returned from the SAP “single record” buffer on the 
application server.  At the DB2 level, this will be a fetch, if DB2 is called. 

• Sequential read is data read via the ABAP SELECT call.  Sequential reads may be returned from  
the generic buffer on the application server.  At the DB2 level, this will be a fetch, if DB2 is 
called. 

• Update, insert, and delete correspond to DB2 update, insert, delete. 
 

If the system reports time per request, since a sequential read request can return many rows, it is 
generally best to convert to time per row, in order to interpret sequential read performance.   If many 
calls are made which return no rows, the average per-row times may look high.  Compare requests 
and rows, to check for this situation.  Evaluate performance using the per-request times, if this is the 
case.  If many calls return no rows, that may be a sign that there are database requests against empty 
tables, or database requests which check for non-existant conditions.   If empty tables are buffered in 
the application server “generic” buffer, it will reduce the performance impact of requests against the 
empty tables. 
 
In general, on an SAP system with a fast network to the database server, such as Gigabit Ethernet, 
SAP “direct read” times will be <2 ms per request, and SAP “sequential read” times will be <5 ms 
per request.  If the application does lots of SAP “sequential read” array operations (look in STAT for 
database row count much greater than request count) then per-row sequential read times may be 1 
ms or lower.   
 
High per-call direct read times can be caused by: 
• Lock contention on NRIV (since NRIV is selected with “select … for update”) 
• Bad bufferpool hit rates or I/O contention on DB server 
• Program error where “select single” is used incorrectly.   (Select single should be fully indexed 

primary key, but an ABAPer can code select single for any select – ABAP does not know 
whether the select single is correctly indexed). 



IBM Americas Advanced Technical Support    

      
 

Page 13 

 
High per-row sequential read times may be caused by 
• Inefficient SQL or bad access path used to access table (see section 8.3) 
• Bad bufferpool hit rates or I/O constraint on DB server 

 
High per-row times for update and delete may be caused by 
• Inefficient SQL or bad access path used to access table 
• Application level locking contention (this is the most common cause) 
• Bad bufferpool hit rates or I/O constraint on DB server 

 
High per-row insert times may be caused by 
• Bad bufferpool hit rates or I/O constraint on DB server 
• DB2 page latch contention (in rare cases with very high insert rate) 
 
System-wide DB server problems (CPU constraint, paging, network, etc) would cause all database 
calls to be slow.  

 

7.1.1.3. Description of stat/tabrec and rsdb/stattime parameters 
One can gather additional table access data by enabling the SAP profile parameter stat/tabrec and 
rsdb/stattime.  Stat/tabrec records information in the STAT record about tables with the longest 
access time.  Rsdb/stattime records table access times, which can be viewed in ST10.  These 
parameters will increase CPU utilization on the application server, and are generally enabled for a 
short time so that one can determine which tables are causing delays in long running jobs.  Since 
these STAT records are only available after a job finishes, one can review the STAT data and filter 
the problem based on the symptoms that are shown for the top tables after the problem jobs 
complete.  Setting these parameters might be particularly useful when gathering initial performance 
data for jobs that run overnight, or when doing detailed workload analysis in a stress test. 
 
The following example is stat/tabrec data in STAT showing long change time on GLT0 – three 
seconds per change (6,130 ms / 2 updates).  Performance on other tables such as CIF_IMOD, VBBE, 
and MSEG is ok, so the problem is not a system-wide problem, such as CPU constraint, paging, 
network, etc.  We would need to investigate further to determine where the constraint is.  The 
likeliest candidates for slow changes would be row locks, I/O bottleneck, or page latches.  
 



IBM Americas Advanced Technical Support    

      
 

Page 14 

 
Figure 4: stat/tabrec data 

Stat/tabrec enabled STAT  table times for an individual dialog step. In order to see table times for 
the entire SAP system, enable rsdb/stattime and use ST10 table statistics.  Here, we see that overall 
update times for GLT0 are about 125 ms per update (4,452,028 ms / 35,035 updates).  This is very 
high, and Figure 5 points to a pervasive problem with updates on this table.  In normal 
circumstances, updates would take just a few ms each.  

 
Figure 5: rsdb/stattime time statistics in ST10 



IBM Americas Advanced Technical Support    

      
 

Page 15 

7.2. Actions from STAT record analysis 
This is the overall process to follow is to determine the major components of response time, evaluate 
whether they are candidates for improvement, and how they might be improved.   Detailed examples of 
the activities listed in this section are contained in subsequent sections.  This is a list showing how one 
might break down and approach a problem. 

• If CPU time is low (e.g. less than 5-10% of elapsed time): 
o Check other response time components for delay 

• If CPU time is high (e.g. over 70-80% of elapsed time): 
o Use SE30 to profile the transaction.    
o Look at routines with high time consumption as candidates for improvement. 

• If CPIC+RFC time is high: 
o Trace the transaction with ST05 RFC trace.    
o Evaluate performance of RFCs to determine which RFC server is the source of the delay.    
o Go to that server and evaluate the performance of the RFCs as they are executed, to find 

source of delay in RFC code.   
• If “wait for work process” time is high: 

o First look at this as a symptom of dialog steps staying too long in the work process, and 
look at other components of elapsed time for the cause.   

o If the performance of the other components of response time is OK, add more work 
processes.   

• If the processing time is much greater than CPU time: 
o Check statistics and evaluate whether components might have wrapped.  This may have 

happened on long running jobs.  
o If the stats have wrapped, and it is not clear what the real components of response time 

are, use the elapsed time analysis process in section 7.5.1. 
o Use ST06 (or OS tools) to check for CPU or I/O constraints on the application server.   
o Use SM50 or SQL trace (look for time gaps in the trace summary after commit work) to 

check for “commit work and wait” 
o Use ST05 enqueue trace to check for enqueue retries.  SM12 statistics also show enqueue 

rejects, which occur when the requested object is already locked. 
o Use SM66 or SM50 to see whether the program is sleeping.  

• If load time is high: 
o Check ST02 for swaps and database accesses on program, screen, and CUA buffers. 

Increase the size of buffer, if necessary 
o Check program logic to determine whether it uses “CALL TRANSACTION”, in which 

case high load times are normal 
• If generating time is high: 

o Check whether transports are being made frequently, or SAP data dictionary objects are 
being changed frequently.    

• If roll (in+wait) is high: 
o Determine whether the problems is from roll-in or roll-wait by checking STAT for front-

end and GUI times 
o If roll-in, use ST02 to check roll-area to determine if the amount used is greater than roll 

memory area 



IBM Americas Advanced Technical Support    

      
 

Page 16 

o If roll-wait, examine the performance of GUI RFCs.  See SAPnote 51373 and 161053 for 
ways to minimize impact of GUI RFC calls. 



IBM Americas Advanced Technical Support    

      
 

Page 17 

• If database request time is high: 
o Evaluate time per request and time per row as discussed in section  7.1.1.2. 
o Gather additional information (via ST05 trace or stat/tabrec and rsdb/stattime) to 

determine where SQL is slow. 
o Check for inefficient SQL.  See section 8.4 for examples of inefficient SQL. 
o Check for I/O constraints (using RMF III DEV, DELAY, etc) on active volumes and 

files. 
o Check bufferpool random hit-rates.  
o If change SQL is slow 

 Check the application to determine if changes are batched together and performed 
just before commit, to reduce the time that row locks are held in DB2. 

 Check for lock contention.  Lock contention can be confirmed with ST04 times, 
ST04 thread details, or DB2 trace with IFCID 44,45,226,227 (lock and latch 
suspension). 

 If application cannot be changed, or does not need to be changed, evaluate the 
impact of the lock suspensions 

• Lock suspensions in UP2 processes are not very important, UP2 is 
designed to de-couple statistics table updates from business table updates 
and process changes to statistics after changes to business tables. 

• Lock suspensions in UPD processes are somewhat important, but not a 
critical problem, since UPD is asynchronous from user dialog processing. 

• Lock suspensions in DIA processes are most important, since the lock 
suspension is part of the end-user response time. 

 Evaluate controlling the level of parallelism in batch and update processes, to 
minimize lock contention.  In systems with lock contention, there is generally an 
optimal level of parallelism for throughput, where fewer or more work processes 
give less throughput. 

• If enqueue time is high 
o Calculate average time per enqueue. 
o If time per enqueue is good (1-3 ms), check application with ST05 enqueue trace to 

determine whether the application is making extraneous enqueues. 
o If time per enqueue is slow, check for enqueue constraints as shown in section 7.3.10. 

• If GUI time is high 
o See SAPnotes 161053 and 51373 regarding ways to improve performance of GUI RFC. 

• If Net time is high 
o Examine the performance of the network between application servers and GUI. 

7.3. Examples of problem indicators in STAT records 
One important caveat when interpreting STAT statistics is that STAT data tends to be less than completely 
reliable.  The counters may have missing time, or they may add up to more than the elapsed time.  Time can 
be put in different categories, as when GUI time may or may not be included in Roll wait.  When a 
performance problem has been reported for a program or transaction, don’t use a single unusual STAT 
record to plan the investigation.  Look for a pattern, to avoid wasting time working on a transient condition, 
or a problem in SAP statistics gathering.   Use aggregated ST03 statistics for the transaction or program to 
confirm the “average” behavior of the program 



IBM Americas Advanced Technical Support    

      
 

Page 18 

7.3.1. Low CPU time example 
Low CPU time can be an indicator of inefficient SQL.  The database request time may be long, or 
in cases where the database request time statistics have wrapped, database request time may be 
short and processing time long.     
 
If CPU time is a very small percentage of elapsed time, consider checking for inefficient SQL.  
Here CPU time is only 1% of elapsed time, which is generally a strong indicator of inefficient 
SQL.  If the CPU time is <5%-10%, inefficient SQL is often the cause. 
 

 
Figure 6: STAT record with low CPU time 

 
Use ST05 to trace and explain slow SQL statements. 

7.3.2. High CPU time example 
If the dialog step spends most of its elapsed time using CPU on the application server, then one 
must look at where the time is spent. 
 
Examine the program both when it is processing a few items and also many items, in order to 
search for issues in code scalability, such as inefficient access to internal tables.  
 
In SAP, one can use the SE30 transaction to trace the program.  See Section 11.1.1 for examples of 
running SE30.  In the formatted ABAP trace, note which routines consume the most CPU, and 
examine the ABAP code for efficient programming.  
 
If observations show much of the time is being spent in the SAP kernel, or operating system kernel, 
then open an OSS message.  In this case, more detailed analysis of the SAP or OS kernels may be 
required. 
 



IBM Americas Advanced Technical Support    

      
 

Page 19 

In Figure 7, elapsed time is 586 seconds, with 505 seconds of CPU time.  CPU time is 86% of 
elapsed time.  This could be a sign of inefficient coding in the ABAP. 
 

 
Figure 7: STAT record with high CPU time 

 
 

7.3.3. High RFC+CPIC time example 
The detailed RFC data in the STAT record can help to determine whether the problem is specific to 
a system or an RFC.  If a dialog step makes several calls to different RFCs, they are reported 
separately. 
 
In addition to this historical RFC information, one can see the response times of RFCs during 
program execution by using the ST05 RFC trace. You must then go to the server for the slow RFC, 
and examine the cause of slow performance of the RFC. 



IBM Americas Advanced Technical Support    

      
 

Page 20 

 
Figure 8: STAT RFC detail 

7.3.4. Response time 
High response time, in itself, is not a problem that can be fixed.  Review the components of 
response time, to find out where the time is spent, and where the opportunities for improvement 
are.  

7.3.5. Wait for work process example 
Wait for work process is often a symptom of another problem, where the root problem causes the 
dialog step to run slowly and keep the work process occupied for longer than optimal.  This could be 
caused by CPU overload, OS paging, SAP buffer configuration, inefficient SQL, etc.  Look at the 
components of response time to find where the time is spent, and work to improve performance in 
these areas.  
 
If after looking for a root cause, none has been found, then add more work processes, or reduce the 
number of users on that application server.  If the workload on a system grows, and additional work 
processes are not added, “wait for work process” can result. 
 

 
Figure 9: STAT wait for work process – symptom of SAP roll area overflow 



IBM Americas Advanced Technical Support    

      
 

Page 21 

In Figure 9, note that wait for work process is about 60% of response time – 632 ms of 1093 ms. 
When we look for a root cause in the other indicators, this example shows that Roll-In and Roll-out 
are unusually large.  With transactions, “roll in” and “roll out” are generally a few ms.   In this 
example, a dialog step that should normally take about 150 ms (the CPU time) in a work process, 
occupied the work process for about 600 ms (65 + 150 + 398).  See section 9.2.3 for an example of 
how to use ST02 to determine if the SAP roll-area is too small and causing the problem. 
 
In Figure 10, the dialog step has some “wait for work process” time (2799 ms of 105,122 ms 
response time), but when checking the other components of response time, the database request 
time is the largest time component.  Checking database request time, the insert time is very slow – 
36 ms per inserted row.  While wait time is not a large part of the elapsed time, this example shows 
again how wait time can be a symptom of another problem.  If the database performance problem 
is solved (check for I/O constraints and DB2 lock/latch suspensions, etc) then the “wait for work 
process” time will likely go away, as the work processes (in general) will be occupied for a shorter 
time.  (Improving DB performance of a dialog step does not help wait time for that dialog step, but 
reduces wait time for other dialog steps, which in the aggregate will reduce wait time.) 

 
Figure 10: STAT slow insert causes wait time 



IBM Americas Advanced Technical Support    

      
 

Page 22 

7.3.6. Processing time examples 
Processing time is a symptom of a problem when it is not consistent with other statistics.   In the 
simplest case, such as Figure 11, where there are no RFC and GUI calls, processing time should be 
very close to CPU time.   In Figure 11, there is no “missing time”, as can be seen by processing 
time and CPU time being nearly the same. 

 
Figure 11: STAT record with CPU corresponding to Processing time 

 
In cases where there is a “missing time” problem, as described in section 7.1.1.1, processing time 
will be much larger than CPU time (plus RFC and enqueue if applicable).  Note in Figure 12 that 
CPU time is 11,047 ms, while processing time is 91,747.  In this case the dialog step was in the 
work process, but was not using SAP resources.  This is a “missing time” indicator, and it will need 
to be evaluated while the program when it is running in order to determine the cause.  
 



IBM Americas Advanced Technical Support    

      
 

Page 23 

 
Figure 12: Processing time shows missing time in SAP 

Processing time should be evaluated against other information in STAT.  In Figure 13, processing 
time is 3x CPU time, and so the program looks like it has a “missing time” problem.   What has 
happened is that GUI time has not been included in Roll wait, and thus not removed from 
processing time.  Here, there is not a “missing time” problem -- CPU + GUI + Enqueue is about the 
same as processing time.  

 
Figure 13: Processing time containing GUI time 



IBM Americas Advanced Technical Support    

      
 

Page 24 

In Figure 14, GUI time is included in Roll wait, and so GUI time has been subtracted from 
processing time.  Processing time agrees with CPU time, so there is no “missing time” problem. 
 

 
Figure 14: processing time with GUI time removed 

7.3.7. High load time example 
Load time is generally a trivial percentage of response time.  In the case of programs that call other 
programs (e.g. BDCs or custom programs using CALL TRANSACTION), it is normal to have load 
time be a high percentage of response time.    

 
In Figure 15, load time is about ¼ of response time – 3,522,789 of 14,907,321 ms. Database 
request time is also about ¼ of elapsed time.  

 
In order to improve the performance, one might have to completely re-write the program, using, for 
example, a BAPI instead of CALL TRANSACTION.  The effort of making the changes could 
outweigh the benefit from the improved performance. 

 



IBM Americas Advanced Technical Support    

      
 

Page 25 

 
Figure 15: STAT high load time 

7.3.8. Roll (in+wait) time example 
Roll (in+wait) groups together two different kinds of wait.  Roll-in delay is caused by a shortage of 
roll area on the application server, and roll-wait is RFC wait on GUI calls.   It is broken down on 
the right side of the statistics, under “Roll time”. 
 
In Figure 16, roll (in+wait) shows that the performance issue for this dialog step is GUI time (roll-
wait), not an application server ST02 ROLL area problem, which would be counted under roll-in 
time.  
 

 
Figure 16: STAT roll (in+wait) GUI time 

 



IBM Americas Advanced Technical Support    

      
 

Page 26 

In Figure 17, roll (in+wait) points to overflow of the memory roll area on the application server, 
because there is no roll-wait time.  Use ST02 to follow up and review the roll area memory usage. 

 
Figure 17: STAT roll-in 

 
 

7.3.9. Database Request time 
Problems in database request time, caused by inefficient or slow SQL, are by far the most common 
performance problem in SAP.  See section 7.4 and section 8.4 for examples of examining slow and 
inefficient SQL.  

7.3.10. Enqueue examples 
Enqueue performance problems are generally seen only on very large systems, such as systems with 
hundreds of concurrent users, or many concurrent batch jobs.  
 
Enqueue times should normally be very short.  They are usually 1-5 ms per enqueue.  If enqueue 
processing is a significant percentage of time in STAT, and the time per enqueue is high, there are three 
different causes: 

• Central instance OS constraint (CPU or paging) 
• Number of ENQ processes (a processor/threading constraint) 
• I/O bottleneck on the ENQBCK file.    

 
In the first case, where the central instance is overloaded from an OS level, other work processes on the 
CI (central instance) are using too much CPU or there is excessive paging, and the enqueue process 
cannot get enough CPU time to process requests.    
 
Use ST06 (or programs such as vmstat) to check for CPU or paging problem. 
 
The solution for this kind of problem is to move work processes off the central instance.  For example, 
updates and UP2 work processes could be moved to other instances, batch processes could be defined as 
Class A, so that user jobs could not run there, and the SMLG definitions of login groups would direct 
users to login to other instances. 
 



IBM Americas Advanced Technical Support    

      
 

Page 27 

In the second case, where there is a processor/threading constraint, the ENQ process on the central 
instance is active all the time, and is constrained by the number of ENQ processes or constrained by the 
speed of the processors running ENQ. 
 
The solution for this type of problem is to define more than one ENQ processes on the central instance, 
using the rdisp/wp_no_enq SAP parameter.  Tests done by IBM have shown that performance of 
enqueue increases for up to 3 enqueue processes on the CI.  We have heard of systems with more 
enqueue processes defined, but do not have the performance data to recommend this configuration.   
 
If a system with faster processors is available, running the central instance on this system will help 
alleviate an ENQ processor constraint. 
 
The third type of ENQ performance problems is an I/O bottleneck on the ENQBCK file.  At the end of 
an SAP transaction, ABAP programs issue an SAP “commit work” command.  The “commit work” 
signals that the transaction is finished, and its update can be processed.  Because SAP uses enqueues to 
serialize access to SAP objects, and these enqueues cannot be released until the update is complete, the 
“commit work” causes the ENQ process to write the state of the enqueues to disk.  This ensures that the 
enqueues for the committed transaction will not be lost if the system crashes between “commit work” 
and update processing.  This information is written to a file called ENQBCK, which is on the central 
instance.  In situations where many “commit work” commands are being executed, the write activity to 
this file can become a bottleneck.  See the SAP parameter enque/backup_file for the location. 
 
The symptom of this problem is also long ENQ times.  However, the ENQ process will generally not be 
running 100% of the time, and there will be very high I/O rates to the disk containing the ENQBCK file.    
 
The solution to this problem is to place the ENQBCK file in a filesystem that resides on write-cached 
disk.   In addition, it may be necessary to use a striped (either LV or disk striped) filesystem, to increase 
the I/O bandwidth of the ENQBCK file. 
 
 

7.3.10.1. Enqueue processor constraint example 
  

The symptom of this problem is long ENQ times seen in ST03 or STAT/STAD.  Additionally, when 
one checks ST06 “top processes”, one sees that the ENQ processes is using CPU nearly 100% of the 
time.  SM50 will show processes in ENQ wait (when monitoring an SAP instance is not the central 
instance) or waiting on semaphore 26 (when monitoring the central instance).  SM51 queue statistics 
on the Central Instance will show long ENQ request queues. 



IBM Americas Advanced Technical Support    

      
 

Page 28 

 
Figure 18: ST06 > detail analysis > top CPU -  showing processor constraint 

 

Important note:  Newer releases - such as 4.6D - show CPU utilization in ST06 top processes 
adjusted by number of processors on the system.  For example, on an 8-way system, 12% “CPU util” 
in ST06 “top processes” means that the work process is using 100% of one of the processors (100/8 
= 12).  The original way of reporting, where 100% meant 100% of a processor, was easier to 
interpret when looking for processor constraint problems.    
 
To determine which reporting method is used, compare the CPU time used by a work process with 
the utilization reported over an interval. 
 

 
Figure 19: SM50 showing ENQ wait 



IBM Americas Advanced Technical Support    

      
 

Page 29 

In Figure 19, there are many processes showing “stopped ENQ”, which means waiting for enqueue.  
This instance is not the central instance.  On the CI, enqueue wait is reported as semaphore wait.  
See Figure 22. 
 

 
Figure 20: SM51 > Goto > queue information - display of queues on SAP central instance 

 
In Figure 20, the enqueue process was 288 requests behind at one point.  While it is not unusual to 
see small queues on enqueue, if the queue gets to 50, 100, or above, one should look at the causes.   
 
Since enqueue wait problems occur only at times of high enqueue activity, ST03 daily statistics will 
average them out and make them look less important than they are.  Check periods of high activity, 
and look at the STAT records of jobs that run in those periods, to better evaluate the impact. 

7.3.10.2. ENQBCK I/O constraint example 
The problem reported is slow batch performance.  We look at STAT records to evaluate the 
components of elapsed time. 
 



IBM Americas Advanced Technical Support    

      
 

Page 30 

 
Figure 21: STAT long total and average enqueue times 

 
In Figure 21, enqueue time is over 1/3 of the Response time, with an average enqueue call time of 
over 600 ms.  Enqueues should normally take just a few ms each, this is very unusual.  
 
Monitor the job while it is running, to look for the cause of the slow enqueues. 
 

 
Figure 22: SM50 display on central instance showing Sem 26 (ENQ) wait 

 
In Figure 22, there are many processes in enqueue wait.  This is the central instance.  On the CI, 
enqueue wait is displayed in SM50 as semaphore 26 wait.  
 



IBM Americas Advanced Technical Support    

      
 

Page 31 

 
Figure 23: ST06 > detail analysis > top CPU - no processor constraint 

 
But, unlike the previous example, the ST06 “top processes” shows there is no engine constraint on 
the enqueue process – the process using the most CPU is using 26% (of 100% possible in this 
release) of the time.  
 
Since I/O on enqbck is another possible cause, check I/O activity with ST06. 

 
Figure 24: ST06 > detail analysis > disk - high I/O activity on UNIX disk 

 



IBM Americas Advanced Technical Support    

      
 

Page 32 

Note that hdisk2 is at 99% utilization.  Now, check the LVs that are defined on the disk (lspv –l in 
AIX), or run a tool such as filemon, to confirm what is causing the activity on disk. 

 
Figure 25: filemon displays active filesystems 

 
Since the files stanza of filemon generally does not report correctly on open files, use the LV stanza 
of the filemon report to find the active filesystem.  Compare this to the SAP parameters controlling 
the location of the ENQBCK file.  
 

7.3.11. Frontend example 
With the new GUI design in 4.6, in a WAN environment the time to process RFC calls from the 
application server to the GUI can make a significant contribution to the elapsed time of a dialog step.  
On the other hand, the new GUI control RFCs make it possible to reduce the number of screens on some 
transactions.  
 
In 4.6, the ST03 workload summary DIALOG stanza includes average Frontend time.    
 
When looking at a running system, SM50 or SM66 will show “stopped GUI” for each dialog step 
waiting for a GUI RFC.  ST05 RFC trace can be used to trace the RFC calls to the GUI. 
 



IBM Americas Advanced Technical Support    

      
 

Page 33 

 
Figure 26: STAT with long GUI time 

In this example in Figure 26, note that GUI calls make up 3,780 ms of the 4,059 ms response time.  
Network data transfer time was 1,212 ms.    
 
GUI time can be influenced by the speed of the frontend (PC), and by SAPGUI settings.   
 
SAPnotes 51373 and 161053 describe ways to optimize the performance of the GUI over a WAN.  One 
can disable SAPGUI_PROGRESS_INDICATOR to reduce the number of calls to the GUI.   
Additionally, one can choose “classic gui”, or set the login for “low speed connection” in order to 
reduce the amount of communication between the presentation and application servers. 
 
Net time is a function of the speed and latency of the network between the application server and 
frontend.  If net time is slow, one must investigate it with network monitoring tools.  

7.3.12. Missing time in STAT – suggested actions 
• The statistics of some component (usually Database request time or CPU time) have 

wrapped, and the statistics are invalid.  Monitor the running job using ST04 thread analysis, 
ST05, and SE30 to determine the components of elapsed time as described below in Batch 
Elapsed time analysis 

• There is operating system paging on the application server.  Use ST06 or an OS program 
such as vmstat to check for paging.  

• There is a CPU overload on the application server.  Use ST06 or OS program such as vmstat 
to check for CPU overload.  

• The program being executed is doing I/O to a file, e.g. an interface program that reads or 
writes UNIX files.  Use ST06 or OS program such as iostat or filemon to check or I/O activity.    

• The ABAP program is sorting a large internal table and the sort has spilled over to sort on 
disk.  Check location of DIR_SORTTMP in SAP parameters, and use ST06 or OS program such 
as iostat or filemon to check for I/O activity in this location.  

• A batch job is using “Commit work and wait”.  When the program is running, watch it using 
SM50 or SM66.  Check whether the job is often in the state “wait UPD”, which means that it is 
waiting for “Commit work and wait” to complete.  Check (via STAT records or ST05) that the 



IBM Americas Advanced Technical Support    

      
 

Page 34 

updates are being processed efficiently.  If so, investigate whether the program could be changed 
to do “commit work” so that updates are processed in parallel with the batch job.  If the job must 
get a return code from “commit work and wait” in order to take error recovery action, then it 
would not be possible to change to use “commit work”. 

• A batch job is trying to acquire an enqueue for an object locked by another process.  It  
fails to get the enqueue, waits and tries again.  When the user program is running, check 
SM50 or SM66 and look for SAPLSENA in the program name.  Use ST05 enqueue trace to 
confirm the problem.  Look for repeated enqueues against the same object, where the return code 
(RC) is 2, which denotes that the enqueue could not be acquired.  If these enqueues are being 
acquired as part of sales processing, check if OMJI (late exclusive material block) can be 
enabled.  It will reduce this enqueue contention, an increase parallelism in sales processing, but 
also increases the load on the enqueue server on the central instance.  When enabling OMJI, 
monitor the CI to confirm that it can support the increased load.  

• A batch job is sleeping, waiting for dispatched work to finish.  Use SM50 or SM66, and look 
for a status of SLEEP.  

7.4. Transaction 

7.4.1. Analysis process for transactions 
In the case where there is a performance problem with a specific transaction, there are two different 
paths to take, depending on where the transaction spends its time.  If most of the time is spent in CPU on 
the application server, use SE30 to profile the transaction, and determine where the time is spent.  
Otherwise, start with ST05, which can be used to evaluate database calls, enqueue activity, and RFC 
activity. 
 

7.4.2. Sample transaction analysis - MIRO 
 

In this case, we are investigating a performance problem that has been reported with the transaction 
MIRO.  We ask a user who is experienced in running the transaction and who has reported 
performance problems to run the transaction while we trace it.  
 



IBM Americas Advanced Technical Support    

      
 

Page 35 

 
Figure 27: MIRO ST05 

 



IBM Americas Advanced Technical Support    

      
 

Page 36 

First, run ST05, specify “trace on for user”, and specify user name. 

 
Figure 28: ST05 selection screen 

Note in Figure 28, one can narrow the performance trace by transaction, program, table, etc. The ST05 
trace can generate a large trace file. If we have already narrowed the problem down to a few tables and 
need to reduce the size of the trace file to run the trace longer, the filters can be used to select a specific 
table or set of tables.   
 
The SAP parameter rstr/max_diskspace can be used to enlarge the size of the trace file for ST05.  See 
SAPnote 25099 for the process to change the size of the trace file. 
 
After the test is finished, turn the trace off (ST05 > trace off) 
 
Then list the trace (ST05 > list trace). 
 



IBM Americas Advanced Technical Support    

      
 

Page 37 

 
Figure 29: MIRO ST05 trace list selection screen 

 
After a trace has been done, one can specify selection criteria, to further filter the list. 
 



IBM Americas Advanced Technical Support    

      
 

Page 38 

 
Figure 30: ST05 > list trace - slow RBKP 

 
Figure 30 shows selects against RBKP that are slow – about 150ms – and that return no rows.   ST05 
Duration is in micro-seconds, and the “Rec” column shows rows returned for the FETCH. 
 
In the list above, select the prepare statement and press explain. 

 
Figure 31: ST05 RBKP Explain 



IBM Americas Advanced Technical Support    

      
 

Page 39 

 
At the top of  Figure 31, it says “performance is good”.  When reviewing the explain output in SAP, take 
this comment with a grain of salt.   It means that an index is being used.  As this example shows, even 
though an index is being used, the performance is not good.   Non-matching index scan, where the entire 
index may be read, will also say “performance is good”, and tablespace scan, which may be the right 
choice when many rows will be read, will say “performance is bad”.    
 
The explain output in Figure 31 shows that only the MANDT column is matched in the index. Since 
there is generally only one value in MANDT, this does not help to select the result rows. Even if there 
are several different values in MANDT, the data will generally be skewed such that almost all the rows 
are in one MANDT (the productive MANDT) so filtering on MANDT is not helpful.  
 
Next check the columns in the predicates to see if DB2 might be doing index screening, which would be 
better than matching only MANDT.  Predicates are the “column operation var” selection criteria in the 
SQL.  DB2 does index screening when there are gaps in the index columns referenced by the predicates, 
e.g. the predicate uses columns one and three in an index with three columns. In order to confirm index 
screening we need to check the SQL.  
 
In the ST05 trace, select the statement and press “replace vars” or drill into the REOPEN statement. 

 
 



IBM Americas Advanced Technical Support    

      
 

Page 40 

 
Figure 32: Statement text with parameter markers – ST05 “replace vars” 

The columns in the statement are MANDT, LIFNR, WAERS, RMWWR, BUKRS, BLDAT, RBSTAT, 
and XBLNR.  Comparing the SQL statement against index RBKP~3 that is being used, RBSTAT also 
matches, so DB2 may be using index screening on RBSTAT.  
 
Look for the statement in ST04 (the last line), to get an idea of what the statement is doing in the 150 ms 
that it takes to execute.  ST04 statement statistics will be discussed further in section 8.3. 

 
Figure 33: ST04 cached statement statistics with RBKP statement 

In Figure 33, last line, note that the statement did 4.5M getpages, examined 6.7M rows, and returned 
141 rows.  In the ST04 cache statistics, a “row examined” means that DB2 had to look at the table row 



IBM Americas Advanced Technical Support    

      
 

Page 41 

to determine whether the row satisfied the predicates, or to return the result row.  This statement is 
probably not index screening, since the symptom of index screening is high getpages per row processed, 
but low rows examined per row process.  In this case, DB2 is going to the table to evaluate the 
predicates. 
 
Note in Figure 32 that the variables were not filled out when prepare is done, since dynamic SQL 
statements are prepared with parameter markers, and the variables are filled in at statement execution.  
 
To see the parameter values for the SQL statement, select the REOPEN statement and press “replace 
var”.  Checking the parameter values can be useful when examining statements that have predicates on 
low cardinality columns, such as status columns.  By examining the variables, you can determine if the 
statement is searching for a value that seldom occurs, where matching the index could quickly return the 
rows. 
 

 
Figure 34: ST05 display of SQL statement with parameter values 

 



IBM Americas Advanced Technical Support    

      
 

Page 42 

Now that we have determined that an inefficient access path is being used (each statement takes 150ms, 
and many rows were examined to return few rows), we look at the ABAP source code for the executing 
program.  Select the REOPEN or PREPARE lines and press the ABAP display icon (the paper). 

 
Figure 35: ST05 source display of RBKP select with SAP dynamic SQL 

 
The function module (MRM_…) is not in the customer name space -- this looks like SAP code.  
Customer written code is Z* and Y* programs, as well as SAPxY* and SAPxZ* (e.g.SAPFY*,  SAPLY*,  
SAPMZ*), which contain user exits, function modules, etc. 
 
Note the line “WHERE (code)” in Figure 35.  This is SAP dynamic SQL, where the statement is built at 
runtime by the program.  This is different from DB2 dynamic SQL, which is statement preparation at 
runtime. SAP dynamic SQL such as these are very difficult to locate with the SE11 “where used”, since 
the predicates are not in the program source.  Since the predicates are not in the source, we cannot use 
filters such as column name to find SQL statements in the “where used” list.   See section 8.4.1 for an 
example of SE11 “where used”. 
 
Use ST04 to check DB2 catalog statistics to find the cardinality of the columns specified in the SQL, to 
see if any would make good candidates for accessing the table.  The catalog browser (ST04 > DB2 
catalog browser) is not available with all versions of SAP.  If your version of SAP does not have the 
catalog browser in ST04, these queries can be entered via SPUFI.   
 
When reviewing catalog statistics, check the date on which runstats was run on the object.   This can be 
done via DB02 table “detail analysis” or in ST04 catalog browser or SPUFI.  Use “select *”, rather than 
specifying the column names as in the examples below.  The date will be contained with the other 
catalog statistics 
 
The ST04 catalog browser does not come with pre-defined queries.  The queries in this paper are shown 
as templates that you can enter in ST04. 
 



IBM Americas Advanced Technical Support    

      
 

Page 43 

Cardinality is the number of unique values in a column.  A high cardinality column (or index) will filter 
the result set well, since there will be fewer rows in the table for each unique value in the index.  Given 
the choice between a high cardinality index, and low cardinality index, DB2 will choose the index with 
high cardinality, since this should help to eliminate more rows at the time the index is read.   If DB2 
chose the low cardinality index, it would then have to eliminate many rows by examining the rows in the 
table, too. 
 

 
Figure 36: ST04 DB2 catalog browser to query catalog statistics 

 

 
Figure 37: MIRO example - check column cardinality via catalog browser 

 
Yes, XBLNR and RMWWR both have high cardinality, and are specified in the SQL, so if an index on 
one of these two columns were available, it would likely be better to use it.  
 



IBM Americas Advanced Technical Support    

      
 

Page 44 

Using ST04 DB2 catalog browser, check the indexes on the table, to see if there are any that match the 
columns, but were not used for some reason. 

 
Figure 38: MIRO example - query to display indexes on RBKP 

 

 
Figure 39: MIRO example - columns in indexes on RBKP 

 
XBLNR and RMWWR do not appear in any indexes, so there are no indexes on the database that match 
the high cardinality columns in the SQL.   



IBM Americas Advanced Technical Support    

      
 

Page 45 

While we don’t need to check the other indexes, since they are not used, if we were to check index 
cardinality, we would use the following command. 

 
Figure 40: MIRO example - query to check index cardinality 

 
The information on index cardinality (FULLKEYCARDF) is: 
 

 
Figure 41: RBKP indexes and cardinality 

 



IBM Americas Advanced Technical Support    

      
 

Page 46 

Now, since it is SAP code, check SE11, to determine whether there is an index defined in the data 
dictionary that is not active on the database. 

 
 
SE11 > display, and then press “indexes” to get this list. 

 
 
It can be seen that there are 5 secondary indexes in the data dictionary (making 6 total), though only 
three indexes were defined on the database in Figure 41.  SE11 > indexes displays only the secondary 
indexes.  One can use SE14 to list all indexes, including the primary index 
 



IBM Americas Advanced Technical Support    

      
 

Page 47 

Select the second index in the list, and press choose. 

 
Figure 42: SE11 display index definition 

XBLNR is the second column, so this data dictionary definition is a match for the SQL statement .  
XBLNR had high cardinality. This index needs to be activated on the database.  Note that status “active” 
in Figure 42 means that the data dictionary definition of the index is active, not that the index exists.  
Whether the index exists or not is displayed below the status. 
 
Since the problem was found in SAP code, the action plan was to first check SE11 for defined but 
inactive indexes.  If an index is not found in SE11, it is suggested that a search for a SAPnote about this 
problem should be performed.  If no SAPnote is found, then opening an OSS message regarding the 
problem might be appropriate, or just create an index.  
 



IBM Americas Advanced Technical Support    

      
 

Page 48 

7.4.3. Sample transaction analysis – ME21L 
Transaction ME21L has been reported to be slow. Checking the STAT records shows that there is one 
dialog step that seems to have inefficient SQL – nearly 30 ms per select, and almost 10 ms per row  
(3606 ms for select / 496 rows = 7 ms per row).  This is rather slow.  Since “database rows” is much 
greater than “requests”, we use the per-row times to evaluate performance. 

 
Figure 43: STAT record for ME21 

 



IBM Americas Advanced Technical Support    

      
 

Page 49 

Next, call our user who reported the problem and run ST05 trace while they execute the transaction. 
After transaction is traced, list and summarize the trace. 

 
Figure 44:  Summarized ST05 SQL trace with slow KSSK 

Figure 44 shows that KSSK looks like the problem.  It takes almost three seconds to return one row.  
(The ST05 trace summary time units are microseconds.) Go back to the ST05 list to explain the 
statement.  Select the reopen line, and press explain. 
 

 
Figure 45: ST05 trace list with slow KSSK 

 



IBM Americas Advanced Technical Support    

      
 

Page 50 

 
Figure 46: ST05 explained KSSK statement 

It does not look good – the entire table is scanned.  No index was used. 
 
Check ST04 statement cache (will be covered in section 8.3) and see that this statement (the last line in 
Figure 47) is one of the top statements in total getpages, and that it examined 64M rows and processed 
(returned) 417 rows.  The statement being in the top of the getpage-sorted list shows that this statement 
is important as a system performance problem, as well as a problem for this transaction.   
 
Check the “per execution” statistics, to see rows examined per execution. (This is not shown in this 
example).  If an SQL statement seldom returns a result row, the ratio rows examined per row processed 
will make the statement look more inefficient than it is.  Rows examined per execution is a better 
measure of efficiency when rows are seldom returned.  Here, since there are 417 tablespace scans, we 
can see that the statement was executed 417 times, and returned one row each time it was executed. 

 
Figure 47: KSSK statement from ST04 cached statement statistics 



IBM Americas Advanced Technical Support    

      
 

Page 51 

Next, check the program source from the ST05 trace. 

 
Figure 48: ST05 source display - ABAP selecting KSSK 

The ABAP is SAP code (LCL…), not user (Y or Z) program.    
 
Note the “SELECT … FOR ALL ENTRIES”.  The ABAP “FOR ALL ENTRIES” uses internal tables to 
specify the predicates.   The SAP DBSL (which converts ABAP into database dependent SQL) may 
convert “FOR ALL ENTRIES” to a DB2 statement with an IN list or a UNION ALL, depending on the 
selection criteria specified in the “FOR ALL ENTRIES”.  If there is one column in the predicate, IN list 
is used.  If there is more than one column in the predicate, UNION ALL is used. 
 



IBM Americas Advanced Technical Support    

      
 

Page 52 

Display the statement from ST05 list, to get columns in the SQL where clause so we can check indexes. 

 
Figure 49: ST05 display KSSK statement with variables 

 



IBM Americas Advanced Technical Support    

      
 

Page 53 

The columns are MANDT, CLINT, MAFID. 
 
The ABAP in Figure 48 had “ UP TO xxx ROWS”, which might have constrained the number of rows 
returned from DB2. Check how many rows there are in the table that match the SQL.  Use SE16, and 
put in the values of the variables from Figure 49, then press “number of entries” 

 
Figure 50: SE16 display table contents 



IBM Americas Advanced Technical Support    

      
 

Page 54 

 

 
There is only one row that satisfies the predicates with the values specified, so one row is read by this 
statement.  
 
Use ST04 DB2 catalog browser to check for matching indexes. 

 
Figure 51: KSSK check indexes and columns 

 



IBM Americas Advanced Technical Support    

      
 

Page 55 

 
Figure 52: KSSK indexes and columns 

 
Index KSSK~N1 is an exact match for the statement.  Why is it not used and why is a tablespace scan 
done? 
  
Check index cardinality, to see if DB2 intentionally avoided using the index, due to low cardinality. 

 
Figure 53: KSSK check index cardinality 

 



IBM Americas Advanced Technical Support    

      
 

Page 56 

 
Figure 54: KSSK index cardinality 

   
 
Index KSSK~N1 has cardinality 15, so DB2 thinks that it will not be selective.  There are over 150K 
rows in the table, which can be seen by the cardinality of the KSSK~0 index, since SAP ~0 indexes are 
unique indexes.  Thus, DB2 thinks selects on KSSK~N1 will return many rows.  In cases where index 
access will return many of the rows in a table, a tablespace scan can offer better performance.  We can 
see from the trace and ST04 statement cache statistics that only one row is returned, so we know that it 
would be better to use the index, in spite of the low index cardinality in the catalog.    Here there is a big 
skew in rows for each value in KSSK~N1.  There are only 15 unique values, but one of those 15 unique 
values returns only one row. 
 
Get the column cardinalities of the predicate columns. 

 
Figure 55: KSSK check cardinality of columns in KSSK~N1 

 



IBM Americas Advanced Technical Support    

      
 

Page 57 

 
No surprise here.  If the index N1 has low cardinality, then each of its columns must have low 
cardinality too. 
 
For sites running SAP 4.5B and later, one can modify the ABAP source to use the hint (USE VALUES 
FOR OPTIMIZATION) which will cause the statement to reoptimized at execution, when the variables 
are passed to DB2.  (See SAPnote 162034 for more information on hints with DB2 for OS/390.)  With 
this hint, the DB2 column distribution statistics can be used by the optimizer, and DB2 will know that 
the program is searching for a value that seldom occurs, and will choose the KSSK~N1 index.  
RUNSTATS with FREQVAL must be run on KSSK for USE VALUES FOR OPTIMIZATION to be 
effective.  
 
For sites running SAP versions before 4.5B, one can manually set FULLKEYCARDF on the index 
KSSK~N1 higher, to make the index more preferred by the optimizer.    Since the statement read about 
1 million rows for each row returned, we set cardinality to a big number, to make this look like an index 
that filters well. 
 

UPDATE SYSIBM.SYSINDEXES SET FULLKEYCARDF = 100000 
WHERE CREATOR = "SAPR3' 
AND TBNAME = 'KSSK' 
AND NAME = 'KSSK~N1'   

 
The disadvantage of setting the statistics is that it can cause the optimizer to choose the N1 index too 
often, since DB2 will think it is more selective than it really is.   In this case, Since ST04 showed that 
each execution of the statement returned one row, this should be a safe change.   
 
Be careful when manually setting catalog statistics.  It can cause DB2 to optimize statements to use the 
wrong access path.   Before and after making the change, use the table filter in ST04 statement cache 
analysis, to filter and review statements that access the table. Check that no statements are negatively 
impacted by the change.   



IBM Americas Advanced Technical Support    

      
 

Page 58 

7.4.4. Sample transaction analysis - MB51 
In this case, we have been asked to examine MB51.   Start off with ST05 trace, to examine the SQL.   
See that there are array fetches against MKPF that take 10-15 ms per row.  In general, as mentioned in 
section 7.1.1.2, one would expect array operations to be much faster – often less than one ms per row.   

 
Figure 56: MB51 - ST05 summarized trace 

 



IBM Americas Advanced Technical Support    

      
 

Page 59 

Display the statement in the ST05 trace list by drilling into the REOPEN, and see that it is a join on 
MKPF and MSEG.  (The ST05 trace just reports one of the tables in a join.)  The join is on MBLNR and 
MJAHR and MANDT. The selection criteria are MATNR and MANDT. 

 
 
Note that the join conditions are within parentheses in the WHERE clause, and predicates are outside 
the parentheses.  
 
If tables are joined in the ABAP, you will see the join conditions in the SQL in ST05.  If a database view 
defined on a join is used by the ABAP, you will not see the join conditions in the SQL.  Use SE11 to 
display the join conditions and other restrictions on a view.  



IBM Americas Advanced Technical Support    

      
 

Page 60 

Explain the statement 

 
Figure 57: MKPF MSEG explain 

This looks reasonable. Check the indexes and matching columns.  MATNR is a predicate, and is used on 
the outer table.  MBLNR, MJAHR, and MANDT are join conditions, and are all used to access the inner 
table. 



IBM Americas Advanced Technical Support    

      
 

Page 61 

Check the catalog statistics to see cardinality of predicates. 

 
 

 
Figure 58: MB51 predicate cardinality 

MATNR has high cardinality.  It was used on outer table.  Everything looks fine, why is the statement so 
slow? 
 



IBM Americas Advanced Technical Support    

      
 

Page 62 

Check the statement statistics. 

 
185 getpages for 44 rows – about 4 getpages per row – this is OK.   Note that there are 42 synchronous 
reads per execution, almost one per row.     
 
Prefetch I/O is not captured on the statement statistics (since prefetch is not done by the thread, but is 
done by prefetch processes in DB2). The explain in Figure 57 showed list prefetch being used to access 
MSEG.  Using the synchronous I/O information for the statement, the statistics show that pages needed 
by this statement are frequently not in memory.   (One can calculate a statement hitratio as 100 * (1-
(synch reads/getpages)) – in this case 77%.  Since this does not include prefetch I/O, we know that the 
pages needed are found in memory less than 77% of the time.  If overall bufferpool hitrates in ST04 
“subsystem activity” are good, this probably indicates bad re-reference rates in accessing rows in the 
table. 
 



IBM Americas Advanced Technical Support    

      
 

Page 63 

Check the index stats. 

 
Figure 59: MKPF MSEG query index statistics 

 
Figure 60: MKPF MSEG index statistics 

 
From the FULLKEYCARDF on MSEG (620K) and cardinality of MATNR (16K in Figure 58) we can 
see that the average material (MATNR) has 38 rows in MSEG (620,000/16,000), about what we saw in 
the per-execution statement statistics above. 
 



IBM Americas Advanced Technical Support    

      
 

Page 64 

Check size of tables. 

 
Figure 61: MKPF MSEG query table statistics 

 
Figure 62: MKPF MSEG table statistics 

 
MSEG is over 700M, which is too large to fit in DB2 buffer memory available. 
 
So, there isn’t actually a problem here.  From the low hit rate (77%) in the SQL cached statement 
statistics, it looks like the statement is accessing rows that are widely distributed throughout a large 
table, and seldom re-referenced.  (One would have to do an I/O trace in DB2 to confirm this, but it is 
pretty clear from the statement statistics.)  On average, there is one synchronous I/O operation per row, 
and that accounts for the long elapsed time of the statement.    



IBM Americas Advanced Technical Support    

      
 

Page 65 

 
This is an exception to the rule-of-thumb discussed in 7.1.1.2 -- that array operations were often less than 
one ms per row.  (There are always exceptions to ROTs.)  Here, the program is doing an array fetch 
operation using a secondary index to access non-contiguous rows in the table MSEG, which is a very 
large table.  The table is too large to fit in memory, and so there is I/O delay.    
 
Possible additional steps might be: 

• Implement DB2 hardware compression on MSEG and MKPF (if it has not already been done) to 
get more rows into each block, to enable more of rows to be held in DB2 bufferpools and 
hiperpools. 

• Allocate more memory to bufferpools and hiperpools for this table.  (Unless this was an 
especially critical transaction, it would probably not be worth the memory) 

• Examine the I/O performance of the disks where MKPF and MSEG are located, to ensure that 
there is not contention in the I/O subsystem 

• Evaluate changing the clustering sequence on MSEG, so that it is clustered in the sequence of the 
MSEG~M index.   If the most important business access to a table is via a SAP secondary index 
(MSEG~M in this sample), then one can change the clustering sequence.  Access via the new 
clustering index would then be sequential access, which is generally faster than list prefetch 
access.  As with changing catalog statistics, evaluate the other programs that access this table, to 
determine whether the change in clustering sequence will have a negative impact on existing 
programs.   

7.5. Batch 

7.5.1. Analysis process for batch 
As with transaction analysis, the two main tools are ST05 and SE30.  Use ST05 to find inefficient 
SQL, and determine what activities take the most database request time.  SE30 is used to profile the 
time running on the application server.    
 
Since batch jobs are long running, one can gather additional information on the job, using ST04 
thread information and ST06 CPU information, to get an end-to-end profile of elapsed time that 
includes CPU on the application server, CPU on the database server, delay on the database server, 
and “overall not accounted” time, which includes network time and STAT “missing” time.  The 
sources of delay in DB2 are discussed in more detail in section 8.1. 
 
If the job is long running and the statistics for a counter have wrapped, then the STAT records are 
not helpful in filtering the problem source – whether it is excessive database request time, etc.  
Analysis of the job while it is running is required.     
 
Even if the STAT counters have wrapped, the data recorded in stat/tabrec may still be valid, so 
stat/tabrec and rsdb/stattime can be helpful in gathering data about performance issues in long 
running batch jobs.  Again, these two SAP parameters should not be enabled all the time, just during 
detailed problem analysis. 
 



IBM Americas Advanced Technical Support    

      
 

Page 66 

7.5.2. Batch analysis starting from STAT records 
This problem can be solved with about half the steps shown in the following example, but the 
screen shots of all the different tools are included to show the different ways that one can approach 
a problem.   
 
A performance problem with the program REAPRIN0 has been reported.  This program (invoice 
print preparation) is being tested as part of a stress test to prepare for a go-live.  In order to achieve 
the requirements of the batch window, several copies of the program must run in parallel.  
 
As a first step, check STAT records to see what they show.  

 
Figure 63: REAPRIN0 STAT 

Next check the ratio of Database request time to Response time.  Database request time is about 
75%, so we look at the database request details.  It shows that direct read is about 2/3 of total 



IBM Americas Advanced Technical Support    

      
 

Page 67 

database request time (3028694 ms of 488387 ms), and that the average direct read is 20 ms.  This 
is very unusual.  Since direct read is fully qualified primary index access, direct read times should 
be very fast - just an ms, or less, for each row.  In this case, 89K of 146K requests were satisfied in 
buffer, so the average direct read time should be very fast. 
 
At this point, there are a number of things that can be done – run an ST05 trace, check ST04 
statement cache for long running statements, or just watch the running system and see what is 
happening.  Now run SM66, and look at what the batch processing looks like. 

   
And note something odd – many of the jobs are shown doing direct read on TSP01.  
 
So, run ST05 trace against TSP01. 

 
There are many selects against TSP01 that run quickly, but that some are very slow.  The slowest 
statement here took 14 seconds to complete.   These are “SELECT FOR UPDATE”, which takes 
locks, and can be delayed by lock contention. Usually, SAP uses uncommitted read (UR) with DB2 
for OS/390, which takes no locks.  The ST05 trace can be used to display the ABAP source code, 
and see the name of the program that is causing the locking problem. 



IBM Americas Advanced Technical Support    

      
 

Page 68 

 
With a locking problem this pervasive, one can often find the table having the locking problem in 
ST04.   Use “ST04 > DB2 subsystem activity > lock waits” to see current lock waiters and holders.   
 
Now check ST04 “global times”, and see that lock/latch delay is very large, over 75% of time in 
DB2. 

 
It looks like we have found the culprit, lock delay on TSP01, but since ST04 “global times” covers 
the life of the thread, we can run a DB2 suspension trace using IFCID 44,45,226, and 227, then 
format it with DB2PM “LOCKING REPORT LEVEL(SUSPENSION)”, to check for causes of 
lock and latch suspensions during a specific periods.   Here is an edited report. 

 
Figure 64: DB2PM LOCKING REPORT 

 



IBM Americas Advanced Technical Support    

      
 

Page 69 

There are 4088 total suspensions * 2.046 sec average time = 8,364 total delay seconds.  Then 1111 
TSP01 suspensions * 7.15 sec average time = 7,943 seconds TSP01 delay.  TSP01 is causing 
nearly all the lock/latch delay we saw in ST04. 
 
Direct read was 2/3 of database time, and database time was ¾ of elapsed time.  Average direct 
read time was 20ms, where we would expect it to be under 1 ms, since many of the direct reads 
were buffered.  So, we can estimate that we can reduce direct read time by about 95%, and thus 
decrease runtime by nearly 50% (0.95 * 2/3 * ¾) if we fix the TSP01 problem.   
 
Our action plan, since the program is an SAP program, and the table is a standard SAP table, is to 
open a note to SAP to report the problem.  
 

7.5.3. Sample of SQL cycle analysis in batch 
When tracing a batch job, it is important to find the cyclical behavior of the job, so that analysis of 
the SQL can be performed through at least a full cycle.  Analyzing and aggregating several cycles 
is preferable, in order to average out the impact of transient conditions.  
 



IBM Americas Advanced Technical Support    

      
 

Page 70 

Start, list, and summarize an ST05 trace of the batch job.  In the summarized trace, look for the 
markers of a cycle.  First, look for the “commit work” statements.  There may be several cycles 
within a single commit work, there may also be one cycle per commit work, or there may be 
several commit works per cycle.  In this case, choose the update to TST01 as the marker for a 
cycle.  Select the starting line, then “edit > select beginning”. 

 
Figure 65: TST01 - Select starting point in summarized ST05 trace 

 



IBM Americas Advanced Technical Support    

      
 

Page 71 

Then, use “find” to locate additional markers of the cycle – TST01. 

 



IBM Americas Advanced Technical Support    

      
 

Page 72 

Select the end of the cycle:  “edit > select end”.  Here, the selected range ends with the 
ARFDSDATA insert before the TST01 update.  

 
 
Use “edit > set tcode” to put an identifier into the trace.  ST05 does not care what is entered, so 
make it something that will help to interpret the result, if you look at this a month from now.  

 
 



IBM Americas Advanced Technical Support    

      
 

Page 73 

Press the summarize button (also labeled compress in some SAP versions) to compress the trace, 
and then sort by time. 

 
 
Now evaluate the summary and look for slow tables.  The time units are microseconds.  At the top 
of the figure, 102 VBAP rows are read in 908 ms (908,005 microseconds), for an average of almost 
9 ms per row, which is a bit slow.    
 
Since the top table is only 14% of DB time, unlike the transaction trace in section 7.4.2, there is not 
a huge problem on any of the tables, and one can only gain a small incremental improvement by 
addressing the slow SQL against the VBAP and VBRP tables. 
 
As in the transaction examples in section 7.4, use ST05 to explain long running SQL statements, 
use ST04 DB2 catalog browser to check whether a better index is available, of if a new index 
might be needed.  



IBM Americas Advanced Technical Support    

      
 

Page 74 

 

7.5.4. Sample end-to-end batch time analysis 
In cases where the STAT records do not contain valid data, and we need to fully characterize where 
the batch jobs spend most of their processing time, we can evaluate the end-to-end components of 
batch response time by combining ST04 thread statistics with ST06 CPU time. 
 
In this case, we will analyze the background job running in work process 0, PID 99028.  We need 
the work process number for the ST04 thread display, and the PID for ST06.  Both can be gotten 
with SM50. 

 
Figure 66: SM50 display 

 



IBM Americas Advanced Technical Support    

      
 

Page 75 

Get starting point data for the PID:  “ST06 > detail analysis > top CPU”.  Note the CPU time (54 
minutes and 10 seconds) or print/save the screen for later. 

 
Get the starting point for the thread:  “ST04 >thread activity > choose the thread > times”.  
Save/print the screen for later. 

 
 



IBM Americas Advanced Technical Support    

      
 

Page 76 

Then gather ST04 and ST06 ending points using the same process as above.  Unlike the ST05 cycle 
process in section 7.5.3, this method does not correlate the monitoring to a cycle in the job, so just 
let it run a few minutes. 

 
 

 



IBM Americas Advanced Technical Support    

      
 

Page 77 

 
Now, get out the time calculator, and fill in the table with the information from ST04 and ST06: 
 
 Start End Delta 
Activity Time (elapsed) 4:01:18.92 4:27:49.39 26:30.07 
CPU on app server (ST06) 54:10.00 76:13.00 22:13.00 
Total CPU time (ST04) 19:39.43 19:54.36 00:14.07 
Suspended in DB2 (ST04) 28:33.51 30:33.27 00:59.36 
Not attrib in DB2 (ST04) 11:21.00 11:30.45 00:09.45 
Overall not accounted (calculated)   02:53.12 
 
In this example, while the DB2 delay is large relative to CPU in DB2 (59 to 14), CPU on the 
application server is the largest amount of time, and would be the first step in improving 
performance.   SE30 chould be used for further analysis of the program.  
 
The “overall not accounted” time (which we calculate by subtracting CPU, suspend, and “not 
attrib.” from elapsed) would include any of the “missing time” elements from STAT (section 
7.3.12), as well as network time between application server and database server.     
 
If suspend time were large, look at the individual suspend categories (I/O, lock, etc.) to find the 
source, and use ST05, as in section 7.5.2, to look for inefficient statements.  

8. Check for inefficient use of DB resources 

8.1. DB2 accounting data – delay analysis 
DB2 accounting data can be used to determine where time is spent processing in DB2.  Time is gathered on 
each DB2 thread, and is broken down into “class 1”, “class 2”, and “class 3” time.   

• Class 3 suspend time is when the thread is suspended, and waiting for a DB2 action (commit, I/O, 
row lock, etc).   

• Class 2 Elapsed time is when DB2 is processing a request – it contains the Class 3 delay time, as 
well as CPU time in DB2 (class 2 CPU time).  

• Class 1 CPU is time that a thread is processing SQL from SAP – it contains class 2 CPU, plus time 
processing on S/390 outside DB2, e.g. time in the ICLI. 

• Class 1 elapsed time is the time a thread is allocated.  This is not a useful performance metric with 
SAP. 

• Not attributed time = Class 2 elapsed time – Class 2 CPU time – Class 3 suspension time.  It is the 
time that is left when all the time that DB2 can account for is removed from DB2 elapsed time.  Not 
attributed time happens when DB2 considers a thread to be runnable, but the thread is not running.  
This might be caused by a CPU overload on the DB server, a paging problem on the DB server, etc.  
In some versions of SAP, this is reported as “Other” time in ST04 “times”. 

 



IBM Americas Advanced Technical Support    

      
 

Page 78 

thread allocate

1st SQL

2nd  SQL

thread deallocate

Out of DB2 In DB2
Class 1
Elapsed 
and CPU

Class 2
Elapsed 
and CPU

Class 3
Suspensions

 
Figure 67: DB2 time categories 

   
The ST04 “global times” function (or DB2PM accounting report) can be used to display the main sources of 
delay in DB2.  Since these delays are generally a symptom of another problem (e.g. inefficient SQL causes 
excessive I/O which causes high I/O delay in DB2), ST04 “times” is best used to get an overview of the 
system performance in DB2, and to get a feeling for the possible gains which can be achieved from tuning.    
 
ST04 “global times” data is calculated from active threads.  Since SAP DB2 threads may terminate and 
restart over the course of a day, one should evaluate ST04 “times” at different times of the day, or aggregate 
the thread accounting history with DB2PM, in order to see the overall impact of delays in DB2.  Long 
running threads, such as threads for monitoring programs, can skew the “global times” data.   Check the 
ST04 thread display, and sort the threads by time, to determine if ther are long-running threads that are 
skewing the “global times” data. 
 
A ratio of about 50% delay in DB2 and 50% CPU in DB2, is very good for a productive SAP system.  If the 
inefficient SQL has been removed, and the DB2 subystem is achieving 50% CPU in “global times”, then 
there is probably little opportunity for improvement.  Ratios of up to 75% delay and 25% CPU are very 
often seen in normal productive systems.  If, however, the system has a ratio of 80% (or higher) delay to 
20% (or lower) CPU, and you want to improve overall DB server performance, then some additional 
analysis can show if this is a sign of a system-wide performance problem (inefficient SQL, slow I/O 
performance, etc) that needs to be addressed.  In general, the bigger the delay, the larger the opportunity for 
improvement, and the easier it is to get improvement.  
 



IBM Americas Advanced Technical Support    

      
 

Page 79 

 
Figure 68: ST04 global times 

8.1.1. Components of DB2 delay 
The DB2 administration guide (SC26-9003) describes the “class 3” delays in detail.  The most common 
delays seen with SAP systems are: 

• I/O suspension, which is synchronous read by a DB2 thread.  Synchronous I/O is done by the 
thread running the application SQL. 

• Phase II commit, which is wait for commit processing, which includes logging. 
• Other read suspension, which is wait for prefetch read, or wait for synchronous read by another 

thread.  Unlike synchronous I/O, prefetch is not done by the DB2 thread running application 
SQL, but by prefetch processes.  

• Other write suspension, where the DB2 thread is waiting for a DB2 page to be written.  
• Lock/Latch suspension, which is logical (row level) lock suspension, as well as DB2 internal 

latch delay, and latch suspensions in IRLM.      
• Page latch suspension, which is DB2 page contention. Since only one thread at a time can be 

changing a page, if several different threads simultaneously try to change different rows in the 
same page, there will be page latch contention.  Also, in tables with very high insert activity, 
DB2 space mapping pages may have contention.   

• Open/Close suspension, which is dataset open and close.   
• Global lock suspension, which is data sharing locking suspension. 



IBM Americas Advanced Technical Support    

      
 

Page 80 

8.1.2. Key indicators in DB2 Times 
• Suspend in DB2 high - (class 3 / Class 2 elapsed) – when this is high (e.g. over 75-80%), DB2 

execution is often blocked while DB2 waits for events such as I/O, locks, etc.    
• Not attributed (or “Other”) high – when this is high (e.g. over 20-25%), DB2 execution is 

blocked due to an operating system issue such as CPU overload, workload prioritization, paging, 
etc. 

• CPU time high - (Class 2 CPU  / Class 2 elapsed) – if this is high (e.g. over 60-70%), there may 
be problems with inefficient SQL, such as tablescans on moderate sized memory resident tables.  
It may be a sign of a well-tuned system (high hit rates, short suspend times), though in general, it 
is unusual to see a system with Class 2 CPU greater than Class 2 Elapsed. 

• Length of individual suspensions – long average duration for I/O suspension, other read I/O, 
other write I/O, and commit can be indicators of I/O performance problems. 

8.1.3. Actions to take for DB2 times indicators 
• High CPU time: 

o Look at ST04 statement cache for inefficient SQL.  
o Check DB2 trace settings 

• High “I/O suspension” time (also called “synchronous read and write”): 
o Generally the largest source of delay in DB2 
o Check for inefficient SQL, see section 8.3.  Inefficient SQL will reference more pages 

than necessary, which makes it difficult for DB2 to keep necessary data in bufferpools 
and hiperpools. 

o After checking SQL, if average suspension time is good (e.g. < 10 ms) and total I/O 
suspension time is high, then the DB2 bufferpool hitrates are probably low.   See SAP 
manual 51014418 “SAP on DB2 UDB for OS/390 and z/OS: Database Administration 
Guide” regarding buffer pool isolation, and evaluating size of bufferpools and hiperpools.   

o If average suspension time is bad, look for I/O contention with OS/390 tools such as 
RMF III and RMF I. 

o Analyze frequently accessed tables that might be candidates for DB2 hardware 
compression.  Many SAP application tables compress well.  Hardware compression will 
store more rows per page, which generally helps increase hitrates and reduce I/O. 

• High “Commit phase II” time (formerly captured under “service task switch”): 
o Not a frequent problem.  This occurs on very large change intensive systems, or when the 

log datasets have been configured incorrectly. 
o Check performance of I/O to logs 
o Check configuration of logs – they should be configured with logs on different disks to 

minimize I/O contention between logging and archiving 
o Review implementing compression of tables with high change frequency, to reduce data 

written to log.  (Compression can exacerbate a page latch contention problem, since each 
page contains more rows when the data is compressed.) 

• High “Other read suspension” time: 
o Usually the second largest source of delay in DB2 
o Check for inefficient SQL – if the SQL predicates and table indexes are not well 

matched, DB2 often chooses an access path (table scan, hybrid join, etc) that will use 



IBM Americas Advanced Technical Support    

      
 

Page 81 

prefetch.  If the SQL problem is fixed, the inefficient access path is often replaced with 
an indexed access path, which references fewer pages, and does not have to use prefetch. 

o Check for I/O constraint using RMF III and RMF I 
• High “Other write suspension” time: 

o This is not seen often.  It occurs on change intensive batch workoads 
o Check disk write performance – check I/O contention, and I/O indicators, such as write 

activity and write cache misses with tools such as RMF I, RMF III, or ESS Expert 
• High “Lock/latch suspension” time: 

o Is almost always logical (row) locking, which is fundamentally an application or data 
design issue. 

o Check for row lock contention on un-buffered number ranges, or number ranges that are 
buffered using only a small block of numbers.  See section 9.2.7. 

o Find the tables causing the suspensions.  This can be done using lock suspension trace 
(IFCID 44,45), or by reviewing ST04 statement cache and looking for change SQL with 
long total elapsed time. 

o Find the programs causing the suspensions, using ST04 cache analysis followed by SE11 
“where used” or by reviewing STAT data. 

o Investigate SAP settings that may help.  As examples, we have seen locking problems 
with RSNAST00 resolved by program options, and locking problems in financial 
postings resolved by using “posting block” and making process changes.  These changes 
are business process specific, and would need to be researched in OSS after the table and 
program with the locking problem are found. 

o Review possible application changes, such as grouping changes in SAP internal tables to 
be processed together just before commit, to reduce the time that locks are held in DB2. 

o Control level of parallelism of batch jobs and update processes, to maximize throughput.  
o (The above assumes that the system design is set, and cannot be changed to alleviate a 

locking constraint.  System design would include issues such as the number of ledger 
entries and number of entries in statistics tables.  Fewer statistics or ledger rows will lead 
to more lock contention, since more information is being aggregated into a few rows.) 

• High “Page latch suspension” time: 
o This is not seen often.  It occurs on very large change intensive systems. 
o Concurrent updates to a page by different threads will cause page latch contention on data 

pages.  
o High insert activity can also cause page latch contention on spacemap pages. 
o Run page latch suspension trace (IFCID 226,227) to confirm whether data pages or 

spacemap pages are causing suspension. 
o If the problem is not space map pages, but updates to different rows in same page, 

consider reducing MAXROWS on the table.  This will increase I/O activity and reduce 
bufferpool hitrates, while reducing page latch contention. 

o If the problem is high activity on spacemap pages, consider partitioning to distribute the 
insert activity to different partitions or consider using the MEMBER CLUSTER option 
on the table.  MEMBER CLUSTER will reduce the number of pages mapped by each 
spacemap page.  It will cause the clustering index to become disorganized faster.  

o Consider changing the clustering sequence on the table, to spread activity through the 
table.  Verify that this will not cause performance problems for other programs that 
reference the table.  



IBM Americas Advanced Technical Support    

      
 

Page 82 

• High “Open/Close” time: 
o This occurs when the number of frequently accessed datasets in an SAP system is larger 

than maximum open datasets, which is controlled by the DB2 DSMAX parameter 
o Increase DSMAX, after evaluating the impact on DBM1 VSTOR using SAPnote 162293.  
o Confirm that the catalog for the datasets in the DB2 database is cached in VLF 

• High “Global lock” time: 
o This occurs with DB2 data sharing, which is beyond the scope of this paper.  

• High “Not attributed” time  (displayed as “Other” in some SAP versions): 
o Check OS paging and CPU utilization on DB server – RMF I, II, and III 
o Check WLM priorities of DB2 and other address spaces, to confirm that the ICLI and 

DB2 have the correct priority. 

8.2. DB2 delay analysis examples 

8.2.1. Good ST04 times 

 
Figure 69: Good ST04 times 

In Figure 69, the CPU time in DB2 (processing time) is over 50% of the time in DB2.  This is our first 
filter for good DB2 performance.  The average times for synchronous read and write are good – under 



IBM Americas Advanced Technical Support    

      
 

Page 83 

10 ms.  “Other agent read” prefetch time is very good at 10 ms. As is often the case, “Synchronous read 
and write” (also reported as “I/O suspension” in some versions) is the largest component of delay.   
 
The one indicator that is somewhat high is “Other” (Not attributed) at nearly 14%.  This is often under 
10%.  If OS/390 is usually running at high utilizations (80% and up), ST04 times will often show 
“other” or “not attributed” time of 10% to 20%.  You should expect that “Not attributed” or “Other” 
time would run a bit higher if the DB server often runs at high CPU utilization.  
 

8.2.2. Rather suspicious ST04 times 

 
Figure 70: ST04 with long total “other read suspension” 

 



IBM Americas Advanced Technical Support    

      
 

Page 84 

In Figure 70, the delay time is about 61% (43.5+19.8) with CPU about 39%, which is within the normal 
range.  But there is much more “other read” (prefetch) suspension than there is I/O (synchronous) 
suspension.  This is a bit unusual.  “Other read” time is frequently only 1/3 to 2/3 of I/O suspension 
(synchronous I/O).  Here, there may be a situation where inefficient SQL is scanning lots of pages via 
prefetch, and is causing higher CPU utilization (which makes the delay ratio look better).  We need to 
check the SQL cache, and determine why there is so much prefetch activity.    
 
This suspension time profile may be normal for a system that is largely used for reporting, rather than 
transaction processing.  SAP reporting SQL generates access paths using prefetch more often than SAP 
transaction SQL does.  Transactions generally retrieve just a few rows per database call.  Reports can 
retrieve hundreds or thousands of rows per DB call.   DB2 may optimize these these statements to use 
sequential prefetch, to optimize access to large amounts of data. 

8.2.3. ST04 Times points to constraint on DB server 

 
Figure 71: ST04 times with high “Not attrib. in DB2” 

 
ST04 times shows “Not attributed” time is very high – 40%.  This points to a problem on the database 
server -- usually a storage or CPU constraint.  From SAP, we can use OS07 to get a snapshot of activity, 



IBM Americas Advanced Technical Support    

      
 

Page 85 

to see if the problem is still occurring.  (Since “thread times” is historical information, we may need to 
go back to performance history statistics, using RMF I, to check the problem) 
 

 
Figure 72: OS07 - overview of  DB server performance metrics 

 



IBM Americas Advanced Technical Support    

      
 

Page 86 

OS07 shows that at this moment the LPAR is using 100% of its CPU on the system.  Use tools such as 
RMF I and RMF III to view recent periods, or longer periods.   

 
Figure 73: RMF III SYSINFO of 900 second interval 

 
Log into DB server, and use RMF III SYSINFO command, which here shows 99% CPU utilization over 
a 900 second (“range”) period. 
 
Next actions would be to: 

• Review historical CPU statistics in RMF I, to verify whether this occurs often 
• Check SQL cache for inefficient SQL 
• Evaluate operational changes such as limits on batch 
• Review changing LPAR CPU weights to give the LPAR more CPU 
• Etc. 

 

8.3. Process for Identifying slow or inefficient SQL 
When starting performance analysis from the DB server, the first step is to check the efficiency of the SQL 
issued by the SAP programs.  Many DB and OS performance problems (bad bufferpool hitrates, high CPU 
utilization, I/O bottlenecks, etc) can by symptoms of inefficient SQL.  Before trying to alleviate problems in 
these areas, it is best to check whether the root cause is inefficient SQL.  



IBM Americas Advanced Technical Support    

      
 

Page 87 

 
The SAP ST04 transaction is used to examine the DB2 statement cache, in order to review the SQL that is 
currently executing, or was recently executed, on the DB server.  In a DB2 datasharing environment, this 
statement cache is specific to each active datasharing member, and must be separately reviewed on each 
DB2 subsystem.   
 
By default, statement performance statistics are not accumulated in DB2.  In order to enable statement 
counters, the command “START TRACE(P) CLASS(30) IFCID(318) DEST(SMF)” can be used.  Any of 
the user classes (30, 31, 32) can be specified.  This does not actually write data to SMF, but enables 
gathering statement statistics in memory in DB2.  Enabling IFCID 318 uses a small amount of CPU, but 
without it, it is nearly impossible do to performance analysis on an SAP system on DB2 for OS/390.  If you 
are not doing performance analysis, and need to conserve CPU, IFCID 318 can be turned off. 
 
The statement cache counters are accumulated for each statements in the statement cache.  Statements that 
are not executed for a while can be pushed out of cache, at which time their statistics are lost.  Statements 
that are executed relatively frequently can stay in cache for days or weeks.  This means that if IFCIF 318 is 
always running, we don’t have a known starting point for statement statistics, and without a known starting 
point it is difficult to compare the impact of different statements.  It is helpful to stop and re-start IFCID 318 
periodically when doing statement cache analysis.  This does not affect the statements in the cache, but it 
resets all the statement counters.  For instance, one could stop and start IFCID 318 in the morning, and then 
view the statistics during the day, to examine SQL that is run during the day.     
 
This section describes and has examples of the indicators of inefficient SQL.  Possible solutions to 
inefficient SQL are presented in a later section.  
 
The key indicators of inefficient SQL are: 

• High rows examined and low rows processed 
• High getpages and low rows processed 
• Long statement average elapsed time 

 
The elapsed times of statements in ST04 statement cache do not include network time.  It is time where the 
SQL is being executed on the DB server.  This is different from SAP “database request time”, which 
contains DB server time, as well as time communicating with the DB server. 
 
When searching the statement cache for inefficient SQL, it is helpful to sort the statement entries by total 
getpages, total rows processed, or total elapsed time, and then use the three key indicators above (high rows 
examined/getpages and low rows processed, long average elapsed time) to find individual problem 
statements.  The sort presents the high impact statements on the top of the list.  

 



IBM Americas Advanced Technical Support    

      
 

Page 88 

 
Figure 74: ST04 cached statement statistics sorted by getpages – execution statistics 

 
The execution statistics tab, shown in Figure 74, is used to see per-execution statistics (which are displayed 
in the “Avg” columns) as well as statistics summed for all executions. 



IBM Americas Advanced Technical Support    

      
 

Page 89 

 

 
Figure 75: ST04 cached statement statistics sorted by getpages – highlights 

 
The “Highlights” tab, seen in Figure 75, shows several key indicators for SQL problems.  These are 
explained more fully in the following sections.  
 

8.3.1. High getpages and low rows processed (per execution) 
A getpage is when DB2 references a table or index page, in order to check the contents of the page.  
Examining many pages will use additional CPU, and contribute to pressure on the buffer pools.  The 
situations where high “getpages per row processed” indicator will be seen are: 

• Predicates contain columns which are not indexed, or not in the index used to access the table 
• Predicates contain range predicates, which causes columns in the index to the right of the range 

predicate to not be indexable 
• Index screening, where there are gaps in matching index columns from the predicate columns 

 
In cases where a statement never returns a result, “Getpages per row processed” in “Highlights” 
is reported in ST04 as 0, since the quantity (getpages / 0) is undefined.  If you see a high impact 
statement (high total rows, high total getpages, or long elapsed time) where “getpages per row 
processed” in “Highlights” is 0, check the “execution statistics”, and look at “Avg. getpages”, 
which is a per-execution counter. Compare the first row of the statement display in Figure 74 and 
Figure 75 for an example. 
 

 



IBM Americas Advanced Technical Support    

      
 

Page 90 

8.3.2. High rows examined and low rows processed (per execution) 
A row is examined when DB2 checks a row in a table to determine if a row satisfies the predicates, or to 
return a row.  . If a row can be disqualified bases on index access, this does not count as a “row 
examined”.  When DB2 must read the rows in a table (rather than just the index) to determine whether a 
row satisfies the predicates, then “rows examined per row processed” can be high Situations where this 
commonly happens are when: 

• Predicates contain columns which are not indexed, or not in the index used to access the table 
• Predicates contain range predicates, which causes columns in the index to the right of the range 

predicate to not be indexable 
 
After finding a statement with high “rows examined per row processed”, one should also check the 
average number of rows examined and rows processed, to confirm that the statement is inefficient. 
 
In cases where a statement never returns a result, “Examined per row processed” in “Highlights” 
is reported in ST04 as 0, since the quantity (rows examined / 0) is undefined.  If you see a high 
impact statement (high total rows, getpages, or long elapsed time) where “rows examined per row 
processed” in “Highlights” is 0, check the “execution statistics”, and look at “Avg. rows 
examined”, which is a per-execution counter.    

8.3.3. Long “average elapsed time” per execution 
There are a number of reasons why one execution of a statement may take a long time.  In the case 
where the statement fetches, inserts, or changes hundreds or thousands of rows, it is normal.  Check 
“Avg rows processed” to see the number of rows returned per execution.  In the situation where only 
few rows are processed on each execution, or the time per row processed is long, it could point to one of 
several things: 

• I/O constraint on disk where the table or index resides 
• Logical row lock contention, which is seen with change SQL and “select for update”.  
• Inefficient SQL as described above 
• DB2 contention on page latches 

8.4. Examples of searching for slow or inefficient SQL 

8.4.1. Using SE11 “where used” 
With DB2 V7, the statement cache statistics will be enhanced to contain the name of the program 
associated with each SQL statement in the cache.   For sites with DB2 V5 or V6, the SE11 “where 
used” must be used to find the program containing the problematic SQL.  
 
This example does shows only the process for using “where used”, and how to limit the range of 
the search.  
 



IBM Americas Advanced Technical Support    

      
 

Page 91 

 
Figure 76: LIPS with index screening 

 
In this example, we are searching for programs that use the table LIPS.   In general, the MANDT 
selection will not be specified in the ABAP program.   By default, an ABAP program reads only 
the MANDT values of the MANDT that it is executing in.    The statement that we will search for 
will most likely have the predicate “where VGBEL = and VGPOS =”. 
 



IBM Americas Advanced Technical Support    

      
 

Page 92 

Use SE11 to run “where used”.  Where used is the icon with 3 arrows.  

 
Figure 77: SE11 to initiate “where used” 

 



IBM Americas Advanced Technical Support    

      
 

Page 93 

The “where used” popup will ask for the range of objects to be searched.  Usually, searching the 
programs is sufficient.  

 
Figure 78: SE11 “where used” object selection 

 
In addition to specifying objects to be searched on the screen above, by pressing “Search area” you 
can narrow the range within the objects, selecting, for example, only customer development classes 
– Z* and Y*.   In general, it is a good practice to first search for SQL problems in custom code, 
before searching SAP standard code.  The odds are high that problem SQL is custom written.  



IBM Americas Advanced Technical Support    

      
 

Page 94 

 
Figure 79: SE11 “Search area” popup 

Press the right arrow on “Development class” in Figure 79, to specify more than one entry.  

 
Figure 80: SE11 set development class in search area 

Press Copy, enter, enter to perform the search.    



IBM Americas Advanced Technical Support    

      
 

Page 95 

 
You will get the hit-list.  Press “select all” in the list, then “detail view lines” (the green plus sign) 
to expand the list. 

 
Figure 81: SE11 hit list 

 



IBM Americas Advanced Technical Support    

      
 

Page 96 

The expanded list will look like this. 

 
Figure 82: SE11 where used expanded hit list 

 
Search through the expanded hit list using find. 

 
Figure 83: SE11 find to locate search string 

 
We use “where vgbel”, since that should help to narrow the range.    Use either result columns that 
were specified in the select (select xxx yyy zzz)  or the predicate columns (where aaa = and bbb =) 
to help narrow the search.  In cases where the SQL is dynamically generated in the ABAP, only the 
table name will be found by the search.    
 



IBM Americas Advanced Technical Support    

      
 

Page 97 

 
Figure 84: SE11 found lines 

 
Drill into the line, to see the text of the statement. 

 
Figure 85: SE11 found program 

 
This will generate a UNION ALL statement in DB2, since there is more than one column specified 
in the “for all entries”.  If there is only one column in the “for all entries”, and IN list will be 
generated for DB2. 
 



IBM Americas Advanced Technical Support    

      
 

Page 98 

If, after searching the Y* and Z* development class, the problem has not been found, leave off the 
“search range” specification, and all programs will be searched. 
 
Keep in mind that the statements in the ABAP are templates, and if no value is specified for a 
predicate at runtime, the SQL in DB2 will look different than the SQL in the ABAP.  The ABAP 
can contain “where conditions” that are not in the DB2 SQL being executed.  This occurs most 
commonly in reporting SQL, where the user gets a screen to fill in with selection criteria on many 
different columns, such as material number, factory, distribution channel, customer, etc.  In the 
ABAP source code, all columns would be present, but only the columns for which the user 
specified data would be present in the DB2 SQL being executed.  

8.4.2. Predicates do not match available indexes 
 

SAP, as a transaction processing system, generally uses simple SQL that can be executed as index 
access on a single table, or nested loop join on multiple tables.    
 
The most common problem with inefficient SQL is when the predicates (selection criteria in the 
SQL) do not match the available indexes well.  In this case, DB2 will choose the best access path it 
can find for the predicates in the SQL.  This access path may still be rather inefficient.      
 
After sorting the ST04 statement cache by getpages, this statement was near the top of the list.  We 
want to determine whether it is efficiently coded, or if it can be improved.  Select a statement from 
the list of cached statements, and press details or drill into the statement. 

 
Figure 86: “details” display of M_VMCFB statement from ST04 cached statement 



IBM Americas Advanced Technical Support    

      
 

Page 99 

 
In the “details” display, select the “Avg. statistics per exec” tab to check the per-execution statistics 
for the statement, and see that it is performing 30,993 getpages per execution, and it processes 
(returns) less than one row (0.12) per execution.  An efficiently indexed R/3 statement usually 
needs just a few getpages per row.  

 
Figure 87: ST04 cache “details” display of execution statistics 

 



IBM Americas Advanced Technical Support    

      
 

Page 100 

Next, from the “statement text” tab in “details”, explain the statement to check the access path 
being used.  The explain shows that M_VMCFB is a view on VBRK.  MANDT is the only 
matching column on the index.  Since MANDT does not filter the data (there is generally one 
productive client that contains almost all rows) this is not a good index choice.  Note that the 
KNUMA predicate is not used in the index access. 

 
Figure 88: Explained statement from ST04 cached statement details 



IBM Americas Advanced Technical Support    

      
 

Page 101 

Use the ST04 DB2 catalog browser to check to see if KNUMA is in another index on VBRK. 

 
KNUMA is not in any index, so it cannot be used. 

 



IBM Americas Advanced Technical Support    

      
 

Page 102 

Now check if KNUMA has high cardinality. Cardinality is the number of unique values. If it had 
high cardinality, it would make a more efficient way to access the table with an index. 

 
 

 
Figure 89: VBRK column cardinality statistics 

In Figure 89 we see that KNUMA has 504 unique values, so it looks like it will help to filter better 
than current access path, which uses only MANDT (two unique values) as filter.  (The ST04 
statistics, which show less than one row processed per execution, demonstrate that KNUMA will 
be an effective index.) 

 



IBM Americas Advanced Technical Support    

      
 

Page 103 

Next, try to find the culprit.  Use SE11 “where used” on M_VMCFB.  After finding and expanding 
the hit list, note that it is an SAP program issuing the statement.  The name of the program starts 
with an S, so is in the SAP namespace, not customer Z* & Y* namespace.  (Recall that SAPxZ* 
and SAPxY* contain customer code.) 

 



IBM Americas Advanced Technical Support    

      
 

Page 104 

Use SE11 > display, to display the VBRK table.  Then select “Indexes” to see if there a secondary 
index defined in the data dictionary that could be activated. 

 
 

 
 
No other indexes, there is just one secondary index on the table.  (SE11 “Indexes” does not display 
the primary index.) Since it is an SAP program, search OSS for SAPnotes related to the 
M_VMCFB view and the table VBRK.   



IBM Americas Advanced Technical Support    

      
 

Page 105 

 
 
We find a SAPnote that suggests adding another index. 
 
Since the program is an SAP program, the first action is to search for indexes defined in the data 
dictionary, and then search SAPnotes.  There are many indexes that are not part of standard SAP, 
but which are recommended by SAP to solve specific problems.    
 

8.4.3. Incorrect use of SAP tables 
Here is some background to help to understand this sample problem.  In SAP, header tables often 
have many indexes, to allow documents (sales orders, purchase orders, etc) to be found in many 
different ways.  Line-item detail tables are generally indexed only by document number.  Header 
tables often end in K, and document tables often end in P.  SE11 shows the description of the table, 
which will specify if it is header or line item.  Relationships between SAP sales documents (e.g. 
which delivery was created for an order, or which order triggered an invoice) are contained in 
VBFA. 
 



IBM Americas Advanced Technical Support    

      
 

Page 106 

Here is an SQL statement that is number three in the ST04 statement cache list sorted by total 
getpages.  Since it is near to the top of the list, it is having a significant impact on the overall 
system resource usage during the interval of monitoring.  “Getpages per row” (415,360) and 
“examined per row” (1,489,213) are both huge. 

 



IBM Americas Advanced Technical Support    

      
 

Page 107 

Display the statement, and see that it is a join on VBRK and VBRP.  This is not unusual.  One 
often sees a header table (-K) joined to its line item table (-P).  Take note that MANDT, VGBEL 
(in T_00 -- VBRP) and FKART (in T_01 --VBRK) are the predicate columns.  The tables are 
joined on MANDT and VBELN.  We will need this information when looking for candidate 
indexes. 

 
Figure 90: VBRP VBRK join 

 
The join conditions are in parentheses, and the predicates (FKART and VGBEL) are outside 
parentheses. 



IBM Americas Advanced Technical Support    

      
 

Page 108 

Looking at the per-execution statistics via “details” in the ST04 cached statement statistics, and see 
that it does about 32,791 getpages per execution, and processes less than one row (0.08) per 
execution.  It is examining over 117,569 rows in order to return less than one.  This is very 
inefficient.  In a two-table join, one might normally have 10 getpages per row, if the indexes are 
efficient. 

 



IBM Americas Advanced Technical Support    

      
 

Page 109 

From the “statement text” tab in “details”, explain the statement – it is a hybrid join, where the 
header table (VBRK) is the driver table.  Look at the matching columns on VBRK~0 – only 
MANDT is matched.  This is not good.  (In general, be suspicious when you see hybrid join with 
R/3 – it is usually DB2 trying to make the best of a mismatch between the SQL statement and the 
indexes available.  The same goes for multi-index access, and non-matching index scan, too.  
Simple transaction SQL does not usually require sophisticated access paths.  Nested loop join is the 
most common join method by far.) 
 
From the predicates in Figure 90, we can see that every row in VBRK will be read from the table, 
in order to check FKART, and then VBRP can be accessed.   That is, every billing document 
header must be examined.   A large company might have hundreds of thousands or millions of 
rows in this VBRK. 

 



IBM Americas Advanced Technical Support    

      
 

Page 110 

Now, look at the indexes available on VBRK and VBRP.  One can use DB02 > detailed analysis 
(in the tables section at the bottom of the screen) to display the indexes on a table.  (The following 
two screens are new GUI style, while rest of example is “classic GUI”.) 

 
Figure 91: DB02 main screen 

 
Figure 92: DB02 table detailed analysis - select table 



IBM Americas Advanced Technical Support    

      
 

Page 111 

 
Figure 93: DB02 detailed analysis for VBRK 

 
Figure 94: DB02 detailed analysis for VBRP 

  
Checking the two screens above, see that the two predicate columns (FKART and VGBEL) are not 
indexed on either table.  FKART has low cardinality (this check is not shown here). So, we might 
think that the solution would be an index on VGBEL.  But in the SQL statement in Figure 90, 
VGBEL is a column on VBRP, and adding indexes to document tables is not often done.  (Though 
it may be done on occasion.) 



IBM Americas Advanced Technical Support    

      
 

Page 112 

 
Just for completeness, check the cardinality of VGBEL using ST04 DB2 catalog browser, to see if 
it might be a candidate for a new index. 

 
Cardinality of VGBEL is high (39K), it would filter the rows well, if it were indexed.  

 
 



IBM Americas Advanced Technical Support    

      
 

Page 113 

Now, look for where the statement comes from.  Use SE11 “where used” on VBRP.  Select 
programs in the “used in” popup.   Select the Z* programs, then press “detail view lines”, which is 
the icon with the green plus sign in the upper left. 

 
 
The statement is in ZLIKP, a custom program (Z*), not in the SAP namespace.  This makes us 
suspicious that the ABAP may not be coded in the most efficient way.  Note that “select single” is 
used to read the row, though this should be an ABAP “select”, since it is not fully qualified primary 
key access.  STAT would report this as long “direct read” time. 
 
In the code, one can see that the program is using a delivery number (object-key-delivery) to locate 
a billing document.  But VBFA also contains these relationships, and it is indexed for searches 
based on predecessor (e.g. order) and successor (e.g. delivery) documents.  
 
Our course of action is to send this program back to development, to see if it can be changed using 
the document number known to the program (object-key-delivery) with VBFA and other sales 
tables to find the billing documents needed by the program. 

 

8.4.4. Impact of dynamic SQL on access path chosen by DB2 
SAP uses dynamic SQL to execute SQL statements in ABAP programs.  Statements are first 
prepared with parameter markers, which are placeholders for the execution-time parameters.  Since 
parameter markers are used for prepare, DB2 cannot make use of all the optimizer capabilities.  For 
example, the column distribution statistics gathered with RUNSTATS FREQVAL (the TYPE=F 
statistics in SYSIBM.SYSCOLDIST), which track the values that most often occur in a column, 
are not used when optimizing dynamic SQL prepared with parameter markers.    
 



IBM Americas Advanced Technical Support    

      
 

Page 114 

When the TYPE=F statistics are not used, it can cause situations where DB2 does not choose an 
index that would be the most efficient way to access the data.  Generally, these are situations where 
the SQL has a predicate referencing an index with a low cardinality column (e.g. a column that is a 
flag for processing status, which might have only a few possible values).  When the statement is 
optimized with parameter markers, DB2 does not know whether the statement is searching for the 
small percentage of unprocessed rows, or the large percentage of processed rows, and it chooses 
another way to access the data, rather than the low cardinality index.  If the statement is re-
optimized at execution, then DB2 will see the value of the predicate variable, and be able to 
compare it against the column distribution data, and can then choose the best access path by 
determining whether the value occurs frequently or rarely in the column. 

 
This issue commonly happens on queue tables such as EDIDC, the SWW* tables for workflow, 
BDCPV (ALE change pointers -- see below), etc. 
 
For SAP systems running at 4.5B or later, the hint “USE VALUES FOR OPTIMIZATION” 
(SAPnote 162034) can be added to the ABAP to cause the statement to be re-optimized at 
execution, when the host variables are available.  In this way, DB2 can take advantage of all the 
optimizer data available.  
 
For SAP systems running a release before 4.5B, these situations can sometimes be addressed by 
making changes to the catalog statistics, in order to influence the optimizer.  Changing the catalog 
statistics can have side-effects, and so should be used carefully, and only after careful review the 
problem and other statements that reference the table. 
 
For sites running 4.5B or later, hints are the preferred way to solve this problem. 
 



IBM Americas Advanced Technical Support    

      
 

Page 115 

In this example, the candidate statement (SELECT MANDT, CPIDENT…) was second in total 
getpages on the system, though it is executed only once in this interval. The list was first sorted by 
getpages, then the “Timers” tab was selected.  Infrequently executed statements are not usually a 
priority in performance tuning, but this was chosen as an example for this paper, as it shows the 
impact of optimization with parameter markers, rather than values. 

 
Figure 95: ST04 statement cache for BDCPV 

 



IBM Americas Advanced Technical Support    

      
 

Page 116 

Show the statement using the “details” button, and note the predicate columns – MANDT, 
MESTYPE, PROCESS, CRETIME. 

 
Figure 96: BDCPV statement 

 



IBM Americas Advanced Technical Support    

      
 

Page 117 

Check the “Avg. statements per exec” tab.  We see that the statement does 736 getpages for every 
row processed.  This is very inefficient.  An efficiently indexed join might do about 10 getpages 
per row processed. 

 
 



IBM Americas Advanced Technical Support    

      
 

Page 118 

From the “statement text” tab in details, explain the statement.  It is a view joining BDCP and 
BDCPS.  Access to the inner table, BDCPS, uses all four columns of primary index, which should 
be efficient.  This looks OK. 

 
Figure 97: BDCPV explain 

 



IBM Americas Advanced Technical Support    

      
 

Page 119 

Now, check the cardinality of the predicate columns using ST04 DB2 catalog browser. 

 
Figure 98: BDCPV query for cardinality of predicate columns 

 
Figure 99: Column cardinality for BDCP and BDCPS 



IBM Americas Advanced Technical Support    

      
 

Page 120 

It looks reasonable – we see in Figure 99 that CRETIME has the highest cardinality, and in explain 
plan above CRETIME is in the index on the outer table. The SQL specifies CRETIME >=, so we 
don’t know how many rows might qualify.  Thus, we are using an index with high cardinality on 
the outer table that should filter the rows well, and then accessing the inner table using all four 
columns of a four column index -- everything looks reasonable, but why is the statement so 
inefficient?  Why does it still have to reference over 700 data pages to return one row?  It must be 
that the candidate rows that pass the CRETIME filter are being eliminated in the inner table 
(BDCPS), when MESTYPE and PROCESS are checked. (MANDT, MESTYPE, PROCESS, and 
CRETIME are the predicates, and all are indexed in the join.)  This seems perplexing, since 
MESTYPE and PROCESS have low cardinality (20 and 2) and look like they would not filter the 
rows. 

 
Check ST04 DB2 catalog browser to see if there are other indexes that would match the predicates 
better. 

 
Figure 100: BDCPV query indexes on tables 



IBM Americas Advanced Technical Support    

      
 

Page 121 

There is an index (BSCPS~1) on PROCESS and MESTYPE.  From the column cardinality 
information in Figure 99, one can assume that DB2 did not use this index with BDCPS for the 
outer table because of its low cardinality.  If the column has low cardinality, DB2 thinks it will not 
filter the result set well. That is, DB2 thinks it will return lots of rows. 

 
Figure 101: BDCP and BDCPS indexes and columns 



IBM Americas Advanced Technical Support    

      
 

Page 122 

Look at BDCPS via SE11 in Figure 102, and see the issue.  BDCPS is a status table and PROCESS 
is the flag (ALE processing indicator) that shows whether the row is done or not.  PROCESS has 
cardinality 2 as we saw in Figure 99: “done” and “not done”.  So, one can guess from the behavior 
of the SQL (700 getpages to return a row) that the statement is seeking a relatively small number of 
unprocessed rows, and that it would be better to have BDCPS as the outer table, using the existing 
BDCPS~1 index.  This would filter out the vast majority of processed rows via an index on the 
outer table, rather than the inner table. 
 
You can often see the list of possible values for a column such as PROCESS by using SE16, 
selecting the column in question, and pressing F4 to get a list of values. 

 
Figure 102: BDCPS table columns 

 
Next do “where used” in SE11 on BDCPV to find where the problem comes from. 

 
 



IBM Americas Advanced Technical Support    

      
 

Page 123 

It is SAP code.  If running SAP 4.5B or later, contact SAP regarding a code fix to add a hint to 
these programs, referring to SAPnote 162034.  Then run RUNSTATS on these tables with the 
FREQVAL option, to gather the column distribution information that the optimizer needs in this 
case.  
 
If running a version of SAP before 4.5B, then consider changing the catalog statistics.  In order to 
do that, do some additional checks.     
 
Check the predicate columns against the indexes on BDCPS, to find matches.  See Figure 101, it 
would match the first three of the four columns (MANDT, MESTYPE, PROCESS, CPIDENT) in 
BDCPS~1.     
 
Since the statement does not match all the columns in the index, check SYSCOLDIST for the 
cardinality of these three columns on the index, and get the name of the COLGROUP 
(concatenated columns from the left of index) for these three columns.  The SYSCOLDIST 
TYPE=C data is gathered by RUNSTATS with the KEYCARD option. 

 
Figure 103: BDCPS KEYCARD statistics query 

 
 



IBM Americas Advanced Technical Support    

      
 

Page 124 

 
Figure 104: BDCPS KEYCARD statistics 

 
Check the HEX_COLNO for MANDT, MESTYPE, and PROCESS in Figure 101.  They are 0001, 
0003, and 0004.  So, COLGROUP 000100030004 corresponds to the three concatenated columns.  
In order to make BDCPS~1 a more preferred access path when only MANDT, MESTYPE, and 
PROCESS are specified in the SQL, increase CARDF on this COLGROUP.  Make the following 
catalog changes to make COLGROUP 000100030004 more preferred by DB2. 
 
Since there are about 6 million rows, and the select returned about 800 rows, set cardinality 10000.  
(6,000,000 rows / 10,000 distinct values = 600 rows average per distinct value.) 
 
UPDATE SYSIBM.SYSCOLUMNS SET COLCARDF = 10000 
WHERE TBCREATOR = 'SAPR3' 
AND TBNAME = 'BDCPS'  
AND NAME = 'PROCESS' 
 
UPDATE SYSIBM.SYSCOLDIST SET CARDF = 10000 
WHERE TBOWNER = 'SAPR3' 
AND   TBNAME = 'BDCPS' 
AND COLGROUP = X'000100030004' 
 
UPDATE SYSIBM.SYSINDEXES SET FULLKEYCARDF = 10000 
WHERE CREATOR = 'SAPR3' 
AND TBNAME = 'BDCPS' 
AND NAME = 'BDCPS~1'   

 
The ABAP hint “USE VALUES FOR OPTIMIZATION” causes DB2 to optimize using the 
variables, and then choose the best access path, based on detailed information DB2 has about the 
frequency with which values appear on columns.  Contrast manual catalog statistics fixes with 
ABAP hints -- when we set the catalog statistics manually and do not use a hint, and a statement 
referencing BDCPS by MANDT, MESTYPE, and PROCESS is prepared, the catalog change will 
cause BDCPS~1 to be chosen by the DB2 optimizer – when “USE VALUES FOR 



IBM Americas Advanced Technical Support    

      
 

Page 125 

OPTIMIZATION” is in the ABAP, DB2 will check whether infrequently occurring values are 
being selected, before using the index.   
 
Manually setting the catalog statistics could cause some programs to run slower.  An example 
would be when a program wants the processed rows that make up most of the table.  If a program 
wants 99% of rows in the table being processed, a tablescan would be the best choice.  Therefore, 
one must evaluate how large the impact of the problem is, and what benefit would be expected, 
before making changes to catalog statistics tables.  One must also check other statements that 
access the table, to ensure that the statistics change does not affect the wrong statements. 

8.4.5. I/O constraint on table 
 
While I/O constraints can cause average I/O times displayed in ST04 “times” to increase, the constraint 
will generally be seen most clearly on statements that access datasets on the overloaded volumes. 
 
This example is from a 4.0B SAP system, so the format of ST04 is different than the previous examples.  
Follow the usual process for filtering ST04 statements - sort ST04 statement cache by elapsed time, and 
examine statements on the top of the list.  The “SELECT * FROM PROP” statement is at the top in 
elapsed time.  
 
Though the ST04 format is old, and less clear than the new format, this example was chosen to show 
how to drill down from SAP into OS/390 programs to find an I/O constraint.  With the advent of ESS 
disk, with its large cache and PAV capabilities, volume-level I/O constraints are now less common than 
they were. 
 
The average elapsed time (320 ms per single row select) is extremely long.  A well-indexed statement 
that returns a single row usually takes a few ms at the most.  
 

 
Figure 105: ST04 cached statement statistics with long select times on PROP 

The statement has low rows examined to rows processed so the problem does not look like access path.  
The indicator is inverted in this 4.0 system – rows proc/examined = 0.5, which is 2 examined per 
processed.  Press the “details two” button to go to screen two of the statement cache statistics, to check 
if the problem is index screening, since index screening will show a good ratio of rows examined to 
rows processed, but bad ratio of getpages to rows processed. 
 



IBM Americas Advanced Technical Support    

      
 

Page 126 

 
Figure 106: ST04 statement cache “details two” with PROP long elapsed time 

 
The statement executed 487174 getpages in 1072923 executions (see first screen), for about 5 getpages 
per execution.  This is fine.  It could not possibly take 300 ms to do 5 getpages unless there is some 
other problem. 
 
Next, drill down to the OS/390 level, and check for device delays using RMF III DEV command.  In this 
example, we’re looking at the system while it is running.  If we needed to use historical statistics, we 
could use RMF III for recent history, or RMF I DASD and CACHE(SUMMARY) reports to look for 
volumes that are active and have long response times. 
 

 
Figure 107: RMF III DEV report for 300 second interval 

Looking at volume delays, SB1198 and SB1036 are the two tops for the DBM1 address space.  Note that 
RMF III reports volume and dataset delays against DBM1, even though threads issuing synchronous I/O 
requests are created under the ICLI address space. 
  
In contrast, RMF I reports asynchronous I/O under DBM1, synchronous I/O under the ICLI, and logging 
I/O under the MSTR address space. 



IBM Americas Advanced Technical Support    

      
 

Page 127 

Look at the device activity and response times with RMF III “DEVR”. Note the 522 ms response time 
for SB1198.    

 
Figure 108: RMF III DEVR report 

  
 
Check what the active datasets are on the top two volumes with the RMF III “DSNV” command.  On the 
most active volume, SB1198, check the “Data Set Name” field and see that the dataset is the PROP 
table.  This is the same table that has the slow SQL statement that we saw in Figure 106. 

 
Figure 109: RMF III DSNV report 

 



IBM Americas Advanced Technical Support    

      
 

Page 128 

Check the second most active volume, SB1036.  The “Data Set Name” field shows a dataset for the 
“PROP~0” index. (Since the “~” used by SAP in index names is not valid in dataset names, it was 
converted to H by SAP when the dataset was created). 

 
Figure 110: RMF III DSNV report 

 
The RMF III command DSNJ, which is not pictured here, will give a summary of all active datasets for 
a job.  Use DSNJ to display the datasets for the DBM1 address space when looking for I/O delays in an 
SAP system running DB2 for OS/390.  (Though the threads under the ICLI initiate synchronous DB2 
I/O, the I/O is not credited to the ICLI by RMF III.  The RMF I WORKLOAD SUMMARY report does 
summarize synchronous I/O activity under the ICLI.) 
 
Possible actions to resolve a volume level I/O constraint might be using ESS disk (since the PAVs give 
more concurrent I/Os per volume per second), or partitioning the table in DB2.  PAVs can be used 
without change to the table structure.  Partitioning requires analysis of the way that the table is accessed, 
to determine if there is a way to create partitions that will distribute the I/O activity. 

8.4.6. Index screening 
If an index has several columns (e.g. ONE, TWO, THREE, FOUR) and the SQL predicates referencing 
the columns contain a gap (e.g. ONE = AND TWO = and FOUR =), then DB2 will match the leftmost 
columns in the index, and may do index screening on the column after the gap.  This is generally more 
efficient than examining the rows in the table to find the result, but can still result in inefficient SQL.  
Since the symptoms of index screening can be a little misleading, an example is included here. 
 
Two of our three key indicators were getpages per row processed and examined per row processed.  
Here, note that examined per row looks very good (1.2), and getpages per row (2297) looks bad.  If we 
were focusing only on examined per row, this would look like an efficient statement. 



IBM Americas Advanced Technical Support    

      
 

Page 129 

 
Figure 111: ST04 cached statement highlights with index screening 

 

 
Figure 112: ST04 cached statement execution statistics with index screening 

 



IBM Americas Advanced Technical Support    

      
 

Page 130 

Next, display the statement via the details button, to check the predicates in the SQL. 

 
 
In execution statistics, see that it processes less than one row per execution. 

 
 



IBM Americas Advanced Technical Support    

      
 

Page 131 

In the “statement text” tab, explain shows that the statement matches only one column, MANDT, but if 
only one column of the index was used, and DB2 had to check all the rows in the table, there would not 
be such a large difference between getpages per row and examined per row.  Note the EXNUM, a 
column in one of the statement predicates, is third column in the index. 

 
 
Check cardinality of first three columns using ST04 DB02 catalog browser. 

 



IBM Americas Advanced Technical Support    

      
 

Page 132 

 
AHBAS will probably not help to filter the data, since it has low cardinality.  If it were possible to 
include AHBAS in the SQL with an indexable predicate, then all three columns on the left of index 0 
would match, and access would probably be much faster.  Rather than searching all possible AHBAS 
values to ehcek EXNUM, DB2 could narrow the range to only one value of AHBAS. 
 
Go looking for the source of the problem, with SE11 “where used”.  Find the culprit, and note that the 
ABAP source does not look like the SQL statement.  The ABAP “FOR ALL ENTRIES” construct uses 
rows in an ABAP internal table to select SQL.  If one column is specified, then SAP will convert the 
statement to an “IN” list. If more than one column is specified, the statement will be converted to a 
UNION ALL. 

 
Figure 113: FOR ALL ENTRIES 

 
If this statement is executed many times when each program is run, then fixing the problem would offer 
a significant speedup for the program.  If the statement is only executed a few times in each program, 
then fixing the problem would probably not be noticeable to end-users. 
 



IBM Americas Advanced Technical Support    

      
 

Page 133 

The actions to take in this case would be to first check whether the program could be changed to add an 
indexable predicate on AHBAS.  If this were not possible, one could leave the program as it is and 
create an index (MANDT, EXNUM) on the table.   Or, one could do nothing. 
 
Before adding an index, the application and business impact of the problem would need to be analyzed, 
to determine how much value there is in speeding up the program. 

8.4.7. Growing pains - catalog statistics out of date 
At go-live, or when new functionality is added to an existing SAP system, it is very common for tables 
which were empty to grow quickly.  At these times, RUNSTATS may need to be run more often than 
normal, to update the statistics of the tables as they start to be populated.  After a couple weeks, the 
normal runstats cycle can generally be used.  
 
Here is an example, from a 4.0B SAP system, of what can happen during this growth time.   The 
statements in the cache were sorted by getpages, to bring the statements doing the most work to the top 
of the list.  Our candidate is in the second line, the “SELECT * from MDUP” statement. 

 
Figure 114: MDUP statement in ST04 



IBM Americas Advanced Technical Support    

      
 

Page 134 

Look at the “Details 1” screen for per-statement statistics.  

 
Figure 115: MDUP per statement statistics in ST04 

Each time the statement is executed, it examines 7662 rows, and returns less than one row.  Each 
execution takes 234 ms, which is very slow for a single row.  
  
Drill into the statement, to see the full statement text. 

 
Figure 116: MDUP statement 



IBM Americas Advanced Technical Support    

      
 

Page 135 

 
Explain the statement, to see what access path is used. 

 
Figure 117: MDUP explain 

 
This does not look good.  The MANDT column is the only column used on the outer table (PLAF), 
which means that for every row on the outer table that matches on MANDT, the PLAF table must be 
checked before the inner table (PLPW) row can be checked.   All four columns on the inner table match, 
so at least the indexed access to PLPW is efficient.    
 
Look at the predicates on the statement.  Three of the columns in the PLPW~0 index are specified.  So it 
might be better for DB2 to use the PLPW table as the outer table, get the PLNUM from it, then use the 
PLNUM value for matching MANDT and PLNUM on PLAF as the inner table.    Why is DB2 choosing 
the order PLAF for outer table and PLPW for inner table instead? 
 



IBM Americas Advanced Technical Support    

      
 

Page 136 

Use DB02 to check the catalog statistics. 

 
Figure 118: DB02 detailed analysis 



IBM Americas Advanced Technical Support    

      
 

Page 137 

 
Press “Detailed analysis”, then enter the table name. 

 
 
Press execute. 

 
 
 
Then choose the table, and press the view icon (magnifying glass). 

 
 
Select “Detailed analysis”, and press execute. 



IBM Americas Advanced Technical Support    

      
 

Page 138 

 
Figure 119: DB02 detail analysis to show catalog statistics 

RUNSTATS was run on 5/26, but show no rows in the table.   ST04 cache statistics showed that 7,000 
rows are read on each execution, so it cannot be true that the table is empty. 



IBM Americas Advanced Technical Support    

      
 

Page 139 

 
Check PLAF in DB02 and the catalog statistics say it is also empty. 

 
 
Run RUNSTATS on the two tables and their indexes.   After RUNSTATS, use the ST04 “cached 
statements” report, and filter the statements for MDUP table.    
 
Our statement is the second line in the following MDUP display. 



IBM Americas Advanced Technical Support    

      
 

Page 140 

 
Figure 120: MDUP statement statistics after runstats 

See the “Elap time / execs” column - the statement now takes less than one ms per execution.   



IBM Americas Advanced Technical Support    

      
 

Page 141 

 
Use explain to check the statement’s new access path. 

 
 
DB2 has changed the join order, and now takes PLPW as the outer table.  
 
In this case, the RUNSTATS being out of date was obvious, since DB02 showed no rows in each table.  
One can have similar problems when RUNSTATS shows that a table is small, and it has suddenly 
grown.    
 
If you suspect that the catalog statistics do not reflect the true size of the table, check the table row count 
(using SPUFI or SE16) and compare it against the catalog statistics. 
 
 



IBM Americas Advanced Technical Support    

      
 

Page 142 

8.4.8. Evaluating whether a new index is needed 
Here is another example of checking whether the SQL can be improved by adding a new index.  This is 
taken from a 3.1H system, so some calculations are required to interpret the statistics.  Look at the last 
statement on the screen, “SELECT RCLNT…”.  See that it examines over 10 rows for each row 
processed (4639 rows examined/348 rows processed), and takes over 100 ms (44592 ms/348 rows) per 
row processed.  This looks like it can be improved.  These are array operations (348 rows per execution) 
so we would expect the per-row times to be much better – less than one ms per row, in some cases. 

 
Figure 121: ST04 statement cache screen 1 – GLPCA  

 

 
Figure 122: ST04 statement cache screen 2 - GLPCA 

Combining the getpage information in Figure 122 with the execution statistics in Figure 121, the 
statement does about 9 getpages per row (22763063 getpages/2436511 rows), which is a bit high for 
single table indexed access.   Perhaps we can find a way to get more efficient access to the table, reduce 
getpages per row, and improve the per-row response time.   
 
While the program examines 10 rows for each row processed, and does 9 getpages for each row 
processed, it may not be not possible to optimize the statement to have one getpage per row processed.  
In general, with index processing and reading the data from the table, 3-4 getpages per row is good. 
Thus, one might hope for a 50-60% improvement in getpages per row here.  In a few cases, such as 



IBM Americas Advanced Technical Support    

      
 

Page 143 

array fetch of many contiguous rows in a table, getpages per row may be very low, e.g. one getpage or 
less per row.  
 
In Figure 122, note that about 50% getpages result in synchronous reads (22763063 getpages and 
18159603 reads).  The data needed is seldom in DB2 buffers, and must be read from disk.  This is part 
of the reason that the per-row times are so long. 
 
In ST04 cached statements, drill into the statement to display the statement, to determine the predicates. 

 
Figure 123: GLPCA statement 

RCLNT, KOKRS, RYEAR, RPRCTR, RVERS, RACCT, RRCTY, RLDNR, and POPER are columns 
in predicates.   POPER is a range predicate (BETWEEN), so DB2 cannot perform index processing on 
the columns on the right of POPER in an index.  See the DB2 Administration guide, SC26-9003, for 
information on range predicates and how they affect SQL processing. 



IBM Americas Advanced Technical Support    

      
 

Page 144 

Explain the statement from ST04 statement cache, to see the access path used. 

 
Figure 124: GLPCA explain 

 
The access looks reasonable – 5 matching columns of 5 available on an SAP standard index.  But we 
know a better index is possible, since  Figure 121 showed that there were over 10 rows examined in the 
table, for every row processed, which shows that many rows were eliminated when examined in the 
table, rather than the index.  
 



IBM Americas Advanced Technical Support    

      
 

Page 145 

Next, display the indexes using SE11 >display > utilities > database object > check. 

 
At this point, one would need to examine the cardinality of the predicate columns, and compare them to 
the available indexes, as was done on previous examples, to look for a better index.  Examples of how to 
do this using the ST04 DB2 catalog browser are shown above. For this exercise, assume that the index 
being used is the best choice, according to the index cardinality data and matching columns.   



IBM Americas Advanced Technical Support    

      
 

Page 146 

 
Now, there are several choices: 

• Add a new index 
• Extend the current GLPCA~1 index with additional columns 
• Do nothing 

 
Check the size of the table using DB02 table detailed analysis, and how it is used using the ST10 table 
access statistics, to determine whether a new index would be appropriate. 

 
Figure 125: DB02 detailed table analysis of GLPCA 

 
The table has over 200,000,000 rows.  
 



IBM Americas Advanced Technical Support    

      
 

Page 147 

Look at ST10, to see how often it is changed. 

 
Figure 126: ST10 table call statistics for GLPCA 

 
Note that changes are 34% of calls.  
 
Last, check the size of the current index GLPCA~1 from DB02 detailed analysis.  

  



IBM Americas Advanced Technical Support    

      
 

Page 148 

The index is over 2 GB.  
 
Reviewing the three choices above: 
• Add a new index that will filter the data better than the GLPCA~1 index.  

o Pro - it would speed up the program 
o Cons - 1) the table is relatively frequently changed, so a new index would slightly increase 

the cost of inserts and deletes, and possibly updates, and 2) the new index would likely be as 
large as index 1 (2GB) if not larger (added disk cost against the reduced CPU cost). 

• Extend the currently used index GLPCA~1 so more rows can be eliminated via index access. 
o Pros  - 1) it would speed up the program, and 2) it would not impact update processing (since 

we are not adding more indexes, just extending one). 
o Cons - 1) we try to avoid fiddling with SAP standard objects, and 2) the index would take 

more space (though not as much as adding a new index). 
• Do nothing. 

o Pro - don’t have to change anything 
o Con - don’t get the performance improvement.  

 
Depending on how critical the program is, we would probably take the “do nothing” option or “extend 
index GLPCA~1”.  If the program runtime is not critical, then do nothing, and live with it.   If program 
runtime is critical, then extend the current GLPCA~1 index.  If the index is extended, one must do two 
things, 1) keep the order of the first 5 columns the same, so as not to cause changes to programs that 
currently use index GLPCA~1, and 2) always run KEYCARD RUNSTATS on the changed index, to 
gather the concatenated column cardinality statistics, so that the optimizer can make a good choice for 
programs that specify only the five (original) columns in the new index.    

 
We evaluated the choice by looking at the expected improvement, compared to the impact on running 
programs, and the additional space requirements.  Adding an index with a couple columns with high 
cardinality can be a good choice, as it offers efficient access, and does not take a lot of space.  Adding 
indexes with many columns on large tables needs to be justified by a large improvement in an important 
business process, to offset the increased disk space utilization.  

8.4.9. Logical row lock contention 
This is common on statistics and ledger (e.g. general, special) tables. These are tables containing rows 
where information is being consolidated or aggregated.  Lock contention is caused by the design of the 
application and the business data.  For instance, if all sales are posted to a single “cost of goods sold” 
account (as we have seen done with SAP), then that row will become a constraint in the database when 
the transaction volume reaches a certain level.  Below the critical level, it is not a problem. 
 
The actions to fix row lock contention may require changes to SAP settings (“late exclusive material 
block”, “posting block”, etc) , ABAP coding (grouping changes for execution just before commit), and 
business definition in SAP tables (chart of accounts, statistics definitions, etc).  If it cannot be fixed in 
one of these ways, then test to determine the level of parallelism that gives the maximum throughput 
(batch, updates, etc) and configure the system to keep parallelism under this level, to minimize locking 
contention. 
 



IBM Americas Advanced Technical Support    

      
 

Page 149 

The two system indicators for lock contention are ST04 “lock/latch” time being high, and change SQL 
statements in the ST04 statement cache with long elapsed time.  
 
Example 7.5.2 showed the tools that can be used in diagnosing locking problems. 
 
Here is a DB2PM “LOCKING REPORT  LEVEL(SUSPENSION LOCKOUT)                   
ORDER(DATABASE-PAGESET)” report processing an IFCID 44,45 trace and showing row lock 
contention on rows in GLT0. Lock contention is counted in the “LOCAL” counter for an object.  In this 
case, a single row often has contention, but there is no database level tuning to fix it.  As above, the fixes 
are application or workload configuration specific. 

 
Figure 127: DB2PM LOCKING REPORT for GLT0 

In this report, note that in 7 minutes elapsed time, there were 202 seconds (1291 * 0.15 seconds) 
reported delay.  Almost all events (1111 or 1291 total) were row lock (LOCAL) contention.   One could 
check ST04 “global times” to review the delay as a percentage of time in DB2. 
 
Assuming that no change to the ledger definitions in GLT0 is possible (which is usually a safe 
assumption) work on finding the level of parallelism where we had the maximal total throughput. 

8.4.10. DB2 page latch contention 
When multiple threads are simultaneously changing rows in a page, then page latch contention will 
occur.  Page latch contention is rarely seen, except in large change intensive systems.  
 
The two system indicators are ST04 “page latch” time being high, and change SQL statements in the 
ST04 statement cache with long elapsed time. 
 
As in example 7.5.2, DB2PM suspension traces (IFCID 226,227) can be used to check the object with 
the page latch contention.   
 
Here is a sample of a suspension trace showing page latch contention (name and type are PAGE, and 
suspension reason is OTHER). 



IBM Americas Advanced Technical Support    

      
 

Page 150 

 
Figure 128: DB2PM suspension page latch 

Over 7 minutes elapsed time, there was only 101 seconds of delay (4023 suspensions * 0.025 seconds) 
so this is not a major cause of delay, if there are many concurrent threads processing. 
 

 



IBM Americas Advanced Technical Support    

      
 

Page 151 

9. Health Check 

9.1. Check for SAP instance-level or system-level problems 

9.1.1. Application server OS paging 
When application server paging occurs, there are several possible actions to alleviate it: 

• Check for jobs that are memory hogs, and ensure that they are efficiently coded.  For 
example, a program may be building an internal table, where not all columns in the table 
are needed.  ST02 can be used to find running jobs that use lots of memory: ST02 > drill 
into Extended Memory > press “mode list”.  STAT records also display memory usage. 

• Reduce the number of work processes on the system 
• Add more memory to the application server 
• If you can’t get rid of paging, manage workload and live with paging.  As shown in section 

9.2.1, one can calculate “page-ins per active CPU second”:  (page-ins per second / 
processors / CPU utilization).  If there is good performance on I/O to pagefiles (that is, 
there are several pagefiles on write-cached disk) one can probably live with some moderate 
paging.  Configure the system to keep “page-ins per active CPU second” in the low single 
digits.    

9.1.2. Application server CPU constraint 
When there is a CPU constraint on the application server:  

• Review program activity (STAT, STAD, ST03) on the system at peak CPU times to see if 
this might be a symptom of programs that are inefficient and using too much CPU.  Check 
for programs that spend the vast majority of their time doing CPU processing on the 
application server – they may be coded inefficiently.  Use SE30 to profile and analyze 
activity in the ABAP. 

• If there is an unusually high amount of operating system kernel CPU time, then it could be 
an indication of a problem in the OS, or in the way that the SAP kernel calls OS kernel 
services.  This is rare, but happens on occasion.  Open an OSS message. 

• Configure fewer work processes on the application server. 
• Add more application servers. 

9.1.3. SAP managed memory areas 
When SAP managed areas, such as roll, generic buffer, program buffer, or EM are overloaded, it 
will impact SAP performance: 

• If the roll memory area fills, then SAP will roll to disk on that application server, causing 
long roll-in and roll-out times. 

• If the generic buffer fills, then tables which should be buffered in SAP memory will not be 
buffered.  This increases the load on the DB server, and impacts performance of transactions 
that use these tables. 

• If the program buffer fills, then programs must be loaded from the database server, which 
increases load time in SAP. 

• If Extended Memory (EM) fills, all work processes on the instance will start to allocate 
memory out of work process private area.  When a dialog step allocates memory from the 



IBM Americas Advanced Technical Support    

      
 

Page 152 

work process private area, the dialog step cannot roll out until finished.  This can cause “wait 
for work process” delays. 

• It is less serious when an individual process expands past its EM quota.  In this case, the 
individual dialog step is in PRIV mode, and cannot be rolled out until it is finished.  If this 
happens with only a couple work processes, it will probably not impact the instance. 

9.1.4. Table buffering 
SAPnote 47239 describes the behavior of buffered tables.  Tables can be buffered in individual rows in 
the single record buffer, which is accessed via “select single”, or by sets of rows in the generic buffer, 
which is accessed by “select” or “select single”.  
 
When buffering a table in the generic buffer, take into account the way that the table is accessed.  For 
instance, if the table is buffered in ranges based on the first three key columns, but is read in ranges 
based on the first two key columns, then the table cannot be read from buffer.  The table must be 
accessed with as many or more columns as were specified in the generic buffering configuration. 
 
There are four common problems related to buffering: 

• A table is not buffered, but should be.  If a table has a moderate size, is generally read only, and 
the application can tolerate small time intervals where the buffered copy is not the latest version, 
then the table is a candidate for buffering.  

• Tables can be buffered in the wrong category.  The ABAP “select” statement reads only from the 
generic buffer, bud does not read from the single record buffer.  The ABAP “select single” can 
read from the generic buffer or single record buffer.  Use ST10 statistics to check whether select 
or select single is generally used with a table.  

• The SAP buffer is too small to hold all the tables that should be buffered, as described in section 
9.1.2 

• A table is changed frequently, and should not be buffered.  Buffered tables have to be re-
synchronized when changed, which causes additional load on the DB server and application 
server, if the changes occur too frequently.  

 

9.1.5. Wait time 
This was discussed above in section 7.1.1: 

• It can be a symptom of other problems. A performance problem that elongates the time required 
for the dialog step to finish (CPU overload on application server, DB server performance 
problems, roll-in and roll-out, etc) can cause all the work processes to fill up and then cause wait 
time.  

• It can be problem itself, where too few work processes are configured. 
 



IBM Americas Advanced Technical Support    

      
 

Page 153 

9.1.6. Number ranges 
SAP uses number ranges to create sequence numbers for documents.  Number ranges can be: 

• Not buffered, where each number range is a single row in the table NRIV.  In this case, number 
range sequence numbers given to the application are sequential by time, and no numbers are 
lost. 

• Configured with NRIV_LOKAL, where each application server or work process can have its 
own row in NRIV for the number range.  In this case, sequence numbers may be out of time 
sequence, but no numbers are lost.  

• Buffered in SAP.  In this case, sequence numbers may be out of time sequence, and numbers 
may be lost. 

 
The choice between the three is made based on business and legal requirements for document sequence 
numbers. 

 
Number range buffering problems are often found during stress tests, or early after go-live:  

• If the problem is contention for a non-buffered number range, the symptom is long “direct read” 
times on NRIV.  NRIV is the table that contains number ranges, and it is read with “select for 
update”.  Using SM50 or SM66, look for “direct read” NRIV. 

• If the problem is contention on buffered row in NRIV, where buffering quantity is too small, the 
problem can also be seen in SM50 or SM66 where work processes are “stopped NUM” or 
waiting on semaphore 8 waiting for the buffered numbers to be replenished. 



IBM Americas Advanced Technical Support    

      
 

Page 154 

9.2. Sample SAP instance-level and system-problems 

9.2.1. Application server paging 
ST06 > detailed analysis > previous hours memory - display the screen where one can see 
historical statistics, to look for paging or CPU constraints. 

  
Figure 129: ST06 > detail analysis > previous hours memory - high paging 

 
In the above example, the peak page-in rate is 363,431 per hour.  There were several periods with 
paging rates over 100K per second.      
 
One can gather CPU utilization statistics for this period (not shown in this document) and use the 
information to calculate the “page-ins per active CPU second”.  The system in this example was a 
24-way.  During the interval 13:00 to 14:00, the CPU utilization averaged 40%.  (These screens are 
not included here.)  363,431 page in per hour / 3600 seconds per hour / 24 processors / 0 .40 
utilization = 10.5 “page ins per active CPU second”, which is too high, compared to our rule-of-
thumb in section 9.1.1.  
 
During the interval 14:00 to 15:00, the CPU utilization averaged 30%.  134,325 / 3600 / 24 / 0.30 = 
5.1, which is at the high end of our ROT.     
 
Since paging problems will impact all users on the system, with paging being moderate to high 
during 5 hours of the day (9, 11, 13, 14, 16), this problem should be addressed. 



IBM Americas Advanced Technical Support    

      
 

Page 155 

 

9.2.2. Application Server CPU constraint 
This is a problem that is relatively simple to see, either via ST06 history or ST06 current statistics.  
In the ST06 main panel, there is a current utilization display.  ST06 > “detail analysis “ can be used 
to display hourly averages for the previous days.  Figure 130 is the current utilization display. 

 
Figure 130: ST06 CPU constraint 

 



IBM Americas Advanced Technical Support    

      
 

Page 156 

One can also display the hourly average CPU statistics.   If hourly averages are high (over 75% or 
so) it is very likely that there are peak times of 100% utilization.   Tools that report on smaller 
intervals than one hour (e.g. vmstat, iostat, sar) would show more detail on CPU utilization. 

 
Figure 131: ST06 > detail analysis > previous hours CPU - CPU constraint 

 
Since the hourly averages will not show short periods when the CPU usage goes to 100%, other 
monitoring tools would be needed to detect shorter periods of CPU constraint. 



IBM Americas Advanced Technical Support    

      
 

Page 157 

9.2.3. Roll Area shortage 
When the roll area is too small, it will delay dialogs steps on roll-in and roll out.  Note that in Figure 132 
Roll area “Max use” is larger than “In memory”.  This shows that SAP has filled the memory roll area, 
and was rolling to disk. Roll area “current use” is larger than “in memory”, which shows that SAP is 
rolling to disk at the time of this screen shot.  ST03 and STAT/STAD will show information on the 
length of delay this causes for dialog steps.  The SAP parameter rdisp/ROLL_SHM controls roll area 
memory allocation.  

 
Figure 132: ST02 roll area over-committed 



IBM Americas Advanced Technical Support    

      
 

Page 158 

 
When monitoring a running system that has a roll-area shortage, you would see many processes waiting 
on the action “roll in” and “roll out”.  In this SM66 display, the central instance has run out of roll area, 
and the other instances that make CPIC or enqueue calls to the CI are delayed in turn.  

 
Figure 133: SM66 roll in and roll out 

 
When SAP is rolling to disk, ST06 will show high I/O activity to the disk with the roll area.  SAP 
parameter DIR_ROLL specifies the directory where the disk roll file is located. 
 

 
Figure 134: ST06 > detail analysis > disk - high I/O activity on ROLL area 



IBM Americas Advanced Technical Support    

      
 

Page 159 

9.2.4. ST02 buffer area shortage 
In this example, the generic area is too small for all the buffer-able tables to be buffered. This causes 
swaps, and extra database requests.  This kind of problem will generally have a much greater impact on 
a specific program or programs (the ones which use the table which does not fit in buffer) than on the 
system overall.  
 
The “Database accesses” counter is a better indicator than “swaps” for this problem.  If a table cannot be 
buffered due to undersized buffers on the application server, it may cause thousands of unneeded 
database calls.  
 
Here, generic key has about 100 times more calls than the nearest buffer type. 
 

 
Figure 135: ST02 generic buffer swapping 

One can look at this problem in more detail by drilling into the “generic key” line in ST02, and selecting 
“buffered objects”.  This will display the state of tables in the buffer, and the count of calls for each 
table.  Last, sort by calls or “rows affected” to pull the problems to the top of the list. 

 
Figure 136: ST02 > drill into generic key > buffered objects 

 



IBM Americas Advanced Technical Support    

      
 

Page 160 

After sorting the list by calls we see a number of tables with the state “error”, which generally means 
that the table would not fit into the buffer.  See SAPnote 3501 for information on how to interpret the 
state of tables in ST02.   
 

9.2.5. Find table buffering candidates 
Check ST10 “not buffered” tables, to see if there are any candidates for buffering.  Sort the ST10 list by 
DB calls.  Use weekly ST10 statistics, to average out the impact of daily differences. 

 
Figure 137: ST10 > not buffered, previous week, all servers > sort by calls 

 
Here, note that the top entry has no changes.  “Read only (for the most part)” is our first criteria for a 
candidate.   



IBM Americas Advanced Technical Support    

      
 

Page 161 

Now, check how large the table is.  One can use SE16. 

 
 
Enter the tablename, press execute, then press “number of entries”.  This information can also be found 
more efficiently by checking catalog statistics with DB02, or ST04 DB2 catalog browser.   They read 
the catalog statistics, rather than counting the rows in the table. 

 
 

 
 There are 26 rows, so it meets the second criteria, moderate size.  
 



IBM Americas Advanced Technical Support    

      
 

Page 162 

To evaluate whether the application can tolerate small time intervals when the buffered data is out of 
synch with the database, contact an application expert for this area.  Use the name of the creator of the 
table (in SE11) as a starting point to find the expert. 
 
Since the table is usually read by select single, it can be buffered in single record buffer.  Since select 
single can read from the generic buffer, and the table is very small, it can also be put in generic buffer, 
fully buffered. 
 
The three tests for buffering were:  

• Read only (for the most part) 
• Moderate size (up to a few MB, larger for very critical tables) 
• Application can tolerate data being inconsistent for short periods of time 

 

9.2.6. Table buffered with wrong attributes 
In this case, examine the tables buffered in single record buffer, to search for tables that are generally 
read with select.  ABAL “select” does not read from the single record buffer, so tables set this way will 
not be read from buffer. 
 

 
Figure 138: single record buffering on table accessed via select 

 
In Figure 138 the table that is second by calls, IDOCREL, is single record buffered, and only read with 
select.  Since select does not access the single record buffer, the buffering in ineffective.  (Actually, 
IDOCREL has another problem too – it is frequently changed.  It should not be buffered.) 



IBM Americas Advanced Technical Support    

      
 

Page 163 

 
Figure 139: ST10 table details 

 
Drill into the table in ST10, and we see that it is not present in the buffer (state is loadable).  If we want 
this table to be buffered, the “technical settings” would need to be set to generic buffering, if an 
appropriate generic key could be determined, and if it were changed less frequently. 
 
Since this is an SAP table, we would check SAPnotes, and open an OSS message regarding changing 
the technical settings. 
 



IBM Americas Advanced Technical Support    

      
 

Page 164 

9.2.7. Number range buffered by quantity that is too small 
When reviewing a running system with SM50, note processes “stopped NUM” and waiting for 
semaphore 8.  These are symptoms of a performance problem while getting a sequence number from a 
number range.  If the number range was buffered with a buffer quantity that is too small, SAP has to 
replenish the buffered number range frequently, and this causes lock contention in the database for rows 
in the table NRIV.  (The quantity of sequence numbers in a buffered set is an option in SNRO.) 

 
Figure 140: SM50 “stopped NUM” and Sem 8 

 
 
This problem can also be seen in the statement cache -- note the long “select for update” times on the 
table NRIV.  Here the average elapsed time (old format of ST04 statement cache – see second column 
from right) for each select is 36 ms, which is rather long.  Normally one might expect a few ms, at most. 
 

 
Figure 141: NRIV row-lock contention on 4.0 ST04 statement cache 

 



IBM Americas Advanced Technical Support    

      
 

Page 165 

With the 4.6 format statement cache (a screen shot from a different system than the rest of this example), 
look at the Timers tab in ST04 statement cache statistics, and sort by “elapsed time”.  See the last row in 
Figure 142, where NRIV updates take 56 ms, on the average.  

 
Figure 142: NRIV row-lock contention on 4.6 ST04 statement cache 



IBM Americas Advanced Technical Support    

      
 

Page 166 

As confirmation of the problem, in ST02 (detail analysis > number ranges> statistics) look at the 
statistics of number range performance, broken down into the time it takes a program to get a buffered 
number range (buffer time), and the time the <no buffer> server takes to get a new set of numbers when 
all the numbers buffered in memory have been given out (server time).  Note that most of the times to 
replenish the buffered number ranges (server times) are very high.  It often takes over 100 ms to update 
a single row in NRIV.  When number range performance is good, the counters swhould be clustered 
toward the left of both “buffer times” and “server times”. 

 
Figure 143: ST02 > detail analysis > number ranges - number range statistics 

 



IBM Americas Advanced Technical Support    

      
 

Page 167 

Another way to see the impact of this problem is with ST02 (detail analysis > semaphores).  In order to 
interpret these statistics, take note of the time when the collection started, to calculate the delay time 
over the interval.  See SAPnote 33873 for information on this display.  Remember to turn the semaphore 
statistics off (settings > monitoring off) after viewing. 

 
Figure 144: ST02 >detail analysis > semaphores - semaphore statistics 

 
Since the number range was already buffered, we need to find the number range causing the problem, 
and increase its buffered quantity.  Run a ST05 trace (selecting only NRIV table) to determine the 
number range which is causing the problem, then go to SNRO and increase the size of the buffered set 
size for this number range. 
 

9.3. Check for network performance problems 

9.3.1. Lost packets indicators 
High DB request time can be caused by network problems such as dropped or lost packets. ST03 or 
STAT/STAD might point to this problem, if they show slow database request times while the 
internal database server indicators (ST04 times, ST04 statement cache elapsed times, etc) show 
good performance. 
 
SQL trace in SAP can also be a pointer to this problem, when the trace shows statements that 
intermittently take a very long time (can be hundreds of ms, or seconds) to complete.  
 
While the SAP indicators can hint at a problem with lost packets, the problem must be pinpointed 
with OS and network tools.  Switch and router settings, hardware problems, and operating system 
parameters can each cause lost packet problems.  



IBM Americas Advanced Technical Support    

      
 

Page 168 

9.3.2. Slow network indicators 
The time required to make an SQL call from application server to database server varies with the 
type of network and network adapters used.  Viewed with ST05, Escon based networks will 
generally have median SQL call times of 4-8 ms, OSA-2 based networks (FDDI and Fast Ethernet) 
generally 3-6 ms, OSA Express Gigabit Ethernet generally 1-3ms.  Networks, or network adapters, 
that are overloaded will not be able to achieve these times.  Problems with overloaded OSA 
Express Gigabit Ethernet adapters are rare, due to the very high capacity of OSA Express. 
 
A simple test of network performance is to run an ST05 SQL trace, summarize ( ST05 > list trace > 
goto >summary), sort by time, and pull the slider bar on the right to the middle.  If the median time 
is much higher than you would expect for your type of network, and the DB2 internal performance 
indicators (ST04 times, ST04 statement cache) look good, then there may be a network 
performance problem.  Examine the CPU and paging activity on the DB server, to confirm that 
neither CPU overload nor paging is the cause of the consistently slow SQL.  If the CPU and paging 
are OK, it increases the odds that it is a network problem. 
 
For more detailed information on network performance, with a slight system overhead from 
tracing, the ST04 “ICLI trace” has an option to collect “network statistics”.  This computes average 
time in the network.  This trace subtracts the DB2 time from the SQL request time, and can give a 
very accurate indication of network performance when the DB server has a CPU or paging 
constraint.  Please keep in mind that “network statistics” includes time on the physical network as 
well as the TCP/IP protocol stack on both application server and DB server, so system-wide 
problems such as CPU overload, paging, errors in workload prioritization can create long 
“network” times in the “network statistics”. 
 

9.4. Sample network performance problems  

9.4.1. Slow network performance example 
The example is an examination of the performance of APO CIF.   Start by examining the STAT 
records, and note that all the DB calls seem slow.  Average update, insert, and deletes times are 
over 15 ms per DB call, which is slow.    



IBM Americas Advanced Technical Support    

      
 

Page 169 

 
Figure 145: STAT record with slow change SQL 

 
Since all calls to the DB server are slow, there are several possible causes –  

• CPU overload on DB server 
• Incorrect configuration of priorities in WLM on DB server 
• Network capacity or configuration problems 
• Incorrect TCP/IP routing configuration 
• Etc. 

 
Use the ST04 ICLI “network statistics” trace, to determine the network time for database requests.   
The ICLI network statistics remove the time in DB2 from the request time for each database 
request sent from the SAP application server.   What is left is time spent in the network protocol 
stack on application server and DB server, and time moving data across the network.   
 
Be sure to turn the ICLI “network statistics” off after gathering data.  Gathering these statistics 
places an additional load on the DB server and application server. 
 
The ICLI “network statistics” are saved in the developer trace files, which can be viewed by AL11, 
ST11 or SM50. 
 

 
Figure 146: ST11 > display - ICLI network statistics in developer trace 

 



IBM Americas Advanced Technical Support    

      
 

Page 170 

In Figure 146, there are two things to check.  First the average time on the network for each 
database call is very long – 17.553 ms.   Average times vary with the type of network connectivity.  
For database calls with small packets sent and received, OSA Express Gigabit Ethernet is generally 
1-3 ms, OSA-2 is generally 2-5 ms, and Escon generally 3-7 ms.    17ms is very long for any 
network type.  Second, look at the distribution the packet sizes sent and received.  If most of the 
packets are very large, then average times will be longer than these ROTs, because the large 
packets have to be broken down to network MTU size for sending.  In this case, almost all packets 
are less than 512 bytes, so they will fit into the MTU. 
 
Since average times are long, and small packet times are also long, there seems to be a problem in 
network performance.  Follow-up actions would be checking CPU and paging activity on the DB 
server, checking WLM priority settings on the DB server, checking physical network settings and 
performance. 

9.4.2. Lost packets example 
Figure 147 is a trace from a 4.0 SAP DB2/390 system that was having packet loss due to incorrect 
switch settings.  On this system, the retry time for lost packets was 10 seconds.  To create a trace 
like this, run ST05, summarize the trace (ST05 > list trace > goto >summary), and sort by time.  
 
SAP systems running TCP/IP do not have a fixed 10 second timer for retry, but will show similar 
behavior to what is shown in this trace -- that is there are intermittent statements that take much 
longer (50-100 times, or more) than normal. 

 
Figure 147: ST05 sorted summary with lost packets 

 

9.5. Check for global DB server problems 
The DB2 administration guide (SC26-9003) contains detailed guidance for performance tuning with DB2.  
Following is a quick summary of key performance indicators on the database server. 



IBM Americas Advanced Technical Support    

      
 

Page 171 

9.5.1. CPU constraint 
OS monitoring tools, such as RMF I and RMF III, will report this problem.  In addition, there are 
indicators in DB2, such as high “not attributed” time in ST04 “times”, that can point to a CPU constraint 
on the database server. 
 
RMF III, with the PROC command, can indicate the extent to which DB2 is delayed.  The higher the 
PROC delay, the more DB2 can benefit from additional CPU resources. 
 
Inefficient SQL can elevate CPU usage on the DB server, so the SQL cache should be examined as part 
of the action plan when a CPU constraint is seen on the DB server. 

9.5.2. Bufferpool and hiperpool memory allocation 
 

9.5.2.1. Hitrate goals 
In SAP, each dialog step makes many database calls.  In order to provide good dialog step response 
times, we want to achieve very high hitrates in the bufferpools.  Since most R/3 transaction SQL is 
processed by DB2 as random getpages, the key indicator is “random hitrate” for most bufferpools. 
This is defined as 100* (random getpages – synchronous read random)/(random getpages), and is 
reported by ST04 and DB2PM.  The random hitrate for most bufferpools should be in the high 90s.  
 
For some bufferpools, such as BP1 (sorts) or bufferpools containing tables with primarily sequential 
access, random hitrate is not important.  These bufferpools generally use prefetch I/O to access the 
data.  Since random hitrate is not important here, but I/O throughput is, confirm that there are not I/O 
constraints on the disks, when examining the performance of bufferpools with primarily sequential 
access. 
 

9.5.2.2. Bufferpool tuning 
 

In order to match bufferpool attributes to the way tables are referenced, SAP and IBM provide 
guidelines for allocating tables to DB2 bufferpools.  DB2 can allocate many bufferpools that are 
optimized to different access patterns.  SAP manual 51014418 “SAP on DB2 UDB for OS/390 and 
z/OS: Database Administration Guide”, describes how to analyze the table reference patterns, and 
place tables in bufferpools that have been created with attributes that match the access patterns.  Use 
these guidelines to move tables with special or disruptive access patterns, for example large tables 
that have low re-reference rates like FI and CO tables used for reporting.   
 
If you have good database performance (low DB2 delay percentage, etc) with the default bufferpool 
layout configured at installation, then there is probably no need to do the additional bufferpool 
tuning described in the SAP on DB2 UDB for OS/390 and z/OS: Database Administration Guide. 
 

9.5.2.3. DB2 bufferpool memory with 31-bit real (up to OS/390 2.9) 
 



IBM Americas Advanced Technical Support    

      
 

Page 172 

Since storage in DBM1 is bounded by the 2GB address space VSTOR limit, and bufferpools are 
allocated from DBM1, hiperpools can be used to make more buffer memory available to DB2 for 
SAP.  Hiperpools reside in page-addressable Expanded Storage (ES) outside the DBM1 address 
space.  Since hiperpools cannot contain “dirty” pages (pages which have been changed, but not 
written to disk), bufferpools containing tables that are re-referenced and not frequently changed are 
good candidates for backing by hiperpools.  Changed pages are written to disk before the page is 
written to hiperpool, and if pages in a table are seldom re-refererenced (as with large tables used for 
reporting) then prefetch I/O is the most effective way to bring the tables to DB2. 
 
The key indicator for determining if hiperpools are being effectively used is the re-reference ratio.  It 
is the percentage of pages written from bufferpool to the hiperpool that are later read back to the 
bufferpool.  This is reported in SAP bufferpool detail statistics as “Hiperpool efficiency”.  A re-
reference ratio above one in 10 (reported as 0.10 in hiperpool efficiency) means that the hiperpool is 
effective.  If the re-reference ratio is lower, then the overhead of searching the hiperpool, failing to 
find the page, and having to do the I/O is not worth the savings gained on the few occasions when 
the page is found, and the hiperpool is not helping performance.  
 

9.5.2.4. DB2 buffer memory with 64-bit real (z/OS and OS/390 2.10) 
While DBM1 is currently still bounded by a 31-bit addressing limit, with 64-bit real support, 
dataspaces can be used (instead of a bufferpool and hiperpool pair) for each bufferpool.  This has the 
advantage that DBM1 VSTOR constraint is alleviated, since the dataspace for the bufferpool resides 
outside DBM1.  DBM1 contains control structures to reference the dataspace, which take much less 
memory than the size of the dataspace.  
 
Unlike the bufferpool/hiperpool architecture, where hiperpools cannot contain dirty pages (changed 
pages not yet written back to disk), dataspaces offer a single pool that is managed in the same way as 
bufferpools.  Dataspaces must be backed by real storage (CS), not ES, for good performance.    

 

9.5.3. DB2 sort 
Due to the nature of SQL used with SAP R/3, which is generally simple indexed SQL, sort performance 
is very seldom a problem with R/3.  With SAP R/3, monitor for the standard DB2 indicators – prefetch 
reduced or DM critical threshold reached, which show that the space in the bufferpool is not sufficient to 
satisfy demand.  Check I/O performance on the volumes where the sortwk datasets are allocated, to 
verify that there is not an I/O constraint at the root cause.  
 
DB2 sort can be a performance issue with BW systems, or APO systems, since the SQL for infocubes 
can be very complex.  BP1 (the sort bufferpool for SAP) may need to be enlarged, and many SORTWK 
areas may be needed.   SORTWK areas should be spread across several disks. 

9.5.4. DB2 rid processing 
RID processing is used by DB2 for prefetch processing (e.g. list prefetch, where non-contiguous pages 
are read in a single I/O) and for SQL processing (e.g. hybrid join).   
 



IBM Americas Advanced Technical Support    

      
 

Page 173 

There are four different kinds of problems related to RID processing, they are reported by SAP as: 
• RDS limit exceeded, where the number of rids qualifying exceeds 25% of the table size.  This is 

almost always the RID failure encountered with SAP, and is an indicator of a bad access path 
choice.  The scenario is as follows.  DB2 chooses an access path with RID processing at 
optimization.  When executing the statement, DB2 recognizes that it is going to process more 
than 25% of the table, gives up on rid processing, and does a tablescan.  If this occurs frequently 
and impacts performance, use DB2 traces with IFCID 125 to find the cause.  Then evaluate ways 
to influence the access path, such as reoptimization at execution time. 

• DM limit exceeded, where the number of rids qualifying exceeds 2 million.  This is really a 
variant of RDS limit exceeded, where RID processing of a huge table is being done.  In this case, 
DB2 hits the DM limit before getting to RDS limit.  The action is the same as RDS limit 
exceeded.    

• Storage shortage, when the 2 GB VSTOR limit in DBM1 is hit.  See SAPnote 162923 regarding 
VSTOR planning, and reduce the VSTOR demand by tuning MAXKEEPD, EDM, bufferpools, 
etc. 

• Process limit exceeded, when the “RID pool size” configured in DB2 is exceeded.  In this case, 
one can increase the size of the RID pool.  

 
Recent versions of SAP and DB2 report RID failures in the ST04 statement cache as part of the 
statement statistics, so one does not have to use IFCID 125 to find RID processing failures. 

 

9.5.5. DB2 EDM and local statement cache 
SAP uses DB2 dynamic SQL to access data.  With dynamic SQL, the SQL is not bound in a plan, to be 
executed at runtime. The SQL is prepared at runtime.  When statements are prepared using DB2 
dynamic SQL, a skeleton copy of the prepared statement is placed in the EDM pool.  Preparing the 
statement, and putting a skeleton copy in EDM is called a full prepare.  The thread also gets an 
executable copy of the statement in its local statement cache.  
 
Once the statement had been prepared and placed in the EDM pool, if another request to prepare the 
statement is issued by another DB2 thread (for an SAP work process), then DB2 can re-use the 
skeleton copy from EDM pool, and place an executable copy of the statement in the other thread’s 
local statement cache.  This is called a short prepare.  Re-using a skeleton from the EDM pool takes 
about 1% as much CPU as the original prepare.  
 
Each thread also has its own local copy of the statements that it is executing.  The number of locally 
cached statements is controlled by the DB2 parameter MAXKEEPD. 
 
The key indicators related to EDM and the statement cache are shown in ST04 “DB2 subsystem 
activity” as 

• Global hit ratio, which is the hit ratio for finding statements from EDM pool when a statement 
is prepared.  Since the original prepare is expensive, this should be kept high – 97%-99%, if 
possible.   

• Local hit ratio, which is the hit ratio for finding statements in the local thread cache when a 
statement is executed.  When the MAXKEEPD limit is hit, DB2 will take away unused 
statements from a thread’s local cache.  If the thread then goes to use the statement which has 



IBM Americas Advanced Technical Support    

      
 

Page 174 

just been stolen, DB2 will “implicitly prepare” the statement.  If the global hit ratio is high, this 
implicit prepare will be quickly and efficiently done. 

 
Focus on keeping the “global hit ratio” very high.  If the “local hit ratio” is lower, even down to 60%-
70%, it is not usually a problem for performance, since short prepares are very efficient.    
 
If the “local hit ratio” is low, and there is VSTOR available in DBM1, then one can increase 
MAXKEEPD to increase the limit on the number of statements in the local cache.   Since short 
prepares are very efficient, a low “local hit ratio” is not generally a problem.  In general, it is better to 
keep MAXKEEPD at the default or below, and give VSTOR to DB2 buffers. 
 
If VSTOR in DBM1 is constrained, and you are running DB2 on a system with 64-bit real hardware 
and software with sufficient real storage (CS), then the EDM pool can be moved to a dataspace. This 
will reduce the demand for VSTOR in DBM1. 
 
Low local cache hit ratio is not generally not a problem in tuning an SAP DB2 system.  Usually, the 
system installation defaults (or something a bit smaller) are fine.  Tests done several years ago by IBM 
showed that 1,200 short prepares per minute increased CPU utilization by about 1%, compared to CPU 
utilization with 25 short prepares per minute.  20,000 short prepares per minute increased CPU usage 
by about 5%.  These are samples based on older versions of SAP, and thus do not reflect real-world 
results, but they show that a system can run rather high rates of short prepares without a serious 
performance problem. 
 

9.5.6. Memory constraint on DB server 
The cardinal rule in allocating memory on the DB server is to adjust DB2 memory usage to avoid 
operating system paging on the DB server.  It is more efficient to let DB2 do page movement between 
BP and HP than to have OS/390 page between CS (central store) and ES (expanded store), or disk (aka 
aux storage). 
 
Use the customary OS/390 indicators in RMF, such as migration age (under 500-700) showing ES is 
overcommitted, UIC (under 60) showing CS is overcommitted, and migration rate (over 100) showing 
too much paging to disk. 

9.5.6.1. ES constraint 
Even without access to the OS/390 monitoring tools, one can see symptoms of ES over commitment 
in DB2 indicators.  See the “hpool read failed” and “hpool write failed” counters on the hiperpools.  
If these are more than a few percent of hiperpool page reads or writes, then there is probably an ES 
constraint that is causing OS/390 to take ES pages from hiperpools.  You can also see the impact of 
OS/390 taking hiperpool pages away from DB2 in the bufferpool counters “hiperpool buffers 
backed” and “hiperpool buffers allocated”.  If backed is less than allocated, it can also point to an ES 
constraint.    

9.5.6.2. CS constraint 
Without access to OS/390 tools, one can see symptoms of CS constraint in DB2 indicators.  High 
ST04 “not attributed” time, which is discussed in section 8.1, is an indicator of a possible CS 



IBM Americas Advanced Technical Support    

      
 

Page 175 

constraint.  In addition, the bufferpool counters “page-ins required for read” and “page-ins required 
for write” will indicate CS constraint.  These should be very small, as a percentage of getpages – one 
percent at most.  The usual goal with SAP is to have bufferpool hitrates in the high 90s.  If there are 
also a few percent of getpages that have to be paged in, this in effect reduces the hitrate, and may 
decrease the bufferpool hitrate below the recommended range. 

 

9.6. Sample global DB server problems 

9.6.1. Example of ES constraint on DB server 
Here is an RMF I report.   ES storage constraint is indicated by a low migration age (MIGR AGE). The 
average is at the edge of our 500-700 ROT.  MIGR AGE below this threshold shows over-commitment 
of ES. 

 
Figure 148: RMF I Paging report – ES constraint 

  
 



IBM Americas Advanced Technical Support    

      
 

Page 176 

9.6.2. Example of CS constraint on DB server 
In this example from an RMF I report, there is too little CS available on the database server, as shown 
by the UIC being somewhat low (AVG 33, MIN 5, rule-of-thumb 60), while there is no constraint on 
ES, since the ES migration age is high.  Since is it more efficient for DB2 do page movement between 
CS and ES by moving between bufferpool and hiperpool, it would be preferable to reduce the overall 
demand on CS and move storage demand to ES.  One could do this by reducing the size of the size of 
the DB2. bufferpools, and increasing the size of the hiperpools, or by reducing MAXKEEPD. 

 
Figure 149: RMF I Paging report – CS constraint 

9.6.3. CPU constraint 
See the example in 8.2.3. 

 

9.6.4. I/O constraint 
In this example, there is a system constraint caused by a configuration problem.  As on some of the other 
examples, this is not a problem one would expect to find in real life, but the process shows how to go 
from SAP performance indicators to OS/390 statistics. 
 
Start with an ST03 workload summary.  Generally, ST03 is not helpful in showing performance 
problems, but if the average times for sequential read, changes, or commit are exceptionally high, it can 
point to a problem on the DB server.  In this case, average commit time is over 50 ms, which is unusual.  
It could be normal, where there are jobs that are making many changes before commit, or it could be a 
sign of a problem. 



IBM Americas Advanced Technical Support    

      
 

Page 177 

 
Figure 150: ST03 with long change and commit time 

 
The ST04 times display is from a DB2 V5 system, where “service task switch” contains commit 
processing.  Here, class 2 is not gathered, but class 3 is.  Note that the average “service task switch” is 
93 ms, which is long.   In DB2 V5, commit processing s part of “ServTaskSwitch” suspension. 

 
Figure 151: ST04 times long service task switch 

Now, go to OS/390 RMF III.  Check DEV to see device delays.   

 
Figure 152: RMF III DEV report 

 



IBM Americas Advanced Technical Support    

      
 

Page 178 

There was one device, QAS001, causing the most I/O delay to DB2.  The address space, QASAMSTR, 
is a hint that this is not a problem with I/O to the tables and indexes in the DB2 database.  RMF III 
credits delay on tables and indexes to DBM1. 
  
Next, look at the datasets on the QAS001 volume.  

 
Figure 153: RMF III DSNV report 

 
Note that the volume contains three log datasets.  When a log switch occurs, DB2 is writing the log to 
one dataset, and copying the log from another on the same disk. 
 
This was a QA system, which had not been setup using the standard guidelines for productive systems.  
On a productive system, logs should be on separate volumes.  One would not expect to see this problem 
on a productive system.  The goal of the exercise was to link the SAP ST03 change and commit time 
down to the OS/390 cause. 
 
 

 



IBM Americas Advanced Technical Support    

      
 

Page 179 

Estimating the impact of fixing problems 

9.7. ST04 cache analysis 
Start cache analysis by using ST04 sorted by total getpages, rows examined, or elapsed time.  In this 
way, you can focus on statements with the largest impact on the system.  
 

9.7.1. Estimate system impact of inefficient SQL 
By comparing the ST04 statement cache statistics and the ST04 bufferpool statistics over an interval, 
one can estimate the impact of inefficient SQL on the entire system. 
 
In this example, we have stopped IFCID 318 and restarted it, which resets the statement cache statistics, 
so that the statement counters are gathered over a known interval.  Use ST04 “subsystem activity” to 
reset subsystem statistics at the start of the interval, and then use “since reset” to report on bufferpool 
and SQL activity since the start of the interval.  
 
DB2 CPU usage is related to the number of getpage operations performed. In general, a statement that 
performs many DB2 getpages to return a result will use more CPU than a statement that performs fewer 
getpages – searching the additional pages required additional CPU.   Use the getpage sort in ST04 
statement cache, and compare the total getpages performed when executing a statement with the total 
number of getpages performed by DB2 in the same interval.   Look for statements which are inefficient, 
and which perform a significant percentage of total DB2 getpages 
 



IBM Americas Advanced Technical Support    

      
 

Page 180 

Use ST04 > “subsystem activity” > “reset” to reset  the statistics at 13:48.   At the same time, stop and 
restart IFCID 318 from ST04 “DB2 commands”. 

 
Figure 154: ST04 > DB2 subsystem activity 

 
In DB2 subsystem activity, after a while, use “since reset” > “list format” to list the subsystem statistics 
over the interval. 



IBM Americas Advanced Technical Support    

      
 

Page 181 

 
Figure 155: ST04 subsystem activity over interval 

 



IBM Americas Advanced Technical Support    

      
 

Page 182 

Display ST04 statement cache statistics.  Since they were reset at the start of the interval via stop and 
restart of IFCID 318, this example does not use reset and “since reset” for statement cache.  Use the 
“Execution statistics” tab, and sort by getpages. 

 
Figure 156: ST04 cached statement statistics over interval sorted by getpages 

Now, compare the total getpages over the interval from Figure 155 (16,300,000) with getpages 
performed by inefficient statements at the top of the statement cache list.   Note that the four top 
statements return few rows compared to rows examined or getpages, so they may be inefficient and 
candidates for improvement. 
 
The next step is to check the per-execution statement cache counters on the “Execution statistics” tab, 
which are not shown here.  If these statements perform hundreds or thousands of getpages per execution, 
and return few rows on each execution, then they are candidates for improvement.  If they perform few 
getpages per execution, and return few rows, they are already efficient.    Use the analysis process 
outlined earlier (check available indexes, check catalog statistics, etc), to determine the cause of the 
inefficient access, and then take action based on that cause.  
 
The two statements at the top of the list are performing 15% and 10%, respectively, of all the getpages 
done by DB2 during the interval.  If we could improve the efficiency of these statements, then there 
would be a reduction in CPU usage, and there would very likely also be a reduction in I/O activity, as 
reducing getpages would reduce memory pressure on the bufferpools.  
 
A rule-of-thumb is that inefficient statements that consume more than 5% of total getpages are high 
impact, and should be addressed promptly.   Fixing several statements that consume more than 1% of 



IBM Americas Advanced Technical Support    

      
 

Page 183 

total getpages can, taken together, also have a measurable impact on the system performance, and they 
should also be addressed.  

9.7.2. Estimating the opportunity for improvement in inefficient SQL 
 
When evaluating inefficient statements in the SQL cache, one can estimate the potential improvement in 
resource usage and response time, by comparing the current resource usage with hypothetical good SQL 
statement usage.    
 
For example, you have found a statement that does 500 getpages per row returned and takes 100 ms 
internal DB2 time  (ST04 average elapsed time).  One can estimate that if the could be converted into a 
well indexed statement where all rows could be selected based on an index, that it would take just a few 
getpages per execution, and have an internal DB2 time of under 1 ms. We have seen many examples of 
how efficiently indexed SQL takes only a few getpages for each row returned.   If an inefficient 
statement runs thousands of times a day (see ST04 statement statistics for counters), then fixing the 
problem would help overall system performance.   Addressing problems of this sort will help to improve 
bufferpool hitrates, reduce I/O, and improve system response time. 
 
The kinds of problems usually seen, and the order in which we suggest to address them is: 
• Complaints of end-users. 
• Frequently executed inefficient statements.  Inefficient code in frequently run programs such as 

transaction user exits can both slow transaction performance and impact system performance.  These 
statements might take tens to hundreds of milliseconds to run, and perform hundreds to thousands of 
getpages per row processed.   Either ABAP changes (hints or code changes) or new indexes are 
justifiable in these cases. 

• Periodically run very inefficient statements.   For example, an interface or reporting program that 
runs many times throughout the day.  In cases such as these, there could be very inefficient sql 
(hundreds or thousands of getpages per row).  Fixing these can also reduce resource utilization.    
These might be fixed via ABAP, but if an index can be created that is small, filters well, and is in a 
reasonable location (e.g. on a header table rather than document table) then an index could be 
justified, too.   Here the benefit to the system is less than the benefit in fixing frequently executed 
statements, so one should be more cautious about adding an index, in order to avoid index 
proliferation and space usage. 

• Really bad SQL (tens of thousands or hundreds of thousands of getpages per SQL) in jobs that run 
just a few times a day or week.  If these can be fixed with SQL changes, then the programmers can 
prioritize the work, based on the impact of the fix, and the business need for better performance.  If 
the problem cannot be fixed by ABAP, and requires a new index, it is usually not worthwhile to 
create a new index (given the tradeoff between disk space used and performance benefit gained), 
unless there is a critical business need for better performance.  In this case, though it is inefficient, 
let DB2 and the operating system manage it. 

 
 



IBM Americas Advanced Technical Support    

      
 

Page 184 

9.8. ST10 table buffering 
The most common problem is bufferable tables that are not buffered.  As described above, bufferable 
tables are tables that are 
• Mostly read-only 
• Moderate size 
• The application can tolerate a small interval where the buffered data is different than the database 
 
Compare the calls and rows fetched by the candidate table to the total calls and rows for the reporting 
interval.  If the table makes up more than 0.5% to 1% of total call or row activity, then we would suggest 
buffering it.    
 
The benefit of buffering a table is related to, but will not be the same as its percentage of calls or rows.  
That is, buffering a table with 5% of calls will not offload 5% of the database server, since complex 
SQL and inefficient SQL uses much more CPU per call than simple indexed SQL.  
 
The most notable impact of changing table buffering will be on the transactions and programs that read 
the table.  Buffered table reads usually take less than 0.1 ms per row.  If a transaction is reading many 
rows from the table, then the benefit for the transaction will be proportional to the number of rows read. 
 



IBM Americas Advanced Technical Support    

      
 

Page 185 

9.9. STAT- evaluating performance in an identified program 
Using a high performance network such as Gigabit Ethernet, if the data can be accessed via efficient 
indexes, sequential reads take at most a few ms per row, direct reads are generally 1-3 ms per row, and 
change SQL takes a few ms per row.  In cases where the direct read and sequential reads are often read 
from buffers on the application server, or where the sequential reads are array operations reading many 
rows per request, one can expect less than one ms per row.  
 
When evaluating a STAT record, and to estimate what the performance would be with efficient access 
tothe data (which is not always possible), one can use the ROTs above to create an estimated 
improvement. 
 
This is the STAT record from the example in section 8.4.5, an I/O constraint on the disks with the PROP 
table and indexes.  

 
Figure 157: STAT record with slow database request time 

 
Now look at what the impact of slow I/O is.  Check the relative amounts of database request time and 
CPU time in Figure 157.  The ratio is about 2 to 1.  Thus, the improvement opportunity in the database 
request time is about 66% of the elapsed time.  Calculate the average time per row from the database 



IBM Americas Advanced Technical Support    

      
 

Page 186 

requests stanza -- 1201045 ms / 109263 rows = 11ms per row.  11 ms per row is slow.  In general, 
sequential read “per row” access times for well-indexed data will be just a few ms per row, at the most.  
Efficiently indexed array operations such as seen here (109263 rows returned in 9730 requests for an 
average of 10 rows per request) are often less than one ms per row. Relieving the I/O constraint on this 
job should cut at least ½ of the database request time out of the job, and reduce program runtime by at 
least 30% (½ of the 66% opportunity in DB request time).  As shown in section 7.4.4, there are always 
exceptions to the ROTs, so improvement may vary. 



IBM Americas Advanced Technical Support    

      
 

Page 187 

10. How to tell when you are making progress 

10.1. SAP 
Normally, it is best to view improvement from the application, by using STAT or ST03 to evaluate the 
elapsed time.  SM37 or SM39 can be used to track elapsed time for batch jobs by the batch job name, rather 
than the name of the program executed. 
 
Since the gains for an individual program can be very dramatic with tuning, the reduction gained in elapsed 
time for programs will generally be much more notable than overall improvements in section 10.2 

 

10.2. DB2 and S/390 
Using DB2 or OS/390 indicators to measure progress is more challenging, due to the variable nature of the 
SAP workload, and the way that transaction and batch workload run together.  A batch job is counted as one 
dialog step, and may do thousands or millions of SQL operations.   When this SQL activity is averaged into 
DB server statistics, a few batch jobs can have a dramatic impact on CPU utilization, without making a 
significant change to dialog step counts.   Thus, our preference for the application view – STAT records, 
ST03, etc.  If you are working on improving the efficiency of SQL on the system, there will generally also 
be reductions in 
• CPU utilization 
• I/O activity rates 
 
Since the dialog steps per hour can vary widely from day to day, and improving SQL can change the amount 
of CPU used by a statement, one can look at other ways to normalize work in terms of DB2 work 
performed, such as reductions in 
• Getpages per SQL DML (calculated from DB2PM) – with SQL improvements, DB2 searches fewer 

pages to return the result  
• CPU per dialog step – this is a “dialog step normalized” view of reduced CPU utilization 
• CPU per SQL DML operation – an “SQL normalized” view of reduced CPU utilization 

 
It’s generally simplest to stick to reduction in transaction elapsed time.  If there has been a large effort to 
improve SQL efficiency, then there should be reduced CPU utilization for the same number of dialog steps, 
if the workload mix does not change.  

 



IBM Americas Advanced Technical Support    

      
 

Page 188 

11. Appendix 1: summary of performance monitoring tools 
 
A quick summary of key tools and their main functions in performance monitoring follows. 

11.1. SAP 

11.1.1. DB02 
DB02 is used to display information about tables and indexes in the database, such as space usage 
trends, size of individual tables, etc.: 

• Display all indexes defined on tables (DB02 > detail analysis) 
• Check index and table cardinality (DB02 > detail analysis > enter table name > drill into table > 

drill into index) 

11.1.2. SE11 
SE11 is used to gather information about data dictionary and database definition of tables, indexes, and 
views: 

• Display table columns and indexes  (SE11 > enter table name > display > extras > database 
objects > check) 

• Display indexes defined in data dictionary (SE11 > enter table name > display > indexes).  
There may be data dictionary indexes that are not active on the database. 

• Display view definitions 
• Use “where used” to find programs that reference a table or view.  There are some gotchas with 

“where used”: 
o SAP Dynamic SQL, where the statement is constructed at runtime by the ABAP, may 

not be found in where used 
o The SQL in ST04 cache may not match SQL in program.  E.g. when the user can 

optionally enter parameters for several predicates, only the predicates that are specified 
will be in the executed SQL.    

o The need to do “where used” will go away with DB2 V7 and SAP 6.20, when 
statements in ST04 statement cache will have a marker with the ABAP program name. 

11.1.3. SE30 
When STAT or ST03 shows that most of a program’s elapsed time is CPU,  SE30 is used to investigate 
where CPU time is spent in an ABAP program  

11.1.4. SM12 
SM12 > extras > statistics can be used to view lock statistics: 

• High percentages of rejects can point to a concurrency problem (multiple programs trying to 
enqueue the same SAP object) that may be solved via SAP tools such as OMJI, “late exclusive 
material block”.  There are different SAP settings for different parts of the business processes. 

• High counts of error can point to a problem where the enqueue table is too small.  Compare 
“peak util” with “granule arguments” and “granule entries” to check for the table filling.  



IBM Americas Advanced Technical Support    

      
 

Page 189 

11.1.5. SM50 
SM50 is an overview of activity on an SAP instance.  If many processes are doing the same thing (e.g. 
access same table, ENQ, CPIC, etc), this can point to where further investigation is required.    

11.1.6. SM51 
SM51 can be used to check instance queues (goto > queue information) 

• If there are queues for DIA, UPD, UP2, etc, there will be “wait for work process” in STAT and 
ST03. 

• If there are queues for ENQ, there is a problem with enqueue performance. 

11.1.7. SM66 
Gives an overview of running programs on an SAP system.  If many processes are doing the same thing 
(e.g. access same table, ENQ, CPIC, etc), this can point to where further investigation is required. 

11.1.8. STAT 
Displays STAT records for a single SAP instance. 

11.1.9. STAD 
Is used to displays STAT records for an interval from all instances on an SAP system.  It aggregates the 
RFC call information, so is not as useful as STAT in finding problems with slow RFCs.   

11.1.10. ST02 
ST02 is used to monitor the activity in SAP managed buffer areas, such as program buffer, generic 
buffer, roll, and EM. 

11.1.11. ST03 
ST03 is not a tool for solving performance problems.  Like RMF I, it is a tool which is mainly useful for 
tracking historical activity.  One can monitor average response times for individual transactions and for 
the system as a whole, and get counts of dialog steps to use for trend analysis. 

 
There are a few limited ways that it might be used in performance monitoring: 
• As a filter for inefficient programs.  Use the ST03 “transaction” profile, sort the list by elapsed time, 

and look for transactions which use very little CPU relative to elapsed time, e.g. 10% or less of 
elapsed time is CPU on the application server.  These may have problems such as inefficient 
database access, slow RFC calls, etc.  

• As a filter for problems that occur at a certain time of the day.  Run ST03, and select “dialog” 
process display.  Use the ST03 “times” profile, press the right arrow to go to the screen that displays 
average direct read, sequential read, and change times.  Look for hours of the day when the average 
time goes up.  This could point to a time when there is an I/O constraint, or CPU constraint on the 
DB server. 

• Use as a filter for database performance problems, in very limited circumstances.  If average 
“sequential read” times are over 10 ms for dialog, and commit time is over 25-30 ms, there may be 
some sort of database performance problem.  Check SQL cache with ST04, look for I/O constraints 
and other database problems.  



IBM Americas Advanced Technical Support    

      
 

Page 190 

11.1.12. ST04 
ST04 has many functions, the most important for performance are viewing the SQL cache, checking 
DB2 delays, and monitoring bufferpool activity and monitoring DB2 threads. 

11.1.13. ST05 
ST05 is one of the most important tools for SAP performance, among its functions are: 
• Trace calls to database server to check for inefficient SQL when program is known. 
• Compress and save SQL traces for regression testing and comparisons. 
• Trace RFC, enqueue, and locally buffered table calls. 

11.1.14. ST06 
Display OS level stats for the application server – paging, CPU usage, and disk activity. 

11.1.15. ST10 
ST10 is used to monitor table activity, and table buffering in SAP on the application server: 
• Check for tables that are candidates for buffering in SAP 
• Check for incorrectly buffered tables 

11.1.16. RSINCL00 
Expand ABAP source and include files, with cross-reference of table accesses.  This is useful when 
examining ABAP source, as it gives an overview of the whole program.   

11.1.17. SQLR0001 
Merge an ST05 trace with STAT records, to determine which dialog step executed which statements.  
This is useful when tracing a transaction made up of many dialog steps, to join the trace to the dialog 
step which issued the problematic SQL. 

11.2. OS/390 

11.2.1. RMF I 
Is a tool for historical reporting, and is useful for tracking capacity planning related information, such as 
CPU activity, and I/O activity.  It can also be useful for trending and monitoring OS level constraints 
such as CPU or memory.  Since the disk information shows volume level activity, and there can be 
many DB2 datasets on a volume, the DASD information needs to be augmented by RMF III (or some 
other real-time analysis tool) to find the datasets causing delays, so that the SQL can be found and 
analyzed. 

11.2.2. RMF II 
The RMF II SPAG command has a good summary of information related to paging, but it must be 
gathered real-time. 

11.2.3. RMF III 
RMF III is a powerful tool that can be used for real-time analysis, as well as for reporting recent history.  
Use it to determine the causes of DB2 delays (e.g., which volume is causing I/O delay) when drilling 



IBM Americas Advanced Technical Support    

      
 

Page 191 

down from SAP.  Just a few functions are sufficient to diagnose the usual problems seen with SAP and 
DB2: 
• SYSINFO – CPU utilization information 
• DELAY – summary of causes of delays 
• DSNJ (for the DBM1 address space) – show datasets causing delays 
• DEV – show devices causing delays 
• DEVJ (for the DBM1 address space) show volumes causing delays 
• DEVR – show I/O rates and average response times 
• PROC – show processor delays 
• STOR – show storage delays 

11.3. DB2 
The most important DB2 performance tool, statement cache analysis, is in SAP ST04 transaction. 

11.3.1. DB2PM 
• STATISTICS is focused on activity, and not delays.  It often shows symptoms (e.g. low hit rate, 

thresholds being exceeded), not causes (inefficient SQL or programs not committing).  After SQL 
has been addressed, then monitor the DB2 indicators of bufferpool hit rates, EDM pool activity, etc.  
Note that the random hit rate is usually the key metric for DB2 buffer pool hit rate.  Older versions 
of DB2PM, such as V5, do not calculate random hit rate.  

• ACCOUNTING is focused on time in DB2 and delay in DB2, but since there is no easy way to 
correlate a DB2 thread to an SAP job, and since many different SAP transactions will execute in the 
same thread, and threads are restarted periodically, it has limited use.  One can aggregate the thread 
statistics to view the overall sources of DB2 delays, as the ST04 “times” transaction does.  

• Traces of specific IFCIDs are very useful for diagnosing specific problems: 
Use IFCID 44,45,226, and 227 to investigate problems with lock and latch suspensions. 
Use IFCID 125 to investigate problems with RID failures. 

 



IBM Americas Advanced Technical Support    

      
 

Page 192 

12. Appendix 2: Reference Materials 

12.1. SAP Manuals 
51014418 “SAP on DB2 UDB for OS/390 and z/OS: Database Administration Guide” 

12.2. IBM manuals 
Planning Guides, which contain detailed description of architecture of SAP to DB2 connection: 

SC33-7961-02 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 3.1I” 

SC33-7962-02 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.0B” 

SC33-7962-03 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.0B SR 1” 

SC33-7964-00 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.5A” 

SC33-7964-01 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.5B” 

SC33-7966-00 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6A” 

SC33-7966-01 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6B” 

SC33-7966-02 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6C” 

SC33-7966-03 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6D” 

DB2 Administration Guides, which contain detailed description of DB2 access paths, prefetch capabilities, 
buffer pool parameters, and components of DB2 elapsed time: 

SC26-8957-03 “DB2 for OS/390 Version 5: Administration Guide” 

SC26-9003-02 “DB2 Universal Database for OS/390: Administration Guide” (DB2 V6) 

SC26-9931-01 “DB2 Universal Database for OS/390 and z/OS: Administration Guide” (DB2 V7) 

 

 

 



IBM Americas Advanced Technical Support    

      
 

Page 193 

 

Figure 1: Sample STAT record............................................................................................................................... 9 
Figure 2: STAT database request with time per request....................................................................................... 11 
Figure 3: STAT database request time with time per row.................................................................................... 12 
Figure 4: stat/tabrec data....................................................................................................................................... 14 
Figure 5: rsdb/stattime time statistics in ST10...................................................................................................... 14 
Figure 6: STAT record with low CPU time.......................................................................................................... 18 
Figure 7: STAT record with high CPU time......................................................................................................... 19 
Figure 8: STAT RFC detail................................................................................................................................... 20 
Figure 9: STAT wait for work process – symptom of SAP roll area overflow .................................................... 20 
Figure 10: STAT slow insert causes wait time ..................................................................................................... 21 
Figure 11: STAT record with CPU corresponding to Processing time ................................................................ 22 
Figure 12: Processing time shows missing time in SAP....................................................................................... 23 
Figure 13: Processing time containing GUI time ................................................................................................. 23 
Figure 14: processing time with GUI time removed ............................................................................................ 24 
Figure 15: STAT high load time........................................................................................................................... 25 
Figure 16: STAT roll (in+wait) GUI time ............................................................................................................ 25 
Figure 17: STAT roll-in ........................................................................................................................................ 26 
Figure 18: ST06 > detail analysis > top CPU -  showing processor constraint .................................................... 28 
Figure 19: SM50 showing ENQ wait.................................................................................................................... 28 
Figure 20: SM51 > Goto > queue information - display of queues on SAP central instance............................... 29 
Figure 21: STAT long total and average enqueue times....................................................................................... 30 
Figure 22: SM50 display on central instance showing Sem 26 (ENQ) wait ........................................................ 30 
Figure 23: ST06 > detail analysis > top CPU - no processor constraint............................................................... 31 
Figure 24: ST06 > detail analysis > disk - high I/O activity on UNIX disk......................................................... 31 
Figure 25: filemon displays active filesystems..................................................................................................... 32 
Figure 26: STAT with long GUI time................................................................................................................... 33 
Figure 27: MIRO ST05......................................................................................................................................... 35 
Figure 28: ST05 selection screen.......................................................................................................................... 36 
Figure 29: MIRO ST05 trace list selection screen................................................................................................ 37 
Figure 30: ST05 > list trace - slow RBKP ............................................................................................................ 38 
Figure 31: ST05 RBKP Explain ........................................................................................................................... 38 
Figure 32: Statement text with parameter markers – ST05 “replace vars”........................................................... 40 
Figure 33: ST04 cached statement statistics with RBKP statement ..................................................................... 40 
Figure 34: ST05 display of SQL statement with parameter values ...................................................................... 41 
Figure 35: ST05 source display of RBKP select with SAP dynamic SQL........................................................... 42 
Figure 36: ST04 DB2 catalog browser to query catalog statistics........................................................................ 43 
Figure 37: MIRO example - check column cardinality via catalog browser........................................................ 43 
Figure 38: MIRO example - query to display indexes on RBKP ......................................................................... 44 
Figure 39: MIRO example - columns in indexes on RBKP ................................................................................. 44 
Figure 40: MIRO example - query to check index cardinality ............................................................................. 45 
Figure 41: RBKP indexes and cardinality ............................................................................................................ 45 
Figure 42: SE11 display index definition ............................................................................................................. 47 
Figure 43: STAT record for ME21 ....................................................................................................................... 48 
Figure 44:  Summarized ST05 SQL trace with slow KSSK................................................................................. 49 
Figure 45: ST05 trace list with slow KSSK.......................................................................................................... 49 



IBM Americas Advanced Technical Support    

      
 

Page 194 

Figure 46: ST05 explained KSSK statement ........................................................................................................ 50 
Figure 47: KSSK statement from ST04 cached statement statistics..................................................................... 50 
Figure 48: ST05 source display - ABAP selecting KSSK.................................................................................... 51 
Figure 49: ST05 display KSSK statement with variables..................................................................................... 52 
Figure 50: SE16 display table contents................................................................................................................. 53 
Figure 51: KSSK check indexes and columns...................................................................................................... 54 
Figure 52: KSSK indexes and columns ................................................................................................................ 55 
Figure 53: KSSK check index cardinality ............................................................................................................ 55 
Figure 54: KSSK index cardinality....................................................................................................................... 56 
Figure 55: KSSK check cardinality of columns in KSSK~N1 ............................................................................. 56 
Figure 56: MB51 - ST05 summarized trace ......................................................................................................... 58 
Figure 57: MKPF MSEG explain ......................................................................................................................... 60 
Figure 58: MB51 predicate cardinality ................................................................................................................. 61 
Figure 59: MKPF MSEG query index statistics ................................................................................................... 63 
Figure 60: MKPF MSEG index statistics ............................................................................................................. 63 
Figure 61: MKPF MSEG query table statistics .................................................................................................... 64 
Figure 62: MKPF MSEG table statistics .............................................................................................................. 64 
Figure 63: REAPRIN0 STAT............................................................................................................................... 66 
Figure 64: DB2PM LOCKING REPORT ............................................................................................................ 68 
Figure 65: TST01 - Select starting point in summarized ST05 trace ................................................................... 70 
Figure 66: SM50 display....................................................................................................................................... 74 
Figure 67: DB2 time categories ............................................................................................................................ 78 
Figure 68: ST04 global times................................................................................................................................ 79 
Figure 69: Good ST04 times................................................................................................................................. 82 
Figure 70: ST04 with long total “other read suspension”..................................................................................... 83 
Figure 71: ST04 times with high “Not attrib. in DB2”......................................................................................... 84 
Figure 72: OS07 - overview of  DB server performance metrics ......................................................................... 85 
Figure 73: RMF III SYSINFO of 900 second interval ......................................................................................... 86 
Figure 74: ST04 cached statement statistics sorted by getpages – execution statistics ........................................ 88 
Figure 75: ST04 cached statement statistics sorted by getpages – highlights ...................................................... 89 
Figure 76: LIPS with index screening .................................................................................................................. 91 
Figure 77: SE11 to initiate “where used” ............................................................................................................. 92 
Figure 78: SE11 “where used” object selection.................................................................................................... 93 
Figure 79: SE11 “Search area” popup .................................................................................................................. 94 
Figure 80: SE11 set development class in search area ......................................................................................... 94 
Figure 81: SE11 hit list ......................................................................................................................................... 95 
Figure 82: SE11 where used expanded hit list...................................................................................................... 96 
Figure 83: SE11 find to locate search string......................................................................................................... 96 
Figure 84: SE11 found lines ................................................................................................................................. 97 
Figure 85: SE11 found program ........................................................................................................................... 97 
Figure 86: “details” display of M_VMCFB statement from ST04 cached statement .......................................... 98 
Figure 87: ST04 cache “details” display of execution statistics ........................................................................... 99 
Figure 88: Explained statement from ST04 cached statement details ................................................................ 100 
Figure 89: VBRK column cardinality statistics .................................................................................................. 102 
Figure 90: VBRP VBRK join ............................................................................................................................. 107 
Figure 91: DB02 main screen ............................................................................................................................. 110 



IBM Americas Advanced Technical Support    

      
 

Page 195 

Figure 92: DB02 table detailed analysis - select table........................................................................................ 110 
Figure 93: DB02 detailed analysis for VBRK .................................................................................................... 111 
Figure 94: DB02 detailed analysis for VBRP..................................................................................................... 111 
Figure 95: ST04 statement cache for BDCPV.................................................................................................... 115 
Figure 96: BDCPV statement ............................................................................................................................. 116 
Figure 97: BDCPV explain................................................................................................................................. 118 
Figure 98: BDCPV query for cardinality of predicate columns ......................................................................... 119 
Figure 99: Column cardinality for BDCP and BDCPS ...................................................................................... 119 
Figure 100: BDCPV query indexes on tables ..................................................................................................... 120 
Figure 101: BDCP and BDCPS indexes and columns........................................................................................ 121 
Figure 102: BDCPS table columns ..................................................................................................................... 122 
Figure 103: BDCPS KEYCARD statistics query ............................................................................................... 123 
Figure 104: BDCPS KEYCARD statistics ......................................................................................................... 124 
Figure 105: ST04 cached statement statistics with long select times on PROP ................................................. 125 
Figure 106: ST04 statement cache “details two” with PROP long elapsed time................................................ 126 
Figure 107: RMF III DEV report for 300 second interval.................................................................................. 126 
Figure 108: RMF III DEVR report ..................................................................................................................... 127 
Figure 109: RMF III DSNV report ..................................................................................................................... 127 
Figure 110: RMF III DSNV report ..................................................................................................................... 128 
Figure 111: ST04 cached statement highlights with index screening................................................................. 129 
Figure 112: ST04 cached statement execution statistics with index screening .................................................. 129 
Figure 113: FOR ALL ENTRIES....................................................................................................................... 132 
Figure 114: MDUP statement in ST04 ............................................................................................................... 133 
Figure 115: MDUP per statement statistics in ST04 .......................................................................................... 134 
Figure 116: MDUP statement ............................................................................................................................. 134 
Figure 117: MDUP explain................................................................................................................................. 135 
Figure 118: DB02 detailed analysis.................................................................................................................... 136 
Figure 119: DB02 detail analysis to show catalog statistics............................................................................... 138 
Figure 120: MDUP statement statistics after runstats......................................................................................... 140 
Figure 121: ST04 statement cache screen 1 – GLPCA....................................................................................... 142 
Figure 122: ST04 statement cache screen 2 - GLPCA ....................................................................................... 142 
Figure 123: GLPCA statement............................................................................................................................ 143 
Figure 124: GLPCA explain ............................................................................................................................... 144 
Figure 125: DB02 detailed table analysis of GLPCA......................................................................................... 146 
Figure 126: ST10 table call statistics for GLPCA .............................................................................................. 147 
Figure 127: DB2PM LOCKING REPORT for GLT0........................................................................................ 149 
Figure 128: DB2PM suspension page latch........................................................................................................ 150 
Figure 129: ST06 > detail analysis > previous hours memory - high paging..................................................... 154 
Figure 130: ST06 CPU constraint....................................................................................................................... 155 
Figure 131: ST06 > detail analysis > previous hours CPU - CPU constraint..................................................... 156 
Figure 132: ST02 roll area over-committed........................................................................................................ 157 
Figure 133: SM66 roll in and roll out ................................................................................................................. 158 
Figure 134: ST06 > detail analysis > disk - high I/O activity on ROLL area .................................................... 158 
Figure 135: ST02 generic buffer swapping ........................................................................................................ 159 
Figure 136: ST02 > drill into generic key > buffered objects ............................................................................ 159 
Figure 137: ST10 > not buffered, previous week, all servers > sort by calls ..................................................... 160 



IBM Americas Advanced Technical Support    

      
 

Page 196 

Figure 138: single record buffering on table accessed via select........................................................................ 162 
Figure 139: ST10 table details ............................................................................................................................ 163 
Figure 140: SM50 “stopped NUM” and Sem 8 .................................................................................................. 164 
Figure 141: NRIV row-lock contention on 4.0 ST04 statement cache............................................................... 164 
Figure 142: NRIV row-lock contention on 4.6 ST04 statement cache............................................................... 165 
Figure 143: ST02 > detail analysis > number ranges - number range statistics ................................................. 166 
Figure 144: ST02 >detail analysis > semaphores - semaphore statistics............................................................ 167 
Figure 145: STAT record with slow change SQL .............................................................................................. 169 
Figure 146: ST11 > display - ICLI network statistics in developer trace........................................................... 169 
Figure 147: ST05 sorted summary with lost packets.......................................................................................... 170 
Figure 148: RMF I Paging report – ES constraint .............................................................................................. 175 
Figure 149: RMF I Paging report – CS constraint.............................................................................................. 176 
Figure 150: ST03 with long change and commit time........................................................................................ 177 
Figure 151: ST04 times long service task switch ............................................................................................... 177 
Figure 152: RMF III DEV report........................................................................................................................ 177 
Figure 153: RMF III DSNV report ..................................................................................................................... 178 
Figure 154: ST04 > DB2 subsystem activity...................................................................................................... 180 
Figure 155: ST04 subsystem activity over interval ............................................................................................ 181 
Figure 156: ST04 cached statement statistics over interval sorted by getpages ................................................. 182 
Figure 157: STAT record with slow database request time................................................................................ 185 

 


