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Plan for today

1. History and Background
I Riemann surfaces, moduli space, and Teichmüller space: a

lightning-fast historical introduction for non-mathematicians

2. Teichmüller Theory for Flat Tori
I Starting from 2-torus, go up in dimension, rather than in

genus!

3. Isometric Submersions Between Teichmüller Spaces
I Rigidity of maps between different Teichmüller spaces:

generalizing Royden’s theorem



History and Background



Early history: one of Riemann’s many contributions

I Dramatic influence over all of mathematics!

I Calculus students learn about Riemann sums

I Einstein’s General Relativity is an application
of pseudo-Riemannian geometry

I One of the most famous unsolved problems
in number theory is the Riemann Hypothesis

I You are about to hear about Riemann
surfaces, first studied in Riemann’s
dissertation (complex analysis/manifolds)

I Sadly, died of tuberculosis at the age of 39

Figure: Bernhard
Riemann,
1826-1866 (from
Wikipedia)



Introduction to complex numbers

Consider the function f (x) =
√
x .

It “stops” at x = 0.
We want to extend it!
(Try solving x2 + 1 = 0)

Introduce an imaginary
number i with i2 = −1
(so e.g. f (−4) = 2i).

Complex numbers extend the real
“number line” to a plane (mixing
real and imaginary parts), with a
magnitude r and an angle θ.

Figure: Plot of f (x) =
√
x for

nonnegative real numbers.

Figure: Square root function for
complex numbers: halve the
angle, use “ordinary” square root
for magnitude.



Problem with this square root function

Figure: Halve the angle, square root of magnitude: problem as we come
around back to 1 (approaches -1 instead of 1). If we get close to 1, so
should the square root, right?

Square root should capture both negative and positive square roots
for real numbers (22 = (−2)2 = 4), and corresponding pairs for
complex numbers.

Riemann’s idea: introduce a new domain.



From complex numbers to Riemann surfaces

Build a new space where part of it yields the “positive” square root
and part of it yields the “negative” square root.
Looks like pieces of the complex plane glued together! This is
called a Riemann surface.

Figure: Glue two pieces on the left to get the surface on the right. Need
4 dimensions to see it properly! Right image from Wikipedia.

Next: What are all the possible ways to build these surfaces?



Fun with gluing pieces of the plane together

Figure: Different ways of gluing pieces of the complex plane together can yield
infinitely many different families of Riemann surfaces. Lower image from Algebraic
Topology, by A. Hatcher.

The upper image is a torus. This and higher-dimensional versions
(e.g. gluing opposite faces of a cube) are central to the next
section!

These pictures show topology (how many holes and handles). Let’s
add geometry: the shape and size.



Riemann surfaces, constant-curvature metrics, and moduli
spaces

I As a consequence of the celebrated Uniformization Theorem,
along with some basic facts in geometry and topology:

Riemann surfaces↔ Surfaces with a constant-curvature metric

I By Gauss-Bonnet for closed surfaces, the topology
(χ(S) = 2− 2g) determines whether curvature is 0, 1, or -1
(physicists ask related questions about the shape of the whole
4D universe!)

I Organize each family of Riemann surfaces in a moduli space

I Riemann began this with a dimension count: dimC = 3g − 3
for surfaces of genus (number of handles) g > 1.



Teichmüller and his ideas

I An extremely productive mathematician with
several highly influential works in a short time

I Worked to understand Riemann’s moduli
space - led to Teichmüller space

I Laid the foundations for what we now call
Teichmüller theory in late 1930s

I Dedicated himself to Nazi party and ideals;
killed in action at age 30 after volunteering to
join the Nazi army

Figure: Oswald
Teichmüller,
1913 - 1943 (from
Wikipedia)



Teichmüller spaces

Moduli space of marked Riemann surfaces

T (S) =
{

[X , f ] : X Riemann sfc, f : S → X o.p. homeo
}
/ ∼

with [X , f ] ∼ [Y , g ] if there exists a biholomorphism h ∼ f ◦ g−1.

Same geometry, same marking

I Marking keeps track of how pieces of surfaces fit together
(and “unfolds corners” in moduli space)

I Equivalent: X is a constant-curvature manifold

I Mapping class group Mod(S) enables “change-of-marking”

I Mostow Rigidity ⇒ T trivial for hyperbolic n-mfld, n ≥ 3

I No obstruction for flat manifolds with curvature ≡ 0 . . .



The Teichmüller metric on Teichmüller spaces

I Teichmüller metric dTeich: log of smallest quasiconformal
distortion for a marking-respecting map between Riemann
surfaces

I dTeich

(
(X , h), (Y , j)

)
= inf f∼j◦h−1 logK (f )

Figure: Locally K -QC. K = R/r , related to fz/fz .

I Idea: quantitative measure of how much a surface must be
distorted (using the marking to compare surfaces)



Post-WWII Teichmüller theory

I L. Ahlfors and L. Bers took up the task
of understanding, formalizing, and
extending Teichmüller’s work starting in
the 1950s and 1960s

I Among others, their students C. Earle, F.
Gardiner, and I. Kra, continued studying
Teichmüller spaces

I Many extensions of earlier work to
punctured surfaces and surfaces of
infinite type

Figure: Top row: Lars
Ahlfors, Lipman Bers.
Bottom row: Clifford
Earle, Frederick
Gardiner, Irwin Kra
(from Wikipedia,
cuny.edu, and ams.org)



William Thurston and the hyperbolic perspective

I Considered one of the greatest figures in
geometry and topology

I Numerous beautiful contributions across
geometry, topology, (complex) dynamics,...

I Two most important for us today:
I Defined and studied the Thurston metric
I Constructed a compactification of

Teichmüller space using foliations on surfaces
to understand how surfaces can degenerate

I Thurston’s asymmetric metric dTh: log of
smallest Lipschitz constant for a map between
surfaces

Figure: William
Thurston, 1946 -
2012 (from
cornell.edu)



A digression on Symmetric Spaces

I First studied rigorously by Élie Cartan in early
20th century

I Cartan developed much of the theory of
representations of Lie groups

I We will use some basics of this theory to
understand compactifications of certain
Teichmüller spaces

I Comparisons to symmetric spaces yield many
interesting questions to ask about Teichmüller
space

I H. L. Royden showed Teichmüller spaces of
hyperbolic surfaces have no symmetric points

Figure: Élie
Cartan, 1869 -
1951 (from
Wikipedia)

Figure: Halsey
Royden, 1928 -
1993 (from
stanford.edu)

Teichmüller theory↔ symmetric spaces



Symmetric spaces

I Riemannian manifold with geodesic-reversing isometries at
every point

I Examples: Rn, Sn, Hn (constant-curvature, simply-connected)

I Non-example: R+ (positive numbers). One direction is
infinite, the other is finite!

I Our main example: SL(n,R)/SO(n), identified with space of
lattices in Rn, or with positive-definite symmetric matrices

I When n = 2: upper half-plane H2 = SL(2,R)/SO(2)

Figure: Identification of SL(2,R)/SO(2) with H2.



How to think about Teichmüller space

I Each point of Teichmüller space
is a marked Riemann surface

I The marking keeps track of which
way the surface is “facing”
(so e.g. we know which curves to
compare to each other)

I Distances between points are
based on how “badly” we must
distort the first surface to
transform it into the other surface

Figure: Teichmüller space is a
space whose points are spaces!



Teichmüller theory today
I Spaces of other kinds of structures on surfaces
I Ways to continuously deform surfaces: Teichmüller dynamics
I Special spaces of representations: generalizing an alternative

perspective on Teichmüller theory
I Geometric properties of surfaces: e.g. how many loops can be

drawn of certain lengths
I Using Teichmüller space: spaces of punctured spheres

representing ways nice maps can deform C

Figure: Some of my friends who have worked on Teichmüller theory and related
subjects. Left to right: A. Calderon, D. Gekhtman, M. He, J. Sapir, and B. Zykoski.

. . .and the rest of today’s discussion!



Teichmüller Theory for Flat Tori



Teichmüller spaces of flat n-tori

Denote the Teichmüller space of marked flat volume 1 n-tori by
T (n). What kind of space is this?

I Torus geometry determined by a lattice in Rn, up to SO(n)

I Marking determined by specifying a basis of the lattice

I Bijective correspondence:

T (n)↔ SL(n,R)/SO(n)

I Flat 2-torus: T (2) ∼= SL(2,R)/SO(2) ∼= H2 (classical)

This identifies the points of T (n). Let’s build some tools to
understand the intrinsic geometry.



Extremal maps between flat tori

Proposition (G-Ji)

The map ψ : S → S ′ which lifts to the unique affine map
ψ̃ : Rn → Rn realizes both the minimal Lipschitz stretching and
minimal quasiconformal distortion between marked flat tori.

Proof Idea.
Let g : S → S ′ be a K -Lipschitz or K -quasiconformal candidate,
and lift it to G : Rn → Rn. Consider Gk : Rn → Rn defined by:

Gk(x) =
G (kx)

k
, k = 1, 2, . . . .

This uniformly converges to the affine map (“averaging out” the
“wobbles”) which must also be K -Lipschitz or
K -quasiconformal!



Metrics on T (n)

Let G = SL(n,R), K = SO(n). Preceding proposition enables
quick computation of dTh and dTeich (g , h ∈ G ):

dTh(gK , hK ) = log ||hg−1||op

with || · ||op the operator norm (max stretch of a vector).

dTeich(gK , hK ) = max
(
dTh(gK , hK ), dTh(hK , gK )

)
.

From the perspective of symmetric spaces, we have:

dSym(gK , hK ) =

(∑
i

(log ai )
2

)1/2

where ai are singular values of g−1h. dSym is induced by the
G -invariant Riemannian metric on SL(n,R)/SO(n).



Comparisons of the metrics on T (n)

After computing and comparing the metrics, we have the
following:

Theorem (G-Ji)

The three metrics dTh, dTeich, and dSym define Finsler structures
on T (n) and can be computed explicitly. Moreover:

I dSym matches the Weil-Petersson metric (based on distances
between metrics in classical Teichmüller theory)

I dTeich is a symmetrization of dTh
I They are mutually distinct when n ≥ 3

I When n = 2, all these metrics coincide with the hyperbolic
metric on H2 ∼= SL(2,R)/SO(2)



Theory of compactifications

Definition
A compactification of a locally compact space X is a dense
topological embedding

i : X ↪→ C

into a compact space C . If G acts on X and i : X ↪→ C is
G -equivariant, it is said to be a G-compactification.

Many examples and applications!

I Affix “endpoints” to R for a compact number line [−∞,∞]

I C ↪→ Ĉ the one-point compactification

I H2 ↪→ D2 is a SL(2,R)-compactification

We consider compactifications of X = SL(n,R)/SO(n) from
Teichmüller theory and symmetric space perspectives.



Two general types of compactifications

I Horofunction (Gromov) compactification: based on
embedding i : X ↪→ C (X ,R), depends on metric

I x 7→ d(·, x)− d(x , p) (p ∈ X fixed)

I Get X by taking closure of i(X ) ⊆ C (X ,R)

I Often used for CAT(0) spaces: generalization of geodesic
(visual) boundary

I Satake compactification: comes from representation
G → PSL(m,C) using X = G/K

I Representation induces isometric embedding
X → PSL(m,C)/PSU(m)

I Take closure again! Only finitely many up to isomorphism
(combinatorics of root system...)



Geometric compactification for T (n)
Geometric/Analytic viewpoint: Given A · SO(n) ∈ SL(n,R)/SO(n),
ATA is positive-definite form giving (flat) metric on Tn.

I Compactify T (n) by including positive-semidefinite forms

I Geometric interpretation for T (n) = T (n) ∪ ∂T (n)?

Let Q ∈ ∂T (n). Foliate Tn by the kernel. Intuitive idea:
“collapsing” torus along this foliation! Transverse directions have
“relative sizes” (determined by the projective measure).

Figure: Foliation of R2 by lines parallel to the kernel. Q is nonzero on transverse
directions.

Compare to Thurston’s compactification of Teichmüller space:
“collapse” along a foliation, measure transverse to leaves.



Summary of results on compactifications of T (n)

Theorem (G-Ji)

The following are SL(n,R)-equivariantly isomorphic:

1. Thurston compactification via measured foliations on n-tori

2. Horofunction compactification w.r.t. Thurston metric

3. Satake compactification w.r.t. to standard rep. of SL(n,R).

Proof ideas:

I Certain measured foliations ↔ degenerate quadratic forms

I Natural topology and SL(n,R) action yield homeomorphic and
equivariant compactifications

I Compute unit ball for metrics and use result of
Haettel-Schilling-Walsh-Wienhard showing unit ball
determines Satake compactification for symmetric spaces



Isometric submersions between Teichmüller
spaces



Maps between Teichmüller spaces

Theme: given F : Tg ,n → Tk,m preserving analytic/geometric
structure, show F is induced by some map f : Sg ,n ↔ Sk,m
preserving topological structure.

Example of f inducing F : if ϕ ∈ Mod(S) then
(X , h) 7→ (X , h ◦ ϕ−1) is a map Tg ,n → Tg ,n

Beautiful central idea: geometry (metric, C-structure, etc.) of Tg ,n
reflects topology of Sg ,n



Maps between Teichmüller spaces: past results

Theorem (Royden, ’71)

If F : Tg → Tg is a biholomorphism then F is induced by some
ϕ ∈ Mod(Sg ) (up to hyperelliptic invol. for g = 2)

Generalized several times (Earle, Kra, Gardiner, Lakic 70s - 90s),
finally by Markovic (2003) to include all ∞-type surfaces of
non-exceptional type.

Maps between different Teichmüller spaces are relatively
unexplored!



More Background: Quadratic differentials

I Holomorphic quadratic differential q on a Riemann surface X
is locally q(z)dz2 with q(z) holomorphic

I q is integrable if the 1-norm is finite:

||q|| :=

∫
X
|q| <∞

I Define Q(X ) = {integrable holomorphic q.d.s on X};
dimCQ(X ) = 3g − 3 + n.

I For X punctured, write X̂ for filled-in surface. Fact:
Q(X ) = Q(X̂ ) ∪ {q.d.s w/ simple poles at punctures}



More Background: Local structure of Teichmüller space

Some classical facts:

There is a dual pairing between the holomorphic tangent space and
the space of quadratic differentials for each X ∈ Tg ,n:

TXTg ,n ↔ Q∗(X )

The dual norm for the infinitesimal Teichmüller metric || · ||T is
given by the 1-norm on the space of quadratic differentials:

sup
v∈TXTg,n

||φ · v ||T
||v ||T

= ||φ|| =

∫
X
|φ| for φ ∈ Q(X )

Understanding a map’s induced behavior on quadratic differentials
gives valuable information about its behavior on Teichmüller space.



Isometric submersions

Definition
An isometric submersion F : M → N is a C 1

submersion such that for all x ∈ M,

dFx(unit ball in TxM) = unit ball in TF (x)N

“Metric form” of projection

Equivalent: the co-derivative

dF ∗x : T ∗F (x)N → T ∗xM

is an isometric embedding with respect to dual
norms on cotangent spaces.

Figure: Infinitesimal
isometric submersion



Key example of isometric submersion: the forgetful map

F : Tg ,n → Tg ,m, where m < n

Coderivative is inclusion:

dF ∗X : Q(X̂ ) ↪→ Q(X ){
q.d.s holo on X̂

}
↪→
{

q.d.s holo on X
}

Figure: Forgetful map for T2,3 → T2,1.



Our question

What are the possible holomorphic isometric
submersions between Teichmüller spaces?



The result

Theorem (Gekhtman - G)

Let F : Tg ,n → Tk,m be a holomorphic isometric submersion with
k ≥ 1 and 2k + m > 4.
Then g = k, n ≥ m, and F is a forgetful map.

Remark

1. We do not assume same genus.

2. Conjecture: For T2,0, T1,2, the only exceptions involve
T2,0
∼= T0,6 and T1,2

∼= T0,5.



The three main steps in the proof

Given F : Tg ,n → Tk,m, pick X ∈ Tg ,n, then
dF ∗F (X ) : Q(F (X ))→ Q(X ) is an isometric embedding.

1. Generalize methods of Markovic and Earle-Markovic (2003) to
find a holomorphic map h : X → F (X ) inducing dF ∗F (X )

2. Riemann-Hurwitz and dimn count ⇒ h is forgetful

3. Show h varies continuously across Tg ,n, so the same forgetful
map works everywhere

Topological answer, to a geometric question... via analytic
methods!



A quick look at the case of infinite punctures: Challenges

Much of the classical theory has been extended to
infinite-dimensional Teichmüller spaces (especially by Earle,
Gardiner, and Kra).

I General case: TτT (S) = Q∗(X )

I Finite dimensions: same as saying T ∗τ T (S) = Q(X )

I Infinite dimensions: vector spaces are irreflexive - cannot
simply take coderivative of a map T (X )→ T (Y ) to get a
map Q(Y )→ Q(X )

I Need new tools in order to convert results about maps
Q(Y )→ Q(X ) to results about maps T (X )→ T (Y )



A quick look at the case of infinite punctures: Results

I Earle-Gardiner Adjointness Theorem: If T : Q∗(X )→ Q∗(Y )
is a linear isometry, then there is a linear isometry
S : Q(Y )→ Q(X ) with S∗ = T . (Can find a pre-dual!)

I Does not generalize to isometric submersions. Sufficient
technical condition: T is weak∗-sequentially continuous

We can show the following, assuming X and Y are finite-genus:

Theorem (G)

If F : T (X )→ T (Y ) is a holomorphic isometric submersion whose
derivatives are weak∗-sequentially continuous, then

1. X and Y have the same genus.

2. If Y has finite punctures, then at each point dFτ is induced by
an inclusion.

Part (2) uses similar approach to finite case. By postcomposing F
with a forgetful map, Part (1) follows from Part (2).



Conclusion



Some research directions about maps between Teichmüller
spaces

I Completing the generalization to infinite punctures, expanding
to infinite genus (arbitrary Teichmüller spaces)

I Finite type: the remaining cases of T1,2
∼= T0,5 and T2,0

∼= T0,6

with surfaces of exceptional type

I Can we get rid of “holomorphic” or “isometric” from the
conditions “holomorphic isometric submersion”?

I Not both, since a topological submersion would only remember
that Tg ,n ∼= R6g−6+2n

I Not “submersion” since then we are back to Royden’s theorem



Some research directions for T (n)

I Complex tori (i.e. Cn/Λ) - maybe can recover some of the
complex-analytic theory of Teichmüller space

I Study maps between these Teichmüller spaces: modular
interpretation of maps SL(n,R)/SO(n)→ SL(m,R)/SO(m)

I Action of mapping class group and moduli space: metrics and
compactifications of SL(n,Z)\SL(n,R)/SO(n), the moduli
space of unmarked flat tori
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