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a b s t r a c t

The Blastocladiomycota is a recently described phylum of ecologically diverse zoosporic

fungi whose species have not been thoroughly sampled and placed within a molecular

phylogeny. In this study, we investigated the phylogeny of the Blastocladiomycota based

on ribosomal DNA sequences from strains identified by traditional morphological and ul-

trastructural characters. Our results support the monophyly of the Coelomomycetaceae

and Physodermataceae but the Blastocladiaceae and Catenariaceae are paraphyletic or polyphy-

letic. The data support two clades within Allomyces with strains identified as Allomyces ar-

busculus in both clades, suggesting that species concepts in Allomyces are in need of

revision. A clade of Catenaria species isolated from midge larvae group separately from

other Catenaria species, suggesting that this genus may need revision. In the Physodermata-

ceae, Urophlyctis species cluster with a clade of Physoderma species. The algal parasite Para-

physoderma sedebokerensis nom. prov. clusters sister to other taxa in the Physodermataceae.

Catenomyces persicinus, which has been classified in the Catenariaceae, groups with the Chy-

tridiomycota rather than Blastocladiomycota. The rDNA operon seems to be suitable for clas-

sification within the Blastocladiomycota and distinguishes among genera; however, this

region alone is not suitable to determine the position of the Blastocladiomycota among other

basal fungal phyla with statistical support. A focused effort to find and isolate, or directly

amplify DNA from additional taxa will be necessary to evaluate diversity in this phylum.

We provide this rDNA phylogeny as a preliminary framework to guide further taxon and

gene sampling and to facilitate future ecological, morphological, and systematic studies.
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Introduction

The Blastocladiomycota contains only the Blastocladiales

(Petersen 1909; Petersen 1910), an order of zoospore-producing

true fungi that contains both saprobes, several of which were

once model research species (e.g., Allomyces, Blastocladiella),

and obligate parasites of plants and animals. Although some

members of the order do not seem to reproduce sexually,

others are noted for having isomorphic or heteromorphic al-

ternation of generations. In these species meiosis takes place

during germination of resistant sporangia, leading to zoo-

spores that develop into haploid thalli that produce gametes.

Currently included within the order are five families (Barr

2001): (1) Blastocladiaceae Petersen (1909), which contains

only saprobic species; (2) Catenariaceae Couch (1945), which

contains both saprobes and pathogens; (3) Coelomomycetaceae

Couch ex Couch (1962), which contains pathogens of inverte-

brates; (4) Physodermataceae Sparrow (1952), which contains

obligate parasites of plants; and (5) Sorochytriaceae Dewel

et al. (1985), which contains a pathogen of tardigrades; Polycar-

yum laeve Stempell (1903), a pathogen of Daphnia, has not been

placed in a family.

Experienced viewers can often distinguish members of the

Blastocladiales from other zoospore-producing fungi by observ-

ing their zoospores by light microscopy. Typically, blastocla-

dian zoospores have a distinctive ribosomal nuclear cap and,

in some species, a large side body containing lipid globules.

With the rise of electron microscopy, classification shifted to

emphasize zoospore ultrastructure (Fuller 1977; Barr 1980).

The ultrastructure of zoospores, which is conserved and infor-

mative for defining the Blastocladiales and orders in the Chytri-

diomycetes (Fuller 1977; Barr 1978, 1980, 1981; Powell 1978;

Lange & Olson 1979; James et al. 2000; Letcher et al. 2006;

Letcher et al. 2008; Mozley-Standridge et al. 2009; Simmons

et al. 2009; V�elez et al. in press) led to the transfer of the Phys-

odermataceae from the Chytridiales to the Blastocladiales (Lange

& Olson 1980b). Ultrastructural zoospore features also led to

the classification of Sorochytriaceae within the Blastocladiales

(Dewel et al. 1985) and, along with molecular evidence led to

placing Polycaryum laeve in the Blastocladiales (Johnson et al.

2006).

Although earlier molecular analyses yielded uncertain re-

sults about the relationship of the Blastocladiales with other

zoosporic fungi (James et al. 2000), the Blastocladiales recently

was reclassified from the Chytridiomycota to a new phylum,

the Blastocladiomycota. The new phylum is based on a molecu-

lar rDNA phylogeny and ultrastructural characters (James

et al. 2006). Taxon sampling in earlier work that included the

Blastocladiales was small because the studies were designed

to determine the phylogenetic placement of the order within

the greater fungal phylogeny. Here, our objective was to pro-

duce a molecular phylogeny with a widespread sampling

from the major families and genera within the phylum. For

the first time, we analyzed 18S-5.8S-28S rDNA sequences

from 11 genera in four families and assessed the correspon-

dence of current classification with our rDNA phylogeny.

This new phylogeny indicates that a few families and genera

are in need of revision and provides a framework that can in-

form taxon and gene sampling in future systematic work.

Materials and methods

Culture collection and isolates

Methods for collecting zoosporic parasites from aquatic in-

sects have been described (Martin 1987). Larvae parasitized

by Coelomomyces and Coelomycidium isolateswere initially fixed

and stored in 80e95 % ethanol or 2� CTAB buffer. Blastocladia

species were isolated from blueberry baits according to the

methods of Whisler (1987), cultured in Petri dishes in GY5

broth (Emerson 1958) or yeast protein soluble starch growth

medium (YpSs) broth (Emerson 1941), and maintained under

anaerobic conditions in a BBL GasPak anaerobic system. Cate-

naria, Catenophlyctis, Allomyces, Microallomyces, and Blastocla-

diella isolates were maintained on YpSs agar. Physoderma and

Urophlyctis samples were obtained from dried plant material

or herbarium collections at the University of Michigan

Herbarium.

Sample harvest and DNA extraction

Larvae infected with Coelomomyces or Coelomycidium were

stored in 2� CTAB until extraction. Individual larvae were dis-

sected under a stereomicroscope with ‘Minuten’ insect pins in

holders. Resting sporangia (RS) and hyphae were placed into

500 ml 2� CTAB extraction buffer [2� CTAB: 2% cetyltrimethyl-

ammonium bromide, 1.4 M NaCl, 100 mM Tris, 20 mM Na-

EDTA pH 8]. Samples in extraction buffer were ground for

2e3 min with a plastic pestle (Kontes) in a 1.5 ml microcentri-

fuge tube. A small amount of sterile sand and 1 mm silica

beads were added and the sample was vortexed for 6e9 min.

Microscopic examination revealed w90 % of the outer pig-

mentedwall of RS had been brokenwith the inner wall still in-

tact on many. Samples were subsequently incubated at 65 �C
for 60 min in a water bath to further extract and hydrate the

nucleic acids. Mini DNA preparations of approximately

500 ml were extracted 2e3 times with an equal volume of

24:1 chloroform:isoamyl alcohol. The final aqueous phase

was precipitated with 0.6 V cold isopropanol and pelleted. Fol-

lowing a 1 min wash with cold 80 % EtOH the samples were

dried in a speed vacuum concentrator (Savant) and resus-

pended in 25e50 ml of distilled water.

Specimens from pure cultures on agar were flooded with

2e3 ml water and left to sit for 15e30 min. The resulting zoo-

spore-hyphal suspension was transferred to a 1.7 ml micro-

centrifuge tube, centrifuged to pellet, the liquid decanted,

then the pellet resuspended in 500 ml 2� CTAB. Alternatively,

broth cultures were harvested by vacuum-filtration using

a Buchner funnel and flask onto Whatman No.1 paper. The

sample was added to a 1.7 ml microcentrifuge tube to fill ap-

proximately half the conical portion and mixed with 500 ml

2� CTAB. Samples were ground with a disposable pestle with

a small amount of sand and extracted as described above.

PCR, cloning, and sequencing

The cocktail consisted of 0.1e10 ng DNA, 1� PCR buffer (no

MgCl2), 250 mg bovine serum albumin, 1e3.75 mM MgCl2,

10e12.5 mMeach of forward and reverse primers, 5 mMdNTPs,

382 T. M. Porter et al.
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1 unit of Taq polymerase and water to 25 ml. In some cases,

culture PCR was performed by using a sterile pipette tip to

transfer a small portion of a pure culture directly into the

PCR cocktail instead of adding 1 ml DNA. To amplify the SSU

rDNA region from Coelomomyces, Coelomycidium, and Blastocla-

dia, we used the PCR primers SR1R (Vilgalys & Hester 1990) or

a newly designed 18S-Cs-1F [50-GAGGCCTACCRTGGTGAT-30]
with NS4 or NS6 (White et al. 1990). To amplify the SSU rDNA

region in Catenaria, Catenophlyctis, Blastocladiella, and Allomyces

species, we used the primers SR1R (Vilgalys &Hester 1990) and

SR6 (Vilgalys lab, Duke University, unpubl. http://www.bota-

ny.duke.edu/fungi/mycolab). To amplify the SSU rDNA region

in Physoderma we used SR1R and NS4, and for Urophlyctis we

used SR1R and SR6.1 (Parrent &Vilgalys 2009).We used the fol-

lowing thermal cycling program: 95 �C for 2 min (or 10 min for

direct PCR), followed by 35e39 cycles of 94 �C for 1 min, 55 �C
for 1 min, 72 �C for 3.5 min, and a final 72 �C for 10e12 min.

To amplify the ITS and 50-LSU regions, we used the PCR

primers ITS1F (Gardes & Bruns 1993) with ITS4 (White et al.

1990), and LR0R (Rehner & Samuels 1994) with LR5 (Vilgalys

& Hester 1990). Thermal cycling conditions were as described

above, but the extension time was shortened to 72 �C for

1 min. Amplicons were purified using the Qiaquick PCR purifi-

cation kit (Qiagen) or treatment with five units of exonuclease

I and one unit of antarctic phosphatase with 1� of each en-

zyme buffer and 5 ml of PCR product at 37 �C for 30 min and

80 �C for 20 min.

Samples that originated from insect larvae were cloned us-

ing a TOPO (vector 2.1) PCR subcloning kit with TOP10 chemi-

cally competent cells (Invitrogen, CA) according to the

manufacturer’s directions. White transformed colonies were

picked and amplified by culture PCR and purified as described

above. BigDye Terminator v3.1 (Applied Biosystems, CA, USA)

chemistrywas used and sampleswere submitted for sequenc-

ing using the same primers as those used for PCR, with the ad-

dition of two internal primers for 18S sequences from

Catenaria and Allomyces: NS4 (White et al. 1990) and BMB-BR

(Lane et al. 1985). Sequences were assembled using

Sequencher version 4.8 (GeneCodes).

Phylogenetic analyses

Blastocladiomycota sequences for each rDNA region were auto-

matically aligned using Muscle (Edgar 2004) then were manu-

ally adjusted and concatenated using Mesquite version 2.72

(Maddison & Maddison 2009). Ambiguously aligned regions

were excluded from the concatenated rDNA alignment. jMo-

delTest and MrModelTest were used to select the best model

of sequence evolution (Guindon & Gascuel 2003; Nylander

2004; Posada 2008). Bayesian analyses were conducted using

MrBayes v.3.1.1 with the following settings: lset nst¼ 6 rate-

s¼ invgamma, prset statefreqpr¼Dirichlet(1,1,1,1), sampling

1 tree every 100 generations (Ronquist & Huelsenbeck 2003).

Analyses with four chains were allowed to continue until

the burnin period represented less than 20 % of the run and

the topology of two parallel runs had converged using the pro-

gramAreWe There Yet? (AWTY) (Nylander et al. 2008). The full

dataset included 71 taxa, 3542 included nucleotide characters,

and was allowed to run for 4 376 900 generations. The Allomy-

ces dataset comprised 16 ingroup taxa, 3203 included

nucleotide characters from the SSUþ 5.8Sþ LSU rDNA region,

and was allowed to run for 10 million generations. The Physo-

derma dataset comprised eight taxa, 1609 included nucleotide

characters from the SSU rDNA region, and was allowed to run

for 10million generations.Maximum likelihood analyseswere

conducted with RAxML version 7.0.4 to obtain the best ML tree

as well as to determine bootstrap support using a GTRþGþ I

model, with 1000 bootstrap replicates (Stamatakis 2006;

Stamatakis et al. 2008). Trees were visualized with PAUP

4.0b10 (Swofford 2003) and edited using CanvasX version

10.5.8 (ACD Systems, Inc.). Sequences generated for this study

have been deposited in GenBank with accession numbers

HQ888683eHQ888760 (Table 1). Alignments are available

from TreeBASE (http://purl.org/phylo/treebase/phylows/

study/TB2:S11216).

Results

There were no strongly supported conflicts, maximum likeli-

hood bootstrap proportion (MLBP) greater than 70 % or Bayes-

ian posterior probability (BPP) greater than 90 %, among our

best maximum likelihood and Bayesian trees. In our Bayes-

ian rDNA (SSUþ 5.8Sþ LSU) phylogeny for the Blastocladiomy-

cota (Fig 1) 13 Allomyces isolates form a monophyletic group

with 98 % MLBP and 1.0 BPP (Fig 1). In a separate analysis lim-

ited to the Allomyces group (Fig 2), Allomyces taxa do not group

according to current subgenera, which are defined by life cy-

cle characteristics. Two major Allomyces clades are recovered;

two isolates of the type species Allomyces arbusculus (subge-

nus Euallomyces) are in one clade and four isolates identified

as the same species are in the other. Two strains of Allomyces

anomalus (subgenus Brachyallomyces) also do not cluster to-

gether. Two stains of Allomyces moniliformis and one strain

of Allomyces neomoniliformis (subgenus Cystogenes) form

a monophyletic group nested among other Allomyces isolates.

The two Blastocladia isolates form a monophyletic group

sister to the Allomyces clade with 92 % MLBP and 1.0 BPP

(Fig 1).Microallomyces is a monotypic genus andMicroallomyces

dendroideus CR74, the type-isolate from Costa Rica (Emerson &

Robertson 1974), clusters basal to Allomyces and Blastocladia

with 82 % MLBP and 1.0 BPP. Catenaria uncinata and Catenaria

spinosa form a monophyletic group with 99 % MLBP and 1.0

BPP; this clade is separated from the Catenariaþ Catenophlyctis

clade. Seven isolates of Catenaria spp. and Catenophlyctis are

strongly supported as a monophyletic group but Catenomyces

did not clusterwithin the phylum. Three Blastocladiella isolates

cluster with 82 % MLBP and 1.0 BPP; Blastocladiella emersonii

clusters separately from the other Blastocladiella isolates with

86 % MLBP and 1.0 BPP.

The Coelomomycetaceae is recovered sister to the Catenar-

iaceae and Blastocladiaceae with 1.0 BPP; however, there is

no maximum likelihood bootstrap support for this

relationship. This family, represented by four strains of Coe-

lomomyces and two Coelomycidium isolates, are on long

branches that form a clade with 0.99 BPP; however, there

is also no maximum likelihood bootstrap support for this re-

lationship. Coelomomyces species have about six large inser-

tions varying in size from about 50e275 bp in their 18S

rDNA sequences. This is particularly noticeable in the 18S

Molecular phylogeny of the Blastocladiomycota 383
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Fig 1 e Bayesian rDNA phylogeny for the Blastocladiomycota. The analysis included 71 taxa and 3542 included nucleotide

characters from SSUD 5.8SD LSU rDNA. A MLBP equal to or greater than 98 % and BPP equal to or greater than 0.98 are

shown as thickened branches. If the MLBP is equal to or greater than 70 % and BPP is equal to or greater than 0.90, the values

are shown at the nodes (MLBP/BPP). A dashed line ‘e’ indicates that this branch was not statistically supported in maximum

likelihood analyses. Statistical support on short branches is omitted for clarity.
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rDNA sequence for C. punctatus that contains an additional

14 insertions that vary in size from about 50e2000 bp. De-

spite the presence of numerous introns, conserved domains

could still be identified and aligned with other Blastocladio-

mycota taxa.

Specimens of the plant parasites Physoderma and Urophlyc-

tis group together with the algal parasite Paraphysoderma

nom. prov. with 94 % MLBP and 1.0 BPP (Fig 1). In

separate analyses focused on these isolates, Physoderma and

Urophlyctis appear reciprocally monophyletic with 99 % MLBP

and 1.0 BPP for the Physoderma clade and 97 % MLBP and 0.99

BPP for the Urophlyctis clade (Fig 3).

Discussion

Comparison of rDNA phylogeny with traditional taxonomy of
the Blastocladiales

The Blastocladiaceae currently includes the genera Allomyces,

Microallomyces, Blastocladia, Blastocladiella, and Blastocladiopsis

(Karling 1977). The genera Allomyces, Microallomyces, and Blas-

tocladia form a statistically well-supported clade in this family,

but the Blastocladiella isolates grouped with the Catenariaceae.

The type species of Blastocladiella, Blastocladiella simplex

V.D. Matthews 1937, was not available for this study. Figures

of B. simplex resemble unbranched Allomyces or Blastocladia

species; however because we were not able to include B. sim-

plex in our phylogeny we cannot say whether the type species

is actually closely related to Allomyces and Blastocladia. Be-

cause Blastocladiella has been the only genus comprised of

taxa with monocentric thalli in the Blastocladiales, some later

described species with monocentric thalli may have been

put in the genus in spite of lacking the strong stalked nature

and Allomyces-like morphology of the zoosporangium of

B. simplex. It is possible that the Blastocladiella spp. that

grouped with the Catenariaceae in our study constitutes

a second monocentric lineage within the phylum and may

Fig 2 e Bayesian rDNA phylogeny for Allomyces. The analysis included 19 taxa and 3451 included nucleotide characters from

SSUD 5.8SD LSU rDNA. A BPP equal to or greater than 0.98 and MLBP equal to or greater than 98 % are shown as thickened

branches. If the BPP is equal to or greater than 90 % and MLBP is equal to or greater than 70 % the values are shown at the

nodes. Statistical support on short branches is omitted for clarity. Long branches shortened by the length equivalent to 100

changes are indicated by two parallel lines (//).

Fig 3 e Bayesian SSU rDNA phylogeny for the Physoderma-

taceae. The analysis included eight taxa and 1609 included

nucleotide characters from SSU rDNA. A BPP equal to or

greater than 0.98 and MLBP equal to or greater than 98 % are

shown as thickened branches. If the BPP is equal to or

greater than 90 % and MLBP is equal to or greater than 70 %

the values are shown at the nodes.
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represent a new genus. Isolates of B. simplex are needed to re-

solve this taxonomic problem. Blastocladiopsis is a small genus

in the Blastocladiaceae containing Blastocladiopsis elegans and

Blastocladiopsis parva that we were unable to sample in this

study; they also need to be found to determine the placement

of this genus.

TheCatenariaceae is a small familywith saprotrophic or fac-

ultatively parasitic members. Thallusmorphology is generally

polycentric, either branched or unbranched; zoosporangia and

resting spores are connected by isthmuses (Karling 1977). The

Catenariaceae traditionally includes the genera Catenaria, Cate-

nophlyctis, and Catenomyces (Sparrow 1960; Karling 1965). Our

rDNA phylogeny indicates that Catenaria is a polyphyletic ge-

nus that includes two groups: the Catenariaþ Catenophlyctis

clade and the Catenaria spinosa clade. The saprotrophic or fac-

ultative parasites in the Catenariaþ Catenophlyctis clade are

a well-supported group we consider as Catenariaceae sensu

stricto because it contains the type, Catenaria anguillulae

(Sorokin 1876). The C. spinosa clade clusters separately but

lacks statistical support for its placement; its position within

the phylogeny will require further work. Catenaria spinosa

(Martin 1975) and Catenaria uncinata (Martin 1978) are united

by their common ecological role as dipteran egg parasites.

The morphology of Catenomyces persicinus (Hanson 1945)

led to confusion over its ordinal placement. Its coarse rhizo-

mycelium and zoospores containing multiple oil globules led

it to be compared with both Nowakowskiella and Catenaria. Al-

though C. persicinus was originally classified in the Chytridiales

sensu Sparrow (1943), it was reclassified in the Catenariaceae,

Blastocladiales (Sparrow 1960). The genus is represented in

our study by its single species. In spite of the similarity of its

morphology to Catenaria, our analysis agrees with a previous

molecular phylogeny (James et al. 2006) in placing this species

within the Chytridiomycota.

The Coelomomycetaceae genera Coelomomyces and Coelomyci-

dium are united by their common ecological role as obligate

parasites of dipteran larvae. Coelomomyces spp. have an alter-

nation of generations with the haploid stage commonly in co-

pepods and the diploid stage typically in mosquitoes and

Coelomycidium spp. are parasitic in black fly larvae.

We were unable to sample Sorochytrium in this study, and

the placement of the Sorochytriaceaewithin the Blastocladiomy-

cota remains uncertain. This study suggests the need for taxo-

nomic revision of the Catenariaceae and Blastocladiaceae.

Comparison of the rDNA phylogeny and Allomyces
subgenera defined by life cycle types

Allomyces, characterized by a branching thallus with pseudo-

septa (Emerson & Robertson 1974; Karling 1977), is an obli-

gately aerobic and facultative fermenter that grows well in

culture and is relatively easy to manipulate (Ingraham &

Emerson 1954). Three life cycle types have been described

within this genus: (1) Euallomyces (Emerson 1938); (2) Cysto-

genes (Emerson 1938); and, (3) Brachyallomyces (Emerson

1941). These three life cycle types are the basis for the delim-

itation of three subgenera with the same names (Emerson

1941). The Euallomyces life cycle has alternating haploid ga-

metophytic and diploid sporophytic generations such as

have been described for Allomyces arbusculus, Allomyces

macrogynus, and Allomyces javanicus. These species have ga-

metophytic and sporophytic generations that can be cultured

separately and manipulated in the lab. The type species A.

arbusculus was originally delimited from other Euallomyces

species by having a predominance of hypogynous male gam-

etangia (Emerson 1941). In our Allomyces phylogeny, A. arbus-

culus appears to be polyphletic, either because some isolates

have beenmisidentified or alternatively, the subgenus criteria

such as life cycles and morphology do not reflect rDNA phylo-

genetic relationships. The Cystogenes life cycle has a large,

dominant, asexual sporophyte that produces thin-walled zoo-

sporangia and resistant sporangia whereas the sexual game-

tophyte is a small, spherical, thin-walled cyst. Examples are

Allomyces moniliformis, Allomyces cystogenus, and Allomyces neo-

moniliformis (Emerson 1938). Primary swarmers, with or with-

out one or more flagella, are released from the resting

sporangium and quickly form cysts. Most cysts produce four

isogamous, uniflagellate zoospores; however, some cysts,

smaller or larger than average,may produce variable numbers

of isogametes in proportion with their size. These isogametes

fuse in pairs forming biflagellate zoospores and the biflagel-

late zoospores develop into asexual thalli (McCranie 1942;

Teter 1944). In our Allomyces phylogeny, only members of the

Cystogenes subgenus form a monophyletic group. The Bra-

chyallomyces life cycle, also called short-cycled, has no game-

tophytic or sexual thalli (e.g., Allomyces anomalus). Emerson

(1941) assigned isolates that never produced a gametophyte

stage and reproduced only asexually to subgenus Brachyallo-

myces. Emerson suggested that the subgenus may become in-

valid if future researchers were able to induce sexual

reproduction in the isolates identified as A. anomalus. Later,

it was demonstrated that only mitosis occurs in the resistant

sporangia of A. anomalus andmeiosis is excluded from the life

cycle (Wilson 1952). Because A. anomalus appears to be poly-

phyletic in our Allomyces phylogeny, it may be concluded

that multiple independent origins of asexual reproduction

have evolved within Allomyces. Further work is needed to re-

solve the Allomyces molecular phylogeny and possibly revise

taxonomic relationships in the genus. Since Karling (1973)

later followed the subgenus approach for Blastocladiella spe-

cies with different life histories, a detailed look at the phylog-

eny within Blastocladiella is also warranted.

The Physodermataceae

The Physodermataceae includes two old genera, Physoderma

Wallr. 1833 andUrophlyctis J. Schr€ot. 1886. For comparison,Chy-

tridium olla, the first ‘chytrid’ (Braun 1851; Braun 1855), was de-

scribed nearly 20 y after Physoderma maculare. Physoderma was

historically confusedwith basidiomycete rust and smut fungi,

andevenwith Protomyces, a basal ascomycetewith similar host

symptoms and spore colour (Karling 1950). Physoderma is dis-

tributed worldwide and contains parasites of a broad range

of aquatic, semi-aquatic, and wetland angiosperms and ferns.

Endobiotic infections produce galls, discolourations, streaks

and pustules on the host (Karling 1950). The morphology of

members of these two genera usually consists of an epibiotic,

monocentric thallus that produces zoospores (? gametes) and

an endobiotic polycentric thallus that produces thick-walled

RS within the host plant. These two stages have not
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unambiguously been shown to be haploid and diploid stages.

The Physoderma and Urophlyctis clade shown in Fig 1 shows

that the Physodermataceae, is a monophyletic group with

a newly discovered parasite on green algae provisionally re-

ferred to as Paraphysoderma sedebokerensis (Hoffman et al.

2008; Gutman et al. 2009). The two species of Urophlyctis sam-

pled, including the type species U. pulposa (Wallr.) J. Schr€ot,

group separately from the Physoderma isolates, including the

type,P.maculare, but inour focusedanalysis (Fig 3) the relation-

ship between Urophlyctis and Physoderma species remains un-

clear based on SSU rDNA alone. The taxonomic distinction

betweenUrophlyctisandPhysodermahasbeendebated in the lit-

erature. Although Sparrow (1962) recognized both genera

based onmorphology plus host reaction, Karling (1950) mono-

graphed the genus Physoderma, placing Urophlyctis into synon-

ymy with this genus while acknowledging the controversy in

this union. The two genera are now considered synonymous

(Karling 1977; Kirk et al. 2008). The inability to diagnose these

genera is related to the difficulty in observing microscopic

structures inside, and on, their obligate vascular plant hosts

and the limited number of detailed observations of Urophlyctis

spp. Additional sampling within the Physodermataceae will be

needed to determine whether Urophlyctis and Physoderma, as

previously circumscribed, are useful taxonomic distinctions.

Since the algal parasite Paraphysoderma sedebokerensis is

sister to the remaining vascular plant parasites included in

the Physoderma clade, it is not possible to determine whether

the wall-less, flagellum-lacking propagule of P. sedeborkerensis

or the flagellated propagules produced by Physoderma species

are more similar to the ancestor of the Physoderma clade

(Hoffman et al. 2008; Gutman et al. 2009). However, its ability

to grow in pure culture and its position as a relative of plant

parasites make it a potentially interesting organism to study

genes associated with parasitism.

Major findings and directions for future work

We have provided the most extensive phylogeny of the Blasto-

cladiomycota to date by sampling rDNA for 11 of the 14 genera,

includingmultiple isolates formany. Our analyses support the

monophyly of most genera and are consistent with some of

the family level taxonomy. The genera Blastocladiella and Cat-

enaria are not strictly monophyletic but together form a clade.

Our analyses revealed two groups of Catenaria species distin-

guished primarily by their ecology, a large monophyletic

group of saprotrophs and facultative parasites as well as

a midge parasite group. Zoospore ultrastructure for taxa in

the Catenaria spinosa clade is lacking but might help determine

their taxonomic placement. Additionally, the abundance of

these taxa in nature and the ability to grow these isolates in

culture would seem to make this group a good model system

for studying the effect of fungal parasites on insect larvae.

Coelomomyces and Coelomycidium taxa were on relatively

long branches. Many Coelomomyces species have numerous

large insertions in their rDNA sequences. It is possible that

these unique sequences could be used to facilitate species

identifications based on rDNA. Because over 65 species and

29 named varieties of Coelomomyces exist (Couch & Bland

1985; Kirk et al. 2008), it would be worthwhile to sample addi-

tional taxa to try to break up these long branches. Based on

their medical and ecological importance as parasites of mos-

quitoes, further molecular phylogenetic work with this group

is warranted and hypotheses regarding the influence of path-

ogens on mosquito larvae populations should be tested.

Morphological characters, and a relatively short branch

length leading to the Physodermataceae, suggest that these ex-

tant taxamaymore closely resemble themost recent common

ancestor of the phylum and features in this clademay provide

insight into the origins of the Blastocladiomycota. One obvious

difference between the Physodermataceae and other families

is the obligate parasitism of plants. All other blastocladian

groups are saprotrophs or animal parasites. The presence of

thallus ultrastructural characters such as the dictyosome-

type of Golgi apparatus found in the Chytridiomycota and

reported in Physoderma maydis (Lange & Olson 1980a), but not

in othermembers of the Blastocladiaceae suggests that this trait

was found in the most recent common ancestor of Blastocla-

diomycota (Lange & Olson 1980a). The relatively large size of

the lipid globule in Physoderma is a feature that is coincident

with the Chytridiales (sensu Sparrow) and might suggest that

this is an ancestral character state for zoosporic fungi in gen-

eral (Sparrow 1960). Though a review of zoospore ultrastruc-

tural characters goes beyond the scope of this paper, these

characters seem to work well to define groups within the Blas-

tocladiomycota and additional sampling of ultrastructural char-

acters may help further define the C. spinosa clade.

More work is required to flesh out the phylogeny for the

Blastocladiomycota, such as inclusion of the unsampled taxa

Blastocladiopsis, Sorochytrium, and Polycaryum. Additionally,

placement of the Blastocladiomycota among the other early di-

verging fungal lineages will require sampling of molecular

data better suited to resolving these deeper nodes. Until

now, no other study has included as many taxonomically di-

verse isolates into a single Blastocladiomycota phylogeny. This

is the first work to combine historical isolates as well as new

strains of uncultivable or difficult to cultivate isolates and

should provide a solid basis for further molecular, ecological,

and morphological studies.
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