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PrefacePreface

It is the year 2020, and in Latin America and the Caribbean, 154 million 
students are learning from home, their schools closed because of Covid-
19. Overnight, teachers with 20 or 30 years of experience have had to 

learn how to teach virtual classes. Along with them, all actors in the educa-
tion system have had to make a leap towards online education, revealing 
the low level of technology integration and gaps in student access to con-
nectivity and devices at home.

Outside the region’s classrooms, the world has been undergoing 
intense technological ferment for years. While teachers and students in 
our countries adapt to their new digital environment, an army of robots 
dances without music in Baltimore, U.S., preparing orders that just arrived 
over the Internet at one of Amazon’s 177 distribution centers. At the same 
time, in Cologne, Germany, a group of computer science experts are put-
ting the final touches on a new version of the DeepL translation engine, 
which is revolutionizing the field of artificial intelligence-based translation. 
Meanwhile, in Zhongwei, China, the sun is rising on 43 square kilometers of 
solar panels located in the Tengger desert, which produce enough energy 
to meet the needs of millions of people.

Technological developments are revolutionizing markets for goods, 
services, and energy worldwide. The big question is, how will these techno-
logical changes affect labor markets? Experts differ in their views, but they 
do tend to converge on one central policy recommendation: It is crucial to 
prepare present and future generations for the changes being brought by 
the fourth industrial revolution, which is already underway.

In Latin America and the Caribbean, the good news is that educa-
tion has improved notably in recent decades, moving from low levels of 
access and high levels of illiteracy to almost universal basic education 
and increasing access to higher education. However, time and again, it 
has been found that school attendance does not necessarily mean acqui-
sition of knowledge and basic skills. National, regional, and international 
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evaluations of student learning have found that in many countries of the 
region, at least half of students cannot understand a simple text or solve a 
basic math problem. This is clearly a problem in itself, but these deficien-
cies also make it harder to develop the 21st-century skills people need to 
act as committed citizens and efficient workers in the new economic and 
social environment.

In this context, the mandate for education ministers in the region is 
two-fold: First, they need to resolve the learning crisis in traditional areas 
like mathematics. Second, they must promote new ways of teaching and 
learning to develop the critical skills people need. The key questions that 
emerge are how should children learn mathematics? What are the new 
teaching practices that foster the development of mathematical thinking 
among students, rather than simply transmitting knowledge? What are 
the areas where our region faces its biggest challenges? Which models 
for technological innovation seem most promising? This book addresses 
these and other questions with the aim of offering a roadmap for countries 
wishing to use technology in education effectively.

These issues are even more relevant in the current context of the 
Covid-19 pandemic. In order to educate our young people despite their 
confinement and get them the knowledge they will need in the labor market 
of the future, the new mandate is to accelerate the digital transformation 
of our education systems guided by evidence. Developing effective hybrid 
education models—part-time at home, part-time in the classroom—for the 
months following reopening will be crucial for keeping their learning apace 
while we look for a permanent solution to the health crisis. Progress in this 
regard would contribute not only to improving learning but also to pro-
moting more robust and flexible education systems.

Marcelo Cabrol
Manager of the Social Sector

Inter-American Development Bank

Eric Parrado
Chief Economist and General Manager of the Research Department

Inter-American Development Bank
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Introduction:  Introduction:  
Improving Mathematics Improving Mathematics 

Education through TechnologyEducation through Technology
Elena Arias Ortiz (Inter-American Development Bank),  

Julian Cristia (Inter-American Development Bank),  

and Santiago Cueto (GRADE and Pontificia Universidad Católica del Perú)

The nascent 21st century has already seen an explosion of techno-
logical changes, sparked in particular by rapidly increasing access 
to broadband Internet. These changes are opening up opportuni-

ties in areas such as industry, trade, the media, and health. Innovations in 
information and communications technology (ICT) have prompted par-
ticular interest in the education sector. In the countries of Latin America 
and the Caribbean (LAC), this interest has materialized in substantial pub-
lic investments to increase student access to computers and the Internet 
in order to improve educational outcomes. Investments in such technol-
ogy are also often aimed at decreasing or eliminating the “digital divide,” 
which refers to the gap between those with and without access to tech-
nology. Researchers suggest that there is another level of this gap that 
involves not only access but also the skills learned to use technology (Sun-
kel, Trucco, and Espejo 2013). 

In principle, using technology can significantly enhance the educa-
tional process by increasing student motivation, personalizing instruction, 
facilitating group work, enabling immediate feedback to students, and 
allowing for real-time monitoring by teachers and other actors.1 However, 

1 Note that there are many other uses of technology in education, including improving 
school and educational system management. For example, technology can be used 
to maintain updated student registries (including personal information, recording 
of grades, and daily attendance), information about teachers, status of equipment, 
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the large investments in technology in the education sector in LAC have 
been the subject of heated debate. There is a gulf between the expected 
impact of technology and the actual results. Indeed, the few rigorous eval-
uations conducted to date suggest that many educational technology 
programs have had limited effects on student learning (Lubin 2018). 

A typical example of the mismatch between promise and reality is the 
One Laptop per Child (OLPC) Program, which sought to improve educa-
tion in the poorest regions of the world. The program was implemented 
worldwide but was especially popular in LAC. In fact, about 80 percent 
of the 2.4 million laptops distributed worldwide under the program were 
distributed in the region. In Uruguay, for example, all students in the coun-
try received a laptop under the program. Peru also participated, with over 
800,000 laptops purchased. Unfortunately, a rigorous, large-scale evalu-
ation of the OLPC Program in Peru showed that, although the program 
had some positive effects on general cognitive skills and digital skills, it did 
not have measurable effects on mathematics or reading comprehension, 
which had been one of the government’s objectives (Cristia et al. 2017). 

Promoting the Use of Guided Programs 

The public discussion generated by Cristia et al. (2017) reveals a strong 
demand among governments and other stakeholders for high-quality evi-
dence. In particular, people want to know how educational benefits from 
technology can be increased. Cristia and his colleagues used surveys of 
students and teachers, computer logs, and a parallel qualitative evaluation 
to show that the lack of academic results can partly be explained by the 
limited use of computers in activities directly related to mathematics learn-
ing and reading comprehension.

There are few rigorous evaluations of other large-scale programs 
in LAC, leaving open the question of how far technology investments 
improve academic outcomes in the region. Indeed, pioneering national 
ICT and education programs, such as Enlaces in Chile and Plan Ceibal in 
Uruguay, have made great strides toward closing the digital gap in their 
countries.2 However, evaluations of how the various components of these 

and communications between schools, parents, and other educational institutions, 
including the Ministry of Education. However, the analysis of these and other poten-
tial uses goes beyond the scope of this book. For more information on the digital 
transformation of education management, see Arias Ortiz et al. (2019). 

2 Enlaces, the Center of Education and Technology of the Ministry of Education, was 
launched in 1992 to further educational quality in Chile by (1) improving access to 
technology in public schools, (2) training teachers in the use of ICT in the classroom, 
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ICT programs affect student learning are scarce. Although national poli-
cies to support ICT in education may not have a direct impact on students’ 
learning achievement in their early phases, it is crucial to establish a causal 
effect given the significant investments involved. Moreover, evaluations 
offer important lessons that may be used to improve the design of pro-
grams across the region.

One review of educational technology evaluations (Arias Ortiz and 
Cristia 2014) sheds light on this debate. In particular, this review found that 
programs that clearly guide participants on how to use the technology 
resources at hand foster better academic outcomes than those that do not 
guide technology use. A program is considered as “guided” if it specifically 
defines the target subject, the software to be used, and the weekly dura-
tion of use. That is, a guided program clearly defines the three “S”s: subject, 
software, and schedule. In contrast, “nonguided” programs provide access 
to technological resources, but the user (teacher or student) must define 
the learning objective, the software involved, and the frequency of use. 

By this definition, the OLPC Program in Peru was nonguided. Through 
this program, the government of Peru aggressively distributed personal 
laptops to students in primary schools in rural areas. Teachers were trained 
for one week but received little guidance on how to integrate computers 
into pedagogical practices. In contrast, in a program implemented in 
primary schools in India (Banerjee et al. 2007), students used computers 
for two hours every week, the difficulty level of mathematical exercises 
was personalized, and the program generated significant improvements in 
students’ mathematics achievement.

The effects of guided programs also vary across a wider range of 
outcomes than do the effects of nonguided programs (Arias Ortiz and 
Cristia 2014). That is, while some guided programs generate large posi-
tive effects, others generate few or even negative effects. This dispersion 
suggests high returns from experimenting with different models of guided 
programs to identify the most effective ones. Moreover, the review also 

and (3) helping students develop 21st century skills. Plan Ceibal was created in 2007 
to support Uruguayan education policies through technology, with the aim of foster-
ing inclusion and equal opportunity. Since its implementation, every child who enters 
the public education system throughout the country has been able to access a com-
puter for personal use with a free Internet connection from the school. In addition, 
Plan Ceibal provides a host of other services, including educational resources and 
teacher training. Recent initiatives by Plan Ceibal seek to support student learning 
more directly and use evaluations to guide decision-making. In particular, the Inter-
American Development Bank approved a $30 million loan to Plan Ceibal in 2017 to 
enhance student learning in basic education by promoting better use of technology in 
the classroom, the creation of digital educational content, and the training of teachers.
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documents that guided programs are among those educational pro-
grams with the greatest impact on academic achievement, proving the 
great potential of technology to improve student learning. This is particu-
larly true in the case of mathematical skills, where the effects seem to be 
greater than for reading comprehension.

However, in spite of the limited evidence of effective technological 
programs that have been implemented on a large scale, it should be rec-
ognized that technology in general and computers in particular are here 
to stay. The technological changes of the 21st century require that young 
people leaving the education system have mastery of several key technol-
ogies to perform well in the labor market. As the presence of computers 
and the Internet becomes increasingly integral to the education process, 
governments will continue to invest in it. The question of how to use tech-
nology in a cost-effective fashion is thus of utmost importance.

At the same time, it is important to highlight the major educational 
challenges faced by the countries of LAC. To start with, average levels of 
academic achievement are low across the region (Bos et al. 2016a). This 
is problematic, because weak average performance on standardized tests 
has been clearly linked to poor economic performance at the country level 
(Hanushek and Woessmann 2009, 2012). On top of that, there are large 
skill gaps between individuals from low- and high-income households and 
from urban and rural areas (see Chapter 4). 

Mathematics is a particularly critical learning area, and most students 
in LAC do not attain the most basic levels of proficiency. Overall, students 
in the region display a low level of performance in math, reading, and sci-
ence, and, of the three subjects, their performance in math is consistently 
the worst. Sixty-three percent of 15-year-old students in the region have not 
reached a level 2 (basic level) of proficiency in math, compared with 50 per-
cent in science and 46 percent in reading (Bos et al. 2016b). Yet mathematics 
proficiency is critical to occupations in science, technology, and engineer-
ing, which are expected to be in increasing demand in the coming years. 

How to Improve Mathematics Learning in Latin America and the 
Caribbean Using Technology 

Against this backdrop, this book seeks to answer one question: how can gov-
ernments in Latin America and the Caribbean improve mathematics learning 
using technology? To answer this question, the book identifies, reviews, and 
synthesizes knowledge relevant to designing education programs that uti-
lize technology to improve mathematics learning in primary schools in the 
region. Around the world, researchers, policymakers, and practitioners have 
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been experimenting and generating knowledge about effective ways to use 
technology to enhance mathematics learning. Unfortunately, this knowl-
edge is dispersed in a multitude of studies and reports, known only by a 
range of specialists from the education, economics, psychology, and com-
puter science fields. By describing in detail promising programs and policies 
that incorporate technology into the classroom, and analyzing their impact, 
this book provides a deep and hopefully useful review of the state of the art, 
especially relevant for directors of technology and their technical teams in 
education programs in LAC, for education specialists from multilateral orga-
nizations and nongovernmental organizations, and for other actors involved 
in the implementation of projects in this area. 

In preparing this book, a major challenge was quickly recognized: effec-
tive programs may vary by grade level and context. For example, programs 
that may be effective in primary education may not work well in second-
ary education. Also, programs that may work well in urban areas may be 
less effective in rural areas. This study focuses specifically on programs that 
foster mathematics learning in primary schools in urban areas of LAC. 

Analyzing primary education is critical to help countries improve the 
educational outcomes of disadvantaged students who frequently lack the 
basic skills necessary to attain secondary and higher levels of education. 
Indeed, evidence suggests that policies to expand primary education in 
LAC have been successful: enrollment is now nearly universal. Yet the qual-
ity of education remains low (Ganimian and Murnane 2016). Exploring in 
depth how educational technology can best address this challenge will pro-
vide a great opportunity for countries in the region to leverage the use of 
recent investments that expand technology access at the primary level. This 
book’s focus on mathematics has a further advantage: learning expecta-
tions in math, as expressed in national curricula and international evaluation 
frameworks, are quite similar across countries in the region and worldwide, 
facilitating the adaptation of solutions from one country to another.

The book focuses on urban areas, as LAC is a highly urbanized region 
and hence the vast majority of students are concentrated in cities. How-
ever, while examining effects on the largest number of people makes good 
sense for policy, the limited scope of this book will, it is hoped, be expanded 
by future studies of rural areas. Many of the lowest-achieving students in 
the region live in rural areas. These students face significant educational 
challenges linked to their socioeconomic characteristics (e.g., poverty and 
ethnicity) as well as lower and unequal access to infrastructure and public 
resources (e.g., electricity and the Internet). 

Finally, throughout the book, the meaning of the word “technology” is 
restricted to computers (desktops, laptops, netbooks) and tablets. These 
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are powerful tools that facilitate a variety of possible ways to search and 
process information. The technological tools commonly used in distance 
education programs, such as television and radio, do not foster such rich 
interactions among students and teachers, and thus are not included in the 
analysis in this book. 

A Review of the Challenges of Mathematics Education

This book is divided into two parts. The first, which includes Chapters 1 to 
4, aims to document the main challenges to mathematics learning in Latin 
America and the Caribbean. In particular, these chapters seek to identify 
effective instructional processes that are important to learning but not 
prevalent in the region. In other words, the first part of the book intends to 
provide a thorough diagnosis of the main challenges to mathematics learn-
ing in the region. The second part of the book, which includes Chapters 5 
to 8, highlights how these processes can be potentially strengthened using 
technology, and describes the main types of programs or models of tech-
nology use that are relevant to the instructional challenges in mathematics 
that LAC faces today. The models presented in this second part have the 
potential to produce large effects on mathematics learning. Effects on 
socioemotional outcomes such as motivation, attitudes, and teamwork 
skills will also be considered as potential mediating factors to gains in aca-
demic achievement in mathematics. 

The paragraphs below briefly summarize the contents and main 
ideas of each chapter. Most chapters include a summary of policy 
recommendations in their final section.

In Chapter 1, Lindsey E. Richland, Kreshnik N. Begolli, and Emma Näs-
lund-Hadley synthesize educational research to provide a definition and 
key aims for mathematical proficiency in the 21st century. The chapter 
provides a solid theoretical foundation for the book by outlining key devel-
opmental changes in children’s mathematical thinking over time, and by 
providing a contemporary definition for mathematical proficiency. The 
authors highlight how children’s minds are uniquely ready to develop 
mathematical concepts, but also how instruction adapted to their age and 
background knowledge will have the greatest impact. The main message 
for educators is to design programs in which instruction and technology 
are based on how children think, rather than on pedagogical techniques 
per se. While this sounds straightforward, what the authors describe here 
implies a major shift in orientation, away from focusing on instruction (that 
is, what the teacher or technology is doing), to focusing on how to best 
respond to and foster children’s thinking. 
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The chapter also provides a guide for how to use standards to reach 
developmental goals in mathematics. Learning standards provide common 
norms for everyone involved in the decision-making process of design-
ing and implementing mathematics educational technology. The chapter 
considers the example of educational reforms in the United States and 
the development of high-quality standards for mathematical proficiency 
throughout primary school, which are known as the U.S. Common Core 
State Standards for Mathematics (CCSS Initiative 2010). This experience is 
relevant to LAC because many countries there are still advancing in this 
area. Throughout the chapter, the authors argue that the effectiveness of 
technology in education programs will critically depend on how its use helps 
children build key foundational skills and overcome learning challenges.

Building on the case made in the first chapter about the importance of 
mathematical proficiency in the 21st century, Aki Murata, Karen C. Fuson, 
and Dor Abrahamson provide a framework in Chapter 2 for understand-
ing how teachers can help students develop understanding and fluency in 
mathematics. The balanced teaching framework discussed in the chapter 
offers a three-phase model for how teachers can help their students’ prog-
ress from (1) exploration to (2) understanding to (3) fluency in each new 
math topic. Phase 1 aims at developing mathematics structure and sense-
making by encouraging students to use their intuition to explore new 
concepts. In phase 2, the heart of the process, the class engages in dis-
cussion as students talk through their mathematical reasoning processes, 
with the help of visual supports. Once a certain level of understanding is 
reached, teachers introduce formal methods and seek to develop mathe-
matical fluency in phase 3. 

The chapter presents an alternative view to the dichotomy between 
traditional instruction that has emphasized procedural fluency and prac-
tice versus new trends that promote children’s exploration. The authors 
highlight connections between different types of student thinking and 
visual representations to illustrate a learning process that moves through 
the three phases and uses “math talk” to support the connections.3 Finally, 
the authors outline the advantages of using technology to support bal-
anced teaching by describing how it can guide national decisions about 
teaching and learning, including choices regarding what type of technolo-
gies to use and consideration of those that are already available.

3 As explained by the National Council of Teachers of Mathematics, “math talk” is 
an instructional conversation directed by the teacher, but with as much student 
engagement as possible. The idea behind it is that if students take time to explain 
their mathematical thinking, this will increase their understanding.
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After this review of effective instructional strategies, Gilbert A. 
Valverde, Jeffery H. Marshall, and M. Alejandra Sorto provide a detailed 
assessment in Chapter 3 of the mathematical content that children in 
LAC know, using available standardized test results and contrasting these 
results with the goals set by national curricular policies. The authors rely 
on data from the Trends in Mathematics and Science Study (TIMSS), an 
international student assessment, and the Third Regional Comparative 
and Explanatory Study (Tercer Estudio Regional Comparativo y Explicativo 
– TERCE), a regional student assessment. In addition, original data on 
national curricula from the University at Albany’s International Curriculum 
and Textbook Archive are used. These data include the topics outlined in 
an intended curriculum for primary school mathematics (and reading) in 
developing countries, defined as the official expectations regarding math-
ematics learning promoted by ministries and national education agencies.

What do data and research findings in LAC tell us about the current 
status of student achievement in mathematics education? The authors show 
that students in the region have consistently low to average achievement 
in mathematics compared with students from other regions of the world. 
Evidence from regional student assessments also suggests that average 
levels of mathematics achievement are seriously low across LAC. According 
to the TERCE, student performance in third-grade mathematics was 
critically low (UNESCO-OREALC 2016), even in content areas specifically 
covered in national curricula. The authors also find evidence of persistent 
gaps in educational attainment between subpopulations of students—
inequality that favors urban students and those in private schools. 

Finally, the authors find gaps in national mathematics curricula across 
LAC. Missing as an explicit goal in some cases is knowledge of key con-
tent such as integers, rational and real numbers; proportionality problems; 
patterns, relations, and functions; and the performance of mathematical 
reasoning. The authors consider these gaps cause for concern: unless these 
topics are explicitly addressed in a national curriculum, few students will 
have the opportunity to learn them. Beyond curricular policy, the authors 
discuss persistent structural and implementation factors that require atten-
tion. Indeed, in even the highest-achieving countries where key content 
knowledge is covered in the class curriculum, most students can solve only 
the most routine problems, and at the lowest levels of cognitive demand. 

In Chapter 4, Jeffery H. Marshall and M. Alejandra Sorto explore which 
inputs and classroom practices are associated with the highest academic 
achievement, using databases from the TERCE as well as the Second 
Regional Comparative and Explanatory Study (Segundo Estudio Regional 
Comparativo y Explicativo – SERCE). The authors review empirical studies 
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describing the educational opportunities available to children in particu-
lar countries or locales. In particular, they analyze three factors: (1) school 
and teacher observable characteristics, (2) teacher capacity or knowl-
edge, and (3) teaching processes. Their results reveal that there is a major 
difference between what an effective mathematics class should look like 
and what classrooms actually look like in LAC. Significant deficiencies in 
teaching and learning environments exist: teachers exhibit low levels of 
pedagogical content knowledge and students spend much time memo-
rizing and applying algorithms instead of engaging in high-level cognitive 
tasks. In addition, large gaps in inputs and classroom practices are doc-
umented between schools attended by low- and high-income students. 
Moreover, few classrooms report using manipulatives, pointing to a lack 
of materials. In summary, classrooms in the region depend on lessons with 
low cognitive demand that do not challenge students to really learn math-
ematical concepts in a profound way to achieve proficiency. 

What explains the general lack of quality observed in primary school 
mathematics classrooms across the region? The authors identify and ana-
lyze various factors, including limited teaching materials, little support 
for students outside the classroom, and inadequate mathematics knowl-
edge among teachers. In this context, computer-assisted learning could 
help both students and teachers. Yet, the authors warn about the dangers 
of a simplistic reliance on technological solutions that will not automati-
cally improve learning. Mathematics classrooms in LAC need to expose 
students to learning tasks that promote reasoning and thinking, and tech-
nology can serve as a catalyst for reaching this goal but should not be a 
goal in itself.

Examples of the Use of Technology to Improve Learning

Based on the challenges identified in the first part of the book, part two 
provides concrete models of how technology can be used to improve 
mathematics learning in Latin America and the Caribbean. The goal is 
to identify programs that are effective—or at least promising, given their 
design features—in improving mathematics learning in primary school. To 
do this, Chapter 5 analyzes alternative models of technology use up until 
the second grade. Chapters 6, 7, and 8 analyze the potential uses of tech-
nology for mathematics learning between the third and sixth grades.

In Chapter 5, Julie Sarama and Douglas H. Clements provide an 
overview of models for learning mathematics using technology between 
pre-primary years and the second grade, including technology-assisted 
instruction that encourages students to practice in order to gain fluency; 
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tutorials and learning games; technology-enhanced management tools to 
track children’s progress and individualize instruction; and technology-
based manipulatives that encourage cognitive play. 

Their theoretical foundation is based on learning trajectories that offer 
a conceptual framework for constructive-based learning and teaching. 
Each learning trajectory has three parts: (1) a goal, (2) a developmental 
progression, and (3) instructional activities. In this framework, to attain 
mathematical competence in a given mathematical topic or domain (the 
goal), students master each successive level (the developmental progres-
sion), aided by tasks (instructional activities) that facilitate thinking at that 
level. The authors describe how technology can make substantial contri-
butions to early childhood mathematics education if their applications are 
consistent with expected learning progressions.

The authors also discuss the requirements of teacher training and the 
resources needed for these models to be successful in LAC. For example, 
although the benefits of computer programming are promising, especially 
in an increasingly complex technological age, there are significant require-
ments for the effective use of coding. If hardware is scarce and teachers 
have not received considerable professional development and support, 
this may be an unproductive and frustrating model to implement. In con-
texts of limited resources, the authors recommend simple applications, 
such as technology-assisted instruction tutorials and practice applica-
tions explicitly aligned to extant standards (goals) and curricula. But even 
for these simpler applications, teachers must receive training and in-class 
support, and the software chosen must fulfill certain requirements such 
as moving children through learning trajectories, featuring introductory 
exploratory activities, and including technological manipulatives.

In Chapter 6, Roberto Araya and Julian Cristia analyze guided 
programs that seek to promote student math practice. These types of pro-
grams involve students performing exercises on computers and promote 
student engagement through games and tournaments to motivate chil-
dren to practice. This type of model can be implemented to supplement 
regular mathematics instruction, and it does not require close coordination 
between technology-based and traditional instructional activities. Building 
on the experience of a pilot project in Santiago, Chile, the chapter analyzes 
10 key design decisions that maximize impacts. These design decisions 
center on clearly defining the objective of the program (i.e., which math-
ematical skills will be developed), how computers are expected to be used 
during the technology sessions, and which inputs are directly provided 
by the program, including how teachers and lab coordinators are to be 
trained and supported. For each of these key decisions, different options 
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are analyzed using theoretical arguments and empirical evidence, and also 
taking into account the actual choices made in a number of effective pro-
grams that guide use and are focused on promoting student practice.

Two main findings emerge from the analysis presented in the chapter. 
First, many of the analyzed decisions involve difficult trade-offs that need 
to be considered but which, a priori, may not be recognized. To make deci-
sions regarding how to tackle these trade-offs it is important to analyze 
potential options in a careful manner considering not only the potential 
benefits of each option but also the potential challenges to be faced dur-
ing implementation. Second, the decisions to be made when designing 
these models should make sense when considered not only in isolation, 
but also in conjunction with all the other decisions made. That is, the chap-
ter emphasizes the critical need to ensure coherence across design.

Chapter 7 is devoted to analyzing a comprehensive model that empha-
sizes the comparative advantage of technology in the visualization and 
exploration of complex mathematical concepts. In this chapter, Nicho-
las Jackiw discusses in detail mathematically open learning technologies 
(MOLT) that engage students in the active pursuit and construction of 
knowledge of mathematics topics and best practices that can be used 
across grades. These technologies are defined by three characteristics: 
(1) a student-centric design and user model, (2) an open-ended activity 
structure, and (3) an innovative application of technology to mathematical 
representations and practices. Two practical experiences are highlighted: 
dynamic geometry manipulatives and mathematically embodied number 
environments. The chapter recommends that policymakers focus on the 
professional development of teachers (in mathematics and pedagogy more 
than in technology) as well as on incrementally staged implementations to 
effectively adopt mathematically open learning technologies at scale. 

Finally, in Chapter 8, Ana Díaz and Miguel Nussbaum review the con-
cept of orchestration within the context of teaching mathematics using 
technology. Orchestration is the coordination of pedagogy, curriculum, 
and technology in a student-focused setting. The authors argue that chil-
dren are not learning and that computers in education systems are not 
being used effectively because there is a lack of pedagogical support 
for teachers to integrate technology and student needs into their teach-
ing practices. Thus, to implement the use of technology in the classroom, 
under the orchestration model teachers are provided with a detailed set of 
guidelines for how to implement new teaching strategies. 

An orchestration can either be provided from the outside, or developed 
internally by schools, but in both cases certain social and infrastructural 
conditions need to be met to help teachers overcome the challenges they 
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face. A series of guiding questions and a diagnostic of a school’s specific 
context can help school communities develop their own orchestrations. 
Lessons can either be completely or partially orchestrated, depending on 
the teacher’s tools, knowledge, and skills. The authors demonstrate that an 
orchestration can be an effective tool, not only when teaching mathemat-
ics, but also in other areas of the curriculum.

A Range of Promising Options and Caveats for Policy

In summary, the analysis presented in this book underscores some of 
the options that policymakers and educators can explore when deciding 
which educational technology model to implement in a specific context. 
Thus, instead of generating a one-size-fits-all recommendation for how to 
incorporate computers into mathematics lessons, the book’s authors con-
sider several program models that have been found to impact teaching 
practices and, hopefully, students’ knowledge and mathematical thinking. 
Based on the discussions, materials, and references presented in this book, 
effective programs are seen to have several key characteristics:

1. Technology, including access to computers and Internet, is not the main 
objective but merely an instrument used to introduce effective peda-
gogical practices that can build students’ mathematical knowledge and 
thinking. Technology is not here to replace teachers.

2. All the models require that teachers receive considerable professional 
development and training to be successful. In particular, it is critical that 
teachers be guided in the pedagogical use of technology, and not only 
in operating the equipment, in order for a program to be effective.

3. Computers do not need to be provided to each student; physical 
resources can be shared. 

4. Programs need to be adapted to the context of the school and the 
education system in which they will be implemented. For example, in 
contexts where teachers’ experience or skills with technology is lim-
ited or where infrastructure conditions are not ideal, relatively simple 
approaches need to be implemented. 

5. Successful programs require that local stakeholders, including school 
principals and teachers as well as parents and students, have a positive 
attitude about the program in order to foster and follow through on its 
implementation, overcoming sometimes inevitable constraints or criti-
cisms that often arise when a program begins.

6. A support system for schools is needed to solve any problems with 
operating, fixing, or replacing equipment, gaining access to the Internet, 



13INTRODUCTION: IMPROVING MATHEMATICS EDUCATION THROUGH TECHNOLOGY 

and providing pedagogical support about the resources available and 
how best to use them locally.

7. Interventions requiring technology need to be aligned with other inter-
ventions at the national or regional levels, including curriculum and 
teacher policies (both pre-service and professional development), as 
well as other interventions in other sectors (in particular, school infra-
structure and access to electricity and the Internet).

Hopefully, these design principles and the lessons presented in this book 
will contribute to better policy decisions regarding how to use technology to 
enhance mathematical learning in Latin America and the Caribbean. Coun-
tries in the region have made large investments in educational technology, 
and access to computers and tablets is widespread across urban pub-
lic schools. It is important to design and implement models that can make 
effective use of available technologies, generating significant benefits at a 
low cost. Moreover, governments in the region are increasingly receptive to 
evidence as an input into policy decisions, especially when it can inform how 
to optimally structure a program, rather than decisions related to whether 
or not to launch a program in the first place. However, there have been 
examples of governments in the region embarking on massive access to 
technology programs only to realize later on that these programs were not 
fully developed in their aims and procedures (e.g., no theory of change for 
the program) or that they did not have sufficient professional or monetary 
resources to implement them over time. As suggested earlier, it is critical to 
have efficient systems to monitor the implementation of programs and have 
plans for qualitative and quantitative evaluations embedded in the design 
of the intervention. However, this has often not been the case in the region. 

Multilateral organizations like the Inter-American Development Bank 
(IDB) promote the use of evidence in operational and policy dialogue, 
hence there are clear channels to disseminate the generated knowledge. 
The IDB expects to remain a relevant actor in this area and to continue 
supporting a network of specialists in the development, implementation, 
evaluation, refinement, and scaling-up of interventions using technol-
ogy to improve mathematics learning (and eventually other areas). Thus, 
this book can be considered an additional step in a comprehensive and 
ongoing initiative involving multiple actors and views from different dis-
ciplines such as psychology, education, and economics, and drawing on 
experiences from regions around the world that can provide multiple and 
complementary perspectives. The ultimate goal is that these concerted 
efforts contribute to making the promise of technology in education a real-
ity for all students in Latin America and the Caribbean. 
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The Development of The Development of 
Mathematical Thinking in ChildrenMathematical Thinking in Children

Lindsey E. Richland (University of Chicago), Kreshnik N. Begolli  

(Temple University), and Emma Näslund-Hadley (Inter-American Development Bank)

The aims for mathematical proficiency in the 21st century have 
changed, leading to educational reforms in mathematics educa-
tion around the world. Economic success increasingly depends on 

building a workforce of mathematically proficient students able to apply 
learned mathematics to real-world problems, and to innovate, think cre-
atively, and adaptively participate in continually shifting economies. This 
type of mathematical proficiency requires a more conceptual, flexible 
understanding of mathematics than is traditional in classrooms in Latin 
America and the Caribbean (LAC)—and it is argued that the lack of such 
an understanding has direct economic consequences (Hanushek and 
Woessmann 2012). Educational reforms are thus essential. They are also 
challenging, since most educators tend to teach the way they were taught, 
and students’ parents are often uncomfortable with new instructional 
modes. Reforming mathematics instruction involves a major cultural shift 
both in the aims for student learning (i.e., deciding what counts as math-
ematical proficiency) and in the pedagogical techniques used to teach 
mathematics.

This chapter synthesizes a large body of mathematics educational 
research to provide educators and administrators in LAC with broad infor-
mation about how children’s mathematical thinking develops, a framework 
for mathematical proficiency goals for the 21st century economy, and key 
ideas to consider when adopting educational technologies to support 
mathematical thinking.

The chapter begins by describing how children’s developing brains 
make them open and ready to learn mathematical concepts, and also how 
instruction (via both teachers and technology) must consider the ways that 
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children might need additional support due to their age or background 
knowledge. At the same time, anxiety and feelings of pressure—or discrim-
inatory stereotypes—may contribute to serious achievement gaps, such as 
those observed among students in LAC. These stereotypes may lead girls 
or children from minority backgrounds to learn less, or to perform below 
their actual ability on tests, due to social perceptions that these popu-
lations are poor at math. Throughout the chapter, tables summarize key 
points that, while not exhaustive, constitute some of the primary curricular 
and brain developmental considerations to keep in mind when evaluating 
educational technology or instruction.

The chapter revolves around a key message: that the blueprints used 
to design instruction and tools should be based on how children think, 
rather than on pedagogical techniques per se. While this sounds straight-
forward, it actually represents a major shift in orientation away from 
focusing on instruction and on what the teacher or technology is doing, 
to focusing on how best to respond to and foster children’s thinking. This 
means organizing instruction around what children already know, what 
their minds are ready for, and how they may be feeling at the moment 
(e.g., anxious, curious, engaged, or bored). The successes or failures of 
mathematics education and the way educational technology is selected 
and implemented thereby relies on an ability help children build key foun-
dational skills and overcome challenges.

1.1 A Conceptual Understanding of Mathematics

From early infancy, children’s minds interpret the world through quantities, 
space, shapes, and patterns—the building blocks of complex mathematical 
thinking. Children do this naturally. For example, most babies pay attention 
to quantity and small number sets before they can walk or talk (Dehaene 
1997; Gallistel and Gelman 1992; Lipton and Spelke 2003). Thus, despite 
the fact that many school-age children—and adults—harbor feelings of 
discomfort with mathematics, mathematical thinking is an innate part of 
human life.

Children’s minds are biologically organized in a way that allows them 
to do mathematics, but they cannot learn more than basic quantity com-
parisons without instruction. Their environment for learning mathematics 
matters dramatically, and there is much that must be explicitly taught. For 
children to participate in higher-level mathematics, they must connect 
their early mathematical thoughts with mathematical symbols, such as 
numbers and operators. This is the first hurdle children face when learning 
formal mathematics, and one that is of fundamental importance to their 
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ability to reason using mathematical calculations, and to think in terms of 
mathematics instead of seeing it merely as a set of abstract principles to 
be memorized for a future test.

How are children first introduced to mathematical symbols? And how 
is their use of these symbols tested? This chapter argues for a new defi-
nition of mathematical proficiency, a definition that goes beyond simply 
ensuring that children know the correct answers to problems to ensur-
ing that they do so with understanding. Consider the following problems 
(adapted from NRC 2009) as an analogy to how a child might learn to use 
number symbols that have been memorized as a list, rather than as a set 
of quantities.

Use the alphabet to solve the following problems (e.g., A = 0, B = 1, etc.):

1. Count onward from “J”
2. F + D = ___?
3. E x C = __?
4. How many fingers is “H”?

Despite our understanding of what it means to add, subtract, multi-
ply, or compare quantities, and our easy knowledge of alphabetical order, 
the novelty of using these alphabetical symbols in that way significantly 
compromises our ability to solve these problems. This example demon-
strates how challenging mathematics can be if it is known only as a set of 
rules that must be memorized. In the same way that many of us struggle 
with the use of alphabetical symbols to solve math problems, encouraging 
children to memorize the sums or products of calculations may lead them 
to simply answer particular questions correctly. But without first ensur-
ing their understanding, it will mean that more complex calculations are 
just as awkward and abstract to think through. Part of the challenge for 
teachers is to recognize that for their own more developed understanding 
of mathematics to be shared by students, the teachers must ensure that 
students develop a deep sense of numbers, grounded in concrete expe-
rience, before they are taught how to manipulate numerical symbols in 
more abstract ways.

Traditional mathematics instruction has expected students to mem-
orize procedures and follow rules to manipulate these symbols without 
providing conceptual connections to quantity, shape, space, or pat-
terns. Teachers may have learned these symbols so well that they do 
not realize what a challenge it is for students to make these connections. 
Their expectation is that by getting students to practice using proce-
dures, symbols, or rules, the students will make the connections needed 
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to solve everyday problems. Unfortunately, students instead often begin 
to view mathematics as a discipline comprised of computations within 
a set of disconnected procedures and rules that need to be memorized. 
While highly practiced fluency with mathematical symbols together with 
procedures and rules is essential for developing complex mathematical 
thinking, the ability to compute procedures quickly is not the same as 
mathematical proficiency.

Children must develop an understanding of mathematics that is con-
nected to an internal model of quantity, and that enables them to reason 
through mathematical ideas generatively and in new ways, rather than 
memorize a set of disconnected rules. To accomplish this, they must under-
stand mathematics as a discipline based on thinking and problem-solving 
(not just memorization), and mathematical concepts must be presented 
to them in a holistic, integrated manner (rather than as a list of sepa-
rate, disconnected topics). This will provide them with the fundamentals 
needed to solve problems across employment sectors, and for a wide 
range of purposes, from accounting and financial management to policy 
decision-making (based on data) and programming technology. Thus, it is 
important that educational technology decisions begin with a clear defini-
tion of mathematical proficiency: namely, what do we want our students to 
know when they enter the workforce?

The next section describes the development of children’s mathemati-
cal and cognitive skills in order to provide a framework for thinking about 
how to support mathematical proficiency over time.

1.2 How Children Learn

Instruction throughout primary school must consider children’s develop-
ing minds; it must be age-appropriate and build on children’s growing 
capacity. Piaget (1970, 1977)  revolutionized child development research 
with the realization that young children are not less intelligent than adults, 
though they may view and engage the world in different ways than adults. 
Piaget then posited a set of stages that all children progress through. 
Much contemporary research (Demetriou et al. 2013; Fischer 2008; Weiten 
1992) has revealed that these are not universal across cultures, and that 
a child’s development does not always plateau at a specific milestone. 
Even so, Piaget’s basic insight is important: adults must be aware that chil-
dren’s minds are not working the same way as their own, and adults must 
engage in explicit work to recognize children’s thinking and identify their 
learning needs. Technology can facilitate the process of identifying chil-
dren’s developmental progressions in order to provide support that best 
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meets children’s needs, based on each child’s developmental stage and 
cultural milieu.

Adult support for cognitive development is important. As described 
by Vygotsky (1978), adults play a fundamental role in guiding children’s 
development and must be sensitive to children’s current state of knowl-
edge and ability in order to help them reach the next level possible within 
the scope of their current capacity. This is described as the zone of prox-
imal development—the range between what a child already knows and 
what he or she can attain with adult support. Technology can also play 
a similar type of supporting role. Most ideally according to this theory, 
technology will be able to meet children adaptively based on their prior 
knowledge and provide support to allow them to be successful at the next 
skill level. Thus, outside support, whether human or technology-based, 
must first attend to children’s current thinking before it can help them 
move forward. The following describes key aspects of children’s develop-
ment based on maturation.

1.2.1 Brain Maturation and Cognitive Constraints

Much research states that children’s brains continue to develop throughout 
childhood and into adolescence, and in some regions even into the third 
decade of life (Mungas et al. 2014). Thus, even throughout the primary 
school grades, children’s brains are still malleable and changing with age 
and inputs from their environment, including neighborhoods and schools 
(NRC and Institute of Medicine 2000).

One particular area that continues to develop is the frontal lobe, the 
part of the brain located behind the forehead, which has serious implica-
tions for children’s mathematics instruction. The frontal lobe is engaged in 
many higher cognitive acts; it is in part responsible for problem-solving, 
reasoning, and planning effortful solutions, as well as for inhibiting one’s 
impulsive behavior or thoughts (Stuss 2006).

Within the frontal lobe, a constellation of mechanisms work together 
to regulate humans’ attention and cognitive processing, known as exec-
utive functions. This is a system that takes a limited set of attention 
resources and distributes those resources to a variety of cognitive subpro-
cesses that in turn regulate the dynamics of human cognition (Diamond 
2013; Miyake et al. 2000). One very important part of this system is work-
ing memory, which involves the ability to hold information in the mind 
and actively use it for problem-solving, reasoning, or other purposes. 
For example, in a classroom, if students have been given class instruc-
tions (e.g., “finish this problem and then write your solution on page 7 of 
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your packet”) and then a word problem to solve, they must hold the class 
instructions as well as the problem numbers and task goal in their mind 
while also attempting to perform the relevant calculations. If a student 
does not have enough working memory available to remember all of this, 
he or she will likely lose parts of the problem and appear to not know how 
to solve it, or might not write down the solution where the teacher asked, 
when really the issue may have been the student’s ability to simultane-
ously remember all of the details.

The second primary subcomponent of executive functions in children 
is inhibitory control, also called cognitive control, in which the reasoner 
exerts control over his or her immediate impulses and works to ignore 
irrelevant information (Diamond 2013). As an example, if a student is add-
ing two fractions in a classroom, the student’s impulse is to add both the 
numerators and then the denominators, since that is the way arithmetic 
has always worked with integers. However, the student exerts inhibitory 
control to resist this temptation and instead searches his or her mental 
space for the correct procedure and executes this.

Reasoning mathematically requires a large amount of both working 
memory and inhibitory control, meaning that learning environments that 
tax these resources tend to reduce reasoners’ ability to make inferential 
leaps, attend to abstract relationships, and broadly perform higher-order 
thinking (Tohill and Holyoak 2000; Cho, Holyoak, and Cannon 2007). 
Thus, teachers and educational technology must not overload children’s 
developing executive function resources so that students do not attend to 
irrelevant information and can retain adequate information in their mind to 
solve a problem. Also, overloading will mean that students memorize pro-
cedures rather than draw connections and develop necessary conceptual 
knowledge.

Overloading working memory and inhibitory control resources can 
happen when children have to do lots of calculations in their heads, such 
as when teachers give long lists of instructions, or when there are lots of 
distractions that they have to work to ignore or not respond to. In tech-
nology platforms, these distractions such as irrelevant pictures, noises, 
or game steps that a child needs to either remember or ignore, should 
be avoided. Similarly, there can be distractions in an everyday classroom, 
such as having to ignore an alluring misconception, remembering prob-
lems without being able to write down or see the steps, or needing to 
recall a long list of activity instructions that are external to the mathemat-
ics concepts themselves.

The reason that working memory is important in mathematical 
thinking is because it plays an important role in taking mathematical 
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information and making sense of it, transforming it (e.g., moving from a 
word problem to a symbolic equation), and, generally, allowing children 
to think their way through problems. Imagine that a student is listening to 
two other students describe different ways they solved a problem. This 
can be an extremely beneficial way to help students realize that most 
math problems can be solved many different ways, and so they should 
therefore try to think through a problem, not just use a method taught 
by the teacher. However, to benefit from this kind of mathematical dis-
cussion comparing solutions to problems, each student must create two 
mental models of these solutions and then line them up in his or her head 
to consider whether both are correct, how similar (or divergent)  they 
actually are, and whether the student could use these models on another 
new problem.

Inhibitory control is integral to suppressing irrelevant yet potentially 
salient misconceptions (Cho, Holyoak, and Cannon 2007; Richland, 
Morrison, and Holyoak 2006; Begolli et al. 2018). In mathematics, this 
could include the misconception that dividing by a fraction should lead to 
a smaller number (as it does in integers), or that 6/10 should be more than 
3/5 since the numbers are larger. Thus, variations in executive function 
cognitive capacity may explain why some students notice and benefit from 
mathematical learning opportunities, while others do not unless provided 
with more instructional support.

For example, in the problems mentioned earlier, when A = 0, B = 
1, C = 2, and so on, solving the equivalence problem F + B = ——— + D 
requires that we hold active in working memory each letter (or num-
ber symbol in the case of young children), retrieve its correspondence 
to the number symbol (magnitude)  from our long-term memory, and 
manipulate this information in our working memory to get to the answer. 
So, understanding this solution in terms of the magnitudes that F, J, and 
D represent, while focusing on the steps necessary to get the correct 
answer (D), represents a considerable effort even for adults. Thus it is 
unlikely that a child will have adequate additional mental resources to 
consider why and how he or she is doing this manipulation and whether 
the answer seems correct. However, in LAC, the primary mathematics 
teaching method continues to be drill, practice, and memorization of pro-
cedures (Näslund-Hadley, Loera Varela, and Hepworth 2014). Although 
some memorization is needed, an almost exclusive focus on procedures 
and artifacts leaves the child with fewer resources for critical and cre-
ative thinking.

Educators and technology designers need to be aware that if children’s 
executive function resources are overtaxed (including by mathematically 
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irrelevant artifacts such as the requirement to remember complicated 
instructions or in a game design that requires attending to features that are 
not mathematically relevant), children may not have adequate resources to 
deploy for problem-solving, mathematical reasoning, checking solutions, 
or remembering complex concepts. For example, identifying similarities 
and differences between mathematical problems or solutions has been 
deemed as useful for building conceptual knowledge of mathematics 
(NRC 2001; CCSS Initiative 2010). However, the way that these problems 
or solutions are presented can have a large effect on student thinking, with 
the largest gains being when students do not have to remember what their 
classmates or the teacher said, but rather when they can see these both 
on a board, a screen, or on paper (Begolli and Richland 2016; Richland 
and McDonough 2010). If a teacher states that a new problem “uses the 
same strategy as the last problem,” but the students have to spend men-
tal effort remembering what that last problem strategy was, they will have 
less time to think about how that solution can be applied to the new prob-
lem. Educational technology needs to have similar considerations in mind, 
for example by visualizing previously referenced examples, to ensure that 
children’s resources are not overburdened. Table 1.1 highlights points in 
children’s cognitive development that are important to consider when 
using technology in the classroom.

1.3 A New Definition and Standards for Mathematical Proficiency

The recommendations of research analysis and international reports on 
LAC are evident: educational improvements in the region require clear, 
high-quality standards for student learning and achievable steps for attain-
ing these aims (ICSU-LAC 2010; Board 2006; Puryear and Goodspeed 
2011). Learning standards provide common norms for everyone involved in 
the decision-making process of designing and implementing mathematics 
educational technology. The standards should involve attainable goals for 
student thinking, rather than a list of topics to be covered or general learn-
ing theories that are difficult for teachers to implement (Zimba 2014). LAC 
has largely focused on expanding access to education, but few countries 
have focused reform efforts on developing national learning standards 
(Board 2006). Many of these standards are still developing, but invest-
ments in schools have thus far not resulted in increased learning outcomes 
(Puryear and Goodspeed 2011).

As in other higher-achieving countries, educational reforms in the 
United States have taken the approach that a necessary first stop to cre-
ating coherent and effective learning experiences for the nation’s youth 
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TABLE 1.1
KEY DEVELOPMENTAL POINTS TO CONSIDER WHEN EVALUATING AN 
EDUCATIONAL TECHNOLOGY OR CURRICULUM
Cognitive or Curricular 
Factor Implication for Learning What to Look For

Primary school children’s 
brains are still developing 
the capacity to control 
their attention, focus 
on the relevant parts of 
incoming information, 
and purposefully not pay 
attention to irrelevant 
information. This capacity 
is referred to as their 
executive functions.

Instructional designers 
may be surprised that 
children have trouble 
identifying the key 
information they are 
supposed to be attending 
to within a lesson or 
informational display, and 
are easily distracted. This 
distraction can lead to 
not paying attention to 
crucial lesson content, or 
to remembering irrelevant 
or sometimes misleading 
information.

Informational displays 
should limit irrelevant 
information (even if 
intended to increase 
interest), use movement 
sparingly but intentionally, 
and at the same time use 
cues to draw attention 
to key information (e.g., 
brighten information, 
or show multiple 
representations of the 
same concept together).

Children’s brains are also 
developing an ability 
to hold several pieces 
of information active 
simultaneously. This is 
called working memory.

Holding multiple steps of 
problems in their memory, 
remembering how one 
problem is related to 
another problem, thinking 
about task instructions 
while planning a multistep 
solution—all of these are 
challenges for primary 
school children.

Activities should not 
require remembering lots 
of instructions or steps 
while planning, thinking 
through, or executing 
complex problem-
solving. If children are 
working to control 
their attention (see the 
discussion of executive 
functions in the top left 
panel of this table), they 
will have less working 
memory available to 
simultaneously think 
about many steps, pieces 
of information, or plans.

Transfer: Children who 
learn a concept or 
problem-solving strategy 
for one problem often do 
not notice that they can 
use it for other problems 
or in new contexts.

Children’s mathematical 
knowledge becomes 
inflexible and unlikely 
to be used in everyday 
contexts, or they do not 
make connections from 
one concept to another. 
This requires relearning 
and memorizing many 
separate topics rather 
than making sense of 
mathematics in a more 
coherent manner.

Mathematical ideas should 
be taught in relation to 
other ways that they 
can be used. Activities 
should be very explicit 
about the connections 
between mathematical 
ideas or concepts, using 
comparing or contrasting 
language.

Source: Prepared by the authors.
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is to develop high-quality standards for mathematical proficiency. The 
U.S. standards stem from a comprehensive research base and are aligned 
with educational standards of other higher-achieving countries (Cobb and 
Jackson 2011). While the U.S. Common Core curriculum has generated 
controversy and is not without fault, it does provide one strong model for 
how to use researcher-practitioner partnerships to build a coherent set 
of standardized goals for student learning. Importantly, these goals are 
not only about curriculum topics. They also include practice standards, 
which are goals for student behaviors and approaches to mathematics, as 
described in more detail below.

The U.S. Common Core Standards were established with a dual 
goal to (1) provide guidance for educators about key topics and prac-
tices to focus on, and (2) allow for common ground so that there could 
be district, state, and federal testing to measure and compare stu-
dent progress. The Common Core has been controversial and has been 
both praised and criticized in terms of both of these goals. With regard 
to the first goal, the standards are under pressure to ensure that key 
mathematical content areas are adequately covered and that enough 
guidance is provided to teachers to ensure that the aim can be imple-
mented as intended. The second goal has been more controversial, with 
concerns arising in part because testing has grown to replace many 
instructional days, and in part because these tests are often tied to 
funding decisions. Educators argue that there are many reasons why 
students might underperform relative to peers that are not tied to edu-
cational quality, such as parent investment or financial security. At the 
same time, testing can provide insight into where resources must be 
directed to improve student learning, including professional develop-
ment of teachers.

Since the focus here is on the important step of developing standards 
for mathematics instruction, the U.S. Common Core Standards are used as 
an example that raises some key issues for consideration as Latin American 
and Caribbean countries develop their own versions of the standards.

1.3.1  An Example of Research-Based Standards: The U.S. Common 
Core Standards

The development of the U.S. Common Core State Standards for Mathe-
matics (CCSS)  derived from the collaborative efforts and expertise of 
73 specialists involved in educational reform (Zimba 2014). It took into 
consideration the learning standards of internationally top-achieving 
countries on the standardized Programme for International Student 
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Assessment (PISA) and Trends in International Mathematics and Science 
Study (TIMSS) assessments (Cobb and Jackson 2011). While many coun-
tries have their own curriculum standards, the CCSS has unique properties 
that provide recommendations on how to formulate teaching goals that 
draw on theory and aim for deeply thoughtful learners, but are also practi-
cal in a classroom context. The CCSS is not prescriptive in that these goals 
may be reached using different instructional techniques. But it does pro-
vide teachers with goals for practices, as well as a structure for deciding 
which topics to cover and when. Having teachers all align with these top-
ical sequences helps to ensure vertical integration—coherence between 
the curricula taught over multiple years of primary education—such that 
teachers know what their students will have learned the year before. The 
standards were developed by establishing the following rigorous criteria 
(CCSS Initiative 2010):

• Fewer, higher, and clearer standards to best drive effective policy 
and practice

• Alignment with college and work expectations so that all students 
are prepared for success upon graduating from high school

• Inclusive of rigorous content and applications of knowledge 
through higher-order skills so that all students are prepared for the 
21st century

• Internationally benchmarked so that all students are prepared for 
succeeding in the global economy and society

• Research- and evidence-based.

These criteria resulted in the creation of a model for standards based 
on two key components: the development of curriculum content (con-
tent standards); and the instructional practices that lead to mathematical 
proficiency (practice standards), as summarized in Table 1.2. Practice 
standards describe the particular skills that are expected from students, 
while content standards are developed on the basis of these expectations. 
The relationship is reciprocal: knowledge and skill expectations drive the 
nature of content, and content selection constrains/fosters the expected 
knowledge and skills. Educational technology design should be informed 
by standards, and content should feed into expectations. The next section 
focuses on standards for curriculum content and mathematics practices, 
drawing attention to not only content but also to specific goals for stu-
dents’ mathematical thinking. The sections that follow then highlight some 
of the core ideas that run throughout the key standards for primary school 
mathematics.
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Practice StandardsPractice Standards

Practice standards are designed to describe and codify critical “processes 
and proficiencies” needed for students to be qualified users of mathemat-
ics in and outside the classroom. Practice standards refer to how students 
engage with mathematical tasks and content, and are distinct and separate 
from curriculum topics, which state the mathematical content knowledge 
students must master. Internationally, national mathematics standards 
typically include curriculum content skills, but they less frequently con-
tain process skills such as those described in panel A of Table 1.2. The 
practice standards needed by successful students in the U.S. context were 
identified by a highly esteemed, independent organization that has been 
involved in school reform and standard development since 1920, the U.S. 
National Council of Teachers of Mathematics (NCTM). The NCTM pub-
lishes four research journals in mathematics education, including the most 
influential periodical in mathematics education worldwide—the Journal 
for Research in Mathematics Education (H Index, 60, 2017). The NCTM’s 
synthesis of research resulted in the creation of the “process” strands in 
problem-solving, reasoning and proof, communication, representation, 
and connections (NCTM 2000).

These strands derive from a definition of mathematical proficiency 
developed by the U.S. National Research Council (NRC 2001), which 
was charged by the U.S. Department of Education with defining what to 
expect of students exiting high school. The council’s landmark 2001 report 
integrates a large body of mathematics educational research to define 
mathematical proficiency and guidance on how they should be used to 

TABLE 1.2 
U.S. COMMON CORE STANDARDS
A. Practice Standards B. Content Standards

• Make sense of problems and 
persevere in solving them

• Reason abstractly and quantitatively
• Construct viable arguments and 

critique the reasoning of others
• Model with mathematics
• Use appropriate tools strategically
• Attend to precision
• Look for and make use of structure
• Look for and express regularity in 

repeated reasoning

Elementary
• Whole numbers
• Addition and subtraction
• Multiplication and division
• Fractions and decimals

High school
• Number and quantity
• Algebra
• Functions
• Modeling
• Geometry
• Statistics and probability

Source: Prepared by the authors based on CCSS Initiative (2010).
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frame educational goals. The NRC defined mathematical proficiency as a 
set of five interwoven strands:

• Conceptual understanding: Comprehension of mathematical con-
cepts, operations, and relations

• Procedural fluency: Skill in carrying out procedures flexibly, accu-
rately, efficiently, and appropriately

• Strategic competence: Ability to formulate, represent, and solve 
mathematical problems

• Adaptive reasoning. Capacity for logical thought, reflection, expla-
nation, and justification

• Productive disposition: Habitual inclination to see mathematics as 
sensible, useful, and worthwhile, coupled with a belief in diligence 
and one’s own efficacy (NRC 2001).

The CCSS practice standards were developed by building on the 
NCTM’s definitions of mathematics proficiencies—”processes and profi-
ciencies.” More detail about each student expectation is as follows:

1. Make sense of problems and persevere in solving them. Problem-
solving begins with students explaining to themselves the meaning of 
the problem and analyzing multiple entry points for solutions. Solu-
tions themselves are checked with different methods to ensure their 
validity.

2. Reason abstractly and quantitatively. The student should have the 
ability to decontextualize a problem by representing it only through 
abstract symbols, such as numbers and/or shapes (e.g., Juan had 
some apples. He gave 42 to Maria and is left with 34. x – 42 = 34), 
and the ability to pause and contextualize abstract symbols into their 
referents. Children should reason about quantity through units and 
by understanding the meaning of quantity, not just by following the 
computations.

3. Construct viable arguments and critique the reasoning of others. Stu-
dents should communicate by building logical arguments and justify 
critiques by breaking down situations into cases. They should reason 
inductively about data and evaluate plausibility based on the context of 
the data. Mathematically proficient students should be able to evaluate 
effectiveness and plausibility to recognize flawed arguments, recognize 
domains where correct arguments apply, and ask questions.

4. Model with mathematics. Students should reason about every-
day events and use mathematics to describe these events. They 
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should be able to quantify practical situations and connect or rep-
resent them through graphs, tables, diagrams, flowcharts, and for-
mulas while being able to flexibly traverse between the data and  
context.

5. Use appropriate tools strategically. Students should be familiar with 
the mathematical tools that are available to them to solve problems, 
including pencil and paper, calculator, spreadsheets, compass, ruler, 
dynamic geometry software, or a statistical package. Importantly, 
students should be able to recognize which tool is appropriate for 
each situation or problem.

6. Attend to precision. Mathematically proficient students should be 
able to communicate with precision (both in writing and verbally, 
according to context), determine units of measure and labels, under-
stand the symbols they use, and calculate with efficiency.

7. Look for and make use of structure. Students should be aware of 
structural properties of numbers and shapes. They should under-
stand how to make use of the commutative property (A + B = B + A 
and A x B = B x A), the associative property (A+ (B + C) = (A + B) + C 
and A x (B x C) = (A x B) x C)), and the distributive property (A x (B 
+ C) = A x B + A x C). Mathematically proficient students will notice 
patterns and be able to break problems down into parts that make 
sense. For example, in the following problem, 5 * (x+3) = 30, stu-
dents should be guided to notice that 5 * “something” = 30, namely 
(x + 3) could be thought of as an abstract quantity, and if students 
know 5 x 6 = 30, then “something” or x + 3 = 6. Students can simplify 
the problem by using their knowledge of its mathematical structure 
to solve it on a conceptual level without necessarily following a pro-
cedure. Similarly, by knowing that a box is comprised of six sides, 
students should recognize that the area of a cube is equal to the 
area of six squares.

8. Look for and express regularity in repeated reasoning. Mathemati-
cally proficient students should be guided to reason out repetitive 
mathematical operations and/or results to derive abstract knowl-
edge—including generalizations, such as mathematical formulas and 
shortcuts. For instance, a teacher could ask students to come up 
with various ways of representing the number 32 through fractions. 
Some students may represent 32 as 64 ÷ 2, 96 ÷ 3, 128 ÷ 4, while 
others may represent 32 as 320 ÷ 10, 3,200 ÷ 100, 32,000 ÷ 10,000, 
and so on. The teacher can lead them to discover that 32 could be 
any number, for instance, “x” and that the general pattern is nx/n = 
x for all n>0.
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Content StandardsContent Standards

A second major contribution of the CCSS is to specify big ideas that run 
through multiple topic areas but that lend coherence to the curriculum. 
Many national standards have been critiqued as being a “mile wide and 
an inch deep” (Schmidt, Houang, and Cogan 2002), meaning that they 
encourage a curriculum with too many topics, such that teachers cannot 
help students attain a deep conceptual understanding of any one  
topic.

Instead, the CCSS proposes that curriculum content be focused and 
coherent in order to foster students’ attainment of knowledge and skills in 
accordance with expectations. The curriculum focus is critical for centering 
everyone’s attention on topics that are essential to mathematical proficiency. 
Coherence between topics is key so that content is rendered in a logical 
way, aligned with the structure of mathematics as a discipline (Zimba 2014). 
The focus and coherence of mathematics content is comparable between 
the top-achieving countries in international assessments of mathematics, 
and the U.S. Common Core Standards have a striking similarity with those 
seen in these countries (Schmidt, Houang, and Cogan 2002; Schmidt 
and Houang 2012). The standards seek to harness the foundational 
content necessary for students to develop complex mathematical 
thinking focused on mastery of procedures, conceptual understanding, 
and the application of mathematics 
to real-world situations. While the 
entire curriculum cannot be covered 
here, the core mathematical ideas 
for primary school mathematics can 
be summarized as (1)  number, and 
(2)  geometry and measurement. 
Administrators evaluating educational 
software might consider whether 
the content being taught aligns 
with these foundational knowledge 
areas. Table 1.3 provides a list of 
content curriculum areas covered by 
the content standards for primary 
school mathematics.

1.4 The Development of Mathematical Thinking

This section describes in more detail the two categories of the mathematical 
skills presented earlier in Table 1.2: (1) number skills, and (2) geometric/

TABLE 1.3
KEY PRIMARY SCHOOL 
MATHEMATICS CONTENT 
CURRICULUM AREAS
Counting and cardinality
Operations and algebraic thinking
Number and operations in base 10
Number and operations—fractions
Measurement and data
Geometry
Ratios and proportional relationships
The number system
Expressions and equations
Functions
Statistics and probability

Source: Prepared by the authors based on 
CCSS Initiative (2010).



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION32

measurement/spatial skills. A wide spectrum of early mathematics 
software is available for these two skill categories.

1.4.1 Number Skills

At the heart of the mathematics curriculum during the preschool, 
elementary school, and middle school years is the concept of numbers 
(NRC 2001). Research on numerical development encompasses a wide 
gamut of mathematical skills, from rudimentary knowledge emerging 
in early infancy to complex mathematics in adulthood, examined from 
various developmental perspectives and disciplines, including cultural, 
linguistic, cognitive, and neurological ones, to name a few.

While one may be used to thinking about mathematics as a precise 
discipline centered on numbers, the example of numbers substituted with 
alphabetic symbols above shows that numbers are tools to help us think 
about deeper mathematical concepts relating to quantity, shape, and 
measurement. Before babies have ways of talking explicitly about numbers 
(e.g., with words, “one” “two,” and later with symbols, e.g., “1, 2”), they have 
a system in their brains that helps them discriminate coarse magnitudes and 
shapes. For example, six-month-olds can distinguish between 2:1 ratios (e.g., 
seeing eight ducks versus four ducks), which is supported by neurological 
data. Infants do not count, but instead have an approximate representation 
that can discriminate eight ducks as more than four ducks. However, children 
do not begin to make the connection between the elementary, separate 
quantities 1–4 and symbols to describe those set sizes until they are 3 or 
4 years of age, or later for children from impoverished backgrounds. This 
progression from nonsymbolic (size, quantity, amount)  ways of thinking 
about numbers to symbolic ways (e.g., number words or agreed-upon 
conventions for shapes that stand for amounts such as “1” and “2”) happens 
at approximately 3 or 4 years of age. As children grow, this correspondence 
between symbols and senses of quantity expands to account for a wider 
range of whole numbers. This progression is slow and stepwise, starting 
with 0–10 when they are around 4 or 5 years old, then 0–100, until they 
comprehend 0–1,000 when they are 8 or 9 years old. At the core of the 
developmental trajectory underlying numbers lie the mathematical concepts 
of ordinality, cardinality, and one-to-one correspondence that present a 
particular challenge for children and are described next.

Numbers: Ordinality, Cardinality, and One-to-One CorrespondenceNumbers: Ordinality, Cardinality, and One-to-One Correspondence

It is hard to think of a concept that can match the versatile nature of 
numbers. Numbers can be thought of as an infinitely long, ordered list of 
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distinct numerals, that is, ordinality (e.g., 1, 2, 3, 4, …, which we will refer 
to as the “number list” for ease of reading) and also as quantifying a set 
of things, that is, cardinality (e.g., “I have four apples”). As adults, we may 
think of the number list and cardinality as a single system of numbers, but 
children still need to make a connection between the two. These concepts 
are very familiar to adults, and to remind the reader of how difficult these 
connections can be when working with abstract symbols, we refer back 
to the example used in the beginning of the chapter (e.g., how many 
fingers is “H”?). To use numbers for mathematical thinking, people need 
a physical representation either in spoken or written form (NRC 2001). 
Number symbols are arbitrary: for example, the quantity of three could be 
represented by the symbol 3, but we could have adopted a different symbol 
(e.g., III, or D, as was the case in the example). The connection between the 
number list and cardinality underlies all mathematical thinking.

As children begin to understand the one-to-one correspondence 
between certain items and a list of numbers and cardinality (a set of items), 
they begin to realize that counting is a form of addition. If a student has 
4 apples and the teacher gives him or her 1 more, the student does not 
need to count the 4 apples from the beginning to realize he or she has 5 
apples, if the student realizes that 5 comes after 4 on the list. Yet, children 
who are taught to follow a procedure for addition will often revert back to 
counting their set from the beginning (i.e., count the set of 4 apples then 
count 1 more apple to make 5 apples) because they have been taught to 
follow such procedures for “addition.” Thus, children need to be guided to 
observe that counting is a way of adding, whereas subtracting is counting 
backwards. Educators need to keep in mind, however, that these concepts 
are connected through symbols that children are still mastering (e.g., 
imagine if one had to count onward from “J”). Often children will be able 
to “add” by counting, without understanding the increase in magnitude, 
just as an adult would try to perform the procedure of counting onward 
(i.e., recite the letters) from “J” by knowing that after “J” comes K, L, M and 
so on, but may not be able to immediately think of the overall quantitative 
increase or the total quantity—denoted by the last symbol of the set. Much 
too often, teaching and technology reinforce the recitation of numbers, not 
understanding. Instead, symbols need to be accompanied by magnitude 
representations, such as number lines that increase/decrease in quantity in 
alignment with the list of symbols (Siegler and Ramani 2008). As children 
master the one-to-one correspondence, they need to be guided toward 
understanding our number system as a base 10 place-value system, 
leading them to become fluent in making 1-to-10, 1-to-100, 1-to-1000 etc. 
correspondences, since children think of each place value as a single unit.
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Base 10 and Place ValueBase 10 and Place Value

A key element of gaining number sense in the primary grades is developing 
an understanding of the base 10 pattern and place value and using these for 
arithmetic calculations of addition, subtraction, multiplication, and division 
with increasingly large numbers. Early place-value skills predict arithmetic 
skills in middle primary school (Moeller et al. 2011), and experimental data 
reveal that high-quality training in base 10 understanding leads to gains 
in overall number understanding (Mix et al. 2017). Interestingly, Mix et al. 
(2017) found that all students receiving directed instruction about how to 
decompose numbers into their base 10 structure using symbols (e.g., 112 
= 100 + 10 + 1) and those who did so with both symbols and with base 10 
blocks improved on number line magnitude skills, which are a key indicator 
of number skills. Also interestingly, they found that while all students 
gained, the concrete manipulatives worked best for students who started 
with lower understanding, while the symbol version was most effective for 
students who started with a higher understanding.

In arithmetic, children must first understand the mathematical concepts 
underlying their calculations. Understanding can be evidenced by their 
ability to group and decompose numbers flexibly (e.g., understanding 
easily that 4 + 3 = 7, which also equals 2 + 5 or 1 + 6 or 6 + 1, or the number 
of cookies held by a child with 4 cookies who gains 3 more). By grouping 
and regrouping in these ways, children can begin to learn what happens 
when the sum reaches above 9, leading to a second 10, which introduces 
place value. Regrouping numbers into tens and ones (e.g., 121 = 100 + 20 
+ 1), and building on that to add numbers by adding the ones, tens, and 
hundreds separately, can be used to gain a strong understanding of the 
role of place value.

An important consideration when teaching any mathematical rule or 
algorithm is that children seek efficiency. Therefore, if they are taught an 
algorithm, such as “carrying” or “borrowing” for multidigit addition or sub-
traction, they will very likely attempt to use that rule regardless of whether 
they truly understand it. The main problems stemming from this are that 
(1) children make errors in the rule execution, but their lack of understand-
ing means that they do not recognize their answers as implausible; or 
(2) they do not understand the limits to applying a rule, leading to over- or 
under-application. Importantly, once students start using an algorithm, an 
instructor will have to work very hard to motivate them to pay attention 
to more conceptual discussions or activities that prove the rule. Thus, it is 
essential to ensure that students have a strong base for understanding a 
rule, such as “carrying” or “borrowing” for multidigit addition or subtrac-
tion, before it is introduced.
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FluencyFluency

Once this understanding of place value is strong, and only then, is fluent 
memorization of mathematical facts important. Children must become 
fluent in these calculations, meaning that they must practice speeded 
memorization of routine calculations of addition, subtraction, multiplication, 
and division of integers between 0 and 12. This enables students to free 
up conceptual resources for thinking through increasingly more complex 
problems. Thus, both conceptual understanding and memorization are 
important to developing strong number sense, but memorization that 
proceeds without understanding is unlikely to support full mathematical 
proficiency. Technology can provide an excellent tool for such memorization 
practice, with optimal efficiency produced by creating some spaced time 
between each repetition of a number fact to be memorized, but making 
shorter intervals between repetitions for items that were answered 
incorrectly, and longer intervals for items answered correctly (Kang 2016).

FractionsFractions

Fractions are an additional core curriculum area in primary mathematics. 
However, fractions are highly challenging, in part because they involve 
a different understanding of numbers than emerges from experience 
performing arithmetic calculations with integers. For example, larger 
numbers in the denominator of a fraction signify an increasingly small 
quantity, which is counterintuitive unless children fully understand the 
role of fractions as partial quantities. Children’s understanding of fraction 
representations seems to develop around second grade, but some adults 
never reach high levels of fraction proficiency (DeWolf et al. 2014). 
Foundational knowledge of fractions is thought to be critical for children 
to successfully advance to algebra. In fact, the evidence suggests that 
fraction knowledge at age 10 predicts algebra knowledge at age 16, after 
accounting for other types of mathematical knowledge (e.g., addition, 
multiplication), cognitive ability measures, and family income and 
education (Siegler et al. 2012).

There are several competing theories for how children advance from 
a rudimentary stage of distinguishing magnitudes to proficiency with 
fractions. A common thread among these theories suggests that the 
development of children’s knowledge of fraction concepts is distinct from 
that of whole numbers. This implies that an understanding of whole numbers 
interferes with the later learning of fractions (Wynn 2002; Gelman and 
Williams 1998; Vosniadou, Vamvakoussi, and Skopeliti 2008; Geary 2007). 
These theories have provided fruitful ways for thinking about how children 
learn whole numbers, but have generally provided incomplete accounts 
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of children’s developing thinking, suggesting that there are indeed strong 
relationships between whole number and fraction understanding.

More recent studies indicate that children who can more accurately put 
a number on a number line and more fully understand base 10 structure 
and number decomposition can more quickly build fraction understanding 
(Ischebeck, Schocke, and Delazer 2009; Bailey, Siegler, and Geary 2014; 
Meert, Grégoire, and Noël 2009; Siegler and Lortie-Forges 2014). This has 
important implications for educators and technology designers because it 
suggests that children should be taught to integrate their knowledge about 
whole number magnitudes with their understanding of fraction magnitudes. 
Similar to issues of one-to-one correspondence with whole numbers, children 
need to understand the correspondence regarding the relationship between 
two numbers in a fraction and the magnitude they represent. A successful 
intervention that could translate to educational technology is to teach children 
to represent fractions on a number line in order for them to understand the 
magnitude related to the fraction and connect that with their whole number 
knowledge (Fuchs et al. 2013, 2014). This is also supported by a recent theory of 
number development from Siegler and colleagues, known as the integrative 
theory of numerical development, which suggests that children’s conceptual 
development of fraction knowledge lies on a continuous progression with 
their conceptual development of whole numbers (Siegler, Thompson, and 
Schneider 2011; Siegler and Lortie-Forges 2014). Based on this theory, 
children’s number development is comprised of four developmental steps 
that build on each other:

1. Nonsymbolic representations of quantity
2. Moving from nonsymbolic to symbolic representations of quantity
3. Extending symbolic representations to larger quantities
4. Extending knowledge of whole numbers to rational numbers (fractions).

These stages are useful for discussing numerical development 
through primary school. There is research support for the idea that 
improving knowledge of whole numbers extends to fractions and, 
subsequently, fraction arithmetic (Fuchs et al. 2013, 2014). Thus, moving 
from nonsymbolic to symbolic representations between magnitudes and 
number symbols of increasingly large or fractional numbers is not a rote 
memorization process. Rather, it is the key developmental progression 
in children’s understanding of numbers and should be considered in the 
design of primary school curricula. Also crucial is that at each stage the 
teacher guides students to recognize the relationships between each of 
these four steps, for example showing nonsymbolic quantities next to 
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symbolic representations. While this is more commonly enacted for small 
numbers in the early grades, it is also important for larger numbers and 
fractions. This could be accomplished with manipulatives, an abacus, or 
even by drawing and counting marks such as tallies.

1.4.2 Geometry, Measurement, and Spatial Thinking

Beyond numbers, primary school mathematics builds on children‘s 
fundamental spatial and geometric skills. From complex natural structures 
of flower petals to the intricate architecture of skyscrapers built to resist 
earthquakes, humans perceive objects in the world as shapes of various 
measurements existing in space. Geometry may be defined as the study 
of shapes and space, and measurement as a manner of specifying the 
size of objects. Together, these play a vital role in children’s development 
of sophisticated skills needed in many modern undertakings, including 
science, engineering, architecture, and art. The purpose of geometric 
shapes (triangles, circles, cylinders, etc.)  is analogous to the purpose of 
numbers. They are abstract objects that approximate objects in the real 
world and serve as thinking tools that help us represent, measure, and 
manipulate objects around us.

Abstract objects, such as the cube, provide us the freedom to focus 
on their varying attributes of two-dimensional (2-D) and three-dimensional 
(3-D) space. For example, children can attend to length and area in 2-D and 
volume in 3-D. Working with these attributes necessitates an understanding 
that various units can be used to measure a cube. One could use a one-meter 
stick to measure the length of the sides, one-meter-squared tiles to measure 
the area, or one-meter-cubed blocks to measure the volume. These measure-
ments are extensions of a way to understand that the size of each unit always 
adds up such that the final number means the total number of units (e.g., 3 
meters long, 3 square meters, or 3 cubed meters). This is the same notion 
of cardinality described earlier, where children must first understand, when 
counting, that the final in a count list of objects refers to the entirety of the 
set. Thus, measurement and geometry can provide a supporting context for 
learning cardinality, a key mathematical concept, as well as for understand-
ing how to use cardinality to understand measurement.1

There are object properties that can be observed/discovered by 
composing/decomposing shapes and/or moving them through space. 
Analogous with the conceptual benefits of decomposing and combining 

1 For a fuller theory of children’s learning trajectory for measurement skill, see Szilágyi, 
Clements, and Sarama (2013).
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numbers into sets, smaller shapes can be combined to form one large 
shape, or a single large shape can be decomposed to form smaller shapes. 
Composing and decomposing are important geometric manipulations that 
will help children understand concepts of area in 2-D space and volume in 
3-D space. Reasoning about mathematics in the number domain and in 
the geometry and measurement domain is deeply intertwined, such that 
understanding in one domain can be used to facilitate understanding in 
the other.

Spatial thinking skills include how an object is positioned in space, 
alignments between objects and the relationships among them (above, 
below, half, etc.), ways of representing ideas in relation to one another (e.g., 
1/2 or 1:2), and the vocabulary itself used to describe spatial relationships 
(“above,” “under,” “behind;” see NRC 2006). Humans and animals use 
spatial thinking to navigate their environment—this is how we find our way 
home after a long walk. While navigation has important implications for 
finding our way through space, other aspects of spatial thinking are also 
theorized to be fundamental to mathematics education.

Spatial thinking skills afford the learner a way to conceptualize prob-
lems before solving them (Clements and Sarama 2007) and to categorize 
and represent shapes and objects and manipulate them through transfor-
mations (e.g., rotating objects, translating or moving objects, zooming in 
or out of objects, and folding; see NRC 2009). All species of animals that 
move through space use some form of spatial thinking, but only humans 
can extend their spatial knowledge through symbolic representational sys-
tems and figures such as numeric and geometric symbols, language, units 
of measurement, maps, diagrams, and graphs (NRC 2009). Thus, humans 
have the advantage to be able to learn and build on representations by rea-
soning. The sophistication of spatial thinking skills requires humans to use all 
three aspects of spatial thinking—space, representation, and spatial reason-
ing—in concert. While children have rudimentary spatial thinking skills from 
early infancy, their development of sophisticated spatial thinking seems to 
largely depend on their experiences with symbolic representations and fig-
ures, including puzzles, blocks, and digital environments. This suggests that 
spatial thinking abilities can and should be formally taught in schools with 
the use of strategically designed curricula and technology (NRC 2006).

The research evidence on spatial thinking suggests that infants can 
recognize and categorize shapes, objects, and distances on a coarse level 
before they can talk (NRC 2009). It is not until the second year of life that 
infants begin to make connections between their spatial abilities and use 
of spatial language. For example, 3-month-olds can differentiate spatial 
categories such as up versus down and left versus right (Quinn 2004). By 
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five months, infants can use geometric cues to learn the spatial location 
of objects (Newcombe, Huttenlocher, and Learmonth 1999). These abilities 
progress by 12–16 months to help them search for hidden objects (Hermer 
and Spelke 1994). By 4–5 years, children start showing abilities to perform 
transformations—moving objects in space and mental rotation (that is, 
turning an object on a vertical or horizontal axis by visualizing it in space). 
At this stage, children’s skills are not always reliable, but the spatial thinking 
skills needed to transform objects in one’s mind (e.g., imagining how a 
paper might look if it was folded), mental rotation, and visualizing objects 
from different perspectives continue to increase over time. Importantly, the 
development of spatial thinking depends on experiential skills.

Gender differences have played an important part of the literature on 
spatial skills and related mathematics. In the United States, clear gender 
differences emerge by 4½ years old, and differences based on parents’ 
income and education emerge by the second grade (Levine et al. 2005). While 
some have raised the possibility that these differences are genetic, much 
work suggests that socialization of gender differences in key mathematical 
and spatial skills begins early (Levine et al. 2016). A longitudinal study 
examining how U.S. parents play with their children suggests that parents 
used more spatial words and games when playing with their boys than with 
their girls (Levine et al. 2012). The amount of parent use of spatial terms 
predicts children‘s own spatial language use (Pruden and Levine 2017), and 
parents’ spatial talk predicts children‘s later spatial skills (Levine et al. 2012). 
Parents’ use of spatial language and children’s play experiences (e.g., playing 
with blocks and puzzles) also vary across different levels of socioeconomic 
status, which may lead to spatial thinking differences between high and low 
socioeconomic status children upon school entry, which in turn can lead to 
differences in school mathematics skills such as geometric thinking (Lourenco 
et al. 2011). This malleability is an opportunity to enhance the skills that 
underpin one aspect of primary school mathematics. Also important with 
regard to gender differences, it may be that identified gender differences 
across spatial and/or mathematical skill domains are driven by adult 
socialization, rather than any genetic or sex differences (Levine et al. 2016). 
While there are no comparable studies conducted in LAC, awareness of the 
potential for gender differences in educational experiences is important and 
could help to mitigate any tendencies to differentiate by sex.

Mental rotation and transformations represent the foundation for 
developing more sophisticated spatial thinking skills. These are simple 
skills that are highly correlated with broader mathematical achievement 
(Mix et al. 2016). Additionally, symbolic representations of space, such as 
spatial language, seem to play a key role in shaping children’s geometry 
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development in later years. Language helps children retain spatial concepts 
(Gentner 2003). Teachers and educators can use more spatial language and 
measurement terms (units, cardinality statements)  to increase children’s 
knowledge and use. Children’s understanding greatly depends on their 
experiences.

Early spatial skills together with environmental factors represent 
foundational knowledge for the later development of geometry and measure- 
ment. Measurement is important because it represents the intersection 
between geometry and numbers: that is, measurement can attach a “number 
to spatial dimensions” (NRC 2009). Children’s ability to measure seems 
to arise from their ability to compare lengths of objects, which begins 
around 4–6 months old (Baillargeon and DeVos 1991). Though these length 
discriminations are coarse, they become more precise between 2 and 4 years 
old. Units, meanwhile, pose a challenge that children do not overcome without 
explicit instruction. This is particularly true for transformations between units 
(e.g., 1 meter = 1,000 millimeters). Despite the important role that spatial 
thinking plays in the development of measurement and geometry, spatial 
thinking has not been successfully integrated into educational curricula. 
Nevertheless, the research base supporting spatial thinking has drawn interest 
in educational communities because it is trainable and has been linked 
to achievements in science and engineering careers. In LAC, the teaching 
of spatial reasoning has already been piloted and found to increase early 
mathematics learning (Näslund-Hadley, Loera Varela, and Hepworth 2014).

In the last two decades, scientists have discovered promising 
interventions that could close the gap between students with high and 
low spatial thinking skills. A meta-analysis of over 200 studies revealed 
significant gains after explicit training (Uttal et al. 2013b), suggesting 
this is an important area of focus in primary school mathematics. This 
meta-analysis suggests that training works for both males and females 
equally and lower performers gain more spatial skills than do higher 
performers. Spatial thinking interventions were categorized into three 
categories: course training (e.g., engineering courses), video games, and 
spatial tasks. There were no significant differences in the results observed 
across these three methods—all led to improvements (Uttal et al. 2013b). 
There are two reasons why spatial training might be effective. First, 
interacting with spatial tasks makes people more comfortable attempting 
them in social situations, reducing performance anxiety and fear of gender 
stereotypes, and thus boosting confidence (Ramirez et al. 2012; Estes and 
Felker 2011; Campbell and Collaer 2009). Second, these tasks may improve 
the cognitive skills necessary for spatial thinking—for example, the working 
memory needed to master a video game might lead to improvements in 
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spatial thinking (Dye, Green, and Bavelier 2009). Spatial thinking is effective 
probably because of both cognitive skills and social factors. Teachers and 
educational technology have an important role in bridging these more 
intuitive, rudimentary skills with mathematical concepts through spatial 
representations, such as number lines, measurements, blocks, etc.

Spatial Thinking in Education and CareersSpatial Thinking in Education and Careers

A series of studies provide evidence that not only might these early spa-
tial skills impact mathematics learning in a short-term way, they may also 
have long-term effects on students’ persistence in school and careers that 
are related to science and mathematics. Super and Bachrach (1957) exam-
ined the personal characteristics of scientists and engineers and found a 
strong relationship between people’s spatial ability and their potential to 
move into careers in science, technology, engineering, and mathematics 
(STEM). In the decades since, many other studies have examined whether 
spatial abilities could predict future careers (Benbow and Stanley 1982; 
Shea, Lubinski, and Benbow 2001). The findings from a congregate of 
50 years of research on data from more than 400,000 participants con-
sistently show that spatial ability around middle- or high-school levels 
predicted career placement in STEM fields (Wai, Lubinski, and Benbow 
2009). Importantly, spatial ability is predictive beyond students’ general 
mathematics and verbal abilities.

Spatial skills may matter most when students are at a point of entry 
in STEM disciplines and are grappling with elementary content (Uttal and 
Cohen 2012). Spatial skills are necessary for rotating molecular structures 
and for understanding maps and graphs (Hegarty 2010), and those who 
feel uncomfortable with these initial practices may not persist in STEM 
career trajectories. Thus, from an early stage, students with weaker spa-
tial skills may be deterred from STEM topics (Wai, Lubinski, and Benbow 
2009; Uttal et al. 2013b).

Overall, children’s development of mathematics through primary school 
requires them to apply specific mathematical reasoning skills that revolve 
around understanding units, composing/decomposing quantities and 
shapes, relationships and order, looking for patterns and structures, and 
organizing information throughout multiple domains and at every grade 
level. The content of mathematics learning standards should change appro-
priately with each grade level based on what children are able to learn at 
each respective age.2 At each grade level and with all content, children 

2 See, for example, the CCSS public website at http://www.corestandards.org/Math/.

http://www.corestandards.org/Math
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need to display mathematical reasoning skills outlined as mathematical 
proficiency in the practice standards. Table 1.4 describes the learning and 
classroom implications of different mathematical curriculum goals.

1.5 Challenges to the Learning Process

While instructional designers benefit from clear standards and aims, they 
also benefit from awareness of key challenges that their students will face 
when acquiring primary school mathematics proficiency. While a catalogue 
of all the challenges is beyond the scope of this chapter, it is important to 
note first that efforts to improve educational outcomes will be streamlined 

TABLE 1.4
POINTS TO CONSIDER WHEN EVALUATING EDUCATIONAL TECHNOLOGY 
OR INSTRUCTION RELATED TO MATHEMATICAL LEARNING
Curricular Factor Implication for Learning What to Look For

Instruction should be 
clearly related to a goal 
for broad mathematics 
proficiency, rather 
than to adequate 
performance on 
individual practices or 
content areas.

Instruction will be more 
effective in creating proficient 
learners if instructors have a 
set of standards that they can 
aim toward, and particularly if 
these standards address both 
curriculum goals and goals 
for mathematical practice.

Materials that outline 
goals for curriculum 
attainment and student 
thinking, and evidence 
of these goals in the 
instruction.

Children are born with 
interest in quantity and 
small numbers.

Teaching number symbols 
and calculations should build 
on these skills and interests.

Activities that move 
back and forth between 
interacting with real 
quantities and symbols 
that represent them.

Children must 
understand the base 10 
structure of numbers to 
fully comprehend place 
value.

Many primary school 
students learn rules for 
multidigit arithmetic without 
understanding place value.

Number pattern activities, 
i.e., counting by 2s, 
3s, 4s, etc.; breaking 
numbers down into their 
ones, tens, hundreds; 
using manipulatives or 
technology to handle 
ones, tens, hundreds, etc.

Spatial skills are 
trainable and are 
foundational to 
measurement, 
geometry, and many 
future careers that 
build on math or 
science.

Giving students experience 
in building spatial skills 
while learning curriculum 
content related to numbers, 
measurement, or geometry, 
can build understanding of 
those topics as well as spatial 
skills themselves.

Experience using maps, 
mentally rotating objects, 
solving puzzles, or using 
spatial words to describe 
information.

Source: Prepared by the authors.
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by attention to, and awareness of, students’ common misconceptions and 
areas of potential difficulty. This section first highlights some of the key 
misconceptions students develop during the primary school period and 
encourages educators to take explicit care that their students avoid or 
correct these misconceptions. It is a common belief that students who are 
not allowed to make errors will be more successful in the long term, though 
errors can actually enhance future learning through increased motivation 
and curiosity, as well as enhanced memory (Richland, Kornell, and Kao 
2009; Butterfield and Metcalfe 2006). The section then highlights factors 
that exacerbate achievement gaps within regions: feelings of pressure and 
stereotypes that may affect girls and minorities in particular, and which 
systematically lower math performance and the willingness to continue 
working in this content area.

1.5.1 Common Misconceptions

As a complement to determining optimal curriculum and practice standards, 
research has also demonstrated the utility of identifying common areas 
where children are likely to have difficulties and develop persistent 
misconceptions. Educators who are aware of potential misconceptions in 
a given content area can assess their students to determine whether they 
exhibit the misconception, and can then guide them towards correcting it. 
This is a more effective strategy than teaching the correct information and 
not engaging with the misconception. In that case, the learner will often 
exhibit the correct procedures, but after a delay, or faced with a similar but 
distinct type of problem, the misconception will resurface. If it was never 
addressed in the first place, the students’ mental representations will not 
have changed. While this chapter cannot cover all areas of misconception 
in primary school mathematics, it highlights two areas—fractions and 
fraction arithmetic, and equivalence and equations—to demonstrate the 
importance of documenting and reorienting misconceptions in support of 
student learning. It is important to be vigilant in identifying instruction 
(or educational technology)  that creates or reinforces misconceptions 
versus instructional conditions that support students in refining their 
understanding to be more accurate.

Fractions and Fraction ArithmeticFractions and Fraction Arithmetic

As noted above, children often develop misconceptions about fractions and 
fraction arithmetic, failing to understand how quantity concepts of whole 
numbers cannot directly translate to quantity in fractions. For example, 
children will often add two fractions by adding both the numerator and 
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the denominator (e.g., 2/7 + 3/4 = 5/11) and/or believe that multiplying two 
fractions leads to a larger quantity and dividing leads to a smaller quantity. 
These misconceptions may stem from misunderstanding the operations of 
multiplication and division.

Division is largely taught as dividing a quantity, or sharing, and it 
is difficult to conceptualize that one can divide or share a quantity and 
the outcome will be a larger number (e.g., 2 ÷ 1

4
 = 8). In these cases, it 

may be more useful to conceptualize division as a measurement or as an 
investigation of how many x’s fit into a y—namely, how many times a divisor 
(e.g., 1

4
) goes into the dividend (e.g., 2), where the result is a quotient (e.g., 

8), from the Latin word quot which refers to “how many.”
Similarly, multiplication is thought of as repeated addition, but this 

becomes difficult to mentally simulate, even for adults, when involving 
fractions (e.g., 2 × 1

2
 = 1). On the other hand, misconceptions about 

fractions may also stem from a lack of understanding about the 
magnitude represented by symbols used to represent fractions, which is 
apparent when children are asked to compare fractions (and decimals), 
and think the larger number also represents the larger quantity (e.g., 1/12 
is larger than 1/2 or 0.452 is larger than 0.51). These errors are a clear 
indicator that children think about mathematics as following procedures 
without understanding the meaning behind the symbols or operations. 
It is important to note that these errors are also common in students 
attending two-year colleges. Successful interventions have revolved 
around teaching students to draw relationships between fractions and 
broad differences in percentages (e.g., 50 percent is “half,” 100 percent 
is “everything,” 99 percent is “almost everything,” 1 percent is “almost 
nothing;” see Moss and Case 1999) and emphasizing fraction magnitudes 
(Fuchs et al. 2013, 2014).

Equivalence and EquationsEquivalence and Equations

A second area where children in primary school regularly develop 
misconceptions pertains to understanding equivalence and equations. 
Children are regularly shown only equations with the calculations on the 
left of the equal sign, and a blank on the right in which the answer to 
the left calculation should be entered. This also coincides with everyday 
nonmathematical notions of the equal sign as an intermediary between 
cause and effect, or operation and result, which are not in fact equivalence 
relationships (e.g., “buy one = get one free,” but not “get one free = buy 
one;” see Hofstadter and Sander 2013), which differs from equivalence. 
This leads to the belief that an equal sign means “put the answer here to 
the right” (e.g., for problem 2 + 5 = __). While this often leads students 
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to solve a problem correctly, if it is in the standard format, these children 
do not develop a more full and flexible understanding of equivalence. For 
example, they may enter a “7” for the blank in the following equation: 
2 + 5 = ___ + 3, not knowing what to do about the extra 3 in place. Also, 
they may have trouble with the same problem rewritten as ___ = 2 + 5. This 
misconception contributes to learners’ particular challenges when doing 
algebra, where they must take the equivalence relationship as a starting 
point for many calculations. This challenge may be mitigated by providing 
students with experience solving equations in nonstandard forms.

1.5.2 Anxiety and Stereotypes

Another significant challenge for certain children is their fear and anxiety 
about math and their feelings of performance pressure. Anxiety about 
mathematics can be culturally based and has been found to be more 
common among women than men (Hembree 1990). Mathematics anxiety 
leads learners to perform below their actual math abilities. For example, 
children may be anxious when they perform math at a chalkboard and the 
rest of the class is watching, during a math exam, or even when figuring 
out whether they have enough money to buy a candy bar (Ashcraft and 
Kirk 2001). Teachers who themselves suffer from mathematics anxiety 
might pass it on to their students, particularly the girls in their classrooms 
(Beilock et al. 2010).

The fear that one will confirm others’ stereotypes can also cause peo-
ple to overload their working memory system with worried thoughts. For 
example, a female student might experience an inner discourse that goes 
something like: “Everyone will expect me to do poorly on this test since I’m 
a girl, but I really don’t want to do poorly, I have to do well, oh no, I think 
I’m getting this question wrong and that’s going to confirm their stereo-
types…” (Steele and Aronson 1995). Engaging in this type of worry takes 
cognitive resources away from the actual mathematics problem, mean-
ing that students are likely to impair their performance despite the goal 
of performing well. A body of literature has shown that simply reminding 
individuals about their family income, race, gender, or other stereotyped 
categorizations before a test can lead to differential performance based 
on whether their group is stereotyped as low-performing. Interestingly 
these effects can shift, such that Asian-American girls in the United States 
at an elite college (where the stereotype is that Asian-Americans are good 
in math) did better than their average when reminded of their race, but 
lower than their average when reminded of their gender (Shih, Pittinsky, 
and Ambady 1999). Together with gender differences in socialization of 
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spatial skills, gender differences in mathematics at the university level may 
begin to be understood as having multiple sources.

Educators and technology designers thus need to be mindful to use 
gender-sensitive material that excludes biases and engages both genders 
and all races equally. Similarly, in the design of both paper-based and online 
assessments, it is important to include any questions about students’ 
personal characteristics at the end of the test, rather than the beginning, to 
ensure that students will not score differentially based on beliefs related to 
their personal identity. Unfortunately, when students begin to feel anxious 
or threatened because of their personal characteristics, they perform worse 
and this perpetuates stereotype-based beliefs. It is important to disrupt 
this insidious cycle. Table 1.5 outlines common challenges in mathematics 
instruction that need to be addressed to ensure effective use of education 
technologies for all students.

1.6 Tools for Supporting Students’ Mathematical Development

Many mathematics interventions have successfully used tools such as 
manipulatives or visual representations to help with children’s acquisition 
of mathematical concepts, often lowering students’ anxiety by moving 
away from pure symbol manipulation and making classroom instruction 
more approachable to all.

1.6.1 Manipulatives

Manipulatives are typically concrete objects (such as blocks), but they can 
take any shape or form (such as interactive technology), with the intention 
of providing children a tactile quantitative experience to help them learn 
abstract symbolic ideas. The abacus is one example of a concrete, tactile 
manipulative that has recently received much attention (Figure 1.1), but one 
could even include educational technology in this category as providing 
virtual manipulatives.

Manipulatives provide a way for children to go beyond the abstract 
thinking about mathematics described in the introductory example. A 
recent meta-analysis examined the effects of providing manipulatives for 
learning across 55 studies and found evidence of its benefits (Carbonneau, 
Marley, and Selig 2013). However, details about how the manipulatives are 
used in the instructional context are essential. If manipulatives are used 
without strong instruction or clear tasks, children may be engaged during 
activities with manipulatives but may not connect this learning to their 
mathematical understanding.
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TABLE 1.5
POTENTIAL CHALLENGES TO CONSIDER WHEN EVALUATING 
EDUCATIONAL TECHNOLOGY OR INSTRUCTION
Cognitive or 
Curricular Factor

Implication for 
Learning What to Look For

Children’s 
misconceptions 
should be clarified 
and addressed 
directly, rather than 
ignored, and a new 
strategy should be 
employed. At the 
same time, focusing 
on a misconception 
can lead to some 
students reinforcing 
that misconception.

Misconceptions 
will resurface if not 
addressed directly. 
But discussing 
them also runs the 
risk of directing 
the attention of 
children with low 
ability back to these 
misconceptions.

Undertake activities that elicit 
misconceptions by having children 
draw out their thought processes 
or express them in another 
nonstandard way, compare a 
misconception to a correct solution, 
or set up children to make errors 
so that they can be corrected and 
discussed. Using counterexamples 
to show why a misconception 
that does not always work can be 
helpful, and explicit demonstrations 
of why and how something is a 
misconception is essential.

Students and teachers 
may feel anxiety about 
math performance, 
either because doing 
math makes them 
anxious or because 
they are worried that 
others see them as 
poor in math.

Instructors must 
be vigilant not to 
activate feelings 
of anxiety or 
stereotype-based 
beliefs in their 
students.

Make sure instruction does not 
begin with reminders of children’s 
race/ethnicity/cultural or language 
background, socioeconomic status, 
or gender. Materials should not 
contain clear biases toward one of 
these categories or against others. 
Instead, make sure to transmit a 
message that effort, rather than 
ability, is responsible for success 
in mathematics. Children suffering 
anxiety use executive function and 
working memory resources toward 
that end, so they are especially 
susceptible to the problems 
described above when these brain 
resources are overwhelmed.

Source: Prepared by the authors.

FIGURE 1.1
EXAMPLES OF ABSTRACT (LEFT) AND PERCEPTUALLY RICH (RIGHT) 
MANIPULATIVES
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Several elements of the instruction turn out to be important. First, for 
manipulatives to be effective, they must be well understood by children 
(who sometimes need training in this). Teachers must highlight the key 
relationships being taught. The perceptual richness of manipulatives and 
adequate instructional time are also important to ensure their usefulness 
(Carbonneau, Marley, and Selig 2013).

In terms of development, younger children may encounter two hur-
dles to successfully working with manipulatives. First, they may think of 
a block as simply a toy, not a representation of a mathematics concept 
of quantity. Considering manipulatives as mathematical symbols may be 
conceptually challenging. This does not detract from their educational 
value, but teachers must be aware of the students’ learning process and 
explicitly support them in learning how to use manipulatives to conceptu-
alize mathematics.

Second, children may follow or be able to repeat demonstrated math-
ematical procedures with blocks but struggle to see the relationship 
between blocks and written numbers. Thus, young children may learn 
to correspond between quantity and manipulatives, or may provide the 
correct answer to a problem they have been shown how to solve with 
manipulatives. But they may not use what they have learned when solving 
calculation problems later—in other words, the manipulative activity was 
an interesting diversion for them, but not central to their conceptualization 
of mathematics.

The success of making the shift from concrete to abstract represen-
tations, at any age level, depends on the amount of teacher support. 
Teachers must be explicit and remind students to think about the manip-
ulatives even when solving problems without them. Manipulatives 
represent an additional system of symbols, but in physical form, and it 
takes additional mental resources to process and determine their utility 
(Uttal et al. 2013a). Some research evidence suggests that higher levels of 
instructional guidance promote increased retention and problem-solving. 
On the other hand, strategically presenting manipulatives in a way that 
complements instruction over longer time periods seems to help stu-
dents gain a deeper conceptual understanding when they are left to their 
own devices or with little instructional guidance (Carbonneau, Marley, 
and Selig 2013). This does not imply that providing manipulatives to chil-
dren will, on its own, lead to better learning. On the contrary, even when 
students are meant to discover how to use manipulatives with limited or 
no guidance from teachers, it is imperative for educators to be thought-
ful and to strategically choose when and how to integrate manipulatives 
into everyday instruction (Ball 1992). Manipulatives can take many shapes 
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or forms, and common intuition may favor manipulatives with the rich 
perceptual features of everyday objects (e.g., a pizza instead of a round 
one-color object, or money instead of blocks) as being more beneficial for  
children.

The research evidence suggests there are trade-offs. When manip-
ulatives appear similar to the phenomenon that they are supposed to 
represent, they are easier for students to use successfully right away. If 
they are too abstract, manipulatives may require additional time for stu-
dents to learn how to use them, though, in fact, abstract stimuli can be 
most helpful in the long run. Features that are unrelated to mathematical 
concepts can distract students from the main learning, whereas simple 
objects help children focus on the mathematical structure (Carbonneau, 
Marley, and Selig 2013). This suggests that abstract shapes such as plain 
squares, circles, and lines are more efficient than using toy animals, flow-
ers, or food as manipulatives. Abstract shapes can help children generalize 
mathematical concepts to multiple contexts, whereas with toys, children 
seem to restrict their learning to the context of playing with the toy.

Many in the field of developmental psychology or education will con-
sider research by Piaget (1977) when making decisions about the use of 
manipulatives. Piaget argued that there is a developmental trajectory such 
that younger children would benefit from early use of concrete tools for 
thinking about mathematics, moving to abstractions only once they have 
reached adolescence. In contrast, more recent research shows that all 
children can benefit from manipulatives, but that manipulatives are not 
helpful simply because they are concrete objects children can handle. 
Rather, the key to making physical manipulatives (or those in a technology 
resource) useful is to be sure that children can handle them appropriately 
and understand how they are related to the mathematical understand-
ing they are supposed to support. Then they can transition back to using 
symbolic representations. If students enjoy and engage in a mathematical 
topic with a manipulative, but then do not recognize how to solve a math-
ematics problem on another day without the manipulative, this suggests 
the learning was not generalized.

One model for using manipulatives and slowly moving back to sym-
bolic representations has been called “concreteness fading” (Bruner 1964; 
Goldstone and Son 2005). The idea is that students first use physical manip-
ulatives—for example, small pebbles to count the number of cookies in a 
division problem such as the following: If a boy has 12 cookies and shares 
them fairly with his best friend, how many cookies would his friend get? 
Now what about sharing them between three friends? The teacher could 
first have students use pebbles to solve problems like this, dividing them 
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into piles on a piece of paper. Then, they could write the mathematical 
symbols on that paper, in order to show the same process but in a sym-
bolic format, mirroring the half relationship of 1 whole (all 12 cookies) split 
into two equal groups, recording that this is the total group of cookies 
(1) divided into two parts (/2), so each pile gets the label 1/2. The same 
can be done with 1/3. Eventually, the teacher could ask students to solve 
problems like these using only the symbols, but, at the same time, could 
reference the pebbles to help the students connect their now-abstract 
learning to the manipulatives: “Remember how you can always just imag-
ine pebbles to help you think about these problems.” Thus, the teacher is 
moving from the more concrete use of a manipulative to a more abstract, 
symbolic form.3

1.6.2 Visual Representations

Beyond the use of concrete manipulatives, incorporating visual images and 
written versions of mathematics offers a powerful way to help students 
draw connections and reason mathematically (Begolli and Richland 2016). 
One way that visual depictions, or representations, of mathematics can 
be useful is to show one concept in multiple ways. For example, a teacher 
might demonstrate the concept of powers by first showing powers of 
two as a set of manipulatives, showing the size of two blocks, then four, 
then eight, and so on. Next the teacher could show powers of two as a 
two-dimensional graph, which often provides the same information but 
in a way that highlights different aspects of the concept—perhaps using 
concreteness fading as well. Showing these multiple representations 
of the same ideas is known to build broader and more generalizable 
understanding (Ainsworth 1999).

At the same time, a key to successfully using multiple representations is 
that instructional designers or teachers cannot simply provide the multiple 
representations, but must make the connections between them clear and 
evident to all students (Ainsworth 1999). There are many pedagogical 
decisions that teachers make about using multiple representations. One 
could present the manipulatives for powers during one class period, 
and, in another period, show the same patterns but using graphs. Or, a 
teacher could show the two ways of explaining powers one at a time, and 
then move to the formulas. The teacher will understand that these are all 
showing the same information, and some students may too. Many other 

3 For a fuller review and discussion of how concreteness fading could be accomplished 
using technology, see Fyfe et al. (2014).
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students, however, will need the teacher to be very explicit about how 
these representations are showing the same information. Teachers can use 
strategies such as showing the representations together on the board or in 
front of the whole class, or having students see or use them both together 
in a technology platform. Also, teachers can use hand gestures and explicit 
statements that show how these representations are similar and related 
(Alibali et al. 2014). The key is to ensure that students notice similarities 
or differences between these representations, and make use of those 
comparisons to build broader understanding (Gentner 2010; Richland and 
Simms 2015).

Another role for visual representations is to provide a visible record 
of the instruction that students have just accomplished, whether it be in 
a classroom or in a technology-enhanced setting. Mathematics teachers 
around the world often lead their students through a series of problems that 
build in a certain way, perhaps demonstrating that a common procedure 
can be used for multiple problems, or that certain problems may appear 
similar but are in fact different (Hiebert et al. 2003). These sequences are 
meaningful and important, but students often do not notice the progres-
sion if teachers do not make it explicit (Gick and Holyoak 1980, 1983).

A technique used in high-achieving Asian countries is to leave prob-
lems or key solution strategies on the board in order to create a visual 
record of the lesson (Hiebert et al. 2003). That way, if students miss a 
step or need support for their executive function processes in recognizing 
the key elements of a lesson, they can look back at the visual information 
provided on the board. At the same time, the visual record of key math-
ematical information should not be overwhelmingly distracting or difficult 
to parse, or it will have the potential to overload students’ inhibitory con-
trol resources (Fisher, Godwin, and Seltman 2014). Table 1.6 highlights tools 
that have been found to be particularly effective for learning mathematics.

1.7 Conclusion

This chapter has aimed to provide educators and administrators in Latin 
America and the Caribbean with an overview of key aspects of children’s 
mathematical development that will be useful for improving educational 
outcomes. The hope is that readers have gained an appreciation for the 
importance of attending to student thinking in planning instructional 
experiences, including developmental lines in maturation and mathe-
matical skills, and avoiding misconceptions and overloading cognitive 
processing skills. Further, the aim has been to convey the power of using a 
strong standards-based curriculum that can be generalized across student 
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populations within a country, and using a refined definition of mathemati-
cal proficiency.

This theoretical overview has been provided to drive home a central 
point. Educators and administrators involved in improving educational 
outcomes need to understand how children think, what they know and 
need to know, how age impacts learning, and misconceptions commonly 
observed throughout development. This knowledge allows for the design 
of more effective curricula and technologies, and provides a lens through 
which to evaluate educational technologies. In this vein, it is also important 
to understand what specific aspect of children’s mathematical knowledge 

TABLE 1.6
TOOLS FOR SUPPORTING THE LEARNING OF MATHEMATICS
Cognitive or 
Curricular Factor

Implication for 
Learning What to Look For

Manipulatives can 
be highly effective.

Allowing children to 
handle manipulatives or 
technology that show 
concepts in different 
ways builds more 
flexible, generalizable 
understanding.

Introduce concepts in concrete 
ways, and gradually fade to 
more symbolic ways of showing 
the ideas (like an equation). 
Children must fully understand 
the manipulatives involved and 
have enough instructional time 
to learn about them before using 
them to learn math ideas.

Children learn 
from visual 
representations, 
interacting 
with multiple 
representations 
of the same 
information.

Provides a broader 
understanding of 
the concepts, and 
more avenues for 
remembering the 
content. However, it 
can overload children’s 
attention, so care must 
be taken to organize 
representations so that 
students know what they 
are looking at.

Undertake activities that enable 
children to grapple with the same 
ideas in different representations 
(e.g., in a story and an equation, 
in a physical set of blocks or 
a quantity of dried beans to 
connect to an equation, or in a 
game and symbolic notation) or 
different versions of concepts 
(e.g., multiple polygons of 
unusual configurations to teach 
about angles, sides, and area). 
Care must be taken to ensure 
that children see the relationship 
between the more and less 
concrete representations.

Compare and 
contrast.

Learners understand the 
underlying mathematical 
concepts, developing a 
deeper understanding 
that can be generalized 
across types of 
problems.

Employ question-and-answer 
activities in which instructors 
have a clear goal for comparing 
problems, solution strategies, 
representations, or mathematical 
objects to real-world 
phenomena.

Source: Prepared by the authors.
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an intervention addresses. Clear standards help separate what has been 
addressed from what still needs to be addressed. The hope is that current 
and future educators can use this knowledge to make informed decisions 
regarding the appropriateness of interventions.

Table 1.7 presents the chapter’s key conclusions and policy take-aways 
for policymakers.

TABLE 1.7
KEY CONCLUSIONS AND RECOMMENDATIONS
Conclusion Policy Implication or Recommendation

Access to education technologies 
is not enough; teachers need 
knowledge of how technologies 
can be used to evaluate and 
support children’s mathematical 
development.

→ Teacher training in the use of math 
education technologies must focus 
on their application in the classroom 
to reflect the knowledge that children 
already have so as to appropriately build 
their skills, respond to their anxieties, 
and foster their thinking.

The learning goals that are 
typical in Latin America and the 
Caribbean are often content- 
rather than skills-based, and lack 
teaching goals.

→ To evaluate the use of technologies in 
mathematics instruction, education 
systems must define learning goals that 
go beyond content to measure skills 
(e.g., specific number or spatial skills) as 
well as theory-based practice standards 
with goals for student behaviors and 
approaches to mathematics.

Mathematics is often taught and 
learned as a set of rules to be 
memorized, sometimes leading to 
technologies that teach children 
the correct answers in the short 
term (devoid of understanding), 
resulting in student confusion and 
alienation in the long term.

→ Technology that is promoted must build 
on children’s abilities by making explicit 
connections between mathematical 
concepts and children’s intuitions 
(e.g., spatial representations), avoiding 
unnecessary distractions, and facilitating 
concept comparisons.

Girls and students from minority 
backgrounds often have 
stereotypes about being poor at 
mathematics. This may lead them 
to perform below their ability. 
A related problem is that boys 
may monopolize the use of new 
technologies.

→ School systems must train teachers in 
the use of measures to ensure equal and 
fair participation by all students. In a 
class that uses education technologies, 
tasks must be structured to ensure 
equal access to tools such as computers, 
software, and robots.
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In an urban school in South America, a young elementary school teacher, 
Catalina, is teaching her second grade students how to add two-digit 
numbers. Catalina was never a good math student herself, and she feels 

awkward and uncomfortable teaching the subject. As she tries to go over 
the procedure, her students ask:

¿Por qué funciona de esta manera? (Why does it work this way?)

Catalina feels lost, not knowing how to explain. However, she notices some 
students trying to help each other, using blocks and drawings, to show the 
meaning of the regrouping conceptually. As Catalina stands back and listens 
for a while, she feels a new sense of excitement that she never felt before as 
a teacher. She feels proud of her students for trying, and she wants to help 
them. She joins the student discussion of different methods and, at certain 
moments, can actually provide explanations that clarify students’ confusion. 
Catalina feels empowered for the first time as a mathematics teacher. She 
remembers that in a recent professional development session, her colleagues 
had discussed a different way of teaching called “balanced teaching,” which 
starts with students sharing ideas. The teacher then facilitates learning by 
helping students make connections between their ideas and math concepts 
using math drawings. Catalina decides that she will talk to her colleagues 
during the planning period that week to learn more about it.

CHAPTERCHAPTER  22
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2.1 A New Way Forward

Countries around the world are trying to help as many classrooms as pos-
sible prepare students for the math needs of the 21st century. The old 
focus on memorizing and copying what the teacher shows is no longer 
good enough. Students must make sense of and understand what they 
are doing because the math needs of the workplace are changing. Stu-
dents need to be prepared for future changes, too. In recent years, three 
U.S. National Research Council committees have studied research from 
around the world and summarized the findings: NRC (2009), Donovan and 
Bransford (2005), and Kilpatrick, Swafford, and Findell (2001).1 This chap-
ter provides a framework that summarizes these international research 
results, focusing especially on how students think about math ideas. The 
summary also draws on decades of experience with a similar framework 
in Japan and on two decades of classroom-based research in English- 
and Spanish-speaking classrooms in the United States (Fuson and Murata 
2007; Fuson, Murata, and Abrahamson 2014; Murata and Fuson 2006, 
2016; Murata 2008). The research for the framework comes from all over 
the world, including Latin America and the Caribbean (LAC). Much of the 
research is about student learning and teaching of specific math topics, 
and it emphasizes sense-making and explaining as crucial for 21st century 
goals that balance understanding and fluency. This “balanced teaching” 
approach is related to several models of teaching that emphasize learn-
ing trajectories (Clements and Sarama 2004, 2014), task sequences 
(Simon, Placa, and Avitzur 2016), “math talk” in the classroom (Yackel and 
Cobb 1996; Hufferd-Ackles, Fuson, and Sherin 2004, 2015; Murata et al. 
2017), linking ideas (Alibali et al. 2013), embodied thinking (Abrahamson 
2014), visual learning (Mason 1989), productive failure (Kapur 2014), and 
discovery-based learning (Abrahamson and Kapur 2018). This frame-
work can guide national decisions about teaching and learning, including 
choices regarding what kinds of technology to use, and how.

This chapter first outlines the balanced teaching framework, then 
explains its central aspects in more depth and gives examples using 
fractions. The chapter next describes and illustrates the importance of 
drawing, using the examples of problem-solving with key math concepts, 
before briefly discussing issues of supporting students and teachers with 

1 This chapter is based on the research summarized in the National Research Council 
reports, but the examples given are relevant to Latin American and Caribbean class-
rooms and uses of technology.
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balanced teaching/learning. The chapter concludes by discussing some 
uses of technology drawn from the framework.

2.2 The Balanced Teaching Framework: Proficiency for All

Box 2.1 outlines the balanced teaching framework. At the top of the table 
is the high-level 21st century goal for all students presented and discussed 
in the National Research Council report, Adding It Up: Helping Children 
Learn Mathematics. (Kilpatrick, Swafford, and Findell 2001). This goal can 
focus changes in teaching because it broadens typical goals for teach-
ing. Its aim is to nurture resourceful and self-regulating problem-solvers 
using five strands of mathematical proficiency: conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning, and pro-
ductive disposition. These five strands guided subsequent reform efforts 
in the United States and Canada, for example in the writing of the 2010 
U.S. Common Core State Standards (CCSS Initiative 2010). The strands 
of conceptual understanding and procedural fluency are balanced in the 
framework, as the teacher helps students develop and then move from 
conceptual understanding to fluency. Strategic competence and adap-
tive reasoning are two vital aspects of problem-solving and reasoning. 
The fifth strand, productive disposition, involves a positive self-image as 
a problem-solver, characterized by Dweck as a “growth mindset” (Dweck 
2010; Blackwell, Trzesniewski, and Dweck 2007). All of these strands 
require students to develop their self-regulating capacity as they become 
more aware of and can take more control of their math thinking and 
problem-solving.

This high-level goal involves Principle 3 (The importance of self-mon-
itoring)  from the National Research Council Report How Students Learn 
(Donovan and Bransford 2005). The report organizes its research sum-
maries around three principles that are used in the three-phase, balanced 
teaching model summarized in Box 2.1. These principles are stated where 
they appear in Box 2.1 so that readers who wish to find research about 
them in the report can do so. Box 2.1 also draws on research-based recom-
mendations about teaching and learning made by the main organization 
of researchers and teachers in the United States, the National Council of 
Teachers of Mathematics (NCTM), in its report Principles and Standards for 
School Mathematics (NCTM 2000). This report identifies five process stan-
dards for teaching: problem-solving, reasoning and proof, communication, 
connections, and representations. These process standards are identified 
in Box 2.1 where they are relevant. Later research related to these process 
standards is discussed in NCTM (2014).
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BOX 2.1 THE THREE-PHASE BALANCED TEACHING MODEL

The high-level goal for the balanced teaching model is to build resourceful, 
self-regulating problem-solvers (Principle 3 from How Students Learn: The 
importance of self-monitoring) by continually intertwining the five strands of 
mathematical proficiency: conceptual understanding, procedural fluency, stra-
tegic competence, adaptive reasoning, and productive disposition (Kilpatrick, 
Swafford, and Findell 2001).

How? Create a Year-long, Nurturing, Math-Talk Community
• The teacher orchestrates collaborative instructional conversations focused 

on the mathematical thinking of classroom members (Principle 1 from How 
Students Learn: Engaging prior understandings; and the Process Standards 
on Problem Solving, Reasoning and Proof, and Communication of the Na-
tional Council of Teachers of Mathematics (NCTM).

• Students and teachers use responsive means of assistance that facilitate 
meaningful learning and teaching by all; the teachers seek to engage, 
involve, manage, and coach (model, clarify, instruct/explain, question, and 
give feedback).

Use Three Balanced Teaching Phases for Each Math Topic
The teacher and students use and relate (“interform”) coherent mathematical 
situations, pedagogical forms, and cultural mathematical forms (the NCTM’s 
Process Standards on Connections, Representations, and Communication) as 
they move through these phases.

Phase 1—Guided Introducing
• Supported by the coherent pedagogical forms, the teacher elicits and the 

class briefly works with the understanding that students bring to a topic 
(Principle 1 from How Students Learn: Engaging prior understanding).

• Teacher and students value and discuss student ideas and methods (which 
allows teachers to know how students approach the topic).

• Teacher identifies different levels of solution methods used by students 
and typical errors and ensures that these are seen and discussed by the 
class.

• Student methods may be basic and slow, contain errors, or be Phase 2 
methods (see below).

Phase 2—Learning Unfolding (In-depth Meaning-making Phase)
• The teacher helps students form emergent networks of forms-in-action 

(Principle 2 from How Students Learn: The essential role of factual knowl-
edge and conceptual frameworks in understanding).

• Explanations of methods and of mathematical issues continue to use math 
drawings and other pedagogical supports (external forms) to stimulate 
correct relating (interforming) of the forms.

(continued on next page)
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The second part of the balanced teaching framework (how to meet 
the goal) describes how a teacher can increase the understanding levels 
of all students in the classroom by creating a year-long, nurturing “math 
talk” community focused on how students make and discuss mathematical 
meanings.2 To do this, the teacher orchestrates collaborative instructional 
conversations (math talk) focused on the math thinking of students. Visual 
models (e.g., math drawings) are introduced to support the thinking of stu-
dents and the teacher. The teacher can explain concepts, but the students 
are also encouraged to explain their thinking and discuss it with other stu-
dents. Explanations that use visual models (such as drawings) are vital to 
the sense-making and understanding of all participants. The math talk also 
helps students use math language and notation.

The third part of the balanced teaching framework is a three-phase 
model of how a teacher supports student understanding and fluency in 

2 As explained by the National Council of Teachers of Mathematics, “math talk” is 
an instructional conversation directed by the teacher, but with as much student 
engagement as possible. The idea behind it is that if students take time to explain 
their mathematical thinking, this will increase their understanding.

BOX 2.1 THE THREE-PHASE BALANCED TEACHING MODEL (continued)

• Teacher focuses on or introduces mathematically desirable and accessible 
methods.

• Erroneous methods are analyzed and corrected with explanations.
• Advantages and disadvantages of various methods, including the current 

common method, are discussed so that central mathematical aspects of 
the topic become explicit.

• Student methods become predominantly mathematically desirable and ac-
cessible methods. Errors decrease. Students may also use mathematically 
desirable and not accessible methods.

Phase 3—Kneading Knowledge (Fluency)
• The teacher helps students gain fluency with desired methods.
• Students may choose a method. Fluency includes being able to explain the 

method.
• Some reflection and explaining will still continue (kneading the individual 

internal forms).
• Students stop making math drawings when they do not need them.
• Each student fast-forms one mathematically desirable method; many 

students interform more than one method.

Source: Prepared by the authors.
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each new math topic. The bottom part of Box 2.1 describes central aspects 
of each phase. Phase 1, “Guided Introducing,” is emphasized in reform 
approaches that focus on eliciting and discussing children’s invented 
methods. Traditional curricula emphasize Phase 3, “Kneading Knowledge 
(fluency),” and focus on fluency development. The new, important part of 
the model is Phase 2, “Learning Unfolding.” This in-depth meaning-making 
phase connects Phases 1 and 3 and provides opportunities for deep and 
ambitious learning. As students compare, contrast, and analyze different 
methods in Phase 2, core math concepts can be lifted up from the 
problem contexts or specific methods and connected together. Coherent 
facilitation of mathematically desirable and accessible (MD&A) methods 
via math drawings in classrooms helps students express their ideas and 
ultimately fosters individual learning. The general word “form” is used 
in several places in the box (pedagogical forms, cultural mathematical 
forms, interform, internal forms-in-action using external forms, individual 
internal forms) instead of the range of other terms (teaching materials or 
drawings, mathematical symbols or words, relate, mental representations 
using external materials or actions or words or written symbols, mental 
representations or actions)  to emphasize the relatedness of all of these 
different internal and external structures and how mathematical thinking 
involves developing and using increasingly complex and accurate forms.

Phase 2 is the heart of this process, as the class focuses on and dis-
cusses MD&A methods with the help of visual models.3 MD&As are general 
and can be abstract and conceptually nontransparent. If a teacher only 
presents and explains information without any visual models, it can be 
very confusing for students. In second grade classrooms, students may 
approach a two-digit addition problem (e.g., 68 + 76) by using drawings or 
“tens and ones” blocks. Research in many countries underlines the impor-
tance of math drawings (visual models, diagrams) as pedagogical forms 
to support individual thinking, problem-solving, and instructional con-
versations (math talk). Math drawings facilitate problem-solving because 
students can relate steps in the math drawing to steps with math sym-
bols and can label the drawing to relate to the problem situation or to 
math concepts (e.g., hundreds and tens). These drawings can help bridge 
problem situations with mathematical solutions through mathematizing 

3 Visual models are  the range of displays—including images with figurative, diagram-
matic, and symbolical elements—that teachers, students, math programs, or math 
technologies create to show the meaning of a mathematical concept. Visual models can 
be physical things, but this chapter emphasizes the importance of diagrams and math 
drawings as visual supports for teaching and learning. All of these terms for visual mod-
els are used in this chapter because they all have slightly different meanings in context.
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(focusing on the math structure). Math drawings assist math talk because 
they can be put on the board or be projected on a screen for all to see 
and they leave a trace of all steps in the thought process, so each step can 
be explained later. Math drawings are inexpensive, easy to manage, and 
remain after the problem is solved to support reflection and further expla-
nation. Teachers can collect pages containing them and reflect on these as 
windows into the minds of students outside of class time. Many East Asian 
elementary math programs have a history of using diagrams, as do some 
other countries around the world. Math drawings initially can show all of 
the objects and later be simplified into diagrams with numbers in them. 
The drawings of concrete objects may be helpful for very young children 
or for some special-needs children, but for many math topics, students 
need only use simplified diagrams and numbers.

It is essential for any math teaching to involve all three phases. Depend-
ing on the level of complexity of the mathematics concept, these three 
phases may occur over several lessons, or they may occur in one lesson. 
Throughout the phases, it is important for the teacher to maintain high 
expectations of students, accept the different ideas and varied learning 
paths students may take, and understand that every student will come 
to use a mathematically desirable method in time with varied degrees 
of fluency. These three phases and their relationships are summarized 
in Figure 2.1. The double arrows connecting and showing how students 

FIGURE 2.1
MATH TALK COMMUNITY: EVERYONE FOCUSES ON MAKING SENSE OF 
MATH STRUCTURES USING DRAWINGS TO SUPPORT EXPLANATIONS

Learning
Path

Bridging for teachers
and students by coherent

learning supports

Math Talk Community

Phase 3. Formal math methods,
fluency

Math Sense-Making
Math Structure

Math Drawings
Math Explaining

Math Sense-Making
Math Structure

Math Drawings
Math Explaining

Phase 2. Research-based, mathematical, desirable
and accesible methods,

understanding and growing fluency

Phase 1. Student-generated methods,
exploring and growing understanding

Source: Prepared by the authors.
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proceed between phases summarize what teachers need to emphasize 
in the classroom—making sense of math structures using math drawings 
to support math explaining. Research concerning teaching aspects of the 
crucial Phases 1 and 2 are briefly summarized here.4 Even when practic-
ing solution methods in Phase 3, students can fall back to Phase 2 and to 
drawings to help them remember a method or fix an error.

After all three phases are completed for a given topic, it is important 
to maintain fluency by engaging in practice distributed over time and 
also to relate the concepts to new concepts that will be learned later. 
The teacher may help students remember concepts they have already 
learned by giving them related problems on occasion. For new, related 
topics, the teacher initiates and orchestrates discussions to assist 
re-forming students’ individual internal forms to support and stimulate 
the building of an extended individual internal network of related topics. 
With this, each student remembers and maintains Phase 3 performance. 
Practicing and discussing over an extended period helps students revisit 
the previously learned concepts and reinforce their understanding by 
creating new connections with other math topics they are learning. This 
supports the development of a broader and deeper conceptual network 
for their understanding of mathematics, and it adds new meanings to the 
previously learned concepts. This final phase is referred to here as the 
Review Phase, and it can extend for the rest of the year following the 
initial teaching of Phases 1, 2, and 3.

4 One “gold standard” study, using random assignment to groups, found that stu-
dents who passed through Phase 2 outperformed those who had a long Phase 1 or 
who moved rapidly to Phase 3 (Agodini et al. 2010). A related study found that the 
effects of two curricula that balance the phases are largely robust across variations 
in student achievement and teachers’ mathematical knowledge (Agodini and Har-
ris 2016). A meta-analysis that included studies using different instructional process 
strategies suggests vital parts of the math talk community shown in Figure 2.1. This 
meta-analysis found that changing the way that teachers and students interact in 
the classroom increases achievement, especially if children are given opportunities 
and incentives to help one another learn and are kept productively engaged and 
interested in mathematics (Slavin and Lake 2008). Another meta-analysis supports 
the importance of the move from Phase 1, focused on eliciting student methods, to 
Phase 2, where mathematically important methods are discussed and explained. 
This study found that unassisted discovery (Phase 1 in Box 2.1) does not benefit 
learners as much as instruction that includes feedback, worked examples, scaffold-
ing, and elicited explanations, which are all important activities in Phase 2 (Alfieri et 
al. 2011). A free program available online carefully uses the approaches in both of 
these meta-analyses and has had a high degree of success across all levels of learn-
ers (Mighton 2013).
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2.3  Explanation of the Phases with Visual Supports  
(Math Drawings)

This section uses examples to describe how different phases might look 
in instruction on the topic of adding fractions. The section will highlight 
connections between different student thought processes and visual rep-
resentations to illustrate a learning process that moves through the three 
phases and uses math talk to support the connections.

Figure 2.2 outlines four possible student methods for solving the exam-
ple problem: “We had 4/7 liters of milk in the bottle. We added 2/7 liters 
of milk. How many liters of milk do we have now?” As students attempt 

FIGURE 2.2
STUDENT SOLUTION METHODS FOR A FRACTION PROBLEM: 4/7 + 2/7

Problem: “We had 4/7 liters of milk in the bottle. We added 2/7 liters of milk. 
How many liters of milk do we have now?”

Problem Representation Student Explanation

Method 1.

4/7

= 6/14
2/7

[Student 1 does not add fractions by adding the unit 
fractions 4 of the sevenths and 2 of the sevenths and 
so gets the wrong answer.]
Student 1: “First, I drew a bar to show one liter, divided 
it into 7 parts, and shaded 4 of them to show 4/7 liters. 
I drew another bar and showed 2/7 liters in the same 
way. I then counted how many parts there are for the 
whole, and how many parts are shaded, to find the 
answer. 6/14 liters.”

Method 2.

Step 1

Step 2

4/7 + 2/7 = 6/7

Student 2: “First, I drew a bar to show one liter, and I 
divided it into 7 equal parts to show the one sevenths. 
Then I shaded 4 of them to show 4/7 liters. Then I 
shaded 2 more sevenths after the 4 sevenths to add 
on 2 sevenths. I shaded them differently so I could see 
the 4 sevenths and the 2 sevenths. So I can see that the 
answer is 6 sevenths, and I wrote it below my drawing.”

Method 3.

4/7 = 1/7 + 1/7 + 1/7 + 1/7
2/7 = 1/7 + 1/7
4/7 + 2/7
 = (1/7 + 1/7 + 1/7 + 1/7) + 
(1/7 + 1/7)
 = 6/7

Student 3: “I thought that 4/7 is four of the 1/7ths and 
2/7 is two of the 1/7ths. So, I added all the 1/7s, all 6 of 
them, and found the answer as 6/7 liters.”

Method 4.

4/7 + 2/7 = (4 + 2)/7 = 6/7

[Student 4 thinks math is following a rule]
Student 4: “I followed the rule. When adding fractions, 
if the bottom numbers are the same, you leave them 
alone, and only add the top ones. So, 4 + 2 = 6, and the 
answer is 6/7.”

Source: Prepared by the authors.
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to find the answer, they typically approach this problem in various ways, 
based on their prior math experiences and fraction concepts. All the solu-
tion methods shown in Figure 2.2 are possible in any upper-elementary 
mathematics classroom.

For Method 1 in the figure, the student first uses bars to show the frac-
tions 4/7 and 2/7. In attempting to combine the two fractions, the student 
counts the parts shown in both of the representations altogether, and ends 
up with the answer of 14 parts, with 6 of them shaded to find 6/14 of a liter 
as the answer. The student does not see a fraction as the total of the unit 
fraction 4 of the sevenths and 2 of the sevenths to give 6 of the sevenths, 
but just counts all of what he or she sees, and gives the wrong answer, 6/14.

The student using Method 2 shows how each seventh is a part of the 
whole made by dividing the whole into 7 equal parts. The student draws the 
whole bar and divides it into 7 equal parts. Then the student shades 4 parts 
and then 2 more parts with a different kind of shading. He or she writes the 
fractions below the drawing to connect the math notation to the drawing.

Using Method 3, the student shows his or her thinking numerically. The 
student thinks of each fraction (2/7 and 4/7) as collections of a symbolic 
unit fraction (1/7), and thus adds 4 of the 1/7ths and 2 of the 1/7ths to find 
the total of 6/7 liter.

Regarding Method 4, although the student arrives at the correct 
answer, the student’s explanation is solely procedural, and he or she only 
seems to think of problem-solving as following a rule. This explanation 
is likely if the student had received prior instruction in adding fractions 
based only on procedures.

When anticipating all these different student methods, it may feel 
overwhelming for teachers to facilitate meaningful math talk. If the 
teacher wants to value all student ideas but is not sure how to focus 
student attention on the core mathematical ideas, the teacher can elicit 
as many student solutions as possible but then not help students further 
to relate to these methods. This kind of teaching focuses on Phase 1 of the 
balanced teaching model. The students and the teacher may feel good 
about celebrating multiple solution methods, but students may come out 
of this experience without meaningful conceptual connections among the 
mathematics concepts and methods discussed. This type of teaching can 
invite a lot of criticism that learning outcomes are not clear, and it does not 
correct errors or allow all students to understand the problem.

On the other hand, in a traditional mathematics classroom, teachers 
do not invite students to share their thinking about the solution process to 
begin with. In these classrooms, it is more likely that the teacher presents 
the problem and shows the steps of the desired solution (most often as in 
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Method 4). The teacher then asks students to solve similar problems using 
the same method by following the steps carefully. There is no discussion of 
why and how these steps work in the solution process. In these traditional 
classrooms, students are likely to experience math as a set of rules and 
procedures to follow, and these students are likely to explain their thinking 
as described in Method 4 in the figure. This type of teaching can be 
considered as Phase 3 teaching. While Phase 3 is important as a part of 
balanced teaching, if done alone it does not help students understand how 
their ideas are related to mathematically valued rules and procedures or 
why these rules and procedures work. Understanding why each procedure 
works can help students remember them better or figure them out later, 
and it reduces interference among different procedures later on, when 
they may become all jumbled.

What is proposed in the research-based model of balanced teaching 
is to bridge Phases 1 and 3 with a crucial Phase 2. In balanced teaching 
(Figure 2.1), after students explore and generate their own methods and 
share them, the teacher facilitates student math talk by focusing their 
attention on aspects of the core math concept. In the example presented in 
Figure 2.2, after all four methods are shared, the teacher may ask students 
what similarities and differences they notice across these methods, often 
for two methods at a time. By questioning, listening to, and connecting 
different student ideas, the teacher will be able to help students see how 
similar Methods 1 and 2 are, but why their answers are different because 
they consider the “whole” differently. At this point, the teacher may want 
to bring a 1-liter bottle to demonstrate what adding 4/7 and 2/7 of a liter 
of liquid looks like, and whether the resulting amount of liquid is 6/7 liter 
or 6/14 of a liter. This is an ideal place to discuss how to determine the 
“whole” in the problem’s context with fractions.

After students understand Method 2 well, comparing it with Method 
3 will lead students to see how to represent the solution method using 
fraction notation. Method 3 also shows very clearly that each written 1/7 
corresponds to a shaded section drawn in Method 2. By making reference 
to the relationship, the students who may be thinking about fractions only 
at the most concrete level will be able to see how the written unit fraction 
1/7 relates to the concrete model in Method 2.

At this point, the teacher may want to help students describe the rule for 
adding fractions of like denominators as the student explained in Method 4. 
Once the different solution methods using different representations have 
been discussed, the rule can emerge as something described by students, 
as it came out of their math talk. This leaves the ownership of the process 
to the students.
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In the balanced teaching framework, it is emphasized that all three 
phases are necessary for students to learn mathematics coherently and 
meaningfully. In many cultures, traditional math teaching focusing on Phase 
3 has been the major way of teaching. In an effort to help students learn 
math more constructively in recent years, some teachers have attempted to 
shift their teaching completely to focus solely on Phase 1. This can leave the 
students feeling lost and frustrated, as it can be difficult for them to grasp 
mathematical structures and patterns when they are left alone to explore 
without a summary highlighting and discussing important math concepts. 
Phase 2 brings these two seemingly very different teaching approaches 
together by creating a space and time for the teacher and students to make 
sense of the mathematics. Connection-building is the key in this phase, 
and visual supports and drawings play a critical role in the process. Use 
of similar representations to bridge different student methods can focus 
student attention on an important mathematics concept, because students 
can focus on mathematical structure rather than on superficial differences 
in representations. The visual supports must be carefully chosen to highlight 
the concepts students learn in the problem context. In the example shown 
in Figure 2.2, the bar representation and written math notation help clarify 
fraction relationships and support students’ understanding.

In Phase 2, teachers might introduce more advanced visual supports 
or solution methods, as informed by the expectations of a given school or 
country. For example, number lines are an important math tool in many 
countries. They are more difficult than the fraction bars the students used 
in Phase 1 methods in Figure 2.2. Helping students relate simpler fraction 
bars to fraction number lines and to fraction notation extends and deep-
ens their understanding of various methods. Figure 2.3 shows how this 
might be done with drawings shown to students that they or the teacher 
would then explain, as shown on the right side of the figure. Those who 
explain would point to parts of the drawings and make other gestures to 
help their listeners make the connections they are emphasizing. Having 
such carefully designed drawings available in student books or in a tech-
nology program could ensure that students see and explain important 
mathematical representations and engage and extend their sense-making.

2.4 The Lengths of the Phases Can Vary: An Example from Japan

The length of each phase in an instructional unit may vary according to 
the complexity and nature of the topic. In Japan, where the three-phase 
balanced teaching framework has been used for decades, the curriculum is 
organized according to the framework. Table 2.1 summarizes the numbers of 
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lessons (each lesson is typically 45 minutes) recommended for each phase 
for all the units in Grades 2 and 5, using the curriculum “Study Mathematics 
with Your Friends: Mathematics for Elementary School” (Gakkotosho 2010).

FIGURE 2.3
PHASE 2: RELATING A FRACTION BAR, A FRACTION NUMBER LINE, 
AND FRACTION NOTATION

Problem Representation Student Explanation

a. “First, I draw the one whole. Every 
fraction is some number of equal parts of 
one whole.”

b.
1/7 + 1/7 + 1/7 + 1/7 + 1/7 + 1/7 + 1/7 “Now I divide the one whole into 7 equal 

parts to make 7 sevenths and I label each 
part with a unit fraction 1/7.”

 0/7 1/7 2/7 3/7 4/7 5/7 6/7 7/7

“Now I draw a line segment as long as the 
one whole, and I divide it into 7 equal small 
lengths to make the unit fraction lengths. 
Fractions are shown on fraction number 
lines as the number of lengths from 0. So 
I label the start as 0/7 because I have no 
length yet, and then I label the end point of 
each length to tell the number of lengths it 
is from the 0. See 1/7 [sliding a finger along 
that length], 2/7 [sliding a finger along 2 
lengths], etc. up to 7/7.”

c.
1/7 + 1/7 + 1/7 + 1/7 + 1/7 + 1/7 + 1/7

4/7 + 2/7 = 6/7

“Now we’ll show our problem 4/7 + 
2/7 and discuss how the fraction bar 
and fraction number line are alike and 
different in how they show the problem.”

 0/7 1/7 2/7 3/7 4/7 5/7 6/7 7/7

Maria: “They both show 4 of the sevenths 
and then 2 of the sevenths to make 6 of 
the sevenths”

Jose: But the unit fractions are small 
parts in the fraction bar and small 
lengths in the number line.

Eusebio: “The number line labels tell 
the total as they go. We have to count 
the two sevenths added on to make six 
sevenths.”

Rosa: “And with the fraction bar we have 
to count all of the unit fractions, the four 
and the two, to find the total six.”

Source: Prepared by the authors.
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TABLE 2.1
NUMBERS OF LESSONS DEVOTED TO BALANCED TEACHING PHASES 
IN A JAPANESE CURRICULUM FOR GRADES 2 AND 5
Grade 2

Unit Name Phase 1 Phase 2 Phase 3 Review Total

1 Charts and graphs 0.5 1.5 2 1 5

2 Numbers up to 1,000 0.5 2.5 4 3 10

3 Addition algorithm 1.5 3 5.5 2 12

4 Subtraction algorithm 1.5 3 4.5 2 11

5 Shapes 3 1 2 1 7

6 Clocks 0.5 0.5 0.5 0.5 2

7 Addition and subtraction 
(1. Solving problems using 
tape diagrams and other 
representations)

1 1 1 1 4

8 Length (1. Understanding the 
concept of length, measure, 
and estimated length using 
standard units)

2.5 1 4.5 2 10

9 Multiplication (1. Understanding 
the concept of multiplicative 
relationship and representations)

0.5 2 2.5 2 7

10 Multiplication (2. Multiplication 
of 2s, 5s, 3s, and 4s)

2 2.5 7.5 1 13

11 Multiplication (3. Multiplication 
of 6s, 7s, 8s, and 9s)

0.5 3.5 7 3 14

12 Multiplication (4. Investigating 
patterns and problem-
solving with multiplicative 
relationships)

1 1 3 2 7

13 Length (2. Solving addition 
and subtraction problems with 
standard units of measure)

1 0 3 3 7

14 Numbers larger than 1,000 1 1.5 5.5 2 10

15 Triangles and quadrilaterals 2 1 4 2 9

16 Addition and subtraction  
(2. Solving problems using the 
reverse relationship between 
addition and subtraction)

0.5 1 2.5 0 4

17 Review 0 0 0 5 5

Total 19.5
(14%)

26
(19%)

59
(43%)

32.5
(24%)

137

(continued on next page)
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Overall, across two grade levels, the curriculum devotes approximately 
13 percent of the entire instructional time to Phase 1, 18 percent to Phase 2, 
a little less than 50 percent to Phase 3, and the rest to reviews at the end of 
each unit (about 26 percent). The review of particular content can happen 
at the end of the unit, as well as later on in other unit reviews, and reviews 
may thus contain more than one topic. While the frequencies provide a 
general sense of balanced teaching, it is important to note how this can 
vary across different content topics. For example, for the shapes unit in 
second grade, students spend three lessons out of seven in Phase 1 sharing 
their observations of different shapes, one lesson in Phase 2, two lessons 
in Phase 3, and the remaining lesson in review. In fifth grade, for the unit 
of estimation and approximation, 1.5 lessons are spent on sharing stu-
dent ideas (Phase 1), followed by 0.5 lessons in Phase 2, and 0.5 lessons of 
review (there was no Phase 3). In thinking about how to balance different 
parts of the instructional unit, educators and curriculum designers need to 
be careful not to generalize the relationships among phases too much in 
their communication with teachers. It also needs to be emphasized that, 

TABLE 2.1
NUMBERS OF LESSONS DEVOTED TO BALANCED TEACHING PHASES 
IN A JAPANESE CURRICULUM FOR GRADES 2 AND 5
Grade 5

Unit Name Phase 1 Phase 2 Phase 3 Review Total

1 Decimal numbers and integers 1.5 1.5 5.5 2.5 11

2 Estimation and approximation 1 0.5 0 0.5 2

3 Multiplication with decimal 
numbers

1.5 3.5 4.5 3.5 13

4 Perpendicular and parallel lines 0.5 1 3.5 3 8

5 Quadrilaterals 1 2 7 3 13

6 Division with decimal numbers 3.5 4 5.5 3 16

7 Angles 1 1.5 2.5 1 6

8 Areas 1 3 7 3 14

9 Fractions 2 2 7 3 14

10 Circles 2 2 3 3 10

11 Percentages and graphing 0.5 1 8.5 4 14

12 Review 0 0 0 8 8

Total 15.5
(12%)

22
(17%)

54
(42%)

37.5
(29%)

129

Source: Prepared by the authors.

(continued)
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although Phase 3 focuses on fluency, students who still lack a full concep-
tual understanding can also receive support in Phase 3.

2.5 The Importance of Using Math Drawings to Support Math Talk

There is a lot of international research about representing and solving word 
problems as the bases for understanding operations (+ – x ÷) and for build-
ing algebraic thinking. Figure 2.4 shows diagrams that can represent the 
three addition/subtraction and three multiplication/division situations that 
have been identified in worldwide research. Seeing the diagrams together 
shows their coherence: for example, equal group situations in multipli-
cation arise from addition situations (add to/take from, or put together/
take apart) when an addend is a group that is added repeatedly. Addi-
tive comparisons likewise add a group repeatedly to become multiplicative 

FIGURE 2.4
WORD PROBLEM SITUATIONS AND DIAGRAMS FOR ADDITION (TOP 
ROW OF PANELS) AND MULTIPLICATION (BOTTOM ROW OF PANELS)
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comparison situations. Both of these multiplication situations involve 
one factor, as the multiplier telling how many groups there are, and the 
other factor as telling how many in a group. The rectangular “everything 
times everything” situation involving arrays or area does not have factors 
with these different roles, although either the row or the columns can be 
regarded as a repeated group. Figure 2.4 shows how different situations 
actually involve different meanings of the equals sign, indicated at the bot-
tom of each problem type. This single set of diagrams can be used for all 
of the quantities students experience from grades 1 through 6 (from sin-
gle-digit numbers through fractions and decimals) and for many multistep 
problems.

An example of a second grade student’s use of diagrams to support 
solving and explaining a difficult word problem is shown in Figure 2.5. This 
problem is a “take from” problem because Eddie took some balls from 
the box. It is also a “start unknown” because the first number in the prob-
lem, the number the student is starting with, is not known. Neither of the 
first two students really makes sense of the whole problem. Student 1 in 
Figure 2.5 just draws the numbers in the problem without thinking about 
how they relate to the actions in the situation. Student 2 focuses on the 
fact that Eddie took some, but does not really make sense of the whole 
problem and so has no problem representation of the situation. If the stu-
dent had been asked to make a drawing such as the third student made, 
this error might have been avoided. Student 3’s solution might have been 
a student-generated method made in Phase 1 of balanced teaching for 
these difficult types of problems. This student makes sense of the whole 
situation and shows it in the drawing. Student 4’s solution uses the Math 
Mountain (number bond) diagram at the top middle panel of Figure 2.4 
to show the relationship between the numbers 9, 4, and ? in the prob-
lem. This diagram shows how the quantities in the situation relate to one 
another. The last student’s solution is a situation equation that shows the 
balls that belong to Yolanda as an unknown quantity (students can use a 
small rectangle to show the unknown), the 9 balls that belong to Eddie 
that are taken away, and the 4 balls left. Once they have represented the 
problem situation, students can find the total of 9 and 4, possibly in dif-
ferent ways.

If students did not use the last three methods in Phase 1 of teaching 
this topic, the teacher could introduce them as effective approaches for 
the students to try. These methods then could continue to be discussed 
and compared in Phase 2. Seeing and explaining the different problem 
representations help, students think about problems in different ways and 
relate these different representations. Labeling the quantities to relate 



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION78

them to the problem situation is important for supporting the understand-
ing of the solver and the classmates listening to his or her explanation.

In Figure 2.6 we see problems with the same “start unknown structure” 
but with multidigit numbers and fractions. Now the situation equations 
and the Math Mountain (number bond) diagram are very useful because 
the numbers are bigger and/or more complex. Students may also under-
stand the situation and just add the addends to make the unknown total, 

FIGURE 2.5
START UNKNOWN SOLUTION APPROACHES FOR SINGLE-DIGIT 
NUMBERS

Yolanda had a box of balls. Eddie took 9. Now Yolanda has 4 left.
How many balls did Yolanda have in the beginning?

Problem Representation Student Explanation

Student 1: “I drew 9 circles for the balls 
Eddie took. I then drew 4 more circles for 
what Yolanda had left. I then counted all 
the circles to find 13.”

5
Student 2: “The problem says that Eddie 
took some. So it is a take away problem. 
So 9 take away 4 is 5. The answer is 5.”

 Took Left

Student 3: “I drew the 9 balls Eddie took 
away and then I drew a line through them 
to show they were taken away. I drew this 
small stick to show the end of the balls 
Eddie took. Then I drew the 4 balls that 
were left. Then I labeled the problem. 
Now all of the balls are shown, and I can 
see 13 because 4 gives one to the 9 to 
make 10.”

in box

 9 4
 Eddie Yolanda 
  now

Student 4: “I take apart the balls that 
belong to Yolanda to show the 9 that 
Eddie took and the 4 that Yolanda has now 
at the end. My total that I don’t know is at 
the top. I put the 9 and 4 back together 
and that makes 13: 9, 10, 11, 12, 13.”

 Yolanda Eddie end
  – 9 = 4

Student 5: “I made an equation to show 
the problem situation. We don’t know 
how many balls Yolanda had to start with. 
Then Eddie took 9. And there are still 
4 at the end. I see that 9 and 4 are the 
addends in the equation, and I know that 
9 and 4 make 13.”

Source: Prepared by the authors.
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as in the solutions at the top. So we see that the diagrams and equations 
with which teachers build understanding in the lower grades with small 
numbers can be used with larger numbers and fractions (and decimals) in 
the upper grades.

In Figure 2.7 we see diagrams and equations for an additive compari-
son problem. Students initially can make matching drawings (as at the top 
left) to make sense of comparing quantities. But with larger numbers, as at 
the bottom, the comparison bars are useful for showing the problem situa-
tion, and numbers can be written in them. Students represent comparison 
problems in various ways.

FIGURE 2.6
START UNKNOWN SOLUTION APPROACHES FOR MULTIDIGIT 
NUMBERS AND FRACTIONS
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How much of the sandwich did Yolanda have in the beginning?
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FIGURE 2.7
SOLUTION APPROACHES TO AN ADDITIVE COMPARISON PROBLEM, 
GRADES 2 AND 3

Grade 2 Solutions
Jana read 15 books. Lisa read 8 books. How many 

fewer books did Lisa read than Jana?
Matching drawing of quantities Situation equation

Matching drawing of quantities Situation equation

 
7 books  

8   +     7     =   15  
Lisa  more  Jana  

7 books  

Jana
15   – 8   =     7  

Lisa fewer
7 books  

7 books  

7 8 

15  J 

L  F 

J

L

Matching drawing of quantities Situation equation

 
7 books  

8   +     7     =   15  
Lisa  more  Jana  

7 books  

Jana
15   – 8   =     7  

Lisa fewer
7 books  

7 books  

7 8 

15  J 

L  F 

J

L

Numerical relationships shown 
in Math Mountain Solution equation

Matching drawing of quantities Situation equation

 
7 books  

8   +     7     =   15  
Lisa  more  Jana  

7 books  

Jana
15   – 8   =     7  

Lisa fewer
7 books  

7 books  

7 8 

15  J 

L  F 

J

L

Matching drawing of quantities Situation equation

 
7 books  

8   +     7     =   15  
Lisa  more  Jana  

7 books  

Jana
15   – 8   =     7  

Lisa fewer
7 books  

7 books  

7 8 

15  J 

L  F 

J

L

Grade 3 Solutions
Jasmin made 346 tortillas. Luisa made 189 tortillas.  

How many fewer tortillas did Luisa make than Jasmin?
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For all problem situations, one can see how helpful it is for students to 
use the diagrams to represent the problem situation. Using a diagram or a 
situation equation helps students read and make sense of the whole prob-
lem situation. This is the key to problem-solving. It takes very little time to 
make a diagram or write a situation equation, so these visual supports can 
be used to support fluency in Phase 3 when students are solving problems 
that are routine for them.

Learning paths of problem subtypes, ranging from easy to difficult, have 
been identified in a great deal of research. These depend on the problem 
situation and the particular unknown within that situation. Algebraic 
problems are those where the situation equation, such as  + 6 = 9, is not the 
same as the solution equation, 9 – 6 = , that shows the solution operation. 
The equation  – 9 = 4 in Figure 2.5 was a situation equation, because it 
showed the action of the quantities in the situation. Students can also work 
in kindergarten with forms of equations with one number on the left (e.g., 
5 = 2 + 3 and 5 = 4 + 1), as they decompose a given number (here, 5), and 
record each decomposition by a drawing or equation. Experience with these 
various forms of equations can eliminate the typical difficulty many students 
have in algebra, where their limited experience with one form of equation 
leads them to expect equations with only one number (answer) on the right.

The diagrams support a student in algebraic problem-solving: the stu-
dent can represent the situation by making a diagram or writing an equation 
and then use the numerical relationships in that diagram or equation to find 
the solution. The diagrams are used in the Phase 2 MD&A methods in the 
middle (Figure 2.1) for algebraic problem-solving. The diagrams have moved 
beyond students’ basic math drawings that show all of the objects, and they 
are not yet algebra, which uses only an equation to represent the situation. 
These diagrams bridge these two levels and give students extensive experi-
ence with writing, understanding, solving, and explaining/discussing situation 
equations like  – 538 = 286 or 5/7 =  + 2/7 that show the situation.

2.6 How to Support Students and Teachers in Balanced Learning

2.6.1 Motivating Teachers

Many teachers around the world may feel unexcited about teaching math-
ematics because of their own math experiences as students. They might 
have learned mathematics as a set of rules and procedures to follow and 
felt no personal connection to the subject. They might have considered 
themselves not good at math at one time or another because they could 
not find the right answers as quickly as their peers who were considered 
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smart. They might have tried to make sense of mathematics, only to end 
up feeling lost and confused because they could not find the support and 
resources they needed. These teachers may feel unmotivated to learn to 
teach math in a new way out of fear of repeating their bad experiences as 
well as the possibility of exposing what they do not understand. They may 
prefer to give their students worksheets and drills and minimize the time 
they have to discuss mathematics concepts in lessons.

To address such issues, first, these teachers need to be heard and 
accepted for all the difficult experiences they have had with math and then 
be encouraged to be agents of change in their students’ lives and help avoid 
producing another generation of adults who dislike mathematics. They need 
to be empowered to understand that they have the position and the ability 
to break the cycle and contribute to a better future for their students.

While it is possible that teachers might hesitate to follow the balanced 
teaching model initially, in reality it will create a new space for them to 
address their own negative experiences with mathematics. The teachers 
may lack some content knowledge of mathematics, but the balanced 
teaching model creates a space for them to relearn mathematics along 
with their students. By placing their students at the center of mathematics 
learning (e.g., in Phase 1, when students share their ideas and the teacher 
takes the role of clarifier and questioner), the teacher can temporarily feel a 
reduced level of responsibility in terms of feeling the need to always know 
the right answer. At the same time, as the teacher listens to the students 
more, he or she can come to realize that the students actually have a lot 
of great ideas and see how excited and empowered they are when their 
ideas are valued in math classrooms. This will produce a new sense of 
success among teachers and gradually help shift the way they see their role 
in the classroom. Teachers may further investigate certain mathematics 
concepts they did not understand conceptually in order to develop a 
new mathematics understanding based on their students’ learning. The 
perception of a good teacher shifts from a person who knows the right 
answer and shows how to get it to a person who asks good questions, 
helps students represent a problem and then find a solution to it, as well 
as helping students explain their thinking. Mathematics over time becomes 
something they think about along with their students, and they will come 
to experience the inquiry-based learning process as exciting and fun. Many 
teachers who attempt the balanced teaching model report that it was the 
first time that mathematics made sense to them, and some even call it a 
“math therapy for teachers” for this reason.

In order to help teachers be successful with the process, it is important 
to provide them with a safe social structure where they can share their 
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experiences, voice their concerns, ask questions and receive answers, and 
find resources as needed. Teacher communities or lesson study groups are 
ideal places where teachers can safely discuss their practices and receive 
support. Instructional leaders, curriculum supporters, or knowledgeable 
others can join the groups as needed to provide necessary resources and 
information, as the teachers will need to expand their existing knowledge 
base to continue to grow professionally. A good conceptual curriculum to 
teach from can also be very helpful.

2.6.2 Motivating Students

Motivating students to learn and undertake necessary practice, including 
doing homework, can be especially difficult in modes of traditional 
teaching where students just memorize what a book or a teacher says. 
When the focus is initially on understanding and on explaining their own 
math thinking, students can become invested in what they are learning 
and in helping their classmates learn. They can feel competent as learners 
and come to understand that learning increases their ability to learn in the 
future—the “growth mindset” mentioned earlier (Dweck 2010).

Today’s classrooms include many students from different cultural, 
linguistic, and ethnic communities. When students’ personal lives and 
values differ significantly from those of their school, they are likely to find 
themselves struggling to make sense of the differences. These students 
often feel alienated and have a hard time picturing themselves as possible 
learners whose ideas are valued. When math is taught in a top-down 
manner (solely Phase 3 traditional teaching),  without incorporating 
student ideas as a part of the learning process, it further distances the 
students, and they remain peripheral to the learning community. For any 
student to learn, he or she has to maintain a level of social intention to be 
part of the classroom community and to share in the learning process. 
The greater the distance between the classroom (often operated by the 
values of the dominant cultural group)  and the student’s community, 
the harder it is for the student to bridge the gap. The balanced teaching 
model helps the process by inviting student ideas from the beginning 
and gradually connecting the ideas with the formal and mathematically 
desired methods. The teachers also maintain reasonable expectations 
that every student comes with different ideas and interests and that it 
takes time for students to develop appropriate levels of fluency with any 
concept. Gradually, the students will communicate and share their ideas 
with peers and come to feel included in the classroom community. This will 
increase the sense of membership in that community. In these ways, the 
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balanced teaching model helps motivate students in diverse classrooms 
and supports the productive learning disposition in the high-level goal for 
all (top of Box 2.1).

The concept of “means of assistance” was developed by Tharp 
and Gallimore (1988)  as they described aspects of responsive reading 
instruction in elementary school classrooms with students from diverse 
backgrounds in Hawaii. Murata and Fuson (2006, 2016)  and Fuson and 
Murata (2007) identified responsive means of assistance used by students 
and teachers to facilitate meaningful mathematics learning and balanced 
teaching. The means of assistance include three larger elements:

1. The teacher engages and involves students in meaningful mathematics 
learning activities.

2. The teacher manages participation so everyone is included.
3. The teacher coaches productive math talk by modeling, clarifying, 

explaining, questioning, and giving feedback.

With these means of assistance, the teacher will orchestrate collabora-
tive instructional conversations focusing on the math thinking of students, 
and visual models will allow everyone to focus on making sense of the 
math structure. The teacher also helps students use all of these means of 
assistance to help their classmates so that the classroom becomes a place 
where everyone is a learner and a teacher.

2.7 Using Technology to Support Balanced Teaching

Technology comes in many forms and can offer different kinds of solutions 
to educational problems. Table 2.2 summarizes five uses of technology 
that can be helpful in various phases of balanced teaching; more detailed 
information on the five uses are then presented in the main text that 
follows. It is useful to consider the whole range of teaching needs when 
making decisions about purchasing or supporting technology use, so that 
there is a balance between the needs for teacher learning and professional 
development, student understanding of math topics, and student fluency 
with math topics. This section suggests ways in which technology can help 
teachers understand both the mathematics at hand and their students’ 
thinking and lead their class productively through learning paths from 
building understanding to building fluency for all students. It should be 
emphasized, however, that while technology can and should help teachers 
teach better, it cannot and should not be used to replace teachers 
completely or unnecessarily complicate their teaching lives.
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Use 1. Teachers confer on teaching methods. Technology can enable 
teachers to interact with colleagues in many ways and locations. Conferring 
on teaching methods is useful in all phases of teaching from preparation 
through Phases 1, 2, and 3. It can be as simple as using email to ask ques-
tions or sharing prepared teaching materials. It can be as complex as 
sharing student work with a small or large working group or sharing ideas 
via conferencing technology, much of which is now or soon will be free 
(e.g., Skype, Google Hangouts, GoToMeeting, etc.). Teacher conferring can 
be done from a teacher classroom or involve a dedicated videoconference 
room in locations accessible to teachers. Such conferring can have different 
formats and organizational structures. For example, one teacher can take 
the lead for a given math topic at a given grade level and provide overviews 
to initiate a conversation with colleagues. Such interactions can provide 
teachers a community rather than an authority, and teachers can contribute 
rather than just receive. They can grow to become local or regional experts. 
Teachers who develop personal identities as reform-oriented mathematics 
teachers are more apt to perceive mathematical content in pedagogically 
productive ways and vice versa (Ma and Singer-Gabella 2011).

Use 2. Teachers and students develop an understanding of math con-
tent by seeing visualizations and hearing explanations of problem 

TABLE 2.2
USES OF TECHNOLOGY RELATED TO PHASES OF BALANCED TEACHING

Use 1. Teachers confer on teaching methods.
This is helpful in all phases of teaching, from preparing to teach through Phases 1, 2, 
3 to the Review Phase.

Use 2. Teachers and students develop an understanding of math content by seeing 
visualizations and hearing explanations of problem representations and solutions.
This is helpful in preparing to teach in Phase 1 (Guided Introduction) and in Phase 2 
(Learning Unfolding).

Use 3. Students practice solving problems to develop fluency. The technology gives 
feedback on answers and keeps problems in individual student practice zones 
(where students need practice).
This is helpful in Phase 2 (Learning Unfolding) for doing homework, in Phase 3 
(Kneading Knowledge for Fluency) practice, and in practice for the rest of the year 
to maintain fluency (the Review Phase).

Use 4. Students confer on representing problems and problem-solving.
This is helpful for all of the phases and for problem-solving in Use 3 above.

Use 5. Teachers manage classroom discourse about problem representations and 
problem-solving with student visual models.
This can be helpful in Phase 2 (Learning Unfolding).

Source: Prepared by the authors.
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representations and solutions. Developing teacher understanding is help-
ful in preparing to teach in Phase 1 (Guided Introducing)  and Phase 2 
(Learning Unfolding). Computers with Internet access and video functions 
can help teachers see familiar mathematical representations through the 
eyes of their students and thus be better prepared to explain the content 
or understand student errors. Specifically, computers enable teachers 
to access instructional resources dedicated to demonstrating students’ 
point of view as well as to videoconference with colleagues who lecture 
and discuss these matters.

Mathematical conversations between students or between the teacher 
and students should be based on an agreement over what the intention of 
the conversation is. But sometimes two or more people can have a difficult 
time communicating about a mathematical representation because, 
unknown to them, they are attending to it differently, and so they do not 
understand why their inferences are different. Computers can prepare 
teachers to foresee and manage these situations so that they and the 
students share common ground in their mathematical conversations, no 
matter where the children begin (Figure 2.8).

In Jastrow’s ambiguous “Duck-Rabbit” image, teachers need to see 
both the duck and the rabbit in order to understand why children want to 
feed this animal fish or carrots. Teachers also need to understand that some 
students may see the image above on the right (the b image) as 2/5 instead 
of 2/7 because they see 2 dark parts and 5 light parts and do not see the 
total 7 parts. A teacher can help students understand such drawings by first 
making all 7 parts to see each 1/7 as in image c then shading the number of 
parts in the fraction (here, 2 of the 1/7 make 2/7) in a new drawing so that 
students can still see all 7 of the 1/7ths in the whole. Computers can help 
teachers as well as students see mathematical representations in different 
ways: just as highlighting the rabbit’s mouth “brings out” the rabbit, so 
highlighting 2 blocks as part of 7 blocks shown visually “brings out” 2/7.

An important aspect of the teaching practice is helping children build 
relationships among visualizations and mental links between mathematical 
signs, such as between a diagram of 2/7 and the symbol “2/7.” It is known 
that teachers use hand gestures as well as speech to communicate such 
links (Alibali et al. 2013). Furthermore, these communication efforts are 
largely centered on orienting the children’s visual attention in new ways 
toward these mathematical signs (Ingram 2014; Stevens and Hall 1998). In 
so doing, teachers show children not only what to look at but also how to 
look at it and what to do with it, for example, to show how Figure 2.8b is a 
representation of 2/7 by relating it to Figure 2.8c. Technology can effectively 
simulate and complement teachers’ natural ways of using gestures to draw 
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attention to and relate to features. For example, objects on a screen can 
be highlighted by blinking, changing color, or jittering to show that they 
are the focus of a demonstration. So, for example, the boxes in panel b 
of Figure 2.8 can blink, one after the other, to accompany a counting of 2 
or of 7 boxes. Labels can be overlaid on objects to link between symbol 
and referent, for example, overlaying “1/7” on or above each of the seven 
boxes in panels b or c of Figure 2.8. Logical or arithmetic relations between 
objects can be shown by choices of color and special effects, such as by 
alternating between showing all 7 boxes and showing just the 2 boxes 
to demonstrate containment. These technological features can also help 
teachers become aware of how they explain ideas and emphasize effective 
communication methods, such as gestures. In Figure 2.7 shown earlier, one 
can imagine different ways in which important connections could be made 
using the above features of technology, along with a voiced explanation, 
as students discuss and gesture at the drawings of additive comparison 
problems to make connections for classmates.

Students, too, should be able to shift between different visualizations of 
mathematical representations. This will enable them to reflect on their own 
reasoning, make the link between conceptually compatible visualizations, 
and understand the teacher and their classmates. More generally, 
visualization—how we are looking at and thinking about a representation—
is an important aspect of mathematics and science activity and discourse. 
But it is rarely made explicit in classroom conversations. When children do 
speak explicitly about how they are seeing a mathematical representation, 
they draw directly on their experiences and create opportunities for 
their teachers to help them (Abrahamson, Gutiérrez, and Baddorf 2012). 
Teachers should create safe spaces for students to share how they are 

FIGURE 2.8
VISUALIZATION AND PROBLEM-SOLVING

a. b.

c.

Source: Prepared by the authors.
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seeing the mathematical objects, even if these ways of seeing are unfamiliar 
or surprising to other students (Feucht 2010).

An important benefit of recording visually supported explanations 
is that people watching the video can stop it at any moment, repeat it, 
or watch it at a slower or faster pace. Therefore, students working indi-
vidually either in the classroom or at home can review a teacher’s or a 
student’s explanations at their own pace. Moreover, students can watch 
multiple explanations—just as many as they need to understand a new 
solution method. Finally, students or teachers can watch different solution 
methods, which can both expand their solution repertoire and increase the 
chances that a particular solution method will better connect with their 
own approach developed during Phase 1.

For classrooms in which students have never explained their thinking, 
a video of a student explaining a given topic can be shown to the class to 
start student discussion. Teachers who are not confident that they can 
explain why a given solution method works can show a video of a teacher 
explaining it to a class or an individual student in a tutoring situation. Such 
interactive explanations are more powerful than just a video of a teacher 
explaining (though this also can be useful) because the interaction is more 
natural and more methodical (Chi, Kang, and Yaghmourian 2016).

Thus, there is immense potential for policymakers and technol-
ogy experts to invest in video technology and content. They can build 
professional-development video archives in collaboration with curricular 
designers or from freeware on the web. Teachers and students can make 
additional videos that extend the topics available. The video and anima-
tion functionalities described above are already available either as free 
downloads or in generic software packages native to personal and laptop 
computers, such as the QuickTime™ on Macs and VLC on PCs.5

Finally, a related, unique attribute of powerful educational technol-
ogy is enabling learners to access ideas that are difficult for a teacher 
or a math program to present in the classroom. This need increases as 

5 The authors of this chapter have websites where helpful free resources are avail-
able for teachers. See karenfusonmath.com for classroom videos that show students 
from impoverished backgrounds learning conceptually and explaining their think-
ing, and that show teaching progressions for math topics in elementary school 
that demonstrate visual models and how they can support student thinking. See 
lessonstudynetwork.com for lesson study resources and support as teachers learn 
together. See edrl.berkeley.edu for videos demonstrating productive ways of dis-
cussing mathematical ideas with students. Matif.com also has useful interactive 
games that support conceptual learning and practice. Dor Abrahamson serves on 
the Advisory Board for these games.
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the mathematical ideas get more complex, and addressing it becomes 
important for many concepts in grades 6 to 8 and above. For example, 
the mathematical ideas involved in proportion (the equivalence of two 
ratios, e.g., 2:3 = 4:6)  are difficult to “phenomenalize” (Pratt and Noss 
2010), that is, to make into a situation in which students can experience the 
core notion. When students are not given interactive situations to experi-
ence a new concept, they cannot access the basic meanings of what the 
concept is about. Consequently, the students only learn to execute pro-
cedures, but without understanding them (see Abrahamson, 2014, on the 
embodied-design framework).

Use 3. Students practice solving problems to develop fluency. The tech-
nology gives feedback on answers and keeps problems in individual 
student practice zones (in which a student needs practice). This is helpful 
in Phase 2 (Learning Unfolding) for doing homework, in Phase 3 (Kneading 
Knowledge for Fluency) practice, and in later practice to maintain fluency. 
The problem sets practiced by students change across the phases, from 
those focused on limited types for a given lesson in Phase 2, to broader 
ones across more types of problem sets in Phase 3 within a unit, and across 
many types of problem sets and many math topics in review for the rest 
of the year. For example, a solution to the problem 4/7 + 2/7 needs to be 
expanded in several ways:

1. To 2/7 + 4/7, which can focus students on mathematical properties
2. To 4/7 + 5/7, which involves an answer that goes beyond one whole, 7/7
3. To 4/9 + 2/9, which uses a new number of unit fractions
4. To 4/7 + 2/5 in which both fractions must be changed to equivalent 

fractions in order to add them.

Expansion to (1), (2), and (3) might be done in class and then practiced 
in mixed problem sets during Phase 2 homework for that lesson. Some 
math programs or teachers might delay discussing (2) until after they have 
practiced expressing the answer as 1 1/7 (as a whole number and a frac-
tion), while others might want students to solve the case right away to 
emphasize that adding is always done by finding the total number of unit 
fractions. But (4)  is a new, large topic that needs several days of devel-
opment and discussion and might even be taken up in a later grade. The 
problem sets would likely include subtracting examples, like the addition 
examples in the unit, and would mix addition and subtraction examples, 
for the unit fluency work. Adding and subtracting mixed numbers might 
be included in this unit or in a later grade, and practice would eventually be 
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done across these types. Similarly, fluency practice on all four operations 
would eventually be done in Phase 3’s unit practice or in the mixed review 
for the rest of the year.

Over the rest of the year, students can review a mix of older topics, 
even as they focus on the more targeted Phase 2 and Phase 3 kinds of 
practice. This allows them to achieve fluency in new topics while maintain-
ing fluency in older topics.

Computer practice systems can have more or less of a management 
system that gives feedback about student performance to teachers or the 
family. Such feedback can be useful for teachers or family members to 
help with motivation or conceptual help if needed. Or, such practice can 
be related to Use 2 (technology) to provide a user-adaptive, cognitive tutor 
based on individual student performance.

Many computer games designed to provide fluency practice fail in how 
they classify practice problems. They have far too many easy problems, 
wasting student time. This is especially true for single-digit addition, 
subtraction, multiplication, and division games. Then a game may jump 
to much harder problems, missing problems of intermediate difficulty. 
Some games contain visual information, such as moving images, that is 
peripheral to the core problem and only taxes students’ mental resources 
and distracts them away from the mathematical ideas (Hirsh-Pasek et al. 
2015; Rosen, Palatnik, and Abrahamson 2018). So such programs need to 
be chosen carefully so that they give problems to a student that fits the 
student’s practice needs.

The classroom and technological learning environment should support 
the students in sustaining their motivation (see Chapter 6). Some advan-
tages of computer-based practice software are (1) providing immediate 
feedback, (2) diagnosing inappropriate beliefs or suboptimal strategies, 
and (3) providing teachers with current statistics on both individual and 
aggregate achievement and learning paths. The common game features of 
practice technology are fine and can be motivational, as long as the game 
aspect does not take too much time or distract too much from the math.

Use 4. Students confer on representing and solving problems. This is helpful 
for all of the phases and problems in Use 3 and also in solving problems and 
representing them in class in Phase 2. This can, of course, be done without 
technology, but increasingly students themselves may be using available 
technology to communicate with classmates about school work.

Use 5. Teachers manage classroom discourse about representing and 
solving problems using student visual supports. This can be helpful in 
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Phase 2 (Learning Unfolding). When students are explaining their thinking, 
their math drawings and any written notation need to be made visible to 
their listeners. To achieve this, students can do their problem-solving with 
math drawings in low-tech formats such as on paper, chalk or dry-erase 
boards, or big reusable plastic write-on sheets, and then explain their 
problem to their classmates who are able to see their work. However, elec-
tronic tablets increasingly have writing/drawing functions that support 
student or teacher problem-solving with math drawings, and these can be 
projected for everyone to see.

2.8 Summary

Educating students for the mathematical needs of the 21st century is a 
challenging task. Doing this well during the elementary school years is an 
important element of a country’s success, because that is when many stu-
dents fall behind, and those who do are rarely able to catch up in later 
grades. Table 2.3 summarizes the major conclusions drawn from research 
and reviewed in this chapter and provides an overview of recommenda-
tions along with their policy implications.

Focusing on the entire learning progression for a given math topic in 
the elementary grades can help educators think deeply about priorities in 
learning the topic. Educators can then provide the support needed to help 
students build understanding, master topics more coherently, and develop 
fluency with those topics. This chapter provided examples of fraction 
addition and algebraic problem-solving because these are centrally 
important math topics in these grades. The examples illustrate how 
important visual models are for understanding and explaining mathematical 
concepts, and for eliciting students’ different ways of making sense of the 
situations. Providing an overview of classroom teaching and learning within 
the balanced teaching framework allows for presenting results from a large 
international body of research in a coherent way. This framework brings 
together different views of teaching to focus on both student ideas and 
mathematically desirable methods. In a sensible progression, teaching 
begins with the ideas that students bring into classrooms, then rapidly builds 
to mathematically desirable and accessible methods that are explained 
by the teachers and students, and finally moves on to fluency practice. 
Table 2.2 showed some important roles that technology can play at various 
points of this teaching/learning progression. Altogether, the framework can 
help teachers and students in Latin American and Caribbean countries and 
the rest of the world learn and use mathematics to participate productively 
in the global world of the 21st century.
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TABLE 2.3
SUMMARY OF CONCLUSIONS AND IMPLICATIONS

Conclusions
Recommendations and Policy 
Implications

1. Technology changes the goals of math 
teaching. In the 21st century, teachers 
need to help students understand a 
math topic. Practicing solution methods 
for that topic follows and builds from 
understanding.

• Educational policymakers need to 
share this message with all educators 
and parents and implement policies 
to help teachers undertake this 
approach.

2. Students think in different ways, and 
their ideas can be anticipated and 
connected through teacher assistance. 
All ways can be valued, and students can 
be helped to move  to mathematically 
desirable, accessible and formal math 
methods.

• Instructional materials and 
standards documents should 
clearly outline how students think 
mathematically and how teachers 
can facilitate student learning by 
making connections between key 
mathematical methods though 
classroom activities, lessons, and 
discussions.

3. Teachers can learn to teach differently, 
moving away from traditional rote 
teaching to more conceptual teaching 
by focusing on how students think 
mathematically, how their ideas support 
certain solution methods, and why. The 
three-phase balanced teaching model 
(Box 2.1) can help teachers shift their 
thinking. Teachers can bring forward key 
math concepts in student “math talk” 
and help students make connections 
among methods.

• Professional development 
opportunities should be provided for 
teachers as they make sense of the 
curricular materials and standards 
documents and learn to teach 
differently. Local leaders need to be 
involved in such efforts.

4. Visual models are essential to helping 
students learn mathematics and 
teachers learn about student learning of 
mathematics. Effective teaching involves 
the purposeful use of visual models as 
students share their solution methods in 
math talk.

• Examples of visual models should 
be consistently presented in 
instructional materials so that 
teachers can learn to use them 
effectively to support student 
learning.

5. Technology can help with these policy 
recommendations (see Table 2.2 and its 
discussion). It is particularly important 
to provide examples of visual models for 
teaching and for teachers to confer with 
each other.

• Technology dollars for education 
need to be focused on the goals in 
this table, and free resources need to 
be identified and shared by teachers 
and experts.

Source: Prepared by the authors.



A LEARNING PATH FRAMEWORK FOR BALANCING MATHEMATICS EDUCATION 93

References

Abrahamson, D. 2014. “Building Educational Activities for Understanding: 
An Elaboration on the Embodied-Design Framework and Its Epistemic 
Grounds.” International Journal of Child-Computer Interaction 2(1): 1–16.

Abrahamson, D., and M. Kapur (editors). 2018. “Practicing Discovery-based 
Learning: Evaluating New Horizons [Special issue].” Instructional 
Science 46(1).

Abrahamson, D., J.F. Gutiérrez, and A.K. Baddorf. 2012. “Try to See It My 
Way: The Discursive Function of Idiosyncratic Mathematical Meta-
phor.” Mathematical Thinking and Learning 14(1): 55–80.

Agodini, R., and B. Harris. 2016. “How Teacher and Classroom Character-
istics Moderate the Effects of Four Elementary Math Curricula.” The 
Elementary School Journal 117(2): 216–36.

Agodini, R., B. Harris, M. Thomas, R. Murphy, and L. Gallagher. 2010. 
Achievement Effect of Four Early Elementary School Math Curricula: 
Findings for First and Second Graders (NCEE 2011–4001). Washington, 
DC: National Center for Education Evaluation and Regional Assistance, 
Institute of Education Sciences, U.S. Department of Education.

Alfieri, L., P.J. Brooks, N.J. Aldrich, and H.R. Tenenbaum. 2011. “Does Dis-
covery-based Instruction Enhance Learning?” Journal of Educational 
Psychology 103(1): 1–18.

Alibali, M.W., M.J. Nathan, M. S. Wolfgram, R.B. Church, S.A. Jacobs, C. 
Johnson Martinez, and E.J. Knuth. 2013. “How Teachers Link Ideas in 
Mathematics Instruction Using Speech and Gesture: A Corpus Analy-
sis.” Cognition and Instruction 32(1): 65–100.

Blackwell, L.S., K.H. Trzesniewski, and C.S. Dweck. 2007. “Implicit Theories 
of Intelligence Predict Achievement Across and Adolescent Transition: 
A Longitudinal Study and an Intervention.” Child Development 78(1): 
246–63.

Chi, M.T.H., S. Kang, and D.L. Yaghmourian. 2016. “Why Students Learn 
More from Dialogue- than Monologue-Videos: Analyses of Peer Inter-
actions.” Journal of the Learning Sciences 26(1): 10–50.

Clements, D.H., and J. Sarama. 2004. “Learning Trajectories in Mathemat-
ics Education.” Mathematical Thinking and Learning 6(2): 81–89.

Clements, D.H., and J. Sarama. 2014. Learning and Teaching Early Math: The 
Learning Trajectories Approach (2nd edition). New York: Routledge.

Common Core State Standards Initiative (CCSS). 2010. “Common Core 
State Standards for Mathematics.” National Governors Association 
Center for Best Practices and the Council of Chief State School 
Officers, Washington, DC. Available at http://corestandards.org/.

http://corestandards.org/


LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION94

Donovan, M.S., and J.D. Bransford (editors). 2005. How Students Learn: 
Mathematics in the Classroom. Washington, DC: National Academies 
Press.

Dweck, C. 2010. “Mind-sets and Equitable Education.” Principal Leadership 
10(5): 26–29.

Feucht, F.C. 2010. “Epistemic Climate in Elementary Classrooms.” In 
Personal Epistemology in the Classroom: Theory, Research, and 
Educational Implications, edited by L.D. Bendixen and F.C. Feucht. 
New York: University Press.

Fuson, K.C., and A. Murata. 2007. “Integrating NRC Principles and the NCTM 
Process Standards to Form a Class Learning Path Model that Individu-
alizes within Whole-Class Activities.” National Council of Supervisors 
of Mathematics Journal of Mathematics Education Leadership 10(1): 
72–91.

Fuson, K.C., A. Murata, and D. Abrahamson. 2014. “Using Learning Path 
Research to Balance Mathematics Education: Teaching/Learning 
for Understanding and Fluency.” In Oxford Handbook of Numerical 
Cognition, edited by R. Cohen Kadosh and A. Dowker. Oxford, UK: 
Oxford University Press.

Gakkotosho. 2010. Study with Your Friends: Mathematics for Elementary 
School. Tokyo: Gakkotosho Co. Ltd.

Hirsh-Pasek, K., J.M. Zosh, R. Michnick Golinkoff, J.H. Gray, M.B. Robb, and 
J. Kaufman. 2015. “Putting Education in ‘Educational’ Apps: Lessons 
from the Science of Learning.” Psychological Science in the Public 
Interest 16(1): 3–34.

Hufferd-Ackles, K., K.C. Fuson, and M.G. Sherin. 2004. “Describing Levels 
and Components of a Math-Talk Community.” Journal for Research in 
Mathematics Education 35(2): 81–116.

Hufferd-Ackles, K., K.C. Fuson, and M.G. Sherin. 2015. “Describing Lev-
els and Components of a Math-Talk Learning Community.” In More 
Lessons Learned from Research: Volume 1: Useful and Usable Research 
Related to Core Mathematical Practices, edited by E.A. Silver and P A. 
Kenney. Reston, VA: NCTM.

Ingram, J. 2014. “Shifting Attention.” For the Learning of Mathematics 
34(3), 19–24.

Kapur, M. 2014. “Productive Failure in Learning Math.” Cognitive Science 
38(5): 1008–022.

Kilpatrick, J., J. Swafford, and B. Findell (editors). 2001. Adding It Up: 
Helping Children Learn Mathematics. Mathematics Learning Study 
Committee. Center for Education, Division of Behavioral and Social 
Sciences and Education. Washington, DC: National Academies Press.



A LEARNING PATH FRAMEWORK FOR BALANCING MATHEMATICS EDUCATION 95

Ma, J.Y., and M. Singer-Gabella. 2011. “Learning to Teach in the Figured 
World of Reform Mathematics: Negotiating New Models of Identity.” 
Journal of Teacher Education 62(1): 8–22.

Mason, J. 1989. “Mathematical Abstraction as the Result of a Delicate Shift 
of Attention.” For the Learning of Mathematics 9(2): 2–8.

Mighton, J. 2013. “For the Love of Math.” Scientific American Mind 24: 60–67.
Murata, A. 2008. “Mathematics Teaching and Learning as a Mediating Pro-

cess: The Case of Tape Diagrams.” Mathematical Thinking and Learning 
10(4): 374–406.

Murata, A., and K.C. Fuson. 2006. “Teaching as Assisting Individual 
Constructive Paths within an Interdependent Class Learning Zone: Jap-
anese First Graders Learning to Add Using Ten.” Journal for Research 
in Mathematics Education 37(5): 421–56.

Murata, A., and K.C. Fuson. 2016. “Class Learning Zone and Class Learning 
Paths: Responsive Teaching in First-grade Mathematics.” In Lessons 
Learned from Research, edited by E. Silver and P.A. Kenney. Reston, 
VA: National Council of Teachers of Mathematics.

Murata, A., J. Siker, B. Kang, H-J. Kim, E.M. Baldinger, M. Scott, and K. 
Lanouette. 2017. “Math Talk and Student Strategy Trajectories: The 
Case of Two First Grade Classrooms.” Cognition and Instruction: 
336–62. doi:10.1080/07370008.2017.1362408.

National Council of Teachers of Mathematics (NCTM). 2000. Principles and 
Standards for School Mathematics. Reston, VA: NCTM.

National Council of Teachers of Mathematics (NCTM). 2014. Principles to 
Actions: Ensuring Mathematical Success for All. Reston, VA: NCTM.

National Research Council (NRC). 2009. Mathematics Learning in Early 
Childhood: Paths toward Excellence and Equity. Washington, DC: 
National Academies Press.

Pratt, D., and R. Noss. 2010. “Designing for Mathematical Abstraction.” 
International Journal of Computers for Mathematical Learning 15(2): 81–97.

Rosen, D.M., A. Palatnik, and D. Abrahamson. 2018. “A Better Story: An 
Embodiment Argument for Stark Manipulatives.” In Using Mobile 
Technologies in the Learning of Mathematics, edited by N. Calder, N. 
Sinclair, and K. Larkin. New York: Springer.

Simon, M.A., N. Placa, and A. Avitzur. 2016. “Participatory and Anticipatory 
Stages of Mathematical Concept Learning: Further Empirical and The-
oretical Development.” Journal for Research in Mathematics Education 
47(1): 63–93.

Slavin, R.E., and C. Lake. 2008. “Effective Programs in Elementary Math-
ematics: A Best-evidence Synthesis.” Review of Educational Research 
78(3): 427–515.



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION96

Stevens, R., and R. Hall. 1998. “Disciplined Perception: Learning to See in 
Technoscience.” In Talking Mathematics in School: Studies of Teaching 
and Learning, edited by M. Lampert and M.L. Blunk. New York: Cam-
bridge University Press.

Tharp, R.G., and R. Gallimore. 1988. Rousing Minds to Life: Teaching, 
Learning, and Schooling in Social Context. New York: University Press.

Yackel, E., and P. Cobb. 1996. “Sociomathematical Norms, Argumentation, 
and Autonomy in Mathematics.” Journal for Research in Mathematics 
Education 27(4): 458–77.



97

Mathematics Learning in Latin Mathematics Learning in Latin 
America and the CaribbeanAmerica and the Caribbean

Gilbert A. Valverde (University at Albany, State University of New York),  

Jeffery H. Marshall (EdCaminos), and M. Alejandra Sorto (Texas State University)1

In the preceding chapter, a large body of international research on 
mathematics teaching and learning was reviewed using the balanced 
teaching framework. The goal of the framework is to encourage learn-

ing progressions using student ideas, connecting these ideas to significant 
mathematics concepts, and applying other strategies to generate mean-
ingful opportunities to learn in mathematics classrooms.

This chapter reviews the evidence from research in Latin America and 
the Caribbean (LAC)  to understand what mathematics is learned in the 
region’s primary schools today. It considers how students’ attainment in 
mathematics in LAC is likely connected to the opportunities afforded them 
to learn specific mathematics topics, skills, dispositions, and mental routines, 
and how current curriculum policy is related to those opportunities. The 
chapter begins by examining students’ performance on international tests, 
contrasting those attainments with the types of goals that their national 
educational systems set out for them, and then further considering specific 
areas of mathematics and specific populations of students that show 
disparate weaknesses and strengths in mathematics attainment.

In 2007, fourth grade students from more than 60 countries partic-
ipated in the Trends in Mathematics and Science Study (TIMSS), a test 
measuring what they had learned in mathematics (Mullis, Martin, and Foy 
2008). Two Latin American countries participated: Colombia and El Sal-
vador. Students from both countries performed significantly below the 
midpoint of the test scale among the 10 countries with the lowest aver-
age achievement on the test. Indeed, every time a country from LAC has 

CHAPTERCHAPTER  33

1 M.I. Khan and E. Villalobos assisted in the preparation of this chapter.
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participated in TIMSS, it invariably has performed among the countries 
with the lowest average achievement levels.2 An example of individual test 
questions intended to measure key areas of mathematics learning is repre-
sented in Figure 3.1. In this question, one of the few released to the public, 
students were asked to determine which fraction of the rectangle is repre-
sented by the shaded area.

This question proved difficult for Colombian and Salvadoran students, 
as can be observed in Figure 3.2. A large majority of students chose the 
incorrect answer, C, presumably because the sum of the shaded segments 
is six. Over 40 percent of students who took the TIMSS test across the 
globe were able to identify the correct answer, whereas in Colombia and 
El Salvador only about 10 percent of students were able to do so. This 
result is striking because in all LAC educational systems—and in Colombia 
and El Salvador in particular—national curriculum policy prescribes work 

2 LAC participation in TIMSS has been low: Chile participated in 1999, 2003, 2011, and 
2019, Argentina in 1995 and 2003, Colombia in 1995 and 2007, Mexico in 1995, and 
El Salvador in 2007.

FIGURE 3.1
TIMSS 2007 TEST QUESTION, SAMPLE 1
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Evaluation of Educational Achievement (IEA). Publisher: TIMSS & PIRLS International Study 
Center, Lynch School of Education, Boston College.
Note: TIMSS: Trends in Mathematics and Science Study.
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with common fractions as a focal learning goal starting in about the third 
grade. The use of models, such as the one in the test question in Figure 3.1, 
is also promoted extensively, and third and fourth grade textbooks include 
examples and exercises that are very similar to this TIMSS test question.3

Although the findings of low average achievement are striking, there 
are, of course, some test questions that were easier for Colombian and 
Salvadoran fourth graders to solve. Yet, even on test questions that were 
relatively easy, these students scored lower than their international peers. 
For example, from among the TIMSS 2007 questions that have been 
released, one of the least difficult proved to be the question in Figure 3.3, 
which asks students to choose the set of numbers arranged from largest 
to smallest.

As can be seen in Figure 3.4, even on this question, which 40 percent 
or more of students in both Colombia and El Salvador were able to answer 
correctly, they performed worse than their international peers. On average, 
20 percent more students were able to answer this question correctly in 
other parts of the world.

Once again, the question tests mathematics knowledge that is a required 
focus in early primary grades in LAC. For example, in the Salvadoran National 

FIGURE 3.2
PERFORMANCE OF COLOMBIAN AND SALVADORAN FOURTH 
GRADERS ON TEST QUESTION IN FIGURE 3.1 (PERCENT)
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3 For example, the Colombian National Standards give modeling a prominent place 
among the five general processes in mathematical activities promoted for learning in 
primary grades (Colombia Ministerio de Educación Nacional 2006).
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Program of Study for the Third Grade (in force since 2008), school children 
are expected to master counting and ordering numbers up to 9,999. Indeed, 
this is the first set of learning objectives mentioned (El Salvador Ministerio 
de Educación 2008, 56).

These illustrations give a glimpse of the scope of the educational 
challenges in primary school mathematics in the region. Most evidence 

FIGURE 3.3
TIMSS 2007 TEST QUESTION, SAMPLE 2
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FIGURE 3.4
PERFORMANCE OF COLOMBIAN AND SALVADORAN FOURTH 
GRADERS ON TEST QUESTION IN FIGURE 3.3 (PERCENT)
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indicates that LAC faces important and immediate challenges in creat-
ing opportunities for school children to successfully learn mathematics at 
levels comparable to their peers in other parts of the world. As will be 
shown in this chapter, some of these challenges may be related to differ-
ences in the curricular intentions of LAC countries relative to global peers. 
Yet there are other issues that can be attributed to significant difficulties 
in classroom implementation, inequities in the distribution of educational 
opportunities to different segments of the school population, and other 
structural factors.

Evidence of the challenges faced in the region does not come only 
from large-scale global tests in which LAC countries participate infre-
quently. However, this evidence is quite valuable because it offers the 
only available way to contrast the attainment of the region’s students with 
students outside the region. Meanwhile, evidence restricted to the LAC 
region also suggests serious and pervasive challenges in average levels of 
achievement in mathematics.

The Third Regional Comparative and Explanatory Study (Tercer 
Estudio Regional Comparativo y Explicativo – TERCE)  is a test designed 
to be aligned with curriculum expectations in the region. The blueprint 
for the test was developed after an analysis of the national curricula in 
each participating country (ICFES 2013) and thus was planned to closely 
line up with current curricular policies. In other words, the test was aimed 
at asking students mathematics questions regarding content that most 
participating nations intended for them to learn. Students are measured 
against a standard of performance designed to represent regional learning 
goals fairly. The TERCE assessed the third and sixth grades.

The TERCE found critically low average levels of mathematics per-
formance among third grade students (UNESCO-OREALC 2015), even 
involving content that their educational systems emphasized in the cur-
riculum. The test distinguishes four performance levels in mathematics, 
with Level I at the low end and Level IV at the high. A scant 8.3 percent 
of school children in the region performed at Level IV. Indeed, less than a 
quarter of the region’s primary school students performed at either of the 
two top performance levels. Slightly over half the students in the region 
performed at the lowest performance level or below. A description of the 
results of the TERCE, including results at the national level, will be dis-
cussed later in this chapter.4 It is important to note that even in the LAC 

4 See also Figure 3.7 for descriptions of what the TERCE results mean in terms of the 
mathematics that school children are capable of doing.
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countries with the highest average scores on the TERCE, approximately a 
quarter of third grade students are performing at the lower levels.

The TERCE offers the latest and most comprehensive evidence 
of the important weaknesses in mathematics attainment of primary 
school children in LAC. The evidence of low achievement in this critical 
domain is pervasive, long-standing, and documented in various studies. 
There is evidence of substantial differences associated with whether a 
child attends a public or a private school. This achievement gap is even 
recognized formally in some countries. For example, in Brazil, the Mathe-
matics Olympiads hold public school students to completely different (and 
lower) standards than their peers in private schools (Biondi, Vasconcellos, 
and Menezes-Filho 2012). There are also countries that show substantial 
gender-related achievement gaps favoring boys. This is the case in Chile, 
for example (Zambrano Jurado 2013), where the gender differences may 
in part be related to gender stereotypes regarding interest and ability in 
mathematics, stereotypes that are possibly already in place when boys 
and girls are only 5 years old (del Río and Strasser 2013).

There is also a growing body of information regarding structural ineq-
uities in the distribution of opportunities to learn. The quality of school 
experiences in mathematics afforded to school children in rural areas 
differs significantly from that in urban areas. Such inequity also exists 
between ethnic and linguistic groups, as well as between students from 
affluent or poor families—mirroring structural inequalities in the distribu-
tion of wealth, services, and other opportunities that pervade the societies 
in the region (Cueto, Ramirez, and Leon 2006; Ramirez 2006; Valverde 
and Näslund-Hadley 2010).

The use of computers in mathematics classrooms has received 
attention as a promising way to overcome some of these challenges, 
and this book arises from a concern that its promise needs to be better 
understood. However, existing evidence on the effectiveness of comput-
ers in primary school mathematics in LAC is mixed. Analysis of data from 
the second regional test in LAC (Segundo Estudio Regional Comparativo 
y Explicativo – SERCE) suggests that whereas students with computers 
at home perform better in mathematics, when they use those computers 
to do their homework, they actually perform worse on the test (Carrasco 
and Torrecilla 2012). A study in Brazil found that the students of primary 
school teachers who use computers and the Internet as pedagogical 
tools perform a bit better in mathematics than their peers, but also that 
students in schools with computer labs have significantly lower average 
achievement levels in mathematics than their peers in schools without 
labs (Sprietsma 2012).
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3.1  What Mathematics Are Primary School Students in Latin 
America and the Caribbean Expected to Learn?

Curriculum policy in LAC merits special attention. In curriculum studies, 
the official expectations regarding mathematics learning promoted 
by ministries, secretariats, or other official national, state, or provincial 
educational agencies are termed the “intended curriculum.” The intended 
curriculum is embodied in national curricula or programs of study, 
standards, frameworks, or other similar documents, and has a primary 
role in defining learning goals for the educational system. Educational 
policymakers put forth documents to guide the experiences of students 
in classrooms. These curriculum policies promote, constrain, and guide 
the opportunities to learn that take place in mathematics classrooms. This 
is the “implemented curriculum.” They have a demonstrated, measurable 
impact on the final category, which is the “attained curriculum,” that is, the 
mathematics that school children effectively master (Schmidt et al. 2001; 
Valverde et al. 2002).

To explore the question of what LAC educational systems intend stu-
dents to learn, this chapter takes advantage of the rich data set available 
at the International Curriculum and Textbook Archive (ICATA) at the Uni-
versity at Albany, State University of New York. The archive specializes 
in documents pertaining to the intended curriculum in primary school 
mathematics (and reading)  in developing countries. It includes national 
curricula, syllabi, programs of study, teacher’s guides, and officially sanc-
tioned textbooks from developing countries around the world, and it is 
especially strong in its representation of the LAC region.5 Given the scope 
of this chapter, the focus of the analysis here is on official curriculum policy 
documents such as national curricula, national scope and sequence poli-
cies, and so on. Each of these documents was coded, page by page, by 
trained coders focusing on the mathematics content intended for instruc-
tion and the expectations regarding what students should be able to do 
with that content. The coding procedure follows the one developed for a 
large-scale international study of curricula, with an extended version of the 
coding frameworks used for that study (Survey of Mathematics and Sci-
ence Opportunities 1992; Schmidt et al. 1997b; Valverde et al. 2002).

In previous international comparative studies of the intended cur-
riculum, important insights were derived through comparisons of the 

5 For more information on ICATA and its continuously expanding archive of primary 
school curriculum documents and the dataset compiled by its coding, contact the 
lead author of this chapter at gvalverde@albany.edu.
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number of mathematics topics intended for students to learn in each 
grade (Schmidt et al. 1997a, 1997b). Comparing the number of intended 
topics provides a first measure of what might be termed the “breadth ver-
sus depth” problem. Those previous studies found that higher-achieving 
countries predominantly intended for the coverage of fewer mathematics 
topics to be covered at greater depth than countries with mediocre or poor 
average performance. LAC stands out as a uniquely different case. The 
problem was first observed in a previous replication of the TIMSS curricu-
lum analysis in Chile (Valverde 2004): Chile’s intended curriculum at that 
time had even fewer topics than high-achieving countries with “focused” 
curricula. However, rather than “focused,” the Chilean curriculum looked 
“shallow,” to use the term employed in the literature.

An examination of recent curricula across many LAC countries shows 
further evidence of this troubling phenomenon. For example, Table 3.1 
compares aspects of the intended curriculum for grades 5 and 6 across 
a selection of LAC countries. It also compares them against a prominent 
reform-oriented curriculum in the United States, the Common Core State 
Standards (CCSS Initiative 2013), that attempts to increase the level of 
depth and focus in the U.S. intended curriculum.6

Upper-primary-school students in LAC are expected to learn as many 
topics in number as are students following the U.S. Common Core State 
Standards. Indeed, many of these topics represent foundational aspects of 
arithmetic that many countries continue to stress through the upper pri-
mary grades. More challenging content, such as integers and rational and 
real numbers, is commonly omitted in LAC at this grade level. These are 
intended in the Common Core Standards, and certainly large-scale stud-
ies of mathematics curricular intentions indicate that these contents are 
typically intended at this grade level in countries with higher average per-
formance on international tests (Valverde 2000; Schmidt et al. 1997b).

Further evidence of important differences in the regional curricu-
lar intentions of LAC and its international peers can be seen if attention 
is shifted to key areas of mathematics that distinguish high-performing 
countries.

Table 3.2 shows data on curricular intentions in the mathematics areas 
of proportionality and functions, relations, and equations. Few countries 
intend students at this grade level to learn about proportionality problems. 
A more striking difference—and one with a more likely impact on levels 

6 Using this document as a point of comparison has the additional advantage that 
the Common Core Standards are based on research findings from large-scale cross-
national mathematics tests.
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of achievement in mathematics—is the general absence of intentions to 
cover functions, relations, and equations content. This indicates the omis-
sion from primary grades of foundational content that is preparatory for 
further learning of algebra. Countries with higher levels of average student 
achievement begin such introductory work in algebra much earlier and 
with more sustained focus. As seen in the table, the intended curriculum in 
LAC rarely promotes such educational opportunities.

This is one of the most striking aspects that set the curricular inten-
tions of Latin American (but not the two Anglophone Caribbean countries 
in the sample)  primary education policy apart from international peers, 
and one that may help explain differences in mathematics achievement. 
The U.S. Common Core Standards aim to prepare students from kinder-
garten onward for algebraic thinking. It may seem strange to intend for 
students that young to learn algebra. What is meant, however, is not the 
rigorous formal algebra common in secondary school, but rather foun-
dational aspects of algebraic reasoning that are essential to a variety of 
important quantitative skills throughout subsequent years of schooling. 
Recognition and use of patterns and relations are two of the foundational 
components of mathematical reasoning, key to progressing toward the 
formal use of equations, formulas, and functions and other numeracy 
skills in later grades. LAC countries rarely have curriculum policies that 
call for learning progressions that begin with such content and lead to 
increasingly more challenging skills in algebraic thinking. A few countries 
do intend for the lower primary grades to include this content, and it is 
instructive to consider how curriculum policy in those nations structures 
these intentions.

In grades one through three in Colombia, one strand of the national 
standards, Variational Thinking and Algebraic and Analytical Systems 
(Pensamiento variacional y sistemas algebraicos y analíticos),  has four 
goals, followed by five goals in grades four and five (Table 3.3).

Table 3.3. shows that the Colombian intended curriculum includes a 
progression of learning goals that build up to increasingly more challeng-
ing material.

In The Bahamas (Ministry of Education 2010), curricular intentions in 
primary school mathematics are specified for each individual grade, rather 
than by groups of grades, as in the case of Colombia. The national Scope 
and Sequence for Primary School Mathematics puts forth objectives for 
“patterns, functions, and algebra” into two subgoals, one of which is shown 
in Table 3.4 as an example.

These examples show approaches to curriculum policy that are uncom-
mon in the region, where, as has been shown, most countries do not focus 



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION108

TABLE 3.3
CURRICULAR INTENTIONS IN THE AREA OF PATTERNS, RELATIONS, 
FUNCTIONS, AND EQUATIONS IN COLOMBIA’S NATIONAL STANDARDS
Grades 1 through 3 Grades 4 and 5

• Recognize and describe regularities 
and patterns in different contexts

• Describe and interpret variations 
represented in graphs

• Qualitatively describe situations of 
change and variation

• Predict patterns of variation in numerical, 
geometric, or graphical sequences

• Recognize and generate 
equivalencies between numeric 
expressions

• Analyze and explain relationships of 
dependency between quantities that 
vary with certain regularity over time 
in economic, social, and natural science 
contexts

• Build numerical and geometrical 
sequences using properties of 
numbers and geometric figures

• Represent and relate numeric patterns 
with tables and verbal rules.

• Build numerical equalities and inequalities 
as representation of relationships between 
different data

Source: Colombia Ministerio de Educación Nacional (2006).
Note: Material translated, summarized, and organized in tabular format by the authors.

on this content area in mathematics. The examples from Colombia and The 
Bahamas suggest possible approaches.

Recognizing and using patterns is a key component of mathematical 
reasoning. Returning to Table 3.2, one can observe another area of 
mathematical reasoning where regional curricular intentions for primary 
school mathematics differ from intentions in other parts of the world. The 
ability to recognize proportional situations (proportional reasoning),  and 
understand the multiplicative relationship between quantities in these 
situations is central to the eventual understanding in later grades of algebraic 
expressions, coordinate graphs, trigonometry, and so on. Yet, although it 
is common in the region to promote the learning of some proportionality 
concepts, it is much less common to intend that students be able to 
understand ratio concepts and use ratio reasoning to solve problems. This 
is one of the goals for upper primary school common in better-achieving 
countries, and it is also a goal present in the U.S. Common Core Standards.

This chapter has identified a few of the most striking contrasts between 
curricular intentions in LAC and countries outside the region that have 
been more successful in promoting higher levels of attainment in primary 
school mathematics, as measured in large-scale cross-national tests. “Shal-
low” areas—including important numbers concepts, foundational aspects 
of algebraic thinking, and meaningful content in proportionality—are key 
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to mathematical reasoning. The deficit in expectations is further confirmed 
when one looks at curriculum policy for how students are expected to rea-
son with and apply the mathematics content they learn.

Students are expected to not only gain mathematical content knowl-
edge but also to think and utilize that knowledge. These performance 
expectations are central to countries’ curricular visions and intentions.

Table 3.5 lists the intentions of several LAC countries in the least- 
demanding areas of performance—knowing and using routine proce-
dures—and compares these against the expectations of the TIMSS test 
(Mullis et al. 2005, 2009).7

As can be observed, expectations in the region align well with the 
expectations assessed by the fourth grade TIMSS tests. The use of equip-
ment, including computational devices such as calculators and computers, 
is widely intended across the region. There are, however, variations across 
LAC: Jamaica and The Bahamas intend for all the skills assessed by the 
TIMSS to be learned, whereas some countries do not intend for students 
to perform routine procedures in graphing (Colombia, the Dominican 
Republic, Mexico) or using instruments (Colombia, Paraguay) at this grade 
level. Evidently, this would affect the likelihood that such content is taught, 
and, consequently, achievement levels in this area.

From Table 3.6 it is also apparent that in the important area of problem-
solving, countries in the region have similar expectations as do the TIMSS 
fourth grade tests, with some noteworthy variations. Here, curiously, The 
Bahamas is the exceptional case, with fewer performance expectations in 
the area than the other countries analyzed. The presence of expectations 
for problem-solving represents an important and positive change. In the 
late 1990s, such expectations were largely absent from the curriculum pol-
icies in the region (Schmidt et al. 1997b).

Expectations in LAC also differ from those in other parts of the world 
for mathematical reasoning, as shown in Table 3.7. However, there are 
important regional variations. Argentina, Chile, Jamaica, and, to some 
extent, Colombia, have greater expectations for student performance in 
this area. Other countries show a curricular shallowness in this area, with 
important aspects of mathematical reasoning omitted, suggesting a lesser 
likelihood that children will have the opportunity to learn them.

Another important contrast between LAC and other parts of the world 
has to do with the grades when the introduction and development of learn-
ing goals in key curricular areas is intended. Here one can observe another 

7 A list of analyzed curriculum documents is available from the corresponding author 
(gvalverde@albany.edu). All curriculum documents were officially in force in 2015.
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TABLE 3.5
PERFORMANCE EXPECTATIONS FOR ROUTINE PROCEDURES FOR 
FOURTH AND FIFTH GRADES IN SELECTED LATIN AMERICAN AND 
CARIBBEAN COUNTRIES

ARG CHL COL CRI DOM MEX PRY PER BHS JAM TIMSS

Knowing

Representing X X X X X X X X X

Recognizing 
equivalents

X X X X X X X X X X X

Recalling 
mathematical 
objects and 
properties

X X X X X X X X X X X

Using Routine 
Procedures

Using 
equipment

X

Using 
instruments 
(e.g., measuring 
instruments)

X X X X X X X X

Using 
computational 
devices

X X X X X X X X

Performing 
Routine 
Procedures

Counting X X X X X X X

Computing X X X X X X X X X X X

Graphing X X X X X X X X

Transforming X X X X X X X

Measuring X X X X X X X X X X X

Using More 
Complex 
Procedures

Estimating X X X X X X X X X

Using data X X X X X X X X X X

Comparing X X X X X X X X X

Classifying X X X X X X X X X X

Source: International Curriculum and Textbook Archive.
Note: Trends in Mathematics and Science Study (TIMSS) performance expectations pertain 
to the fourth grade tests.
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important element of the story. One difficulty when studying curriculum 
policies in LAC is that some countries, such as Colombia, do not specify 
curriculum by grade, but rather by group of grade levels (in the Colombian 
case, grades 1 to 3, 4 and 5, 6 and 7, etc.). Thus, it is unclear when con-
tent is intended for introduction. However, examining the countries that 
do specify expectations by grade, one finds that in fractions, expectations 
in Bermuda are representative of the region. Figure 3.5 shows how the 
sequence of expectations regarding the instruction of common fractions 
differs between Bermuda and those countries that were high perform-
ers on the TIMSS tests. Students in Bermuda are intended to encounter 
common fractions in the third grade, while in other countries outside LAC 
that introduction typically takes place at the preprimary level. Thus, by 
the third grade, students in high-performing countries outside the region 
would have already had two to three years of instruction in this topic.

The examination here of the intended curriculum in LAC has uncov-
ered mathematics areas for which expectations in the region are very 
similar to expectations in other parts of the world—for example, in whole 
number topics, mastering routine procedures, and problem-solving. How-
ever, the analysis also finds indications of shallowness in expectations for 
students in important elements of mathematical reasoning. Children in 
LAC are likely to be introduced to topics such as fractions later than their 

TABLE 3.6
PERFORMANCE EXPECTATIONS FOR INVESTIGATING AND PROBLEM-
SOLVING FOR FOURTH AND FIFTH GRADES IN SELECTED LATIN 
AMERICAN AND CARIBBEAN COUNTRIES

ARG CHL COL CRI DOM MEX PRY PER BHS JAM TIMSS

Investigating and 
Problem-solving

Formulating 
and clarifying 
problems and 
situations

X X X X X X X X X

Developing 
strategy

X X X X X X X X

Solving X X X X X X X X X X X

Predicting X X X X X X X

Verifying X X X

Source: International Curriculum and Textbook Archive.
Note: Trends in Mathematics and Science Study (TIMSS) performance expectations pertain 
to the fourth grade tests.
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peers in other parts of the world. These elements help gauge the scope of 
the challenges mathematics education policy faces in the region.

To further explore possible relationships between a shallow intended 
curriculum and low levels of mathematics achievement, one can return to 
the example of the two TIMSS test questions discussed at the beginning 
of this chapter. As observed, both questions belong to content areas that 
receive some attention in educational policy in LAC. However, they are 
notably more difficult for students to solve in LAC than outside the region. 

TABLE 3.7
PERFORMANCE EXPECTATIONS FOR MATHEMATICAL REASONING FOR 
FOURTH AND FIFTH GRADES IN SELECTED LATIN AMERICAN AND 
CARIBBEAN COUNTRIES

ARG CHL COL CRI DOM MEX PRY PER BHS JAM TIMSS

Mathematical 
Reasoning

Developing 
notation and 
vocabulary

X X X X

Developing 
algorithms

X X X X

Generalizing X X X X

Conjecturing X X X X X X X X

Justifying 
and proving

X X X X X

Axiomatizing X X

Source: International Curriculum and Textbook Archive.
Note: Trends in Mathematics and Science Study (TIMSS) performance expectations pertain 
to the fourth grade tests.

FIGURE 3.5
GRADES WHEN COMMON FRACTIONS ARE TO BE INTRODUCED: 
BERMUDA VERSUS THE TOP 70 PERCENT OF INTERNATIONAL PEERS 
THAT APPLY THE TIMSS

Grades
0 1 2 3 4 5 6

Bermuda

TIMSS

Source: International Curriculum and Textbook Archive (ICATA) at the University at Albany, 
State University of New York.
Note: TIMSS: Trends in Mathematics and Science Study.
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Some reasons for this difference may be found in the pattern of omissions 
in mathematical reasoning. Yet this cannot be the full explanation.

The initial discussion of the fractions question in Figure 3.1 mentioned 
that common fractions are widely intended to be learned by the fourth 
grade across LAC, and thus poor achievement on such questions is dif-
ficult to understand. However, an examination of the question suggests 
an explanation worth further probing. To answer this question, students 
must not only have experience with common fractions (1/3), but also prior 
exposure to equivalent fractions and their representation in models of area 
and/or mathematical reasoning. Perhaps children know how to recognize 
fractions represented in models of area—and therefore can count the num-
ber of shaded squares, relate them to the full number of squares, and come 
up with the figure of 6/18. Not finding that option, they perhaps choose 
the closest available option: 6/12 (which is option C, by far the preferred 
incorrect option). This is likely because they cannot recognize that 6/18 is 
an equivalent fraction to 1/3. Yet this is not the only possible way to arrive 
at the correct answer, as an alternative would be to observe that the model 
could also be interpreted as being made up of three rows, and one row 
out of the three is shaded—thus 1/3. A fundamental misunderstanding of 
the way in which the model works may also be at play: students who may 
simply be adding the number of the shaded and the unshaded squares 
separately and coming up with the sums of 6 and 12, respectively, choose 
6/12. A lack of opportunities to develop proficiencies of this type in math-
ematical reasoning might explain the difficulty of the question.

The second test item, in Figure 3.3, also shows a likely relationship to 
the diagnosis of weaknesses in curricular policy. Even though the intended 
curriculum in most LAC countries states that students should be able to 
count and order numbers up to 9,999, it is possible that most teachers 
instruct students to order numbers by having them compare pairs of num-
bers and determine which is greater (or lesser)  than the other. The test 
question gives a sequence of four numbers and requires the student to 
recognize this as a pattern, rather than a simple comparison between two 
numbers. As shown in Table 3.2, one notes the common absence of work 
with patterns in the intended curricula in LAC. It is likely that a student who 
has not done work with patterns will look at a sequence of numbers and 
connect it with the idea of counting. Since counting is most often done in 
order from small to large numbers, the students will choose the option that 
shows numbers going from smallest to largest, which was indeed one of 
the incorrect answers preferred by students (option A).

There is then yet another part of the curriculum in which “shallow-
ness” may be detected: the attained curriculum. When low average levels 
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of achievement are noted in areas that are not intended for instruction 
in LAC, there is one straightforward explanation. However, when one 
observes low levels of attainment in mathematics content that is intended 
for instruction, and present in a substantial portion of textbooks as well as 
in important areas of teacher pre- and in-service training, shallowness in 
attainment must be related in part to shallowness in implementation. Hav-
ing examined the potential relationship between curriculum intentions and 
performance on mathematics test items, the next section turns to a deeper 
examination of mathematics achievement—the attained curriculum. The 
paucity of contemporary research on mathematics classroom practices in 
LAC leaves the key question of how intention is translated into attainment 
largely unexplored. This is a critical research priority for the future.

3.2  Further Exploration of Mathematics Achievement in Latin 
America and the Caribbean

The central argument in the first half of this chapter is that the attained 
curriculum—defined as the actual learning that takes place among stu-
dents—is related to the curricular goals of the education system itself. 
Students should perform better in areas that are emphasized in the 
intended curriculum, but will likely struggle in areas that receive little or no 
attention in official textbooks and teacher lesson plans or are introduced in 
later grades. Using data from international studies like the TIMSS, it seems 
clear that at least part of the explanation for why LAC countries have gen-
erally performed poorly vis-à-vis other regions is related to differences in 
official curriculum goals and priorities.

Differences in the intended curriculum go beyond simple yes-no 
dichotomies, as in “do they teach this or not?” The concept of curricu-
lum shallowness looms large, since student achievement levels can be low 
even in content areas that are officially part of the intended curriculum 
for that grade. Compared with instances of curricular exclusion—meaning 
students simply do not see particular content—shallowness is a more com-
plex phenomenon. As the name suggests, shallowness can be related to 
the amount of time spent on a given topic, but it also refers to implemen-
tation and a potentially large number of “conditioning factors,” such as the 
quality and relevance of learning materials and the ability of teachers to 
adequately instruct their students (this topic is covered in more detail in 
Chapter 4).

Here we return to the TERCE data from 15 countries in LAC for an 
overview of student achievement levels in sixth grade mathematics. The 
earlier extra-regional comparisons, using the TIMSS, allowed for considering 
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student performance in curricular areas that are not commonly intended 
in LAC countries. With the TERCE, one can instead examine how students 
perform on a test designed to measure what is commonly intended in the 
region’s mathematics curricula.

The empirical review has three core objectives. The first is to summarize 
overall student performance in sixth grade mathematics in the region based 
on intercountry comparisons of different measures of achievement levels. 
The second is to examine learning gaps between boys and girls, ethnic 
groups, public and private schools, and different socioeconomic groups. 
Taken together, these first two objectives provide the global overview 
of mathematics achievement that complements the preceding survey of 
the intended curriculum. This chapter provides the current backdrop of 
mathematics education in the region—that is, the current “state-of-play” in 
which all new initiatives are taking place.

The third objective is to go beyond the global summaries of math-
ematics achievement and understand more about the potential linkages 
between curriculum and student learning in LAC. The TERCE tests are 
designed to cover common curriculum areas in participating countries. 
This essentially rules out cross-country comparisons of achievement on the 
basis of intended goals. Nevertheless, differences in student performance 
in various content areas (i.e., geometry, numbers, etc.) and cognitive areas 
(i.e., identification, complex problem-solving)  that make up the TERCE 
sixth grade mathematics exam do make it possible to consider curricular-
driven explanations for student performance. Once again, the concepts 
of curriculum shallowness—and implementation quality—come into play, 
although the analysis is regionwide.

3.2.1  Global Summaries of Overall Sixth Grade Mathematics 
Achievement

Figure 3.6 begins with the overall averages for sixth grade mathematics in 
the 15 countries that participated in the 2013 TERCE assessment. The sum-
mary is based on the scaled score that was created by the TERCE, which 
is set at a global (across all countries) mean of 700 points, with a standard 
deviation of 100. Averages are presented for both the national (overall) and 
urban school samples (see UNESCO-OREALC, 2015, for more detailed 
summaries). The results show that Chile, Mexico, and Uruguay have the 
highest national averages in mathematics (above 750 points). This group 
is followed by Costa Rica, Argentina, and Peru, which have averages above 
720 points. Brazil, Colombia, and Ecuador have averages very near the 
overall mean of 700 points (see dotted line). There is a significant drop-off 
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after Ecuador, as Guatemala and Honduras come next with averages of 
660–680 points. The final group of countries includes Panama, Nicaragua, 
Paraguay, and the Dominican Republic, all of which have averages below 
650 points.

The intercountry learning gaps are considerable, since the national 
averages in Chile, Mexico, and Uruguay are more than one standard 
deviation higher than the averages for the four lowest-scoring countries. 
These kinds of gaps can potentially be explained by any number of 
factors, including differences in socioeconomic background and access 
to learning materials (see Chapter 4). But the large gaps also provide the 
first glimpse of likely differences in curriculum implementation—or, put 
differently, the low scores strongly suggest different degrees of curriculum 
shallowness across LAC classrooms. Again, it must be restated that the 
TERCE tests—unlike larger international assessments like the TIMSS—are 
based on a study of commonalities in curriculum that is carefully validated 
beforehand across all participating countries. So, there should be very little 
variation among participants in terms of the intended curriculum and its 
representation on the tests. This topic is returned to below in the analysis 
of TERCE mathematics test content and cognitive skill subdomains.

Are some countries doing better or worse than expected? This ques-
tion is not easily answered, but Table 3A1.1 in Annex 3.1 compares TERCE 
performance against a measure of national wealth (gross national income 
[GNI] per capita). Based on this comparison, a handful of countries are 
doing better than expected: for example, Peru ranks ninth in GNI, but 
has the fifth-highest average on the TERCE. At the other extreme, Pan-
ama and the Dominican Republic perform at lower levels than what their 
national wealth would predict. This is a simplistic method for assessing 
national performance, but it does highlight one of the fundamental real-
ities of comparative education analysis: countries are not locked into a 
given performance level based on their national wealth or development 
level. Specific policies and reforms can make a difference (Carnoy, Gove, 
and Marshall 2007), and this, of course, includes efforts to improve curric-
ulum implementation.

Given the focus of this book on urban schools, Figure 3.6 also presents 
the national averages for urban samples only. The ordering of countries 
from top to bottom is virtually identical. In most cases the difference 
between urban and rural areas (calculated separately)  is about 25–35 
points, or 0.25–0.35 standard deviations, with relatively larger differences 
in Peru and Guatemala.

The discussion so far has focused on the TERCE scale score (average 
700 points), which is a common way of presenting results of international 
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FIGURE 3.6
SIXTH GRADE MATHEMATICS ACHIEVEMENT AVERAGES IN 15 
TERCE COUNTRIES, OVERALL AND URBAN SAMPLES (MEAN = 700, 
STANDARD DEVIATION = 100)
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Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.

assessments of student achievement. Scale scores are useful for making 
quick comparisons of averages across countries (as in Figure 3.6)  and 
examining differences between subgroups (boys-girls, urban-rural, etc.). 
But the scale score is not informative regarding what students can do, 
which is ultimately the most important piece of information generated 
by assessments. Therefore, most large-scale assessments also provide 
proficiency-scale summaries.

Figure 3.7 summarizes the TERCE proficiency-scale results for sixth 
grade urban students. TERCE curriculum experts defined four levels of 
proficiency in sixth grade mathematics (see UNESCO-OREALC, 2015, 
for more details on this process). Level I students have limited profi-
ciency and are at best capable of answering items that require basic 
problem-solving skills, like reading data from a table or graph. Level 
IV students, on the other hand, have demonstrated proficiency in 
the most challenging aspects of the TERCE exam, including complex 
problem-solving related to conversions of units, fractions, and inter-
preting data from a table or graph. Levels II and III refer to subsets of 
demonstrated skills (based on correct answers on the TERCE) that are 
in between Levels I and IV.

The results in Figure 3.7 are a sober reminder of the challenges facing 
education systems in LAC—including high-scoring countries. They provide 
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a useful counterpart to the results from large-scale assessments con-
ducted across regions (i.e., the TIMSS) that were presented earlier. Even 
when restricting the analysis to urban areas, most sixth grade students 
are performing at the lowest levels. Across the entire region, roughly 75 
percent of students are in Level I or II, compared with only 15.6 percent in 
Level III and 7.8 percent in Level IV.

The differences across countries are, not surprisingly, very large. Only 
15.1 percent of Chilean urban sixth grade students scored in the lowest pro-
ficiency level (I), compared with nearly 80 percent of Dominican Republic 
students. For high-scoring students, the gaps are also quite large, as 
roughly 10–20 percent of students in high-scoring countries attained Level 

FIGURE 3.7
PERCENTAGE OF SIXTH GRADE URBAN STUDENTS BY MATHEMATICS 
PROFICIENCY LEVELS
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IV status, compared with less than 5 percent of all urban students in the 
eight countries with averages below the LAC average.

The large number of students in Level I in most TERCE participant 
countries strongly suggests that students are far behind the expected 
achievement level for the end of the primary school cycle. This result, in 
turn, has three larger implications. First, it highlights the inherent chal-
lenges in maintaining quality (i.e., learning)  while expanding access, as 
several of the low-scoring countries have made important progress in 
recent years in increasing primary school completion rates. Second, the 
concentration of students in the lower proficiency levels raises concerns 
about the preparation level of students entering lower-secondary (mid-
dle) school, especially given the high transition rates between primary and 
secondary education in urban settings. And, finally, the low scores point to 
shortcomings in the implemented curriculum in the LAC region, which, in 
turn, requires digging deeper to see what kinds of mathematics tasks stu-
dents are struggling with the most, a question that will be addressed later 
in this chapter.

Despite the troubling state of student achievement levels in most 
countries in the region, the review of overall mathematics achievement 
can be concluded with a bit of positive news: student achievement lev-
els do appear to be improving. The tests that were used in the TERCE 
are comparable with the earlier assessments (SERCE)  administered by 
the Latin American Laboratory for Assessment of the Quality of Educa-
tion (LLECE) through a process known as test equating (some common 
items were included on both the SERCE and TERCE). As described by 
the LLECE in its 2014 report (UNESCO-OREALC 2015), the comparisons 
show that student achievement levels in mathematics in grades 3 and 6 
have improved in most countries. For sixth grade, the overall (or aver-
age)  improvement between the SERCE and TERCE is about 20 points, 
or 0.20 standard deviations; for third grade, the difference is just over 
30 points, or 0.30 standard deviations. Also, the proportions of students 
in the lower levels (I and II) have declined in most countries. These are 
encouraging findings that are hopefully indicative of a positive trend in the 
region that will continue.

3.2.2 Mathematics Learning Gaps

The review of mathematics achievement in LAC continues with a summary 
of achievement gaps by student gender, ethnicity, and socioeconomic sta-
tus, as well as type of school administration (public/private). The focus 
is still on sixth grade mathematics in urban settings based on the TERCE 
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tests. Detailing these gaps—and comparing them across the region—adds 
to evidence about differences in opportunities to learn.

Figure 3.8 summarizes the results for four sets of comparisons, res- 
tricted in all cases to urban schools: boys versus girls, students who 
describe themselves as members of an ethnic group versus those who do 
not, public versus private administrations, and poorest versus wealthiest. In 
each comparison the advantage for one group over the other is measured 
in country-specific standard deviations. For gender, the comparisons indi-
cate a consistent advantage for boys over girls at this grade level, although 

FIGURE 3.8
DIFFERENCES IN SIXTH GRADE MATHEMATICS ACHIEVEMENT IN 
URBAN SCHOOLS BY GENDER, ETHNICITY, SCHOOL TYPE, AND 
SOCIOECONOMIC STATUS
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in only three countries is the difference greater than 0.20 standard devia-
tions, and in two countries girls perform a little better than boys (Paraguay 
and Panama). The consistently modest advantage for boys in mathematics 
is not unusual, especially at lower grade levels (the gaps tend to be larger 
for higher grades).

FIGURE 3.8
DIFFERENCES IN SIXTH GRADE MATHEMATICS ACHIEVEMENT IN 
URBAN SCHOOLS BY GENDER, ETHNICITY, SCHOOL TYPE, AND 
SOCIOECONOMIC STATUS
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c. Private (versus public) mathematics advantage in standard deviations
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LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION124

The results for ethnicity show that students who report belonging to 
some kind of ethnic group have lower scores than their nonethnic counter-
parts in most countries. Ethnicity is not defined here based on language 
but is instead self-reported in general terms (“do you belong to an eth-
nic group?”). This general category is used because relatively few sixth 
grade students report speaking an indigenous language at home, espe-
cially in urban areas. The gaps in Figure 3.8 are large enough to confirm 
that ethnicity is a relevant factor, and in some cases may point to specific 
problems with incorporating minority groups into schooling.

The bottom half of Figure 3.8 confirms the very large achievement 
differences that are expected in a region with high levels of economic 
inequality, even when restricting the comparisons to urban areas. Private 
school students, as well as students from the wealthiest quintiles, score 
significantly higher than their counterparts in public schools and from poor 
households in all 15 countries. The private school advantage is greater than 
0.50 standard deviations in all but three countries, whereas the Quintile 5 
(wealthiest) advantage is never below 0.80 standard deviations.

3.2.3 Content and Cognitive Area Subdomains

This section breaks down the sixth grade mathematics results in the TERCE 
into subdomains of knowledge, which include five content areas (geome-
try, measures, numbers, statistics, and variation), and three cognitive areas 
(identification/recognition of objects and elements, simple problem-solv-
ing, and complex problem-solving). Along with adding to the descriptive 
overview of mathematics knowledge in LAC (including learning gaps), the 
subdomain information also provides an “indirect” method for assess-
ing curriculum implementation and the degree of curricular shallowness 
across different areas of the intended curriculum.

The subdomain averages are presented using the percentage of cor-
rect answers for the subset of test questions that belong to each domain; 
this is the only option available, since the proficiency scales available in the 
TERCE are for the entire test, not individual subdomains.

Assessment projects, as a rule, tend to avoid using the percentage of 
correct answers, even though a percentage between 0 and 100 (or 0–1.0) is 
probably the most commonly used metric for communicating test scores 
around the world. One problem with percentages is that most people have 
their own opinion about what constitutes mastery: for example, 90 percent 
or higher is often an “A,” and below 60 percent is an “F.” Standardized tests 
tend to use very different scales for defining mastery. Proficiency scales are 
especially useful (Figure 3.7), since they translate the results from the test 
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into specific sets of skills and steer readers away from simplistic “pass/fail” 
dichotomies or from defining their own scales. The second related problem 
is that one does not know how difficult the test questions are within each 
subdomain. Only a handful of items have been released, and the TERCE did 
not create proficiency-scale summaries by domain. This lack of information 
about what the subdomains measure—and the lack of subdomain-specific 
proficiency scales—to some degree compromises the ability to compare 
achievement levels across the different domains.

Figure 3.9 summarizes sixth grade mathematics scores across the dif-
ferent content and cognitive skill subdomains.8 Among the content areas, 
student scores are the highest in variation and lowest in geometry and mea-
sures. However, the spread from highest to lowest is not very large: the 
average for variation is 47.3 percent correct (for the entire sample), com-
pared with 40.8 percent for measures. The overall average of correct answers 
is 42.3 percent for the whole sample, and 45.4 percent for urban students.

The uniform results across content domains are somewhat surprising. 
They suggest that TERCE test designers intended for the content areas 
to be relatively similar in terms of difficulty. More specifically, those who 
developed the test included similar numbers of relatively easy and difficult 
questions for each content area. Previous LLECE test reports (for the Primer 
Estudio Regional Comparativo y Explicativo [PERCE] and the SERCE) also 
did not include comparisons of content area scores, so this design feature 
appears to be consistent with previous assessments. The lack of variation 
across content areas in the TERCE significantly handicaps the task of 
understanding curriculum shallowness in the region based on strengths 
and weaknesses in content area performance. This means that it cannot 
be conclusively stated that LAC students are performing better in some 
mathematics content areas than in others, which in turn rules out even a 
basic assessment of curriculum shallowness. There are still some differences 
in results across countries, but the meaningful variation by content area has 
essentially been removed from the analysis by test designers.

Figure 3.9 also presents the averages for the cognitive subdomains. 
In contrast to the results for the content areas, the results for cognitive 
areas provide a more orderly ranking of difficulty. Students, on average, 
correctly answered more than half of the mathematics test questions that 

8 The TIMSS and TERCE tests are developed by different teams in different countries, and 
used to measure the mathematics skills of different populations of students. Therefore, the 
way in which mathematics subareas are defined is different for each test. This is why the 
list of specific mathematics subareas differs. There is little public technical documentation 
as of this writing on how the subareas in the TERCE are defined and scaled.
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rely on basic identification of objects and elements. For problem-solving, 
the results show that 41 percent (for the whole sample)  of the easy 
problem-solving activities were correctly answered, compared with 
roughly 35 percent of the harder (complex) problems.

Despite the aforementioned limitations of comparing content areas, the 
results in Figure 3.9 provide two important pieces of evidence of curricular 
shallowness in the LAC region. First, the scores across the five content 
domains are never above 50 percent correct (for the whole sample), which 
means that students cannot, on average, answer most questions in any of 
the content domains. It bears restating that these questions are taken from 
an intended curriculum that students are supposed to be familiar with. As 
noted above, the question of what constitutes mastery on a test like the 
TERCE is quite complicated, since standardized tests need to include items 
with a range of difficulty levels. It is not realistic to expect all students to 
answer all the questions correctly just because they are taken from official 
curriculum intentions; even very-high-scoring countries (i.e., South Korea, 
Singapore, and Cuba) fall far short of achieving this goal. However, global 
averages below 50 percent clearly indicate a sort of general curriculum 

FIGURE 3.9
SIXTH GRADE MATHEMATICS ACHIEVEMENT BY CONTENT AND 
COGNITIVE SUBDOMAINS (PERCENT)
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shallowness in these five content areas across the region, since it is not the 
case that student scores are substantially better in one or two areas, or 
that they are struggling in only a couple of content areas.

The results for the cognitive subdomain comparisons provide further 
evidence of curricular shallowness in LAC. Simply stated, the reason why 
student averages are never above 50 percent in the main content areas is 
that students are struggling to answer the most cognitively challenging test 
questions. This is not to say that students in LAC have mastered the basic 
elements of the sixth grade mathematics curriculum, such as place value 
identification, classification of angles according to their measure, simple 
numerical pattern recognition, or reading data from a table or graph. But 
they score lower on test questions that require them to solve problems that 
involve area and perimeter of polygons, conversion of measurement units, 
proportional reasoning, or statistical interpretation of data. This cuts to the 
heart of concerns about student mathematics achievement in the region. 
There is evidently an urgent need to provide teachers with effective tools 
to help students make these kinds of connections (see Chapters 2 and 4).9

What do the subdomain comparisons look like in high- and low-scoring 
countries? Figure 3.10 summarizes the percentage of correct answers by 
cognitive subdomain for seven countries, focusing only on urban schools. 
For the Mexico-Central American region and the South American region, 
one low-scoring country is included for each (Guatemala, Paraguay), as well 
as one high-scoring country (Costa Rica, Chile), as are the largest countries 
in the respective regions (Mexico, Brazil). The Dominican Republic is 
included as the sole representative of the Caribbean in the TERCE. The 
results show an identical pattern for proficiency across all seven countries, 
with relatively high scores in identification, followed by problem-solving 
(easy)  and problem-solving (complex). The gaps between higher- and 
lower-scoring countries are also similar by cognitive subdomain.

The finding that stands out in Figure 3.10 is that the only three averages 
that are above 60 percent correspond to the highest-scoring countries 
(Chile, Costa Rica, and Mexico) in the area of identification. In other words, 
it is not the case that the overall averages in Figure 3.9 are being driven 
down by some very low-scoring countries. Even in samples restricted to 
urban students, the averages on the three cognitive skills subdomains are 
generally below 50 percent.

9 The challenges in this regard are daunting, and the difficulty of implementing changes in 
the intended curriculum in classrooms—although not a subject of this chapter—cannot 
be overstated. A recent videotape study supported by the Inter-American Develop-
ment Bank documents teaching practices in the Dominican Republic, Paraguay, and 
the Mexican state of Nuevo Leon (Näslund-Hadley, Loera Varela, and Hepworth 2014).
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What kinds of gaps exist in the region by cognitive subdomain? 
Figure 3A1.1 in Annex 3.1 confirms that urban students in the highest 
socioeconomic status quintiles consistently perform much better than 
students in the lowest socioeconomic status quintile, and there is no real 
pattern across the three cognitive subdomains. But the results for gender 
(Figure 3.11) are quite different. On the easiest test questions related to 
identification, girls score higher than boys in four of the seven countries 
included in Figure 3.11. The results for identification are not entirely 
surprising, since it is not unusual to find that boys score higher than girls 
in more demanding cognitive subdomains (Leder 1992). But the results in 
Figure 3.11 show that the largest gaps between boys and girls are not in 
complex problem-solving, but rather in easy problem-solving. In fact, the 
gaps between urban boys and girls in these seven countries in complex 
problem-solving are never above 0.15 standard deviations, and in three 
countries they are below 0.10 standard deviations.

Figure 3A1.2 in Annex 3.1 provides a supplementary summary to the 
intercountry comparison of cognitive skills in Figure 3.10, using the TERCE 
test content areas (numbers, variation, etc.). Consistent with the Figure 3.9 
global summary of content domains, the results show relatively small gaps 
between the content areas within countries, as the difference between 
the highest and lowest average is generally between 5 and 10 percent-
age points (compared with 20+ points in Figure 3.10). The cross-country 
variation is more substantial than the variation between contents, and 

FIGURE 3.10
SIXTH GRADE MATHEMATICS ACHIEVEMENT IN URBAN SCHOOLS IN 
SEVEN LATIN AMERICAN COUNTRIES BY COGNITIVE SUBDOMAIN 
(PERCENT)
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these differences, in turn, point to differences in curriculum implementa-
tion across countries. However, the reliance on the percentages of correct 
answers to subsets of test questions does not allow for inferences about 
what these skill limitations look like. As noted above, we do not have 
access to proficiency scales by content area. But the TERCE does pub-
licly release some test questions, which makes it possible to see specific 
examples of relatively easy and difficult questions. Two examples are pro-
vided in Figure 3.12, one corresponding to a fairly easy question from the 
numbers content domain, and another more difficult item that is part of 
variation. The items also differ by the cognitive skill they require, since 
item 1 (easy) calls for the simple identification of place value up to millions 
in natural numbers, whereas item 3 (more difficult) is based on complex 
problem-solving skills that include proportional reasoning, identifying 
proper computations, and providing a solution to a problem.

Table 3.8 summarizes the results for these two items by country. 
Averages are provided for the whole sample, urban students only, by 
gender, and by socioeconomic status quintile. The countries are ranked 
from highest score = 1 to lowest score = 15, and the difference in the ranking 
between the two items is provided in panel b of Table 3.8.

The results in Table 3.8 provide a more specific glimpse of what low 
achievement looks like in the LAC region, albeit with a very small sample 
of test questions. Most students can answer the relatively easy test 
question correctly (Table 3.8, panel a), which gives some indication of 

FIGURE 3.11
MALE ADVANTAGE IN SIXTH GRADE MATHEMATICS ACHIEVEMENT 
IN URBAN SCHOOLS IN SEVEN LATIN AMERICAN COUNTRIES BY 
COGNITIVE SUBDOMAIN (IN STANDARD DEVIATIONS)
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the kinds of basic skills that sixth grade students have obtained in urban 
primary schools. However, even within the easy item, the results clearly 
show pockets of low performance, both within high-scoring countries 
(see quintile 5 versus quintile 1 comparisons) and between the countries 
(comparing country averages).

The result that stands out in Table 3.8 is the very low overall average 
on the relatively difficult item (panel b). The regionwide average is just over 
30 percent correct, and it should be noted that Item 3 is a multiple-choice 
question, with four options, so even if students guess at the answer they 
have a 25 percent chance of getting the correct answer. Furthermore, as 
difficult as this item is for most students, it is only from Level III of the 

FIGURE 3.12
SIXTH GRADE MATHEMATICS TEST QUESTIONS 1 AND 3 PUBLICLY 
RELEASED BY THE TERCE

TERCE sixth grade public item 1

Content subdomain: Numbers
Cognitive skill subdomain:
Identification of objects and elements
Test proficiency level:
Level I
Global mean percentage correct: 72%
Correct answer: B 

TERCE sixth grade public item 3

Content area: Variation
Cognitive skill subdomain: 
Complex problem – solving
Test proficiency level: Level III
Global mean percentage
correct: 30%
Correct answer: D 

 

Figure 1    Figure 2  

   

Figure 3    Figure 4  

                        

Which figure corresponds to Matilde’s identification card? 
A) 1
B) 2
C) 3
D) 4

A) 121
B) 250
C) 375
D) 400

 

 

 

 

 

 

 

Matilde’s identification card number has a 7 in the millions 
place, a 7 in the thousands place, and a 7 in the tens place. 

When making juice, we produce on average 55 liters of juice 
per 100 kilograms of apples. How many kilograms of apples 
are needed to produce 220 liters of juice?  

Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: Original document in Spanish. Translation by the authors of this chapter.
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proficiency score scale, meaning that there are even more difficult items 
that students are expected to answer on the test.

The basic story of curriculum shallowness is apparent, to some 
degree, in these two example test questions. Students are exposed to 
the basic aspects of the curriculum, and, as a result, a majority of stu-
dents in all countries can answer questions that cover fairly easy aspects 
of sixth grade mathematics. But when you move past the basics, the 
story is very different: test questions that require reasoning, thinking, 
and interpretation are answered correctly by a very small percentage of 
students. One piece of good news is that students seem to be exposed to 
all areas of the curriculum, including some that were traditionally absent 
in the past, such as statistics and pre-algebraic reasoning (numerical 
pattern recognition). Clearly what is missing is the implementation of 

TABLE 3.8
TERCE COUNTRY PERFORMANCE ON SIXTH GRADE MATHEMATICS

a. Public Item 1

Country Ranking

Overall Percentage 
Correct: By Gender:

By Wealth 
Quintile (Q):

Whole 
Sample Urban Girls Boys Q5 Q1

Argentina 7 73.0 73.4 73.1 73.0 79.4 64.8*

Brazil 6 74.4 75.8 72.8 76.1 81.5 62.4*

Chile 1 84.5 84.8 84.4 84.6 90.7 82.0*

Colombia 8 71.6 74.6 70.9 72.1 83.2 65.7*

Costa Rica 3 77.4 78.9 77.7 77.0 83.8 72.8*

Dominican 
Republic

15 55.2 58.1 58.0 52.6 69.4 50.4*

Ecuador 9 70.2 72.6 70.7 69.6 78.5 58.9*

Guatemala 10 68.5 73.9 65.9 71.0 76.8 60.7*

Honduras 12 64.8 67.1 67.7 62.1 72.8 57.3*

Mexico 2 80.0 82.1 81.1 79.0 86.5 73.6*

Nicaragua 11 67.7 67.6 65.9 69.9 70.6 63.2

Panama 14 59.7 62.2 59.9 59.4 67.0 55.7*

Paraguay 13 60.2 66.7 57.4 62.6 76.2 51.1*

Peru 5 77.0 81.4 75.9 78.1 85.2 62.0*

Uruguay 4 77.1 77.0 73.4 80.3 83.0 63.3*

LAC average — 71.5 74.7 71.0 72.1 79.7 63.6*

(continued on next page)
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mathematical practices that enable students to perform at the highest 
level.

3.3 Conclusion

This chapter has set out to provide a synoptic view of the current status 
of mathematics education in Latin America and the Caribbean. It has sur-
veyed and documented the scope and severity of the challenges countries 
in the region face, and it has identified the challenges in delivering the 

b. Public Item 3

Country

Ranking

Overall 
Percentage 

Correct:
By  

Gender:
By Wealth 

Quintile (Q):
On this 

item
Difference 
from Item 1

Whole 
Sample Urban Girls Boys Q5 Q1

Argentina 12 –5 26.4 27.6 26.4 26.3 29.0 19.9*

Brazil 13 –7 25.9 25.2 23.5 28.8 28.6 25.8

Chile 2 –1 35.5 36.3 32.4 38.7* 47.8 29.9*

Colombia 5 +3 31.2 31.9 27.3 34.1 38.9 27.3

Costa Rica 7 –4 29.4 31.6 27.5 31.3 35.3 27.4

Dominican 
Republic

15 0 24.6 26.3 25.1 24.0 23.2 23.9

Ecuador 11 –2 26.6 26.6 26.6 26.6 34.2 20.9*

Guatemala 3 +7 32.1 34.7 29.4 34.7 40.8 26.9*

Honduras 9 +3 29.0 25.8 26.7 31.1 30.0 31.4

Mexico 1 +1 38.6 40.1 38.1 39.1 43.3 35.9*

Nicaragua 6 +5 29.6 31.3 29.3 29.9 32.9 27.9

Panama 10 +4 27.1 24.7 28.2 26.0 27.7 26.6

Paraguay 14 –1 24.7 23.8 24.3 25.0 27.1 21.6

Peru 8 –3 29.1 31.3 29.0 29.2 34.7 23.5*

Uruguay 4 0 31.6 31.3 25.9 37.9* 44.1 15.6*

LAC average — — 30.2 31.1 28.7 31.6* 35.9 26.1*

Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: Ranking refers to numeric order (from 1 to 15) of country average. Wealth quintiles 
refer to wealthiest (Q5) and poorest (Q1) children in samples. Asterisks (*) in urban, boys, 
and Q1 columns mean that those averages are statistically different (p ≤ 0.05) from whole 
sample, boys, and Q5, respectively.

TABLE 3.8 (continued)

TERCE COUNTRY PERFORMANCE ON SIXTH GRADE MATHEMATICS
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opportunities to learn mathematics that would promote levels of achieve-
ment commensurate with national aspirations and the skill requirements 
of 21st century citizens, workers, and lifelong learners. From the analysis 
emerges the theme of curriculum shallowness in both curricular inten-
tion and student achievement. The chapter also surveyed variations in 
student achievement associated with gender, socioeconomic status, and 
geographic location, and found evidence of persistent structural factors 
leading to lower achievement levels for rural students, for girls (in some 
cases), and for the poor. Such structural challenges complement the ones 
identified in intended curriculum policy.

Curricular intentions are surveyed because of their influence on the 
types and qualities of actual learning opportunities in classrooms. National 
curricula, programs of study, standards, and the like are intended to 
identify learning goals. Together with tools such as textbooks and other 
pedagogical resources, and as facilitated by teachers, they are intended to 
shape educational experiences.

This look at curricular policy shows that intended curricula in LAC 
share some important priorities with other parts of the world, particularly 
in the areas of arithmetic and routine procedures. There is also evidence 
of ongoing and important innovation in curricular intentions: for example, 
the inclusion of learning goals in mathematics problem-solving. However, 
there are indications as well of important challenges facing mathematics 
education in the region, particularly regarding learning opportunities that 
the national curricula are not aiming to provide. The following are the most 
important challenges and policy implications:

1. All evidence of student achievement in mathematics in the region indi-
cates that it not only is inferior to achievement in other regions, but is 
also inferior to countries’ own national aspirations as put forward in their 
curricula. This may be addressed by prioritizing curriculum policy to 
promote better opportunities to learn and higher student achievement.

2. The intended curricula in mathematics in LAC are shallow compared to 
fundamental content commonly intended in higher-performing coun-
tries. An effort could be made to include content in national curricula 
that has proven fundamental in promoting higher achievement in other 
countries. Priority content areas are identified in this chapter.

3. Shallowness is evident in the level of cognitive demand at which LAC 
countries intend content to be taught and learned, which is lower than 
in higher-performing countries. Curricula therefore might be improved 
to promote challenging levels of cognitive demand like those in higher-
achieving countries. Specific priority areas are identified in this chapter.
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4. There is persistent evidence of structural inequities in educational attainment 
across ethnicity and gender, and according to whether students are in urban, 
rural, private, or public schools. Expectations for student learning—and the 
resources to attain those expectations—can address the persistent inequi-
ties in the distribution of opportunities to learn in the region.

Addressing the challenges diagnosed here is likely to be a challenge. 
Critics of curriculum reform in the region often claim that current curricula 
are too comprehensive and too large for teachers to address in a school 
year. Yet the evidence remains that curricula in LAC attempt to teach less 
content and skill areas than those of higher-achieving countries outside the 
region. Perhaps there is an opening for innovative approaches to instruction, 
such as the use of computers, to enrich learning opportunities for students.

The intended curriculum promotes and constrains educational opportu-
nities for students, and this matters insofar as it affects what students learn. 
As this chapter examined evidence of student learning in the region, it also 
documented some specific strengths and weaknesses. There is evidence that 
average levels of student achievement in primary school mathematics are rising 
throughout the region. There is also evidence that gender gaps in mathematics 
at this grade level are small and do not consistently favor boys. Yet, the overall 
status of mathematics achievement in the region is weak. This chapter and this 
book more generally set out to describe evidence-based approaches to help 
policymakers, educators, and other stakeholders confront these challenges.
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Annex 3.1

TABLE 3A1.1
TERCE SIXTH GRADE MATHEMATICS PERFORMANCE COMPARED WITH 
PER CAPITA GNI
Country TERCE (1) GNI Per Capita (2) Difference (2–1)

Chile 1 1 0

Mexico 2 5 +3

Uruguay 3 2 –1

Costa Rica 4 7 +3

Peru 6 9 +3

Argentina 5 3 –2

Brazil 7 6 –1

Colombia 8 8 0

Ecuador 9 11 +2

Guatemala 10 13 +3

Honduras 11 15 +4

Panama 12 4 –8

Nicaragua 13 14 +1

Paraguay 14 12 –2

Dominican Republic 15 10 –5

Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: GNI: gross national income.
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FIGURE 3A1.1
DIFFERENCES BETWEEN LOWEST AND HIGHEST SOCIOECONOMIC 
QUINTILES IN SIXTH GRADE MATHEMATICS ACHIEVEMENT IN URBAN 
SCHOOLS IN SEVEN LATIN AMERICAN COUNTRIES BY COGNITIVE 
AREA (IN STANDARD DEVIATIONS)
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Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.

FIGURE 3A1.2
SIXTH GRADE MATHEMATICS ACHIEVEMENT IN URBAN SCHOOLS IN 
SEVEN LATIN AMERICAN COUNTRIES BY CONTENT AREA (PERCENT)
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This chapter analyzes the challenges for learning mathematics in 
Latin America and the Caribbean (LAC) through a review of empir-
ical evidence linking inputs and classroom practices with student 

performance. The review is guided by three fundamental questions. First, 
what does the mathematics teaching and learning environment look like 
in the region’s urban primary schools? Second, what elements appear to 
be most important in explaining variations in student achievement, and 
how available are these critical inputs and processes in the average class-
room? And finally, how do educational opportunities vary within countries 
on the basis of socioeconomic status? The review is intended to comple-
ment other chapters in this book that have described how children learn 
mathematics (Chapters 1 and 2), and actual student achievement levels 
(the second half of Chapter 3). It is restricted when possible to primary 
grades in urban schools, and also makes some tentative linkages with the 
larger question of technology solutions in mathematics by including inputs 
such as computer and Internet use.

It should be stated up front that this chapter has an ambitious agenda. 
The questions posed involve issues related to causation and how specific 
inputs and processes directly impact student achievement levels in math-
ematics. There is certainly a large amount of evidence on the covariates 
of mathematics achievement in LAC both on a regionwide and country 
basis. However, research designs with experimental (or quasi-experi-
mental) features are much less common (McEwan 2015), and, as a result, 
the ability to assess the evidence on a strictly causal basis is considerably 
handicapped.

CHAPTERCHAPTER  44
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To address the main questions, this chapter relies on two general 
sources of information. The first includes data from the Latin Ameri-
can Laboratory for Assessment of the Quality of Education (Laboratorio 
Latinoamericano de Evaluación de la Calidad de la Educación – LLECE) that 
provide an empirical overview of student achievement levels, teaching and 
learning environments, and family background factors throughout LAC. 
The focus here is on the most recent LLECE application, the Third Regional 
Comparative and Explanatory Study (Tercer Estudio Regional Comparativo 
y Explicativo – TERCE), which is augmented with some particularly useful 
variables that were collected only in the previous application, the Second 
Regional Comparative and Explanatory Study (Segundo Estudio Regional 
Comparativo y Explicativo – SERCE). The LLECE data are valuable because 
they (1) allow for urban-specific analyses in mathematics using represen-
tative samples from upward of 16 countries; (2)  can be used to assess 
issues of equity and the stratification that exists within the urban sector; 
and (3) include a range of questions on teaching and learning processes 
that can be analyzed as covariates of student achievement levels, includ-
ing some questions about the actual use of technology in classrooms and 
the home.

However, despite the obvious appeal of multiple regionwide datasets 
in reviewing mathematics in the region, the LLECE data provide a fairly 
basic snapshot of the classroom environment itself. In other words, some 
of the fundamental components that determine the quality of mathematics 
teaching—such as different kinds of teacher knowledge of mathematics, 
and the interaction between teachers and students—are largely absent. 
This in turn requires consulting a very different information source, 
comprised mainly of individual, country-specific studies. Their inclusion 
allows for pushing the discussion of quality and effectiveness beyond 
the kinds of variables commonly available in large sample data sets, but 
there are some trade-offs vis-à-vis the LLECE data. First, these studies 
are not as malleable as the LLECE data sets in terms of presenting results 
for urban areas only, or comparing characteristics across socioeconomic 
(or other)  strata. Second, the data are not always linked with student 
achievement, which limits their reach as indicators of effective practice 
based on student outcomes. There are also limitations in generalizability 
and, in the case of the more qualitative resources, the results may only 
come from a few schools or classrooms. Finally, some of these studies are 
from outside LAC, and they are not always specific to mathematics.

This chapter first provides a brief review of the LLECE data and the 
methods incorporated for the statistical analysis that is undertaken spe-
cifically for this chapter. The main research questions are then addressed 
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in three separate sections that are intended as a holistic overview of math-
ematics teaching and learning. These include school inputs and teacher 
background characteristics; teacher capacity; and teaching processes, 
including the use of computers and technology. The final section presents 
the chapter’s conclusions.

4.1  Analysis of Data from the Latin American Laboratory for 
Assessment of the Quality of Education

The analysis of the LLECE data first involved a review of the TERCE 
(2013) and SERCE (2006) survey instruments to identify student, family, 
teacher, and school variables in various categories (school inputs, teacher 
characteristics, etc.).1 Each variable was then added (individually) to a multi-
variate regression equation2 that included a number of frequently analyzed 
student, family, and community control variables.3 This was done for sixth 
grade students in urban schools only (public and private combined). The 
results for each variable were then summarized using a frequency table 
based on three categories: statistically significant (p ≤ 0.05) and positive, 
significant and negative, and insignificant.

The output from the regression analysis is extensive: more than 100 
individual variables were chosen from the TERCE and SERCE, and each was 
included in as many as 16 country-specific regressions for urban sixth grade 

1 For more information on these assessments and data downloads, see http://www.
unesco.org/new/en/santiago/education/education-assessment-llece/.

2 The presented results are based on an ordinary least squares (OLS) regression with 
weighted data and standard errors corrected for clustering by classroom. For the 
TERCE, the dependent variable is not a single measure of mathematics achievement, 
but rather five plausible values generated by item response theory (IRT) scaling. 
This requires a modified statistical specification that in effect averages the coeffi-
cients for the independent variables across the five dependent variables. Additional 
estimations were obtained using school fixed effects (which was only possible in the 
SERCE, since the TERCE collected data from a single classroom in each school), as 
well as random effects extensions commonly referred to as hierarchical linear mod-
eling (HLM). The results from these statistical extensions are generally similar to the 
OLS results, although in most cases the selected variables are less likely to be statis-
tically significant in the fixed effects or HLM specifications.

3 The variables included in all models are the following (with the TERCE or SERCE indi-
cated in parentheses when the variable is specific to that survey year only): student 
age and gender; student has never repeated a grade; controls for language spoken 
in home; working status of child; ratio of people to rooms in home (SERCE); individ-
ual student socioeconomic status based on home possessions and services; parental 
education taken from individual parent questionnaire (TERCE); school average for 
socioeconomic measure; and a private school control.

http://www.unesco.org/new/en/santiago/education/education-assessment-llece
http://www.unesco.org/new/en/santiago/education/education-assessment-llece
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students. The variables that are presented in this chapter were chosen primarily 
on the basis of their applicability to a specific domain—and potential relevance 
as policy levers—and not on the basis of how significant or insignificant they 
were as predictors of student mathematics achievement (see UNESCO, 2008 
and 2015, for more complete reviews). This data reduction strategy borrows 
from a long line of metastyle reviews in education that take a group of 
existing quantitative studies and summarize the most frequently significant 
(and insignificant) predictors of student achievement (Fuller and Clarke 1994; 
Glewwe et al. 2011). The contribution of this chapter to the mathematics 
achievement literature is an updated, systematic review of an extensive set 
of independent variables that is specific to one particular region (LAC). The 
use of a single data source (LLECE)  provides some advantages. First, the 
results for individual variables are easier to compare, since each one is added 
individually to the same standard regression model in all countries. Second, 
by assessing the results based on all estimations, and all countries, one avoids 
the kind of publication bias that is inherent in meta-summaries of statistical 
analyses that rely exclusively on published research.

4.2 “Basic” School Inputs and Teacher Characteristics

4.2.1 School Inputs and School Climate

Figure 4.1 summarizes the statistical analysis results for some of the most 
commonly cited policy levers for improving student achievement in devel-
oping countries. These include school climate indicators that are related to 
how students get along with each other and with teachers, how teachers 
get along with other teachers and the degree they feel supported in the 
school, and measures about safety and conditions in the neighborhood. 
The numbers refer to individual country regression results: for example, 
preschool attendance is a positive (and significant) predictor of student 
mathematics achievement in 13 of the 15 countries that were analyzed. The 
results show that preschool attendance, having your own mathematics 
textbook, and school infrastructure are significant predictors of student 
achievement in about half (or more)  of the countries (see the notes to 
Figures 4.1–4.3 for variable definitions). For class size, the results show 
that larger classes are actually positively associated with achievement in 
urban schools in the regression analysis in six countries, and negatively 
associated (and significant)  in only three countries. This rather surpris-
ing result is a reminder of the limitations of large-sample survey work 
for pinpointing—with certainty—what really matters for raising student 
achievement levels. This topic is returned to several times in the chapter.
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Figure 4.2 continues with school climate. TERCE students, teach-
ers, and parents were each asked questions about different aspects of 
the school climate, and all variables have been recoded so that positive 
scores indicate more favorable conditions. The results indicate that parent- 
and teacher-reported conditions are positively associated with student 
mathematics achievement levels in upward of half of the countries. This 
somewhat tentative linkage highlights the potential importance of school 
climate in affecting a whole range of schooling processes, and, with the 
spread of violence in some areas of LAC, this issue is taking on even greater 
importance (World Bank 2011). Student-reported conditions are less con-
sistently associated with achievement, although it should be noted that 
when analyzed as individual-level student measures—instead of as a class-
room average—better conditions consistently predict higher achievement.

FIGURE 4.1
SUMMARY OF PREDICTORS OF SIXTH GRADE MATHEMATICS 
ACHIEVEMENT IN THE 2013 TERCE: INPUTS AND INFRASTRUCTURE

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

School support
average

Has own
math text

Years of
preschool

School
installations

Class size

School has
library

Positive Negative Insignificant

13 2

9 1 5

7 8

6 3 6

5 1 9

4 1 10

Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: All results are based on country-specific regression analyses (15 in all) using weighted data 
for urban students; see the main text for more details on the regression model. The numbers 
in the bars refer to the number of countries. “Years of preschool” is total preschool attendance 
in years between ages 0 and 6, according to parent. “Has own math text” = 1 if students have 
their own math textbook, and = 0 if students have no book or share a book with other students. 
“School installations” is the percentage of 11 installations (e.g., director’s office, computer room, 
etc.) that are present in the school, according to the school director. “Class size” is the number 
of students who took the exam, which does not account for students absent on the day of the 
visit. “School has library” = 1 if school has library, and = 0 if school has no library (according to 
the school director). “School support average” is the percentage of nine support services that 
are available in the school (e.g., feeding program, violence prevention, etc.).
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4.2.2 Teacher Background Characteristics

There is a strong belief in education research and policy circles that 
“teachers matter.” This simple dictum is popular even in relatively wealthy 
countries where children have access to multiple learning resources (OECD 
2005; Hanushek and Rivkin 2012; Rivkin, Hanushek, and Kain 2005), so 
there is extra reason to focus on teachers in contexts where children are 
exposed to few learning opportunities outside of the four or five hours a 
day they spend in school. But what is it exactly that makes some teachers 
more effective than others?

The review of teacher effectiveness begins in Figure 4.3 with the 
regression results from the TERCE for a group of teacher education, expe-
rience, and training indicators. Only four variables are significant predictors 

FIGURE 4.2
SUMMARY OF PREDICTORS OF SIXTH GRADE MATHEMATICS 
ACHIEVEMENT IN THE 2013 TERCE: CLASSROOM, SCHOOL, AND 
NEIGHBORHOOD CLIMATE

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overall school climate
(teachers)

Positive classroom climate
(teachers)

Relations between students
(teachers)

Relations between students
(students)

Classroom conditions
(students)

Relations between staff
(teachers)

Positive Negative Insignificant

Conditions in neighborhood
(parents) 7 71

6 72

5 10

5 91

4 92

3 111

3 111

Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: All results are based on country-specific regression analyses (15 in all) using 
weighted data for urban students; see main text for more details on the regression model. 
The numbers in the bars refer to the number of countries. Data source referred to in 
parentheses. All variables are averages for a series of questions based on three or four 
category scales. When necessary, the scales have been recoded so that all are positive 
(i.e., higher values for all variables reflect a better climate). Student- and parent-reported 
measures are averaged at the school level.
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of higher student mathematics achievement in five or more countries: their 
teacher is a math or science specialist, regularly attends the classroom (as 
reported by their students), reports working more hours a week, and has 
a university degree. Teacher experience is not consistently associated with 
achievement levels, and this variable was analyzed in more detail to test 
the hypothesis that experience is especially important at particular stages 

FIGURE 4.3
SUMMARY OF PREDICTORS OF SIXTH GRADE MATHEMATICS 
ACHIEVEMENT IN THE 2013 TERCE: TEACHER BACKGROUND 
CHARACTERISTICS

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Teacher female

Experience in this
school

Has university
degree

Teacher attendance
(students)

Is a math/science
specialist

Experience
overall

Boys-girls same
ability in math

Completed practice
teaching

Positive Negative Insignificant

Weekly work hours

7

618

627

1014

1014

1023

1032

1113

105

87

Source: Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: All results are based on country-specific regression analyses (15 in all) using weighted 
data for urban students; see text for more details on regression model. The numbers in the 
bars refer to the number of countries. All variables obtained from teacher questionnaires. 
“Is a math/science specialist” = 1 if teacher reports being a math or science specialist, 
0 = general subject teacher or other. “Teacher attendance” is a classroom average based 
on student reports regarding the frequency of teacher’s absence (1 = often, 2 = sometimes, 
3 = never). “Weekly work hours” is hours of work in this school (reported by teacher). 
“Has university degree” = 1 if education is university level or postgraduate, 0 = lower than 
university. “Experience in this school” and “Experience overall” are measured in complete 
years. “Boys-girls same ability in math” = 1 if teacher indicated no difference in mathematics 
ability by gender, 0 = teacher indicated boys or girls are better in mathematics. “Completed 
practice teaching” = 1 if yes, 0 = did not complete.
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of a teacher’s career (such as during the first few years; see Chetty, Fried-
man, and Rockoff 2014; Ost 2014; Rice 2003). These results also did not 
point to a clear pattern across the TERCE countries.

One of the points of emphasis in this review is equity, so a particu-
larly important question is how potentially important predictors of student 
achievement are distributed both within and between countries. Figure 4.4 
provides a detailed summary of five of the most consistently significant 
predictors of student achievement from Figures 4.1–4.3. For each variable 
the average for the wealthiest (Quintile 5) and poorest (Quintile 1) schools 
are presented, and alongside these two averages is the “gap” between Q5 
and Q1 schools (see grey bar), which is measured in standard deviations 
that use the right-hand vertical axis.4 This is done for 7 of the 15 TERCE 
countries: in the Central America/Mexico region and the South America 
region the country groupings include one (relatively) high-scoring country 
(Costa Rica, Chile), one low-scoring country (Guatemala, Paraguay), and 
the largest country in each region (Mexico, Brazil). The Dominican Repub-
lic is also included as a representative of the Caribbean region, which in the 
TERCE does not include Cuba.5

The results in Figure 4.4 confirm very large gaps by social class in LAC, 
even when restricting the comparisons to urban areas. A substantial num-
ber of standard deviation differences between Quintiles 1 and 5 are of an 
order of one standard deviation or larger; note that the scale for standard 
deviations is 0–2.0 (right side of all figures), so grey bars that look small 
may actually indicate fairly large gaps. Preschool participation is especially 
unequal, as sixth grade students from wealthy urban families consistently 
spend more than one additional year in some kind of preschool/kindergar-
ten compared with their Quintile 1 counterparts. Large gaps are also present 
for having your own mathematics textbook and for school infrastructure. 
Figure 4.4 also reveals some large differences across countries in the provi-
sion of school services. Finally, the results for teacher absences (according 

4 The use of standard deviations makes it easier to compare the differences across 
variables that use different measurement scales. For example, in Paraguay the per-
centage of children who own their own mathematics textbook in poor (Quintile 1) 
schools is much lower than the average in Quintile 5 schools, and the difference 
comes to about 1.5 standard deviations (see panel a in Figure 4.4). This difference 
(1.5 standard deviations) is similar in magnitude to the difference in the number of 
years of preschool attendance between Quintile 1 and Quintile 5 students in Brazil 
(see panel b in Figure 4.4).

5 Given Cuba’s consistently high performance in previous LLECE data collection initia-
tives, this omission is significant but unavoidable; readers can consult earlier LLECE 
reports (UNESCO 2008) and other secondary sources (Carnoy, Gove, and Marshall 
2007) for more information on Cuban performance.
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FIGURE 4.4
EQUITY COMPARISONS OF SELECTED VARIABLES IN THE 2013 TERCE 
IN SEVEN LATIN AMERICAN COUNTRIES
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to students) and, to a lesser degree, neighborhood conditions (according 
to parents), do not suggest widespread problems: the country averages are 
all below the midpoint of the scale (“sometimes” the teacher is absent, and 
neighborhood problems are “unlikely”). Nevertheless, there are some large 
gaps between Quintile 1 and 5 schools, which suggests that these problems 
are concentrated in a relatively small number of urban schools.

How much of the differences in Figure 4.4 are attributable to the 
presence of private schools in urban areas? A separate analysis (not pre-
sented)  was restricted to urban public schools only. The results show 
that sizable gaps are still present, as almost half of the comparisons show 
wealthy school advantages of 0.50 standard deviations or more. However, 
in three countries (Guatemala, Chile, and Paraguay)  the public-only dif-
ferences are much smaller, which suggests that urban inequality in these 
countries is primarily a product of differences across the public and pri-
vate sectors.

4.2.3 Summary

Overall, the results in this section confirm the importance of ensuring that 
all children have access to a basic set of school inputs and learning condi-
tions (and opportunities). In reality these are not really basic elements, 
since school infrastructure, teacher attendance, preschool access, 
and neighborhood conditions are likely to be enmeshed in potentially 

FIGURE 4.4
EQUITY COMPARISONS OF SELECTED VARIABLES IN THE 2013 TERCE 
IN SEVEN LATIN AMERICAN COUNTRIES
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complex institutional, managerial, and contextual socioeconomic reali-
ties. The resulting gaps by social class are therefore not surprising, and 
serve as a strong reminder of the need for focused policies that address 
issues of equality, even when the comparisons are restricted to urban 
(public)  schools. The results from this section are also notable for the 
number of variables that are insignificant predictors of sixth grade mathe-
matics achievement in the TERCE. Inconsistent and even surprising results 
for variables like teacher education, certification, and class size are not 
unusual in large sample survey analyses from the developing world (Fuller 
and Clarke 1994; Glewwe et al. 2011). Even in industrialized contexts like 
the United States, where these statistical linkages can be examined using 
more powerful longitudinal designs, the evidence is far from conclusive, or 
effect sizes are relatively small (Wayne and Youngs 2003; Nye, Konstan-
topoulos, and Hedges 2004). That variables such as teacher education, 
training, and resource indicators are not dependable predictors of student 
achievement—and, by extension, plausible policy levers for improving 
outcomes and reducing inequality—has provided a major impetus for 
researchers to push their line of inquiry deeper into actual teaching and 
learning processes. The next section examines some indicators related to 
these processes.

4.3 Teacher Capacity

The goal in the next two sections is to move beyond basic background 
characteristics of teachers (experience, education) and identify features 
of their work that are especially important for student learning in math-
ematics. Of particular interest are two general elements. The first is what 
is loosely referred to here as teacher capacity for teaching mathematics, 
which includes several domains of teacher knowledge. The second (pre-
sented in Section 4.4) includes instructional practices, which encompass a 
large number of teacher actions that together help decide the degree of a 
teacher’s effectiveness.

The interest in this review is in describing the full range of teacher actions 
observed in Latin American and Caribbean mathematics classes—the 
“good and the bad”—instead of focusing on the work of model teachers 
who appear to be especially effective. This approach is consistent with the 
belief that teacher capacity and actions in the classroom need to be viewed 
as systemic outcomes, and not simply as a collection of individual results. 
This also means taking into account how teaching outcomes are affected 
by institutional factors like pre-service training and preparation regimes, 
in-school support activities, and incentive and supervision structures.
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4.3.1 Teacher Effectiveness and Related Factors

A detailed review of teacher recruitment and support elements is beyond 
the scope of this chapter, and direct linkages between these systemic 
features and student mathematics levels are not easily established (see 
Bruns and Luque, 2014, for a recent review of this evidence in LAC). But 
given their potential to directly affect aspects of teacher capacity and 
teaching practices that are included in this review, these features merit some 
attention. International studies of effective systems—meaning countries 
with very capable teachers and high scores on international mathematics 
tests—have identified some core features of success: (1) implement policies 
that make teaching an attractive career and facilitate the recruitment of 
high-ability students, including by paying mathematics teachers on par with 
scientists and engineers; (2) encourage student teachers and teachers in 
development to integrate content and pedagogy preparation by exposing 
them to classroom situations where such integration is happening (AMTE 
2013); (3) establish high standards for teacher education programs, as well 
as for entry into the teaching profession after graduation; and (4) focus 
on developing and implementing strong quality-assurance mechanisms 
throughout the system (Ingvarson et al. 2013, 5–6; Carnoy et al. 2009; 
Bruns and Luque 2014).

How do education systems in LAC compare with this idealized model? 
For recruitment and pay, the evidence is mixed, as overall teacher sala-
ries are lower than those of similar professionals (Mizala and Ñopo 2014), 
though some studies show that they compare favorably on an hourly 
basis (Carnoy et al. 2009; Bruns and Luque 2014). In terms of prepara-
tion, there is evidence of fragmentation: mathematics content preparation 
is provided by mathematics departments, and pedagogical prepara-
tion by education departments, with few linkages. There is a tendency 
to prepare primary-level teachers with a sort of remedial mathematics 
“refresher” course that falls far short of the kind of specialized content and 
teaching knowledge they need to be effective, even when working with 
young students (Rosario, Scott, and Vogeli 2015). There is relatively lim-
ited use of practice teaching and hands-on experiential learning as part of 
teacher preparation (UNESCO 2012), and teacher preparation programs 
and professional development opportunities provide very little exposure 
to effective mathematical instructional practices that engage students 
and facilitate learning (use of visual diagrams, representations, discussion 
around different methods and solutions, etc.)  (Luschei and Sorto 2010; 
Sorto and Luschei 2010; Saenz and Lebrija 2014). Finally, several research-
ers express concern that quality assurance and support mechanisms are 
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inadequate, as teachers are often isolated in their classrooms, provided 
few opportunities to improve their practices, and work in environments 
where accountability is lacking and there is little pressure to maximize 
the use of the school day, or even come to work every day (Vegas and 
Umansky 2005; Bruns and Luque 2014).

Few systems in the world have all of the core quality features in place, 
so the kinds of problems encountered in LAC are not unusual. However, 
they do help explain the kinds of problems revealed by empirical analy-
ses of teaching and learning environments in the region, the subject of the 
next section.

4.3.2 Teacher Capacity

Teacher capacity potentially encompasses everything a teacher knows and 
can do. The sections that follow focus on three specific teacher knowledge 
domains: mathematical content knowledge, specialized teaching knowl-
edge in mathematics, and cognitive lesson (or task) design.

Mathematical Content KnowledgeMathematical Content Knowledge

There is little question that teachers must be familiar with the subject 
matter they are teaching, although the research basis for this statement 
is surprisingly thin. The evidence that does exist internationally is mainly 
from LAC, where a handful of studies have shown that higher levels of 
teacher mathematics content knowledge are associated with higher stu-
dent mathematics scores (Harbison and Hanushek 1992; Mullens, Murnane, 
and Willett 1996; Santibañez 2006; Marshall 2009; Marshall and Sorto 
2012; Metzler and Woessman 2012; Guadalupe, León, and Cueto 2013). 
Knowledge of the mathematics content that one is teaching—especially 
at the primary school level—may seem like a very basic measure of capac-
ity. But even these minimum skills should not be assumed, especially in the 
poorest contexts. For example, Harbison and Hanushek (1992)  encoun-
tered primary school teachers in rural northeast Brazil who actually scored 
lower on mathematics tests than their students. Teachers also need to 
know higher levels of content than those they are teaching.6 When teach-
ers understand mathematics beyond the level they are teaching, they are 

6 In their 2001 and 2012 reports (“The Mathematical Education of Teachers”) the Con-
ference Board of the Mathematical Science, American Mathematical Society, and 
Mathematical Association of America recommends “a thorough mastery of the 
mathematics in several grades beyond that which they expect to teach, as well as of 
the mathematics in earlier grades” (CBMS 2001, 2012).
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better equipped to tackle the day-to-day work of mathematics instruction, 
such as detecting and anticipating student mistakes and misconceptions 
(Marshall and Sorto 2012).

With the increasing professionalization of the teaching profession, 
results like those encountered by Harbison and Hanushek 20 years ago 
in rural Brazil are less and less likely. Nevertheless, there are reasons 
to be concerned about teacher content knowledge levels in LAC. For 
example, the multi-country Teacher Education and Development Study 
in Mathematics (TEDS-M)  shows that Chilean pre-service mathematics 
teachers had the second-lowest average mathematics content knowledge 
out of 13 countries globally, scoring below relatively poorer countries such 
as the Philippines and Botswana (Figure 4A1.1 in Annex 4.1). Guadalupe, 
León, and Cueto (2013) found that Peruvian primary teachers’ scores on 
a sixth grade mathematics test (from 2004)  were normally distributed, 
and that the urban-rural and public-private gaps between teachers were 
of roughly the same magnitude as the learning gaps between students in 
these categories (Guadalupe, León, and Cueto 2013, Table 12).

International league tables and intra-country comparisons of aver-
ages are certainly useful, but what does low teacher content knowledge 
actually look like in practice? Figure 4.5 shows two questions that were 
asked of primary and lower secondary teachers in a comparative study 
carried out in Costa Rica and Panama (see Carnoy et al., 2007, for more 
details). Question 1 is a very basic item related to primary-level geometry, 
while Question 2 is taken from the lower secondary school curriculum. The 

FIGURE 4.5
EXAMPLES OF MATHEMATICS CONTENT QUESTIONS FROM PANAMA 
AND COSTA RICA

 

 

 

Question 2 (level: grade 7): Fourth grade students were cutting four ribbons. The yellow ribbon measured 
3.2 meters, the blue one 3.18 meters, the red one 3.5 meters, and the green one 3.09 meters. The 
longest ribbon is:   

Question 1 (level = grade 3): Which one of following angles is obtuse? 

a) Blue b) Red c) Green d) Yellow 

a) b) c) d)

Source: Sorto et al. (2009).
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authors found that roughly 20 percent of primary teachers in the Panama 
sample answered question 1 incorrectly, and another 10 percent left the 
item blank. Within this same sample, only 41 percent of Panama primary 
teachers answered question 2 correctly. By contrast, in Costa Rica, where 
teachers receive considerably more pre-service preparation (Sorto and 
Luschei 2010) and students have much higher test scores (see the SERCE 
and TERCE results), teacher content knowledge levels are much higher: 
91 and 80 percent of primary school teachers answered questions 1 and 2 
correctly, respectively.

Pedagogical Content KnowledgePedagogical Content Knowledge

Results like those in Figure 4.5 highlight the imperative of avoiding assump-
tions about what teachers in primary classrooms know. Meanwhile, content 
knowledge needs to be treated as a necessary, but not sufficient, element 
of teacher capacity and effectiveness. In the past 20 years, research on 
teacher knowledge, mainly in the United States, has produced compel-
ling evidence that teachers need to know mathematics in a way that is 
specialized to their job (Shulman 1986; Ma 1999; Hill, Ball, and Schilling 
2008). This specialized knowledge, or pedagogical content knowledge,7 
is at the intersection of three general knowledge domains: pedagogical 
knowledge, the mathematical content knowledge a teacher is responsible 
for teaching, and mathematical knowledge at least one level beyond that 
(Sorto et al. 2009; Carnoy et al. 2007).

Figure 4.6 illustrates how this knowledge is different from that used 
for professions outside education.

The problem shown in Figure 4.6 is not as easy as it appears, and only 
32 percent of the teachers surveyed provided a correct answer to a prob-
lem of this type (Carnoy et al. 2007). First, the teacher needs to know 
the source of the mistake and then find an effective way to communicate 
to the student why his or her own representation leads to the incorrect 
answer. Here is where the different forms of knowledge come together: 
the student is using the same shaded block to represent three different 
quantities, (one unit, one third of a unit, and one fifth of a unit), which 
involves knowledge of mathematics. This identification is necessary but 
not sufficient to help Arnoldo understand why his reasoning is incorrect. 

7 Hill, Ball, and Shilling (2008) define pedagogical content knowledge as a component 
of a larger construct called “mathematics knowledge for teaching,” which includes 
subject-matter knowledge as a second domain. In their depiction, pedagogical 
content knowledge constitutes knowledge of content and students, knowledge of 
content and teaching, and knowledge of curriculum.
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Recognizing that the student does know how to represent rational num-
bers (the student’s underlying reference unit for each quantity in isolation 
is consistent with the representation), and how to model the conversion 
algorithm based on what he or she knows, is a mixture of mathematical 
and pedagogical knowledge, in particular understanding the student’s 
thinking and mathematical understanding of why the algorithm works.

Evidence from a few large-scale studies in countries in LAC suggests 
that pedagogical content knowledge can be measured, and that this form 
of capacity is associated with exposure to high levels of mathematical con-
tent (Sorto et al. 2009; Marshall and Sorto 2012; Cueto et al. 2016; Varas et 
al. 2013). For example, Varas et al. (2013) developed an instrument measur-
ing an aspect of pedagogical content knowledge examined by Hill, Ball, and 
Shilling (2008) in the United States. Varas et al. (2013) measured “knowledge 
of content and students” among 83 in-service teachers and 156 preservice 
teachers (elementary and middle-grade levels)  from Santiago and Con-
cepción, Chile. On average, the teachers scored 45 percent correct on the 
instrument. The Chilean team concluded that high levels of “knowledge of 
content and students” are associated with high exposure to mathematics in 
teacher preparation programs, or in actual practice, suggesting that higher 
levels of mathematics predicts this specialized knowledge.

The results from the Varas et al. (2013)  study are notable in part 
because teachers often struggled to correctly answer questions, even in 
urban areas of a relatively affluent and high-scoring (based on student 
achievement levels) country. These results are largely corroborated in the 
previously cited comparative study of primary and lower secondary math-
ematics teaching in Panama and Costa Rica (Sorto et al. 2009; Carnoy et 
al. 2007). Costa Rican primary school teachers scored higher than their 
Panamanian counterparts, and among pre-service teachers the gap was 

FIGURE 4.6
PEDAGOGICAL CONTENT KNOWLEDGE EXAMPLE ITEM 1

Arnoldo says that  2  and he uses the figure below to demonstrate his assertion. Why is his 

  ; explain to the student what is wrong with 

 Put blocks together

5
4

3
2 =

3
22

3
22

reasoning not correct? Do not just say how to convert 
his reasoning. 

5
4

Source: Sorto et al. (2009).
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even larger. These results, like those presented earlier for content knowl-
edge (Figure 4.5), are consistent with more pre-service preparation in 
Costa Rica (college degrees, more classes in higher-level mathematics, 
etc.). However, it is important to restate that even in Costa Rica, a coun-
try with relatively high levels of teacher training and student achievement 
levels, significant deficiencies were encountered in the specialized knowl-
edge levels of teachers.

A recent study conducted in Peru (Cueto et al. 2016) makes it pos-
sible to examine the linkages between a teacher’s specialized knowledge 
and student achievement using a longitudinal design. The teacher instru-
ment was designed to capture the ability of primary school teachers to 
recognize student error patterns, and to identify the source of the mistake. 
It was applied in approximately 150 fourth grade classrooms as part of 
the “Young Lives” longitudinal survey of student achievement and learning 
environments. An example of a pedagogical content knowledge question 
is shown in Figure 4.7. Roughly 70 percent of Peruvian teachers answered 
this question correctly, and there was a significant gap by socioeconomic 
status: 64 percent correct in the poorest schools, versus 74 percent correct 
in the wealthiest. Using multivariate methods, the researchers also found 
that student mathematics test scores were higher when their teacher had 
higher scores on this instrument.

FIGURE 4.7
PEDAGOGICAL CONTENT KNOWLEDGE EXAMPLE ITEM 2

6. Claudia has been computing the majority of her division exercises correctly, but recently she
has been having difficulties. Below are some of the exercises completed by Claudia.  

 
6.1. How do you think Claudia would do on the exercise shown if she were to continue using the

same procedure for division? 

a. b. c.

  
1. It is likely she responds to this exercise correctly using the same

procedure.
2. It is likely she responds to this exercise incorrectly using the same procedure.  

413
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Source: Cueto et al. (2016).
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Finally, teachers’ specialized knowledge has also been analyzed in 
relation to the integration of technology into mathematics instruction, 
which is an important extension given the theme of this book. Technologi-
cal pedagogical content knowledge refers to the “total package required 
for integrating technology, pedagogy, and content knowledge in the 
design of instruction for thinking and learning mathematics with digital 
technologies” (Niess et al. 2009, 7). This is a relatively new concept with 
few research antecedents focusing on mathematics, and no available link-
ages with student achievement levels. But two recent studies from Mexico 
(Mochon 2008, 2010) have investigated this type of knowledge by assess-
ing how primary school teachers’ technological pedagogical content 
knowledge is related to the use of a mathematics teaching software pack-
age. The results suggest that teachers with higher levels of this knowledge 
used the software as a tool to encourage students to create and share their 
own problem-solving strategies. Teachers having high technological ped-
agogical content knowledge were also more likely to consider students’ 
cognitive growth, and to use activities to develop student concepts and 
ideas toward generalization. In sum, the author inferred through observa-
tion that teachers with high levels of mathematical knowledge were better 
able to adapt their teaching practices to align with the goals of the instruc-
tional software.

Cognitive Lesson (or Task) DesignCognitive Lesson (or Task) Design

The final aspect of teacher capacity addressed here is called cognitive 
lesson design, which refers to the cognitive level of the lesson as designed 
and implemented by the teacher in the classroom. This concept touches on 
elements of instructional practice (see next section), but is treated here as 
part of teacher capacity, since the cognitive level of the lesson is directly 
affected by the teacher’s ability to conceptualize the learning goal and design 
activities that maximize the demands placed on students. The importance of 
cognitive design is well established in the literature in the United States. Stein 
et al. (2000)  highlight two key findings. First, mathematical instructional 
tasks with high levels of cognitive demand are most difficult to implement 
in classroom settings, and tasks that are intended to be most demanding 
are often transformed into being less demanding during instruction. And 
second, empirical studies show that student learning gains are greatest 
in classrooms where instructional tasks consistently encourage high-level 
student thinking and reasoning. Students appear to learn less in classrooms 
where the instructional tasks are mainly procedural in nature.

What do LAC classrooms look like in terms of cognitive design? Some 
insights can be gleaned from the multi-country classroom observation 
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database described in Bruns and Luque (2014). Students were observed 
spending significant amounts of instructional time copying from the black-
board or in individual work, which suggests that instructional time is mainly 
spent in tasks that require memorization and procedural knowledge. The 
results from other more detailed classroom observation studies tell a sim-
ilar story. A comparative study of mathematics teaching and learning in 
Brazil, Chile, and Cuba by Carnoy, Gove, and Marshall (2007) incorporated 
a rubric from Stein et al. (2000) that classifies lessons by higher or lower 
cognitive demand. Only one observed classroom (in Cuba) attained the 
highest score for “doing mathematics” based on complex and nonalgorith-
mic thinking, which also involves exploration of the nature of mathematical 
concepts, processes, and relationships. Cuban classrooms on average 
scored significantly higher than those in Brazil and Chile, in part because 
of more frequent use of procedures and student explanations of the pro-
cedures they were using. The authors give an example from the Cuban 
videos where the students were asked to indicate whether or not 430 is 
divisible by 10, and they were observed explaining that the zero in the units 
place is an indicator that 430 is a multiple of 10 and is therefore divisible by 
10. This description of procedures and connections to other mathematical 
concepts was not typically present in Brazilian classrooms (Carnoy, Gove, 
and Marshall 2007), while in Chilean classrooms it was more typical than in 
Brazil but still not widespread.

The Cuban advantage is notable given the significantly higher scores 
that Cuban students have achieved on the LLECE exams in mathematics 
(Primer Estudio Regional Comparativo y Explicativo – PERCE; and SERCE). 
However, it is important to note, once again, that even in a high-scoring 
country (regionally), classroom episodes that require considerable cogni-
tive effort—like student problem-solving independent of the teacher—were 
largely absent, and cognitive demand averages were in the middle to 
upper-middle range. At the other extreme, the overall average for the 
Brazilian sample of primary schools was in the lower-middle range of the 
four-point cognitive demand scale, which corresponds to procedures with-
out connections. The observed lessons were focused on producing correct 
answers rather than developing understanding, and often consisted of 
a teacher writing on the board, students copying, and little interaction. 
There were few instances of linking concepts to procedures. Explanations 
were only given by teachers, and tended to focus on describing the proce-
dure that was used (Carnoy, Gove, and Marshall 2007).

Teachers with higher levels of content and specialized mathematics 
knowledge are likely to design lessons with more demanding cognitive 
tasks, although the evidence for this kind of linkage across teacher capacity 
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elements is limited. One exception is provided by Sorto et al. (2009), who 
found that teachers’ overall mathematical knowledge was associated 
with the level of cognitive demand of mathematical tasks with which their 
students were engaged. In general, teachers with higher levels of specialized 
mathematical knowledge tended to engage students in tasks that required 
them to make connections among representations, and explore and 
investigate the nature of concepts and relationships. For example, one 
high-capacity teacher (based on pedagogical content knowledge)  gave 
her students four equal-length sticks and asked them to create geometrical 
shapes and explore all possible kinds and number of interior angles. Some 
students made a square, others made a rhombus. And a discussion followed 
about the kind of angles formed depending on the kind of figure (e.g., “Do 
angles that share a side count as one or two?”). In contrast, in a lesson 
with the same objective but with low cognitive task design, the students 
were just given a table of information about the name of the shape, the 
number of interior angles, and the kind of angles involved (e.g., “Square, 
4 interior angles, all angles are right angles”). Higher-capacity teachers—
as measured by their scores on mathematics content and pedagogical 
content knowledge questions—were also more likely to teach lessons that 
go beyond procedural knowledge, focusing instruction on conceptual 
understanding, reasoning, and problem-solving (Sorto et al. 2009).

Generalizations across the entire LAC region need to be handled with 
care, and, in the case of cognitive design, the evidence base is fairly small. 
But there are some common themes from analyses of cognitive demand 
based on a range of data sources. First, there are very few instances of 
students being engaged in high-level cognitive tasks. Instead, teachers 
tend to present knowledge with the intention of simply communicating it, 
which is very different (in a cognitive sense) from orienting the class around 
the learning of that knowledge. Instructional practices matter, too, which 
provides a good segue into the next section. Teachers appear to have few 
of the skills and tools needed to present students with a well-sequenced 
series of activities that might help them acquire the underlying 
mathematical concept. And finally, teachers do not often demonstrate an 
ability to effectively use models and multiple representations to illustrate 
abstract concepts, which is another dimension of cognitive design that is 
closely linked to teaching practices.

4.4 Mathematics Teaching Practices

One of the challenges of reviewing the evidence on effective teach-
ing practices is deciding which specific aspects should be included. The 
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review presented here builds on the theoretical foundation for effective 
teaching that was detailed in Chapter 2, which includes a series of “critical 
elements” for effective practice that have been recently identified by the 
National Council of Teachers of Mathematics (NCTM 2014). Of particular 
interest to the analysis in this chapter are the following actions:

• Engage students in tasks that allow multiple entry points and var-
ied solution strategies

• Engage students in making connections among mathematical 
representations

• Facilitate discourse among students to build a shared understand-
ing of mathematical ideas by analyzing and comparing student 
approaches and arguments

• Use purposeful questions to assess and advance students’ reason-
ing and sense-making

• Build fluency with procedures on a foundation of conceptual 
understanding

• Provide students with opportunities to engage in productive 
struggle as they grapple with mathematical ideas and relationships

• Use evidence of student thinking to assess progress toward math-
ematical understanding (NCTM 2014, 10).

This hybrid framework provides a loose structure for organizing actual 
evidence on teaching and the degree to which the NCTM research-informed 
practices that support the learning of mathematics—and by extension 
several dimensions of the framework in Chapter 2—are present in LAC 
classrooms. This also includes linkages with student mathematics achieve-
ment (when possible). This begins in Section 4.4.1 with a description of 
activities and sequences of typical lesson archetypes. This overview of 
commonly observed lesson structures is useful for evaluating the degree 
to which key mathematical practices are being implemented. For exam-
ple, for students to be able to compare approaches and arguments about 
mathematical procedures and ideas, they need to spend time discussing 
them. The second part (Section 4.4.2) describes the use of instructional 
tools such as textbooks and manipulatives. The frequency of the use of 
these tools helps us understand the implementation of tasks that pro-
mote multiple entry points, multiple solutions, and connections among 
representations. Section 4.4.3 then describes the nature of the interaction 
between teachers and students and the format for classroom work. These 
interactions help us understand the degree to which teachers are assess-
ing student thinking and promoting reasoning. The format of student work 
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also helps define the extent to which students are engaging in productive 
struggle and building fluency.

The review strategy for these first three sections depends almost 
exclusively on existing studies. When available, this evidence comes from 
the LAC region, but this is not always possible and our reliance on exist-
ing research precludes tailoring the results to urban primary schools. 
Finally, Section 4.4.4 returns to the LLECE data (mainly the TERCE, but 
some SERCE data) and brings in classroom process variables. These are 
not observational data, but rather come from sixth grade students them-
selves (measured as classroom averages).

4.4.1 Structure of Mathematics Lessons

Studies of how classroom time is used are a good place to begin when 
describing the basic structure of the average classroom in LAC. Figure 4.8 
is taken from a previously cited study of regional classrooms (Bruns and 
Luque 2014, Figure O.7). Based on a standard classroom observation 
rubric (called the Stallings instrument), the authors were able to categorize 
the average class for each country on the basis of a number of activities. 
Their results show that, on average, the time spent on activities related 
to learning is 65 percent or less of the total class time in all countries, 

FIGURE 4.8
SUMMARY OF TIME USE IN CLASSROOMS, SELECTED LATIN AMERICAN 
AND CARIBBEAN COUNTRIES (PERCENT)

0% 20% 40% 60% 80% 100%

Stallings Good
Practice Indicator

Colombia

Brazil

Honduras

Peru

Jamaica

Mexico D.F.

Percent of Total Class Time

Academic Activities Classroom Management Teacher Off-Task

52% 39% 9%

61% 28% 11%

62% 25% 14%

64% 24% 12%

64% 27% 10%

65% 25% 9%

85% 15%

Source: Bruns and Luque (2014, Figure O.7).
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with about 36 percent of this time dedicated to active instruction, like dis-
cussing and working on mathematical tasks, and 25 percent on passive 
instruction like copying. The percentage spent on instruction falls far short 
of the 85 percent benchmark suggested as part of the Stallings Instrument 
Good Practice Indicator (Figure 4.8).

The Bruns and Luque study samples are large enough to look at vari-
ation within and between countries, and the results highlight substantial 
inequalities in time-use patterns. The authors give an example from Rio 
de Janeiro, where, in the highest-performing schools (based on an index 
of test scores and pass rates), an average of 70 percent of class time was 
spent on instruction, and 27 percent on classroom management. Teach-
ers were off-task in these schools only 3 percent of the time and were 
never absent from the classroom. By contrast, in the lowest-performing 
schools, only 54 percent of the time was spent on instruction, 39 percent 
was dedicated to classroom management, and teachers were significantly 
more likely to be off-task and physically absent from the classroom. Based 
on the authors’ calculations, students in high-performing Rio schools 
received an “an average of 32 more days of instruction over the 200 day 
school year than their counterparts in low-performing schools” (Bruns and 
Luque 2014, 13).

Other classroom observational studies in the region have highlighted 
similar concerns about the amount of time students are engaged in effec-
tive instructional activities. Carnoy et al. (2007b) observed mathematics 
classes in primary schools in Brazil and, to a lesser extent, Chile, where 
significant percentages of the day were spent in “down time” with no orga-
nized activity taking place, or when students were left to copy problems 
and instructions from the chalkboard.

Causal linkages between classroom time-use indicators and student 
achievement are very difficult to establish, although the results from Bruns 
and Luque (2014)  do suggest that test scores are higher in classrooms 
where more time is spent on instruction. But the time-use indicators tell 
only part of the story of the average mathematics lesson, and it is difficult 
to categorize each activity as good or bad. Instead, the collection of activ-
ities and their “flow” should be understood as the instructional structure 
that facilitates the implementation of effective practices, or limits student 
access to important mathematics content and processes.

Figure 4.9 shows the flow of two typical lessons found in LAC coun-
tries based on the kinds of classroom observation data described above 
(and the authors’ own observations of more than 200 classes throughout 
the region). One is associated with more effective mathematics teaching 
practices (right side), the other with less effective practices (left side). The 
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instructional time allocation for the less effective lesson is characterized 
by the teacher providing a mini-lecture presenting a concept or procedure, 
sometimes accompanied by short-answer questions, followed by a period 
when students copy problems from the board (or textbook) and continue 
to work individually on assigned problems or exercises similar to the ones 
presented by the teacher. The class ends with the teacher checking stu-
dent work at the students’ desks or at the board with a few of the students 
participating. The less effective class is marked by inequality in participa-
tion, both in terms of the pace of work (i.e., some children are often far 
behind at the end of class) and the degree of participation in any accom-
panying discussion or recitation.

In contrast, the more effective lesson is characterized by the teacher 
introducing a task, students working individually or in groups with concrete 
materials or visual representations, teacher and students discussing 
their work, students translating their work into notebooks or onto the 
blackboard, and ending with a summary of the concept, procedure, or 

FIGURE 4.9
FLOW OF COMMONLY OBSERVED LESSONS: LOW VERSUS HIGH 
EFFECTIVE CLASS ARCHETYPES

 

 

Communicating topic or 
activity (3 minutes) 

Explanation of concept or 
demonstration of procedure with 

questions and answers (12 minutes) 

Checking work by either sending 
student to the board or looking at 

notebooks (12 minutes) 

Summary of content covered in a 
more abstract representation 
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Individual work translating concrete 
models to notebooks (20 minutes) 

Individual work: students work individually on 
problems assigned (including copying 
problems from the board) (10 minutes) 

Communicating topic or 
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Students work individually or in 
groups with concrete materials 
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Whole class discussion about the 
activity (15 minutes) 

Low High

Source: Prepared by the authors.
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main ideas. This type of structure is normally observed in longer lessons 
(about 40 percent longer than the less effective lesson prototype).

4.4.2 Use of Instructional Tools

Effective teaching elements related to exploring mathematical concepts, 
making connections among multiple representations, and using multiple 
strategies to approach problems (see discussion in the previous section 
of this chapter, and in Chapter 2) depend heavily on the use of learning 
materials. However, based on a mixture of evidence from the LAC region, 
manipulatives appear to be infrequently incorporated in most classrooms. 
First, the 2006 SERCE data show that sixth grade teachers report very little 
use of instructional tools in their mathematics classes, including an aba-
cus, pattern blocks, cuisiner rods, base-10 blocks, tangrams, calculators, 
geoboards, or noncommercial manipulatives. The overall frequency aver-
age was roughly 1.5 on a 1–4 scale (1 = never, 2 = some classes, 3 = majority 
of classes, 4 = all classes).

Classroom observation studies provide similar results. Relatively small 
percentages of lessons use manipulatives, calculators, or computers, 
and teachers rely heavily on the blackboard and, to a lesser degree, on 
textbooks, especially at the upper elementary level (Bruns and Luque 
2014; Carnoy et al. 2007; Araya and Dartnell 2008). There are certainly 
exceptions. For example, Carnoy et al. (2007)  observed some teachers 
making very creative use of noncommercial manipulatives such as wooden 
sticks to construct regular polygons and explore their properties, or beans 
or lentils for counting, or as representations of points in a plane. Instead 
of prebuilt base-10 blocks, students were observed using their own color 
pencils to make groups of tens to model standard algorithms. In addition, 
there was evidence of the use of rulers, compasses, and protractors when 
learning measurement and geometry topics. But these kinds of activities 
appear to be the exception rather than the rule.

We are not aware of research that focuses on the linkages between 
student achievement and the use of learning materials in the LAC region, 
although this question is addressed below with data from SERCE. However, 
two recent metareviews from the United States show that manipula-
tives-based interventions are significant predictors of higher student 
achievement in mathematics (Carbonneau, Marley, and Selig 2013; Holmes 
2013). This kind of evidence—combined with conceptual linkages between 
the use of manipulatives and particularly effective teaching activities (see 
Section 4.4.1)—raises serious concerns about the apparent lack of such 
interventions in the region. One obvious constraint is resource-related, as 
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the SERCE data show that about 40 percent of sixth grade teachers (in 
2006) reported having fewer than three of the eight learning materials. 
But there are other kinds of systemic constraints, such as the form of the 
official curriculum and, more specifically, its representation in textbooks. If 
the tasks presented in mathematics textbooks do not focus on developing 
mathematical fluency based on a foundation of conceptual understanding, 
they are less likely to require the use of these materials. Hence teachers 
may not feel the materials are necessary tools for the teaching and learn-
ing of mathematics.

4.4.3 Mathematical Discourse and Questioning

Data from classroom observations can also be used to summarize 
mathematics discourse in LAC countries. Several formats are most common: 
whole class discussions, teacher and individual student interactions, 
and students discussing among themselves in groups (Bruns and Luque 
2014; Carnoy et al. 2007; Carnoy, Gove, and Marshall 2007). On average, 
interactions appear to take up about one third of the average class and 
are concentrated in segments when the teacher is presenting material, or 
students are solving problems. In some of the observed countries, such 
as Panama and Chile, third grade students spend a substantial amount of 
class time (13 and 29 percent, respectively) at the chalkboard writing down 
their computations (Carnoy et al. 2007; Carnoy, Gove, and Marshall 2007). 
In general, these interactions are characterized by closed questions that 
require yes-no answers or a single word (e.g., “what is the place value of 5 
in 1,052?”) or that require students to complete sentences like “3 times 4 
is….” In the case of students at the blackboard, the student is asked to write 
down the solution of a computation (often from his or her own notebook). 
If the student is correct, he or she is asked to sit down, and if the answer is 
incorrect, the teacher asks another student to come up to the board. Less 
common are interactions where teachers ask the students to explain their 
answers, correct one another’s work, and provide explicit explanations of 
mathematical reasoning.

This evidence suggests that mathematical discourse and questioning 
in most of the classrooms observed does not have the purpose of 
assessing the students’ thinking or promoting mathematical reasoning, but 
instead is more evaluative in nature, focusing on the final correct answers. 
Moreover, the reliance on simple questions should not be seen simply as a 
pedagogical choice on the part of teachers. It is intricately related to their 
specialized knowledge and ability to orchestrate the class in such a way 
that challenges their students along a range of skills.
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4.4.4  Classroom Processes and Student Achievement: SERCE and 
TERCE Data

The review here of the evidence on mathematics achievement concludes 
with the same data source with which it began. In the TERCE (and SERCE), 
sixth grade students were asked a range of questions about classroom 
teaching and learning processes, including the use of computers and other 
technology. By averaging their responses by classroom, it may be possible to 
capture meaningful variation in teaching strategies, and relate these factors 
to student achievement levels. It should be (re)stated that these are, at best, 
tentative linkages: even as classroom averages the various indicators are 
subject to measurement error and are no substitute for actual observational 
data. But with so many available indicators, and in urban schools, the LLECE 
data on classroom processes are simply too interesting to ignore.

This last section is divided into two parts: general classroom processes 
and conditions, followed by a review of computer and other technology usage.

Classroom Teaching and Learning ProcessesClassroom Teaching and Learning Processes

Figure 4.10 summarizes the results for a large group of classroom process vari-
ables using the same statistical analysis and reporting strategies described in 
Sections 4.1 and 4.2. The variables themselves come mainly from the TERCE, 
with five exceptions from the SERCE (flagged with an asterisk).

Overall, the results in Figure 4.10 show that few variables are consistently 
significant predictors of student achievement. This is another reminder of 
the inherent difficulties of understanding effective classroom practices on 
the basis of large-sample survey instruments. The result that stands out 
is the frequency that students report solving mathematics exercises (only 
available in the SERCE). As an individual student-level measure it is the 
most consistent predictor of mathematics achievement in Figure 4.10 (see 
also Cueto et al. 2014), although as a classroom average it is less often 
significant. There are well-founded concerns about an overreliance on 
solving simple mathematics exercises with low levels of cognitive demand 
such as memorization and procedures without connections to underlying 
concepts (Stein et al. 2000). This is especially true when it comes at the 
expense of teaching activities that expose students to mathematical 
reasoning and conceptual understanding. Nevertheless, the results from 
the statistical analysis do point to the potential importance of actively 
engaging students in mathematics activities of some kind, which is 
consistent with specific elements of an effective teaching framework. For 
example, Chapter 2 refers to the importance of practice during different 
phases of student acquisition of skills.
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FIGURE 4.10
SUMMARY OF PREDICTORS OF SIXTH GRADE MATHEMATICS 
ACHIEVEMENT IN THE SERCE-TERCE: CLASSROOM TEACHING 
PROCESSES AND CONDITIONS
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Sources: Second Regional Comparative and Explanatory Study (SERCE), 2006; and the 
Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: All results are based on country-specific regression analyses (15–16 in all) using 
weighted data for urban students; see the main text for more detail on the regression 
model. The numbers in the bars refer to the number of countries. Variables were obtained 
from TERCE student questionnaires, and are measured as classroom averages. Exceptions 
are noted in parentheses (for data source), and asterisks (*) refer to variables available only 
in the SERCE. Process measures are based on three-point scales (i.e., 1 = never, 2 = some 
classes/sometimes, 3 = most/all classes). “Teacher practices index” is provided by the 
TERCE, and is an index based on multiple classroom process variables.
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Figure 4A1.2 in Annex 4.1 presents the quintile gap comparisons for four 
variables: availability of manipulatives in the classroom (see Section 4.4.2), 
frequency of solving mathematics exercises, teacher preparedness (accord-
ing to students), and the teacher’s use of dictation. The prevalence of gaps 
of at least 0.50 standard deviations (see red bars) certainly stands out, and 
suggests meaningful differences in classroom environments between rela-
tively wealthy and poor urban schools in the region. Some of the largest 
gaps are found in the frequency that students report the use of dictation 
in the classroom, which is a potential sign of low cognitive task design (see 
Section 4.3.2). However, it is important to note that students across all quin-
tile groups and countries report fairly frequent use of dictation (averages 
above 2 on a 1–3 point scale), so the gaps between quintiles—while meaning-
ful in most countries—do not show a clear separation by school.

Technology and Mathematics AchievementTechnology and Mathematics Achievement

The SERCE and TERCE assessments also include a number of questions 
about technology. These variables fall short of informing one of the central 
topics of this book, which is how computer-assisted learning technology 
solutions can impact mathematics achievement. However, they do make 
it possible to assess the availability of resources like computers and the 
Internet in the region’s urban schools, and provide at least a glimpse into 
how technology resources are used in classrooms.

The regression summary results in Figure 4.11 show that the strongest 
predictors of student mathematics achievement are the indicators for the 
ratio of computers (with Internet) to students, and the frequency that stu-
dents report using computers in the school—but not in their classes. These 
results are likely related to the overall resources available in schools and 
communities, and say little about how the actual use of computers affects 
student learning.

The result that stands out in Figure 4.11 is the number of negative 
relationships between student achievement and technology usage. This 
includes classroom averages for computer usage during class and as 
part of homework, and the use of calculators in mathematics homework 
(SERCE). Sixth grade students were also asked a series of questions about 
computer use during their natural science class (but not mathematics). In 
general, the classroom averages across these various activities (look for 
information online, teacher uses computer to present material, etc.) were 
quite low: about 1.7 out of a 4 point scale, or in between “never” and “some 
classes.” However, students who study in classrooms with more reported 
usage of computers in science classes have lower mathematics scores, 
ceteris paribus, in 8 of the 15 TERCE countries.
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These results indicating a negative relationship between technology 
usage in the classroom and mathematics achievement are robust to differ-
ent statistical specifications,8 but they still must be handled with a lot of 
care. At the very least, the negative results are a reminder of the danger of 
relying on simple technological solutions to improve student achievement 
levels. There is nothing magical about introducing a computer (even with 
Internet)  into a classroom, just as providing a calculator to a student will 

FIGURE 4.11
SUMMARY OF PREDICTORS OF SIXTH GRADE MATHEMATICS 
ACHIEVEMENT IN THE SERCE-TERCE: TECHNOLOGY AVAILABILITY 
AND USAGE
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Sources: Second Regional Comparative and Explanatory Study (SERCE), 2006; and the 
Third Regional Comparative and Explanatory Study (TERCE), 2013.
Note: All results are based on country-specific regression analyses (15–16 in all) using weighted 
data for urban students; see the main text for more detail on the regression model. The 
numbers in the bars refer to the number of countries. Variables were obtained from TERCE 
student questionnaires, and are measured as classroom averages. Exceptions are noted in 
parentheses (for data source), and asterisks (*) refer to variables only available in the SERCE. 
Process measures are based on three-point scales (i.e., 1 = never, 2 = some classes/sometimes, 
3 = most/all classes). “Use of computer during science class” refers to the classroom averages 
for a series of statements about the use of computers during science classes.

8 These include adding the availability of computers in the school as a control, as well 
as including rural schools and dropping private schools (from the urban-only regres-
sions). Wealthier students report much more usage of computer resources across all 
venues (school, home, etc.), and wealthier schools have significantly more computer 
and Internet resources. However, computer usage within classrooms is not much dif-
ferent between wealthy and poor schools within urban areas.
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not automatically improve that student’s mathematics achievement. These 
are tools that need to be used effectively in conjunction with, or better 
still incorporated into, learning tasks based on the critical elements refer-
enced elsewhere in this chapter. In fact, technological aids can even work 
at cross-purposes with actual learning when students use them to solve 
problems and obtain answers without exploring concepts, gaining fluency 
in algorithmic types of exercises, or committing important facts to memory.

4.5 Conclusion

This chapter has focused on three interrelated questions regarding math-
ematics teaching and learning in LAC: What does the average classroom 
look like? Which input and process variables are the most significant pre-
dictors of student achievement in mathematics? And how are these critical 
features distributed in the region’s urban schools, especially across social 
class differences? As stated at the beginning, this is an ambitious agenda 
given the region’s diversity between countries, the lack of empirical 
research in some of the critical areas addressed, and the inherent difficulty 
of establishing causal relations between (1) classroom and teacher charac-
teristics and (2) student outcomes such as achievement.

With these challenges in mind, it is important to take into account the 
dangers of generalizing across the entire region. Nevertheless, the main 
findings from the chapter are easily summarized, and are consistent with 
previous studies of teaching in the LAC region (Bruns and Luque 2014). The 
result that stands out in this chapter is the yawning gap between what an 
effective mathematics class should look like, and what many classes in the 
region actually look like. In general, the observed classrooms in LAC are too 
dependent on learning tasks with low levels of cognitive demand and direct 
teaching practices, and as a result the lessons do not challenge students to really 
learn mathematical concepts, which is the gateway for reaching proficiency. 
Few teaching materials are used, the interaction between teacher and student 
is too often focused on simple recitation rather than discussion, and students 
are not always asked to demonstrate their work, or show mastery before the 
class moves on to the next topic. Simply stated, this is a recipe for low average 
achievement, which is largely corroborated by Latin American and Caribbean 
mathematics scores in national, regional, and international assessments.

The chapter also highlighted concerns about equity, which of course 
touch on a long-standing theme in LAC. There is certainly evidence that 
inputs such as computers and school infrastructure, as well as some school 
climate characteristics, are very unevenly distributed across, and within, 
urban school sectors in the countries of the region. This is not a surprise, and 



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION172

it bears restating that these unequal conditions generally persist even when 
the samples are restricted to urban public schools. However, the story is less 
clear for the critical teacher and teaching elements obtained from existing 
studies. Even amid data constraints, however, two tentative conclusions 
seem warranted based on the evidence that is available. First, few classrooms 
exhibit effective teaching characteristics, and those that are observed are 
likely to be in relatively wealthy schools. Second, and more importantly, the 
kinds of children who need especially effective teachers are not studying 
in classrooms where the teacher is well prepared to help them overcome 
disadvantages associated with poverty and low levels of parental education.

What explains the general lack of quality observed in the region’s urban 
primary school mathematics classrooms? The answer must include ref-
erences to contextual factors. Urban teachers in the region appear to be 
working with limited teaching materials beyond a textbook, and their stu-
dents receive little help outside of class; on average, almost 50 percent of 
the parents in the sixth grade urban samples have not advanced past primary 
school. But difficult conditions alone are not responsible for this situation. 
Capacity limitations are also present, which in this review focused on differ-
ent forms of mathematics knowledge that teachers must have to be effective, 
yet in many cases do not appear to have. Solutions for addressing these defi-
ciencies are beyond the reach of this chapter, but the analysis highlights the 
importance—in various regions around the world, not just LAC—of creating 
systemic conditions where teachers are well prepared for their work, where 
they are adequately supported, and where quality control is paramount.

This issue of facilitating teacher effectiveness provides a useful segue into 
a key theme of this book, which is how computer-assisted learning can help 
students and teachers in mathematics classrooms in LAC. Other chapters take 
up this question in more detail; the focus here has been on how technological 
solutions align with the model of effective teaching detailed in Chapter 2. 
The results in this chapter raise some concerns about a simplistic reliance on 
technological solutions in education: the use of computers and the Internet 
in a classroom will not automatically improve learning, even if they provide 
students with a more enjoyable experience. Fortunately, current mathematical 
practices and established classroom structures can be leveraged to make use 
of new technology in a way that can be incorporated into existing pedagogical 
methods. To this point, we agree with the statement by Means (2010, 304) that 
“educators and policymakers need to stop thinking of learning software as an 
intervention in and of itself and to think instead of broader instructional activity 
systems.” In sum, mathematics classrooms in LAC need to expose students to 
learning tasks that promote reasoning and thinking, and technology can serve 
as a catalyst for reaching this goal.
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Annex 4.1

FIGURE 4A1.1
MATHEMATICS CONTENT KNOWLEDGE OF FUTURE MATHEMATICS 
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Source: Bruns and Luque (2013: Figure O.5), based on data from the 2008 Teacher 
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FIGURE 4A1.2
EQUITY COMPARISONS OF SELECT VARIABLES ON THE SERCE (2006)  
AND TERCE (2013) FOR SEVEN LATIN AMERICAN COUNTRIES
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Promoting a Good Start: Promoting a Good Start: 
Technology in Early Childhood Technology in Early Childhood 

MathematicsMathematics
Julie Sarama and Douglas H. Clements (University of Denver)1

Educational technology has the potential to make multiple contri-
butions to early mathematics education in Latin America and the 
Caribbean (LAC). Whether this potential is realized depends on 

which technology is used, and how. Research on different models of edu-
cational technology has identified the specific benefits of each. These 
models include technology-assisted instruction (including practice, tuto-
rials, tasks, tools, and games); technology manipulatives; programming, 
coding, and robotics; and combinations of these models. To realize the 
benefits from these different models of educational technology, teachers 
need support and professional development. Fortunately, there is a grow-
ing supply of such resources.

5.1 Promoting a Good Start

First grader José never talked aloud, was slow to complete his work, and 
was placed in a “socialization group” to “draw him out of his shell.” When a 
computer arrived, José spent nearly 90 minutes with the machine his first day. 
Immediately thereafter, his teacher noticed that he was completing seatwork 
without prompting. Then he would slide his seat over to the technology 
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and watch others program (write computer code, or instructions)  in the 
computer language Logo—directing an onscreen “turtle” to draw geometric 
figures. For example, the code “repeat 4 [forward 100 right 90]” would 
instruct the turtle to draw a straight line, then turn 90 degrees to the right, 
and do that four times in all, drawing a square. Soon after, José would stand 
beside the technology, talking and making suggestions. When others had 
difficulties, he was quick to show them a solution. Others started getting 
help on Logo from him. He began completing twice as much work per day 
as he had previously. He participated eagerly during class discussions and 
as a “crowning achievement” of sorts was given a 10-minute “time out” 
one day because he wouldn’t stop talking. In brief, José moved up from the 
lowest to the highest achievement group.

Are such results merely coincidences or real benefits of certain technol-
ogy environments? If the latter, how can technology be used to maximize 
these benefits for early mathematics teaching and learning? What are the 
unique characteristics of these technology environments that can be cap-
italized upon? What are the advantages and disadvantages of different 
models of educational technology for early mathematics? What are effec-
tive teaching strategies? What professional development and support do 
teachers require? Finally, what do the models and research suggest for 
effective use of educational technology in LAC? This chapter addresses 
these questions in turn, but first it asks: Why early mathematics?

5.1.1 The Promise, and Unrealized Potential, of Early Mathematics

Early mathematics is surprisingly important. What children know and can 
do in their first years in school can predict their mathematics achievement 
for years to come—and even throughout their school career. Moreover, 
what mathematics they know predicts their reading achievement. Math-
ematics appears to be a core component of cognition (Clements and 
Sarama 2011; Duncan et al. 2007; Duncan and Murnane 2014).

Further, mathematics is a critical learning area: many students per-
form poorly in it in schools throughout the world (Clements and Sarama 
2003, 2007c), including in LAC (see Chapter 3; see also Bos, Ganimian, and 
Vegas 2013). For example, students in LAC are more than two years behind 
their student counterparts in Organisation for Economic Co-operation 
and Development (OECD) countries in math, reading, and critical think-
ing skills—and even further behind East Asian countries, including Vietnam 
(Bruns and Luque 2014). The lack of computer resources explains part 
of this gap (Breton and Canavire-Bacarreza 2018). This chapter focuses 
on children in the lower grades of primary schools in LAC’s urban areas 
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because foundational competencies and dispositions are critical for suc-
cess throughout students’ school careers.

5.1.2 Technology and Young Children: Debates, Theory, and Research

Twenty years ago, it was argued that “we no longer need to ask whether the 
use of technology is ‘appropriate’” in early childhood education (Clements 
and Swaminathan 1995, 275). The research supporting that statement 
was, and remains, convincing, but social and political movements follow 
their own cyclical course and there remain polemics against the use of 
technology by young children. This is important, because some teachers 
retain a bias against technology that contradicts research evidence 
(Lindahl and Folkesson 2012). Especially in mid-socioeconomic-status 
schools, some teachers believe it is “inappropriate” to have technology in 
classrooms for young children (Lee and Ginsburg 2007).

We have countered such criticisms elsewhere (Clements and Sarama 
2003), and others have similarly argued against such critiques (Lentz, Seo, 
and Gruner 2014). In the meantime, research continues to accumulate that, 
for example, homes with more technology better support mathematics 
learning (Li, Atkins, and Stanton 2006; Navarro et al. 2012), and this is par-
ticularly so for children from minority households (Judge 2005). Having 
said that, it is also true that some correlations are not significant, including 
those from research in LAC (see Chapter 4). So, clearly, the way technol-
ogies are used matters. The sections that follow summarize some basic 
findings from research on young children and technology (Clements and 
Sarama 2010).

Children Working with TechnologyChildren Working with Technology

Perhaps the oldest criticism is that educational technology is “develop-
mentally inappropriate” for young children (Barnes and Hill 1983). One 
argument is that such technology inappropriately demands “abstract 
thinking” (Cordes and Miller 2000). Such criticisms are based on discred-
ited interpretations of Piagetian theory (Gelman and Williams 1997).

Perhaps most important, these criticisms are based on an overly gen-
eral and undifferentiated view of technology. The types of technologies 
available and their content vary widely and, when used appropriately, 
can benefit children from preschool through third grade (Clements and 
Sarama 2007c, 2010), especially for mathematics (Shin et al. 2012; Thomp-
son and Davis 2014). The nature and extent of technology’s contribution 
depends largely on what models of technology are used and the goals put 
forth for these models.
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Approaches to Educational Technology: Beyond False DichotomiesApproaches to Educational Technology: Beyond False Dichotomies

Debates also broil regarding how technology should be used in improving 
mathematics learning. These may involve false dichotomies. For example, 
some educators focus solely on drills—an approach that used alone is 
pernicious and even ineffective for those limited goals (see Chapter 2; see 
also Henry and Brown 2008). Other educators tolerate “open-ended” or 
(narrowly defined) “developmentally appropriate” technology applications 
based on a constructivist view. We believe that constructivism is an 
important theoretical construct (Sarama and Clements 2009b), but also 
that although it has important implications for teaching, it tells us more 
about learning than about teaching (Clements 1997). Thus, policies and 
practices must carefully consider how children learn mathematics and how 
technology might support that learning.

Learning trajectories. The theoretical foundation here is based on learn-
ing trajectories, a device for constructive-based learning and teaching. 
Each learning trajectory has three parts: (1) a goal, (2) a developmental 
progression, and (3)  instructional activities. To attain a certain mathe-
matical competence in a given topic or domain (the goal), students learn 
each successive level (the developmental progression), aided by tasks 
(instructional activities) designed to build the mental actions-on-objects 
that enable thinking at each higher level (Clements and Sarama 2014). 
Teaching strategies include early exploratory work (or play) and a range 
of techniques from problem-solving to a variety of explicit instructional 
strategies. One key is to integrate them appropriately (e.g., in phases of 
learning; see Chapter 2 and van Hiele 1986).

The role of technology in the implementation of learning trajectories. 
The first phase of learning allows children to explore a topic initially, fol-
lowed by Phase 2 activities that require students to apply the concepts 
to solve problems. Concepts and skills are developed together and con-
nected. Only once they are firmly established are Phase 3 tasks introduced 
to develop fluency. These tasks are, of course, sequenced corresponding 
to the developmental progressions to complete the hypothesized learning 
trajectory. Further, the characteristics of the tasks and their accompanying 
pedagogical interactions are explicitly linked to transitions between levels.

In conclusion, technology can make substantial contributions to early 
childhood mathematics education, if used well (Sarama and Clements 
2002b; Seng 1999), with applications consistent with the phases of learn-
ing. The bad news is that reality often falls short of realizing this promise 
(Cuban 2001). To be effective, policies and practices need to be based 
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on research and the wisdom of expert practice. Simply providing hard-
ware is not likely to increase the learning of mathematics (Ortiz and Cristia 
2014) although it may increase cognitive skills (Cristia et al. 2017). Further, 
even if used well, technology alone cannot be expected to have more than 
a moderate effect (Cheung and Slavin 2013). This chapter draws impli-
cations from what has been learned from research regarding selecting 
models of educational technology, using effective teaching strategies, and 
providing professional development.

5.2 Technology Models for Early Mathematics

The introduction to this chapter described the different models of technol-
ogy use in mathematics education. This section will discuss and provide 
illustrations on specific issues regarding the application of these models to 
early mathematics education. From the outset, it is important to note that 
the mathematics curriculum used makes a significant difference in what and 
how well children are learning (Agodini et al. 2010), and decisions about 
educational technology should be in concert with the core curriculum.

5.2.1 Technology-assisted Instruction

Even young children can benefit from technology-assisted instruction 
(TAI)  (including any use of digital devices for educational purposes)  to 
develop mathematical skills and concepts. One review of rigorous studies 
indicated that technology-assisted instruction applications that are well 
designed and implemented could have a positive impact on mathematics 
performance (National Mathematics Advisory Panel 2008), and recent 
studies support this conclusion (Moradmand, Datta, and Oakley 2013; 
Outhwaite et al. 2019; Nusir et al. 2013; Thompson and Davis 2014). Another 
recent review also concluded that TAI has positive effects, although they 
are modest, and also suggested that there can be differences depending 
on which TAI model is used. Supplemental TAI had the largest effect at 
+0.19. Two other interventions had smaller effect sizes, but still positive. 
Technology-management learning—that is, software that administers and 
scores tests and uses the information to formulate instructional decisions—
had an effect of +0.08. Comprehensive programs, which integrate TAI 
and traditional instruction into one curricular system, had an effect of 
+0.07. However, another meta-analysis of educational technology for 
early mathematics found a larger effect of .48 (.53 for number sense, 
.42 for operations, .57 for word problems, and .59 for geometry and 
measurement) (Harskamp 2015).
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PracticePractice

A common use of technology-assisted instruction is to provide practice, 
for example, in skills such as counting and sorting (Clements and Nastasi 
1993) or addition facts (Fuchs et al. 2006). Indeed, some reviewers claim 
that the largest gains in the use of TAI have been in mathematics prac-
tice for lower-primary-grade students (Fletcher-Flinn and Gravatt 1995), 
especially in compensatory education programs (Lavin and Sanders 1983; 
Ragosta, Holland, and Jamison 1981). About 10 minutes per day proved 
sufficient time for significant gains, and 20 minutes was even better. (Note 
that research recommends short repeated sessions, so for young children, 
5–15 minutes in a session is suggested). Another program showed good 
effects in arithmetic fluency for first graders who practiced for 15 min-
utes three times per week for four months (Smith, Marchand-Martella, and 
Martella 2011). This approach to TAI may be as or more cost-effective than 
traditional instruction (Fletcher, Hawley, and Piele 1990) and other instruc-
tional interventions, such as peer tutoring and reducing class size (Niemiec 
and Walberg 1987). This approach has been successful with all children 
(Shin et al. 2012), with substantial gains reported for children from low-
resource communities (Primavera, Wiederlight, and DiGiacomo 2001).

Technology practice can be especially helpful for children who have 
mathematical difficulties or mathematical learning disabilities (Harskamp 
2015). However, this must come at the right point in the learning trajectory 
and it should be the right kind of practice. For example, “bare bones” prac-
tice, such as repeated, speed-based drills in arithmetic “facts” does not 
help children who are at the level of more immature counting strategies. 
Instead, research suggests practice that helps them understand concepts 
and learn arithmetic facts before any time-pressured drills (Hasselbring, 
Goin, and Bransford 1988). Also, practice that teaches fluency and cogni-
tive strategies may be more effective, especially for boys (Carr et al. 2011).

How young can children be and still obtain such benefits? Three-year-olds 
learned sorting from a technology task as easily as from a concrete doll task 
(Brinkley and Watson 1987–1988). Reports of gains in such skills as counting 
have also been reported for kindergartners (Hungate 1982).

The position taken in this chapter is that drills should be used carefully 
and in moderation, especially with the youngest children, whose creativity 
may be harmed by a consistent diet of drilling (Haugland 1992). Some 
students may be less motivated to perform academic work or less creative 
following a steady diet of only drills (Clements and Nastasi 1985; Haugland 
1992). There is also a possibility that children will be less motivated to perform 
academic work following drills (Clements and Nastasi 1985) and that drills 
on computers alone may not generalize as well as paper-and-pencil work 
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(Duhon, House, and Stinnett 2012). In contrast, practice that encourages 
the development and use of strategies, that provides different contexts 
(supporting generalization), and that promotes problem-solving may be 
more appropriate than drills, or may be best used in combination with 
them. To be effective, all types of practice must follow and be consistent 
with instruction in Phase 1 (to explore), followed by Phase 2 (to apply the 
concepts to solve problems), and must be appropriate for the children’s 
culture.

Tutorials, Tasks, Teasers, and ToolsTutorials, Tasks, Teasers, and Tools

Other technology-assisted instruction models include and often combine 
approaches that go beyond simple practice, such as tutorials, tasks, teas-
ers, and tools (e.g., screencasting, or using an app on a table that captures 
audio and video of what is written or presented on the screen; see Thomas 
2017). As an example of a teaser (i.e., a puzzle or problem to solve), 5-year-
old Maria was presented with the task of finding a cartoon character 
with big eyes and no stripes. She poised over one with stripes and said, 
loudly, “Not stripes!” She moved to another that did not have stripes. “Ha! 
I think . . . is this the right one! No, small eyes! [Moving again] Is this one 
[no stripes and big eyes]? Yes, Then I click on it.” She was correct. Maria 
developed an understanding of and then became fluent in not only attri-
butes and logic but also in thinking strategies and “learning to learn” skills.

As another illustration, consider a technology-enhanced learning tra-
jectory (Clements and Sarama 2007/2013). The goal is to learn geometric 
composition using problem-solving abilities to put shapes together to 
make other shapes. The developmental progression indicates that chil-
dren with an initial lack of competence in composing geometric shapes 
gain the ability to combine shapes into pictures—initially through trial and 
error and gradually by attributes, then finally by synthesizing combinations 
of shapes into new shapes. The levels of this progression along the third 
component of the learning trajectory (instructional tasks) are presented in 
Figure 5.1—a series of shape puzzles increasing in difficulty. Children enjoy 
that the blocks “snap” and stay together accurately. (Children initially solve 
outline puzzles with physical pattern blocks.) More importantly, they use 
the program’s tools to perform actions on the shapes. Because the chil-
dren have to figure out how to move the blocks and then choose a motion 
such as slide or turn, they are more conscious of these geometric motions. 
Four-year-old Juanita initially referred to the “spinning” tools, but later 
called them the “turn shapes” tools, and after several months was describ-
ing directions and quantities, such as “OK, get this [right or clockwise] 
turn tool and turn it three times!” Such choices also encourage children 
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FIGURE 5.1
SAMPLES FROM A LEARNING TRAJECTORY FOR THE COMPOSITION 
AND DECOMPOSITION OF GEOMETRIC SHAPES

Age
Developmental 
Progression Instructional Tasks

2–3 Piece Assembler. Makes 
pictures in which each 
shape represents a 
unique role (e.g., one 
shape for each body 
part) and shapes touch.

In the first level of the 
“Piece Puzzler” series, 
each shape is outlined, 
but touches other 
shapes only at a point, 
making the matching as 
easy as possible.

4 Picture Maker. Puts 
several shapes together 
to make one part of a 
picture (e.g., two shapes 
for one arm). Uses trial 
and error and does not 
anticipate the creation of 
a new geometric shape.

The tasks at this level 
start with those where 
several shapes are 
combined to make one 
“part,” but internal lines 
are still available. Note 
that turns and flips 
must be used.

5 Shape Composer. 
Composes shapes with 
anticipation (“I know 
what will fit!”). Chooses 
shapes using angles as 
well as side lengths.

Puzzles at this level 
have no internal 
guidelines and larger 
areas; therefore, 
students must compose 
shapes accurately.

6 Substitution Composer. 
Makes new shapes out 
of smaller shapes and 
uses trial and error to 
substitute groups of 
shapes for other shapes 
to create new shapes in 
different ways.

“Piece puzzler” tasks 
are similar; the new 
task here is to solve the 
same puzzle in several 
different ways.

7 Shape Decomposer with 
Imagery. Decomposes 
shapes flexibly 
using independently 
generated imagery.

In the “super shape” 
series, students only 
have one shape in the 
shape palette and 
they must decompose 
that shape and then 
recompose those pieces 
to complete the puzzle.

Shape Decomposer 
with Units of Units. 
Decomposes 
shapes flexibly 
using independently 
generated imagery 
and planned 
decompositions.

In this “super shape” 
level, students only get 
exactly the number of 
“super shapes” they 
need to complete 
the puzzle. Again, 
multiple applications 
of the scissors tool are 
required.

Sources: Adapted from Clements and Sarama (2014) and Sarama and Clements (2009b).
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to be more deliberate. They “think ahead” and talk to each other about 
what shape and action to choose next. In these ways, the technology slows 
down their actions and increases their reflection. Just as important, using 
the motion tools deliberately helps children become familiar with seeing 
shapes in different orientations and realizing that changing the orientation 
does not affect the shape’s name or class. In a related activity, children are 
challenged to build a picture or design it with physical blocks and copy it 
into the program. Again, this requires the use of specific tools for the geo-
metric motions of slide, flip, and turn and encourages children to reflect on 
the orientation of the shapes. Note that this and other studies show that 
tool-type interfaces are needed to gain this benefit even though direct 
manipulation is possible.

Multiple studies have supported the effectiveness of this learning tra-
jectory (Clements and Sarama 2007b, 2008a; Clements et al. 2011). The 
software combines the tasks (motivating puzzles)  and tools (geometric 
motion tools) already described. In addition, brief hints and then tutorials 
are presented if children make several consecutive mistakes. The software 
used alone is effective and was particularly helpful to Hispanic dual-lan-
guage learners (Foster et al. 2016; Foster et al. 2018).

Similar successes have been reported for other research-based pro-
grams. For example, TAI, even with minimal direction from a teacher, has 
been found to be a feasible means of helping first graders with a risk factor 
discover the add-1 rule (adding 1 is the same as “counting one more”) by way 
of pattern detection (Baroody et al. 2015). The software might ask, “What 
number comes after 3 when we count?” and then immediately follow that 
by answering a related addition question, “3 + 1 = ?” Also, an “add-zero” 
item and an addition item (with both addends greater than one) served 
as nonexamples of the add-1 rule to discourage overgeneralizing this rule. 
A similar technology program that combined fluency and cognitive strat-
egy use helped second graders, especially boys, improve their arithmetic 
achievement (Carr et al. 2011). A suite of activities increased low-income 
preschoolers’ mathematics achievement with an effect size of 1 standard 
deviation, more than a year’s gain over the control group (Schacter and 
Jo 2016).

Also important are efforts to ascertain what type of goals different 
types of TAI can achieve. For example, all kindergartners working in mul-
timedia environments improved their mathematical skills more than those 
not working with any technology environment. Further, those working indi-
vidually performed at the highest level, while those working cooperatively 
increased their positive attitude about cooperative learning (Weiss, Kramar-
ski, and Talis 2006). Finally, longer tutorials are rare in early mathematics, 



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION190

but some programs are developing new approaches. One used collabor-
ative multimedia environments with problems that 4–7 year-old children 
solved cooperatively (Kramarski and Weiss 2007). They were given three 
steps of feedback to support their learning. These children outperformed 
those who worked collaboratively but without the multimedia environment. 
In another approach, children created digital images that represented a 
person or character and used that character to share thoughts and ideas 
through typed text or the computer microphone (Cicconi 2014).

GamesGames

Properly chosen, technology games may also be effective (see Chapter 
6; see also Ketamo and Kiili 2010). Second graders with an average of 
one hour of interaction with a technology game over a two-week period 
responded correctly to twice as many items on an addition facts speed 
test as did students in a control group (Kraus 1981). Even younger children 
benefit from a wide variety of technology-based as well as nontechnology 
games (Clements and Sarama 2008b). For example, in one simple game, 
young children place finger combinations on an iPad to play a game of 
recognizing and representing numbers before time runs out. Early pilot 
work with this novel interface, which also promotes use of children’s most 
accessible manipulative, their fingers, is promising (Barendregt et al. 2012).

Again building upon learning trajectories, Figure 5.2 illustrates selected 
levels (Clements and Sarama 2007/2018) of a series of technological board 
games meant to progressively develop children’s competencies in the 
domain of counting, leading to counting-based addition and subtraction 
strategies. For example, at the level of Producer (small numbers), at which 
they can accurately count out up to 5 objects, children may be able to solve 
simple arithmetic problems such as 3 + 2 by “counting all”—producing a set 
of 3, then a set of 2, then counting them all. An advance is made at the level 
of Counter On Using Patterns, at which children may add by counting on 
from the first addend one or two numbers, thereby solving 4 + 2 by saying 
“4, 5, 6,” saying 5 and 6 in a rhythmic pattern of two beats. These children 
still might be unable to count on five or more, because the rhythm would be 
too challenging. However, when they progress to the Counter on Keeping 
Track level, they can keep numerical track of how many they are count-
ing up (i.e., the second addend), thereby solving 4 + 5 by counting “4…, 5, 
6, 7, 8, 9,” putting up five fingers for each count to keep track. Again, the 
game formats and clear goals motivate children, and the instruction com-
bines several approaches. The tasks use linked representations to ensure 
that children build a strong number concept. That is, children are supported 
in connecting images, written symbols, oral symbols, and actions, which 
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encourages learning and retention (Mayer 2014). The connection of the dot 
arrays, the length moved on the path, the time it takes to make that move, 
and so forth all serve to build number sense (Siegler and Ramani 2008). A 
management system (see below) moves children along a research-based 
learning trajectory, thus employing the powerful educational strategy of 
formative assessment (Penuel and Shepard 2016) to ensure that each child 
is learning new concepts and skills because the tasks are challenging but 
achievable (Hiebert and Grouws 2007).

Newer games can take quite different forms. For example, in one project,  
a robot was used to promote engagement, social interaction, and geometry 

FIGURE 5.2
LEARNING TRAJECTORY FOR COUNTING

Age
Developmental 
Progression Instructional Tasks

4 Counter (small 
numbers). 
Accurately counts 
objects in a line 
to 5 and answers 
the “how many” 
question with 
the last number 
counted.

Road Race Counting 
Game. Students identify 
number amounts on a dot 
frame and move forward a 
corresponding number of 
spaces on a game board.

Road Race. Students 
identify numbers of sides 
(three, four, or five) on 
polygons and move 
forward a corresponding 
number of spaces on a 
game board.

5 Producer —
Counter To (small 
numbers). Counts 
out objects to 5.

Numeral Train Game. 
Students identify numerals 
(1–5) and move forward a 
corresponding number of 
spaces on a game board.

Counter from N 
(N+1, N-1). Counts 
verbally and with 
objects from 
numbers other 
than 1 (but does 
not yet keep track 
of the number of 
counts).

Sea to Shore. Students 
identify number amounts 
by (simple) counting on. 
They move forward a 
number of spaces on a 
game board that is one 
more than the number of 
dots in the fives and tens 
number frame.

(continued on next page)
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learning by engaging children in social games and activities (Keren and 
Fridin 2014). The robot pictured on a screen identifies a shape and asks 
children to find and touch the same shape on the physical robot. Evalua-
tions revealed that these experiences improved both geometric thinking 
and meta-cognitive tasks in kindergartners (Keren and Fridin 2014).

Technology-enhanced ManagementTechnology-enhanced Management

Many systems employ technology-managed instruction, in which comput-
ers keep track of children’s progress and help individualize the instruction 
they receive. For example, such a system might store records of how 

FIGURE 5.2
LEARNING TRAJECTORY FOR COUNTING

Age
Developmental 
Progression Instructional Tasks

6 Counter On Using 
Patterns. Keeps 
track of a few 
counting acts, 
but only by using 
numerical pattern.

Bright Idea. Students are 
given a numeral and a 
frame with dots. They 
count on from this numeral 
to identify the total 
amount, and then move 
forward a corresponding 
number of spaces on a 
game board.

7 Counter on 
Keeping Track. 
Keeps track of 
counting acts 
numerically, first 
with objects, 
then by “counting 
counts.” Counts 
up 1 to 4 more 
from a given 
number.

Easy as Pie. Students add 
two numerals to find a 
total number (sums of 
one through ten), and 
then move forward a 
corresponding number of 
spaces on a game board.

Eggcellent. Students use 
strategies to identify which 
two of three numbers, 
when added together, will 
enable them to reach the 
final space on a game board 
in the fewest number of 
moves. Often that means 
the sum of the largest two 
numbers, but sometimes, 
other combinations allow for 
hitting a positive or avoiding 
a backward action space.

Sources: Adapted from Clements and Sarama (2014) and Sarama and Clements (2009b); 
software from Clements and Sarama (2007/2018).

(continued)



PROMOTING A GOOD START 193

children are doing on every activity. It assigns them to just the right dif-
ficulty level according to past performance, using the research-based 
learning trajectories for each topic. Teachers can view records of how 
the whole group or any individual is doing at any time. The management 
system automatically adjusts the activity for difficulty and provides appro-
priate feedback and help. Some systems provide testing and worksheet 
generators. Such programs have been shown to increase math achieve-
ment of low-, middle- and high-performing students (Ysseldyke et al. 
2003). In the future, assessment systems may integrate a curriculum-
embedded benchmark, and summative assessments within and across 
levels, from curriculum-embedded classroom assessments to international 
comparisons (Quellmalz and Pellegrino 2009).

Technology-assisted Instruction—A CaveatTechnology-assisted Instruction—A Caveat

Policymakers and educators cannot assume that any model of TAI is effec-
tive in every instance. Whatever model is chosen, high-quality software 
and implementation are needed to realize effects—even moderate effects 
(National Mathematics Advisory Panel 2008). Consider that research 
reviews often report small-to-moderate effects (Cheung and Slavin 2013; 
Clements and Sarama 2003; Sarama and Clements 2009a). Moreover, 
the research reviewed may have incorporated higher-quality software 
than much of what is available. Therefore, specific software packages and 
implementation plans must be identified and piloted.

There are several other models than the TAI approach. One is technol-
ogy manipulatives, as discussed in the next section.

5.2.2 Technology Manipulatives

Manipulatives are objects, often carefully structured, that children can act 
on to learn mathematical concepts. Technology manipulatives are simi-
lar digital objects. Preceding sections illustrated technology manipulatives 
(the shapes and tools in Figure 5.1 constitute a particularly good exam-
ple) and showed that they may provide “concrete” representations that are 
just as personally meaningful to students as physical objects and poten-
tially more effective in supporting learning. That is, especially for young 
children, technology manipulatives may be more manageable, flexible, and 
extensible. In one study, third graders working with technology manip-
ulatives made statistically significant gains learning fractional concepts 
(Reimer and Moyer 2004). These manipulatives were easier and faster 
to use than physical manipulatives and provided immediate and specific 
feedback. In other examples, children may glue 10 single squares together 
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to create a “10” or put six equilateral triangles together to make a regu-
lar hexagon (Lane 2010; Sarama and Clements 2009a; Thompson 2012). 
A technology manipulative program helped second graders learning mul-
tiplication. The type of input did not influence learning, but the provision 
of not just visual but also auditory feedback resulted in greater learn-
ing (Paek et al. 2011). The goal of one game, for example, was to reveal a 
hidden scene by combining groups of blocks. To create a group of six, chil-
dren add two blocks three times. As children move the blocks, they receive 
visual feedback about the value of the blocks and the arithmetic operator 
(2 + 2 + 2—symbolically and aurally). A recent meta-analysis of 66 studies 
found positive effects for the use of technological manipulatives (Moyer-
Packenham and Westenskow 2013).

The following list summarizes seven interrelated affordances, 
emphasizing young children (for discussions and similar summaries, see 
Moyer-Packenham and Westenskow 2013; Anderson-Pence and Moyer-
Packenham 2016; Sarama and Clements 2009a; and Sarama, Clements, 
and Vukelic 1996).

1. Bringing mathematical ideas and processes to conscious awareness. 
Even young children can move puzzle pieces into place without con-
scious awareness of the geometric motions that can describe these 
physical movements. Using technology-enhanced tools to manipulate 
shapes brings those geometric motions to an explicit level of aware-
ness (Clements and Sarama 2007a).

2. Encouraging and facilitating complete, precise explanations. Even 
young children use accurate mathematical ideas more often when dis-
cussing their work with technology manipulatives.

3. Supporting mental actions on objects. Children can break technol-
ogy base 10 blocks into ones, or glue ones together to form tens. Such 
actions are more in line with the mental actions that students are to 
learn. As another example, using manipulatives supporting mental com-
position and decomposition of shapes, kindergartner Alvaro started 
making a hexagon out of triangles on the computer (Sarama, Clements, 
and Vukelic 1996). After placing one, he counted with his finger on the 
screen around the center of the incomplete hexagon, imaging the other 
triangles, saying, “this is only one of what I need—two more!” Off-com-
puter, Alvaro never made such statements.

4. Changing the very nature of the manipulative. Technology manipu-
latives allow children to explore geometric figures in ways that they 
cannot with physical shape sets. For example, children can change the 
size of the technology-enhanced shapes, altering all shapes or only 
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some. One linguistically and economically diverse population of kinder-
gartners made more patterns and used more elements in their patterns 
when working with technology-enhanced manipulatives than when 
working with physical manipulatives or drawing. Finally, only when 
working with technology-enhanced manipulatives did they create new 
shapes (Moyer- Packenham, Niezgoda, and Stanley 2005).

5. Symbolizing mathematical concepts. Technology allows the manipulatives 
to be connected to symbols, as when a child adds digital apples to a 
basket and hears each counting number (“…two, three…”) and sees the 
corresponding numerals (2, 3). Technology-enhanced manipulatives can 
have just the mathematical features that developers wish them to have 
and just the actions done to them that developers want to promote—and 
without having additional properties that may be distracting.

6. Linking the concrete and the symbolic with feedback. As an example, 
the number represented by the base 10 blocks is dynamically linked 
to the students’ actions on the blocks, so when the student changes 
the blocks, the number displayed is automatically changed as well. This 
helps students make sense of their activity and the numbers. It also 
helps connect objects that students make, move, and change to other 
representations (Anderson-Pence and Moyer-Packenham 2016). For 
example, when students draw rectangles by hand, they may never think 
further about them in a mathematical way. In the Logo environment, 
however, students must analyze the (visual/concrete)  figure to 
construct a sequence of (symbolic)  commands, such as “forward 75 
right 90 forward 30 right 90 forward 75 right 90 forward 30 right 90” 
to direct the Logo turtle to draw a rectangle. So, they have to apply 
numbers to the measures of the sides and angles (turns). This helps 
them become explicitly aware of such characteristics as “opposite sides 
equal in length.” The link between the symbols, the actions of the turtle, 
and the figure are direct and immediate (Clements, Battista, and Sarama 
2001). Similarly, children connected base 10 symbols to manipulatives 
more often in a technological than a physical environment because 
of the “natural consequences” feedback—that is, when students 
manipulated the technology-enhanced manipulatives, the connected 
symbols provided immediate feedback on their actions (Thompson 
1992). Technology helped students link sensory-concrete and abstract 
knowledge, enabling them to build integrated-concrete knowledge.

7. Recording and replaying students’ actions. Technology allows students 
to store more than static configurations; it also enables them to record 
sequences of their actions on manipulatives and modify or reflect on 
them at will.
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Technology and Cognitive PlayTechnology and Cognitive Play

Children can use extensions of the TAI approach to foster deeper concep-
tual thinking, including a valuable type of “cognitive play”—self-directed 
intellectual explorations with the software environment. Indeed, the 
dynamic aspects of TAI often engage children in mathematical play more 
than do physical manipulatives or paper media (Steffe and Wiegel 1994). 
For example, two children were playing with the free exploration level of a 
set of activities called “Party Time” (Clements and Sarama 2007/2018) in 
which they could put out any number of items, with the software program 
counting and labeling the items for them. “I have an idea!” said one girl, 
clearing out all the items and dragging placemats to every chair. “You have 
to put out cups for everybody. But first you have to tell me how many cups 
that’ll be.” Before her friend could start counting, she interrupted—“And 
everyone needs one cup for milk and one for juice!” The girls worked hard 
cooperatively, at first trying to find cups in the house center, but finally 
counting two times on each placemat on the screen. Their answer—initially 
19—wasn’t exact, but they were not upset to be corrected when they actu-
ally placed the cups and found they needed 20. These children played with 
the mathematics in the situation, with solutions, as they played with one 
another.

Final Words: Concrete Manipulatives and Integrated-Concrete IdeasFinal Words: Concrete Manipulatives and Integrated-Concrete Ideas

Manipulatives are meaningful for learning only with respect to learners’ 
activities and thinking. Physical and technology manipulatives can be use-
ful, but they will be more so when used in comprehensive, well-planned 
instructional settings (see the discussion of orchestration in Chapter 8). 
Their physicality is not important—their manipulability and meaningfulness 
make them educationally effective. In addition, some studies suggest that 
technology manipulatives can encourage students to make their knowl-
edge explicit, which helps them build integrated-concrete knowledge, but 
rigorous causal studies of this have yet to be conducted.

5.3 Programming/Coding and Robotics

Kindergartner Chris is making shapes with a simplified version of Logo 
(Clements, Battista, and Sarama 2001). He has been typing “R” (for rect-
angle) and then two numbers for the side lengths. This time he chooses 9 
and 9. He sees a square and laughs.

Adult: “Now, what do the two nines mean for the rectangle?”
Chris: “I don’t know, now! Maybe I’ll name this a square rectangle!”
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Lower-primary grade children have shown greater explicit awareness 
of the properties of shapes and the meaning of measurements after work-
ing with the Logo turtle as José did in the introduction to this chapter 
(e.g., “repeat 4 [forward 100 right 90]”). They learn about the measure-
ment of length and angle (Sarama et al. 2003). Especially now with new 
versions of computer languages, such as Scratch Jr. (Flannery et al. 2013), 
young children can learn related language and transfer their knowledge 
to other tasks, such as map reading and interpreting the right and left 
rotation of objects. For example, first-grader Ryan wanted to turn the tur-
tle to point into his rectangle. He asked the teacher, “What’s half of 90?” 
After she responded, he typed rt 45 (for “right turn 45°”). “Oh, I went the 
wrong way.” He said nothing, keeping his eyes on the screen. “Try left 90,” 
he said at last. This inverse operation produced exactly the desired effect 
(Kull 1986). These effects are not limited to small studies. A major evalua-
tion of a coding-based geometry curriculum included 1,624 students and 
their teachers (Clements, Battista, and Sarama 2001). Across grades K–6, 
students who wrote such codes scored significantly higher than control 
students on a general geometry achievement test, making about double 
the gains of the control groups. These are especially significant because it 
was a paper-and-pencil test, not allowing access to the technology envi-
ronments in which the experimental group had learned, and because the 
curriculum was a relatively short intervention, lasting only six weeks.

Finally, computer coding should not be considered work in vir-
tual worlds only. For example, in robotics environments (e.g., Nao; see 
Crompton, Gregory, and Burke 2018)  or the older LEGO-Logo, children 
create Lego structures, including lights, sensors, motors, gears, and pul-
leys, and they control their structures through computer codes. There are 
only a few studies of LEGO-Logo, but they indicate that such experiences 
can positively affect mathematics and science achievement and com-
petencies in higher-order thinking skills (Browning 1991; Castledine 2011; 
Enkenberg 1994; Flake 1990; Weir 1992). LEGO-Logo appears to provide 
authentic learning tasks (Lafer and Markert 1994), motivate and empower 
students, and possibly develop self-esteem as well (Silverman 1990; Weir 
1992). This may be because LEGO-Logo provides an academic setting in 
which students can develop their own goals (Browning 1991; Lai 1993; Weir 
1992). This may be especially true for students at risk for academic failure 
(Day 2002). If started as young as in kindergarten, few differences appear 
between boys and girls, and both benefit from work with robots (Sullivan 
and Bers 2013). One study shows how 5–7 year-old students learned mod-
eling, exploring, and evaluating building and programming Lego robots in 
Australia (McDonald and Howell 2012).
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Today’s robots, such as CHERP (Flannery and Bers 2013), and pro-
gramming environments extend the earliest work with turtle robots and 
offer even more flexibility and opportunities (Mousa, Ismail, and El Salam 
2017). That these systems support learning is backed by empirical evidence 
(e.g., of sequencing; see Kazakoff, Sullivan, and Bers 2013). More research 
is needed before firm conclusions can be drawn about any one particular 
application, but it is clear that there is no dichotomy between computers 
and hands-on learning environments (Keren and Fridin 2014). Recent work 
has described how very young children at different developmental lev-
els approach programming a robot, a promising path for designing future 
experiences (Flannery and Bers 2013). Teachers will require professional 
development to implement such teaching ( Kim et al. 2017).

Beyond mathematical concepts and skills, such work has been shown 
to increase creativity by a variety of measures (Alchin 1993; Clements, 1986, 
1991, 1995a, 1995b; Clements and Gullo 1984). Once again, high-quality 
software, implemented well, can have multiple benefits (National Math-
ematics Advisory Panel 2008). One way to achieve such benefits is to 
combine different models of educational technology.

5.4 Combining Models of Educational Technology

Chapter 2 of this book provides a useful framework regarding the three 
phases of effective instruction. Recall that the first phase involves stu-
dents’ initial exploration of the topic, the second phase involves activities 
designed to promote and connect understanding and fluency, and the 
third phase is focused on developing fluency. These phases are consistent 
with both the theoretically and empirically based approaches of Dina and 
Pierre van Hiele (van Hiele 1986) and our own theory based on learning 
trajectories (Sarama and Clements 2009b).

This chapter has already provided examples of educational technol-
ogy that supports learning in different phases. This section will provide 
two illustrations of how to combine different models of educational tech-
nology to support all three phases.

5.4.1  Combining Technology-assisted Instruction Models and 
Technology Manipulatives: Geometry

The first example of combining different models of educational technology 
involves a more complete discussion of the teaching and learning of geo-
metric composition. The learning trajectory supports children in progressing 
through the levels of geometric composition with tasks, teasers (puzzles), 
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and some tools (e.g., geometric motions)  and simple tutorials. However, 
there are other uses of educational technology that are blended into the 
curriculum. These activities teach two different topics in geometry. First, 
children progress through the learning trajectory for shape matching, recog-
nition, and naming, initially with only simple familiar shapes (e.g., circles and 
squares) and then by expanding their knowledge of shapes (e.g., rhombi), 
so they simply match the shape to an outline shown (Figure 5.3). When they 
do, they hear the name of the shape (repeatedly, as the mystery picture is 
built up), and the program becomes a simple tutorial for shape naming. 
When they complete the mystery picture, they see an animation (panel b in 
Figure 5.3). Progressing to the following level, they do not see the outline, 
but instead hear the name of the shape (and a size, if there are two sizes), 
and they must identify that shape (panel c in Figure 5.3).

Such shape matching and naming are the main goals of this sequence. 
However, the same activities serve as an experiential introduction to 

FIGURE 5.3
“MYSTERY PICTURES” SETS THE FOUNDATION FOR A LEARNING 
TRAJECTORY IN GEOMETRIC COMPOSITION

a. b.

c. d.

Sources: Adapted from Clements and Sarama (2014) and Sarama and Clements (2009b); 
software from Clements and Sarama (2007/2018).
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the topic of geometric composition (putting shapes such as tangrams 
together to make other shapes). Children see examples of how shapes can 
be combined to make new pictures and shapes. More importantly, these 
are mystery pictures, so children are constantly guessing what the resul-
tant picture is. That motivates them to mentally “complete” the picture 
and thus anticipate the placement of the succeeding shapes. Consistently, 
their mental images are either confirmed or not confirmed and must be 
updated. These are dynamic experiences of shape composition, power-
ful precursors of the upcoming Piece Puzzler series that requires that they 
compose the shapes themselves.

This is not all that Mystery Pictures contributes to this second learn-
ing trajectory. After completing any level (not just the final one), children 
are invited to freely explore environments like “playgrounds” with mathe-
matical tools. Illustrated in panel d of Figure 5.3, children make their own 
mystery pictures by dragging shapes to form designs or objects. When 
they press the “Play” button, their composition becomes a new “Mystery 
Picture” for others to solve.

Notice that in this early exploratory phase, any picture is acceptable 
and there are no turns or flips (which are introduced in the Piece Puzzler 
free exploration environment, later in the sequence). However, children do 
explore putting shapes together to make pictures and new shapes, laying 
the foundation for understanding geometric composition; the second-
phase understanding and eventual third-phase fluency promoted by the 
Piece Puzzler series was illustrated in Figure 5.1. In other words, Mystery 
Pictures’ tasks and free exploration with tools set the foundation for chil-
dren’s progress through the geometric composition learning trajectory. 
Children only match or identify shapes, but the results of their work are 
pictures made up of other shapes—demonstrations of composition.

Finally, students work at the second and especially third phase, devel-
oping fluency in the “Super Shape” series. Here, children solve similar 
puzzles, but they only get one shape to use; thus, they must decompose 
and transform that shape. One transformation, performed with the “axe 
tool,” decomposes shapes into their canonical components (e.g., sym-
metrical halves). In later problems in the Super Shape suite, students use 
the scissors tool, which requires them to cut the shape from one vertex 
or midpoint to another. Thus, they have to create shapes they have not 
seen before. Students then use the “Create a Scene” program, in which 
they create their own pictures using the mathematical ideas and skills they 
have developed. That is, they turn, flip, resize, glue, and even cut shapes to 
create objects for their pictures. These are examples of extensible manip-
ulatives, embedded in a progression of TAI activities based on learning 
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trajectories. (The field needs more examples of inquiry-based educational 
technology; see Wang et al. 2010.)

In sum, without technology manipulatives, learning from TAI can be 
limited. Students do not always learn to manipulate mathematical objects 
to solve problems independently. On the other hand, without TAI, students 
often do not learn to use the features of technology manipulatives, or they 
explore their surface characteristics only in a trivial manner.

5.4.2  Combining Multiple Technology-assisted Instruction Models 
and Technology Manipulatives: Numbers and Arithmetic

As a second, more concise, illustration, consider arithmetic. First, children 
explore adding and subtracting small numbers in multiple environments that 
provide tools and linked, multiple representations (panel a of Figure 5.4 pres-
ents one example where adding a dinosaur to one of two boxes increases 
the numeral on that box and the sum). Second, they carry out guided, moti-
vating tasks. In panel b of Figure 5.4, children engage in a simple simulation, 
working in the dinosaur shop and receiving “orders”—they must label the 
third box with the sum after the customer asks for both orders to be placed 
in the same box. Again, linked representations help connect ideas and pro-
cesses (including connecting counting and arithmetic, and linking images, 
symbols, and oral words such as “three” and “add”). Multiple environments 
such as these build understanding, fluency, and generalization. Finally, drill 

FIGURE 5.4
THE “FREE EXPLORATION” ENVIRONMENTS OF DINOSAUR SHOP

a. b.

Sources: Adapted from Clements and Sarama (2014) and Sarama and Clements (2009b).
Note: In panel a, children can put as many (up to 10) of any type of dinosaur in any location 
in each of two boxes and see the sum. The series begins with the simplest example of 
addition. For example, in panel b, students are asked to join disjoint sets with simple 
numbers and provide a solution that they can determine with simple counting.
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programs build fluency in the third phase, but only after the child has shown 
full competence at phases one and two (Figure 5.5).

This is just an example. New programs and technologies are being cre-
ated every year. For instance, one study shows numerous ways that new 
technologies might support children’s development of a “mental num-
ber line” (Moeller et al. 2012), and another describes the use of multitouch 
technology in Malaysia to teach arithmetic (Tyng, Zaman, and Ahmad 
2011). The goal should be to achieve the potential of educational technolo-
gies, including promoting children’s active engagement with mathematical 
tasks, frequent feedback, and increased opportunities for collaborating 
and communicating around mathematical ideas.

5.4.3 Evaluation of the Combined Approach

Is such a synthesis of models effective? As part of a comprehensive cur-
riculum, the combined approach has been shown to be effective (Clements 
and Sarama 2007b, 2008a; Sarama and Clements 2002a, 2009c). Further, 
the research shows the special role the Building Blocks software played in 
that curriculum (Clements and Sarama 2007/2018). That is, in each of these 
studies, software was shown to be a strong correlate—and sometimes the 
single highest—with child gains in mathematics achievement. One study used 
a counterfactual in an evaluation of Earobics software and found significant 
positive effects on mathematics achievement (Anthony et al. 2011).

FIGURE 5.5
PRACTICE PROGRAMS FOR ADDITION

a. b.

Sources: Adapted from Clements and Sarama (2014), Sarama and Clements (2009b), and 
Clements and Sarama (2007/2018).
Note: Panel a: In “double compare,” children add the two cards and then indicate which sum 
is greater. Panel b: In this drill program, children try to get the highest score by answering as 
many addition questions as possible in a short time period.
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5.5  Choosing Models: The Educational Technology Environment

Given the many models of educational technology and the mixed research 
on each, what models are most likely to benefit teachers and children in 
schools in LAC? This section first considers the educational environment 
and then issues of access and equity. It then turns to professional develop-
ment and support for teachers before addressing the question of choosing 
among the models.

5.5.1 The Importance of the Technology Environment

A recent survey reported that lack of funding for equipment (including 
inadequate numbers of computers for the number of children in class), lack 
of technical and administrative support, and inadequate training (leading 
to lack of confidence) were the major perceived barriers to the use of com-
puters in early childhood settings (Nikolopoulou and Gialamas 2015). This 
section provides a brief overview of what is required of schools, class-
rooms, and teachers for success in educational technology.

In early childhood and early-primary classrooms, two working devices 
(computers or tablets) is a workable minimum for classrooms of 18–22 chil-
dren (and with efficient scheduling, should serve even larger classrooms). Too 
few devices with too little access can lead to tension and aggressive behavior.

The arrangement of technology in the classroom can enhance its social 
use. Putting two seats in front of a computer and one at the side for the 
teacher can encourage positive social interaction. Of course, programs with 
technology-managed instruction may need to be used by individual children 
(for assessment purposes), but problem-solving environments benefit from 
the math talk that technology actually encourages (see Chapter 2; see 
also Clements and Sarama 2003). Placing computers or tablets close to 
each other can facilitate the sharing of ideas. Technology that is centrally 
located in the classroom invites other children to pause and participate. 
Such an arrangement also helps the teacher remain near enough to provide 
supervision and assistance, but not so close as to inhibit the children.

Interactive boards are particularly appropriate for early childhood use. 
They can engage students in a variety of TAI programs, allow teachers 
to monitor children’s activities (Carey 2009), and promote mathematical 
practices such as reasoning and problem-solving activities (Bourbour, 
Vigmo, and Samuelsson 2015). However, it is critical that the type of use be 
carefully considered and planned; otherwise, “entertaining” aspects can 
overshadow the mathematics learning (Serow and Callingham, 2011, note 
that this study involved older primary grade students).
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5.5.2 Equity

Descriptions of this increasing array of available technology raise the criti-
cal issue of inequity in access to technology (hardware and software).

First, what can be done with limited resources? Many schools in LAC do 
not have anything close to the technology described in the previous sec-
tion (unsurprisingly, especially poorer schools; see Chapter 4). Schools with 
predominantly indigenous student populations in Mexico, and in LAC coun-
tries generally, have fewer computers than regular public schools. However, 
there are some positive findings. First, broadband access is expanding, and 
a study in Brazil indicates it can raise achievement for older students (Silva, 
Milkman, and Badasyan 2016). Second, the One Laptop per Child Program 
in rural Peru successfully increased the ratio of computers per student from 
0.12 to 1.18 (Cristia et al. 2017). Third, there are still experiences that even 
limited technology can provide. Even quite old computers without Internet 
connections can run programs (from older disk and CD-ROM drives) that 
remain available. This includes almost all the types of software discussed 
here—TAI, manipulatives, and coding (e.g., computer programming Logo). 
Such software is older, and teachers and children deserve a greater choice, 
but even with limited resources, educational technology can provide sub-
stantial benefits. Consider that most of the research with positive effects 
was conducted with these types of software programs. With adequate pro-
fessional development and support for teachers (see the next section), for 
example, half-century-old versions of Logo can provide useful mathemati-
cal experiences for children, just as centuries-old unit blocks can.

Even with one device in a classroom (or school, with rotations among 
classrooms), teachers can either present TAI simulations to an entire class-
room or rotate children through individual or paired use throughout the 
school day. If teachers are provided with resources and information on how 
such simulations can be integrated into the curriculum, children can ben-
efit greatly. Even inexpensive, self-powering calculators can be used (with 
adequate teacher support)  to provide exploratory and problem-solving 
experiences that are of considerable benefit to children (Khoju, Jaciw, and 
Miller 2005; National Mathematics Advisory Panel 2008).

Second, and perhaps more important in terms of inequities in access 
to technology, addressing limited resources is a critical policy issue for 
LAC not only because there are inequities in school resources, but because 
schools serving children from lower-resource communities need adequate 
technology even more than schools in higher-resource communities. As 
an example, consider that the availability of a computer at home and high 
socioeconomic status are significant predictors of children’s baseline 
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computer skills in kindergarten (Saçkes, Trundle, and Bell 2011). Meanwhile, 
the availability of computers in kindergarten is a significant predictor of 
the development of children’s computer skills from kindergarten to third 
grade. Thus, the availability of an adequate amount of computers in early 
childhood classrooms helps close the gap in children’s computer skills due 
to socioeconomic status and lack of computer access prior to entering 
school. Ensuring that all early childhood classrooms have an adequate 
amount of computers may positively contribute to children’s long-term 
development of computer skills (Saçkes, Trundle, and Bell 2011). These 
schools need hardware. Also, although there are many experiences 
children can have without the Internet, access to it in schools can greatly 
expand applications and knowledge resources. Tablets and phones are 
mobile and less expensive than most new computers and can access the 
Internet in an increasing number of geographic regions across LAC. Work 
should be done to extend that access to all schools. Policies need to be put 
in place to move toward adequate educational technology environments. 
When computers are in the hands of many students, motivation and 
achievement can increase, as long as the programs are part of balanced 
and comprehensive initiatives that address changes in educational goals, 
curricula, assessment, and teacher training (addressed in the following 
section) (Zucker and Light 2009) .

As a final note, space constraints do not permit a description of the 
use of educational technology for children with special needs, but those 
advantages should not be overlooked. For example, a large-scale, multiyear 
study showed conclusively from every data source—interviews, observa-
tional data, and scores on a developmental measure—that every one of 
the study’s 44 3-to-5 year-old special-needs children gained substantially 
and significantly in social-emotional development from their work with 
computers. The quantitative measure of development showed that, upon 
joining the program, children were making an average gain of less than half 
a month per month in social-emotional development. While participating 
in the program, children were making an average rate of progress of 1.93 
months per month (Hutinger and Johanson 2000). As another example, 
technology facilitates social interaction between children with disabilities 
and their normally developing peers (Spiegel-McGill, Zippiroli, and Mistrett 
1989). These and other publications can serve as resources supporting the 
use of technology for special-needs children (Edyburn 2000, 2002).

Another promising finding is for children who are dual-language 
learners. A correlational analysis of the Early Childhood Longitudinal Study 
data showed positive effects of home computer access and computer 
use. Importantly, computer use for mathematics was associated with a 
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reduced gap in math achievement between native English-speaking and 
dual-language learner students (Kim and Chang 2010).

5.6 Teachers and Technology

Different models of educational technology, and combinations of them, 
can be effective, but only if teachers receive adequate professional devel-
opment and support. Space constraints do not allow for describing the 
research on these critical issues. However, resources can be provided to 
help guide teachers and teacher trainers on such matters as managing the 
technology environment (Sarama and Clements 2006) and effective strat-
egies for teaching with technology (Bourbour, Vigmo, and Samuelsson 
2015; Clements and Sarama 2008b 2010). These issues are critical. One 
survey of the level of adoption of information and communication technol-
ogies in teaching in three Latin American countries found that most of the 
teachers who participated in a project focused on using educational tech-
nology in mathematics education rated themselves at the highest levels of 
technology adoption (Salinas et al. 2017). However, there were differences 
between countries in teachers’ perceptions and training and other factors 
(such as the people in policy and administration roles), and these differ-
ences affect technology adoption. Cultural and individual factors have 
complex interactions with technology use (Salinas et al. 2017).

5.6.1 Effective Teaching Strategies

Critical to the effective use of technology is teacher planning, participation, 
and support. Optimally, the teacher’s role using educational technology 
should be that of a facilitator of students’ learning, such as by establishing 
standards for and supporting specific types of learning environments 
(see Chapter 4). When using open-ended programs such as technology 
manipulatives, for example, considerable support may need to precede 
independent use. Other important aspects of support include structuring 
and discussing technology work to help students form viable concepts and 
strategies, posing questions to help students reflect on these concepts 
and strategies, and “building bridges” to help students connect their 
technology and nontechnology experiences.

Teachers whose students benefit significantly from using technology 
are active. A teacher or assistant working with three to six children at a 
time functions well for introducing technology use or new applications 
(Aronin and Floyd 2013). This small group can then help the teacher intro-
duce the technology to their classmates.



PROMOTING A GOOD START 207

Then, as children use the program, effective teachers ensure that 
each child works on the programs at least 5–10 minutes, two times a week 
in preschool and up to 10–20 minutes per day in kindergarten to third 
grade. Teachers monitor and guide children’s learning of basic tasks and 
encourage experimentation with open-ended problems. They engage in 
encouraging, questioning, prompting, and demonstrating, but without 
offering unnecessary help or limiting students’ opportunity to explore (see 
Chapter 2; see also Hutinger and Johanson 2000). They redirect inappro-
priate behaviors, model strategies, and give students choices. They focus 
attention on critical aspects and ideas of the activities. When appropriate, 
they facilitate disequilibrium by using the technology feedback to help stu-
dents reflect on and question their ideas and eventually strengthen their 
concepts. They also help students build links between technology and 
nontechnology work. Such teaching strategies lead students to reflect on 
their own thinking behaviors and bring higher-order thinking processes 
to the fore. Such meta-cognitively-oriented instruction includes strategies 
of identifying goals, active monitoring, modeling, questioning, reflecting, 
peer tutoring, discussion, and reasoning.

Whole group discussions that help students communicate about their 
solution strategies and reflect on what they have learned are also essential 
components of good teaching with technology. Effective teachers avoid 
overusing directive teaching behaviors (except as necessary for some pop-
ulations and on topics such as using the technology equipment). Instead, 
they prompt students to teach each other by physically placing one stu-
dent in a teaching role or verbally reminding a student to explain his or her 
actions and respond to specific requests for help. Also during such discus-
sions, effective teachers make the mathematics to be learned clear and 
extend the ideas students encounter.

Students work best with open-ended software when projects are sug-
gested and guided rather than when they are told merely to explore freely. 
They spend longer time and actively search for diverse ways to solve the 
task. Children told to just explore freely quickly grow disinterested. Pro-
viding models and sharing students’ projects may also help guide and 
maintain their focus on learning mathematics.

5.6.2 Professional Development

There is evidence that the more teachers receive support in using tech-
nology, the more their students learn, especially if the support is targeted 
at students’ effective use of technology (Fuller 2000). Research has 
described features of effective professional development (for more 
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detailed descriptions see Clements and Sarama 2008b, Clements and 
Sarama 2010, and Sarama and Clements 2006).

Many agree on the general characteristics of effective professional 
development. For example, professional development should be multi-
faceted, extensive, ongoing, reflective, focused on common actions and 
problems of practice (and especially students’ thinking), grounded in 
particular curriculum materials, and, as much as possible, situated in the 
classroom (Sarama and Clements 2013). With regard to technology, pro-
fessional development must be “characterized by access to high-quality 
software, ongoingness, curriculum and instruction embeddedness, a vari-
ety of learning partners (e.g., coordinators, other teachers), a variety of 
learning formats (e.g., visits, workshops, meetings, group, one-to-one), 
opportunities for practice-practice-practice and feedback, and data on 
the impact” (Fullan 1992, 46). It should also involve participants in teams 
from the same school, model constructivist approaches to learning, and 
promote ongoing conversations and reflections about practice, theories 
of learning, and how classroom practice might change in the context of 
technology (Dwyer, Ringstaff, and Sandholtz 1991). Technology is a par-
ticularly challenging field because the learning task is daunting, the vision 
of high-quality use is not clear, and well-designed, intense, relevant, sus-
tained assistance is critical (Fullan 1992).

Research has suggested that less than 10 hours of teacher training in 
technology can actually have a negative impact on these teachers’ students 
(Ryan 1993). Whatever time is available should be dedicated to hands-on 
training on the hardware and software to be used and its connection to 
the curriculum. The goal is to develop comprehensive technological peda-
gogical content knowledge (see Chapter 4; see also Jaipal and Figg 2010).

Effective technology use depends on establishing a functional, 
well-trained, on-site technology support team at the school that provides 
leadership and support that hold the system together. This can lead to 
institutionalization of the program after external funding ends (Hutinger 
and Johanson 2000).

Again, however, there are issues of equity. Many teachers have not 
had the opportunity to learn the mathematical content and pedagogical 
strategies that underlie effective teaching and learning (see Chapter 4). 
For example, in Guatemala, teachers had one more year of education 
than high school. But starting only recently, colleges are starting to train 
teachers, so there are new opportunities to influence teachers’ knowledge 
and skills. Some countries in LAC include funding opportunities from 
nongovernmental organizations for professional development, and 
policies should support these greater opportunities. Here the focus is on 
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professional development in the use of educational technology, but teachers 
need to learn, and learn to apply in classrooms, all three components of 
learning trajectories: the goal (i.e., understand the mathematics content), 
the developmental progressions, and the instructional tasks and strategies 
(including, but palpably not limited to, technologies).

Also, a teacher with Internet access (in school or out) may find several 
resources that help fill those gaps. As an example, we are working with 
a team from the University of Michigan on free online resources for pro-
fessional development in mathematics.2 Other discussions are available 
of educational technologies that support teachers’ learning using repre-
sentations of practice and of the challenges involved in understanding 
students’ thinking (Herbst et al. 2010).

Our TRIAD (Technology-enhanced, Research-based Instruction, 
Assessment, and professional Development)  Project enhances profes-
sional development with a variety of technologies, including discussion 
boards, e-mail, distance-learning centers, and websites and applications, 
increasing the scalability of professional development. The most impor-
tant of these is the “Learning and Teaching with Learning Trajectories” 
[LT2] web application,3 which provides scalable access to the learning tra-
jectories via descriptions, videos, and commentaries. Each aspect of the 
learning trajectories—the developmental progressions of students’ think-
ing and connected instruction—are linked to the others. Of course, the 
[LT]2 application is only a tool. All teachers were provided a full range of 
professional development opportunities, based on the research previously 
described. They participated in a credit-bearing course with several com-
ponents, including two full-day sessions in summer and a one-day follow 
up each month, electronic communications, and coaching and mentoring 
within each teacher’s classroom. All of these components use the [LT]2 

web application as a tool.
Funded by the Heising-Simons Foundation and the Bill and Melinda 

Gates Foundation, we are currently redeveloping this research-based tool 
for wider access.

5.7  What Educational Technology Models Suit Latin America and 
the Caribbean?

What models of educational technology might be recommended for 
LAC? What has been learned from research and practice on models of 

2 See http://www.umich.edu/~devteam/.
3 See LearningTrajectories.org.

http://www.umich.edu/~devteam
LearningTrajectories.org
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technology, technology environments, and teaching must be considered 
together. For example, although the benefits of computer programming 
are promising, especially in an increasingly complex technological age, the 
requirements for the effective use of coding are considerable. If hardware 
is scarce and teachers have not received sufficient professional develop-
ment and support, this may be an unproductive and frustrating model to 
implement. However, long-range policy could be crafted to reach toward 
such sophisticated applications over time.

In the context of limited resources, policymakers face difficult choices. 
When teachers are underpaid and the physical environment lacks basics 
such as books and mathematical manipulatives, the moderate effects of 
educational technology may not justify the cost. If funds are available, sim-
ple applications such as TAI tutorials and practice applications—explicitly 
aligned to extant standards (goals) and curricula—may represent a trac-
table approach for teachers. Again, even for these simpler applications, 
teachers must receive training and in-class support (e.g., as seen ear-
lier, drill TAI is inappropriate and ineffective unless children have moved 
through the first two phases of instruction). Research suggests implemen-
tation of a software system that:

• Combines models of TAI
• Moves children through learning trajectories
• Features introductory exploratory activities
• Includes explicit instruction and then practice
• Includes technological manipulatives and guidance in their use
• Manages instruction and its impacts for the teacher (technology-

managed instruction).

Such a system may support children directly and have the additional 
benefit of allowing teachers to learn more about mathematics, and the 
teaching and learning of mathematics, as they observe and support 
children using the system.

If hardware is scarce, models that use one computer per classroom 
may be necessary. For example, if children cannot use the computer for at 
least 5–10 minutes two times a week, applications for individual-use-only 
may not be effective.

Once that minimum usage level has been established, inclusion of 
other models of educational technology is possible. However, teachers will 
need substantial professional development, including reflecting on and 
restructuring their teaching to effectively use simulations, tools, and com-
puter programming (Clements and Sarama 2002).
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As noted in Sarama and Clements (2013), one cannot simply choose 
a model of educational technology—the work starts, not ends, with such 
a choice. What is imperative is the efficacy of the particular software 
package, its appropriateness for the intended audience of children, and 
its requirements (hardware, other resources, support for teachers, etc.). 
Once selected, a careful, monitored plan for implementation, piloting, 
and—only if these are successfully accomplished—scaling up the interven-
tion are requisites for success (Sarama and Clements 2013). A summary of 
the implications of research is provided in Table 5.1.

TABLE 5.1
CONCLUSIONS AND IMPLICATIONS FOR POLICY AND PRACTICE WITH 
EDUCATIONAL TECHNOLOGY IN LATIN AMERICA AND THE CARIBBEAN
Conclusions Implications

1.  Effective use of educational 
technology demands connected 
hardware, software, curriculum 
development, and professional 
development.

To begin with scarce resources, it is useful 
to have technology-assisted instruction 
(TAI) tutorials and practice applications 
that are carefully aligned to standards 
and curricula. Long-range planning to 
incorporate the use of more sophisticated 
applications, such as computer 
programming and design, could also be 
initiated.

2.  Research has identified 
characteristics of educational 
technology that are effective in 
helping practitioners teach better 
and children learn better and more 
mathematics.

Procure or design educational technology 
that combines different models of TAI 
consistent with learning phases (see 
Chapter 2) and learning goals, moves 
children through learning trajectories, 
and provides management and 
record-keeping.

3.  Continual formative evaluation and 
professional development ensures 
continued success.

Educators and policymakers at all levels 
should plan a system, first for choosing 
and implementing an approach to 
educational technology, then for scaling 
up, and continually for monitoring and 
improving the intervention.
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Guiding Technology to Promote Guiding Technology to Promote 
Student PracticeStudent Practice

Roberto Araya (Universidad de Chile)  

and Julian Cristia (Inter-American Development Bank)

Governments in Latin America and the Caribbean (LAC) are seeking 
educational programs that improve student learning, are afford-
able, and can be scaled up with existing resources. This chapter 

argues that programs that guide the use of technology to promote stu-
dent practice, if well structured, can satisfy these three requirements. Such 
programs provide clear instructions on how to use relevant technological 
resources. More specifically, these programs clearly define the subject to 
be targeted, the software to be used, and the schedule of the use of the 
resources. That is, the three “S”s are clearly defined: subject, software, and 
schedule (Arias Ortiz and Cristia 2014). Moreover, there is a strong focus 
on developing skills through practice.

This chapter presents evidence and theoretical reasons to back the 
claim that guided technology programs focused on practice can be effec-
tive, efficient, and relatively easy to scale up. Because they require limited 
investments in hardware, software, and pedagogical support, these programs 
are efficient and can be afforded by most countries in the region. Finally, 
since these programs reduce the workload of teachers (by saving time on 
grading exercises and exams), their implementation requires few extra skills 
or changes in the way instruction takes place. The programs also have the 
potential to be scaled up, but there are challenges to do this that need to be 
considered, and the chapter discusses strategies for tackling them.

Guided technology programs are not a panacea, however: evidence 
shows that though they do produce improvements in learning, they can-
not by themselves solve the significant educational problems of the LAC 
region. Their basic limitation may lie in the fact that they can support but 
never replace good teaching.

CHAPTERCHAPTER  66
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The central question this chapter seeks to answer is: How can the 
effects of these programs be maximized? To answer this question, the 
chapter analyzes 10 key design decisions that need to be made when struc-
turing these programs. The first decision pertains to defining the objective 
of the program—that is, which mathematical skills will be targeted for 
improvement? Next are four key design decisions on how computers are 
to be used during technology sessions. These decisions involve defining 
which type of learning activities will be performed during the sessions, 
how many hours a week computers will be used, what role teachers and 
technology coordinators will play in the process, and whether the learn-
ing activities will be personalized for each student or include all students 
in a session on a particular topic. Finally, the chapter discusses decisions 
related to inputs, including where the computers will be located, whether 
students will share them, what software will be used, how the staff will be 
trained and coached, and how the program will be managed.

Clearly, the chapter cannot provide optimal decisions valid in all 
contexts. In fact, it is difficult (even impossible) to ascertain the optimal 
solution for one specific context without detailed evidence of the effects 
and costs of all the relevant options. Acknowledging these limitations, the 
chapter seeks to provide an exploratory analysis of each of the 10 key 
design decisions mentioned by exploring these questions:

1. What is the nature of the design decision?
2. What are the relevant options and their theoretical advantages?
3. What evidence exists of the effectiveness of each option?
4. What choices were made in a set of effective technology programs that 

produced large positive effects?
5. What choices were made in the program ConectaIdeas in Chile, consid-

ered a best-practice example?

Questions (1) to (3)  involve theoretical and empirical analysis of the 
different options for each design decision. Question (4) points to lessons 
from past choices made in programs reviewed on the website SkillsBank 
under the category “Guided technology with extra time,” as described in 
Table 6.1.1

1 SkillsBank summarizes rigorous evidence on how to develop skills along the life cycle. 
It can be accessed at: www.iadb.org/skillsbank. The website includes three categories 
of programs related to technology. Programs in the category labeled “Guided technol-
ogy with extra time” were found to be effective, based on the meta-analysis presented 
in the website. In contrast, the other two program types were not found to be effective. 
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Finally, question (5)  refers to the choices made by the team imple-
menting the program called ConectaIdeas. This program was designed 
and implemented by a multidisciplinary team of researchers at the Cen-
tro de Investigación Avanzada en Educación at the Universidad de Chile. 
The team was led by Roberto Araya, who is one of the co-authors of this 
chapter. The program seeks to increase learning in mathematics in primary 
schools located in disadvantaged areas in Santiago, Chile. It was imple-
mented in 11 schools in the Comuna Lo Prado from 2011 to 2015, and during 
this period the program was continuously refined to enhance its effective-
ness. In a review of about 90 initiatives aimed at improving mathematics 
learning in LAC, the editors of this book considered ConectaIdeas to be 

TABLE 6.1
PROGRAMS THAT GUIDE TECHNOLOGY TO PROMOTE STUDENT 
PRACTICE

Evaluation Effect Grade Students Country
Weekly Time  

with Technology

Banerjee 
(2007)

19 4 11,255 India 1 session of  
120 minutes

Lai et al. 
(2013 i)

12 4 2,613 China 2 sessions of  
40 minutes

Lai et al. 
(2013 ii)

21 3 1,717 China 2 sessions of  
40 minutes

Lai et al. 
(2015)

16 3 2,425 China 2 sessions of  
40 minutes

Linden 
(2008)

25 3 1,114 India 5 sessions of  
60 minutes

Mo  
(2013)

16 4 3,592 China 2 sessions of  
40 minutes

Source: www.iadb.org/skillsbank.
Note: The programs presented in this table are included in the SkillsBank under the 
category “Guided technology with extra time.” Evaluations (i) and (ii) by Lai are both 
reported in Lai et al. (2013). Effects are expressed in learning points. One learning point is 
equivalent to 0.01 standard deviations. To benchmark the effects, note that the average 
third grader in the United States improves about 40 learning points in one year. The 
average grade of participants in the evaluation is presented. All evaluations met the criteria 
for inclusion in the SkillsBank. For example, all the evaluations used experimental methods. 
The interventions focused on improving learning in mathematics, except for Lai (2013 ii), in 
which the subject targeted was reading.

The programs in the “Guided technology without extra time” category include those that 
guide the use of technology but keep constant the instructional time devoted to mathe-
matics and language. The programs in the category “Computers” include programs that 
basically provide access to technological resources without guiding their use.
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the most promising. Therefore, the editors invited Roberto Araya to con-
tribute to this chapter and to convey the experience accumulated by the 
team in developing an effective program for mathematics learning in the 
region. Hopefully, this experience can inform the development of other ini-
tiatives in LAC.

6.1  Why Guided Technology Programs Focused on Practice May 
Work

This section describes the status quo of mathematics instruction in LAC 
and how a guided technology program focused on practice may change 
how students learn. It then reviews empirical and theoretical evidence 
for considering these programs as effective, efficient, and easy to scale. 
Finally, the section analyzes the limitations of these programs.

6.1.1  The Status Quo in Mathematics Instruction and Its Challenges

This section starts with a stylized description of how mathematics instruc-
tion takes place in schools similar to those targeted by ConectaIdeas in 
Chile. In these schools, fourth grade students have three weekly math-
ematics sessions of about 90 minutes each in their regular classrooms. 
(Note that in some schools, there is an additional fourth mathematics 
session of 90 minutes.) A regular class may start with the teacher pre-
senting a certain topic (e.g., adding fractions with the same denominator), 
then providing key concepts and examples, and asking students to solve 
some exercises. While students are solving the exercises, the teacher 
walks around the classroom to make sure that all the students are work-
ing, answer questions, and provide feedback. At the end of the class, the 
teacher summarizes the topic covered, emphasizes key takeaways, and 
assigns homework.

There are several challenges with this learning session, including:

• Low engagement. Many students may find the learning activities 
less engaging than game-based activities or those involving the 
use of technology.

• Limited practice. Partially due to the lack of engagement, the 
amount of practice that students may perform could be limited. And 
this is problematic because practice is key for skills development.

• Sporadic feedback. Feedback is also key for skills development. But 
because teachers have limited time and many students to support, 
they can only provide sporadic feedback.



229GUIDING TECHNOLOGY TO PROMOTE STUDENT PRACTICE

• Costly monitoring. In this learning session, it is difficult for teachers 
to monitor the work of students and identify who needs extra sup-
port. Hence, teachers cannot use their time strategically.

• Little collaboration. There may be students in this session who have 
mastered the concepts and who could provide support to those 
struggling to understand. This peer-tutoring process could be ben-
eficial for both sets of students because research suggests that 
explaining concepts and discussing strategies are potent ways to 
improve understanding (Okita and Schwartz 2013). Moreover, col-
laboration and communication are considered critical skills in the 
21st century, and practicing them in school could be a good way to 
develop them.

6.1.2  How a Guided Technology Program Focused on Practice Can 
Improve Instruction

Against this backdrop, the team at the Universidad de Chile developed the 
ConectaIdeas program, which seeks to leverage technology to tackle these 
challenges. Since the introduction of this program, there have been some 
changes in how mathematics instruction takes place in local schools. To start 
with, one of the three mathematics sessions that previously took place in the 
classroom is now conducted in the computer lab. An additional fourth math-
ematics session also takes place in the computer lab. This session replaces 
time that was previously devoted to learning computer skills or music, or it 
uses some other unused slot in the regular schedule. Hence, since the intro-
duction of the program the total weekly time devoted to mathematics has 
typically increased from 270 to 360 minutes. Moreover, the time spent in the 
classroom has been reduced by 90 minutes and the time spent in the com-
puter lab has increased by 180 minutes. Note, however, that in certain cases 
schools already had four sessions, in which case the total time devoted 
to mathematics learning remains unchanged, but two of the four sessions 
moved from the regular classroom to the computer lab.

During the two mathematics sessions in the classroom, the teacher 
continues to provide instruction in the same way that he or she did so 
before implementation of the program (though the teacher might devote 
a little less time to solving exercises and more to presentation and discus-
sion). In the two mathematics sessions at the computer lab, a computer lab 
coordinator is responsible for instruction, though in many cases the coor-
dinator works together with the teacher. During these sessions, students 
mainly work to solve mathematics problems that are aligned with the top-
ics covered in the classroom sessions. These problems seek to develop a 
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range of mathematical skills including computation, modeling, representa-
tion, analysis, and problem-solving.

Also, skills related to communication and collaboration are developed 
during these sessions. For example, teachers ask open questions to all stu-
dents, who have to provide answers and also analyze and provide feedback 
to the answers provided by their peers. Peer tutoring is facilitated by tech-
nology. In particular, students who show mastery of the concepts covered 
in a class are identified by the platform, and computer lab coordinators 
can assign them to tutor students asking for assistance. These activities 
can improve students’ conceptual understanding and also strengthen their 
meta-cognitive and socioemotional skills.

Finally, a number of strategies are implemented to increase the moti-
vation of students. These strategies seek to leverage the positive social 
dynamics associated with competition among teams. In particular, since 
students can see how their class is ranked (in terms of the number of exer-
cises performed in a week) compared with other classes in other schools, 
it motivates them to exert greater effort to solve the exercises assigned 
to them. To enhance student motivation, tournaments can be organized 
every two to four months in which students from different schools all con-
nect to the platform at the same time and compete in teams in real time.

6.1.3  Guided Technology Programs Focused on Practice: Effective, 
Efficient, and Easy to Scale?

EffectiveEffective

There is strong evidence that programs that guide the use of technological 
resources and provide additional learning time generate important learning 
gains. In fact, as shown in Table 6.1, six evaluations of programs reviewed in 
SkillsBank produced gains of 12 to 25 learning points in students’ average 
mathematics and language test scores.2 The average learning gain is 16 
points. To put this in perspective, the average third grader advances about 
40 learning points in a year (Hill et al. 2008). Another way to benchmark 
this effect is by comparing it with the documented difference in the effec-
tiveness of classrooms led by teachers in the top and bottom quartile—this 
stood at 33 learning points in a study in the United States (Kane, Rockoff, 
and Staiger 2008).

Finally, to benchmark the effects of the programs reviewed in this 
chapter, consider that the average student in LAC is lagging behind his 

2 One learning point corresponds to an effect of 0.01 standard deviations.



231GUIDING TECHNOLOGY TO PROMOTE STUDENT PRACTICE

or her counterparts (that is, in countries with a similar GDP per capita) by 
about 50 learning points. Hence, the programs implemented in China and 
India analyzed in this chapter can close about one-third of this gap.

There is some evidence suggesting that the ConectaIdeas program 
in Chile also generates important learning gains. One study shows that in 
the 11 schools where the program was implemented, average test scores in 
math increased by 33 learning points in one year (Araya et al. 2015). The 
authors of that study report that the average yearly mathematics gain in a 
neighboring district was 7 learning points. Using this neighboring district 
as a comparison group, the authors conclude that the program produced 
an increase of 26 learning points in mathematics test scores.

EfficientEfficient

A program is efficient if it achieves its objective at a reasonable cost. In 
this context, the question is whether a program is cost-efficient based on 
the learning gains it generates. An analysis presented in Busso et al. (2017, 
Chapter 7)  indicates that the type of programs analyzed in this chapter 
are in fact cost-effective. Specifically, the analysis showed that guided 
technology programs that offer students extra learning time require an 
annual increase of less than $5 to achieve an increase of 1 learning point. In 
contrast, other popular educational interventions, such as reducing class 
size and extending the school day, require $47 and $210, respectively, to 
achieve an increase of 1 learning point.

(Relatively) Easy to Scale(Relatively) Easy to Scale

A program that yields substantial learning gains at low cost is not really 
relevant if it cannot be scaled up given the context and existing resources 
in an educational system. Therefore, it needs to be determined whether 
the programs covered in this chapter can be implemented on a large scale 
in countries across the region. To do this, it is necessary to theoretically 
explore the capacity requirements that scaling up these programs would 
demand, the changes in behavior that scaling up would require from rele-
vant actors, and whether or not these changes can be achieved.

When considering capacity requirements, a basic input that these 
programs need is electricity. Because the vast majority of public urban 
schools in various countries in the region have electricity access, this does 
not seem a challenge to scaling up. Technology in education programs 
requires the provision of hardware, software, and other infrastructure 
arrangements. Importantly, all of these inputs need to work well for instruc-
tion to take place. Consequently, these programs require the capacity of 
implementers to ensure that computers are operating adequately. There 
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are different models to ensure this, such as developing special units within 
the education ministry or contracting out these services to the private sec-
tor. No matter the specific model implemented, it is paramount that there 
is capacity to ensure that all inputs work adequately.

Implementing technology in education programs has a unique feature 
compared with other educational interventions, which is the possibility of 
monitoring how and how much technology is used. This provides invalu-
able information for teachers, principals, and program managers. Knowing 
which schools or students are using the technological resources subop-
timally provides an opportunity to think about strategies to tackle these 
problems.

Other important aspects of scaling up relate to whether the key stake-
holders will support changing practices to accommodate the program. As 
opposed to many other programs seeking to improve mathematics instruc-
tion, a guided technology program does not impose further requirements 
for teachers’ content and pedagogical knowledge as long as specialized 
staff are available to train and support existing teachers.

However, it is critical to gain the support of teachers, principals, and 
other actors to ensure the adoption of these programs and to ascertain 
that the expected changes in mathematics instruction take place. This 
is not an easy task. Teachers may fear that the new program will bring 
in new responsibilities and more work for them and that these changes 
will expose their inadequacy in the skills required to use the technol-
ogy effectively in the classroom. Hence, it is critical to provide teachers 
with the necessary support so they can transition effectively into their 
new roles.

Maybe the question that arises here is why these programs have not 
been already implemented at scale in LAC? This is particularly relevant 
given the clear interest expressed by governments across the region in 
implementing technology in education programs (Arias Ortiz and Cris-
tia 2014). One reason could be that until recently there was no strong 
evidence of the effectiveness of various technology models. This uncer-
tainty paved the way for the introduction of large-scale interventions that 
increased access to technology but produced little effects on learning. 
This lack of information is starting to disappear, at least in certain circles, 
given the rigorous evidence that is emerging. While a decade ago there 
was no experimental evaluation of technology in education programs in 
developing countries, now the situation has radically changed. Still, more 
work is needed to generate and disseminate rigorous and relevant infor-
mation to governments and other relevant actors so they can use updated 
evidence for policy decisions in this area.
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6.2 Ten Key Design Decisions

This section analyzes 10 key decisions on how to structure programs that 
guide technology use to promote student practice. As mentioned, the goal 
here is to guide critical design decisions with the aim of maximizing the 
effects of these programs while keeping costs low.

Table 6.2 presents the 10 key design decisions to be analyzed. These 
decisions are classified in three areas: objectives, processes, and inputs. To 
start with, the first decision is related to the objectives of the program, that 
is, what the program seeks to achieve. Decision 1 entails defining which 
types of mathematical skills will be targeted with the program.

Next, there are four decisions on how the process of learning with 
technology will unfold. That is, decisions 2 to 5 entail defining which learn-
ing activities will be implemented, the length of time the computers will be 
used, the roles of the teachers and lab coordinators, and whether instruc-
tion will be personalized to each individual student or will unfold at a 
common pace.

Finally, there are five decisions that are related to program inputs. 
That is, decisions 6 to 10 are related to certain resources or services that 
the program will directly provide. In particular, these decisions involve dif-
ferent aspects such as the location of the computers, whether there will 
be one or more students per computer, what software will be used, what 
training and coaching will be provided, and how the overall program will 
be managed.

TABLE 6.2
TEN KEY DESIGN DECISIONS

Design Decision

Objective 1. Which skills?

Processes 2. Which learning activities?

3. How much time?

4. Roles for teachers and lab coordinators?

5. Personalizing or common pace?

Inputs 6. Computers in the classroom or in the lab?

7. One or more students per computer?

8. Which software?

9. How to train and coach?

10. How to manage?

Source: Prepared by the authors.
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Decision 1: Which Skills?

Since the 1970s, technology in education programs focused on mathe-
matics have been traditionally targeted to develop mathematical fluency. 
That is, they have sought to develop fluency in performing basic opera-
tions, such as single-digit multiplication. Mathematical fluency is important 
because it provides the necessary skills that are used for other higher-
order tasks such as problem-solving. Moreover, computers are particularly 
well suited for developing these skills because they provide engaging 
activities to promote sustained practice and provide automatic feedback 
about whether the answers provided by students are correct.

However, as has been pointed out in Chapters 1 and 2, changes in the 
21st century are increasing the need for students to be able to deeply under-
stand mathematical concepts and apply them successfully to real-world 
situations. That is, although mathematical fluency in basic facts is still 
needed, there are increasing demands for students to solve mathematical 
problems related to real-world situations, such as those emphasized in the 
Programme for International Student Assessment.

There is a near consensus among experts in mathematical educa-
tion that to develop this deep understanding, instruction needs to change 
substantially (NCTM 2014). In particular, more emphasis should be given 
to learning activities that promote the development of multiple solution 
methods, students’ explanations of how they reach an answer to a prob-
lem, the use of mathematical graphic diagrams, and the establishment of 
strong connections between multiple areas of mathematics (e.g., arithme-
tic, measurement, geometry) and problems in the real world.

Against this backdrop, it is difficult to envision that traditional technol-
ogy in education programs that emphasizes intensive practice to achieve 
mathematical fluency in basic facts will play a major role in facilitating this 
transition. Technology can be effectively used for students to practice and 
achieve fluency in basic facts, which are still the necessary building blocks 
for higher-order tasks. But if all computer instruction is devoted to only 
mathematical fluency, then it is difficult to expect effects in other areas. 
This is well reflected in the evaluations of traditional programs that show 
that the learning gains from them are heavily concentrated in computation 
and not problem-solving (Slavin and Lake 2008).

Software developers recognize this challenge and are introducing 
new activities that could also contribute to developing better mathemat-
ics understanding. But many of the activities promoting the new ways 
of teaching mathematics (e.g., the use of multiple solution methods, stu-
dents explaining how they reach an answer, and the use of diagrams) do 
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not seem to be well suited to the types of interactions enabled by tradi-
tional software. This is well exemplified by an evaluation by Wang and 
Woodworth (2011)  of the software DreamBox, which has a number of 
well-developed features and has been explicitly designed to emphasize 
understanding and not only fluency. Though the evaluation found positive 
effects of the use of this software on mathematics learning, the effects 
were concentrated in computation rather than problem-solving (13 and 6 
learning points, respectively).

Consequently, an important challenge is to ensure that the skills devel-
oped in the technology sessions emphasize other skills that go beyond 
the development of mathematical fluency. The Universidad de Chile team 
has sought to tackle this challenge by developing a range of mathemati-
cal skills during the technology sessions. These include basic computation, 
modeling, representation, analysis, and problem-solving. The underly-
ing strategy is to ensure that the activities performed are contributing to 
the development of conceptual understanding and number sense. This 
involves presenting problems in different ways, relating abstract concepts 
to practical applications, and applying strategies to novel situations.

Decision 2: Which Learning Activities?

Traditional technology in education programs emphasizes learning activ-
ities, such as interactive games, that seek to develop fluency in basic 
operations. Additionally, in some program implementations, short, engaging 
videos (3–5 minutes in length) are provided at the beginning of the technol-
ogy sessions to review important concepts covered during learning sessions 
in classrooms. In some cases, these sessions typically close with general 
explanations and conclusions by teachers (together in discussion with stu-
dents) on the important concepts and algorithms reviewed during the day.

However, to develop a range of mathematical skills that go beyond flu-
ency in basic operations, other activities need to be included. To tackle this 
challenge, the Universidad de Chile team noted that interactive games to 
develop mathematical fluency of basic facts should not take more than 10 
to 15 minutes in each session. Additionally, they have noted that teachers 
do not tend to use videos, probably because they think that they should be 
the ones providing explanations of new concepts to children.

Most of the learning activities involving mathematical exercises on 
computers should seek to develop students’ conceptual understand-
ing and number sense. In some cases, students need to solve standard 
multiple-choice questions, but in other cases, students have many differ-
ent potential options to choose from when solving an exercise.
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One example of an exercise that departs from the standard multiple-
choice format is presented in Figure 6.1. In this exercise, students need to 
help a dog by guiding it through different cells in search of a bone. Stu-
dents start at the cell located at the left-bottom corner and need to choose 
which contiguous cell the dog will move to next, taking into account that 
the intensity of the smell is proportional to the fraction presented in the 
cell. The top panel shows the exercise as it is presented to the student, and 
the bottom panel shows the correct trajectory chosen by a student. This 
exercise involves a student making multiple comparisons of fractions in the 
context of a real problem.

In other problems, students need to choose among infinite possi-
bilities. For example, Figure 6.2 shows an exercise in which a student is 
presented with the panel on the left and is asked to connect a line to a 

FIGURE 6.1
EXERCISE IN WHICH STUDENTS NEED TO COMPARE FRACTIONS

Source: Screenshot of the ConectaIdeas platform.
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point that is roughly in the location of 3/2. Hence, this exercise does not 
involve the application of a standard algorithm. Rather, it seeks to develop 
the number sense of the student, who will need to use the information 
about the distance from 2/3 to 1 to understand the approximate size of the 
unit and then locate the 3/2 point.

One challenge faced by the Universidad de Chile team was that some 
teachers are not comfortable with the nontraditional exercises in Figures 
6.1 and 6.2. In many cases, they had to be convinced that introducing 
these exercises was relevant and that students could solve them. This pro-
cess may constitute professional development in the sense that it shows 
teachers how new exercises that go beyond the application of standard 
algorithms can be introduced in instruction.

As emphasized in Chapter 2, experts in mathematics learning recom-
mend that students spend time providing explanations about mathematical 
concepts and ways to solve different problems. The Universidad de Chile 
team tried to implement this recommendation by requiring that all students 
in each session answer at least one question that requires them to think 
about a certain problem and explain why a certain strategy is adequate for 
solving it. These types of questions seek to develop meta-cognitive skills, 
that is, skills related to recognizing problems, thinking about different 
strategies to solve them, designing a plan, implementing it, and evaluating 
at the end whether the chosen strategy worked.

One example of a question that seeks to develop meta-cognitive skills 
is the following: “In which situations of daily life would you need to apply 
the concept of area?” When this question was posed to a class, students 
provided a range of answers, such as:

FIGURE 6.2
EXERCISE IN WHICH STUDENTS DEVELOP NUMBER SENSE ABOUT 
FRACTIONS

Source: Screenshot of the ConectaIdeas platform.
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1. I don’t know
2. When buying something big
3. When there is a perimeter
4. When I buy fruit
5. When I have to buy wood for the floor of a room
6. With my toys or cars
7. Never

Among all the answers reported only (5) shows a correct understand-
ing of how to apply the concept of area. This shows the difficulties that 
students face in understanding the applications of the concepts taught 
in school and the importance of providing them opportunities to prac-
tice these skills. Moreover, the platform forwards answers provided by one 
student to other students so that they can reflect on them and provide 
feedback. These processes are not only useful in developing mathematical 
understanding, but also in building teamwork skills. In fact, when work-
ing on a team, there are many instances when participants need to assess 
answers provided by teammates and make (constructive)  comments 
about them.

Another important activity facilitated by technology is peer tutoring. As 
mentioned, the ConectaIdeas platform identifies those students who have 
mastered the concepts at hand, and then the lab coordinator assigns them 
to assist students who are asking for help. Experience shows that struggling 
students seem to value the support provided by other students and are will-
ing to request such support. Also, some struggling students may feel more 
comfortable requesting support from a peer than from a teacher.

The basis for the programs analyzed in this chapter is that practice is 
key to developing mathematical skills. However, practice requires motiva-
tion. Technology can help make learning more engaging, but experience 
shows that once the novelty of using a particular technology wanes, com-
plementary actions are needed to maintain high student involvement. 
Embedding games in technology (usually called “gamification”) is a useful 
strategy to increase motivation and sustain practice; however, this strategy 
has limitations because, again, students may lose interest as time goes by.

One strategy that seems particularly promising involves introducing 
team-based tournaments. Evidence from different disciplines indicates that 
people are particularly motivated in team sports (such as soccer or basket-
ball) or even by the mere presence of other persons when performing a task 
(Zajonc 1965). In the realm of education, researchers have long pointed to 
the great potential of introducing team-based tournaments to promote stu-
dent motivation (Edwards, Vries, and Snyder 1972; Slavin 2010). However, 
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this is difficult to implement in regular classrooms because of the logistics 
involved. Additionally, making one group of students in the classroom com-
pete with another group may create harmful classroom dynamics.

The Universidad de Chile team has sought to leverage the promise of 
team-based tournaments in education using technology. In particular, the 
team introduces regular tournaments in which students in a section of one 
school compete with students in sections of other schools. These tourna-
ments involve a collection of individual games played by pairs of students 
(a student from one school competing with a student from a different 
school) who try to win and obtain points for their section. The tournaments 
involve the simultaneous participation of many schools, which makes the 
events more engaging for students. The tournaments not only increase 
motivation, but also provide a concrete incentive to engage in intensive 
practice in the weeks leading up to the tournament. Moreover, these tour-
naments can promote collaboration within the section because winning or 
losing depends upon the performance of all the students, not just the best 
ones in the class or school, as is the case in the International Mathematical 
Olympiad and other competitions.

Decision 3: How Much Time?

Instructional time is the central resource in learning and, hence, needs to 
be managed carefully. A key design decision is how much time should be 
devoted to technology sessions.

One source of evidence relevant to this decision comes from analyzing 
the results of evaluations of educational technology programs that aim to 
increase mathematics learning. For example, a meta-analysis of 71 evalua-
tions in the United States presented effects by weekly time of use (Cheung 
and Slavin 2013). The study shows that for evaluated programs where stu-
dents spent less than 30 minutes a week, the average effect was 6 learning 
points; where students spent between 30 and 75 minutes, it was 20 learning 
points; and where students spent more than 75 minutes, it was 14 learn-
ing points. This suggests that the effects seem to be higher for programs 
that devote at least 30 minutes to weekly practice. These results, though 
informative, should be interpreted with caution because the interventions 
evaluated in these studies vary not only in terms of the weekly time spent on 
the technology sessions, but also along many other dimensions such as the 
software used, the quality of implementation, and contextual conditions.

A review of experimental evaluations in developing countries included 
six programs focused on mathematics (Arias Ortiz and Cristia 2014). Three 
of the programs in China included 80 minutes of weekly computer time 



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION240

on mathematics with an average effect of 14 learning points. One program 
in India specified 120 minutes of weekly practice and had an effect of 41 
learning points, whereas another entailed 300 minutes spent using com-
puters during after-school sessions and had a positive effect of 25 learning 
points. Finally, a third program in India also entailed 300 minutes of weekly 
practice, but that practice replaced regular mathematics instruction and 
generated a negative effect of 48 learning points. The authors of this last 
study attributed the negative effects to the fact that the technology ses-
sions were not well designed and replaced highly effective instruction in 
schools. These results suggest the need for careful thought on how much 
time is devoted to technology sessions.

Clearly, this decision should depend upon the types of skills that are 
to be developed and the learning activities involved. In particular, experts 
in mathematics education suggest that it should not take more than 10 to 
20 minutes a day to develop mathematical fluency. There may actually be 
potential detrimental effects of devoting too much time to drills to pro-
mote mathematical fluency.

A related question is whether the weekly time should be spent in one, 
two, or more sessions a week. Here there are two potential issues to bear 
in mind. On the one hand, shorter sessions may help provide more varied 
and engaging learning activities to students in a day. On the other hand, 
starting a technology session may require substantial time for set up, and 
so fewer and longer sessions may be more practical.

Hence, a key issue here is how much time is needed to start a tech-
nology session. This depends on a variety of factors including technical 
issues, difficulties in ensuring that all students transition adequately to the 
computer lab, and even cultural issues related to whether or not groups 
start activities punctually. These factors may explain why the length of 
sessions may differ across contexts. In particular, several evaluations that 
demonstrated effectiveness in China involved two weekly sessions of 40 
minutes each. In contrast, the Universidad de Chile team advises against 
having such short sessions, because it has documented that normal set-up 
time requires about 25 minutes. Hence, in the case of Chile, longer sessions 
may be more appropriate (which is why the program’s sessions take about 
90 minutes of instructional time).

Decision 4: Which Staff?

For technology sessions to be effective, it is critical to consider which 
staff members are willing and able to conduct them. There are three basic 
models. The first involves employing a specialized staff member—a lab 
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coordinator—to conduct the session. This person can be a former teacher or 
a community member with a certain basic level of education. This model has 
been used in India in the programs reviewed in Table 6.1. The lab coordinator 
receives specialized training in how to deal with common technical issues 
and how to conduct the sessions. This model works well if the technology 
sessions are done after class. If they are done during regular school hours, 
it is necessary to find time when the students are not receiving instruction 
from the regular classroom teacher. For example, the sessions can take 
place during teacher planning periods (i.e., time that teachers have during 
the regular school schedule for preparing classes or grading exams). The 
advantage of this model is that the lab coordinator can specialize in the task 
at hand, but the disadvantage is that it is more difficult to coordinate the 
timing of technology and nontechnology sessions. Moreover, the sessions 
need to take place after class or during empty slots in the school schedule.

A second model involves hiring a lab coordinator who shares the 
responsibility of conducting the session with the regular teachers. The 
advantage of this model lies in the fact that the technology and non-
technology sessions are well aligned and coordinated. Moreover, this 
model involves teachers in the process without asking them to take up 
new responsibilities, and so it is usually well received. However, the disad-
vantage relates to cost: now there are two people being paid to provide 
instruction to one class.

A third model involves only the teacher conducting the technology ses-
sion. The advantage of this model is that the technology and nontechnology 
sessions are well coordinated and that costs are less than for the second 
model. However, this model faces several challenges. To start with, the 
teacher needs to be trained in solving technical issues and using the plat-
form. But teachers have many other responsibilities and, hence, it is difficult 
to ensure expertise because of the lack of specialization. Moreover, teach-
ers may get frustrated because of problems using technology and could 
stop performing the technology sessions when certain problems (e.g., tech-
nical issues) emerge. Potentially, as governments invest in ensuring better 
technological infrastructure in schools (e.g., by making Internet connections 
more reliable), teachers may be more willing to take up this task.

In terms of cost-effectiveness, the first model seems ideal. The advan-
tages of specialization can be exploited, and costs remain low because 
only one person conducts technology sessions. In this model, the issue of 
coordination with the teacher can be resolved by establishing good com-
munication between the teacher and the lab coordinator. But this model 
requires finding a time slot when the students are in school but are not in 
their regular classroom sessions (e.g., after hours or other unused slots).
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For its part, the third model is clearly less expensive than the second 
(because it does not require the hiring of a lab coordinator) but it is prob-
lematic to give teachers new responsibilities and expect that technological 
resources will be adequately used.

If the first model cannot be implemented, a cost-effective alternative 
involves a hybrid between the second and third model under which some 
sessions are conducted by both the lab coordinator and the teacher, but 
most sessions are conducted during regular hours by teachers. The strat-
egy involves supporting the teacher to take up most of the sessions, but 
conducting the sessions with both the teacher and the lab coordinator 
when the teacher is not able to conduct the session alone. For example, at 
the beginning of the year, teachers may not know how to use the platform 
and solve technical issues, and so some joint sessions could help jumpstart 
the process. Similarly, if teachers do not conduct sessions for an extended 
period (e.g., after vacations or medical leave), a joint session could also be 
helpful. Under this hybrid model, the ratio of teachers per lab coordinator 
may decrease over time as teachers become more capable of conducting 
sessions by themselves.

The Universidad de Chile team has adopted the second model as a 
way of ensuring that technology is well used and that teachers are involved 
in and supportive of the changing mathematical instruction. However, 
because of the high costs involved in this model, the team is currently con-
sidering shifting to the first model, taking advantage of the policy trend in 
Chile to provide teachers with more planning time. Consequently, the lab 
coordinators can conduct the technology sessions during teacher’s plan-
ning periods during the school day. Another possibility involves shifting to 
the hybrid of the second and third models described above as a strategy 
to reduce costs without suffering substantial decreases in effectiveness.

Beyond who conducts the technology sessions, an important issue is 
what role that facilitator conducting the sessions should play. Here there 
are two basic options. In the first, the facilitator provides only technical 
support, helps students understand the software, and encourages their 
participation in learning activities. In other words, the facilitator does not 
play a pedagogical role. In the second option, the facilitator offers both 
technical support and also plays a pedagogical role by providing explana-
tions, asking students questions, and directing the entire class. Moreover, a 
number of variations beyond these two options may involve, for example, 
one person being in charge of the technical support aspects and another 
in charge of the pedagogical aspects.

In the intervention implemented in India, evaluated by Banerjee et 
al. (2007), the facilitator plays only a technical support role and is not 
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expected to provide any type of pedagogical support to students. In this 
case, the facilitator is a community member with at least a secondary edu-
cation. A similar model is used in the interventions in China included in 
Table 6.1. That is, a specialized person is in charge of the sessions and this 
person is not expected to provide pedagogical support. In the interven-
tion in India evaluated by Linden (2008), several students use computers 
in their classroom while a teacher provides instruction to the rest of the 
students. Also in this case, the teacher is not expected to provide peda-
gogical support to students while they are using the computers.

The model developed by the Universidad de Chile team also involves 
hiring specialized staff to be responsible for the sessions. However, this lab 
coordinator is expected to solve technical issues and also provide peda-
gogical support to students. Moreover, teachers are invited to participate 
in providing pedagogical support to children during the sessions. In prac-
tice, most though not all participate actively during the sessions and share 
pedagogical roles with the lab coordinators.

Decision 5: Personalized Instruction or a Common Pace?

Another key decision is whether instruction in technology sessions should 
be personalized to each individual student or whether all students should 
be instructed on the same topics in each lesson. There is no consensus 
on this issue yet. On the one hand, the potential of technology to per-
sonalize instruction to the individual student has long been recognized. 
Personalization is beneficial: one of the central principles of learning is that 
the difficulty of a task should be aligned with the level of the student. If 
the task is too challenging, the student gets frustrated; if it is too easy, 
the student gets bored. Hence, providing challenging but achievable tasks 
for students seems optimal. This is the central motivation for introduc-
ing “tracking”—that is, assigning students to classrooms based on baseline 
achievement levels, which has been shown to have positive effects on 
learning (Duflo, Dupas, and Kremer 2011; Duflo et al. 2015). However, track-
ing is highly controversial because of its potential negative effects on the 
self-esteem of students with lower levels of baseline achievement. Hence, 
computers are seen as a strategy of teaching students at their level while 
avoiding the potential detrimental effects of tracking.

On the other hand, personalizing instruction complicates the coordi-
nation between traditional and technology sessions. Because all students 
cover the same topics during the traditional sessions but different top-
ics during the technology sessions, it is not possible to align the work 
in both types of sessions for all students. Moreover, personalization 
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reduces the scope for leveraging social strategies during instruction. For 
example, if students are working on different topics, then peer tutoring 
across students gets complicated. Also, the attractiveness of all students 
working on the same concepts in preparation for a tournament cannot 
be implemented with personalization. On a more general level, learn-
ing approaches implemented in high-performing Asian countries favor 
whole-class activities.

The empirical evidence on whether personalization or a whole-class 
approach is more effective for technology interventions remains scarce. A 
recent study in the Netherlands shows that students assigned a prespeci-
fied set of exercises learned slightly more than those for whom exercises 
were chosen depending on their level of academic achievement. However, 
the difference was not statistically significant (Van Klaveren, Vonk, and 
Cornelisz 2017).

In the six evaluations reviewed in Table 6.1, five followed a whole-class 
approach in which all students advance at a common pace. The only 
exception is the evaluation implemented in India, reported by Banerjee 
et al. (2007), which used software to provide exercises to students based 
on their achievement levels. The Universidad de Chile team followed a 
whole-class approach because a central element in its strategy involves 
leveraging positive social dynamics in learning. Consequently, all students 
in the program ConectaIdeas advance at a common pace.

Decision 6: Computers in the Classroom or a Lab?

There are four main options regarding where computers are used. The first 
involves a computer lab that is shared by students from different classes. 
In the second, portable laptops are located in a cart with wheels and are 
moved across classrooms and shared by students in different classes. In 
the third, there are four to six desktop computers located in a corner of 
the classroom. Finally, in the fourth, each classroom has a large number of 
dedicated laptops that students use when necessary.

In the context of LAC, the last two options can be quickly eliminated. 
The outlay involving four to six desktop computers is relevant for educa-
tional contexts such as the United States, where different learning centers 
are set in the classroom and groups of students transition across the cen-
ters. This type of a learning approach is almost nonexistent in LAC. Also, if 
many laptops are assigned to each classroom they will remain unused for 
long stretches of time given that the model described here involves using 
computers for a maximum of three hours a week. Therefore, this is clearly 
an inefficient approach.
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As regards the first two options, the Universidad de Chile team con-
siders a dedicated lab more efficient because fixed desktops are easier 
to maintain, can be protected against theft, are less expensive for the 
same level of computing power compared with laptops, and can facili-
tate the work of the person in charge of ensuring that all computers 
are working adequately. On the other hand, having portable laptops 
(or tablets) can be a feasible alternative for schools that do not have 
available space for a dedicated computer classroom or as a temporary 
solution.

Decision 7: One or More Students per Computer?

During a technology session, one student can use one computer or, alter-
natively, two or more students can share a computer. Sharing computers 
decreases costs and may be a good strategy to promote cooperative 
learning. However, sharing computers precludes monitoring how much 
each individual student is practicing, and some students may take a free 
ride on the efforts of their partners. Moreover, providing one computer per 
student motivates students to participate in tournaments and ensures the 
accountability of each member of the team. This has been pointed to as an 
important design principle when introducing tournaments for enhanced 
learning (Johnson, Johnson, and Johnson, 1984).

All evaluated programs presented in Table 6.1 have implemented the 
approach of students sharing computers. However, the Universidad de 
Chile team provides individual computers to students because it consid-
ers monitoring the progress of each student to be critical, both in itself and 
also in preparing for tournaments.

Decision 8: Which Software?

Among the desirable features that the selected software should have is 
that it should:

1. Provide immediate feedback
2. Present varied activities
3. Seek to develop different skills
4. Engage students
5. Provide a balanced coverage of the curriculum
6. Allow real-time monitoring by teachers and administrators
7. Be well regarded by teachers
8. Allow flexibility for teachers to add or at least select items
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9. Be relatively inexpensive to buy or develop
10. Use a moderate level of Internet bandwidth

Features (1) to (3) are related to basic principles of effective learning. 
These emphasize providing feedback, varying activities to foster a deeper 
understanding, and developing a range of skills that go beyond achieving 
fluency in the application of standard algorithms. Feature (4)  is linked 
to the importance of fostering motivation to achieve sustained practice. 
Features (5)  to (8) are important to facilitate the work of teachers, and 
hence, adoption of the software. Finally, features (9) and (10) are related 
to controlling development and recurring costs.

It is rare to find software that includes all these features. Hence, 
program managers face trade-offs. More generally, there are two impor-
tant decisions that program managers need to make. The first involves 
whether to buy off-the-shelf commercial software available on the mar-
ket or engage in the development of customized software. On the one 
hand, readily available software typically has nice graphic design features 
that may engage students, and the start-up costs (in terms of money and 
time) are relatively low. On the other hand, developing customized software 
facilitates a balanced coverage of the curriculum, allows for monitoring all 
student activities in one place, and provides flexibility to add or select new  
items.

All the evaluations listed in Table 6.1 are of customized software, 
suggesting that, in practice, customization seems to the best option. Par-
ticularly telling is the program evaluated by Banerjee et al. (2007), which 
used standard commercial software during the first year of implementation 
and switched to customized software in the second year. Similarly, the Uni-
versidad de Chile team decided to develop customized software because 
of its important advantages and the expertise of the team in developing 
software. Moreover, the team agreed that it was more important to moti-
vate students by integrating elements of play (e.g., tournaments)  rather 
than by presenting nice graphic design features, whose motivational ben-
efits have been shown to decrease markedly over time.

The second decision faced by program managers involves whether 
to use online software that requires Internet access. In many contexts, 
such as in rural areas, this is moot simply because there is no Internet 
access or that access is prohibitively expensive. Where there is access, 
online software is advantageous because it enables the monitoring of key 
indicators (such as the average number of exercises done per student in 
each classroom every week) in real time and also facilitates the provision 
of technical support (such as installing fixes and updates). In turn, software 
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that does not require Internet access has lower costs and reduces the 
chances of system malfunction due to unreliable access.

In all the evaluations reviewed in Table 6.1, the software used did not 
require Internet access. In some cases, this had to do with the contexts 
of the evaluation—for example, in poor neighborhoods in India in 2005 
(Banerjee et al. 2007) where Internet access was not available at a reason-
able price. In the interventions implemented in China, on the other hand, 
Internet access was intentionally blocked from computers to eliminate the 
possibility of students wasting their time surfing the web or having access 
to potentially harmful content.

In contrast, the Universidad de Chile team decided that it was desir-
able to use online software. To start with, Internet access in the schools 
in Santiago de Chile where the program operates is quite consistent and 
improving over time. Moreover, the team considered it critical to monitor 
the learning process in real time to quickly detect problems and implement 
corrective actions. Additionally, the use of tournaments to sustain motiva-
tion over time was a core strategy of the program, and this was easily done 
with an online platform. Finally, the team found that in cases where regular 
Internet access was unreliable, disruptions could be minimized using wire-
less Internet access coupled with a potent router that allowed the sharing 
of one Internet access connection among all the students in the classroom.

Still, access to a stable Internet connection remains an ongoing chal-
lenge, and the Universidad de Chile team has adopted several strategies to 
deal with it. First, the software does not involve any video because there 
is not enough bandwidth available. Second, at the beginning of the year 
all directors and district administrators were asked to make the necessary 
arrangements to ensure reliable Internet access. Third, the team devel-
oped protocols on what is to be done if Internet access is down—such as 
available printed exercises that students can do instead of using the plat-
form. All in all, stable Internet access remains a challenge that will hopefully 
become less of an issue as the infrastructure at schools is upgraded over 
time.

Decision 9: How to Train and Coach

The teachers or lab coordinators who conduct the technology sessions 
play a central role in the success of these initiatives. To perform this role, 
they need to be well prepared. But which skills should they have? This 
depends on the actual role that the person is expected to play. As men-
tioned in design issue 5, in some cases the person conducting the session 
has responsibility for only technical support. In other cases, the person 



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION248

is also expected to perform pedagogical activities. Hence, the training 
should be aligned with the specific role that the persons involved will play.

To prepare this person to perform the expected tasks, programs usu-
ally involve some training and coaching. For example, in the intervention 
reported by Banerjee et al. (2007), the individuals conducting the sessions 
received one week of training as well as regular visits from supervisors. 
Also, in the evaluated cases in China, the person conducting the tech-
nology sessions participated in two days of training and received regular 
supervisory visits.

The Universidad de Chile team has developed a strategy for computer 
lab coordinators that involves a day’s training in the use of the platform, 
followed by extensive coaching during weekly meetings (described in 
design decision 10). Teachers do not receive training; rather their skills are 
expected to be developed through practical experience as they co-lead 
the technology sessions together with the computer lab coordinators. In 
conclusion, the pedagogical support in the model implemented by the 
Universidad de Chile team relies almost exclusively on the accumulation of 
practical experience alongside coaching sessions.

Decision 10: How to Manage the Intervention

The management of any intervention plays a critical role in its effectiveness, 
and the programs analyzed in this chapter are no exception. Management 
involves the usual phases of planning, execution, monitoring, and identi-
fication of corrective actions. In the technology programs covered in this 
chapter, management involves a number of tasks in key areas such as:

• Human resources—defining profiles, hiring, and supervising staff
• Software—generating exercises to ensure relevance, balance, and 

quality
• Technical support—ensuring that devices work as expected
• Relations with stakeholders—maintaining strong support for the 

project
• Monitoring—continuously checking indicators of the quantity and 

quality of use
• Administration—making purchases, payments, and keeping records.

Among the empirical evidence highlighting the importance of good 
management, the review in Cheung and Slavin (2013) documents that pro-
grams that report a high quality of implementation had average effects 
of 26 learning points compared with only 12 learning points for those that 
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reported a medium or low quality of implementation. Though this evidence 
has to be considered with caution for various reasons, it is important to 
note that strong management is needed to produce significant results.

An invaluable tool for monitoring technology in education programs 
involves the use of real-time data on the quantity and quality of the use of 
the technological resources. Important indicators can be constructed to 
measure key elements such as the number of exercises solved, percent-
age of exercises solved correctly, time spent on each exercise, whether 
students asked or received support from peers, and whether the amount 
of practice is well balanced in terms of the topics in the curriculum. More-
over, all these indicators can be computed for each student, class, school, 
and group of schools (e.g., those assigned to the same computer lab coor-
dinator), and also for different time periods such as weeks or months. This 
provides invaluable information not only for program management but 
also to computer lab coordinators, teachers, principals, and even parents 
and students to identify and troubleshoot problems.

The Universidad de Chile team has developed a number of differ-
ent reports that are tailored to specific audiences. For example, there are 
reports that show the number of exercises that each student has done per 
week and a comparison with the class average. This shows students how 
much practice they have accumulated and provides them with an incen-
tive to practice more. Similarly, there are also specific reports that focus 
on elements relevant to parents, principals, teachers, and lab coordinators.

Finally, the Universidad de Chile team convenes a weekly meeting 
attended by the program coordinator and all the lab coordinators to dis-
cuss the progress made and next steps. A number of statistics for the week 
are reviewed (e.g., the number of exercises performed by each student 
from different schools), challenges are discussed, and potential solutions 
are analyzed. These meetings are central for monitoring advances, but, 
more importantly, they provide an excellent opportunity to provide feed-
back to lab coordinators to support them in adopting effective practices. 
That is, these meetings play a central role in terms of the professional 
development of the staff.

6.3  Summing Up the Design Decisions and a Final Note on 
Coherence

This chapter provided an in-depth analysis of 10 key decisions that need to 
be considered when designing guided technology programs focused on 
student practice. For each decision, the chapter laid out options, consid-
ered theoretical issues, reviewed the available evidence, and discussed in 
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detail how a number of effective programs in China and India, as well as a 
program in Chile, have tackled each decision.

There are two central themes that emerge from this analysis. To start 
with, in many of these decisions there are important trade-offs that need to 
be considered, but which may not be recognized at first. To make the best 
decisions on these trade-offs, it is important to analyze the options care-
fully by considering not only their potential benefits but also the potential 
challenges that will be faced in reality. For example, for a long time it was 
considered that the strength of these programs lay in the possibility of per-
sonalizing the instruction. Though this idea is very appealing, personalizing 
instruction has important drawbacks in practice. Therefore, the Universidad 
de Chile team decided that all students in a session would review the same 
topic and thus refrained from personalizing the instruction to each student.

The experience of the Universidad de Chile team is potentially infor-
mative because the team developed a program model that is highly 
promising. Table 6.3 summarizes how this team tackled the 10 key deci-
sions analyzed in the chapter.

TABLE 6.3
THE 10 KEY DECISIONS IMPLEMENTED BY THE UNIVERSIDAD DE CHILE 
TEAM

Area Decision

Objective 1. Which skills? Computation, modeling, representation, 
analysis, and problem-solving

Processes 2.  Which learning 
activities?

Varied problems, metacognitive questions, 
peer tutoring, games, tournaments (no videos)

3. How much time? 180 minutes per week (90 minutes of 
additional mathematics instruction)

4. Which staff? A specialized lab coordinator (who co-leads 
the sessions with the teacher)

5.  Personalized or 
common pace?

Common pace

Inputs 6.  Computers in 
classroom or lab?

Computers in the lab

7.  Computers shared 
during a session?

Each student has a computer

8. Which software? Customized software (not off-the-shelf) and 
online

9.  How to train and 
coach?

Very short training, learning-by-doing with 
coaching, and regular meetings

10. How to manage? Strong management team, continuous 
monitoring, and weekly meetings

Source: Prepared by the authors.
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Another important theme that emerges from the analysis in this chap-
ter pertains to the importance of assuring coherence across the decisions 
made. That is, it is not enough for each individual decision to make sense; 
it needs to make sense when seen in conjunction with all the other deci-
sions made. A good example is the importance of coherence between 
decisions 7 (whether computers should be shared) and 8 (about software, 
in particular whether to use online or offline software). If computers are 
shared, then the advantages of using online software are reduced because 
it is difficult to construct individual-level statistics on use and advances in 
learning. In other words, these two decisions are linked. This may explain 
why the programs in China have typically involved sharing computers and 
using offline software, whereas the program developed in Chile involves 
individual computers and online software. Ensuring adequate coherence 
across all decisions needs to be a central guiding principle to ensure that 
the technology used in education programs lives up to its promise.



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION252

References

Araya, R., R. Gormaz, M. Bahamondez, C. Aguirre, P. Calfucura, P. Jaure, 
and C. Laborda. 2015. “ICT Supported Learning Rises Math Achieve-
ment in Low Socioeconomic Status Schools.” In Design for Teaching 
and Learning in a Networked World, edited by G. Conole, T. Klobučar, 
C. Rensing, J. Konert, and E. Lavoué. Lecture Notes in Computer Sci-
ence, Volume 9307. Cham, Switzerland: Springer.

Arias Ortiz, E., and J. Cristia. 2014. “The IDB and Technology in Education: 
How to Promote Effective Programs?” IDB Technical Note 670. Inter-
American Development Bank, Washington, DC.

Banerjee, A.V., S. Cole, E. Duflo, and L, Linden. 2007. “Remedying Edu-
cation: Evidence from Two Randomized Experiments in India.” The 
Quarterly Journal of Economics 122(3): 1235–264.

Busso, M., J. Cristia, D. Hincapie, J. Messina, and L. Ripani. 2017. Learning 
Better: Public Policy for Skills Development. Washington, DC: Inter-
American Development Bank.

Cheung, A.C.K., and R.E. Slavin. 2013. “The Effectiveness of Educational Tech-
nology Applications for Enhancing Mathematics Achievement in K-12 
Classrooms: A Meta-analysis.” Educational Research Review 9: 88–113.

Duflo, E., P. Dupas, and M. Kremer. 2011. “Peer Effects, Teacher Incentives, 
and the Impact of Tracking: Evidence from a Randomized Evaluation 
in Kenya.” American Economic Review 101(5): 1739–774.

Duflo, E., J. Berry, S. Mukerji, and M. Shotland. 2015. “A Wide Angle View 
of Learning: Evaluation of the CCE and LEP Programmes in Haryana, 
India.” Impact Evaluation Report 22. International Initiative for Impact 
Evaluation, New Delhi.

Edwards, K., D. De Vries, and J. Snyder. 1972. “Games and Teams: A Win-
ning Combination.” Center for Social Organization of Schools Report 
135. Johns Hopkins University, Baltimore.

Hill, C.J., H,S. Bloom, A.T. Black, and M.W. Lipsey. 2008. “Empirical Bench-
marks for Interpreting Effect Sizes in Research.” Child Development 
Perspectives 2(3): 172–77.

Johnson, D., R. Johnson, and E. Johnson. 1984. Circles of Learning: Cooperation 
in the Classroom. Alexandria, VA: Interaction Book Company.

Kane, T.J., J.E. Rockoff, and D.O. Staiger. 2008. “What Does Certification 
Tell Us about Teacher Effectiveness? Evidence from New York City.” 
Economics of Education Review 27(6): 615–31.

Lai, F., R. Luo, L. Zhang, X. Huang, and S. Rozelle. 2015. “Does Computer-
assisted Learning Improve Learning Outcomes? Evidence from a 



253GUIDING TECHNOLOGY TO PROMOTE STUDENT PRACTICE

Randomized Experiment in Migrant Schools in Beijing.” Economics of 
Education Review 47: 34–48.

Lai, F., L. Zhang, X. Hu, Q. Qu, Y. Shi, Y. Qiao, M. Boswell, and S. Rozelle. 
2013. “Computer-assisted Learning as Extracurricular Tutor? Evidence 
from a Randomised Experiment in Rural Boarding Schools in Shaanxi.” 
Journal of Development Effectiveness 5(2): 208–31.

Linden, L.L. 2008. “Complement or Substitute? The Effect of Technol-
ogy on Student Achievement in India.” InfoDev Working Paper No. 17. 
World Bank, Washington, DC.

Mo, D., L. Zhang, R. Luo, Q. Qu, W. Huang, J. Wang, Y. Qiao, M. Boswell, 
and S. Rozelle. 2013. “Integrating Computer-assisted Learning into a 
Regular Curriculum: Evidence from a Randomised Experiment in Rural 
Schools in Shaanxi.” Unpublished.

National Council of Teachers of Mathematics (NCTM). 2014. Principles to 
Actions: Ensuring Mathematical Success for All. Reston, VA: NCTM.

Okita, S.Y., and D.L. Schwartz. 2013. “Learning by Teaching Human Pupils 
and Teachable Agents: The Importance of Recursive Feedback.” 
Journal of the Learning Sciences 22(3): 375–412.

Slavin, R. 2010. “Co-operative Learning: What Makes Groupwork Work?” In 
The Nature of Learning: Using Research to Inspire Practice, edited by 
H. Dumont, D. Istance, and F. Benavides. Paris: OECD Publishing.

Slavin, R.E., and C. Lake. 2008. “Effective Programs in Elementary Math-
ematics: A Best-Evidence Synthesis.” Review of Educational Research 
78(3): 427–515.

van Klaveren, C., S. Vonk, and I. Cornelisz. 2017. “The Effect of Adap-
tive versus Static Practicing on Student Learning-Evidence from a 
Randomized Field Experiment.” Economics of Education Review 58: 
175–87.

Wang, H., and K. Woodworth. 2011. “Evaluation of Rocketship Education’s 
Use of DreamBox Learning’s Online Mathematics Program.” Center for 
Education Policy.

Zajonc, R.B. 1965. “Social Facilitation.” Science 149(3681): 269–74.





255

Mathematically Open Learning Mathematically Open Learning 
Technologies: Tools for  Technologies: Tools for  

Student-Centered MathematicsStudent-Centered Mathematics
Nicholas Jackiw (Simon Fraser University and SRI International)

This chapter considers the use of powerful, open-ended, and student-
centric mathematically open learning technologies (MOLTs), which 
are considered to be among the most effective and high-impact 

technology applications available in today’s mathematics education set-
ting. Through three essential (definitional)  features, this broad class of 
technologies seeks to cultivate the mathematical understanding, compe-
tence, confidence, and proficiency of its student users.

Perspectives that position mathematics less as inert “knowledge” 
or “content” to be transmitted from teacher to student, and more as 
the actively constructed and emergent result of individuals’ experiences 
manipulating mathematical ideas, practices, representations, and tools, 
imply that any technologically-based effort desire to improve students’ 
mathematical ability ultimately depends on a technology’s ability to sup-
port students in the act of doing mathematics. MOLTs are technologies 
that engage students in the active pursuit and construction of knowledge 
and experience in a diverse range of mathematical topics and practices. 
While existing in many mathematical subject areas, across different grade 
levels, and for various hardware and software platforms, MOLTs exhibit 
common characteristics both in their form as technologies, and in their 
impact as educational practices.

The goals of this chapter are twofold. On one level, the aim is to introduce 
MOLTs, document these technological forms and their impact on practice, 
and discuss example models of their successful use, both at a categorical 
level and through detailed case studies focused on particular MOLTs. On 
another level, the aim is to usefully direct the discussion of MOLTs toward 
two potential readerships. For the policymaker or technology coordinator 
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who is often one step removed from the lived experiences and intellectual 
challenges of students in the mathematics classroom, this chapter aims to 
illustrate how the key ingredients of mathematics education (the student 
and the math) shape, and in turn are shaped by, technologies in education. 
For the practitioner working with specific technologies, and managing 
the complexities of their use by children and their impact on classroom 
dynamics, the chapter aims to help identify models of contemporary best 
practice and—more importantly, given the relatively short life span of 
specific technologies compared with the longer social arc of the classroom’s 
technology-based transformation—help foster critical evaluations of the 
potential contribution of the many new technologies such practitioners will 
encounter in their future careers. By considering the relevance and impact 
of MOLTs at multiple levels, ranging from specific examples to categorical 
attributes, the aim is to connect both audiences not just to MOLTs but, in 
some sense, to each other.

The chapter begins by discussing different priorities and voices within the 
educational technology landscape, and how these differences can fracture 
debate and productive effort in planning implementations. The suggestion 
here is that focusing on technologies centrally concerned with students 
learning mathematics helps simplify or orient this chaotic landscape. Two 
classroom examples of such technologies in action are then put forth in order 
to provide a concrete foundation for the discussion that follows. Generaliz-
ing characteristics of these examples allows for defining a broad category 
of tools that share an emphasis on student-centricity, open-ended mathe-
matical inquiry, and technologically innovative treatments of mathematics. 
Many specific software technologies that have adopted this approach over 
the past few decades are identified. Turning to policymakers’ concerns, the 
chapter reviews the state of research on the effectiveness of tools in this 
category, while recognizing that the category itself is a post-hoc organiza-
tion of specific technologies that precede it. From there, common potentials 
and pitfalls realized in the large-scale deployments of such technologies are 
identified. The chapter concludes with recommendations for implementers 
drawn from these collective risks and rewards.

7.1 So Many Problems, So Many Solutions

7.1.1 A Chaotic Landscape

The policymaker, school technology coordinator, and classroom teacher 
trying to make smart, well-informed decisions about educational technol-
ogy focused on mathematics face a bewildering variety of choices. They 
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are increasingly surrounded by high-impact digital technologies—in their 
offices and homes, and in the pockets and backpacks of their students—
and by ever-growing evidence of the profound transformations digital 
technologies have brought about in our work, communication, and play. 
Relevant research—even large-scale case studies and clinical evaluations—
is often contradictory. This is made painfully clear in a recent report by the 
U.S. Department of Education entitled Expanding Evidence Approaches 
for Learning in a Digital World, which states “evidence [for technology’s 
impact] has been relatively scarce in education. And the quality of the 
best available evidence has […] been disappointingly weak” (Office of 
Educational Technology 2013, vii). Correspondingly, the mathematics cur-
riculum—and in many schools, mathematics instruction and the physical 
mathematics classroom itself—remain surprisingly untouched by the digi-
tal developments of the past 40 years.

One can understand this situation structurally, and also predict that it 
will continue for some years to come. Understanding comes in the realiza-
tion that the separate metabolisms of technology and school radically differ. 
Technological innovation (at the most fundamental level, of new hardware 
and software paradigms) is driven in society at large primarily by business 
and market considerations, where disruptive change corresponds directly 
to opportunities for competitive advantage and opportunity for profit in 
the marketplace. School, by contrast, is inherently resistant to change, 
with teachers often perpetuating—across their careers—models of teach-
ing they learned in a pre-service phase. Research and assessment designs 
often increase this resistance: an emphasis on comparability across time 
(long-term trend analysis) and geography (international performance com-
parisons) often willfully ignores evidence of disruptive local change. And 
one can expect this situation to continue, since only now—well into the 21st 
century—are teachers and policymakers beginning to enter the workforce 
from the pioneering generations that have grown up with ubiquitous digital 
technology (Internet, mobile telephony), and that perceive it as basic cog-
nitive infrastructure rather than some form of midlife intellectual novelty.

7.1.2 Clarifying Stakeholder Concerns

Yet all is not lost. One way of coming to terms with the plethora of dif-
ferent tools and research findings is to acknowledge the fundamentally 
different purposes they serve. Students, teachers, subject-specific curric-
ulum coordinators, school-specific administrators, and district, provincial, 
and national educational officials are all potential clients of educational 
technology—just as technology developers, academic researchers, and a 
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wide range of school authorities, from classroom teachers to high-level 
government overseers, are potential clients of distinct types of research 
into technological effectiveness. These different actors in different roles 
bring different questions and objectives to the table, and motivate both 
different tools and different research approaches. Thus, differing and even 
contradictory “solutions” or “recommendations” can be equally valid (even 
if not equally useful)  if on inspection they align themselves with differ-
ent problems and questions. By clarifying and particularizing one’s own 
questions and objectives before turning to the vast marketplace of tech-
nological promises, one can use those questions and objectives as filters 
to consider only those possibilities that have the potential to become rel-
evant solutions.

This chapter adopts exactly that philosophy by proposing to inves-
tigate only technologies that take helping students learn mathematics 
as their central and defining purpose. Stated so bluntly, this proposition 
appears so broadly unobjectionable—even grandiose and generic—as 
to be useless in restricting discussion or in filtering the research litera-
ture of proffered technological solutions. But it is offered not as a banal 
rhetorical goal but rather as an operational definition that can usefully dif-
ferentiate certain types of technology in education—or certain aspects of 
technology—from other types and aspects. Thus, a central technological 
preoccupation of “helping students learn mathematics” is clearly different 
from that of “helping students practice or demonstrate mathematics they 
have already learned,” just as it is different from “helping deliver pretech-
nological instructional materials to students” (such as delivering teacher 
lectures by Internet, video, or traditional textbooks in e-book wrappers). 
And it is very different from “helping teachers teach mathematics” or 
“helping educational authorities deliver specific curricula or manage stu-
dent enrollment and attendance and performance data.”

All of these and other needs are real concerns of stakeholders within 
educational settings, and all of them pose problems that a variety of tech-
nologies seek to address. This chapter puts many of those other needs 
aside, and restricts the discussion to technological tools that help students 
learn mathematics, and to investigating the impact of such an operative 
restriction. At the same time, while only one of many goals, helping stu-
dents learn mathematics is a fundamental one that many of the others 
(teaching, assessment, content delivery) seek to support indirectly. Thus 
for policymakers attempting to balance the needs of many stakeholders 
while responding to, if not integrating, diverse and even contradictory 
research evidence, adopting such a restricted goal can be both simplify-
ing and productive.
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7.1.3  Mathematically Open Learning Technologies in the Historical 
Development of Educational Technology

History is relevant here. The technologies described in this chapter—student-
centric, open-ended, mathematically innovative learning tools—emerge 
within a chronology of educational technology in mathematics shaped on 
the one hand by the exhilarating promise of the digital era’s ever-changing 
landscape of technological innovations, and, on the other, by a maturing 
awareness of the complexity of the interplay between technologies, 
learning, students, teachers, mathematics, and the diverse expectations 
and mandates of classrooms.

While a rich history of the evolution of educational technologies—
even just of digital math technologies—is beyond the scope of this 
chapter, it has been argued elsewhere that significant milestones in the 
educational understanding of digital tools parallel significant milestones 
in the development of representational paradigms for technology input 
and output (Roschelle et al. 2016). Thus, the 1960s and 1970s plaintext 
drill-and-practice environments of early “computer assisted instruction,” 
which emerged in the era of line-printer output devices, were modelled on 
the printed student workbooks and exercise books of the day, cross-bred 
with the limited multiple-choice response capabilities of alphamerical 
keyboard input. That era offered a very rigid notion of student learning 
(i.e., students learn by reading short paragraphs of text, all students 
learning equally with the same paragraphs) and very crude right-or-wrong 
assessments. A next-generation movement focused on constructionist 
technology experiences such as Logo (Papert 1980; Papert and Harel 
1991), where open-ended, student-centered technologies involving 
student programming offered project-based opportunities for discovery 
learning. These environments took advantage of the graphical output 
screens of the late 1970s and 1980s to enrich mathematical depictions 
and enable more interactive forms of learner engagement. They marked 
the first real mathematics learning technologies to be widely influential 
in Latin America’s first wave of digital technology adoption, when the 
Programa Nacional de Informática Educativa initiated by the Omar 
Dengo Foundation, IBM Latin America, and the Costa Rican Ministry 
of Education became a model for similar endeavors in a dozen other 
countries. In the 1990s, MOLTs evolved into numerous and sophisticated 
approaches that, though still open-ended and student-centric, were 
more calibrated to the entire school milieu, and to more school-friendly 
expressions of instruction and curriculum. Of these, dynamic geometry 
software is perhaps the most widely known example, again with significant 
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adoption in Latin America. The Instituto Tecnológico de Costa Rica was 
an early advocate of The Geometer’s Sketchpad in pre-service education, 
and Cabri enjoyed significant uptake in Mexico and Brazil. In dynamic 
geometry, the computer mouse—as a (then-novel)  two-dimensional, 
planar input device—offered the same sort of immediate, concrete access 
to the mathematical abstraction of the geometric plane as the (2D, 
planar) graphical output screen in a very satisfying fusion of technology 
and content, capable of illuminating (rather than, as for example Logo, 
replacing) large swaths of the mathematics curriculum. Finally, the advent 
of the Internet shifted technology conversations once again, rapidly solving 
a host of long-standing problems about scalable deployment (distribution, 
installation, and software maintenance problems)  while introducing 
new challenges (connectivity on a societal scale)  and even rolling back 
decades of progress in computer’s representational capabilities (with 
early web-systems taking us back to the plaintext mathematics and the 
limited-bandwidth interaction possibilities, of the 1970s).

Thus when considering MOLTs, one is describing technology 
innovations across a spectrum from the late 1970s to the present. While the 
Internet has furthered the impact of those developments tremendously, 
it has not itself significantly revolutionized their mathematical content 
or representations (which are seen often as an application of hardware 
innovation), their student-centrism (which is an instructional design 
philosophy, rather than a technology artifact), or their mathematical 
openness. While many MOLTs are already more than a decade old 
as technologies, the educational sector moves more slowly than the 
technology sector, as argued previously, and so the social uptake of MOLTs 
and a mature understanding of their contributions to the classroom are 
very much works still in progress.

7.2 Two Examples of Learning with Mathematically Open Tools

Before isolating the definitional ingredients of such learning technologies, 
or prescribing specific practices and recommendations for their use, this 
section briefly visits two classrooms that use such technologies in not 
atypical ways. These are descriptions of actual classrooms using hardware 
and software that are widely available today. The physical particulars of 
these classrooms, their curricular contexts, and the social backgrounds of 
their students are less significant to the purpose of these examples than is 
the manner in which they suggest technology can serve the mathematical 
goals of whole-class activity. The two examples are chosen for contrast: 
they are situated at two disparate points on the primary school curriculum 
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spectrum; one deals with geometry while the other with numbers; and the 
first involves one of the most popular, ubiquitous mathematics software 
packages of the past 20 years, which runs on conventional desktop 
platforms, while the second features innovative multi-touch tablet software 
that has only recently emerged from the research lab. Yet at the same time, 
the pedagogical and mathematical roles of technology appear very similar 
across the examples.

7.2.1 Fifth Graders and Dynamic Geometry Software

A fifth grade review lesson on the properties of triangles begins with the 
teacher presenting a premade sketch of a triangle to the entire class via 
an interactive whiteboard and The Geometer’s Sketchpad.1 The triangle 
appears as in Figure 7.1, with its vertices labeled and a collection of mea-
surements to the side displaying its edge lengths and angles numerically. 
As the teacher begins dragging various vertices of the triangle, it stretches 
and shrinks to track the teacher’s moving fingers, with the numeric mea-
surements dynamically updating to track changes to the moving triangle. 
While Figure 7.1 shows two examples of the triangle in different config-
urations, this is a limitation of print: students instead see a seemingly 
unlimited number of continuously related examples as the teacher pulls 
one of the vertices. They quickly notice both the visual behavior of the 
triangle and that the first two values in the top group of measurements 
(that is, two sides) and the last two values in the bottom group (that is, 

1 See http://www.dynamicgeometry.com.

FIGURE 7.1
TWO VIEWS OF THE TEACHER’S CANONICAL TRIANGLE

A

A

B BC C

m AB = 5.1 cm
m AC = 5.1 cm
m BC = 5.1 cm

m    A = 32º
m    B = 74º
m    C = 74º

m AB = 3.7 cm
m AC = 3.7 cm
m BC = 5.4 cm

m    A = 94º
m    B = 43º
m    C = 43º

Source: Prepared by the author.
Note: In the figure, at right, vertices A and C have been dragged from their original position, 
but as each is dragged (at least) one other vertex moves as well to preserve certain 
invariants in the overall figure.

http://www.dynamicgeometry.com
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two angles) remain equal. This is enough to suggest to several students 
that this must be an isosceles triangle—they encountered that term and its 
definition in the fourth grade. These students call out that word and the 
evidence they’re seeing to justify it, and the teacher reminds other stu-
dents of a formal definition and demonstrates how the dynamic triangle 
meets that definition.

Then the teacher challenges students to construct an isosceles trian-
gle, using the various geometric construction tools (an electronic compass 
and straightedge)  to which they have been introduced in two previous 
classes with Sketchpad. Students are arranged in collaborative groups of 
four students each and are given several minutes to discuss the challenge, 
then take turns at the whiteboard attempting to develop their solution. 
They are given no written instructions or other task materials, though the 
preconstructed triangle (Figure 7.1) remains visible on the whiteboard until 
their group work activity is complete. During this time, the teacher circu-
lates among groups, posing questions and helping with technology skills. 
When it comes to demonstrating on the whiteboard, one student ambas-
sador from each group drives the demonstration. This process is at first 
error-prone but rapidly convergent thanks to ample spirited input from the 
rest of the class. Figure 7.2 shows three successful solutions the teacher 
captures from these small-group presentations.

The leftmost construction in Figure 7.2 uses mirror symmetry to define 
point D as the reflection of any point in the plane C over some given line 
AB, and then builds the triangle ABD. Since AC and AD are mirror images, 
the student authors claim, they have the same length, which “makes an 

FIGURE 7.2
STUDENTS’ PROPOSED CONSTRUCTIONS OF AN ISOSCELES TRIANGLE

A

A A

B
B

BD C
C

C

Source: Prepared by the author.
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isosceles triangle.” The middle construction begins with a circle AB and 
some point on its circumference C. AB and AC are both radii of the same 
circle, so they are the same length, and they are both edges of triangle 
ABC, so ABC “must be” isosceles as well. The final construction, on the far 
right of Figure 7.2, is more complex. Here, two circles (AB and BA) are both 
defined on a common radius (segment AB). These two circles cross at a 
point C that is on each circle. Since the two circles have the same radius, 
AC = BC, its student authors claim the construction meets the definition of 
an isosceles triangle.

The teacher provokes and coordinates a brief classroom discussion 
of these constructions after each is complete, and again once all three 
are on the whiteboard. A rich discussion of the properties of triangles and 
also about mathematical aesthetics ensues. Students are surprised but 
somewhat delighted by the symmetry construction (at left), which “feels 
very different” from the compass-and-straightedge construction in the 
center. For one thing, no circles are involved, and students are unsure how 
much they like involving circles in the definition of triangles. For another, 
though, in Sketchpad’s dynamic geometry, mirror images are strict peers, 
and so the figure at left “behaves” differently than the figure in the center 
when dragged. In the symmetry construction, when you move C, D moves 
opposite; when you move D, C moves opposite; and neither motion moves A.

By contrast, in the center construction, point B defines the radius (and 
so the size) of the circle, whereas point C is constructed as a point on a 
circle of size fixed by A and B. Thus, dragging B changes the distance of 
both B and C from A (while of course keeping those two distances equal), 
whereas dragging C simply rotates it around the circle, which does not 
change size. Students vastly prefer the symmetry of the left construction 
to the asymmetry of the right when it comes to the perceived effect of 
dragging the two “equal angle” vertices. However, an argument is also 
offered that the center construction involves only the three points that 
construct the triangle, whereas the leftmost construction also involves point 
B, which sets up a mirror of reflection (through A). It “feels weird” to need 
this fourth point, whose behavior is empirically described as determining 
“how tilted the triangle is.” By contrast, in the center construction, “the tilt” 
is controlled equally by B and C, which are “part of the triangle.”

Finally, no one appreciates the final construction, which they recognize 
as one introduced earlier in the discussion of equilateral triangles (which 
have all three sides equal, rather than at least two). While students agree 
that an equilateral triangle is itself isosceles, they are quick to point out that 
there are an unlimited number of isosceles triangles that this construction 
cannot make, because it will always enforce all three sides being equal. The 
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teacher introduces the term “overconstrained” to describe this approach, 
and compares it to a print triangle in the students’ textbook: it shows an 
example (or in this case, a number of possible examples) of the concept of 
isosceles, but—unlike the first two solutions—is not as general as that concept. 
Returning to the first two constructions, the teacher demonstrates how each 
covers both equilateral and nonequilateral isosceles configurations. Then 
the teacher concludes the lesson by overlapping the two constructions into 
one, demonstrating how the center of the binding circle falls on the mirror of 
symmetry, and suggesting other ways that these two approaches to isosceles 
triangles might inform one another (as indeed they usefully do in a variety 
of dependent theorems students will encounter later in their mathematical 
careers). Finally, two groups that did not originally create functional 
constructions are given a brief opportunity at the whiteboard to rework their 
original triangle constructions to demonstrate isosceles properties.

7.2.2 Third Graders and the TouchCounts App

The second mathematical moment is drawn from much earlier in the cur-
riculum. In this example, the teacher has decided to use TouchCounts to 
review skip-counting with students as an introduction to multiplication at 
the start of third grade.2 TouchCounts is a multi-touch tablet-based soft-
ware environment supporting finger counting and an embodied, gestural 
approach to whole number arithmetic (Sinclair and Heyd-Metzuyanim 
2014). Its more typical milieu is in kindergarten or with preschool-age chil-
dren. One of the experiences it offers is of a “Counting World” in which 
successive on-screen finger touches create sequentially numbered tokens 
immediately at the tips of one’s fingers, which then “fall away” (pulled as if 
by gravity off the bottom of the display) when the finger is removed from 
the screen. As new tokens appear, TouchCounts also audibly names the 
corresponding number in a child’s voice, though when multiple fingers 
touch the screen simultaneously—producing multiple successive values—
only the highest-valued token is audibly named (Figure 7.3 illustrates this 
process). Thus, work in TouchCounts brings together four different ways of 
representing and indicating quantities—through physical pointing gestures 
(“this” one, “this” one, and “this” one), by iconic representation (the visible 
group of three tokens), by written numeral (“1,” “2,” etc.), and by audible 
number-names (“one,” “two,” etc.). Just as dynamic geometry manipula-
tion—dragging shapes—provides the central mathematical experience 

2 See http://www.touchcounts.ca; see also Sinclair and Jackiw (2011).

http://www.touchcounts.ca
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in environments like Sketchpad, the coordination and synchronization of 
these different representations of quantity provide the common foundation 
of diverse mathematical activity in TouchCounts.

Handing out a class-set of eight iPads, one to each pair of students, the 
teacher briefly explains the software simply by demonstrating how one can 
“count to 20” by tapping the screen repeatedly, and by pointing out two 
screen buttons that reset the Counting World’s number sequence to start 
again at 1, and which turn on, or off, the “gravity” that wipes numbers away. 
Then the teacher establishes an open-ended task proposed in Sinclair and 
Zazkis (2015): use TouchCounts to “figure out—and show the rest of us—
how to count by threes.”

Students rapidly discover that the software responds to multiple 
simultaneous finger presses regardless of which finger—or whose hand—
is doing the pressing. This means there is no need to “take turns” and 
instead both partners can interact with the tablet at the same time. This 
leads in some situations to momentary chaos; in others, to more deliberate 
collaboration; and in one group, to a quick division of labor in which one 
student produces numbers while the other takes responsibility for frequent 
use of the reset button. The teacher and the teacher assistant circulate and 
help address both questions about software mechanics and students’ initial 
frustration with the open-endedness of the task. Students are somewhat 
familiar with counting by threes—most of them can readily count by twos—
but they point out that no matter what they do, TouchCounts only counts 
by ones! (That is, the next token the software produces is always only one 
higher than the previous token.) The teacher encourages them to accept 
this behavior but work creatively with the challenge, and look for ways 
they can count by threes even though their tool only counts by ones.

FIGURE 7.3
COUNTING OPERATIONS IN TOUCHCOUNTS

Source: Prepared by the author.
Note: Left: A user touches the screen with the left index finger and the token “1” appears at 
the user’s fingertip; the software announces “one.” Center: Three more fingers have been 
pressed on the screen simultaneously producing tokens “2,” “3,” and “4;” the software says 
“four.” Right: A user lifts the fingers off the tokens, and all four of them fall off the bottom of 
the screen.
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After 10 minutes of open exploration—during which there is much 
excited sharing of discoveries and strategies across groups—a variety of 
approaches emerge, including those outlined in Figure 7.4.

In this class, there is less significant discussion comparing different 
approaches, but given the relative ease of producing each variant, 
most students try all methods rather than just one. The teacher readily 

FIGURE 7.4
STUDENTS COUNT BY THREES

A. Students repeatedly touch the screen 
with two fingers and a thumb tapping 
“all together.” Each tap produces three 
tokens that fall away when the fingers are 
released, and the software names aloud 
the highest token in each trio. Thus, over 
repeated taps, the software counts “three… 
six… nine… twelve… fifteen…” etc. (Here we 
see the screen just after the software has 
counted by threes to 27.)

B. Here a similar strategy has been applied, 
but with gravity turned “off” so that 
repeated triples of numbers do not fall 
away. The screen records each triple-tap 
in a cluster of tokens—the screen has been 
“tapped” eight times here. (Within each 
cluster, we can see the precise order in 
which the users’ “simultaneous” finger taps 
actually touched the screen.)

C. Students have discovered a shelf in 
the software, on which they can “park” 
certain values so they don’t fall away 
when released. Then they’ve developed a 
rhythmic approach to tapping where they 
drop the first of every three tokens onto 
the shelf and the next two below it, for a 
repeated gesture sequence of “one above, 
two below; one above, two below.” The 
values accumulated on the shelf start at 
one and “count by three.”

D. The same students who propose 
approach C evolve their strategy to repeated 
taps of “two below, one above,” so that 
every third value rests on the shelf. They 
prefer this approach for its closer similarity 
to the sequence they know for counting by 
twos (which begins with 2 rather than 1).

Source: Prepared by the author.
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establishes a canonical sequence of counting by threes—3, 6, 9, 12…—and 
uses the grouped representation of approach B to point out how “counting 
by threes” and “grouping by threes” is the same thing, and these counts 
enumerate the total in one group of three, two groups of three, three groups 
of three, and so on. The teacher suggests a slight rearrangement of the 
students’ work in approach B so that values are sequentially ordered inside 
groups, and so each group—which is arranged vertically—appears next to 
the previous group, as in Figure 7.5. This allows students to quickly see 
they are counting (vertically) by threes, and that counting horizontally—
that is, counting columns—tells how many groups of three. There are 18 
tokens altogether, which is six groups (columns) of three tokens. Focusing 
on this rearrangement of B, the teacher points out how it also contains 
both representations C and D, and begins asking questions that develop 
and unpack its multiplicative structure.

7.3  Generalizing a Model of Mathematically Open Learning 
Technologies

Let us step out of these two classrooms and briefly compare them. Despite 
being drawn from contrasting contexts, many similarities are clear, and 
from those similarities one can distill a general model both of MOLTs and 
their effective use. In each example, the technological representations that 

FIGURE 7.5
SKIP-COUNTED TOKENS ARRANGED INTO AN AREA MODEL OF 
(n X 3) MULTIPLICATION

Source: Prepared by the author.
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students develop are motivated, organized, and critiqued interactively by 
a mathematically able and dexterous teacher. (Critically, exploration in 
these environments, though student-motivated and student-driven, is not 
unguided; the teacher sets the stage for, and facilitates the development 
of, student activity.) The technology augments and occasionally elevates 
the mathematical focus of classroom conversations—among students 
in their groups, or between students and the teacher—rather than sup-
planting them. Also, the structure of the activity in both classes is similar. 
Students in small groups use powerful digital representation possibilities 
to explore, in their own voices, a mathematical constraint or definition, 
and then synthesize their findings in a whole group discussion led by the 
teacher. If this activity is considered through the lens of a three-phase 
exploration ⇒ understanding ⇒ fluency model of activity structure (see 
Chapter 2), students are exploring as they construct their separate rep-
resentations, but they are also developing understanding as they interact 
with the mathematically specific dynamic digital representations of their 
respective technologies, and gaining fluency in the mathematical model-
making techniques central to each technology (geometric construction in 
Sketchpad; simple finger counting in TouchCounts). Analogies might be 
made to predigital general resources like pencils or the blackboard: we use 
them throughout our mathematical travels, and, indeed, it becomes hard 
to imagine doing mathematics without them. But these digital materials 
add significant mathematical structure to their use.

From a learning perspective, students in both classes are clearly 
engaged with mathematics on multiple levels. Consider first those in 
the geometry class. At a curricular content level, their activity focuses 
on properties of isosceles triangles, and on how those properties can 
be used to construct functional mathematical definitions. At the level 
of curricularly endorsed mathematical practices and processes, they 
are constructing not only geometric diagrams but also arguments, and 
reasoning through such arguments in their mathematical support or 
critique of peers’ solutions. They are analyzing situations for exploitable 
structure and using mathematical tools appropriately—broadly, Sketchpad 
and a whiteboard, but more critically and specifically to each student, the 
individual construction and dragging of tools within Sketchpad’s diverse 
functionality. These practices align with policy recommendations such as 
the U.S. Common Core State Standards for Mathematical Practice, which 
encourage teachers to help students of all ages develop the mathematical 
ability to “construct viable arguments,” “use tools strategically,” and “look 
for and make use of structure” (CCSS Initiative 2010). At an even higher level, 
students here are not just engaging in mathematics, but are behaving as 
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mathematicians, pursuing a heated argument about mathematical values 
and aesthetics through a variety of claims concerning functional symmetry, 
computational efficiency, and logical sufficiency. While the children in 
the younger classroom are less sophisticated in their justifications, their 
work demonstrates keen engagement on the first two of these levels, and 
perhaps even—at least in the case of the pair of students abandoning their 
own shelf strategy C for a preferred approach D—on the third level.

Likewise, the technology is scaffolding students learning mathematics 
on at least three distinct levels. First, it supports students through a 
student-centric technology design that in its simplest terms positions 
an actual student (or group of students) as its user, rather than a teacher 
or stakeholder outside the classroom; and it imagines that student user 
acting as a mathematical author and producer rather than only as a passive 
reader or consumer of prefabricated mathematical truths. The technology 
acts here as what Hoyles and Noss (2003)  call an “expressive tool” in 
fostering students’ cultivation of their own voice—their own creativity and 
self-expression—within the domain of mathematical knowledge and activity.

Second, in both examples, the technology supports authentic learning 
through its open-ended approach, which always allows numerous—
perhaps even unlimited—different actions or manipulations at any 
juncture, rather than restrict progress to a gated, linear trajectory or 
set of narrowly branching, predetermined options. Such an open-ended 
disposition enables the common activity structure seen in the examples, 
where different students pursue mathematical challenges based on what 
they think might work (based on an assortment of prior knowledge and 
experience)  rather than by identifying and repeating what they’ve been 
told (in the form of a single solution strategy). Feedback is constant, and 
always mathematical rather than moral in nature: the software responds 
continuously to students’ work by exposing its mathematical implication, 
and judgment of the “rightness” or “wrongness” of those implications is 
left to the student. More generally, open-endedness in tool design orients 
the tool’s suitability both to the needs of the same learner in different 
mathematical situations, and to the needs of different learners in the same 
mathematical situation.

Finally, in each case, the technology uniquely supports mathematics 
itself. In other words, there is a distinct mathematical contribution made by 
the technology, that is, a technology-specific, mathematically pedagogical 
idea. TouchCounts aims at young learners whose mathematical ideas 
both about quantity and operation are still very much grounded in their 
own fingers, and its technological contribution is to endow these fingers 
both with unlimited mathematical quantity (by allowing users to count 
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“past 10” on their fingertips) and with canonical mathematical identities 
by enumerating fingertaps ordinally (associating with each tap both a 
conventional audible, spoken number-name and a conventional visual, 
written number-symbol). Thus, TouchCounts attempts to make one’s 
actual fingers more mathematically functional, while simultaneously 
attempting to make mathematical abstractions more physically graspable, 
more “touchable.”

In a different mathematical domain, the compelling contribution of 
dynamic geometry’s paradigm similarly redefines the border between 
concrete and abstract. Dynamic geometry permits users to transform any 
geometric figure or other mathematical diagrams (by dragging)  into any 
other figure or diagram that shares the same mathematical definitions and 
properties. Figures in a dynamic geometry technology have a different 
epistemological and mathematical status than their print-based predecessors: 
where a printed figure is always a single illustration of, or an example of, a 
general case, the dynamic figure over time actually is that mathematical 
general case. Thus the technology speaks to the (recurrent) demand placed 
on learners across their mathematical careers to navigate conceptually from 
the specific to the general, and from the concrete to the abstract. And it does 
this in a physically tangible, intellectually insightful, and visually compelling 
fashion largely unimaginable before the advent of digital technology.

These three attributes—student-centric design, open-ended activity 
structure, and technologically specific mathematical contribution—
can thus be taken as individually reifying a more general interest in and 
orientation toward students, learning, and mathematics, respectively. By 
defining a category or genre of educational technologies that are explicitly 
oriented to those interests, these attributes help students learn and do 
mathematics. Tools in this category act in the classroom as resources of 
mathematical agency and insight (through their technologically specific 
mathematical contribution), empower mathematical self-expression by a 
broad group of students (through their student-centric design), and finally 
(through their open-ended activity structure), accommodate a diverse set 
of mathematical goals set by students themselves as well as curricular and 
instructional goals set by teachers or policy frameworks.

As described early on, a variety of existing educational technologies fit 
this broad definition. And similarly defined or kindred-themed categories 
of technology have been identified by previous research under different 
names, of which “tools” and Papert’s (1980)  “objects-to-think-with” 
are perhaps the simplest and most general. Pea (1987)  calls “cognitive 
technologies” those that “transcend the limitations of the mind, in thinking, 
learning, and problem-solving activities.” Zbiek et al. (2007)  call them 
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“cognitive technological tools.” The preference here is to call them MOLTs 
so as both to emphasize their direct engagement with mathematical 
representation—critically, mathematics is not simply generic content that 
is dropped into these technological “wrappers”—as well as to explicitly 
orient them toward the learning context.

7.4 Varieties of Mathematically Open Learning Technologies

Table 7.1 highlights several MOLTs, many of which have had sufficient 
impact—both in schools and in scholarship—to spawn entire genres of con-
ceptually similar learning technologies.

Identifying the degree to which each genre is student-centered (as 
opposed to teacher-centered or curriculum-centered) is straightforward—
even when, as in the case of spreadsheets, the original intended user 
was not a student. Each genre subscribes to a similar vision of the user 

TABLE 7.1
EXAMPLES OF MATHEMATICS LEARNING TECHNOLOGIES AND GENRES 
OF MATHEMATICALLY OPEN LEARNING TECHNOLOGIES
Early 
Exemplars

Emergent 
Genre

Technology-specific 
Mathematical Contribution

Initial Curricular 
Topics

Logo (1967); 
Scratch 
(2003)

Student-
centered 
programming 
languages

Functional/imperative 
contexts for working with 
mathematical abstraction 
and encapsulation as well 
as exposure to problem-
solving through iterative or 
recursive techniques

Varied. It should 
be noted that 
this genre has 
been criticized 
historically for its 
lack of immediate 
adaptability to 
topics in traditional 
math curricula.

VisiCalc 
(1979); 
Microsoft 
Excel (1985)

Spreadsheets “What-if?” style 
mathematical model-
making through simple 
arithmetical formulae; also, 
grid-based exploration 
of numeric patterns 
and iterative numeric 
approaches

Arithmetic, pre-
algebra, algebra

Casio 
fx-7000G 
(1985); TI-81 
(1990)

Graphing 
calculators

Convenient, powerful, and 
fast visualization of graphs 
of functions, refocusing 
curricular attention on 
graphs (as mathematical 
objects) rather than on 
graphing (as a mechanical/
computational skill)

Pre-algebra, 
algebra

(continued on next page)
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as empowered and intellectually curious, bringing a question, problem, or 
ambition to the expressive environment offered by the software. The soft-
ware situates the user as a producer, rather than a consumer, of content. 
While in most cases the digital artifact that a student creates is some form 
of mathematical model (an imperative model, in the case of programming 
languages; a numerical model, in the case of spreadsheets; a geometric 
model, in the case of dynamic geometry, etc.), it is not coincidental that 
many of the genres adopt the “document-creating productivity software” 
paradigm familiar from desktop tools such as word processors. (The blank 
page that first greets students in a spreadsheet or a dynamic mathematics 
program acts as an invitation to their own creative self-expression.)

The technology genres in Table 7.1 are, likewise, “open-ended” in 
permitting equal access by a wide range of users to a wide—and potentially 
unlimited—range of applications. Open-endedness of application is of 

TABLE 7.1
EXAMPLES OF MATHEMATICS LEARNING TECHNOLOGIES AND GENRES 
OF MATHEMATICALLY OPEN LEARNING TECHNOLOGIES
Early 
Exemplars

Emergent 
Genre

Technology-specific 
Mathematical Contribution

Initial Curricular 
Topics

Cabri 
Géomètre 
(1989); The 
Geometer’s 
Sketchpad 
(1991)

Dynamic 
geometry 
software

Real-time, continuous, and 
unbounded variation of 
mathematical diagrams—
geometric figures, graphs 
of functions, other 
visual representations of 
mathematics—through all 
mathematically equivalent 
configurations

Geometry, algebra, 
pre-algebra, 
number and 
operations

Fathom 
(1995); 
TinkerPlots 
(2005)

Dynamic data 
software

Visualization of data 
analysis techniques and 
measurements through 
structured and real-time 
variation of individual data

Graphing, data 
analysis, statistics, 
data-driven 
approaches to 
algebra

SimCalc 
MathWorlds 
(1997)

Concretization of the 
mathematics of rate, 
proportionality, and change 
through replicable digital 
simulations of motion-
based phenomena

Pre-algebra, 
algebra, calculus

TouchCounts 
(2011)

Cognitively embodied 
mathematical generalization 
of early-childhood “finger 
counting” strategies

Counting, addition, 
subtraction

Source: Prepared by the author.

(continued)
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course inherent in the idea of mathematical model-making, since a constant 
set of sufficiently expressive mathematical ingredients can be combined 
into an unlimited number of author-specific models, and as already noted, 
many of these technologies are mathematical modeling tools of some form. 
But there is also open-endedness toward the presumed user of MOLTs, 
and it is characteristic of many of these genres that they find application 
across a wide range of age levels and mathematical contexts. Where 
Papert (1980) uses Logo with elementary school students, his colleagues 
Abelson and diSessa (1986)  use it to develop university mathematics 
topics. While dynamic geometry tools like Sketchpad seem aimed at the 
secondary-level course on plane geometry, reports find it often deployed 
in lower-primary and middle-school classrooms (Sinclair and Crespo 
2006; Yin 2002), as well as in graduate-level courses and in mathematical 
research (Schattschneider and King 1997).

Finally, among MOLTs, the technology itself actively mediates and 
extends the nature of mathematical activity in the environment beyond 
what users could achieve in “nontechnological” mathematical environments 
(such as pencil and paper). MOLTs are not simply expensive and inconvenient 
means for restating or assessing forms of knowledge equally accessible 
without them; they are tools that harness computational potential to create 
uniquely new ways—through, for example, digital calculation, construction, 
visualization, and simulation—of building, expressing, evaluating, and 
applying such knowledge. Thus, MOLTs increase, rather than replicate, the 
reach of the collective instructional opportunities and strategies a teacher 
can make available in the classroom to diverse learners. Indeed, environments 
like SimCalc demonstrate that when MOLT-like technologies introduce 
fundamentally new mathematical representations, rather than digitally 
repackage conventional, pre-digital representations, they can profoundly 
alter the intellectual or material thresholds at which such mathematics 
becomes educationally accessible. Kaput and Roschelle (1998)  describe 
how SimCalc’s approach allows ideas and topics from calculus—from the 
traditional capstone of the advanced mathematics curriculum in second-
ary school—to become accessible at the middle school level once some of 
the “representational infrastructure” of the subject traditionally serviced by 
18th century symbol manipulation mechanics is upgraded to 21st century 
digital representation. These representational shifts can overcome physical 
barriers as well as cognitive ones, as when Fernandes et al. (2011), working 
with blind students in São Paolo, report on developing mathematical tech-
nologies in which (digitally-produced) audible attributes replace traditional 
graphical and symbolic ones in communicating the behavior of algebraic 
functions and calculations.
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The nature of these mathematical contributions has varied over time 
and across MOLTs, often (as described earlier)  with developers finding 
innovative ways to interpret new advances in hardware from specifically 
mathematical perspectives. Table 7.1 lists examples of distinct mathemati-
cal contribution or innovation of MOLTs on a genre-by-genre basis, and 
it suggests appropriate content areas for the implementer considering 
where best to map the mathematical openness of MOLTs to specific top-
ics in a given curriculum, while noting that MOLTs often serve far broader 
ranges of mathematical interest.

7.5 Perspectives from Classroom Research and Practice

Because the operational definition here of MOLTs spans decades of hard-
ware variety as well as diverse curricular contexts, it is inherently more 
diffuse than the technologies described by most educational studies of 
controlled effectiveness. Still, its many individual, constituent technol-
ogies have been well studied and provide a deep body of evidence for 
considering classroom practice and impact. And this is where the value of 
a broadly categorical definition, like that of the MOLT, may prove its value. 
Typically, educational research on effectiveness greatly lags behind tech-
nological innovation; by the time technologies are well considered from a 
research perspective, they risk being obsolete from the perspective of the 
school market. By identifying temporal invariants such as the three ingre-
dients constituting MOLT, however, the policymaker can extrapolate from 
research evidence and findings about past MOLTs to future ones emerg-
ing—or soon to emerge—on the innovation horizon.

Despite the problems of a broad categorical definition, some of the 
largest-scale research on educational technology—both on academic 
achievement and on perceived appeal by educators—appears to identify 
a space very similar to that which we claim is occupied by the MOLT. At 
the end of the 1990s, two separate projects concluded large-scale assess-
ments of the state of educational technology adoption and impact across 
the United States, 20 years after the dawn of the microcomputer era. 
Wenglinsky (1998), studying technology effectiveness, found that the use 
of computers to teach the higher-order thinking skills that MOLTs routinely 
encourage—reasoning, problem-posing, and problem-solving—is positively 
related to both academic achievement in mathematics and the social envi-
ronment of school. In contrast, the study found that the use of computers 
to teach lower-order thinking skills (e.g., learning facts, practicing drills) is 
negatively related—and actually harmful—to the same two outcomes. 
Becker, Ravitz, and Wong (1999)  found that MOLT-like applications of 
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technology that focused on student self-expression and student-centered 
learning were most predictive of important learning according to teacher’s 
beliefs. Turning specifically to mathematics technologies, the survey found 
greater ratification, among math teachers, of a single piece of software as 
“the most valuable software for students” than existed among teachers 
of any other subject for any other piece of subject-specific software. That 
software was The Geometer’s Sketchpad, an essential MOLT.

Though these were associative analyses, not causal findings, more 
recent broad-scale quantitative research appears to reach compatible 
if not identical conclusions. Cheung and Slavin’s (2013) meta-analysis of 
research on the use of technology in mathematics education, which con-
siders only studies meeting a high standard of rigor, focuses primarily on 
non-MOLT-like technologies, that is, on curriculum/technology hybrids 
rather than mathematically open learning tools. Of these, the one demon-
strating the most significant effect on student achievement was the one 
in which the curriculum-technology coupling was least essential, perhaps 
pointing to an even greater possible effect of more open (less curricularly 
coupled) learning tools. Another large and rigorous study of commercial 
mathematics software products (Campuzano et al. 2009) found no signifi-
cant effect on achievement, but, again, included no software that could be 
construed as a MOLT. Thus the quantitative research argument for MOLTs 
is mixed, with studies suggesting, but not clearly isolating, the impact and 
effectiveness of technology approaches that resemble those scoped by 
the MOLT definition. As quantitative methodologies have moved toward 
the randomized controlled trial model of evaluation, educational research 
appears to shy away from profoundly open technology tools such as 
MOLTs, the impact of which may often be tied up in broad and diffuse cul-
tural factors, in preference for evaluating environments that themselves 
produce quantitative assessments of children’s performance through test-
giving and test-scoring mechanisms.

Around specific MOLT technologies or genres of technology, the 
research case may appear stronger. In something of a high-water mark for 
the rigorous evaluation of scaled-up deployments of MOLT-like technolo-
gies, Roschelle et al. (2010) describe several randomized control studies of 
the impact of SimCalc replacement units on student learning of advanced 
middle school mathematics in schools across Texas. These studies report 
statistically significant and large effect sizes, supporting conclusions of 
SimCalc’s effectiveness in fostering mathematics learning in a diversity of 
settings. In the case of dynamic geometry software, for example, some 
studies demonstrate the achievability of a significant impact on broad 
student populations using only commoditized, scalably replicable, and 
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practically achievable instrumentations. For example, Arias Cabezas and 
Maza Sáez (2006) found a 30 percent increase in “mathematics perfor-
mance” attributable to use of dynamic geometry software in a six-year 
study of some 15,000 high school students and 400 teachers. In random-
ized control trials, Jiang, White, and Rosenwasser (2011)  found strongly 
significant improvement in middle and high school students’ scores on 
standardized tests as a result of dynamic geometry use.

7.6  Implementing Mathematically Open Learning Technologies 
at Scale

Whatever the benefits to individual students and teachers, a policymaker is 
understandably concerned with the implications of scalable implementation 
and the structural costs and benefits of large-scale deployments. At this 
level of concern, drawing on the sociocultural work of Remillard (2005) and 
Bretscher (2014), Clark-Wilson, Robutti, and Sinclair (2014, 3) encourage 
an understanding of classroom technologies as having “institutional, 
contextual and historical dimensions, and not just cognitive ones.” This 
section considers some of the more commonly identified cultural risks and 
rewards of systemic adoption of MOLTs and offers recommendations to 
policymakers attempting to balance them.

7.6.1 Risks

Mathematically Competent TeachersMathematically Competent Teachers

The two examples both involve a mathematically competent teacher 
coordinating and facilitating student activity responsibly; indeed, this may 
be their most essential component. (Chapter 5 points out how an able, 
responsible adult is the most important ingredient of any classroom.) Since 
the MOLT provides an open doorway to diverse mathematical discovery 
and opportunity, the teacher is frequently called on to evaluate diverse 
mathematical claims, many of which he or she may never have encountered 
before. In addition to considering the viability of these claims and supporting 
students as mathematical practitioners, the teacher is also responsible for 
guiding open-ended inquiry ultimately toward specific curriculum objectives 
when it strays. In practice, this requires a teacher who has solid mathematical 
preparation and both emotional and pedagogical security in that preparation. 
Teachers need to draw from both to be able to skillfully extend mathematical 
authority to students while at the same time constraining it toward 
established classroom objectives. Risk here corresponds to the degree to 
which teacher populations are weak in these competencies. An implication 
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is that professional development in teachers’ mathematical dexterity will 
almost always pay higher long-term benefits than corresponding investments 
focused only on their technological dexterity (not least because technologies 
change at a much faster rate than mathematics).

Mathematically Enfranchised StudentsMathematically Enfranchised Students

Supported by such a teacher, both examples also involve students pursuing 
mathematical meaning at least partially under their own direction, while 
engaging earnestly in both group and whole-class discussions to present 
and refine their work, and to engage with the (perhaps imperfect) work 
of others. While developing such a mathematically enfranchised student 
culture is possible at scale, in many contexts it is far from the norm. Many 
traditional teachers are more comfortable delivering noninteractive lessons 
and lectures than facilitating student exploration. Correspondingly, many 
students have been habituated to think of mathematics as a field of fixed 
truths and specific answers, delivered by teachers rather than developed 
by themselves. Moreover, institutional policies and traditions—ranging 
from attitudes and beliefs to how chairs are arranged in a classroom—
can reinforce these orientations. Student-centric technologies like MOLTs 
can play an important role in developing and sustaining inquiry-based 
cultures, but such cultures emerge from willful practice and stakeholder 
engagement rather than miraculously as an effect of provisioning certain 
software packages. Considering implications of student-centric math 
technologies on teaching, Mason (2014, 21) writes “[a]rranging the energies 
of the classroom so that [a teacher] can dwell in mediating or in responding 
can be exhilarating as well as liberating for students. Provoking students 
into experiencing the desire to express promotes the maturation of their 
understanding and their appreciation of what they are integrating into 
their functioning, that is, the education of their awareness.”

7.6.2 Rewards

Despite such risks, the definitional components of the MOLT—student-
centric design, open-ended activity structure, and technologically specific 
mathematical contribution—correspond to clear cultural benefits beyond 
their impact on individual students’ mathematical ability. This chapter has 
already argued that among competing technology options and possibili-
ties, a policy emphasis on students learning mathematics is justified and 
eminently defendable (as the foundational concern of mathematics edu-
cation). This section now considers collateral implications of MOLT use on 
institutional culture.
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MOLTs Support Group Work and CollaborationMOLTs Support Group Work and Collaboration

Because MOLTs support open-ended work, they tend to better accommo-
date multiple, diverse approaches to mathematical problems and practice 
than do technologies offering fixed or more sequentially structured inter-
action experiences. While three different students working through a 
multiplication drill e-worksheet have largely similar user trajectories, three 
different students asked to construct isosceles triangles in a MOLT may 
take up three completely different mathematical approaches. Thus the 
MOLT naturally lends itself to the dynamics of a small group of students 
working collaboratively, since different student voices can be additively 
beneficial to the group’s problem-solving, rather than simply redundant 
with each other. The same dynamics apply across groups in situations 
where students are organized into multiple small groups: open-ended 
designs permit students in one group to take a problem in a different 
direction than students in another.

Of course, small collaborative group work is alien to some school ecol-
ogies, and teachers new to it often fear the autonomy of groups and the 
comparative lack of direction one teacher can provide to multiple groups 
simultaneously. And yet, where teachers are willing to experiment with 
such autonomy, the student-centric design of MOLTs often enables stu-
dent exploration without tremendous hands-on teacher mediation. And 
because of the essential (rather than superficial) mathematical contribu-
tion of MOLTs, the process of self-guided student technology exploration in 
such environments can often be, at least in part, one of student mathemat-
ical acculturation as well. (For example, research has found middle-school 
students with low English language proficiency acquiring functional math-
ematical terminology directly from the menu structure of tools like The 
Geometer’s Sketchpad; see Dixon 1995.) More and more diverse mathe-
matical terrain can be covered per unit of class time by multiple groups 
working toward common ends but through different trajectories than by 
all students marching in lock step, and technology can often facilitate the 
reconvergence of small groups into whole-class debriefings (by screen-
sharing, projecting work on an overhead, duplicating key performances on 
an interactive whiteboard, etc.). Finally, from a cost perspective, deploying 
technology at the group level rather than to individual students extends 
the reach of limited resources.

MOLTs Amortize Technology Investment across Grade LevelsMOLTs Amortize Technology Investment across Grade Levels

Because MOLTs are both mathematically focused and open-ended, rather 
than narrowly focused on particular curricular moments, and since fun-
damental mathematical ideas often recur in different forms and different 
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contexts across the curriculum, a MOLT often has applicability across grade 
levels and across different mathematical content domains, with the same 
tool servicing different curricular instantiations of that tool’s core math-
ematical contribution or domain. Thus Sketchpad, in the first example, is 
widely used in elementary schools—for example, when introducing basic 
properties of shapes and topics such as symmetry—while at the same time 
it is very popular at the secondary level, where geometry is construed 
as a formal course topic. TouchCounts, in the second example, begins its 
utility with learners not yet of school age, but finds application well into 
fourth and fifth grade as students work their way through arithmetic and 
fractions. This curricular “verticality” of the MOLT, in turn, allows technol-
ogy investments to be amortized across multiple contexts, whether these 
investments can be considered in terms of technology acquisition or train-
ing in its use. The training payoff applies not only to teachers learning 
to teach with the technology (who may then take it into other teaching 
assignments beyond their initial course- or grade-level focus), but also 
directly to students. In large-scale, multi-grade-level MOLT adoptions, stu-
dents take their growing expertise in a specific tool with them from grade 
to grade, and teachers at higher grade levels find their students already 
prepared to think, and productively work, with powerful digital technolo-
gies in the same way that they become increasingly proficient in their use 
of other learning infrastructure.

MOLTs Support Multiple Phases of Learning ActivityMOLTs Support Multiple Phases of Learning Activity

Finally, just as the pluralist design philosophy of MOLTs accommodates 
diverse students at diverse grade levels, so does it supports diverse forms 
of mathematical activity for each student in his or her specific grade and 
course context. Throughout this volume, effective mathematical activity 
has frequently been characterized by a three-phase model of student 
activity in which exploration of a mathematical concept or process leads 
to understanding, which is followed by the development of fluency (see 
Chapter 2). The role of a MOLT in supporting the first two of these phases 
is easy to see both by its definition and in practice, as in the two detailed 
examples in this chapter. Less obvious, though, is the contribution of MOLTs 
to students’ mathematical or technical fluency, which is often conceived 
as the result of intentional repetitive practice. Critics inside and outside 
the educational system often invoke students’ perceived lack of technical 
fluency in mathematics as a polemical indictment of approaches anchored 
in exploration.

Policymakers considering the issue of fluency in the mathemat-
ics classroom might articulate the difference between practice and drill. 
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MOLTs are decidedly not drill environments, in the sense that they offer no 
staged sequence of problems of leveled difficulty through which students 
advance linearly only when able to demonstrate “correct” answers accord-
ing to a preestablished scoring metric. But drill environments, though 
frequent in the educational technology landscape, offer only a narrow and 
overly formulaic interpretation of practice, which largely robs students 
of the opportunity to perceive any intrinsic reward to accomplishing flu-
ency. Drill environments often rely on external reward to compel students 
forward—for example, by placing the math drill in some sort of nonmathe-
matical gaming context in which the student advances if he or she answers 
questions correctly, or, more bluntly, via the threat of external punishment, 
such as poor marks or test scores. In their exclusive emphasis on practice, 
drill environments only perpetuate the false dichotomy between practice 
and understanding raised in Chapter 5.

However, the research on learning most often finds functionally effec-
tive practice located in, and being initiated by, the pursuit of some other 
meaningful goal or activity, rather than as the goal of activity itself. In 
Mathematical Fluency: The Nature of Practice and the Role of Subordination, 
Hewitt (1996) offers an insightful analogy in considering how children come 
to walk, a learned skill (we are not born walking!) that requires substantial 
practice for fluency (having walked once, we do not necessarily walk the 
second time!). But practice in walking is not effectively accomplished by 
drill, that is, by being forced to repeat standing, tottering forward, and fall-
ing until we either collapse in frustration or become diagnosed as “fluent.” 
Instead our ability to walk first emerges in a desire to go somewhere and 
achieving that goal through self-locomotion. We are impelled not (just) to 
walk more but instead to attain more through walking: “Children, having 
learned to walk, are not content to continue just walking. They want to walk 
on walls, walk on curbs, walk missing the cracks on the paving stones, walk 
up and down stairs, they want to run. The practice of walking is not just 
done by continually walking along a plain, flat area. The practice of walk-
ing is done by subordinating walking to some other task” (Hewitt 1996, 28).

From a mathematical perspective, practice is thus most authentically 
motivated by and developed in the pursuit of further or higher-order 
mathematical skills, concepts, and goals. If one considers an activity model 
moving from exploration to understanding to practice in isolation, practice 
is strictly terminal in that sequence, and thus appears unmotivated and, in 
turn, unmotivating. But if one considers the repetition of that model over 
the course of a student’s work, practice of one set of skills can be motivated 
and reinforced by activity exploring and developing an understanding 
of the next set of skills. This recursive understanding implies that while 
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working toward meaningful purposes in MOLTs, students are constantly 
practicing concrete skills they need in order to pursue their own higher-
order mathematical objectives. To the degree these practices can be 
aligned with curricular objectives, research suggests that MOLTs can be 
highly effective environments for achieving the mathematical fluencies 
stakeholders prize (Hewitt 2009).

7.6.3 Specific Recommendations

Considered collectively, these risks and rewards inform many if not all 
large-scale implementations of MOLTs. While local educational circum-
stances and system needs should actively filter the relevance of research 
recommendations and findings from elsewhere, the experience of large-
scale MOLT implementations in managing risks while seeking to maximize 
rewards leads to several general policy recommendations outlined below.

Focus Professional Development on Mathematical as well as Technological Focus Professional Development on Mathematical as well as Technological 

ObjectivesObjectives

In 2003, as the Institute for the Promotion of Science and Technology Pro-
gram began a multiyear process of adopting Sketchpad at the national 
level in public schools in Thailand, it imported a professional development 
curriculum from Sketchpad experts in the United States for Thai teach-
ers. Half of the curriculum focused on curricular topics in middle school 
and high school, and the other half on much higher-level mathemat-
ics—well beyond the grade level and in many cases the prior mathematical 
exposure of participant teachers. Where teachers often rightly consider 
themselves already expert in their curricular domains, the experience of 
learning new mathematics through a MOLT-specific lens had immediate 
dividends not only in their technology training, but also in their fundamen-
tal mathematical preparedness. This in turn promoted an authentic—and 
not just modeled—understanding of Sketchpad’s exploratory, discovery, 
and reasoning trajectory. The aim was for these teachers to become agents 
capable of supporting the cultural changes (in teaching practices and stu-
dent enfranchisement) implied by adopting a MOLT. Today, 10 years later, 
professional development in Thailand focuses squarely on the Thai cur-
riculum and the particular implementation challenges of Thailand’s rural 
school populations. By vertically leveraging the mathematical openness 
of MOLTs to mathematical domains at the cusp of teachers’ reach, pro-
fessional development can put teachers temporarily in the position of 
students, allowing them to better partner with students in the implemen-
tation of new technology.
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Stage Incremental Rather than Monolithic RolloutsStage Incremental Rather than Monolithic Rollouts

Just as people naturally seek to adopt new practices they perceive to be 
beneficial, so do they often resist cultural norms and practices imposed 
from outside, especially when these seem unprecedented and counter 
to norms already in the society. Given not only the vast heterogeneity of 
local school circumstances in any large-scale adoption—varying abilities 
of student populations, technological infrastructure, and teacher math-
ematical preparedness, but also, critically, the tremendous variability in 
teachers’ prior experience and general disposition toward educational 
technologies—large-scale adoption of technology frequently encounters 
resistance that is less a function of the technology’s suitability as an educa-
tional resource than a result of the very scale of the imposed new cultural 
practice. By supporting incremental adoption, perhaps on an opt-in school 
or district basis, rather than mandating an abrupt change in global prac-
tice, policymakers can help manage how new technologies are perceived 
and acquired in their communities.

In the mid-1990s, the Ministry of Education in Ontario, Canada pro-
visioned dynamic geometry software for all ministry schools. Shortly 
thereafter, the Educational Quality and Accountability Office of Ontario—
seeing an opportunity to leverage the new technology in assessing 
long-standing performance goals Ontario had for students’ work on rich 
mathematical problems in sustained project-based learning—began devel-
oping a new component for its biannual mandatory provincial assessment 
that used Sketchpad in a multiday student project effort. When the office 
announced pilot testing of this new assessment less than a year after 
Sketchpad’s adoption, as well as its plan to launch it at scale in the sub-
sequent province-wide test, resistance from schools was extreme, and 
teachers voiced strong concerns about their (and their students’) lack of 
preparedness both in using the software and working with the mathemati-
cally rich project contexts that—though a long-standing aim of curricular 
policy—had been traditionally underemphasized in most schools’ teach-
ing sequence. Protest was sufficiently vocal that the new assessment was 
ultimately cancelled. Instead, rather than forcing teachers to adopt the 
new technology “because it was on the test,” teachers were put in the less 
stressful position of being encouraged to use the tool only where and as 
they saw fit, as a resource rather than a requirement. Yet rather than stand 
as a conclusive victory “against” technology, this development turned out 
to offer exactly the stimulus Ontario’s teachers needed to begin to incre-
mentally and constructively adopt the technology, as well as develop their 
own stakeholder voices to advocate and educate regarding the benefits of 
that technology. Two years later, based on a more consensually negotiated 
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perception of the technology’s value, Ontario’s teacher-led Steering Com-
mittee on Provincial Educational Technology Acquisition recommended 
that the ministry extend its Sketchpad license from schools to all students’ 
home use as well.

While less politically dramatic than monolithic, countrywide adoption 
of technology, incremental rollouts better serve the purposes of changing 
classroom culture. Small- to medium-scale pilot projects help introduce 
a new technology nonconfrontationally. At the same time, they serve 
to identify and develop, from among their participants, local leadership 
and support that can be critical to managing a subsequent transition to 
larger-scale deployments successfully. The mathematical (as opposed to 
curricular) focus of MOLTs means they easily cross curricular borders, but 
in the case of adoption at a national level of MOLTs conceived and already 
widely deployed elsewhere, they often are first adopted only by teach-
ers with sufficient mathematical preparedness to leverage their versatility. 
Thus, an immediately practical effort for the teacher-leaders identified in 
preliminary pilot studies is to translate, localize, or develop from scratch 
locality-specific supplemental curricular materials (print-based activities, 
professional development sequences, etc.)  for use by the more general 
teacher population.

Yet even in the presence of new technologies, eager teachers, and fresh 
curricular materials, cultural change happens only slowly. While pilot initia-
tives can prepare the groundwork for such change, they rarely accomplish 
high-impact transformations themselves. Indeed, because they inher-
ently disrupt the milieu in which they transpire, such initiatives may even 
backfire: technologies do not behave as advertised, exposing unantici-
pated limitations and frustrations; teachers, willing but ignorant, discover 
themselves less willing, once informed; or the fresh curricular materials 
turn out to be the wrong ones. The rate-limiting factor is often the math-
ematical enfranchisement of participating students themselves, who (as 
per the previous discussion), after having adapted to one set of cultural 
norms, expectations, and practices in learning math, are suddenly asked 
to perform under another. Berlinski and Busso (2013, 4)  report a large-
scale randomized control trial involving a dynamic geometry intervention 
among seventh graders in Costa Rica, at the end of which all of the treat-
ment groups exposed to technology perform significantly worse than the 
technology-free control group. The authors find that the “best students”—
that is, the students most successful at navigating the expectations of 
mathematics learning in a pretechnology environment—“were harmed the 
most by this intervention,” and conclude that “[t]he evidence suggests 
that teachers went through the motions as prescribed but did not master 
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the innovation in a way that would have allowed students to get the most 
of it.” By contrast, Jiang, White, and Rosenwasser (2011) report on a ran-
domized control trial in a similarly aged and leveled student population in 
Texas using a similar technology over a longer acculturation period (both 
within the study, and also potentially preceding it, in terms of the general 
societal level of educational technology profusion in the United States as 
compared to Costa Rica), and find strongly significant improvement on 
standardized post-tests as a result of the use of dynamic geometry use. In 
sum, culture change is possible, but it requires time and iteration.

7.7 Conclusion

This chapter has shown the relevance of mathematically open learn-
ing technologies to the present needs of students in a broad range of 
mathematical environments. These technologies are defined by three 
characteristics: a student-centric design and user model; an open-ended 
disposition toward activity structure; and an innovative application of tech-
nology directly to mathematical representations and practices. A narrative 
woven through diverse research findings suggests such technologies are 
not only effective in their impact on student performance, but may also 
be more effective than many other varieties of educational technology. It 
is recommended that policymakers focus on teachers’ professional devel-
opment (in mathematics and pedagogy more than in technology) as well 
as on incrementally staged implementations as important ingredients of 
well-managed adoption of MOLTs at scale. Examples of such technolo-
gies have been highlighted across the history of educational technology, 
with particular attention drawn to two examples in use and relevant today: 
dynamic geometry manipulatives (specifically, The Geometer’s Sketch-
pad), and mathematically embodied number environments (specifically, 
TouchCounts). By focusing critically not only on these examples, but on the 
role that their three essential characteristics play in constituting a coherent 
generalized approach to educational technology, policymakers can apply 
these findings and insights to tomorrow’s technologies as well as today’s.
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Orchestrating Instruction: Orchestrating Instruction: 
Coordinating the Use of Coordinating the Use of 

Technology with Traditional Math Technology with Traditional Math 
Activities to Improve LearningActivities to Improve Learning

Ana Díaz and Miguel Nussbaum (Pontificia Universidad Católica de Chile)

Today’s classroom is an increasingly complex and demanding place. 
Within this context, teachers are not just responsible for preparing 
lesson plans, adapting the curriculum, and worrying about discipline 

and safety; they are also responsible for understanding and using a variety 
of resources to enrich the learning process (Sharples 2013). There is plenty 
of evidence to suggest that technology will not work on its own and that 
the digital learning environment must be linked to the learning experience 
(Luckin et al. 2012). Given this range of demands, this chapter proposes 
that technology be accompanied by orchestration—that is, personal guid-
ance for teachers and students.

This chapter takes a closer look at the concept of orchestration, specif-
ically within the context of teaching mathematics. It reviews the different 
elements of orchestration, its structure, and the conditions that it requires, 
and then analyzes the evidence of the impact that orchestration has had 
to date.

8.1 The Problem

Across Latin America and the Caribbean (LAC), as well as in other parts 
of the world, children are not learning what they ought to according to 
their stages of learning and development. For instance, a study in Chile 
based on a national standardized math test in fourth and eighth grades 
found that around two out of three children do not reach the minimum 
achievement level as determined by the Ministry of Education (Nussbaum 
et al. 2017).

CHAPTERCHAPTER  88
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There are innumerable policies throughout the world that provide 
schools with technology to improve the quality of education. However, 
international evidence shows that, at best, there is a weak or negative rela-
tionship between the use of educational technology at school and student 
performance. Evidence suggests that programs based on computer-
assisted instruction produce limited improvements in student learning 
(Slavin and Lake 2008). In this sense, computer-assisted learning is a sys-
tem in which a computer interactively presents instructional material, 
assesses the learning process, and provides feedback. It is therefore worth 
considering going beyond digital materials or computer-assisted instruc-
tion in order to guide the changes in teaching that are required by the 
introduction of technology.

Policies that provide schools with technological infrastructure, includ-
ing the policy that has been in place in Chile for more than 20 years known 
as Enlaces (Donoso 2010), should start to include guidelines for teachers, 
such as orchestration (Nussbaum et al. 2013). Research has looked at how 
to support teachers in the task of adding value to learning experiences 
by using technology (Guzmán and Nussbaum 2009). This is achieved 
by successfully managing aspects of logistics and pedagogy, as well as 
encouraging social interaction within the classroom whenever the technol-
ogy is available (Nussbaum and Díaz 2013).

Whereas a lesson plan details the teacher’s actions from a logistical point 
of view, (i.e., aspects of space and time, as well as strategies for handing 
resources), and a pedagogical point of view (i.e., the elements that make up 
the process of teaching), orchestration explicitly details the social interactions 
that can take place within the classroom. Orchestration can therefore be 
understood as a cultural process for introducing new pedagogical practices 
into the classroom by guiding the work of teachers and students (Perrotta 
and Evans 2013). By coordinating the use of different resources and tools, 
orchestration provides the teacher with the flexibility to adapt activities to 
different structural and emerging needs (Prieto et al. 2011a).

8.2 What Are Orchestrated Models?

When thinking about introducing technology into the classroom, it is 
natural to think about the relationship between the elements and pro-
cesses that converge within that process. The classroom is a systemic 
environment in which the proper functioning of each element affects the 
adjoining ones. Acknowledging this reveals interdependence between the 
logistical and pedagogical elements that underlie the teaching/learning 
process. Orchestration guides teachers to structure their classes so as to 
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successfully integrate conventional and digital resources (Nussbaum et al. 
2013). In this case, the pedagogical decisions and learning experiences are 
always focused on the student (Chamberlain et al. 2001). An orchestra-
tion of classroom work using technology details the actions required for a 
teacher to implement new strategies. These can include novel tasks that 
are aimed at integrating a range of different resources.

This strategy does not draw on traditional teacher development 
processes. Instead, it involves a practical, step-by-step guide or set of 
guidelines that can be given to teachers digitally or as a small booklet. 
When designed well, this booklet encourages the teaching process to be 
focused on something other than the teacher (Goodyear and Dimitriadis 
2013), and empowers students to participate and play a leading role in their 
own learning, with the teacher acting as a mediator (Nussbaum et al. 2013).

8.2.1 What Does the Strategy Guide Orchestrate, and Why?

Orchestration plans lessons associated with a standard curriculum by cat-
egorizing the teacher’s actions from both a logistical and pedagogical 
point of view (Nussbaum and Díaz 2013). In this case, logistics refers to 
aspects of space and time, as well as strategies for handing out and col-
lecting resources (both technological and conventional). Pedagogy, on the 
other hand, refers to all the elements that together make up the process 
of teaching. This includes the type of questions to ask students, examples, 
the type of monitoring needed, forms of interaction with the students, 
classroom dynamics (individual work, small groups), and so on.

Table 8.1 shows how an orchestration is built. The macro questions 
refer to the six dimensions of classroom work: subject/curriculum, time/
frequency, purpose/objective, procedures/methodology, resources/orga-
nization, and monitoring/assessment. For each of these six dimensions, 
the micro questions in turn refer to the corresponding elements of the 
orchestration and go beyond the traditional lesson plan. The main differ-
ence between a lesson plan and an orchestration is that the orchestration 
specifies the social interactions within the classroom. It should be under-
stood as a cultural process that shows how teachers in a particular context 
can adopt innovative practices by bringing technology into their teaching 
(Perrotta and Evans 2013).

An example of an orchestration can be found in Annex 8.1, where the 
micro questions are answered for an orchestration of a fifth grade class on 
fractions. This orchestration is for a single class taken from a series of eight 
classes that focus on the same learning objective. This example was taken 
from a set developed for a project in Colombia (Díaz et al. 2015b).



LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION292

The framework presented in Annex 8.1 represents an orchestration 
that has been designed from a teaching perspective. However, it is also 
possible to design orchestrations from a learning perspective, that is, by 

TABLE 8.1
A GUIDE TO PLANNING AN ORCHESTRATION
Macro Questions Micro Questions

Which subject 
and grade 
level will the 
orchestration 
address?

For which grade level am I going to make the pedagogical 
decision?

For which subject am I going to make the pedagogical decision?

For which specific topic am I going to make the pedagogical 
decision?

How often 
and for how 
long will the 
orchestration be 
implemented?

How much time do I really have to teach this topic?

Which aspect of the topic will I cover in the first week, the 
second week, the third week, etc.?

How am I going to divide the time I have available for class into 
different learning experiences?

For which moment of the class will I prepare these learning 
experiences?

What is the 
pedagogical 
purpose of the 
orchestration?

On which cognitive skill will I focus the learning experiences of 
this class?

Which learning objective do I wish my students to achieve by 
the end of this unit?

What is the specific learning objective that my students must 
achieve after class 1, 2, 3, etc. in the first week, second week, 
third week, etc.?

What prior knowledge do my students need so that the 
learning experiences I have designed will be useful based on the 
objective of the class?

Which 
pedagogical 
procedures does 
the orchestration 
include?

Which methodologies will my students follow for these learning 
experiences? What sort of consistency is there between these?

How should my students work so that the learning experiences 
progress accordingly?

How should the space be organized in order to carry out the 
learning experiences?

What specific instructions should I give my students regarding 
the use of resources (technological and conventional)?

What instructions should I give my students so that they 
understand the learning experiences?

Which resources 
are used in the 
orchestration?

Which resources should I prepare so that the learning 
experiences can take place optimally? What sort of consistency 
is there between these resources?

(continued on next page)



ORCHESTRATING INSTRUCTION 293

revisiting the phases and stages proposed in Chapter 2 of this book with 
regard to teaching mathematics.

Chapter 2 describes the three-phase balanced teaching model. In the 
first phase, the teacher asks students for preexisting models for ways to 
solve mathematical problems. In the second, the teacher presents accessi-
ble and suitable problem-solving methods by tackling preexisting models, 
typical errors, and newer, more suitable methods. In the final phase, stu-
dents acquire fluency in applying the most suitable methods for solving 
mathematical problems by recognizing and avoiding common mistakes. 
These three phases can frame how an orchestration is viewed, either by 
including them as an additional element or by replacing existing elements 
with such elements as “Class Phases: Opening Phase, Instructional Phase, 
and Closing Phase;” “Cognitive Process: Recall, Understand, Apply, Ana-
lyze, Evaluate or Create,” or “Class Objectives.”

Furthermore, by going back to the five stages for acquiring mathe-
matical skills proposed in Chapter 2, the way that an orchestration is read 
can also be framed. This can be done by specifying—using the “Cognitive 
Process: Recall, Understand, Apply, Analyze, Evaluate or Create” element—
whether the pedagogical activities and orchestrated resources refer to the 
moment of conceptual understanding, adaptive reasoning, productive dis-
position, procedural fluency, or strategic competence.

This suggests that the flexibility of the orchestration and the use of 
the concepts that frame how it is read will depend on the position and 
pedagogical view of the context/reality in which it is going to be imple-
mented. It is also worth noting that different guidelines will be provided 
depending on whether the orchestration is designed from a teaching or 

TABLE 8.1
A GUIDE TO PLANNING AN ORCHESTRATION
Macro Questions Micro Questions

Which 
monitoring 
procedures does 
the orchestration 
include?

How will I interact with my students as the learning experiences 
take place? And, how can I promote interaction between my 
students as the learning experiences take place?

Which resources will I use to monitor my students’ progress, and 
how and when will I use them?

Which questions will I ask my students to make sure they 
understand every explanation I give and every example I show?

How will I make sure my students are meeting the learning 
objectives set for class 1, 2, 3, etc. in the first week, second week, 
third week, etc.?

Source: Prepared by the authors.

(continued)
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learning perspective, i.e., from a teacher or student viewpoint. In either 
case, these guidelines will act as a structure to support the teaching/
learning process.

8.2.2 Local Context and Reality

Innumerable successful international cases have been studied in order to 
suggest improvements to pedagogical practices and to design scaffold-
ing to enable teachers to harmoniously coordinate learning experiences 
based on conventional and digital resources. However, nothing will be 
achieved through general policies that look to improve schools with-
out acknowledging their local context and reality (Lupton 2005). For 
example, when designing and implementing an orchestrated model for 
schools in Uruguay (Díaz, Nussbaum, and Varela 2015), one of the proj-
ect’s weaknesses was identified as not having considered the teachers’ 
local knowledge regarding how to implement the curriculum. In this case, 
the design of the orchestrations was based on the national curriculum at 
the time. However, by not considering the time frames that had already 
been adopted by the teachers, this sometimes translated into irregular 
use of the guidelines.

Based on the lessons learned in Uruguay, a subsequent project in 
Colombia invited teachers to participate in the initial planning process 
in order to aid the design of the orchestrations (Díaz et al. 2015b). This 
proved to be a turning point: taking local knowledge into account became 
fundamental in order for the proposal to make sense to the participants. It 
was also essential for identifying and addressing the needs of users.

Before initiating processes to support teachers, a needs analysis 
must first be conducted based on the teachers’ knowledge of the local 
context. This analysis must be focused on reviewing the curriculum and 
looking at how it is applied in the classroom in terms of both depth and 
scope. This will help focus efforts on those aspects that teachers identify 
as being critical. If an orchestration is based on the reality of the users 
(in the case of Colombia, the teachers themselves), it is more likely that 
it will be adopted and used systematically. This is because it is no longer 
isolated or detached from the students’ educational process. It is worth 
highlighting the importance of the systematic use of digital devices in a 
program that covers mathematics (Penuel, Singleton, and Roschelle 2011). 
The experience in Uruguay detailed above showed that positive results 
were obtained only when systematic use was made of the devices.

In this sense, taking into account local knowledge and detecting con-
textual needs are both essential when designing orchestrations. To set 
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educational policy and assess the impact of strategies such as orchestra-
tion, schools’ social context must be taken into consideration (Thrupp and 
Lupton 2006). In the same way, an orchestration developed with one par-
ticular reality in mind will not necessarily be suitable for another (in terms 
of structure and content).

8.2.3 Training

Training courses that accompany orchestrated models are focused on a 
pedagogical discussion rather than on the technological devices to be 
used. Evidence suggests that teacher training is a basic requirement when 
introducing technology into schools (Falck, Kluttig, and Peirano 2013). 
Incorporating educational technology into the process of initial training 
and continuing professional development should therefore be a priority 
for any country interested in introducing these tools into its school system. 
The many government programs that focus solely on basic productivity 
tools such as email, Internet, and other administrative software (Kozma 
2008) are neither sufficient for nor essential to the work of a teacher.

The training that accompanies orchestration looks to address a criti-
cal issue—the teacher’s pedagogical view of technology—as revealed by 
the literature (Prieto et al. 2011b; Mishra and Koehler 2006; Shechtman 
and Knudsen 2009). Very few research projects have linked the develop-
ment of technical skills (i.e., the way in which teachers understand and 
make use of information and communication technologies)  with peda-
gogy. Instead, teacher training programs focus mainly on the potential of 
new tools, regardless of local teaching practices (Jung 2005). In the link 
between technical skills and pedagogy, there is a triangulation between 
pedagogical knowledge, technological knowledge, and (curricular)  con-
tent knowledge (Koehler and Mishra 2009). Training, therefore, has to take 
this triangulation into consideration as it integrates logistical elements 
(technological knowledge) with pedagogical elements (pedagogical and 
content knowledge). The aim is to introduce different learning resources 
and dynamics into teaching practices (Beetham and Sharpe 2013). In 
this sense, when training teachers, it is necessary to consider elements 
of methodology, curriculum, technology, attitude, communication, and 
assessment (Guzmán and Nussbaum 2009).

The experience in Colombia described above featured a teacher 
training process that incorporated the characteristics detailed in the pre-
vious paragraph, as well as an element of coaching (Díaz et al. 2015b). 
The training process was designed based on the characteristics of the 
pedagogical strategy itself. This is in line with findings from previous 
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studies, such as Lawless and Pellegrino (2007), which place professional 
development at the center of effective access to digital resources and 
teaching strategies in order to improve the teaching/learning process. In 
Colombia, this process consisted of two 3-hour meetings (Training Ses-
sions 1 and 2; see Figure 8.1) in which the teachers were encouraged to 
reflect on their appropriation of the different components of the teaching  
strategy.

The first training session marks the beginning of the implementation 
process and sets the foundation for transferring the orchestration based 
on the characteristics and pedagogical needs of each teacher. The sec-
ond training session comes at a critical moment when the effort required 
by teachers has increased. This is because the orchestration demands 
changes in the teachers’ practices, as guided by the scripted instruc-
tions. Here, the training is focused on the processes of change that have 
been implemented up until that point. Teachers are invited to identify 
the most effective elements of the orchestration so far, as well as those 
that need to be adapted. By verbalizing their experience, the teachers 
begin to cement their appropriation of the orchestration and thus the 
effort required of them starts to decrease. The four coaching sessions 
(see the following section)  focus on how the orchestrations can adapt 
to teachers’ local context and reality, thus leading to greater autonomy. 
The wrap-up meeting represents the end of the transfer period. Here, the 
stage is set to transfer this experience to other teachers, other grades, 
and/or areas of learning.

8.2.4 Coaching

Accompanying the teacher is particularly important because it allows 
for real transfer of the orchestration. By doing this, the use, flexibility, 
and adaptability of the orchestration can be modeled in situ for each 
context. This, therefore, empowers the teachers to successfully use the 
orchestration. Coaching is considered for orchestration training programs 
based on evidence of how it has been tried and tested in different fields 
(Díaz et al. 2015b). It has also been suggested that this type of instruction 
could be introduced to the field of education with positive results, given its 
practical focus (Knight and van Nieuwerburgh 2012).

Evidence suggests that after years of disappointing results from efforts 
to improve professional development, many programs now consider the 
use of coaches to improve the success of innovations in schools (Kret-
low, Cooke, and Wood 2012). Successful coaches are those who emphasize 
showing teachers how and why certain strategies make a difference to 
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their students. The coaching is structured around the work by a coach with 
a small group of teachers with the aim of successfully using the instructions 
contained within the orchestrations. By doing this, the coaching improves 
the teachers’ practices in the classroom and, as a result, their students’ 
performance (Russo 2004).

The role of a trainer is to look to a model of professional development 
in order to widen the teachers’ knowledge of effective classroom strate-
gies. The role of the coach, on the other hand, is to put theoretical concepts 
into practice. The coach therefore contributes to generating change by 
encouraging pedagogical action (Knight and van Nieuwerburgh 2012).

Figure 8.1 shows the two sets of coaching sessions that teachers 
receive in the classroom. The objective of the first set of sessions 
(Coaching Sessions 1 and 2 in the figure) is to accompany the teachers 
in preparing their lessons, as well as in the classroom when they start to 
use orchestrations. A further objective is to model the use of the orches-
tration and show teachers how to follow the instructions suggested by 
the script. The second set of in-classroom coaching sessions (Coaching 
Sessions 3 and 4 in the figure) focuses on empowering the teachers and 
having them adopt the orchestration by helping them to see how adapt-
able, flexible, and relevant it can be. The objective of this second set 
of sessions is to promote autonomy in the management and use of the 
orchestration, again accompanying the teachers with the preparation of 
their orchestrated lessons.

In-class coaching takes into account the events that occur in the class-
room, the social relationships between the actors, and the needs of the 
teachers and their students (Slavin 2006). For example, for the study in 
Colombia, Coaching Sessions 1, 2, 3, and 4 (Figure 8.1) were based on man-
aging classroom logistics, allowing teachers to focus as much of their time 
as possible on pedagogy and teaching, rather than on the technology 

FIGURE 8.1
TRAINING AND COACHING MODEL BASED ON THE EXPERIENCE OF 
IMPLEMENTING ORCHESTRATIONS IN COLOMBIA
Training Session 1 Training Session 2

Coaching Session 1
Coaching Session 2

Coaching Session 3
Coaching Session 4

Period of
autonomous

work
Wrap-up
meeting

Source: Díaz et al. (2015b).
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itself. This was done by providing teachers with feedback on their work 
and looking to reinforce their appropriation of this new teaching strategy 
(Díaz et al. 2015b).

An orchestration specifies how the teacher should manage the time, 
space, resources and key interventions during the students’ work. Each 
teacher therefore received two coaching sessions on effective lesson 
planning. This helped the teachers review an orchestration based on the 
opportunities and barriers that were present in their own context. Ken-
nedy (2005) suggests that taxonomies in education have typically been 
based on idealized conceptualizations rather than on the reality in the 
classroom or on the teacher’s needs. In this sense, the taxonomies fail to 
take into account the pace of a class or how to maintain the optimum 
environment for learning, which is possibly a teacher’s greatest concern. 
However, good teaching is not only determined by school-level factors or 
by a teacher’s knowledge, beliefs or attitudes. It is also determined by the 
students’ needs, as well as class and student-level factors (OECD 2009). 
As a result, it is these elements that are reviewed and analyzed during the 
planning meetings.

The coaching sessions for lesson planning focused on how to man-
age time and space, as well as how to use resources and when to interact 
with students. Teachers received support based on their students’ 
needs, such as in maintaining the pace of the class and a suitable learn-
ing environment.

Finally, there is an element of institutional coaching, where work is done 
with the senior management team (Leithwood et al. 2004). Involving the 
management team is fundamental. In the Colombia study, the researchers 
worked with a representative from each school’s senior management team 
on scheduling the use of the technology, as well as reviewing the techno-
logical support that was available to the teachers (Díaz et al. 2015b).

8.2.5 Monitoring and Evaluation

As an extension of orchestration, it is vitally important to consider indicators 
for follow-up and monitoring that allow the implementation and use of 
the orchestrations to be tracked. The aim of this is to gather input that 
will allow the experience to be evaluated in terms of adapting, improving, 
or changing the orchestrations. By including a preplanned process of 
monitoring, pilot policies can be evaluated. Analyzing the criteria that are 
monitored can determine the most important elements in each context in 
terms of how they facilitate or hinder the implementation of strategies that 
look to enhance learning.
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8.2.6 Requirements for the Different Elements of Orchestration

The reality of the school environment determines the needs of each 
orchestration. Table 8.2 details the requirements for each element of 
orchestration.

TABLE 8.2
REQUIREMENTS FOR THE DIFFERENT ELEMENTS OF ORCHESTRATION
Element Requirement

Curricular content 
and timing

The teachers involved must define the relevant content and 
timing through a meeting, workshop, or seminar.

Technological and 
curricular abilities

The less capable the teacher, the more technical or curricular 
specifications the orchestration must contain.

Senior 
management team

At least one member of the senior management team must 
be involved.

In-school technical 
support

If there is no technical support, the teachers must receive 
technical training and be given time to prepare the logistics. 
The teachers must also receive a second round of training on 
the technical and logistical elements of the class.

Adults in the 
classroom

There must be at least one teacher in the classroom in order 
to implement an orchestrated model.

Lesson planning 
time

The orchestration must be reviewed before being 
implemented so that the teacher can adapt the strategies and 
prepare the necessary materials.

Printing materials The worksheets that are to be completed individually by the 
children must be printed.

Technological 
devices for each 
child

When the work requires one computer per child but there 
are not enough computers in the classroom, simultaneous 
activities can be orchestrated for two groups. One of 
these groups works on the computers, while the other 
uses worksheets. The orchestration considers that a group 
will work with the computers in one session and with the 
worksheets in the next, so that all of the children end up 
completing the same activities.

Visual technology If the orchestration includes visual presentations such as 
PowerPoint, there must be a projector and a computer to 
present these. If no projector is available, it is better not to 
use such presentations. In Uruguay, it was determined that 
having students sit around a standard-sized monitor was not 
very effective and could even be disruptive (Díaz, Nussbaum, 
and Varela 2015).

Internet connection It is better to use activities that do not require an Internet 
connection, as this is not always available or does not 
always have the necessary bandwidth for the activity to run 
smoothly.

Source: Prepared by the authors.
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8.3  How Are Orchestrated Models Structured and Why Might 
They Improve Learning in Mathematics?

8.3.1  Diversity of Learning Experiences

The more diverse the learning experience, the more the learning is 
consolidated. This is because a more diverse experience covers different 
points of view, learning domains, and sensory experiences. The study in 
Colombia described above involved orchestrations that featured diverse 
learning experiences based on different types of resources. The aim was 
to cater to different learning styles and paces within the classroom. In 
this sense, the orchestration provided a series of different opportunities 
to learn about a specific topic in mathematics. This allowed the students 
to consolidate their knowledge of this topic based on the range of the 
experiences.

The set of activities that can be included in an orchestration for learn-
ing mathematics is detailed in Table 8.3. All of these activities should be set 
within a narrative, as this allows abstract concepts to be expressed using 
everyday language that is familiar to the students (Burton 2002).

To analyze how learning in mathematics benefits from an orchestrated 
learning environment, the sections that follow will review the types of 
activities or learning experiences that can be included in an orchestrated 
model.

8.3.2 Digital Opportunities

Using digital devices has a positive effect on student learning (Cheung and 
Slavin 2013; Mo et al. 2013, 2104; Yang et al. 2013). Based on this, orchestra-
tions include a digital component for classroom work. These technological 
resources are consistently integrated so as to provide the students with 
different experiences such as exploration, handling data, graphing dif-
ferent dimensions, and higher-level calculus. Furthermore, it is important 
to provide experiences that include graphical and symbolic representa-
tions in order to aid comprehension of different mathematical concepts 
(Nishizawa et al. 2012). In this sense, computer games and simulations are 
both tools that facilitate learning by encouraging students to manipulate, 
experiment, and visualize graphs of functions and equations (see Chapter 
7; see also Recker, Sellers, and Ye 2013). At the same time, search engines 
and specific websites help children (Auzende, Giroire, and Le Calvez 
2009) share and clarify doubts, as well as discuss content in virtual social 
environments (Ferguson and Buckingham 2012).
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8.3.3 Oral Questions

Another element of orchestration is the interaction between the teacher and 
students, as well as the interaction among students that is encouraged by the 
teacher (Kiemer et al. 2015). The literature focuses on the importance of the 
quality and not the quantity of the interactions that take place in the classroom. 

TABLE 8.3
A SAMPLE OF ORCHESTRATED LEARNING EXPERIENCES FOR 
STUDYING MATHEMATICS
Type of 
Activity Materials Objective Interaction

Whole 
class

PowerPoint 
presentation

To explore and discover 
the content through a 
narrative that makes 
the new concepts 
significantly more 
accessible for students.

Mainly led by the teacher, 
with participation from 
students in questions and 
exercises.

Whole 
class

Conventional 
whiteboard

To share doubts and go 
over examples.

Mainly led by the teacher, 
with participation from 
students in questions and 
exercises.

Individual Netbook, 
software 
with 
curricular 
sequence

To drill the contents of 
the core curriculum for 
mathematics.

Autonomy for the students, 
while the teacher walks 
around the classroom to 
answer questions and 
monitor the students’ 
achievements and difficulties.

Individual Worksheets To practice reasoning 
and procedural skills in 
mathematics.

Autonomy for the students, 
while the teacher walks 
around the classroom to 
answer questions and 
monitor the students’ 
achievements and difficulties.

Small 
group

Hands-on 
activities 
(cutouts, 
games, etc.)

To use group games 
in order to establish 
connections with the 
activities previously 
carried out using 
PowerPoint, software, 
and worksheets.

Students organized into 
small groups, mediated by 
the teacher.

Individual Netbook, 
software 
with 
curricular 
sequence

To drill the contents of 
the core curriculum for 
mathematics according 
to each child’s specific 
needs.

Autonomy for the students, 
while the teacher walks 
around the classroom to 
answer questions and 
monitor the students’ 
achievements and difficulties.

Source: Prepared by the authors.
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This includes the types of questions asked by the teacher, the type of feedback 
given, the types of responses, and so on. In order to maintain interaction 
throughout the activity, an orchestration provides the teachers with a series of 
suggested questions that can enhance the experience of learning mathematics 
(Díaz, Nussbaum, and Varela 2015). Oral questions in mathematics help students 
process information and lead them to solve problems with an appropriate 
comprehension of the meaning of each of its components and concepts 
(Huang, Liu, and Chang 2012). Furthermore, the orchestrated questions include 
examples that show how mathematics is present in everyday life.

8.3.4 Multiplatform Work

Definitions of what are called 21st century skills paint a picture of students 
who must face the challenge of processing innumerable stimuli, across 
different platforms, and simultaneously respond to them, just as they do 
outside school in daily life (Álvarez et al. 2013). Literacy in different media 
is supported by providing a multimodal space. This responds to the need 
to develop human capital to participate in a highly technologized world 
(Jenkins et al. 2006). In this sense, multiplatform orchestration fosters the 
development of collective intelligence, shared cognition, and navigation of 
different media across different knowledge domains (Álvarez et al. 2013). 
The definition of orchestration therefore also includes multiplatform work 
by detailing the integration of different areas of learning with different 
classroom dynamics (group and individual) and the use of conventional 
and digital resources (Dillenbourg, Järvelä, and Fischer 2009).

8.3.5 Exercises Based on the Individual Pace of Learning

One of the elements included in orchestration design is the digital content 
that comes with a learning experience based on technological resources. 
The value added by computer-assisted instruction strategies is mainly 
based on their ability to identify children’s strengths and weaknesses (Slavin 
and Lake 2008). By doing so, they can provide students with exercises 
based on their specific learning needs, thus determining the pace at which 
students learn. It is important to note that students do not necessarily 
learn at the same pace at which the class is taught. Allowing students to 
learn at their own pace can therefore be particularly important in subjects 
such as mathematics. In this case, prior knowledge of basic concepts is 
required before tackling more complex topics. Here, the teacher mediates 
the learning process and promotes activities that help students build a 
solid foundation before moving on to more complex topics.
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Orchestrating learning therefore supports diverse and different paces 
and learning needs (Chamberlain et al. 2001; Watts 2003). For example, 
the study in Colombia described above focused on catering to different 
learning styles and paces. This was achieved by using software that gener-
ated exercises for students based on their level of learning, as well as their 
strengths and weaknesses.

8.3.6 Learning Experiences with Formative Feedback

Formative feedback is critical to learning mathematics (Black and Wiliam 
2009). It provides the opportunity to correct mistakes and detect faulty 
processes. It therefore avoids establishing incorrect practices for prob-
lem-solving or for learning mathematics in general. Detailed explanations 
provided by the teacher based on completed exercises have more of an 
impact than general advice given by teachers based purely on hypotheti-
cal solutions (Narciss et al. 2014). Furthermore, the constant feedback and 
support that a teacher can provide in the classroom is a determining factor 
in the success of students (Nussbaum, Alcoholado, and Buchi 2015). Feed-
back can be orchestrated through suggestions and guidelines for teacher 
interactions in the classroom.

8.4 What Evidence Is There of the Impact of Orchestration?

Technology-based instruction in elementary mathematics has been widely 
studied since the 1980s by such authors as Slavin and Lake (2008), whose 
study provides useful background information. It is now possible to find evi-
dence from a series of small-scale studies regarding the use of orchestration 
in mathematics, science, and general classes, as well as orchestration in its 
varying formats (e.g., digital orchestration to guide student performance, 
action plans that guide the teacher’s work, etc.). Four studies using orches-
tration are summarized in Table 8.4, highlighting the contribution of each 
study, as well as the entry barriers and lessons learned.

8.5 In Which Schools Might Orchestrated Models Work Best?

8.5.1 Ideal Conditions for an Orchestrated Model

Discussing what would be the ideal conditions for the optimum use of 
orchestrations is complicated by that fact that there is such huge diversity 
among schools in LAC. The elements suggested as minimum requirements 
for orchestrations may or may not be possible in all schools. However, the 
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study in Colombia analyzed above could be taken as a model from which 
certain ideal conditions for orchestration may be identified:

• Infrastructure within each school, including permanent access to 
electricity and a safe space to store technological equipment.

• Digital literacy among teachers and students in the use of the rel-
evant devices.

• Promotion of the pedagogical use and care of relevant devices.
• Availability of time (within the working day)  for the teachers to 

take part in training activities, review orchestrations, practice 
using the digital resources, and plan to include these orchestrated 
experiences in their lessons.

• Availability of someone with the necessary technical know-how 
within the school to provide technical support. This support will 
ensure the effectiveness and availability of the equipment, as well 
as help teachers manage this equipment by handing devices out, 
collecting them, and storing them.

• Support of the school principal (or academic head) throughout the 
innovation process. This requires that principals visit the classroom 
in order to understand the specific context, support the teachers in 
the challenges they face, and monitor the pedagogical use of these 
tools by the teachers.

• Planned use of the resources in each school to ensure that they are 
available when needed.

• Permanent contact with the local education authority so as to have 
institutional support that can guide the decision-making process 
within each school. By doing this, the work done by the teachers 
within the schools is also reflected in the administrative work by the 
relevant local authority.

It is worth highlighting that schools in LAC sometimes have issues that 
must be resolved before implementing orchestrated models. Examples of 
these issues include infrastructure problems, such as unstable electricity 
and water supplies; precarious systems of education management and 
administration; gaps in the teachers’ knowledge of the curriculum, teach-
ing strategies, and technology; and a fixed curriculum dictating what 
should be taught nationwide (Riqueleme 2017). In this sense, each school 
brings its own conditions based on its local context. It is therefore essen-
tial to conduct a diagnostic of the context in which an orchestrated model 
is to be implemented. This will lead to making more pertinent decisions 
regarding not only the provision of technology, but also the elements that 
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are included in the orchestration, as well as the coaching and training 
activities.

It is important to note that experience in several LAC countries has dem-
onstrated that socioeconomic inequality cannot be overcome by simply intro-
ducing information and communications technology (ICT) into the classroom 
(Lamschtein 2016). It has even been shown that without suitable integration, 
the use of computers in the classroom can have a negative impact on student 
achievement (Patterson and Patterson 2017). The key to improving learning 
is therefore to integrate such resources into the children’s everyday experi-
ences at school (Ganimian and Murnane 2016). Orchestration can play a key 
role in this. However, the digital divide will not be solved through orchestra-
tion alone. Another key factor is the number of years that students have been 
working with computers (Jara et al. 2015). Therefore, it is important that or-
chestration is provided to teachers from kindergarten through grade 12.

8.5.2 Role of the Management Team

Changes and improvements in the student learning process must be 
considered in direct association with the management process in each 
school. It is estimated that 25 percent of student progress may be due 
to the work of the school’s management team (Leithwood et al. 2004). It 
could therefore be claimed that having commitment from the teachers and 
empowering them in the pedagogical use of the technology is not enough. 
It is also essential to involve the management team in the project to help 
with the implementation of these new strategies.

Integrating technology in educational processes is not just a simple 
question of doing it (Area 2010; Valverde, Garrido, and Fernández 2010). 
It is a complex process in which the different actors and factors that are 
present in the classroom must be taken into consideration. The use of tech-
nology should not just be considered at a teacher level but also at a school 
level (Vanderlinde, Aesaert, and van Braak 2014). Around 14 percent of 
the variance in the use of technology by teachers is due to school-level 
characteristics. Furthermore, evidence reveals that student performance 
is greater in schools where there is a national policy for providing technol-
ogy, coupled with high levels of management and support in terms of the 
teachers’ pedagogical use of the resources (Salinas et al. 2017).

8.5.3 Teacher Profiles and Their View of Technology

In a study of three Latin American countries, it was found that most 
teachers rated themselves at the highest levels in terms of their adoption 
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of technology, regardless of their actual knowledge (Salinas et al. 2017). 
This helps in interpreting the data from Chile, which reveal that the use of 
ICT is not directly related to academic performance and that one of the 
main factors in the failure to use the available technology is a lack of peda-
gogical support (Claro et al. 2013). This, in turn, highlights the importance 
of the degree to which teachers have available orchestrations.

In this sense, a qualitative study revealed that the degree to which 
mathematics teachers used orchestrations was directly related to their 
opinions on technology (Drijvers et al. 2010). This again points to the 
importance of acknowledging the context in which the orchestrations are 
used. The orchestration must use familiar and accessible language in order 
to set the stage for successful use of the technology. Different perspec-
tives can complement this process, i.e., the design of the orchestration 
need not be limited to a single view of how the subject (e.g., mathemat-
ics) should be taught.

8.5.4 Developing Skills

Orchestrations have to accommodate the reality of each classroom. This 
will affect how teachers receive and appropriate the orchestration. In 
schools where many students are from lower socioeconomic status fam-
ilies, or in less effective schools, the pressure of the social role played by 
schools often leads to inadequacies in the teaching/learning process. This 
is because in such cases the school’s requirement to provide social services 
generally trumps its educational role (Auwarter and Aruguete 2008). In 
general, these contexts often see low levels of appropriation and system-
atic adoption of new strategies due to the range of different roles that the 
school community is asked to play. This brings us back to Section 8.2.2 of 
this chapter, “Local Context and Reality,” It also reveals the inefficiencies of 
general policies that propose unsuitable models for making improvements 
in contexts that have different priorities in terms of needs and support.

When designing orchestrations, it is essential to take into account the 
diversity of contexts that exist. Orchestrations must consider the existence 
of contexts that require differentiated support given the characteristics of 
their geographical location and the socioeconomic of students’ families 
(Lupton 2005).

A policy for implementing orchestrations that takes into account the 
curricular framework and local context, as well as teachers’ experiences 
and knowledge, comes at a high cost. In this sense, it is increasingly impor-
tant to look at developing skills within schools, an important issue when it 
comes to education policies and programs that look to be scaled. The aim 
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of involving in-service teachers in the development of orchestrations is to 
empower them in their planning of lessons. Orchestrations involve a series 
of small actions that together constitute suitable and effective teaching 
practices for using conventional and digital resources while focusing the 
teaching on the student. Detailing these actions ensures that implicit ele-
ments of the classroom are taken into consideration (such as interactions, 
types of questions, etc.), and become just as important as the explicit ele-
ments (time, resources, content, etc.).

In order to develop these skills among in-service teachers, a method-
ology is suggested based on a series of questions like those in Table 8.1. 
These questions lead teachers to reflect and make pedagogical decisions, 
the result of which is an orchestration. Using such questions and an exam-
ple of an orchestration (such as the one in Annex 8.2), a school community 
can develop its own orchestrations.

8.6 How Can the Program’s Expected Impact Be Maximized?

8.6.1 The Process of Appropriating Technology

The process of adopting technology for teachers must be taken into 
account when designing and implementing the orchestrations so as to 
maximize their impact. Appropriation can be seen as a process of dynamic 
transitions. Teachers who are early adopters of technology and spend a 
significant amount of their time in the classroom integrating educational 
technology in their teaching are 
more likely to adopt new technol-
ogies regardless of how complex 
they are. However, teachers who 
form part of the late majority of 
adopters and use little technol-
ogy in their classes are less likely 
to adopt new technologies and 
are prone to abandoning adop-
tion at certain identified points 
(Aldunate and Nussbaum 2013).

This process is shown in 
Figure 8.2, where three criti-
cal points can be identified. The 
first of these (point A) represents 
the initial state where users still 
have not managed to master the 

FIGURE 8.2
PROCESS OF ADOPTING 
TECHNOLOGY

Time
A

B

C

Be
ne
fits

Source: Aldunate and Nussbaum (2013).
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technology and their experience gets gradually worse until point B. From 
here (B), the users start to master the technology, but until they cross the 
axis (point C), their experience is worse than before the technology was 
introduced. Orchestration must acknowledge these critical points and pro-
vide the necessary support through coaching to overcome them.

Figure 8.3 shows Figure 8.1 from the Colombia study, analyzed above, 
including the three critical points from Figure 8.2. Figure 8.3 therefore 
shows that point A in Figure 8.2 relates to the initial training that kicks 
off the project. Point B in Figure 8.2 is a critical moment: this is when the 
teacher sees the least value in using the orchestrations. This moment 
therefore requires coaching, not just to work through the teacher’s doubts 
but also to reinforce all of the areas where weaknesses can be observed 
in the classroom work. Point C represents the moment when the teacher 
starts to see the benefits of using the orchestrations. Up until this point, 
the teacher is supported through in-classroom coaching. This point signals 
the beginning of the period of autonomy for the teacher and is marked by 
a wrap-up meeting for the project.

8.6.2 Pedagogical Support

The pedagogical support normally included in educational technology 
policies usually focuses on technical aspects of the technology, and rarely 
on aspects of the curriculum. Only in the minority of cases does this sup-
port link both aspects to the actual teaching practice.

Orchestration can be seen as a first step in providing teachers with 
pedagogical support. This is for three main reasons. First, teachers’ 

FIGURE 8.3
TRAINING AND COACHING MODEL BASED ON THE ORCHESTRATIONS 
IN COLOMBIA

Training Session 1 Training Session 2

Coaching Session 1 Coaching Session 4

A B C

Coaching Session 2
Coaching Session 3

Period of
autonomous

work
Wrap-up
meeting

Source: Prepared by the authors.
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technological skills are related to their knowledge of and skills using dif-
ferent technological resources. Second, teachers’ pedagogical skills allow 
them to use these resources when designing and developing a study plan, 
as well as in their lesson plans (Suárez et al. 2013). Third, teachers’ con-
structivist beliefs have a positive effect on their use of technology, while 
traditional beliefs have a negative effect (Hermans et al. 2008).

Orchestration links the logistical and technical elements of a class-
room with the pedagogical potential that can be provided by appropriate 
use of methodologies in the classroom. However, as stated previously, the 
gradual introduction of orchestrations within a school must be accompa-
nied by a process of training and coaching (both in the classroom and 
while planning). This will provide opportunities for continuing profes-
sional development in terms of both the curriculum and methodology, and 
focused on the teacher’s own practices. Pedagogical support that links 
both the training process as well as the process of teachers reflecting on 
their own practices leads to significant learning outcomes. This is because 
these outcomes draw on the teachers’ own experiences, which in turn can 
be continually supported by orchestration.

8.6.3 Openness to Change

It is essential to take openness to change into account when designing sup-
port or improvement plans for schools. One theory imagines any change in 
schools as a process with set milestones (Murillo and Krichesky 2012). This 
cycle of change includes the following stages:

0. Initiation phase. When a group of people demonstrate an interest in ini-
tiating or promoting change in pedagogical practice in contexts where 
technology is available for classroom work. Meetings are held with the 
school community in order to identify their expectations and needs. 
This phase includes the diagnostic.

1. Planning phase. When the general direction of the project and next 
steps are defined. During this period, the group that is interested in ini-
tiating an improvement/support program for teachers works with the 
school community to plan the elements that will be included in the 
orchestration. At this stage, it is important that the process of change 
make sense to both the management team and the teachers. Orches-
trations are developed during this stage based on the information 
gathered during the process of detecting needs and expectations.

2. Implementation phase. During this phase the strategies or actions 
are put into practice. Implementation of the orchestrations begins in 
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the classroom, with the teachers putting into practice the strategies 
and actions suggested by the pedagogical script (orchestration). This 
period begins with teacher training and includes in-classroom coaching 
sessions to accompany the teachers and advise them on how to effec-
tively use the orchestrations in their classroom.

3. Reflection or evaluation phase. This is the period at the end of the pilot 
program for implementing orchestrations in an educational setting. It 
is based on reflection and evaluation of the processes of change that 
were experienced in terms of student learning, pedagogical practice, 
and management of the technological resources within the school.

4. Dissemination phase. This is when the most successful innovations are 
expanded to other grade levels or departments by institutionalizing the 
most effective strategies. Information on the changes that have been 
implemented and the results of these changes are shared throughout 
the school. Specific focus is placed on how these efforts have translated 
into strategies that have proven to be particularly effective.

8.7 Main Ideas to Take Away

When reviewing the main ideas from this chapter, six elements can be 
identified:

• Children are not learning and the computers that are being pur-
chased by education systems are not being used. This is because 
there is a lack of pedagogical support for teachers in terms of 
guidelines that enable them to integrate the technology and the 
needs of their classroom into their teaching.

• Teachers need support, and orchestration provides them with 
scaffolding. It does so by coordinating pedagogical, curricular, 
and technological information. By joining these three elements 
together, orchestration establishes itself as the missing link for poli-
cies to provide school systems with educational technology.

• Orchestrations can either be provided to teachers or developed 
internally by schools. In this sense, a series of guiding questions 
and a diagnostic of the school’s specific context can help school 
communities develop their own orchestrations. This clearly demon-
strates the scalability of this proposal.

• Lessons can either be completely or partially orchestrated, depend-
ing on the teacher’s tools, knowledge, and skills.

• Regardless of whether orchestrations have been provided to a 
school or developed internally, implementing them requires certain 
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social and infrastructural conditions that help teachers overcome 
the challenges they face.

• Orchestration has been shown to be an effective tool, not only when 
teaching mathematics, but also in other areas of the curriculum.

Table 8.5 summarizes the conclusions from this chapter, their implica-
tions for public policy, and recommendations going forward.

TABLE 8.5
CHAPTER CONCLUSIONS AND POLICY IMPLICATIONS AND 
RECOMMENDATIONS

Conclusion
Policy Implication or 
Recommendation

Learning in schools does not improve 
and computers being purchased by 
schools are not being used.

→ Change the focus from introducing 
technology into schools to increasing 
pedagogical support.

Lack of pedagogical support to 
integrate the technology into 
teaching.

→ Focus on pedagogical support, taking 
into account the cultural aspects 
of the classroom more than the 
technological aspects.

The need for orchestrations to 
structure and support the teaching/
learning process.

→ Orchestration guidelines, training, and 
coaching for teachers must take into 
consideration the reality of the school 
where they are implemented.

Source: Prepared by the authors.
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p
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w
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g
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ra
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m

p
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g

 p
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p
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g

 f
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ns
.
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C
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p
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uc
ti
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f 
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ac
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d

 o
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er
in

g
 

fr
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ti
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• 

P
ro
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• 
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E

xe
rc
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b
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C
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O
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ite
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o
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tu
d

en
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 p
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 b
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 c
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.
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m
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 c
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o
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y 
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n 
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p
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t 
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m

p
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w
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m
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t 

p
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p
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n 
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p
o
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t 
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t 
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 t

hi
s 
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re

p
ar

at
io

n 
co
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f e
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g
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it
h 

th
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 m
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d
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y 
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ve
al
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 r

ec
ip

e 
fo

r 
th

e 
ty

p
e 
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 f

o
o

d
 t

he
y 

ea
t,
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 t
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se
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ui
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d
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 W
he

n 
in

tr
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d
uc

in
g

 t
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ip
e,
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 f
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w

in
g
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ue
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re
 r
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o
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en
d

ed
:
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W
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e 
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te

ri
st
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 m
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 c
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ts
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 b
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 b
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 p
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e 

in
g

re
d

ie
nt

s 
ar

e 
ex

p
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 c
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 b
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 b
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e 
b

o
ar

d
.”

 T
he
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e 
st

ud
en

ts
 a

 f
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 m
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 t

he
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 b
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 b
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 f
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 r
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liz
e 

th
at

 t
he

 n
um

er
at

o
r 

is
 g

re
at

er
 t

ha
n 

th
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A
t 

th
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 m
o

m
en
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ue
st
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 s
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:

• 
“W
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ca
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w
e 

do
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 t
hi
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ca

se
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 (
W

e 
ne

ed
 m

or
e 
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an

ge
s.

)
• 
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f 

th
e 

nu
m

er
at
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 s

ay
s 

th
at
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 s

ev
en

 p
ie
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s 
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t 

th
e 
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an

ge
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t 
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I d
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w

ho
le
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ng
es
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 t
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o 

un
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l t
he
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 s

ev
en

 p
ie
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 t
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e.

)

Th
e 

id
ea
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o 
g

ui
d

e 
th

e 
st

ud
en

ts
 t

o 
th

e 
co

nc
lu

si
on

 t
ha

t 
w

he
n 

th
e 

nu
m

er
at

or
 is

 g
re

at
er

 t
ha

n 
th

e 
d

en
om

in
at

or
, 

m
or

e 
th

an
 o

ne
 w
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le
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 n

ee
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w
in

g 
th
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 s
im

ila
r 

ex
am

p
le
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 s

ho
w

n 
us

in
g 
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e 

b
an
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G
iv

en
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t 

th
ey

 h
av

e 
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re
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y 
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en
 w
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t 
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p

p
en

s 
w

it
h 
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e 
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e,
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e 
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e 
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 t
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.
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n 
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g
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e 
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b
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ed
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hi
s 
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m

e,
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ea

le
d
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 t

he
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ns
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ee
n 
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p
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ed

 c
o

rr
es
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o
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p
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p

er
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nd
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p
ro

p
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 f
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ct
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w
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q
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va
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o 
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w

ho
le
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 d
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ni
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h 
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, a
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 t

he
m
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o 
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he
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p
le
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an
d

 t
he
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he
m
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te
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he
se

 d
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o
ns
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ir

 e
xe
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is

e 
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o

ks
.
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e 
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ra
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n.
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 b
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g
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d

ie
nt
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ed
 

fr
ac

ti
o

n.
 W

he
n 
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u 
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ow

 t
hi

s,
 a

sk
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ue
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h 
as

:

• 
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t 

ch
ar
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 t
hi
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• 
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t 
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nk
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en
ts
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En
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ur
ag

e 
th

em
 t
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e 

an
y 
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ea

s 
th

ey
 h
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e 

re
ga

rd
in

g 
th

is
.)

Fo
llo

w
in

g
 t

hi
s,

 t
he

 p
re

se
nt

at
io

n 
sh

ow
s 

ho
w

 t
hi

s 
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ac
ti

o
n 
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he
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o

g
ur

t)
 c

an
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e 
re

p
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se
nt

ed
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s 
w

it
h 
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e 
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o

us
 c
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es
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t 
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he
n 

ex
p

la
in

ed
 t
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is

 t
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e 
of

 f
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io

n 
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 c
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le
d
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m
ix

ed
 f
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ct

io
n,

” 
an

d
 it
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 s

ho
w

n 
ho

w
 

m
ix

ed
 f

ra
ct

io
ns

 a
re

 r
ea

d
 a

nd
 r

ep
re

se
nt

ed
. S

ho
w

 o
th

er
 e

xa
m

p
le

s 
of

 a
 m

ix
ed

 f
ra

ct
io

n,
 a

sk
 t

he
 s

tu
d

en
ts

 t
o 

re
ad

 a
nd

 t
he

n 
re

p
re

se
nt

 t
he

m
. F

in
al

ly
, h

av
e 

th
em

 w
ri

te
 t

he
 d

efi
ni

ti
o

n 
in

 t
he

ir
 e

xe
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is
e 

b
o

o
ks

.
O
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e 

th
is

 w
ay
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f c

la
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ify
in

g 
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ac
tio

ns
 h
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 b

ee
n 

ex
p

la
in

ed
, a

 s
er

ie
s 

of
 f

ra
ct
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ns

 is
 r

ev
ea

le
d 

th
at

 t
he

 s
tu

d
en

ts
 

m
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t 
cl
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si
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 a

s 
p

ro
p

er
, m

ix
ed

, o
r 

fr
ac

tio
ns

 e
q

ui
va

le
nt

 t
o 

a 
w

ho
le

. I
nv

ite
 y

ou
r 

st
ud

en
ts

 t
o 

p
ar

tic
ip

at
e,

an
d 
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m

m
en

t 
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 w
ha

t 
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r 
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sm
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es
 a

re
 d
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ng
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nd
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he
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er
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y 
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e 
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ng
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b
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ra
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b
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w
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m

er
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p
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ey
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d
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 c
o
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p
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of

 t
he

 p
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, b
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p
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e 
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 c
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 c
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n 
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er
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 d
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ng
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ng

, t
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p
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er
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ay

s 
th

at
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f t
he

m
 h
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 c
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ed
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ft
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hi

le
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 c
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o
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ch
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th
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 c
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an
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ur
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tu
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en
ts
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 s
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w
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o
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 b
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p
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m
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 p
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o
rm

. I
n 

o
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 t
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d
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, a
sk
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 f
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w

in
g
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st
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W
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t 
ch
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s 
m
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t 
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e 

w
ho
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s 
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 t
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w
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 p
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w
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 r
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 c
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 m
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 o
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 d
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 p
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 t
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p
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 c
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m
p
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e 
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b
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ne
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b
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m
e 
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 d
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f p
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ac
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 o
n 
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nu
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b

er
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t 
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e 
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en
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e 
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d
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 p
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d

ur
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