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Pre-posterior optimization of sequence of measurement and

intervention actions under structural reliability constraint

James-A. Gouleta,∗, Armen Der Kiureghiana, Binbin Lia

aDepartment of Civil and Environmental Engineering

University of California, Berkeley, USA

Abstract

It is common to assess the condition of an existing infrastructure using reliability analy-

sis. When, based on the available information, an existing structure has an estimated

failure probability above the admissible level, the default solution often is to either

strengthen or replace it. Even if this practice is safe, it may not be the most economical.

In order to economically restore and improve our existing infrastructure, the engineering

community needs to be able to assess the potential gains associated with reducing epis-

temic uncertainties using measurements, before opting for costly intervention actions, if

they become necessary. This paper provides a pre-posterior analysis framework to (1)

optimize sequences of actions minimizing the expected costs and satisfying reliability

constraints, and (2) quantify the potential gain of making measurements in existing

structures. Illustrative examples show that when the failure probability estimated based

on the present state of knowledge does not satisfy an admissible threshold, strengthening

or replacement interventions can be sub-optimal first actions. The examples also show

that significant savings can be achieved by reducing epistemic uncertainties.

Keywords: Pre-posterior, reliability, measurement, optimization, uncertainty,

infrastructure management

1. Introduction

With increased awareness about the extent of deficiencies of existing infrastructures,

the US National Academy of Engineering has identified restoration and improvement of

urban infrastructure as one of the grand engineering challenges of the 21st century [1].

It is common to assess the condition of an existing infrastructure by reliability analysis

using prior knowledge about capacities and demands. When an existing structure has

∗Corresponding author: james.a.goulet@gmail.com

Preprint submitted to Elsevier July 28, 2014



an estimated failure probability above an admissible level, pF > p
{adm.}
F , the default

solution often is to perform a structural intervention action, such as strengthening

or replacement. However, it is known that the prior information about capacities

and demands of an existing structure is characterized by epistemic uncertainties. By

gathering additional information, it is often possible to reduce these uncertainties and

alter the failure probability estimate. Therefore, in order to assess the true condition

of an existing infrastructure and economically restore and improve it, the engineering

community needs to be able to estimate the potential gains associated with reducing

epistemic uncertainties using information gathering actions, instead of directly opting

for costly structural interventions based on findings from prior knowledge.

Uncertainties and their classification have received much attention from the scientific

community, e.g. [2–4]. Uncertainties are most often classified as either aleatory or

epistemic, depending on whether they are attributed to inherent variability or to lack of

knowledge. According to this classification, epistemic uncertainties are reducible and

aleatory uncertainties are not. Several researchers have noted that, during the design

phase, the uncertainties in structural properties are inherently random and, therefore,

aleatory in nature [4, 5]. However, once the structure is constructed, the uncertainties in

structural properties become epistemic in nature. In a sense, the constructed structure

is viewed as a realization from a population of structures having the same design.

Naturally, if we were able to precisely measure the properties (e.g., as-built dimensions,

material constants, member capacities) of an existing structure, no uncertainties in these

quantities would remain. Of course, it is not possible to accurately measure all structural

properties. Nevertheless, any direct or indirect observations about these quantities

can serve to reduce the corresponding epistemic uncertainties. Note that measuring a

structural property may either increase or decrease the estimated failure probability,

depending on the measurement outcome [5, 6]. Section 3.1.1 presents considerations

that this aspect requires during the planning of measurement actions.

Maintenance planning for structures has been addressed in previous research related

to structural health monitoring, decision theory and reliability theory. For instance,

Faber [5] proposed a general framework for assessment of existing structures based

on reliability theory considering evidences obtained during inspection. Pozzi and Der

Kiureghian [7] used the concept of value of information (VoI) [8] to quantify the value

of measuring the evolution of structural performance as a support to maintenance

interventions. In a similar way, Glisic et al. [9] used VoI to quantify, in economic terms,
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the impact of monitoring on decision making. Straub and Faber [10] used decision

and VoI theory to build an adaptive decision framework for identifying inspection

planning strategies that minimize maintenance costs. In their framework, inspections

are performed in a sequence, and the decision to perform an inspection is based on the

outcome of the previous inspection.

Engineering decision analysis can be made in three stages [11–13]: prior decision

analysis, posterior decision analysis and pre-posterior decision analysis. This paper deals

with pre-posterior decision analysis, where the planning of information gathering actions

is made based on the prior probabilistic model of uncertainties. In this scheme, the

consequences (e.g. costs) of the possible outcomes of measurement or other information

gathering actions are weighed with their probabilities of occurrence. This approach to

measurement actions planning is similar to what was proposed by Artstein and Wets

as the theory of sensors [6]. Interested readers may also consult other relevant work

performed in the field of maintenance-action optimization [14–17]. In the field of

reliability-based optimization, Royset et al. [18–20] studied several aspects related to

the design of new structures, notably optimal design under constraints. Der Kiureghian

et al. [21] were among the firsts to study inverse reliability problems, where parameter

values satisfying a reliability constraint are sought. More recently, Lehkỳ and Novák

[22] also approach this problem using a method based on Artificial neural network.

Despite all these related aspects previously addressed in the literature, solving the

problem posed in this paper requires further investigations related to the optimization of

sequences of information gathering and intervention actions.

This paper presents a pre-posterior framework for optimizing sequences of actions

minimizing the expected costs and satisfying reliability constraints for an existing struc-

ture. This framework is intended to: (1) provide optimized sequences of information

gathering and intervention actions, and (2) quantify the potential gains of measuring

structures instead of directly opting for costly strengthening and replacement interven-

tions. The paper is organized in the following order: Section 2 presents the formulation

for assessing the reliability of an existing structure, Section 3 presents the mathematical

framework for the pre-posterior decision analysis for sequences of actions, and Section

4 presents illustrative applications of the proposed methodology.
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2. Assessing the reliability of an existing structure

The safety and serviceability of an existing structure is usually assured by verifying

that, given the available knowledge, the structure has a failure probability (complement

of reliability) lower or equal to an admissible value, i.e. pF ≤ p
{adm.}
F . Let V =

[V1, V2, · · · , Vn]
T denote the set of random variables defining the state of the structure

and fV(v) represent its joint probability density function (PDF). The failure probability

is defined as

pF =

∫

Ω

fV(v)dv (1)

where

Ω ≡ {v| ∪k ∩i∈Ck
Gi(v) ≤ 0} (2)

is the failure domain. This formulation is written in terms of unions of intersections

of componental failure events. The ith component is defined in terms of a limit state

function Gi(V) with {Gi(V) ≤ 0} indicating its failure. The union operation is over

min cut sets Ck, k = {1, 2, · · · }, where each min cut set represents a minimal set of

components whose joint failure constitutes failure of the structure. The intersection

operations are over components within each min cut set. Special cases of this formulation

are series structural systems, when each min cut set has a single component, parallel

structural systems, when there is only one cut set, and structural component, when there

is only one min cut set with a single component. See Der Kiureghian [23] for more

details about this formulation.

The limit-state functions Gi(V) defining the component states are usually made up

of sub-models representing component capacity and demand values. Such a sub-model

typically has the form

R(X, ǫ) = R̂(X) + ǫ (3)

where R̂(X) represents an idealized mathematical model and ǫ is the model error,

which is usually considered to have the Normal distribution. The additive error model

is based on an assumption of normality, which is usually satisfied by an appropriate

transformation of the model, see [24]. Physics-based models of structural components

are generally biased so that the mean of ǫ, µǫ, can be nonzero. The standard deviation,

σǫ, represents a measure of quality of the model. The vector V collects random variables

X and ǫ for all sub-models. In addition, it may include any uncertain parameters Θ

involved in the definition of the distributions of X and ǫ for the various sub-models.
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At the outset of our analysis, the PDF of V represents our prior state of knowledge

about the structure and its future loads. We designate this by using the notation f
{0}
V

(v).

The corresponding estimate of the failure probability is denoted p
{0}
F . If p

{0}
F ≤ p

{adm.}
F ,

the reliability constraint (p
{adm.}
F ) is satisfied and no further action is necessary. When

p
{0}
F > p

{adm.}
F , actions are necessary to reduce the failure probability estimate.

As we take actions to modify the structure, learn about the random variables, or

improve the models, the distribution of V changes. We show this by changing the

superscript {0}. Specifically, f
{a1:i}
V

(v) denotes the distribution of V after an ordered

set of actions {a1:i} = {a1, · · · , ai}. The corresponding failure probability estimate

is denoted p
{a1:i}
F . Our aim is to find an optimal sequence of future actions Aopt =

{a1, · · · , an} that minimizes the expected costs, while assuring that p
{a1:i}
F ≤ p

{adm.}
F .

3. Optimization framework

This section presents the formulation of the optimization framework for identifying

the sequence of future actions that minimizes the expected costs and satisfies the failure

probability constraint. Sub-section 3.1 presents the mathematical formulation of the

optimization problem, Sub-section 3.2 discusses computational issues, and Sub-section

3.3 describes the effects of structural intervention and information gathering actions on

the random variables involved in the estimation of the failure probability.

3.1. Formulation of the optimization framework

As mentioned in Section 2, when p
{0}
F > p

{adm.}
F , actions are necessary to reduce the

failure probability estimate. Let A = {a1, · · · , ai} denote an ordered set of candidate

actions so that action ai can take place only after actions {a1, · · · , ai−1} have been

completed. Example actions include replacement or strengthening of the structure, mea-

surement of component capacities, measurement of variables involved in the capacity or

demand models, proof testing of the structure, etc. (Sub-section 3.3 provides a more

exhaustive description of these actions). Each action ai will alter our state of knowledge

about one or more of the random variables so that f
{a1:i−1}
V

(v) will change to f
{a1:i}
V

(v)

after action ai is taken. If action ai is a structural intervention, e.g., replacement or

strengthening, the new distribution f
{a1:i}
V

(v) is that of the new or strengthened struc-

tural design. If the action is one of information gathering, f
{a1:i}
V

(v) is derived from

f
{a1:i−1}
V

(v) by conditioning on the observations, while accounting for possible mea-

surement errors. However, since the analysis is performed before observations are made,
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one needs to consider all possible realizations of the observations with their correspond-

ing prior probabilities. This aspect requires pre-posterior analysis. The corresponding

probability estimate p
{a1:i}
F should be regarded as the conditional probability of failure,

given the observations. Thus, it is a function of the future observations. In the outcome

space of these observations, the domain where p
{a1:i}
F ≤ p

{adm.}
F constitutes the event

that actions {a1, · · · , ai} will lead to satisfaction of the reliability constraint. The next

sub-section elaborates on the characterization of this domain and specification of the

probability of success in satisfying the reliability constraint.

Our task is to identify an optimized sequence of future actions Aopt = {a1, · · · , an}
so that Aopt minimizes the expected costs subject to p

{Aopt}
F ≤ p

{adm.}
F . For intervention

actions (e.g., strengthening or replacement), the probability of satisfying the reliability

constraint based on the prior state of knowledge is either zero or one. This is because

for any strengthening or replacement design, the estimated failure probability is either

greater than, or less than the admissible value. The only reason for contemplating

intervention actions with zero probability of satisfying the reliability constraint is to

consider them subsequent to other actions that may improve our state of knowledge. For

example, a partial retrofit may become a viable option after measurements have shown

that the capacity is likely to be greater than initially estimated.

3.1.1. Actions involving measurements

This sub-section describes the method for computing the probability of success for

actions involving measurements. Assume that the first action a1 of a sequence A consists

in measuring a structural property or structural response. Given a measurement outcome

m{a1} ∈ R and the conditioned PDF f
{a1}
V

(v), the failure probability conditional on the

measurement outcome is p
{a1}
F . Because the outcome of the measurement is unknown

a-priori, it is treated as a random variable M{a1}. The subset of outcomes of M{a1}

leading to satisfaction of the reliability constraint is

M{a1} = {m{a1} : p
{a1}
F ≤ p

{adm.}
F } (4)

Thus, the probability that after taking action a1 the reliability constraint will be satisfied

is

p
{a1}
succeed =

∫

M{a1}

fM{a1}(m{a1})dm{a1} (5)

in which fM{a1}(m{a1}) is the PDF of the measurement outcome M{a1}. The condi-

tional probability of failure as a function of the measurement m{a1}, p
{a1}
F , the subset of

measurement outcomes M{a1}, its complement M{a1}
, and the probability of meeting
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the reliability constraint, p
{a1}
succeed are illustrated in Figure 1. For a1 there is a probabil-

Figure 1: Outcome space of a measurement: a) failure probability conditioned on the measurement outcome

p
{a1}
F , b) PDF of the measurement outcome M{a1} with the shaded area showing probability p

{a1}
succeed

of

meeting the reliability constraint.

ity 1 − p
{a1}
succeed that the measurement action will not satisfy the reliability constraint.

Therefore, for all measurement outcomes m{a1} ∈ M
{a1}

, it is necessary to plan for at

least one additional measurement or intervention action. Figure 2 shows the outcome

space of two successive measurements. Figure 2(a) depicts the subset of successful

outcomes of the first measurement M{a1} (shaded area). Figure 2(b) depicts the subset

of successful outcomes of the second measurement, conditional on a first unsuccessful

measurement, M{a1:2} (darkly shaded area). The boundary of M{a1:2} is nonlinear

because of interaction between the previous unsuccessful measurement outcome and

the new measurement. (A previous unsuccessful measurement far from the boundary

of success requires a more favorable outcome of the second measurement to assure

success.)

More generally, for any subsequent measurement action ai ∈ A, i = 2, · · · , n, the

subset of successful measurement outcomes M{a1:i} ⊆ R
i is

M{a1:i} =
{

m{a1:i} : p
{a1:i}
F ≤ p

{adm.}
F ∧m{a1:i−1} /∈ M{a1:i−1}

}

(6)

In Eq.(6), the subset of successful measurement outcomes M{a1:i} is obtained while

excluding the previous subset of successful measurement outcomes M{a1:i−1}. Mea-
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(a) (b)

Figure 2: Outcome space of two successive measurement outcomes: a) subset of successful first measure-

ment outcomes, b) subset of successful second measurement outcomes conditioned on first unsuccessful

measurement outcome

surement outcomes m{a1:i−1} ∈ M{a1:i−1} are excluded because ai would only be

taken if all previous measurement actions were unsuccessful. The conditional probabil-

ity of success of the ith measurement action given no success up to the (i− 1)th action

is,

p
{ai}
succeed =

1

c{a1:i}
·

∫

M{a1:i}

fM{a1:i}(m
{a1:i})dm{a1:i} (7)

where fM{a1:i}(m
{a1:i}) is the joint PDF of the i measurements and

c{a1:i} =

∫

M
{a1:i−1}

fM{a1:i}(m
{a1:i})dm{a1:i} (8)

is a normalization constant. Equation 7 is obtained by dividing the probability of inter-

section of no success in the first i− 1 measurements and success in the ith measurement

by the probability of no success in the first i− 1 measurements.

3.1.2. Expected costs for sequences of actions

In order to compute the expected costs, actions must be added to the set A until

the sequence of n actions has a cumulative probability p
{A}
c,succeed = p

{a1:n}
c,succeed = 1.

When p
{A}
c,succeed = 1, it is certain that the sequence of actions planned are sufficient to

satisfy the reliability constraint. The cumulative probability that a sequence of actions

{a1, · · · , ai}, i ∈ {2, · · · , n} will result in meeting the reliability constraint is given by

p
{a1:i}
c,succeed = p

{a1:i−1}
c,succeed + p

{a1:i}
succeed (9)
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where the probability of satisfying the reliability constraint using a sequence of actions

{a1, · · · , ai}, i ∈ {2, · · · , n} is,

p
{a1:i}
succeed = p

{ai}
succeed × (1− p

{a1:i−1}
c,succeed ) (10)

Note that c{a1:i} presented in Eq. 8 is identical to 1 − p
{ai−1}
c,succeed. Figure 3 presents an

example of the probability mass function p
{a1:i}
succeed and the corresponding cumulative prob-

ability mass function p
{a1:i}
c,succeed, plotted against the cumulative cost of actions C({a1:i}).

As illustrated in Figure 3, it is likely that a subset of A will reach a p
{a1:i}
c,succeed close to

one, so that in most cases, performing only the first few actions in A will be sufficient

to satisfy the reliability constraint.

Figure 3: Probability mass function p
{a1:i}
succeed

and corresponding cumulative probability mass function p
{a1:i}
c,succeed

against the cumulative cost of actions C({a1:i}).

In decision theory, optimal decisions are those that maximize the expected value

of a utility function [25]. Accordingly, the optimization problem at hand consists in

finding a sequence of actions Aopt so that

Aopt = argmin
A

{E[C(A)]|p{A}
c,succeed = 1} (11)

in which E[C(A)] is the expected cost for a sequence of measurement and intervention

actions A obtained as

E[C(A)] =
n
∑

i=1

(

p
{a1:i}
succeed × C ({a1:i})

)

(12)

where p
{a1:i}
succeed is the probability of occurrence of a sequence of i actions leading to

success.
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Decision makers may adopt optimized management policies by planning to perform

actions sequentially as defined in Aopt until p
{a1:i}
F ≤ p

{adm.}
F , i ∈ {1, · · · ,#Aopt}.

By following this procedure, the cost of taking actions will, on average, be equal to

E[C(Aopt)]. In implementation, each time an action is taken, the subsequent sequence

of future actions can be re-optimized. Doing this, the expected cost is likely to be

smaller than E[C(Aopt)].

3.2. Computational issues

Implementation of the proposed framework requires addressing four computational

issues: (a) Computation of the conditional failure probability p
{a1:i}
F according to the

distribution f
{a1:i}
V

(v) for each realization of the measurements; (b) computation of

the probability of success p
{ai}
succeed after action ai, conditional on lack of success in

all previous actions; and (d) solution of the optimization problem in Eq. (11). For

(a), existing reliability methods for component and systems, such as FORM, SORM

[23, 26] or various sampling methods [27–29] can be used. In cases where the limit-state

functions depend on complex FEM analyses, advanced meta-modeling techniques can

be used to speed-up calculations [30–33]. Remarks for computational issues (b) and (c)

are presented below.

In most cases, a closed-form solution to the integral in Eq. (7) for p
{ai}
succeed is not

available. Therefore, an approximation must be used. It is noted that for viable candidate

actions, the probability p
{ai}
succeed should not be too small. If the probability of success

is indeed small, the action is useless (unless its cost is negligible, in which case it can

be taken without further analysis). We assume that, from the context of the problem,

the analyst will be able to identify and exclude non-viable actions from consideration.

Thus, given that p
{ai}
succeed is not small, say it is of order 0.1 or greater, a simple Monte

Carlo solution approach can be used. The algorithm essentially requires repeated

simulations of the measurement outcomes m{ai} = {m{a1}, · · · ,m{ai}} according to

the distribution f
{a1:i}
M (m{a1:i}), constructing the corresponding conditional distribution

f
{a1:i}
V

(v), computing the conditional failure probability p
{a1:i}
F (by any of the methods

mentioned above), and counting the fraction of simulations for which p
{a1:i}
F ≤ p

{adm.}
F .

The fraction asymptotically approaches p
{ai}
succeed as the number of simulations grow. We

employ this approach in the example presented in Sub-section 4.

Given that there are n distinct possible actions, n! is an upper bound for the number

of possible sequences of actions. Because the complexity of the problem is O(n!),

optimization algorithms should be used in order to find efficient sequences of actions in
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a reasonable time. A number of algorithms are available that can solve this problem.

One example algorithm is presented in Sub-section 4.1.2.

3.3. Structural intervention and measurement actions

The main categories of actions considered in this paper are: capacity interventions,

demand limitation, measurements, model refinement, and increased risk acceptance.

Each category and its cost are described below. Note that each category may contain

subcategories of actions each having its specific effect and cost.

When assessing the capacity of an existing structure, prior knowledge for V is avail-

able from construction data, code provisions, previous measurements or the literature.

The prior knowledge is used to assign the probability distribution f
{0}
V

(v). For example,

using code provisions, the compressive strength f
′

c of concrete may be characterized

by a Lognormal distribution having parameters λ{0} and ζ{0}, lnN (λ{0}, ζ{0}). As

described in the introduction, for an existing structure, this PDF describes the lack of

knowledge regarding the actual value of f
′

c rather than an inherent variability.

Capacity interventions (aCI) - Capacity interventions increase the capacity of the struc-

ture with respect to safety or serviceability limit states. Two types of capacity interven-

tions are considered: replacement (aCI1) and strengthening (aCI2). The replacement of a

structure is usually done so that the distribution f
{aCI1}
V

(v) of the random variables V of

the new structure guarantees that p
{aCI1}
F ≤ p

{adm.}
F , i.e., p

{CI1}
succeed = 1. The corresponding

cost is denoted C{CI1}.

In the case of a strengthening intervention, the amount of strengthening needed

to satisfy the reliability constraint depends on the capacity of the structure. Hence,

prior measurement actions that inform on the capacity of the structure can influence the

probability of success of a strengthening action. For this reason, it may be desirable

to consider candidate-strengthening actions that, when taken alone, do not satisfy

the admissible failure probability but may do so subsequent to measurement actions.

If such strengthening candidate actions are considered, then p
{CI2}
succeed ∈ {0, 1}. When

p
{CI2}
succeed = 1, the action by itself is sufficient to satisfy the admissible reliability threshold.

When p
{CI2}
succeed = 0, the capacity strengthening intervention is not sufficient to satisfy

the admissible threshold without also taking other actions. The cost of strengthening is

denoted C{CI2}.

Demand limitation (aDL) - A demand limitation action decreases the demand on the

structure. In the case of a bridge, limiting the demand may consist in limiting the
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weight of trucks allowed to travel over the bridge or reducing the number of lanes.

This action essentially modifies the distribution of the demand variables so that it shifts

towards smaller demand values. For this action, p
{DL}
succeed ∈ {0, 1}. The case p

{DL}
succeed = 0

corresponds to the situation where limiting the demand alone is not sufficient to satisfy

the reliability constraint. However, this option may become viable subsequent to an

information gathering action. Limiting the demand on a structure has an indirect cost

for the owner or the society, which we denote as C{DL}.

Measurements (aME) - Measurements can reduce the epistemic uncertainty associated

with some of the variables in V. These uncertainties generally have two components:

(1) statistical uncertainty and (2) lack of knowledge. The first kind is present in the

parameters of distribution models, which are estimated from limited data. This type of

uncertainty can be reduced by increasing the data size through additional measurements.

For example, the uncertainty in the estimates of the mean and variance of the yield

strength of reinforcing bars in a reinforced concrete (RC) structure can be reduced by

performing additional sample tests. Uncertainty due to lack of knowledge is associated

with the properties of an existing structure. Note that a single, error-free measurement,

if physically possible, can eliminate this type of uncertainty for a property value. The

cost of a measurement action is denoted C{ME}.

One measurement action is that of measuring the real value of an uncertain quantity

of the existing structure represented by a random variable V . Before measuring, the

outcome of the measurement is unknown. Therefore, the measurement outcome is also

a random variable. We denote it as V̂ = V + eV , where eV denotes the measurement

error. Thus, the distribution of the future measurement outcome is defined by the prior

distribution of V and the distribution of the measurement error. If random variables V

are dependent, the conditional distribution f
{ME}
V

(v) must be derived conditional on the

measurement outcome V̂ .

Load tests are measurements providing lower-bound information about the capacity

R of a structure. A load test may be conducted up to a demand level acceptable with

respect to the prior knowledge of the capacity. The admissible proof load S{adm.} is

back-calculated from inverse reliability analysis, where the admissible probability of

failure is p
{adm.}
F /γ. γ is a safety factor with a value greater than or equal to one in order

to avoid a failure during the test [34, 35]. After a successful load test, the evidence

that the structure has not failed, i.e. {R > S{adm.}}, is used to obtain the conditional

distribution f
{ME}
V

(v).
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Another type of measurement action aims at calibrating the error in a sub-model,

such as a structural capacity model. Suppose R(x, ǫ) = R̂(x) + ǫ is a capacity model

where the model error ǫ has the normal distribution with mean µǫ and standard deviation

σǫ. These parameters in general are uncertain with a prior distribution f
{0}
µǫσǫ . Using

experiments reproducing the failure of the system or component studied, it is possible to

generate samples of ǫ and, thereby, update the distribution of the parameters. Specifically,

the discrepancies between predicted and observed capacity values (R− R̂) during these

tests (with known x values) constitute realizations of the random variable ǫ+ e, where

e is the measurement error in the experiment. Using the Bayesian updating rule [36],

this data can be used to update the distribution of the mean and standard deviation to

f
{ME}
µǫσǫ .

Model refinement (aMR) - An alternative to calibrating the error in a model is to refine

the model and reduce its bias and variability. Model refinement in general changes the

formulation of the limit-state functions Gi(V) and may introduce a new set of random

variables V. As a result, the prior distribution f
{0}
V

is revised to f
{MR}
V

. The cost of

model refinement is denoted C{MR}.

Increase risk acceptance (aIR) - When a system or a component has a failure probability

greater than the prescribed threshold, it might be desirable to accept a higher risk by

increasing the admissible failure probability. This decision may have an impact on

insurance premiums and on financial provisions necessary to cover the cost of a potential

failure. The cost of increasing risk acceptance is denoted C{IR}.

4. Illustrative examples

This section presents illustrative applications of the proposed methodology to two

example structures. The chief aim of these examples is to illustrate the formulation and

development of the optimal sequence of actions. For this reason a simple structure is

considered so as not to burden the reader with unnecessary details.

The first example investigates the reliability of the central column supporting a two-

span bridge against buckling (component reliability) and the second example investigates

a similar structure supported by two columns (system reliability). The required level

of reliability is set at p
{adm.}
F = 0.0013, which is equivalent to reliability index β = 3.

For each case, we first determine if the column(s) meets this requirement based on the

available information. Since the requirement is not met, we develop an optimal plan
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for a sequence of actions to undertake to assure satisfaction of the reliability constraint,

while minimizing expected costs.

4.1. Example 1 - component reliability problem

Figure 4 shows the layout of the considered structure. It is known a-priori that the

columns height is H = 9m and that its rectangular section has a depth of d = 3m and

a width of w = 0.25m. The column is made of reinforced concrete with its elastic

modulus E having a lognormal distribution with prior mean µ
{0}
E = 33.5GPa and

standard deviation σ
{0}
E = 3GPa (corresponding to distribution parameters λ{0} = 3.51

and ζ{0} = 0.0894). The contribution of the reinforcement to the flexural stiffness is

Continuous beams

Pinned rolling

support

Pinned

support

Figure 4: Example two span bridge where the component studied is the central column.

neglected. The top end of the column is pinned and the bottom end is partially fixed by

a concrete slab lying on the ground. The effective length coefficient K is represented by

a uniform distribution within the interval (0.7, 1.0). The buckling capacity model for

this slender column is given by

R̂ =
π2EI

(KH)2
(13)

where I = dw3/12 is the moment of inertial in the weak direction of the column.

The true log-capacity is defined by lnR = ln R̂ + ǫ, where the model error ǫ is a

Gaussian random variable having mean µǫ and standard deviation σǫ. It is known that

the standard deviation is σǫ = 0.05. However, the model bias µǫ is unknown and our

prior information is that it is normally distributed with prior mean µ
{0}
µ = 0.05 and

standard deviation σ
{0}
µ = 0.05. Here, the prior mean of the mean error is greater than

zero (the model is conservatively biased), representing the conservative nature of the

design model. This could be due to, e.g., the effect of neglecting the contribution of the

reinforcement to the section moment of inertia. The total dead load supported by the

column is known to be D = 4000 kN. The column weight is neglected. The maximal

live load, L, applied on the column is described by a lognormal distribution with prior

mean µ
{0}
L = 600 kN and standard deviation σ

{0}
L = 50 kN. The set of random variables
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defining this problem is V = {E,K,L, ǫ, µǫ}. The first four random variables are

assumed to be statistically independent, ǫ depends on µǫ.

The column failure is represented by the limit state function

G(V) = R(E,K, ǫ)−D − L (14)

Reliability analysis with the prior information yields the estimated failure probability

p
{0}
F = 0.0088 (β ≅ 2.37). Since this is greater than the admissible failure probability

p
{adm.}
F = 0.0013, actions must be undertaken to satisfy the reliability constraint. The

subsequent sections define the candidate actions considered and determine the opti-

mal sequence of actions that will reduce the estimated failure probability below the

admissible threshold, while minimizing the expected costs.

4.1.1. Management actions

Table 1 lists a summary of the considered actions and their costs and effects. Each

action is detailed below. We assume that limiting the allowable live load or increasing

risk acceptance have costs higher than replacing the structure and are not considered as

viable actions.

Table 1: Summary of management actions and their costs and effects.

Management action Units of costs Effect

Replace, (aCI1) 500
Replaces the column with one that satisfies the

reliability constraint

Strengthen, (aCI2) 200
Increases capacity by increasing column mo-

ment of inertia

Load test, (aME1) 5 If test passes, guarantees that R > D + L
{adm.}

Measure elastic

modulus, (aME2)
10

Reduces epistemic uncertainty in the estimate of

column elastic modulus

Calibrate capacity-

model error, (aME3)
200

Reduces epistemic uncertainty in the es-

timate of model bias (mean error)

Refine capacity model, (aMR) 10
Reduces epistemic uncertainty in the estimate of

effective length coefficient

Replacement and strengthening (CI1, CI2) - Replacement of the structure with a new

one that satisfies the reliability constraint, i.e. p
{aCI1}
succeed = 1, would cost C{CI1} = 500.

As a strengthening intervention, the inertia of the concrete column can be increased by

5%, for a cost C{CI2} = 200. Reliability analysis shows that, when taken alone, this

level of strengthening intervention leads to β = 2.72, which is insufficient to satisfy the

reliability constraint. Thus, p
{aCI2}
succeed = 0.
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Load test (ME1) - A load test will be performed up to an admissible live load L{adm.},

leading to a failure probability no greater than p
{adm.}
F , i.e. γ = 1 (see Sub-section 3.3).

It is assumed that the load can be controlled with high precision so that there is no error

in the applied load value. The evidence that {R ≥ D + L{adm.}} will be used to update

the failure probability according to the rule

P
{ME1}
F =

Pr(R ≤ D + L ∩R ≥ D + L{adm.})

Pr(R ≥ D + L{adm.})
(15)

The cost of performing a load test is C{ME1} = 5. This amount includes the insurance

costs covering a potential failure (with probability p
{adm.}
F ) during the test.

Measure elastic modulus (ME2) - The elastic modulus E of the concrete in the column

will be measured using a non-destructive test. The logarithm of the measured value is

represented by ln Ê = lnE + e, where e is the measurement error having a normal

distribution with zero mean (unbiased measurement) and standard deviation σe = 0.05.

This yields a lognormal distribution for Ê with parameters λ{ME2} = λ{0} = 3.51 and

ζ{ME2} =
√

(ζ{0})2 + σ2
e = 0.102. The cost of measuring E is C{ME2} = 10.

Calibration of capacity model error (ME3) - We consider conducting n tests with

specimens similar to the bridge column to calibrate the bias in the model error. Let

ǭ = 1/n · (ǫ1 + · · ·+ ǫn) denote the sample mean of the discrepancies lnR− ln R̂ to

be observed. From the Bayesian theory of conjugate pair distributions [37], it is known

that for the case under consideration the posterior distribution of µǫ is normal with mean

µ{ME3}
µ =

µ
{0}
µ (σǫ/

√
n)2 + ǭ(σ

{0}
µ )2

(σǫ/
√
n)2 + (σ

{0}
µ )2

(16)

and variance

(σ{ME3}
µ )2 =

(σǫ/
√
n)2(σ

{0}
µ )2

(σǫ/
√
n)2 + (σ

{0}
µ )2

(17)

However, since the experiments are yet to be performed, ǭ remains unknown and we

must use our prior information to determine its distribution. Since our present knowledge

is that ǫ ∼ N (µǫ, σǫ), assuming the observations are statistically independent, we have

ǭ ∼ N (µǫ, σǫ/
√
n), where µǫ has the prior distribution µǫ ∼ N (µ

{0}
µ , σ

{0}
µ ). To

generate a sample of the future observation ǭ, we first simulate µǫ according to its prior

distribution, then generate a sample according to ǭ ∼ N (µǫ, σǫ/
√
n). Alternatively,

one can generate a sample of ǭ by using the distribution ǭ ∼ N (µ
{0}
µ , ((σǫ/

√
n)2 +

(σ
{0}
µ )2)1/2). Equations 16 and 17 then yield the posterior mean and variance of the

model bias µǫ. The conditional failure probability p
{ME3}
F for each generated ǭ is
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computed using the posterior distribution µµ ∼ N (µ
{ME3}
µ ,σ

{ME3}
µ ). The option of

conducting n = 2 tests at a total cost of C{ME3} = 200 is considered.

Refine capacity model (MR) - Refining the capacity model would remove some of

the uncertainty in the effective length coefficient K by modeling the flexibility of the

foundation. If the refined model was exact, it would produce a deterministic value for

K. We assume the model will have an error, ǫK , that is uniformly distributed within

the interval (−0.025,+0.025). Thus, our model of the effective length coefficient is

K̂ = K + ǫK . With our current state of knowledge, K̂ is the sum of two uniformly

distributed random variables. The cost of developing the refined model is C{MR} = 10.

4.1.2. Optimization algorithm and numerical resolution

This section presents the choices made regarding the optimization algorithm and

the reliability calculation technique. As described above, there are n = 6 candidate

actions considered for this example. The optimized sequence of actions Aopt is obtained

using a greedy optimization algorithm [38] that is adapted to this problem. Although

the greedy algorithm is known for occasionally leading to sub-optimal solutions, it is

chosen for its simplicity and fast convergence. It is noted that the proposed framework

is independent of the specific optimization algorithm selected and that other algorithms

capable of solving this problem are available [38]. The study of the performance of any

particular optimization algorithm for solving this class of problems is beyond the scope

of this paper.

With the greedy algorithm, the optimized sequence of actions is constructed itera-

tively over n loops. For each loop k = 1, · · · , n, the optimized sequence of k actions

is

Aopt,k = Aopt,k−1 ∪ argmin
ai

E[C(Ak,i)] (18)

in which Aopt,0 is an empty set. Essentially, in each step, the algorithm looks for the

next best action in the sequence. In order to compute the expected cost E[C(Ak,i)],

we must have p
{Ak,i}
c,succeed = 1, i.e., the set of actions must assure satisfaction of the

reliability constraint. When this condition is not satisfied, an optimized upper bound

of the expected cost is computed for the sequence Ak,i = {Aopt,k−1, ai, aCON}, where

the concluding action aCON is such that p
{Ak,i}
c,succeed = 1. In this example, aCON = aCI1 is

selected because the latter is the only action that guarantees satisfaction of the reliability

constraint. The optimization procedure is repeated until p
{Aopt,k}
c,succeed = 1 and the expected

cost is then computed for the optimized sequence of actions Aopt = Aopt,k. Note that if
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k = n and p
{Aopt,k}
c,succeed < 1, additional alternative actions must be considered.

In this example, Monte Carlo simulations are used to compute the conditional

probability of failure and the probability of success of for each sequence of actions. The

coefficient of variation (c.o.v.) for computing a probability p by Monte Carlo simulation

is

δp̂ =

√

1− p̂

N · p̂ (19)

where p̂ is the estimated probability. The minimum number of samples required to obtain

a c.o.v. smaller than 0.05 for p̂
{a1:i}
c,succeed and p̂F are about 5 000 and 3× 105, respectively.

The numbers of samples used in this example are greater than these minima.

4.1.3. Minimization of the expected costs of sequences of actions

Table 2 reports, for each loop and for each action ai, the optimized upper bound

of the expected costs and the probability of satisfying the reliability constraint by that

action, p
{ai}
succeed. For each loop, results corresponding to the optimal action are enclosed

in a box and, previously selected actions are marked with the symbol “X.” Results

presented for loop #5 are not an upper bound because no concluding action aCON is

required to enforce the requirement p
{Ak,i}
c,succeed = 1.

Table 2: Optimized upper bound of the expected costs E[C(A)] and the probability of satisfying the reliability

constraint p
{ai}
succeed

(separated by the symbol “|”) computed during each optimization loop. For each loop, the

upper bound of expected costs corresponding to the optimal action is enclosed in a box and actions marked

with the symbol “X” represents actions previously selected.

Action loop #1 loop #2 loop #3 loop #4 loop#5†

Replace, (aCI1) 500|1 177|1 109|1 95|1 91|1

Strengthen, (aCI2) 700|0 207|0.22 121|0.28 93|0.46 105|0.01

Load test, (aME1) 505|0 159|0.12 98|0.12 91|0.12 X

Measure E, (aME2) 315|0.39 109|0.42 X X X

Calibrate capacity model error, (aME3) 597|0.21 188|0.33 95|0.55 X X

Refine capacity model, (aMR) 177|0.67 X X X X

†: expected costs for loop #5 are not an upper bound.

Based on the results presented in Table 2, the optimal first action is to refine the

capacity model with an upper bound expected cost of 177 and p
{aMR}
succeed = 0.67. After

repeating the greedy optimization procedure five times, the best sequence of actions

found is Aopt = {aMR, aME2, aME3, aME1, aCI1}. Strengthening the structure (aCI2) is

found to be a suboptimal action. Figure 5 presents the probability mass function p
{a1:i}
succeed

and the cumulative probability mass function p
{a1:i}
c,succeed against the costs of the optimized
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Figure 5: Probability mass function p
{a1:i}
succeed

and cumulative probability p
{a1:i}
c,succeed

for the costs of the optimized

sequence of actions.

sequence of actions Aopt. This figure shows that there is a high probability that the low-

cost model refinement and measurement actions will be sufficient to reduce the estimated

failure probability below the admissible threshold. The overall expected cost for the

optimal sequence of actions is E[C(Aopt)] = 91, which is substantially lower than the

cost of strengthening or replacing the structure. This is a result of the likely favorable

outcomes of the low-cost candidate actions of refining the model and measuring the

elastic modulus, which together have the success probability p
{aMR,aME2}
c,succeed = 0.81.

Results of the analysis indicate that performing a load test as a first action has a

zero probability of lowering the failure probability below the admissible level. This is

because the initial estimate of the failure probability of the column is large so that the

admissible live load, back-calculated from the admissible failure probability, is limited

to 241 kN, which is below the mean value. Therefore, for any non-zero cost, a load test

is a sub-optimal first action because it is certain that at least one additional action will

be required to satisfy the reliability constraint. When performed after having refined

the capacity model, the probability of satisfying the reliability constraint with a load

test increases to p
{aME1}
succeed = 0.12 (see Table 2). Despite this low probability of success,

this action is expected to be a more efficient fourth action than the other alternatives

because of its low cost. By adopting the optimized management strategy Aopt, there is a

probability 0.67 that only refining the model will be sufficient to satisfy the reliability

constraint. There is a probability lower than 0.08 that replacing the structure will

become necessary after having performed all information gathering actions.
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4.2. Example 2 - system reliability problem

This second example presents an application of the methodology to a system reli-

ability problem, where information gathering actions may influence the reliability of

more than one component. Figure 6 shows the layout of the considered structure. The

components studied are the two columns. The system is deemed to have failed if any of

the two columns fails.

Continuous beams

Pinned rolling

support

Pinned

support

Column 1

Column 2

Figure 6: Example three spans bridge studied. The components studied are the two central columns. The case

corresponds to a system reliability problem.

The elastic moduli of the two columns are denoted E1 and E2. We assume these

two random variables are jointly lognormal with prior means µ
{0}
1

= µ
{0}
2

= 33.5GPa,

standard deviations σ
{0}
1

= σ
{0}
2

= 3GPa and correlation coefficient ρ{0} = 0.9. It

follows that lnE1 and lnE2 are jointly normal with prior means λ
{0}
i = lnµ

{0}
i −

(ζ
{0}
i )2/2 = 3.51, standard deviations ζ

{0}
i =

√

ln(1 + (δ
{0}
i )2) = 0.0894, and

correlation coefficient ρ
{0}
0

= (ζ
{0}
1

ζ
{0}
2

)−1 ln(1 + δ
{0}
1

δ
{0}
2

ρ{0}) = 0.900, where

δ
{0}
i = σ

{0}
i /µ

{0}
i = 0.0896 are the coefficients of variation. The description of all

other random variables remains the same. The set of random variables defining this

problem is V = {E1, E2,K, Sl, ǫ, µǫ}.

Reliability analysis with the prior information yields the estimated system failure

probability p
{0}
F = 0.012 (β ≅ 2.27). Since this is greater than the admissible failure

probability p
{adm.}
F = 0.0013, actions must be undertaken to satisfy the reliability

constraint.

4.2.1. Management actions

The same set of actions as in the previous example is considered. Strengthening is

assumed to have a cost of 300 and replacement to have a cost of 800. All other actions

are assumed to have the same cost as in the previous example and, with the exception

of measuring the elastic modulus, to lead to identical effects for both columns. Thus,

refining the model would lead to the same change in the effective length coefficient

of each column, and calibrating the capacity model by conducting experiments will
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improve the model for both columns. Strengthening each column by increasing its

moment of inertia by 5% leads to a system reliability index of β = 2.61 based on

the prior information, which is insufficient to satisfy the reliability constraint, i.e.,

p
{aCI2}
succeed = 0. Due to the statistical dependence between E1 and E2, measuring the

elastic modulus of one column provides information about the elastic modulus of the

other column. Specifically, if we measure the logarithm of the elastic modulus of

column 1 as ln Ê1 = lnE1 + e, where e = N (0, σe) is the measurement error, one can

show that the conditional distribution of E2 given the observation Ê1 is lognormal with

parameters

λ
{ME2}
2|1 = λ

{0}
2

+ ρ′0ζ
{0}
2





ln Ê1 − λ
{0}
1

√

(ζ
{0}
1

)2 + σ2
e



 (20)

ζ
{ME2}
2|1 = ζ

{0}
2

√

(1− (ρ′
0
)2) (21)

where

ρ′0 = ρ
{0}
0

ζ
{0}
1

√

(ζ
{0}
1

)2 + σ2
e

(22)

In the following analysis, we also explore the option of measuring the elastic moduli of

both columns.

4.2.2. Minimization of action expected costs

Table 3 reports, for each loop and for each action ai, the optimized upper bound

of the expected costs and the probability of satisfying the reliability constraint by that

action, p
{ai}
succeed. For each loop, results corresponding to the optimal action are enclosed

in a box and, previously selected actions are marked with the symbol “X.” Results

presented for loop #5 are not an upper bound because no concluding action aCON is

required to enforce the requirement p
{Ak,i}
c,succeed = 1. Results presented in Table 3 are

similar to the results obtained for the first example. The main difference is that gathering

information about the elastic modulus of one column provides information for the

second column. As a result, there is reduced economical incentive of measuring both

columns. Note that the optimal sequence identified is the same as in the previous

example even if, in this case, expected costs are higher.

Note in Table 3 that the probability of satisfying the reliability constraint p
{a′

ME2}
succeed

computed at the third loop is small. As mentioned in Section 3.2, the Monte Carlo

method is not the most suited for computing such small probabilities. However, the

accuracy of p
{a′

ME2}
succeed could not have changed the choice of the optimal action because

action aME1, which is itself suboptimal, has a probability of success of 0.13 and a
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Table 3: Optimized upper bound of the expected costs E[C(A)] and the probability of satisfying the reliability

constraint p
{ai}
succeed

(separated by the symbol “|”) computed during each optimization loop. For each loop, the

action marked with the symbol “X” represent actions previously selected and the upper bound of expected

costs corresponding to the optimal action is enclosed in a box. The symbol “-” denotes an action that has been

discarded.

Action loop #1 loop #2 loop #3 loop #4 loop#5†

Replace, (aCI1) 800|1 304|1 192|1 130|1 121|1

Strengthen, (aCI2) 1100|0 354|0.21 205|0.30 125|0.45 143|0.01

Load test, (aME1) 805|0 275|0.10 170|0.13 121|0.13 X

Measure E1, (aME2) 539|0.51 192|0.39 X X X

Measure E2, (a′
ME2) 539|0.51 192|0.39 192|0.01 - -

Calibrate capacity model error, (aME3) 897|0.12 284|0.32 130|0.60 X X

Refine capacity model, (aMR) 304|0.63 X X X X

†: expected costs for loop #5 are not an upper bound.

cost lower than measuring E2. For this reason, action a′ME2 has been discarded from

consideration in the subsequent loops.

5. Discussion

The methodology presented in this paper allows having a complete picture of the

expected cost of actions considered for reducing the estimated failure probability of

a structure below an admissible threshold. Without minimizing the expected cost for

a complete sequence of actions, decisions may be made for either cheap actions that

do not necessarily satisfy the reliability constraint, or conservative actions that are not

economically efficient. Furthermore, when the optimization is performed for only one

action at the time, i.e., without optimizing a whole sequence, the information about the

combined potential of multiple actions is missing.

The proposed pre-posterior optimization framework can be extended to the analysis

of actions necessary to satisfy reliability constraints for multiple structures, while mini-

mizing overall expected costs. Such an approach can be used for optimal maintenance

management of structures within an infrastructure system.

6. Summary and conclusions

This paper provides a pre-posterior framework for optimizing sequences of infor-

mation gathering and intervention actions and for quantifying the potential gain of

measuring structures instead of choosing costly strengthening and replacement options.

The illustrative example shows that, when a structure does not satisfy an admissible
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failure probability, strengthening or replacement interventions can be sub-optimal first

actions. The examples also show that significant savings can be achieved by reducing

the epistemic uncertainty in existing structures before costly interventions are made to

assure sufficient reliability. In terms of future work, the proposed framework opens new

opportunities for enhancing network-level infrastructure management.
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