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Abstract

In this thesis we show that an n-dimensional Borel set in Euclidean N-space with finite integral
Menger curvature is n-rectifiable, meaning that it can be covered by countably many images
of Lipschitz continuous functions up to a null set in the sense of Hausdorff measure. This
generalises Léger’s [Lég99] rectifiability result for one-dimensional sets to arbitrary dimension
and co-dimension. In addition, we characterise possible integrands and discuss examples
known from the literature.

Intermediate results of independent interest include upper bounds of different versions of
P. Jones’s B-numbers in terms of integral Menger curvature without assuming lower Ahlfors
regularity, in contrast to the results of Lerman and Whitehouse [LW09].
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Zusammenfassung

In dieser Arbeit zeigen wir, dass eine n-dimensionale Borel Menge mit endlicher integraler
Menger Kriimmung n-rektifizierbar ist, d.h. es existieren abzihlbar viele Lipschitz Abbildun-
gen, deren Bilder, bis auf eine Nullmenge bzgl. des Hausdorff Mafles, die Menge tiberdecken.
Dies ist eine Verallgemeinerung von Légers Arbeit [Lég99] tiber Rektifizierbarkeit von eindi-
mensionalen Mengen zu Mengen beliebiger Dimension und Codimension. Wir charakterisieren
mogliche Integranden und diskutieren einige bekannte Beispiele aus anderen Arbeiten.

Als Zwischenergebnis zeigen wir Abschétzungen von P. Jones 8-Zahlen gegen die integrale
Menger Kriimmung. Im Gegensatz zu den Arbeiten von Lerman and Whitehouse [LWO09]
miissen wir nur obere Ahlfors Regularitat voraussetzen.
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1 Introduction

For three points z,y,z € RY, we denote by c(z,v, 2) the inverse of the radius of the circum-
circle determined by these three points. This expression is called Menger curvature! of .y, z.
For a Borel set £ C RY, we define by

= Az, y, 2 g 1 Lz
M2<E>.—/E/E/E (2, 2) AH (2)dH (y)dHL ()

the total Menger curvature of E, where H' denotes the one-dimensional Hausdorff measure.
In 1999, J.C. Léger proved the following theorem.

Theorem ([Lég99)). If E C RN is some Borel set with 0 < H'(E) < 0o and Ms(E) < oo,
then E is 1-rectifiable, i.e., there exists a countable family of Lipschitz functions f; : R — RN
such that HY(E\ |, fi(R)) = 0.

This result is an important step in the proof of Vitushkin’s conjecture (for more details
see [Toll4a, Dud10]), which states that a compact set with finite one-dimensional Hausdorff
measure is removable for bounded analytic functions if and only if it is purely 1-unrectifiable,
which means that every 1-rectifiable subset of this set has Hausdorff measure zero. A higher di-
mensional analogue of Vitushkin’s conjecture is proven in [NTV14] but without using a higher
dimensional version of Léger’s theorem since in the higher dimensional setting there seems to
be no connection between the n-dimensional Riesz transform and curvature (cf. introduction
of [NTV14]).

There exist several generalisations of Léger’s result. Hahlomaa proved in [Hah08, Hah07,
HahO05] that if X is a metric space and Ma(X) < oo, then X is 1-rectifiable. Another version
of this theorem dealing with sets of fractional Hausdorff dimension equal or less than % is
given by Lin and Mattila in [LMOO].

In the present work, we generalise the result of Léger to arbitrary dimension and co-
dimension, i.e., for n-dimensional subsets of RY where n € N satisfies n < N. In the case
n = N every E C RY is n-rectifiable. On the one hand, it is quite clear which conclusion
we want to obtain, namely that the set E is n-rectifiable, which means that there exists a
countable family of Lipschitz functions f; : R® — RY such that H"(E\J, fi(R")) = 0. On the
other hand, it is by no means clear how to define integral Menger curvature for n-dimensional
sets. Léger himself suggested an expression which turns out to be improper for our proof?
(cf. Lemma 3.12 in section 3.2). We characterise possible integrands for our result in Definition
3.1, but for now let us start with an explicit example:

Hn+1(A(ﬂfo, ooy l‘n+1))

Ho<i<j<n+1d(Ti, 75)

K(xOJ s 7xn+1) =

'Named after Karl Menger [Men30] who realized that c(z,y,2) can be expressed purely in terms of mutual
distances between the points. Menger’s goal was a coordinate free metric geometry in contrast to classic
differential geometry.

?Hence, we agree with a remark made by Lerman and Whitehouse at the end of the introduction of [LW09].
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where the numerator denotes the (n + 1)-dimensional volume of the simplex spanned by the
vertices o, ..., Zn4+1, and d(x;, x;) is the distance between z; and x;. Using the law of sines,
we obtain for n = 1

AL (o, 21, 5) Zlc(l‘ Ty, x2)
d(x07x1)d($0,$2)d(x1’x2) 4 0,L1,L2).

K(zo,z1,22) =

Hence, K can be regarded as a generalisation of the original Menger curvature for higher
dimensions. We set

M}CQ (E) = /E . ./E]Cz(:Eo, e ,xn+1) d?‘[”(ﬂfo) e d?—l”(x,Hl)

Now we can state our main theorem for this specific integrand (see Theorem 3.4 for the general
version).

Theorem 1.1. If E C RN is some Borel set with My2(E) < oo, then E is n-rectifiable.

In the one-dimensional case, one gets 1-rectifiability for every connected set £ C RY with
HY(E) < oo [Fed69, remark at the end of 3.3.22]. Federer mentions that no comparable result
is valid for higher dimensional sets.

In the higher dimensional case, there exist well-known equivalent characterisations of n-
rectifiability, for example, in terms of approximating tangent planes [Mat95, Thm. 15.19],
orthogonal projections [Mat95, Thm. 18.1, Besicovitch-Federer projection theorem]|, and in
terms of densities [Mat95, Thm. 17.6 and Thm. 17.8 (Preiss’s theorem)]. Recently, Tolsa and
Toro proved in [TT14] among other things that for some Borel set E C RY with H"(E) < oo,
fulfilling some lower and upper density property, the condition

1
J
is equivalent to being n-rectifiable. For the case n = 1, in [Toll4b], Tolsa could even get the
same result without the density condition.

H'(B(x,r)NE)  H"'(B(z,2r)NE)|*dr < o
rn (27‘)" r

Now we present some of our own intermediate results that finally lead to the proof of
Theorem 1.1, but that might also be of independent interest itself. A key tool are the so
called S-numbers® defined for k > 1, z € RV, t >0, p > 1 by

1
. 1 d(y,P)>p Y

oz t) = £ = SCALIPAS I |
Bpk(, 1) L (tn /B (m)< ; w) |

where P(N,n) denotes the set of all n-dimensional planes in RY, d(y, P) is the distance of y
to the n-dimensional plane P and yx is a Borel measure on RY. There is a connection between
those g-numbers and integral Menger curvature. In section 5.2, we prove the following theorem
(see Theorem 5.6 for a more general version):

3Introduced by P. W. Jones in [Jon90] and [Jon91].



Theorem 1.2. Let i be some arbitrary Borel measure on RY with compact support such that
there is a constant C > 1 with pu(B) < C(diam B)" for all balls B C RN (one may call this
upper Ahlfors reqularity), where diam B denotes the diameter of the ball B. Let B(x,t) be a
fized ball with p(B(x,t)) > At" for some A > 0 and let k > 2. Then there exist some constants
k1 >1 and C > 1 such that

C

Ba(a, ) < /B o /B g X200 n) (o). dnnsn),
Z,k1 T,K1

where D = {(xq, ..., xn41) € Bz, kit)"2|d(z;, x;) > ﬁ,i #3j}.

A measure p is said to be n-dimensional Ahlfors regular if and only if there exists some
constant C > 1 so that & (diam B)" < pu(B) < C(diam B)" for all balls B with centre on the
support of . We mention that we do not have to assume for this theorem that the measure u
is n-dimensional Ahlfors regular. We only need the upper Ahlfors regularity and the condition
pu(B(x,t)) > A" for this specific ball B(z,t).

Lerman and Whitehouse obtain a comparable result in [LW09, Thm. 1.1]. The main differ-
ences are that, on the one hand, they have to use an n-dimensional Ahlfors regular measure,
but, on the other hand, they work in a real separable Hilbert space of possibly infinite di-
mension instead of RY. The higher dimensional Menger curvatures they used (see [LWO09,
introduction and section 6]) are examples of integrands that also fit in our more general set-
ting*. This means that all of our results are valid if one uses their integrands instead of the
initial K presented as an example above.

In addition to rectifiability, there is the notion of uniform rectifiability, which implies rectifi-
ability. A set is uniformly rectifiable if it is Ahlfors regular® and if it fulfils a second condition
in terms of S-numbers (cf. [DS93, Thm. 1.57, (1.59)]). In [LW09] and [LW11], Lerman and
Whitehouse give an alternative characterisation of uniform rectifiability by proving that for
an Ahlfors regular set this S-number term is comparable to a term expressed with integral
Menger curvature. One of the two inequalities needed is given in [LW09, Thm. 1.3], and is
similar to our following theorem, which is a consequence of Theorem 1.2 in connection with
Fubini’s theorem (see Theorem 5.7 for a more general version). We emphasise again that in
our case the measure p does not have to be Ahlfors regular.

Theorem 1.3. Let u, A and k be as in the previous theorem. There exists a constant C > 1
such that

o0 de¢
//0 ﬁ2;k(x7t)21{u(B(ac,t))2)\t"}Tdﬂ(x) < C M2 ().

In the last years, there occurred several papers working with integral Menger curvatures.
Some deal with (one-dimensional) space curves and get higher regularity (C1®) of the arc
length parametrisation if the integral Menger curvature is finite, e.g [SSvdMO09, SSvdM10].
Others handle higher dimensional objects in [Kol12, KSvdM13, SvdM11] occasionally using
versions of integral Menger curvatures similar to ours®. Remarkable are the results of Blatt

4A characterisation of all possible integrands for our result can be found at the beginning of section 3.1. In
Lemma 3.8, we discuss one of the integrands of Lerman and Whitehouse.

5A set E is n-dimensional Ahlfors regular if and only if the restricted Hausdorff measure H"LE is n-
dimensional Ahlfors regular.

50ur main result does not work with their integrands, but most of the partial results are valid, cf. section 3.2.
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and Kolasinski [BK12, Blal3]. They proved among other things that for p > n(n + 1) and
some compact n-dimensional C' manifold X

n+1 D

diam(A xo,...,xn+1))

is equivalent to having a local representation as the graph of a function belonging to the

Sobolev Slobodeckij space WQin(nH)

Finally, we mention that in [SSvdM13, SvdM13a] Menger curvature energies are recently
used as knot energies in geometric knot theory to avoid some of the drawbacks of self-repulsing
potentials by the M&bius energy [O’H91, FHW94].

Sketch of the proof

Theorem 1.1 is proven by an indirect argumentation following the general strategy of Léger.
We assume that the set E is not n-rectifiable and a subset of B(0, 1). It is possible (cf. Lemma
A.1) to decompose E into two disjoint subsets F, and E, where one is n-rectifiable and the
other one is purely n-unrectifiable. Herein, a set FE, is purely n-unrectifiable if we have
H"(E, N f(R™)) = 0 for every Lipschitz function f : R” — RY. Our assumption implies that
H"(E,) > 0. It is possible to find a subset E, of E, with ’H”(Eu) > 0 and E, is compact,
upper Ahlfors regular and has very small integral Menger curvature. Since E, is a subset of
E, we obtain M,@(Eu) < 00. To get a contradiction it is now enough to define a Lipschitz
function f : R* — RN with H"(E, N f(R")) > 0. In order to define this function f, we will
define some function A : Py — POL in chapter 6, where Py C RY is an n-dimensional subspace
of RN and POL denotes the orthogonal complement of Fy. We choose Py such that it is a good
approximation of F, in the sense of S-numbers. This is possible since the S-numbers are
controlled by the integral Menger curvature and we choose E, keeping the integral Menger
curvature of F, small.

Next, we divide E,, in four parts, namely Z and F}, Fb, F3. F} will be the set which collects
the thin parts of E, and in F, we collect those parts of F, with locally large S-numbers. The
construction of Fj is a bit more complicated. We combine all components of Eu, where in a
local sense good approximations by n-planes exist, but all those planes have a large angle to
the plane FPy. Finally, the rest of E,isin Z.

Now it is possible to define a Lipschitz continuous function A : R* — RY such that the
graph of A covers Z. All this is done in chapter 6.

The following chapters 7 and 8 prove that the set Z can not be a null set which implies
that we have covered a non-trivial part of E,, with the graph of A. This is in contradiction to
the assumption that F, D E, is purely n-unrectifialble. It is relatively easy to see that the
thin set Fp is small. The set F5 is small since, with the Theorem 1.3, we have controlled the
size of all S-numbers from small to large scale by the integral Menger curvature. It is more
complicated to prove that F3 is small. For this purpose, we introduce the expression

’VA(q;t) = lgf :i/B( oo d(fl(uzf’a(u))d%n(u)

affine function

and get some control on this expression by the integral Menger curvature, similar to the one



we get on the S-numbers (cf. section 7.2). Due to the fact that the function A was constructed
approximating F3, the control we have on the y-functions finally implies that even Fj is small.

We mention that exactly this final step, the smallness of Fj, is the one which reduces the
amount of possible integrands for the main result (cf. Definition 3.1) to those that have the
right scaling behaviour together with the integrability exponent p = 2. For example, the
integrand used in [KSvdM13]

H (Ao, -+ Tnt1))
diam A(xg, . .., Tpp1)" T2

together with the integrability exponent p = n(n + 1) is suitable for all parts of our proof
except for the last one. If you change the exponent of the denominator from n+2 to w

together with integrability exponent p = 2, the main result is valid again.

Organisation of this work

In chapter 2, we introduce simplices and give some notation and basic results. Furthermore, we
define the angle between affine subspaces and state some lemmas working with this notion. In
the next chapter, we can give the precise formulation of our main result Theorem 3.4 including
the characterisation of integrands and integral Menger curvatures for which our main result
holds. In particular, Theorem 1.1 turns out to be a simple corollary of this main result. After
that, we give some examples of integrands known from several papers working with integral
Menger curvatures and explain which of those are suitable for our setting. The following
chapters 4 to 8 give the proof of our main result following the sketch given above. In chapter
5, we present some results for a Borel measure including the general versions of Theorems 1.2
and 1.3, namely Theorem 5.6 and 5.7. We remark that all statements in chapter 6, 7 and 8,
except section 7.1, depend on the construction given in chapter 6.






2 Preliminaries

2.1 Basic notation

Let nym,N e Nwithl <n< Nand1<m< N. If £ C RV is some subset of RN, we
write E for its closure and E for its interior. We set d(z,y) := |& — y| where z,y € RN
and | - | is the usual Euclidean norm. Furthermore, for z € RY and FEi,Ey C RY, we
set d(x, Es) = infycp, d(x,y), d(E1, Es) = inf,cp, d(z, E2) and #E means the number of
elements of E. By B(z,r) we denote the closed ball in RV with centre  and radius r, and
we define by w, the n-dimensional volume of the n-dimensional unit ball.

2.2 Basic linear algebra facts

Let G(N,m) be the Grassmannian, the space of all m-dimensional linear subspaces of R and
P(N,m) the set of all m-dimensional affine subspaces of RV. For P € P(N,m), we define
7p as the orthogonal projection on P, i.e., for a point a € R™ the point 7p(a) is the unique
point in P that fulfils [rp(a) —a] L P. If P € P(N,m), we have that P — wp(0) € G(N,m),
hence P — 7p(0) is the linear subspace parallel to P. Furthermore, we set 75 := WI%_WP 0 =

T(P—rp(0))L Where T(p_r (o))« is the orthogonal projection on the orthogonal complement of
P — 7p(0). This implies that 75 = 7r1l3 and 7p # 75 whenever P is parallel but not equal to

P.

Furthermore, for A C RN and z € RV, we set A + 2 := {y € R"|y — 2 € A}. By span(A),
we denote the linear subspace of RY spanned by the elements of A. If A = {oy,...,0} or
A = A U As, we may write span(o1, ..., 0p,) resp. span(Aj, As) instead of span(A).

Lemma 2.1. Let P € P(N,m) and a,z € RN. We have
np(a) = mp_z(a —x) + .

Proof. The point mp_,(a — x) is in P — 2 and so mp_,(a — x) + x is in P. Furthermore
mp—z(a — x) fulfils [rp_z(a —2z) — (a —x)] L P — 2 where P — z is parallel to P. So we
conclude that [(mp_,(a — z) + z) — a] L P which implies that 7p_,(a — ) + x = wp(a). O

Lemma 2.2. Let b,a,a; € RN, a; €R fori=1,..1, 1 € N with

!
b=a+ Y ai(a—a)
=1

and P € P(N,m). Then we have
l

wp(b) =7p (a) + Y ailmp(ai) — 7p(a)].

=1
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For those b € RY, the projection 7p seems to be linear, although P is an affine subspace.

Proof. We choose x € P so that P — x is a linear subspace of RV, Using Lemma 2.1, we get
l l
Tp (a + Zai(ai - a)) = Tp_g <a + Zai(ai —a)— :L’) 4+
i=1 i=1

l
=7p_gla—z)+ax+ Zai [Wp_m(ai —z)+x—7p_gla—x)— x]
i=1

l

=mp(a)+ Y ai[mp(a;) — wp(a)].

i=1

Lemma 2.3. With the requirements of Lemma 2.2, we have
I

d(b, P) < d(a, P)+>_ |as| (d(a;, P) + d(a, P)).
i=1
Proof. With Lemma 2.2, we get
d(b, P) = [b—mp(b)]

! !
=la+ Zai(ai —a)— <7TP (a) + Zai [Wp(ai) — Wp(@)]) '

i=1

O]

Lemma 2.4. Let U,V € G(N,m) with dimU =dimV =m < N and dim(UNV) =m — 1.
For uy,us € U\ 'V, we have

|ug — my (u1)| _ lug — v (ug)|
lur — v (ur)]  Jue — oy (u2)]
Proof. We choose an orthonormal basis of U NV = span(oy,...,0,-1) and extend this to

orthonormal bases of U and of V:
U = span(o1,...,0m—_1,00),
V = span(o1,...,0m—1,0v).
For uj,up € U\ 'V, we find o, o, Bi, fu, € R, i =1,...,m — 1, with

m—1

up = E @;0; + o, 0y,
i=1

m—1
Uy = Z Bi0i 4 Busou -

i=1



2.2 Basic linear algebra facts

With 7y (0;) = 0; for i € {1,...,m — 1}, we obtain

m—1

Ty (ur) = Z @;0; + aw, Ty (ov)
i=1

and consequently
uy — v (u1) = e, (ov — v (ov)) -
Furthermore, we deduce
uy — Tunv (u1) = o, ou — Tunv (Qw, 0U) = Qw, 0u-
=0

For us we get corresponding equations and so we conclude

lup — 7y (ur)]  ow, (o — v (oy)) |
lur — ey (w)] vy, o |
= loy — v (ov)|
lug — my (u2)|

ug — muav (u2)]

Py

P

lai—mpy(a1)]  |az—7p,(a2)]
la1—7p APy (a1)] — laz—7p;np, (a2)]

Figure 2.1: Illustration of Corollary 2.5:

Corollary 2.5. Let P, P, € P(N,m) with dim P; = dim P» = m < N and dim(P; N P) =
m — 1. For ay,as € Py \ P,, we have

lay — 7p,(a1)] _ lag — mp, (a2)|
|a1 — TPNP, (al)’ |a2 — TPINP, (a2)|
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Proof. Choose some x € PPN Py, set U:=P—z, V=P —x,u :=a1 —T, Ug := a2 — &
and use Lemma 2.4 as well as

|ai — 7py(ai)| = |a; —x — (7py(ai) — 2)| = |ai — 2 — 7P, o (ai — x)| = |us — 7V (us)]
and
la; — mpinpy ()| = |ai — @ — TP —o)n(Py—a) (@i — @) = [ — Tuav (us)]
where we have used Lemma 2.1 and i € {1, 2}. O

Lemma 2.6. Let A, B be affine subspaces of RV with A C B and let a € RN. We have
ma(rp(a)) = ma(a) = wp(ra(a)).

Proof. Due to A C B, the second equality is obvious, so we focus on the first one. Let
r € A C B. We deduce that A — z, B — x are linear subspaces of RY. Let (01,...,0;) be an
orthonormal basis of A — x, (01,...,07,0111,...,0m,) be an orthonormal basis of B — z and
(01,...,0n) be an orthonormal basis of RY. There exist some «; € R with

N
a— T = E Q;0;.
i=1

So we get

m l
TA—o(Tp—z(a—T)) = Ta_y (Z aioi> = Z%‘Oi =T4—z(a—x).
i=1 j

=1

We conclude with Lemma 2.1

ma(rp(a)) —x =7ma—p(mp_p(a — ) =Tp—p(a —x) = wa(a) — x.

2.3 Simplices

Definition 2.7. Let 2; € RN fori =0,1,...,m. We define A(zo, ..., zm) = A({z0,...,2Zm})

as the convex hull of the set {zg,...,zn} and call it simplex or m-simplex when m =
dimy (A(zo, ..., Zm)), the Hausdorff dimension of A(zg,...,zy).
Notation. If the vertices of T' = A(zo, ..., Z.,) are in some set G C RN, i.e., zg,..., 2, € G,

we write T = A(xg, ..., zy) € G.

With aff(E) we denote the smallest affine subspace of RV that contains the set £ C RN, If
E = {zo}, we set aff(E) = {zo}.

Definition 2.8. Let T = A(xo, ..., z,) € RY. Fori,j € {0,1,...,m} we set
fo, T = fcxiT = A({zo, ..., o} \ {wi}),
fci,jT = fczvi,ach = A({xo, . .. 7xm} \ {xirrj})?
h:T = b, T = d(aci, aff({zo,...,Tm} \ {mz}))

10
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Definition 2.9. Let T = A(xo,...,7m,) be an m-simplex in RY. If h;T > o for all i =
0,1,...,m, we call T an (m, o)-simplex.

Remark 2.10. Let T'= A(xq,...,2) an (m,o)-simplex. For all i € {0,...,m}, we have
d(.%’i, aff(Az)) > biT >0
for every 0 # A; C {zo,...,zn} \ {zi}.

Definition 2.11. Let T = A(xo,...,2,;) be an m-simplex in R™. By H™(T) we denote the
volume of T" and we define the normalized volume

o(T) := m! H™(T)

which is the volume of the parallelotope spanned by the simplex T" (cf. [Ste66]). We also have
a characterisation of v(7") by the Gram determinant

o(T) = \/Gram(:cl — ZOy ey Ty — X0)s

where the Gram determinant of vectors vy, ..., v, € RY is defined by

Gram(vy, . .., Up) := det ((vq,. .. com) (v, Um)) -

Remark 2.12. Let T' = A(xo,...,Zn) be an m-simplex. The volume of the parallelotope,
spanned by T, fulfils
o(T) = ;T v(fe,T)

which implies
1
H™(T) = —b:T H" ' (je,T)
m
for the volume of a simplex.

Lemma 2.13. Let T' = A(xo, ..., %) be an m-simplex. We have

b.T _ bT
bife, T bfe, T

Proof. We have
hi(T) _ o(7T)

bi(fe;T)  bi(fe;T) v(fe,T)
B h;(T) v(fe;T)
 0i(e;T) b (Fe;T) o(fe; ;T)
(T o(fe;T)
b T) o(5e;T)
h;(T)

b T)

11



2 Preliminaries

Lemma 2.14. Let 0 < h < H, 1 < m < N +1 and yo,z; € RN, i = 0,1,...,m. If
Ty = A(zo, ..., Tm) is an (m, H)-simplez and d(yo,zo) < h, then Ty = A(yo, x1,...,%m) is
an (m, H — h)-simplez.

Proof. We have
boTy > hoT: — d(wo,y0) > H — h.

Now, we show that T, > H — h.
If m =1, we have h1T,, = d(yo, 1) = hoT},. So we can assume that m > 2 for the rest of this
proof. We set 2o := Tag(jc, 7,,) (*0),

T, := A(20, %1, -, Tm)
and start with some intermediate results:
I. Due to hoTy, > H — h > 0, T}, is an m-simplex.
II. We get

d(xo, z0) = d(wo, aff(fe; 7)) < d(z0,%0) < h.

III. Due to 2y € aff(f¢;Ty), there exists some 7; € R, i =0,3,...,m with

m

zo = w2 +1o(Yo — z2) + er(:nj — T3).
j=3

IV. We get with Lemma 2.2 and because of mag(jc,1,)(7i) = z; for i =2,...m

boT. = d(20, aff(feT%)) = |20 — Tag(je 1) (20)]
= |royo — TOWaff(fcoTz)(yO)‘
= rod(yo, aff(fcoT%))
= TOhO(Ty)-

By using mage, ,1,)(%i) = z; for i = 2,...m, we get analogously

bo(fer T%) = d(z0, aff(feo 1 ) = [20 — Tafi(e, , 72) (20))]
= |royo — TUﬂ-aH(fcoleﬁ)(yOH
= rod(yo, aff(feo 1 T2))
= robo(fe1 Ty)-

V. The plane aff(fc,T}) is an affine subspace of aff(fcq,7%), so with Lemma 2.6, we get

12



2.3 Simplices

Waﬁ(fcolez)(Zo) = Waﬁ(fco’sz)(.’IJO) and hence we obtain

bo(fe1 %) = d(z0, aff(feo 1 T2)) = d(waﬂ(fclTy)(xO)’Waﬁ(fco,lTw)('Zo))
= d(ai(e, 7,) (0), Tat(e, 7,) (Tast e, , 72) (20)))
< d(@o, Tafi(je, , T2 (20))

—

=Tafi(feg,1 T) (£0)

= d(zo, aﬁ(ft071Tm )

= bo(fe1 T).
Now, we deduce with Lemma 2.13
bOTy
Ty = ———~b1(feo T,
Y bo(Fe1 Ty) (e Ty)
v hoT}
= ——b1(feo T
v T,
> hOTzhl(fco I)
hO(fﬁTz)
b1 (feoT)
> (hoTy — d(xo, 20)) ————=.
> (ho (z0,20)) bo(Fer )
. bl(fc Ta:)
1. Cas'e. bg(fc?Tz) > 1.
We obtain with II.
b1 Ty, > H — h.
2. Case: bl(fz%% < 1.
With Lemma 2.13 and II. we get
b1 (feoT) b1 (feoTx)
T, > bl ———= —d(x0,20) ————
Ty 2 00Ty e 1y~ 0 ey T
> 01Ty — d(wo, 20)
>H —h.
Since, for ¢ = 2,...,m, the points z; fulfil the same requirements as x1, we are able to prove
hiT, > H — h for all i = 1,...,m in the same way. So, T} is an (m, H — h)-simplex. O

Lemma 2.15. Let C >0, 1 <m < N and let G C RY be a finite set so that for all (m +1)-
simplices S = A(xo,...,Tmy1) € G, there exists some i € {0,...,m + 1} so that fc;(S) is no
(m, C)-simplex.

Then there exists some m-simplex T, = A(zp,...,2m) € G so that for all a € G, there
exists some i € {0,...,m} with d(a,aff(f¢;(T)) < 2C.

Proof. Since G is finite, we are able to choose T, = A(zp, ..., zm) € G so that

o(T,) = max GU(A(wO,...,wm)). (2.1)

13



2 Preliminaries

We can assume that T}, is an (m, 2C')-simplex, otherwise there would exist some i € {0,...,m}
with b;(T,) < 2C and so for all a € G we would obtain

d(a, aff(fe; (1)) (251) d(zi, aff(fe; (T%))) = bi(T%) < 2C.

Now, choose an arbitrary yo € G. Set S := A(yo, 20, - - -, 2m). From our assumption we know
that one face of S is no (m, C)-simplex. Without loss of generality we assume that

Ty = Ao, 21,-- -, %m)
is not an (m, C)-simplex (but an m-simplex). So there exists some i € {0,...,m} with
[]Z‘(Ty) <C. (2.2)

If i = 0, there is nothing to do. So let i # 0. We set h := maq(j,1,)(2:) and using Lemma 2.6,
we get

d(h, aff(feo;Ty)) = d(h, Tas(je, ,1,) (1))

= d(Tagi(je, 1) (20); Tati(fey  7,) [Fati(le,,) (20)]
= d(Tasi(je,1,) (2i)s Tafi(je,Ty) [Tafi(Geo . T,) (20)])
< d(z, aff(feo ; Ty)).- (2.3)
Now, we use Corollary 2.5, with a1 = yo, a2 = h € Py = aff(j¢;,(T})), P aff(fe;(T%)),

Py N Py = aff(fe (1)) and obtain

Tz) =P Nk

Figure 2.2: The setting for applying Corollary 2.5.
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bo(fe, Ty) = d(yo, aff(fey ;(T})))

Cor._2.5 d(h, aff(fco ;(T}))) (fi((lfa jfif((ffcc-i ((;;Z))))))

(2.1)
< d(zq,aff(fe; (T%)))

(2:3) i
< dea, aff(fwTy”Cf;(f,’afi(ff:(g))))))

d(zi, aff(fe;(7%)))
zi, aff(fe;(1%))) — d(zs, h)
. ' d(zi, h)
— hz(fCOTy) (1 + d(zi, aﬁ(fti(Tz))) — d(ZZ', h) )
N——

=h;T.>2C .
b T.> (2:2)hi(Ty)<C

< h’i(chTy) d(

< 2b;(feoTy).
Now, with Lemma 2.13, we have

d(yo, aff(jeo(T2))) = bo(T,) = m<Ty>m e,

O]

Lemma 2.16. Let H > 0,1 <m < N and D C RY be a bounded set. Assume that every
simplex S = A(yo, ..., Ym) € D is not an (m, H)-simplex. Then there exists some | € NU{0},
I <m—1andwxg,...,x; €D sothat D C Uy (aff(xo,...,x;)) = {x € RN |d(z,aff(zq, ..., 2;) <

Proof. We assume #D > 2, otherwise the statement is trivial. We set

0 <! :=max ({ie N| 3 (I, H)-simplex in D} U {0}) <m—1. (2.4)

If | =0, we have D C Uy (aff(xq)) = B(wo, H) for an arbitrary z¢ € D.
Now suppose [ > 1. Since D is bounded, we get

0<K:= sup 0o(A(Zo,...,T)) < 00. (2.5)
Z0,..., L1 ED
Let zf),...,2} € D with lim; o 0(A(xf,...,2})) = K. Since D is bounded, we can choose
some subsequence of :L‘; so that lim;_,~ x; =x; € D for all j =0,...,[ and the limit fulfils
o(A(zg,...,2;)) = K, since the Gram determinant is a continuous function on (RN)l and

V/Gram(zy — zg,. ..,z — x9) = 0(A(wp, ..., z;)) (cf. Definition 2.11).

Now we choose some arbitrary Ti41 € D and some sequence acf 41 € D with lim; x} 1=
r141. From (2.4) we know that A(zy, ..., 2} ) is not an (I + 1, H)-simplex for all i € N.

Let e > 0. There exists some i € N so that \xé —xj| < 5 for all j € {0,...,1}. Due to
Lemma 2.14, the simplex A(wg, 2}, ... ,$§+1) is not an (I + 1, H + ;%5)-simplex. Repeating

15
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this argument, implies that 7' := A(o, ..., 2141) is not an (141, H +¢)-simplex. Hence there
exists some [ € {0,...,] + 1} so that h;(T) < H + . We obtain with Remark 2.12

- 5)
d($l+1,aﬁ($0, .. .,a:l)) = f]l+1(T) = b[(T)m (2§5 [)l”(T)% < H +e.

It follows that D C Upy/(aff(xo,...,7;)) because z;,1 € D and € > 0 were independently and
arbitrarily chosen. O

Lemma 2.17. Let 1 <m < N —1, B be a closed ball in RN and F C B be a H™-measurable
set with H™(F') = oo. There exists a small constant 0 < 0 = o(F,B) < W and some
(m + 1,(m + 3)o)-simplex T = A(xg,...,Tm+1) € B with H™(B(zg,0) N F) = oo and
H™(B(xi,o) N F) >0 forallie{l,...,m+1}.

Proof. We set p:=H™ L F.

1. Claim: There exists some z¢ € B with u(B(xo,h)) = oo for all h > 0.

Assume that there exists some r > 0 so that, for all x € B, we have u(B(z,r)) < co. With
a simple covering argument, we obtain u(B) < oo in contradiction to our requirements. So,
for every ¢ € N and r; := %, we get some y; € B with u(B(y;,r;)) = oco. Since B is compact,
there exists some convergent subsequence (y;) and some xy € B with lim;_,~ y; = xo.

Let h > 0. For some large ¢ we obtain d(xg,y;) < % and r; < % so that u(B(xg,h)) >
u(Blys, ) = oo.

2. Claim: There exists some ¢; > 0 and some z; € B so that the simplex T3 := A(z,x1)
fulfils by (71) > ¢1 and p(B(x1,h)) > 0 for all h > 0.

Assume that we have (B \ B(zo,r)) = 0 for all » > 0. We get u(B) = 0 because we
are able to cover B with null sets. This is a contradiction, so there exists some ¢; > 0
with (B \ B(zo,c1)) > 0. With Lemma A.6, there exists some 1 € B\ B(xg,c1) with
u(B(x1,h)) > 0 for all A > 0. So the simplex T} fulfils h;(71) = d(xo,z1) > c1.

3. Claim: We assume that we already have ¢; > 0 and a simplex T} = A(xg,...,2;) € RN
with h;(T;) > ¢ and pu(B(x;,h)) > 0 for all ¢ € {0,...,l} and h > 0 where | < m. Then
there exists some 0 < ¢;41 < § and some x4y € B so that Tj1; := A(wo,...,x141) fulfils

B141(Ti1) > ¢1 and p(B(zy41,h)) > 0 for all A > 0.
Assume that (B (z0, %) \ Ug(aff(z, . .. ,:Ul))> =0 for all ¢ > 0. We set D; := B (9, %) \

(ofi (aff(zo,...,z;)) and obtain a contradiction

00 = (B (:co, %)) <u (aff(q:g, ...,x)NB (xo, %)) +Z/L(Di) < 0.
{ €N

=0, ifl<m =0

§wm(%)m<oo, ifl=m

So there exists some 0 < ¢;41 < 5 with p ((F N B (z0, %)) \ ﬁcl+l(aﬁ(m0, e ,xl))) > 0 and,

with Lemma A.6, there exists some z;41 € F C B so that Ty := A(xg,...,z41) fulfils
B1+1(T1+1) > 41 and p(B(xp41,h)) > 0 for all A > 0.
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4. Claim: There exists some constant ¢ > 0 so that T := T},,41 is an (m + 1, ¢)-simplex.
Assume that there exists some i € {0,...,m + 1} so that h;(T") = 0. This implies

m+1
0 = b:i(T)o(fe; (1) = o(T) = b1 (Tins1)0(Tr) = | | hi(Ti) > 0.
=l >0
This is a contradiction.
To conclude the proof set o := —£ O

m+3"

2.4 Angles between affine subspaces
Definition 2.18. 1. For G1,G2 € G(N,m), we define
2(G1, Ga) = |76y — M@y,
where the right hand side is the usual norm of the linear map 7g, — 7g,.
2. For P, P, € P(N,m), we define
IL(P1, P2) :=<4(Py — mwp,(0), Po — mp,(0)).

Lemma 2.19. For P;,P, € P(N,m) and w € RY, we have

A(Pr, ) = (P, Po +w).
Proof. Using Lemma 2.1, we get

Py +w—7p,4w(0) = Po — mp,(—w) = Po — wp,(0)

and obtain
S(P1, P2+ w) = 1Tp —np (0) = TPrtw—rpy 4wl = L(P1, P2).

Lemma 2.20 (Triangle inequality). We have for Py, Py, P3 € P(N,m)
L(Pr, P3) < 5(Pr, Pe) + 5(P, Ps).
Proof. This statement follows directly from the triangle inequality for the norm of linear maps

<I(P17 P3) = ”71-P1*TI'P1(0) - 7TP3*7TP3(0)H

< Nmp —rp, 0) = TPr—rp, @) | + 1Py —7p, (0) = TPy—7p, (0)
= (P, P2) + % (Po, P3).

O]

Remark. The angle < is a metric on the Grassmannian G(N, m) but not on P(N,m) because
for P € P(N,m), there exists some w € RY so that <(P, P —w) =0, but P # P — w.
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Lemma 2.21. Let U € G(N,m) and v € RN with |v| = |7y (v)|. Then we have v = 7y (v).
Proof. We have

7 (0)* = ol = v (v) + 75 (0)|? = 7o (0)]* + g (v)]
and so 7z (v) = 0 which implies v = 7y (v) + 755 (v) = 7y (v). O

Lemma 2.22. Let P, P, € G(N,m) and v € SV~ with 0 < 4(P1, P2) = |7p, (v) — 7p, (v)].
Then v € (Py N Py)* Nspan(Py, Py).

Proof. If v € Py N Py, we get (P, Py) =0, so v ¢ PN P,. We have with Lemma 2.6
(P, Po) = |mp (v) — mp, (v))]

= 7P, (Tapan(py 2) (V) — 7B, (Tapan(py, 2 (V)

7TP1< T‘—span(Pl,Pz)(v) > —h, ( Wspan(Pth)(v) > ‘

‘Wspan(Pl,Pz)(v)‘ ‘ﬂ-span(Pl,Pg)(U”

= ‘ﬂ-span(Pl P2) ('l)) ‘
——

<1
=wespan(Py,P2)

< |mp (w) — mpy (w)]
< I(Pp, Py).
Hence |Tgpan(p,,p,)(v)| = 1 = |v| and so, with Lemma 2.21, we conclude v = Tgpan(p;,py) (V) €
span(Py, Ps).
We choose an orthonormal basis of Py N P, = span(oy,...,0;) where | = dim(P; N P) and
extend this to orthonormal bases of P; and of P

1 1
Py =span(o1,...,00,0p1,..-,0,)
_ 2 2
Py = span(oy,...,00,07,1,...,0p,).
We have v € span(P;, P») = span(oy, ..., o, oll_s_17 ...,0b Oz2+17 ...,02,), so there exists some
1 12 2
Oy ey O O gy ey Qs O 1, v, Oy €R

with

U—Z%OH- Z ao +a0)

i=l+1

~~

€PINP, =:0€Q
where Q := (P; N Py)* Nspan(Py, P). We obtain

3(Pr o) = [em (v) — 7y (0)]
= |mp, (8) — 5, (5)|
= |, (m(v)) — 7y (m(v))|
= |mo()| |7 mQ(v) - (V)
= el Pl<|m<v>r> P?(w(vn)’

=1 =weQR

< [y (w) — mpy ()|
§<}:(P1,P2)
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and so |mg(v)| = 1 = |v|. We conclude with Lemma 2.21 v = mg(v) € Q. O
Lemma 2.23. Let Py, P, € G(N,m) with <(P1, P2) <1 and z,y € P;. We have

d(z,y) < md(ﬂ& (), 7P, (y))
and
ok, (0. 74, 0) < T () 7 )

Proof. With z := ﬁ € P; we get

75, () = 75, ()] = |2 — ylI75, (2) + 70, (2) — 7p, (2)]
=lz—yll 2 —-7p(2)
:Trpl(z)

S ’$ - ?J’<I(P1,P2),

so that
d(z,y) < d(mp, (), 7P, (y)) + d(7p,(z), 75, (y))
< d(ﬂ'p2($ 77TP2(3/)) + d(x7y)<I(P1’ PQ)
and finally
Ua.) € Tty e @) 7 )

The first and the last estimate together give

d(eh (), mh, () < — 2P P2)

= md(ﬂ'PQ (x)’ TP, (y))

Corollary 2.24. Let P, P, € P(N,m) with <(Py, P2) <1 and x,y € P,. We have

2.1) € Ty AR (@), 7 )
and
by ()T (0) < 5 a2 7).

Proof. Choose t; € Py, to € P,. We obtain P, — t1, P, — ta € G(IN,m). Using Lemma 2.23,
Lemma 2.1 and Lemma 2.19, we get

d(z,y) = d(x —t1,y — t1)

1
< drm (1 e
>~ ]-_<):(P1_t1,P2—t2) (7TP2 tg(fl? 1),7‘(’]32 tz(y 1))
1
= ———d
= py) @) e (y)
and, analogously, we get the second estimate. .
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Corollary 2.25. Let P, € P(N,m), P, € G(N,m) and %(P1,P2) < 1. There ezists some
affine map a : Py — Ps- with G(a) = Pi, where G(a) is the graph of the map a, and a is
L(P1,P2)

1-<L(P1,P2)°

Proof. According to Corollary 2.24, the projection np, : P| — P» is injective, so obviously
the desired affine map exists, i.e., a(y) = 7r1%2 (771;21‘131 (y)). Now let u,v € P». Using Corollary

2.24 again, we get d(a(u),a(v)) = d(wl%z(a(u) + u),ﬂﬁg(a(v) +v)) < %d(u,v). O

Corollary 2.26. Let P;, P, € G(N,m) and o1,...,0m, be an orthonormal basis of Py. If
d(0i, P2) <6 < &1 :=107110™ + 1)7L, then 4(Py, P2) < 4m(10™ + 1)G.

Proof. For i =1,...,m, set h; := 7p,(0;) and use Lemma 2.3 from [SvdM13b]. O

Lipschitz continuous with Lipschitz constant

For z,y € RN, we set (x,y) to be the usual scalar product in RY.

Lemma 2.27. Let C,C > 1, t > 0 and S = A(Yo,...,Ym) an (m,%)—simplea: with S C
B(x, C’t), x € RN, There exists Y- € R so that

I
or =3 Yr(yr — o)
r=1

is an orthonormal basis of span(y1 — Yo, - - -, Ym — Yo) and
C

il < @) < @meey S

foralll1<I<mandl1l<r<I.
Proof. Since S C B(z, Ct), we have for 4,j € {0,...,m}
d(yi, ;) < 20t. (2.6)
Now we set
Zi ‘= Yi — Yo

foralli =0,...,m, and R := A(20,...,2m) =S — yo. We obtain for ¢ € {1,...,m} (S is an
(m, &)-simplex)

t

d(zi, aff(20,...,2i-1)) > hi(R) = h;(S) > vok

Due to h;(R) > & > 0, we have that (z1,...,2y) are linearly independent. So with the
Gram-Schmidt process we are able to define some orthonormal basis of the m-dimensional
linear subspace span(zi, ..., zn)

(2.7)

<1
01 7= —,
|21
I I
Za1— Y (2410000 21— > (7141, 00)0;
oLy = i=1 _ i=1
i ! d(z41, aff (20, . . ., 21))
’Zl+1 - Z<Zl+17 0i)0;
i=1
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Now we prove by induction that there exists v;, € R with

l

o= .y — o)

r=1
and

il < (21CC)

forall 1 <] <mand 1 <r <[. We have that 0; = éﬁ:zg‘, so set

IA

1 1 27 C
T,1 = = T

ly1 —yo|  d(z1,20)

Now let 1 <1 < m. We assume that, for all ¢ € {1,...,1}, j € {1,...,i}, we have 7, ; € R
with

7
0; = Z Yi,r (yr
r=1

and
i C
173,51 < (21CC) 7

We obtain

!
1
S Rl P P (yl+1 > Ay — 0i>0i>

~ =1
=Y41,14+1
(y 0),01)  «
I+1 — Y0), 04
= V1,041 (Y1 — yo) + e \Yr — Yo
+ +( + ZdZH—l aff( .’zl));’)/zr(r )
((Yir1 — yo), 01)
= V41,041 (Y41 — Yo) + Yir (Yr — o)
;; zl-i-l?aff 205 - "azl)) v
(Y141 — yo) >
= Vit 1,041 (Y1 — yo) + Yir (Yr — o)
;; d(zpy1,aff(20, ..., 21)) LT
= Yi+1,r
1+1
= (v — 0)-
r=1
If r =1+ 1, we have
. 1 e
Yi+1,r| = > -
o d(ZH_l,aff(Zo,...,Zl)) t

21



2 Preliminaries

and if 1 <r <[, we get

(Y141 — y0), 04
|’7l+1 r| Z d Zl :

+1,aff(z0,..., 2)) ‘ i,r‘
< Z C|yl+1 2500) ¢
(2.6 )

< (2100)”10
<20+ 1)00)”1%

n N —1
Lemma 2.28. Let C,C > 1, ¢t > 0,0 < ¢ < (10(1om+1)m0(2m00)m) PP <

P(N,m) and S = A(yo,..-,ym) C P1 an (m,%)-sz’mplex with S C B(x,ét), z € RN and
d(yi, Py) <to for alli € {0,...,m}. It follows that

2(Pr, Po) < 4m(10™ + 1) (m0(2mcé)m) o

Proof. With Lemma 2.27, there exists some orthonormal basis (o1,...,0,) of
span(yi — o, - - -, Ym — Yo) and there exists v, € R with

l
=> .y
r=1

and

ovm O
el < (2mC )™

foralll<l<mand1l<r<I[ Weobtainfor1<IlI<m

l l
d(oy, P2 — yo) = Z'Yl,r(yr - yO) — TPy—yg (Z ’Yl,r(yr - yO)) ‘
r=1 r=1

< Z V| d(yr — Yo, P2 — y0)
< mC(2mCC)"o

Setting & = mC(2mCC)"o <

= m we get with Corollary 2.26

S(P1, Po) = <(Pr — yo, P2 — yo) < 4m(10™ +1) (mC(QmCé)m) o
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Lemma 2.29. Let 0 > 0,t >0, P, P, € P(N,m) with <(P1, P») < o and assume that there
exists p1 € Py, pa € Py with d(p1,p2) < to. Then we have for every w € P

d(w, ) < o(d(w,p1) +1).
Proof. For w € Py, set W :=w — p; € P| — p;. We obtain

d(w, ) = d(w, P, — p1)
< d(w, Py — p2) + d(P2 — p2, P> — p1)

. w w
< |w| |’(I]| —TTPy—po <|'IIJ‘> + d(p17p2)
~
:ﬂPl—pl(%)
<|w —P1|jI(P1 —p1, Py — p2) +to

= (P1,P2)<c
S U(d(val) + t)

O]

Lemma 2.30. For P, P, € G(N,m) with dim(P; N P») = m — 1, we have that for every
veRN
I(Pr, Py) = |mp (v) — mp, ()]
s equivalent to
ve SN N (P N Py)T Nspan(Py, Py).

1)2681

Figure 2.3: For every v € St we get < (P, P5) = |7p,(v) — mp,(v)|. (All red segments have
the same length.)
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2 Preliminaries

Proof. The first direction follows immediately from Lemma 2.22
Now let v € SN=1 N (P NP+ Nspan(Py, P,). We choose an orthonormal basis of Py NPy =
span(o1, . ..,0m—1) and extend this to orthonormal bases of P; and P,

P, =span(o1,...,0m-1,X)
P, =span(o1,...,0m-1,Y).

The vector v fulfils (v,0;) = 0 for all i € {1,...,m — 1} because v € (P, N Py)* and there

m

exists a; € R with v = )] El @;0; + X + ama1Y . This implies v = @ X + ape1Y. The

unit vectors X and Y are linearly independent and we are able to define Y := % #0.

So (Y,Y) is an orthonormal basis of span(X,Y’) and because |v| = 1, we find ¢,d € R with
2+ d*>=1and v=cY +dY. We have

mh (V) = (X, Y)X,
7TP2( ) <X7Y>Yv
X - (X,)V)YP=(X - (X, Y)Y, X — (X,Y)Y)

= (X, X) —2(X, (X, V)Y) + (X, Y)Y, (X, Y)Y)
1-2(X,Y)? + (X, Y)X(V,Y)
1—(X,Y)2

/\

Now, using linearity of the projection, we obtain

o (X_<X,Y)Y>_X—(X,Y><X,Y>X

mp(Y) = X (X.7)Y] —x) =Xv1—(X,Y)%

and

o X—(X,V)Y\ (X,)Y —(X,Y)Y
WPQ(Y)_WP (’X—<X,Y>Y‘) - _<va>2 B

With this identities we get
2
TPy (0) — 7R, (0)]

erp (Y) + drp, (V) — (cnp, (V) +dp, (7)) ‘2
= -0

cX(X,Y) +dX/1— (X,Y)? — cyf
= (X (X,Y) +dX /1= (X,YV)2—¢Y,cX(X,Y) +dX+/1—(X,Y)2 —cY)
= (eX(X,Y),cX(X,Y)) + 2(cX(X,Y),dX /1 - (X,Y)2) — 2(cX(X,Y),cY)
+(dX /1= (X, Y)2,dX V1~ (X,Y)2) + (cY,eY) = 2(dX /1 - (X, Y)%,cY)
=X, V) +d*(1 — (X,V)?) + 2
+2ed(X,Y)/1— (X,Y)2 - 2(X,Y)? — 2¢d\/1 — (X,Y)2(X,Y)
XYV - (X, Y2+ P+ d?
—(X, V)2 41
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2.4 Angles between affine subspaces

so that
7P (v) =7, (v)] = V1= (X, Y)?
is independent of v € SN=1 N (P N Py)* Nspan(Py, P;). The definition of the angle yields

I(Pr, o) = sup |mp (w) — mp, (w)]

weSN—1
and so there exists some w € SV~! with
(P, Py) = |7p, (w) — mp, (w)] .
Using the first direction, we get @ € S¥=1 N (P N Py)* Nspan(Py, P2) and so we obtain

IL(Pr, ) = |mp (W) — wp, (W)
— I (X,Y)?

= |7p (v) = 7, (V)] -

O

Lemma 2.31. Under the conditions of Corollary 2.5, i.e., P, P, € P(N,m) with dim P, =

dim P, =m < N, dim(P N P) =m—1 and a; € P, \ Py, we have

|(11 - 7TP2(al)| — <):(P1,P2).
a1 — pinpy (a1)]
Proof. In the proof of Corollary 2.5, we find U,V € G(N,m) and uy € U \ V with
lar —7py(ar)| Jun — 7y (u)]
la1 — mpnpy(a1)]  Jur — muav (u1))|
In the proof of Lemma 2.4, we find oy € SY=1 N (U N V)* Nspan(U, V) with
= Lo,y (o0)] = o fow) — (o)
lur — muav (ur)
Using Lemma 2.30, we obtain altogether
|Cl1 - 7TP2(CL1)| — |7TU(OU) o WV(OU)‘ — <I(U, V) — <I(P1,P2).
a1 — PP, (a1)]

O
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3 Integral Menger curvature and rectifiability

3.1 Main result

Let n, N € N with 1 <n < N. We start with some definitions necessary for our main result.

Definition 3.1 (Proper integrand). Let K : (RN)n+2 — [0,00) and p > 1. We say that K7 is
a proper integrand if it fulfils the following four conditions:

o K is (H™)" % measurable, where (H™)"*? denotes the n + 2-times product measure of

H™.
e There exists some constants ¢ = ¢(n,/C,p) > 1 and | = l( K,p) > 1 so that, for all
t>0,C>1,zcRY and all (n, C) -simplices A(zo,...,x,) C B(z,Ct), we have
P
<d(w, aff(az(z, - ,1'77,))) < CCltn(n+1)Kp(l'0, T, w)

for all w € B(z, Ct).
e For all t > 0, we have
DR (g, . teng) = KP (2o, - - - s Tng)-
e [C is invariant under every translation, i.e., for every b € R, we have
K(xog+b,...,x041 +b) =K(xo,...,Tn+1)-

Definition 3.2. (i) We name a Borel set E C RY purely n-unrectifiable if for every Lip-
schitz continuous function v : R» — RN, we have

H(E N~(R™)) = 0.

(ii) We name a Borel set E C RY n-rectifiable if there exists some countable family of
Lipschitz continuous functions 7; : R* — RY so that

(B | (R") = 0.
=1

Definition 3.3 (integral Menger curvature). Let E C RY be a Borel set. We define the
integral Menger curvature of E with integrand KP by

Mycr (E) ::/E.../EICP(:UO,...,an) AH™ (zy) . .. AH (2 s1).

Now we can state our main result.

Theorem 3.4. Let E C RY be a borel set with My2(E) < oo, where K? is some proper
integrand. Then E is n-rectifiable.
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3 Integral Menger curvature and rectifiability

3.2 Examples of admissible integrands

In the following, we give some examples of integrands, which fulfil the conditions of a proper
integrand, known from several papers working with integral Menger curvatures.

We start with the definition of some set Xy C (RV)"*2 where we collect all flat simplices.
This means, we collect all n + 2-tuples of points in RY so that the elements of such a tuple
are laying in some n-dimensional plane where this plane can change from tuple to tuple. It is
plausible to give some integrand the value 0 on Xj.

Definition 3.5. We define the set
Xo = {(z0,...,zp41) € (RN)"”‘Gram(xl — Zo,...,Tn+1 — o) = 0}

(the Gram determinant is defined in Definition 2.11) which is the set of all simplices with
n + 2 vertices in RY which span at most an n-dimensional affine subspace. The set X is the
fibre of 0 under a continuous function, so X is a closed subset of (RY)"*2 which implies
that Xg is (H™)"*2-measurable (as a product of Borel measures (H")"*2 is a Borel measure
as well, see Lemma A.11).

The following Lemma is helpful to prove that a given integrand fulfils the second condition
of a proper integrand.

Lemma 3.6. Lett >0, C >1, 2 € RN, w € B(x,Ct) and let S = A(xo, ..., x,) C B(x,Ct)
be some (n, %)—simplea:. Setting Sy = A(xog,...,Tn,w) and choosing i,j € {0,...,n} with
J # 1 we have the following statements:

& < d(wi, x;) < diam(S,,) < 20,

d(xz;,w) < 2Ct,

iy < HM(S) < B9,

Cmnl
o H"(S) < A(Sy) < [(n+1)202% + 1]H™(9),
o d(w,aff(xg,...,z)) = n%g)”),

where A(Sy,) denotes the surface area of the simplex S, .

Proof. Since S is an (n, &)-simplex, we have

< 0i(8) < dlai, ) < diam(Sy) =

c nax {d(z1, xm), d(z,w)} < 2Ct (3.1)

{0,..., n}

and because of z;,w € B(x,Ct), we get
d(z;,w) < 2Ct.

Now, with Remark 2.12, we conclude that H"(S) = %H?:_OI d(xy, aff(x;41, ..., x,)) which
implies with Remark 2.10

mo (31) 1 n—1 " 1 "=
o = ) <u(©) < S ]
’ " 1=0
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3.2 Examples of admissible integrands

Using Remark 2.12, we obtain

H (e, (S,)) 222

n

b (55 (Sw)) 7" (Fei ()
—_———

<d(w,z;)<2Ct

1 2t n—1
< — — .
n2C CH (f¢;(9))
(')

< Loy (fe(9)

*Loc2yn(s),

so that with A(Sy) = > ;" H"(fe;Sw) + H™(fe, Sw) and fe,,(Sw) = S, we get
H™(S) < A(Sy) < [(n+ 1)20% + JH™(S).

Finally, with Remark 2.12 and using that S = fc,,(S), we deduce

CHT n ntl w
d(w7aﬁ(x07 o 7:[”)) _ bw(Sw) _ hw(Sw)/}-Z:(é;Cw(Sw)) _ /H/Hn(éf )

Proper Integrands with exponent 2

Now we can state some examples of proper integrands. We mention that for our main state-
ment we can only use those integrands which are proper for integrability exponent p = 2. We
start with the one used in the introduction of this work.

Lemma 3.7. Let zg,...,zp41 € RY and set

7-[7L+1(A($07 s 7xn+1))

X0y 3y Tn+1) € RN)n+2 Xo,
Ho<icj<nird(zi, z5) ( wi1) € (R

K(xgy ..., Tnt1) i=
0 (20,...,2nt1) € Xo,
where X is the set of flat (n + 1)-simplices, defined in Definition 3.5. Then KP is a proper
integrand with p = 2.

Proof. The sets (RV)"+2\ X and X are (H")"2-measurable and the function K is continuous
on (RV)"*+2\ X, as a composition of continuous functions, which implies that K is an (H")"+2-
measurable function on (RV)"+2,

Now we focus on the second and third condition. Let t > 0, C' > 1,2 € RN, A(xg, ..., z,) C
B(z,Ct) be an (n, &)-simplex and w € B(z,Ct). Using Lemma 3.6 and p = 2, there exists

some generic constant C' = C(n, C) so that
(d(w,affm, " ,xm)))p <o <H"+1<A<xo, N ,a:n,w»)?
t - t-1m

. HL(A(zo, - . . , T, 2
< Gyt ( 1 (20, - -+, Tn, w))
ti(n-i—l)(n-i—?)

< Ctr K (o, o).
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3 Integral Menger curvature and rectifiability

We get for some ¢ > 0 and some simplex 7' = A(zo,...,Zn+1) that
n(n+1) §-p n(n+1) 2 2 D
The fourth condition follows directly from the definition of K. O

The next integrand is used by Lerman and Whitehouse in [LW11, LW09].

Lemma 3.8. Let xq,...,2n41 € RY and set
+1
1 Vol 1(A(zo, . -+, 2n11))*

>
n+2 diam(A(zo,...,Tue1)) ) P H%rol |z — a4 |?
FES)

A(xg,..., Tpy1) =

and
Cn<1'0,...,xn+1> (xo,...,$n+1> S (RN)n+2\X0,
K(xoy. ., Tnt1) :=
0 («7307-”73771—}—1) EXO?

where Vol 1 is (n + 1)! times the volume of the simplex A(xg,...,Tnt1), which is equal to
the volume of the parallelotope spanned by this simplex, cf. Definition 2.11. Furthermore, Xo
is the set of flat (n + 1)-simplices defined in Definition 3.5. Then KP is a proper integrand
with p = 2.

Proof. The same argumentation as in Lemma 3.7, implies that K is an (H")"*2-measurable
function.

Lett > 0,C > 1,z € RN, A(zo, ..., z,) C B(z,Ct) be an (n, &)-simplex and w € B(z, Ct).
Using Lemma 3.6 and p = 2, there exists some generic constant C' = C (n,C) so that

<d(w,aff(xo, . ,xnﬂ)))P <6 (VolnH(A(xo, . ,xn,w))>2

t t-tn
< Gynn+1) Vol,,11(A(zg, . . ., 2, w))? n§+:1 1
- n(n+1) — 2(n+1)
< Cr D2 (20, L)
We get for some t > 0 and some simplex T' = A(zo, ..., Tn+1) that

n(n+1) g-p n(n+1) 20D 1 2 D

O]

The following integrand is mentioned among others in [LW09, section 6]. It can be re-
garded as an adaptation of the integrand from the following Lemma 3.11 used e.g. in [BK12,
KSvdM13].
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3.2 Examples of admissible integrands

Lemma 3.9. Let zg,..., 241 € RY and set
H”+1(A(a:0, e, L +1))
. 7n+1)(n+2) <m07 s 7xn+1> € (RN)n+2 \ Xo,
K(zoy ..., Tpt1) := diam A(zo, . . ., Tni1 2
0 (l‘o,...,l’nJrl) € Xo,

where X is the set of flat (n + 1)-simplices defined in Definition 3.5. Then KP is a proper
integrand with p = 2.

Proof. The proof is completely analogue to the preceding ones. O

Proper Integrands with exponents different from 2

Now we present some integrands for integral Menger curvature used in several papers, where
the scaling behaviour implies that our main result can not be applied. Nevertheless, most of
our partial results are valid for these integrands.

The first integrand we consider was introduced for n = 2, N = 3 in [SvdM11].

Lemma 3.10. Let xg,...,Tp41 € RN and set
V(T) -
A e (@05 i) € (RT)MHEA Xo,
K(xo, ...y Tpy1) := A(T)(diam T")
0 (x07"‘7$n+1)€X0,

where V(T) is the volume of the simplex T = A(xo,...,znt+1), A(T) is the surface area of
T and Xy is the set of flat (n + 1)-simplices defined in Definition 3.5. Then KP is a proper
integrand with p = n(n +1).

Proof. The same argumentation as in Lemma 3.7, implies that K is an (H")"*2-measurable
function.

Let t >0, C > 1,z € RN, S = A(zo,...,2,) C B(z,Ct) be an (n, §)-simplex and
w € B(z,Ct). We set S, = A(xg,...,x,, w) and using Lemma 3.6, we obtain

d(w, aff(xo, ..., zn)) ; nH"TL(S,)

t - H(S) - t2
(4 120 4 1](20)7 — T (Sw)
i+ 2 RO ) (dam(S,))
< tn(n+2)8C* K(xg, ..., Tn,w). (3.2)

Hence we get with p =n(n+ 1)

ff ooz
<d(wya (x;), y L ))> < (n(n+2)8)p04ptn(n+1)lcp($0’“‘7$n’w).

For some t > 0 and some simplex T = A(xy, ..., Tn11) We get, because of the scaling behaviour
of the volume V(T'), the surface area A(T") and the diameter diam(7")

thrlv(T) n(n+1)
tn(n—i—l) P(¢T) — tn(n—l—l) — KP(T).
KACT) tn A(T)t? diam(T)? KAT)
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3 Integral Menger curvature and rectifiability

The fourth condition follows directly from the definition of /. All in all, we have verified all
four conditions of a proper integrand. O

The next integrand is used, for example, in [BK12, KSvdM13].
Lemma 3.11. Let xg, ..., 2,41 € RY and set

H" (Ao, - -+ Tay1))
diam(A(wo, . . ., Tpt1))"+>

(an ce 7xn+1) € (RN)n+2 \ XO?
K(xgy..., Tnt1) :=

0 (z0,- -+ Tnt1) € Xo,

where X is the set of flat (n + 1)-simplices defined in Definition 3.5. Then KP is a proper
integrand with p = n(n + 1).

n+2_measurable

Proof. The same argumentation as in Lemma 3.7, implies that I is an (H™)
function.

Lett>0,C>1,2 RN, A(xg,...,z,) C B(zx,Ct) be an (n, %)—simplex and w € B(z,Ct).

We set Sy = A(zo,...,ZTnt1,w) and using Lemma 3.6 and p = n(n + 1), we obtain
d(w7 a.ff(.ng, t 7xn)) P — tn(n-i—l) an+1(Sw) P
t H(S) - 2
< 2(”+2)pC’(2”+2)pn!nt”("+1)ICp(xo, ey T, W)
and with

n+1lq/m+2 n(n+1)
AT ) — KP(T)

n(n+1) 4p _ 4n(n+1)
t KPRT) =1 <t”+2diam(T)”+2

the first three conditions of a proper integrand are fulfilled. The fourth follows directly from
the definition of K. O

Finally, Léger suggested the following integrand in [Lég99] for a higher dimensional analogue
of his theorem. Unfortunately, we can not affirm his suggestion. For n = 1 up to a factor of
2, this integrand gives the inverse of the circumcircle of the three points g, 1, x2, hence the
original integrand of Léger.

Lemma 3.12. Let xg, ..., 2,41 € RY and set

d(xn—‘,-ly aE(IO) cty xn))

LOye--y Ty S RNn+2 )(7
d(xn+17$0)"'d($n+1,xn) (0 +1) ( ) \ 0

IC(.’L'(), N ,l’n+1) =
0 (an"'axn-i-l) €X07

where X is the set of flat (n + 1)-simplices defined in Definition 3.5. Then KP is a proper
integrand with p = (n + 1).
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3.2 Examples of admissible integrands

n—+2

Proof. The same argumentation as in Lemma 3.7, implies that £ is an (H")""“-measurable

function.
Lett>0,C>1,2 € RN, A(xg,...,2,) C B(x,Ct) be an (n, %)—simplex and w € B(z,Ct).
Using Lemma 3.6 and p = n + 1, we obtain

<d(w,aﬁ(:co,t. , ,xn+1))>p — (20) (Vg <d(w7aﬂ(5(23700;)-7;1$n+1))>p

< (20)(n+1)(n+1)tn(n+1) d(wv aff(a:o, R 7$n+1)) P )
- d(w,xg) ...d(w,zy,)

Due to the scaling behaviour of the distance, we get for some ¢ > 0 and some simplex
T = A(xg, ..., Tny1) that

t d(ﬂfn 7aH(IOa e 7:671)) m
e n) = e (gl s) e,
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4 Proof of the main result

At the end of this chapter (page 42), we will give a proof of our main result Theorem 3.4 under
the assumption that the forthcoming Theorem 4.6 is correct. We start with a few lemmas
helpful for this proof.

4.1 Reduction to a symmetric integrand

Lemma 4.1. Let KP be some proper integrand (see Definition 3.1). There exists some proper
integrand KP, which is symmetric in all components and fulfils Myr(E) = Mg, (E) for all
Borel sets E.

Proof. We set

]Cp<w07" xn—i—l Z ICp $0,...,xn+1)),
#Sn-i-Q bES,,
+2

where S,,49 is the symmetric group of all permutations of n+ 2 symbols. Obviously, K7 fulfils
the first and the last condition of a proper integrand. Furthermore, we have

KP(xo, ..., xn,w) < #Sp40 I@p(xo, ey Tnt)s

which implies that KP fulfils the second condition as well.
With Fubini’s theorem [EG92, 1.4, Thm. 1], we obtain for some Borel set E

MI@P (E #Sn+2 ¢€%: / / ]Cp 1'07 .. $n+1)) dH" (.ZL'O) Hn(xn—i-l)
#Sn+2 ¢€SE / /Kp 205 2n41) dH™(20) . .. dH" (2p41)
:M]Cp( )

O

4.2 Reduction to finite, compact and more regular sets with small
curvature

Lemma 4.2. Let E be a Borel set with My»(E) < oo, where KP is some proper integrand.
Then we have H"(E N B) < oo for every ball B.
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4 Proof of the main result

Proof. Let B be some ball and set ' := ENB. We prove the contraposition so we assume that
H"(F) = co. With Lemma 2.17, there exists some constant C' > 0 and some (n+1, (n+3)C)-
simplex T' = A(xq, ..., Znt+1) € B with H"(B(z9,C)NF) = oo and H"(B(z;, C)NF) > 0 for
alli € {1,...,n+1}. With Lemma 2.14, we conclude that S = A(yo, ..., yn+1) is an (n+1, C)-
simplex for all y; € B(z;,C),i € {0,...,n+1}. Fort = Cw% +1and C =4/ digrgB +1,
we get S € B(x,tC), where z is the centre of the ball B, and S is an (n + 1, %)—simplex.
Hence we are in the right setting for using the second condition of a proper integrand. We
obtain

M}CP(E)
:/ .../ICp(yo,..-,ynH)dHn(yo)~--d7'ln(yn+1)
E E

> / / /Cp(yo,...,yn+1)d’Hn(yo)...dHn(yn+1)
B((E,H,l,c)ﬂF B(.’Eo,C)ﬂF

1 d(Yn+1, a0, - U )\ 11 "
zc/ / e < (1, aff(go, -y ))> AH" (4o) . .. AH (i)
B(zni1,0)NF B(z0,0)nF T

> C’(t,n,p)/ .. / 1dH (yo) ... dH™ (Yn+1)
B(zp+1,C)NF B(z0,C)NF

> C(t,n,p) H*(B(2ni1,C) N F) ... H"(B(x1,C) N F)H"(B(z0,C) N F)

>0 >0 =00

t

= OQ.

O]

Lemma 4.3. In this lemma, the integrand K of My» only needs to be an (H™)"2-integrable
function. Let p > 0, n < N and E C RN be a Borel set with 0 < H"(E) < oo and
Mir(E) < 0o. For all g > 0, there exists some E* C E with
(i) E* is compact,
(il) Myr(E*) <n (diam E*)",
(i) H"(E*) > Gamlfen
(iv) Vo € E*Vt > 0, H"(E* N B(x,t)) < 2wyt

where w, = H"(B(0,1)) is the n-dimensional volume of the n-dimensional unit ball.

Proof. Due to 0 < H"(E) < oo and [EG92, 2.3, Thm. 2], there exists a H"-nullset M so that
for all z € E := E'\ M we have

<1 (4.1)

1 "ENB
1. hmsupH (£NB(x,1))
" t—0+ wnt™
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4.2 Reduction to finite, compact and more regular sets with small curvature

For m € N, we define
1
E, = {ZL’ ek ‘ Vt € <0, > ,HY(E N B(x,t)) < 2wntn}
m

=<(zre E’ sup HUEN B(,1)) < 2wy, p. (4.2)

te(0,.L) tn

At first, we show that F,, is H"-measurable. We set f;(z) := w and conclude

using Claim 2 of the proof of [EG92, 1.6.1, Thm 1] that f; is upper semicontinuous and thus
Borel measurable. With [EG92, 1.1.2, Thm 6 (ii)], the function

sup  fi(z)
t€(0,.)nQ
is also Borel measurable and so the set
. "(ENB(x,t
E,={zekF sup ™ (z.1) < 2w,

te(0,£)nQ tn

is ‘H"-measurable. There exists some sequence (t;)ieN, t; € (O, %) with

lim f;,(v) = sup fi(z).

1—00 tG(O,%)

For every € > 0 and t;, there exists some 0 < s; < ¢ with ¢; < t;(1+s;) € QN (0, %), where
s; :=01if t; € Q. So we get

sup  fi(xr) < sup fi(z)
t€(0,.£)NQ te(0,L)
lim H"(EN B(x, ti(1+s;)))

17— 00 t?
= Zliglo(l + Si)nfti(lJrSi)(m)
Ster s fila)
te(0,.£)nQ

IN

Since € was arbitrarily chosen, F,, = F,, is H"-measurable. We have

EC U E, CE, (4.3)
meN

because for 2 € E with (4.1) there exists some m € N so that

1
H"(EN B(x,t)) < 2wpt" Vo<t< —
m

37



4 Proof of the main result

and we get © € F,,. The second inclusion follows from the definition of F,,.
By definition of E,,, we also get E,, C Ep+1 C E so that with [EG92, 1.1.1, Thm. 1]

w (U ) = e

k=1
We have
- . (4.3) > (4.3)
W' (E)=H"EUM)=H"E) < H"||JE:]| < H'(E)
k=1
such that
lim H"(En) = H"(E).

m— 00

So there exists some m € N with H"(E,,) > AH"(E).
Since E,, C E, we conclude My (Ep,) < Mir(E) < 0.
Define for 7 > 0

I(r) = / KP(zo, ..., zn41)dH" (20) ... dH" (n41), (4.4)
A(7)

where A(7) := {(xo, cey Tpt1) € Eﬁbﬁ’d(xo,xi) <tforalie{l,...,n+ 1}}
We obtain for xy € E,,

A(T) gy = {(331, ceyTpy1) € E%+1|(x0, ceyTpy1) € A(T)}
= {(21,...,Tp41) € Emd(zg,z;) < 7 foralli € {1,...,n+ 1}}

n+1

= X {z € Ep|d(xo,2;) < 7}
=1

= (B(0,7) N Ep)" ™
and, with Fubini’s theorem [EG92, 1.4, Thm. 1] and for 0 < 7 < %, we can estimate

(H™)"*2 (A(1))
- / (H™)" M (A(7)ao) dH (20)

m

:/ (H™(B(zo,7) N E) )™ dH" (o)

m

2w TN
< (2wn7")"+1/ 1 dH"™ (x0)
Em

= Qu,m")" "1 (E,) -0 forT—0

such that
(H")" 2 (A(1)) = 0 for 7 — 0. (4.5)
With Myr(E,,) < oo and [Alt06, Lem. A 1.17, (2)], we conclude
lim Z(r) = 0,
T—0
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4.2 Reduction to finite, compact and more regular sets with small curvature

and so we are able to pick some 0 < 19 < ﬁ with

nH" (Em)
We set
_ n T"Wn
V= B(:L’,T)‘:L’ € En,0<71<719,H"(Epp, N B(z, 7)) > St (-
Since

1
0 < SH"(E) < H"(En) < H(E) < o,

we get (4.1) with E,, instead of E, [EG92, 2.3, Thm. 2]. This implies that for H"-almost

every = € E,,, there exists some sequence (7j)ren With 0 < 7, < 79 and limg_, 7, = 0 so
T Wn,

that sir < H"(Em N B(z, 7)) for all k large enough. We obtain

inf {7|B(z,7) € V} =0 for H"-almost every z € Ep,.

According to [Fal86, 1.3], V is a Vitali class. B(wz;,7;) N Ey,, is measurable, so for every
countable, disjoint subfamily B; = B(z;,7;) of V, we have

n+1
S (diam By)" = S2r)" < 22— S W (B(ai, 1) O Ew)
ieN ieN “noieN
22n+1 22n+1
_ e <U (B(xi,n) ﬂEm)> < H(En) < 0.
Wn ieN Wn

Applying Vitali’s Covering Theorem [Fal86, 1.3, Thm. 1.10], we get a countable subfamily of
V with disjoint balls B; = B(z;, ;) fulfilling

H" (Em\ U B(azi,n)> =0.

€N

Therefore, we have

HY(Ep) = H"

(Em\ U Bi> U (Em nJ Bi>

1€EN 1€N

" (Em\ U B,) +H" (Em n{J B,)

€N 1€N

= 0+H" (U(Em mB,))

1€EN

IN

< > HY(EnNB)

1€EN

< Y H'(ENB(wi,m))

€N
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4 Proof of the main result

so that
n l%n
o> A" (Em) (4.7)
i€N
Furthermore, with (B; N E,,)"*2 C A(279) N an+27 we obtain
Z M}CP(B/L' N Em) = Z/ 1'0, ceey l‘n+1) d?‘[n(l‘()) ce dHn($n+1)
ieN ieN Y (BinEm) "*2
< / Q]Cp(xo,...,l'n_u) d?—l"(xo) .. .d?—["(a;n+1)
ieN A(QTQ)ﬂBn+
S / ’Cp(l‘[), e ,:CnJr]_) d/Hn(l’o) e dH”($n+1)
A(270)
(4.4) @8 nH"™ (Em)
We define
T’
I, =<i¢€ N‘M;cp B(xi, 7)) N Ep) > Snt3
and so >
N2ien, Ti'
> Mice(Bai, i) N ) 2 =555
i€l

Assume that } ., 7/ > " (Em) It follows

48) nH"™(Ep)

ieN
2
< n Zielb 7

2n+3

(B(l‘l, Ti) N Em)

IA
™

<

3

(B({L‘Z, Ti) N Em)

IA
1Nd

<

3

This is a contradiction, so

ZZS m)

i€l

and with (4.7), we have I, # N. Now we are able to choose some i € N\ [, and get:

(a) H"(B(zi,7i) N Em) > ;i:f’f, see definition of V
(b) Micr(B(wi,7) N Ep) < 77%, see definition of I}
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4.2 Reduction to finite, compact and more regular sets with small curvature

(c) For every ball B(x,t) with € B(x;, ;) N Ep, and t > 0, we obtain
H"(B(xi, ) N Ey N B(x,t)) < 2w,t™.
Justification: Let = € B(x;,7;) N By and ¢ > 0.
1. Case: t < %

(4.2)
Due to z € E,,, we have H"(B(zi,7;) N By N B(z,t)) < H"(E N B(z,t)) < 2wpt".

2. Case: t > %
Due to z; € E,, andn<7’0§ﬁ<t,weget

(4.2)
H"(B(xiy ) N Ey N B(x,t) < H'(B(zi,7) NE) < 2wp7" < 2wpt™.

The Hausdorff measure is regular [Fal86, 1.2, Thm. 1.6], so with (a) we are able to pick some
closed set E* C B(x;, 1) N Epy, with H"(E*) > ;an’; Now we have

(i) E* is compact
because E* C B(z;,7;) N Ey, is bounded and closed.
(i) Ho(E") > (QamE e,

because E* C B(z;,7;) and so H"(E*) glnfg > (di;;?f) -

(iv) Vo € E*,Vt > 0, we have H"(E* N B(x,t)) < 2w, t"
because H"(E* N B(x,t)) < H"(B(x;, ) N Ey N B(x,t)) (2 2wpt™.
(il) My (E*) < n(diam E*)"
because we have E* C B(Z,diam E*) for some T € E* and so
n+2 on+2

2 (iv)
< HY(E*) = =—H"(E* N B(7,diam E*)) < 2""3(diam E*)".

Wn Wn

b

Now we get M (E*) < Mycp(B(zi, 1) N Ep,) < ?722{:3 < n(diam E*)™.

—~
=

O]

Next, we present the crucial theorem of this work. For this purpose, we first have to define
the notion of a proper integrand and the integral Menger curvature for Borel measures.

Definition 4.4 (p-proper integrand). Let K : (RN)n+2 — [0,00) and p > 2. We say KP is a
u-proper integrand if it fulfils the following four conditions:

n+2

e K is ()" *-measurable, where (1)""? means the (n + 2)-times product measure of .

e There exists some constants ¢ = ¢(n,/C,p) > 1 and [ = I(n,K,p) > 1 so that for all
t>0,C>1,zcRY and all (n, %)—simplexes A(zo,...,zy) C B(x,Ct), we have

(d(w, aff(xo, . ..

p
’ 7xn))> < Ccltn(n+1)lcp(:lj0, <oy Iy UJ),

for all w € B(z, Ct).
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4 Proof of the main result

e For all t > 0, we have

tn(n+1),c(tx07 o ,t$n+1) = /C(ajo, - ,fl'n+1)7

e [ is invariant under every translation, i.e., for every b € R, we have
IC(.T() +b,.. Tl + b) = IC(:L'(), e .CCn_H).

Definition 4.5 (Integral Menger curvature for Borel measures). Let pu be a Borel measure.
We define the integral Menger curvature of p with integrand KP by

Micr () := /.../le(mo, ooy @pg1) du(xo) .o dp(@n)-

Theorem 4.6. Let K : (RN)ThL2 — [0,00). For every Cy > 10, there exists some n =
n(N,n,K,Co) > 0 so that if p is a Borel measure on R with compact support F, K? is a
p-proper integrand and if they fulfil

(&) w(B(0,2)) > 1, u(R¥\ B(0,2)) = 0,
(B) u(B) < Cy (diam B)™ for every ball B,

(C) Mic2(p) <,
then there exists some Lipschitz graph I' with

p(T) > FouRY).

This statement is a direct consequence of Theorem 6.1 which is a slight modification of the
current one. The main work will be the proof of Theorem 6.1, which is done in chapter 6 to
8.

Now we can prove our main Theorem 3.4 under the assumption that the previous theorem is
correct. We will use the notation sE := {x € RV|s~'z € E} for s > 0 and some set £ C RV.
Distinguish this notation from sB(z,t) = B(x, st), where the centre stays unaffected and only
the radius is scaled.

Proof of Theorem 3.4. Let K? be some proper integrand (see Definition 4.4) and E c RV
some Borel set with M2 (E) < oo.
We start with a countable covering of RV with balls B; so that RN C Uien Bi- We will show
that for all ¢ € N the sets E N B; are n-rectifiable, which implicates that E is n-rectifiable.
Let ¢ € N with H"(E N B;) > 0. With Lemma 4.2, we conclude that H"(F N B;) < oo.
Then, using Lemma A.1, we can decompose FE N B; into two disjoint subsets

ENB;,=E' UE.,

where E! is n-rectifiable and E! is purely n-unrectifiable.

Now we assume that E N B; is not n-rectifiable, so H"(E?) > 0. The sets E N B; and E!
are Borel sets, so £’ is a Borel set, too and fulfils 0 < H"(E!) < HN(E N B;) < oo and
M2 (EL) < My2(E) < co. Now, due to Lemma 4.3, for every n > 0, there exists some set
E* C E! with
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4.2 Reduction to finite, compact and more regular sets with small curvature

(i) E* is compact,
.o * n+2 N
(i) Mye2(E™) < W (diam E*)™,
(iif) H™(E*) > %
(iv) Vz € E*,Vt > 0, H"(E* N B(x,t)) < 2w,t".

> 0 and choose some b € RV so that aE* +b C B(0,2). Now we define

22n+2

We set a : m

the Borel measure p := “=—H" L (aE* +b). E* is compact and hence, p has a compact
support. According to [EG92 2.1, Thm. 2], we have

H"(aA +b) = a"H"(A). (4.9)

Furthermore, we get
(&) 1n(B(0,2)) > 1, u(R¥ \ B(0,2)) =0
because aE* + b C B(0,2) and so
22n+2 (4.9) 22n+2 . (111) 22042 (diam E*)"w,
a® H'(E") > a” 92n+2

Wn, Wn

=1

u(B(0,2)) = W (aE* +)

Wn
(B) Let B be some ball. We have u(B) < 223 (diam B)".
Proof:
1. Case: BN (aE* +b) = 0.
We have u(B) = 0 < 22*3(diam B)".
2. Case: BN (aE* +b) # 0.
Choose y € BN (aE* +b). We get B C B(y,diam B) =: B and so

u(B) < u(B)
22n+2 . .
== ’H”(B N (aE* + b))
2n+2 R
49 2777 H"(f(B —b)n E)

Wn

. . 1A\ "M
(g) 92n+2 " % (dlam aB)

Wn

= 2273 (diam B)".

(C) Myz(u) <.

92n+2 >”+2
)

Wn,

Proof. By using the third and fourth condition of a u-proper integrand and C'(n) = (
we obtain applying Lemma A.3 and Lemma A.2

My (1
- [ / K2 (20, - ns1) dpi(ao) .. dpnsn)
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4 Proof of the main result

22n+2 22n+2
= / / /CQ(iL'(),...,.%'n_H) d ’H”(wo) cood Hn($n+1)
aE*+b aFE*+b Wn, Wn,

A:'3 C(n)/ / ICQ(aco,...,an) dHn<l'0)dHn(:L'n+1)
aE*+b aBE*+b

22 C(n)a"t?) / oo | K*axo+b,...,axne1 +b) dH(x0) ... dH" (xpt1)
* E‘*

1
_ C(n)a”("+2)/ / e 5K (@0, ) AR a0) AR ()
* *
= C(n)a" Mj2(E")

(i)
< C(n)a" Ln(diamE*)n

O]

Hence p fulfils the requirements of Theorem 4.6 and, therefore, there exists some Lipschitz

graph I with
99

pl0) = topu(RY).

The translated and scaled graph %(F —b) is also a Lipschitz graph and we obtain

(B %(r — b)) > HU(ET O %(r )

(L9 ainw((aE* +B)AT)

W, <22n+2

Wn

H" L (aE* + b)> (I)
Wn,

22n+2an ’u(F)

— 22n+24n ﬁ'u( )

A w, 99

= 22n+2,n 100

> 0.

Hence there exists some Lipschitz continuous function f : R — RY with image f(R") =
1('—b) and H"(E. N f(R™)) > 0. This is in contradiction to E?, being purely n-unrectifiable,
so our assumption that F N B; is not n-rectifiable is invalid. This implies that £ N B; and so
FE is n-rectifiable. O
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5 [-numbers

In this chapter, let Cy > 10 and p a Borel measure on RV with compact support F' that is
upper Ahlfors regular, i.e.,

(B) for every ball B we have u(B) < Cp(diam B)".

If B = B(x,r) is some ball in RY with centre x and radius r and ¢ € (0,00), then we set
tB := B(z,tr). Distinguish this notation from the case tY = {tz|]z € Y} where Y C R¥ is
some arbitrary set. Furthermore, in this and the following chapters, we assume that every
ball is closed. We need this to apply Vitali’s and Besicovitch’s covering theorems. By C, we
denote a generic constant with a fixed value which may change from line to line.

5.1 Measure quotient

Definition 5.1 (Measure quotient). For a ball B = B(x,t) with centre z € RV, radius ¢ > 0
and a p-measurable set T C RV, we define the measure quotient

BT = 4,50 T) = HEEOOT)

In most instances, we will use the special case

Moreover, we define for a fixed constant kg > 1

10 (B) = Sou(B) == sup  8,(B(y.1).
y€B(x,kot)

This measure quotient compares the amount of the support F' contained in a ball with the
size of this ball. The following lemma states that if we have a lower control on the measure
quotient of some ball, then we can find a not too flat simplex contained in this ball, where at
each vertex we have a small ball with a lower control on its quotient measure.

Lemma 5.2. Let 0 < A < 2" and No = No(N) be the constant from Besicovitch’s covering
theorem A.12 depending only on the dimension N. There exist constants

4 - 120"t N,
Cy = C1(N,n, Co, \) = ()i 0Co _ 3

and 2N o

2n mn
Cy = Ca(N,n,Co, N) i= >+
so that for a given ball B(x,t) and some p-measureable set T with 6(B(x,t) N'T) > A, there
exists some T = A(xg,...,Tnt1) € FNB(z,t)N'Y so that for alli € {0,...,n+ 1}

>1
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5 [B-numbers

(i) fe;(T') is an (n, 10ncil)—simplew,

(i) u(B (:L’Z,C )ﬁB(x t)ﬂT) 02.
Proof. Let B(z,t) be the ball with §(B(z,t) N Y) > X and

F = {B(%Ct'l”y € FnB(z,t)N T}.

With Besicovitch’s covering theorem A.12 we get Ny families B,,, C F,m = 1, ..., Ny of disjoint
balls, where Ny depends only on the dimension n, so that

No .
FnB@tnrc ) U B
m=1 BeBm

For every ball B € F, it holds that B C B(x,2t). Due to Lemma A.4, there are at most
(2C1)™ balls in B,,. Now

w(B(z,t)NY) _ w(F N Bz, t)N7Y)
tn tn

1 ([
—u ( U U BB, mr))

m=1 BEB,,

g—z > w(BNBx,t)N ).

m=1 BEB,,

A< 8Bz, )N T) =

IA
~

From this we get the existence of a family B, with

> u(BNB(x,t)NT) > ?Vi" (5.1)

BEBm 0

We assume that for every S = A(yo,...,Yn+1) € F N B(x,t) N, there exists some i €
{0,...,n+41} so that either fc;(.S) is no (n, 1()nci1)—simplex or u(B(y;, Cil) NB(z,t)NT) < tc—n?
We define

Gg:= {B € Bm‘u(BﬂB(x,t) nyY)> tn}
Co

With Lemma 2.15 (where we set G as the set of centres of balls in G and C = IOnCil), we
know that there exists some T, = A(zg,...,2,) so that for every ball B(y, Cil) € G, there
exists some ¢ € {0,...,n} so that d(y, aff(f¢;(1%))) < QOnC%. We define for ¢ € {0,...,n}

T; = aft(fe;(1%)) N B(Tag(e, (1.)) (), 21),
n 30nt
.= € Rrlaty. o (720) < S magey ) < 73
and we know

BeG= BcCS, forsomeic{0,...,n}. (5.2)

With Lemma A.5 applied to T;, s = o 4t < 2t =rand m =n — 1, there exists a family £ of
closed balls with
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5.1 Measure quotient

(i)* diam B = C%t forall Be €&,

(i) 7; c | J 5B,
Be¢&
(iii)* #& < ()" =cp L.
Let y € S;. We have d(y, aff(f¢;,(T%))) < 369—?75 and Tag(je, (7)) (¥) € Ti. So, because of (ii),
there exists some B = B(z, Cilt) € & with T, (1)) (y) € 5B and we have

30n 4 60n

d(y, 2) < d(Y, Ta(je,(12)) (V) + A Tastiie, (1.)) V), 2) < 7t + 5at 01 —t.

This proves S; C Upegs 15nB. We therefrom derive with (B) (see page 45)

(B) 120" (iii)* "
(Si) < Z,u(lme) < ZCO (15n diam B)" < #800007 < 120™n ”C’OC (5.3)
Bee Be€ 1 !
We define for i € {1,...,n}
Go:={B€gG|BC Sy},
i—1
Gi:==(BegGBCSiand B¢ |G
§=0

as a partition of G, see (5.2). Now we have

n

> wBNB@,HnT)=> > u(BNB(x,t)NT)

Beg i=0 Beg;

w| U BAB@HnT)

=0 Beg;
< > u(S:)
=0
(523) - 120" C i
< 0~ o
Moreover, we have
i # B <(201)" 4
S ouBnB@nnT < Y =TS o)t
CQ 02
BeBmn\G BeBn\G
All in all, we get with (5.1) and the definition of C; and C»
1 cr 1 Cc? A
A< No— (2" =L +120"n™ " Co— | = No [ 2" = +120"n" ' Cy— ) < =
- Ot” < Cy + " 001 0 Cy + Cl -2’

thus in contradiction to A > 0. This completes the proof of Lemma 5.2. ]
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5 [B-numbers

In most instances, we will use a weaker version of Lemma 5.2:

Corollary 5.3. Let 0 < A < 2" There exist constants C; = C1(N,n,Cp,A) > 3 and
Cy = Co(N,n,Cy,\) > 1 so that for a given ball B(x,t) and some p-measurable set Y with
0(B(z,t)NY) > A, there exists some (n, 1Onci1)—simplex T = A(zg,...,zy) € FNB(x,t)NY
so that for all i € {0,...,n}

t t"
L >
,u(B (mZ’Cl) ﬂB(:c,t)ﬂT) > &

5.2 [f-numbers and integral Menger curvature

Definition 5.4 (B-numbers). Let & > 1 be some fixed constant, 2 € RN, ¢t > 0, p > 1,
P(N,n) the set of all n-dimensional planes in RY and P € P(N,n). We define

B (1 d(y, P)\? »
() = Bl (@, t) = (t” /B(m,kt) <t> du(y)> ,

Bk (5 1) = By (@, 1) = Pe7i>IgV,n) ﬂzﬁk(ﬂfat)-

The B-numbers measure how well the support of the measure 1 can be approximated by
some plane. A small S-number of some ball implies either a good approximation of the support
by some plane or a low measure quotient § (cf. Definition 5.1). Hence, since we are interested
in good approximations by planes, we will use the S-numbers mainly for balls where we have
some lower control on the measure quotient.

Definition 5.5 (Local version of My»). For k > 1, 2 € RV, ¢t > 0, p > 0, we define
Mico (i, 1) = //O L ) uteo)  dpana),
w(x,t

where K? is a p-proper integrand (cf. Definition 4.4 on page 41) and

Og(z,t) :== {(:130, cey Tpg1) € (B(x,/it))”+2‘d(a,b) > —Va,be{xo,...,Tn41},0 F b}.

t
K
Theorem 5.6. Let KP be a symmetric p-proper integrand and let 0 < A < 2", k > 2, kg > 1.
There exist constants k1 = ki1(N,n, Co, k, ko, \) > 1 and C = C(N,n, K, Co, k, ko, \) > 1 such
that if z € RN and t > 0 with 6(B(x,t)) > X\ for every y € B(x, kot), we have

MICP;kl (ar, t) < CM/C";thko (y, t)

Bp;k(% t)p < C mn — tn

Proof. With Lemma 5.2 for T = RY there exists some T' = A(xg, ..., Zn11) € F N B(x,t) so
that for all i € {0,...,n+ 1}

(i) fe;(T') is an (n, 10nc%)—simplex,
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5.2 pB-numbers and integral Menger curvature

(ii) p (B (x & ) N B(z, t)) > &
where C1,Cy are the constants from Lemma 5.2 depending on the present constant A > 0,

the constant Cjy determined in (B) on page 45, as well as N and n. We set B; := B (xi, C%)
and k1 := max(C1, (2+ k + ko)) > 1

Claim 1: Let z € B; foralli € {0,...,n+1}, w € B(z, (k+ ko)t) \ U 2B, or w € 2B; for
1]
some fixed j € {0,...,n+ 1}. We have ’

(Zo, e ,ﬁ’j, R ,zn+1,w) S Okl((li,t),

where (29,...,2j,...,2n41,w) denotes the (n + 2)-tuple (20,...,2j—1, Zj+1,- - - Znt1,W).
Proof of Claim 1. We have for w € 2Bj and l € {0,...,n+1} \ {j} using (i) that d(w x) >
d(zj,z;) —d(xzj,w) > (10n— 2)C > 25 t . So we obtam QB C Bz, (k+ko)t) \U' 2B;. Now
I#j
let w € B(x, (k+ko)t)\U' 2B;. Since z; € B; C B(x, (k+ko)t) and w € B(x, (k+ko)t), we
;e

(i)
have (29,...,%j,..., 241, w) € B(z, klt)”+2. Furthermore, we have kil < 10nci1 < d(z;, zj)
and because w ¢ U:Zl 2B, we obtain k— < Cil < d(z,w) for all i € {0,...,n+ 1} \ {j}.

Hence we get
(Zo, .. ,ﬁ’j, . ,zn+1,w) S (’)kl(x,t).
End of Proof of Claim 1.

Claim 2: Let 2z; € B; = B(z;, & o7) forall i € {0,...,n+1}. Then we have

fci(A(zoﬂ ceey zn+1)) is an (n, (9n — 1)Ci

> -simplex for all i € {0,...,n+ 1}.
1

Proof of Claim 2. Due to (i), d(z;, 2) < &
fe;(A(20,- .., 2n41)) is an (n, (9n — 1) & -)-simplex for all ¢ € {0,...,n+1}.
End of Proof of Claim 2.

and Lemma 2.14 applied on fc;(7), the simplex

Claim 3: Let z; € B; = B(x;, & o7) foralli € {0,....,n+1}, w € B(x, (k+ko)t). There exists
some constant C' = C(N, n, K, p, Co, k, ko, \) so that for all j € {0,...,n+ 1}, we have

<d(w,aff(20, cee éj, .. ,Zn+1))>p < C*,tn(n-i-l)]cp(z()’ L. ,ﬁj, ..

m Cs Zn+1, W),

Proof of Claim 3. KP is a u-proper integrand. Hence with Claim 2, we get the desired
estimate. End of Proof of Claim 3.

Claim 4: There exist some constant C' = C(N,n, KC, p, Co, k, ko, \) and z; € FN B; N B(x,t),
i €{0,...,n+ 1}, so that for all [ € {0,...,n+ 1}, we have

. My K ()t
/ 1{(z0 ..... 21,...,Zn+1,w)6(9k1 (x,t)}lcp(z()a B S w)d,u(w) S ¢ t(;l;‘:l()n> (54)
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5 [B-numbers

and with P11 := aff(zg, ..., 25)

(d(ZnJrlaPnJrl))p <C MICP;IQ ('rvt)
—t _

Proof of Claim 4. For E C RN with #E =m+ 1, E = {eg,...,em}, 0 < m < n, we set

(5.5)

R(E) = /an+1 1{(60,...,em,wm+1,.A.,wn+1)€(9k1 (z,t)}

KP(eg, -y em, Wty - Wot1)dp(wWpg1) - - dpp(wpg1)-

The integrand K is symmetric, hence the value R(E) is well-defined because it does not
depend on the numbering of the elements of E. In the following part, we use the convention
that {0,...,—1} =0 and {z0,...,2-1} = 0.
At first, we show by an inductive construction that, for all m € N with 0 < m < n + 1,
there holds:
For all j € {0,...,m} and i € {j,...,n + 1}, there exist constants CU) > 1, sets Zz-j C
F N B;NB(z,t) and, for all | € {0,...,m — 1}, there exist z; € Z} with
. n
J

n(Z;) > 2ricy’ (5.6)

and, for all uw € {0,...,m}, for all £ C {z0,...,24—1} and z € Z, where r € {u,...,n+ 1},
we have

(u) M/Cpﬂﬁ (.%', t)

R(EU{z}) <C {FE+Dn (5.7)
We start with m = 0 and j = 0 and choose the constant C(©) := 205, set
Y;:=FNB;N B(x,t) and define for every i € {0,...,n+ 1}
. t
7Y = {z € Y;|R({z}) < C(O)/Vl’cpf;(x’)} : (5.8)

We prove u(Z?) > % Due to Z? C T;, we have
p(Ti) = w(ZP U T\ Z7)) < (Z9) + p(Xi \ Z7)
and so
(Z0) > p(0i) — p(Ti\ Z7).
Furthermore,
(i) ¢m
p(00) = (BN B, 1) 2 o
2
and we obtain

P t ! D t
w2zl = (coXea) T [ o Moy,
VA t

5.8 p. N -1
& (coMeat) R
N——— —
:MKp;kl(*Tvt)
tn
ROk
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5.2 pB-numbers and integral Menger curvature

Now we get for all ¢« € {0,...,n+ 1}

tn tn tn
Z2) > u(Ty) = (T \ Z0) > —— — —= = —.
w(Z;7) = u(Ti) — u(Ti\ Z7) > G, CO ~ 2G,

Let u=0, E C{2,...,2.1} =0 and z € Z?, where r € {0,...,n + 1}. We have

( M/Cp k1 (x t)
tn

R(EU{z}) <

Now let m € {0,...,n} and we assume that for all j € {0,...,m} and i € {j,...,n + 1},
there exist constants CU) > 1, sets Z/ C F'N B; N B(x,t) and for all € {0,...,m — 1} there
exist z; € le with

t’fl

m, (5-9)

w(z]) >
and for all u € {0,...,m}, for all E C {20,...,24—1} and z € Z" where r € {u,...,n + 1},
we have

) Mice ik, (2,1)

(u
R(EU{z}) < ¢ M0

(5.10)

Next we start with the inductive step. From the induction hypothesis, we already have the
constants CV) and the sets Z/ for j € {0,...,m} and i € {j,...,n+ 1} as well as z; € Z] for
1 €{0,...,m—1}. Since u(Z7) > 0, we can choose z,, € Z''. We define

C(m—H) .— gm C(m)2m+202 > C(m)

and, for i € {m+1,...,n+ 1}, we define

zmh= {

R(EU{z}) <D

MICPﬂﬁ (w, t)
tH#E+D)n

—.Dm
7'Di,E

At first, we prove p(Z"t) >
with z,, € E. We have

Micoy, (z,6)\ ™ Micrp, (2, 1)
m m _ m+1 ) m+1 }
M(Zi\\DLE)_‘<C( ) ﬂ#EiUn tl;wpm ot ﬂ#EiDn dp(z)

% foralli € {m+1,...,n+1}. Let E C {20,...,2m}

5.11 »
( < )<C(m+1)/w> /R (E U {z})du(z)

tFHE+1)n
=R((E\{zm HU{zm})
(5.10) Micwg, (z,6)\ Mico g, (2,1)
(m+1) ZV2KPk Ty V) (m) Z2KPk \ ) )
= <C B+ D ) C — #En
cm) .

o1



5 [B-numbers

so that

pze Nz =p(zen () pie))

< Z w(Z"\ Di'g)

Finally, we get

m~+1 m m m~+1 (.9) t" " _ "
w(Z"0) = p(Zi") — (Zz‘ \Z") > omtic, — omt2C,  omt2(Cy,’

Now let u € {0,...,m+ 1} and E C {20,...,2y—1} and z € Z} where r € {u,...,n+1}. We
have to show that

g (2, T

R(EU (=) < o0 (e
Due to the induction hypothesis and z € Zm*! C ZV for all v € {0,...,m + 1}, we only have
to consider the case w = m + 1 and z,, € E. Then the inequality follows from (5.11).
End of induction.
Now we construct zp41.

We set Py := aff(zq,...,2,), CTD .= & ¢M2n+3C, where C is the constant from
Claim 3, and define

p A
ZZJJrrll — {Z e ZnJrl‘ (d(zapn+1)) < C (n+1) MICP k1(x t)} (513)

Next we show (Z;;jll) > sulie > 0. Let w € ZH\ 20} € Buya C Bla, (k + ko)t). With
Claim 3 applied on w = u and j =n + 1, we get

p ~
(W) < G (0 o), (5.14)
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5.2 pB-numbers and integral Menger curvature

Now we have

(zuti\23t))

1
-1
<C’(”+1)M’CP;’2 (x’t)> / A CA’UH_I)Md“(”)
t Ziinztt t
(523) <C«(n+1)MICp;’: (:c,t)) / ) (d(u, Pn-‘rl)) d,u(u)
t Ziinzit) t
(5.14) /. , O\ L
< (oMY epieed [ G da)
t Zpthzptl
Claim 1 (o Mycoiey (2,8)\ ™ 20m
< (C( +1) t;( )> ! +1)/l{(zo,...,zn,u)eokl(x,t)}’Cp(Zo,---,Zn,u)du(u)
:'R({Zo,...,zn71}u{zn})
—= tn tn(n+1)
- 2n+302
so that
Zn+1 > ZTL+1 ZTL+1 Zn+1 (5>6) " " _ " 0
N( n+1) = /j“( n+1) _IU’( n+1 \ n+1) = 2n+202 - 2n+302 - 2n+302 > U,
and we are able to choose 2,41 € Zgill - Zgill with
d(znt1, Pav1)\” (523) C,(nH)MICP;kl (z,1)
t - tr '
Let 1 €{0,...,n+1} and F = {2z, ..., zn+1} \ {21} Next we show R(E) < C’(”H)%}ﬁfi)

1. Case: l =n+ 1.

We have
61 ooy Mo, (2, 1) Mg, (2, 1)
_ (n) KPik1 Ly (n+1) KP;k1\ &Ly
R(E)=R{z0,---s2n-1}U{zn}) <C D <C T
2. Case: I #n + 1.
We set E' := E\ {zn41} C {20,...,2n} and deduce using z,,; € Zgill

(Eg)c(n—i-l)w _ C(n+1)w

R(E) = R(E U {ZnJrl}) t(#E/—‘rl)n - t(nt1)n

All in all, we get for all [ € {0,...,n+ 1} and some constant C' = C(N,n, K, p, Co, k, ko, \)

A My & (@, t
/1{(z0,...,él,...,zn+1,w)€0k1 @t K (20,5 2y 2ngn, w)dp(w) = R(E) < CW
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5 [B-numbers

End of Proof of Claim 4.

With Claim 4, there exist some z; € F'N B; N B(x,t), ¢ € {0,...,n+ 1} fulfilling (5.4) and
(5.5). Let w € (FN B (x,(k+ko)t) \ Uj—g2B;. With Claim 3 and P41 = aff(20,.. ., 2n),
we obtain

(d(wafnﬂ)

p ~
> < CtM KR (2, . 2, w). (5.15)

Hence we get

d(w, Py, P
/ <(t+1)> dp(w)
B, (kHho) O\ U 2B;

5.15) -
( < : ot / KP(z0,. .., 2n, w)du(w)
B(a,(k+ko)t)\Uj—o 2B;
Claim 1 . n(n41) »
= O L (20, mr2m,w)€0x, ()P (20, - - -, 20, w)dpp(w)
(5.4) ) t
< Ot O(N,n, K, p, Co,k,ko,k)w
= C(Nanalcap7 007k'7k07)\)MICP;k1 (.Zli‘,t). (516)

Now we prove this estimate on the ball 2B;, where j € {0,...,n}. We define the plain
Pj = aff({z0,...,2n+1} \ {#;}), choose w € 2B; C B(z, (k + ko)t) and get with Claim 3

d P p -
((wtf)> < GO (20,00 2y ey 21, W)

and analogous to (5.16), we obtain

L (5 o

J

< C’tn("+1)/ KP (20, 2550 Zng1, w)dp(w)
2B,

Claim 1 . n(n+1) » N
< Ct L{(z02jrmn i 1,0)€0k, (@)} (20, -+, 25 o 2, w)dp(w)
(5.4) . . t
<GP C(N K p, i b ko, 2y )
= C(N)nalc)p) CO,k,kO,)\)M}Cp;kl(CU,t)- (517)

Now we have an estimate on the ball 2B; but with plane P; instead of P,11. It might be that
Zn+1 € Ppy1. In this case, we have P, = P; for all j € {0,...,n+ 1} and we can conclude

/QB <d(w7tpn+l>>pdu(w) :/23 <W>pd/i(w)(5%7)0/\/l)cp;kl(x,t).

J J
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5.2 pB-numbers and integral Menger curvature

1

/ /
From now on, we assume that z,11 ¢ Pyy1. We set w := 7p,(w), w := 7p,,,(w) and

deduce

d(w, Ppy1)? < d(w,w’ )P
< op~t (d(w w )P + d(w/,wn)p)
— op1 (d(w, PP +d(w, PM)P) . (5.18)
If d(w', Pyy1) > 0, ie., w' ¢ Pny1, we gain with Corollary 2.5 (P = Pj, Py =P,y1, a1 = w,
as = zp41) where Pj, 41 := Pj N Py

dWw', Pu1) _ d(zns1, Pata)
d(w', Pjpy1)  d(znt1, Pjnt1)

d(wlv ij-&-l)
d(zn—i-h -Pj,n—i-l) '

With [ € {0,...,n}, l # j and Lemma 2.6 (7p,, (7P, (w)) = 7p, ., (w)), we get

d(w/ ) Pj7n+1)

& d(w', Pyy1) = d(zny1, Pat1) (5.19)

(w TP i ( ))

= d(mp,(w), 7P, (TP, 4y (TP, (0))))
d(w TP, i (TP, (W )))

sy

d
d

llio IN

w P]n+1)

IN

w, 27)

w, )+ d(x xl)—i-d(wl,zl)

IN

(

(
< (l<:+l<:o)t+t+5l < kgt

(k1 is defined on page 49). Claim 2 yields that fc;(A(z0,...,2n41)) is an (n, (9n — 1)0%)—

simplex and we obtain

<d(wl7 Pn+1) ) ' (5£9) (d(zn-l—la Pn+1) d(wla 13j,n+1) :
N )

t t d(zn—l-b Pj,n—i—l
< d(zn+41, Poy1)  kitCr \?
- t (In — 1)t
(5.5) MICP;k:1 (:E, t)

S C(Nanalc7p7 CO7k7k07)\) (520)

tn
If d(w/, P,+1) = 0, this inequality is trivially true.
(B) "
Finally, we obtain with 4(2B;) < Cy(diam(2B;))" < Co (g{) ((B) from page 45)

[ (2

J

(.18 d(w, P;)\? p— M ’ w
< () /< / )d”()

J
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5 [B-numbers

(5.17)(5.20)
< 2p_1C (N7n7,C7p7 CO7k7k0’A) M’Cp;kl(x’t)

. t
+2P71C(N,n, K, p, Co, k, ko, \) W

< C(N,n,/C,p, Ckaak07)\) Ml@’;lﬂ(:p)t)'

1(2B;)

It follows that

d(w, Py, p d(w, Py, p
/ < ( ; +1)> du(w) _ / < ( : +1)> d,u(w)
B(w,(k+ko)t) B(a,(k+ko)t)\ (U0 2B;)

+Z / ( wp"“))pduw)

< C(Na n, Kapv 007 k7 kOv )MKp;kl (xa t)
Given that B(y, kt) C B(z, (k+ ko)t), we get

By = inf L )(M)pduw)

PEP(N,n) t™ B(y,kt

b (252 e
S/ (k+ko)t) ( wfnJrl))de(w)

oo (2,1
< C(N7 n, Icvpa 007 k: kO? )\)/\/llcf;(m)
To obtain the main result of this theorem, the only thing left to show is O, (x,t) C Ok, 4k, (v, t):
Let (z0,--.,2n+1) 6 Oy, (z,t). It follows that zq,...,2n+1 € B(x, kit) C B(y, (ko + k1)t) and
d(zi, zj) > 1, t > e +k with i # j and 4,5 = 0,...,n. Thus (z0,...,2n+1) € Ok +k (Y, 1)-
Finally, we get with C =C(N,n,K,p,Cy,k, ko,)\)

M’Cp;kl (1.7 t) <O M’Cp§]€1+ko (y7 t) .
tn - tn

ﬁp;k’(?ﬁt)p < C
J

Theorem 5.7. Let 0 < A< 2", k> 2, kg > 1 and KP be some u-proper symmetric integrand
(see Definition 4.4). There ezists a constant C = C(N,n, K, p, Co, k, ko, \) such that

o dt
//0 Bp%k(x’t)pl{SkO(B(x,t))z)\}7d/‘(x) < CMgr(p).
Proof. At first, we prove some intermediate results.

I Let z € F, t > 0 and oy, (B(z,t)) > A. There exist some constants
k1 = k1(N,n, Co, k, ko, \) and C = C(N,n, K, Cy, k, ko, \) so that with ko := k1 + ko, we

obtain
M’Cp;k1+ko ($7 t) o CM/Cp;kQ (‘Ta t)

tn N tn

ﬁp;k’(xa t)p < C
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5.2 pB-numbers and integral Menger curvature

I1.

III.

IV.

Proof. We have

Sio(Ba,t) = sup MBED) 5y
z€B(z,kot) t

and hence there exists some z € B(x, kot) with 6(B(z,t)) = ”(Bt(f’t)) > % With Theorem

5.6, there exists some constants k; > 1 and C' > 1 so that for all y € B(z, kot)

Micr g +ko (45 1)
ﬂp;k(yat)p <C 1t" : .

In particular, we have

M/Cp§/f1+/€0 (l‘, t)

,Bp;k(x,t)p <C m

because © € B(z, kot). O

Let ug, ..., up+1 € F and

(x,t) € Di(ug, ... unt1) := {(y,s) € F x (0,00)|(ug, ..., un+1) € Ou(y,s)}.

We have (ug,...,unt1) € Ok(z,t) and so %

Bl(ug, kt).

< t < kd(ug,u1) as well as x €

Let ug, ..., upt+1 € F. Then the set D, (ug, ..., un+1) is closed in F' x R since with B(y, s)
we always denote a closed ball.

Let x € F' and set
Ty = {(ug,...,Unt1,t) € Fnt2 % (0,00)|(ug, - -+, unt1) € Oglz,t)}.

Then the set Y, U {(z,...,2,0)} is closed in (RN)n+2 x R and so the set Y, is closed
in (RN)n+2 X (0,00). This implies that T, is (X?jol ,u) X %—measurable because, as a

product of Borel measures, this is a Borel measure as well (cf. Lemma A.11).

Let wug,...,upr1 € F. The function t — tin is %—measurable on (0,00) and so, due to
Lemma A.10, the function (z,t) — 2 is (p x %)—measurable on RN x (0,00). More-
over, we have that Dy (ug,...,up+1) is closed (see III), which implies that (z,t) —

XDy (0, unsr) (T5 1) 18 (u X %)—measurable on RY x (0,00). Hence we conclude that
(T,1) = XDy (et s1) (T t)t% is (1 % %)—measurable, which we need in the following to
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5 [B-numbers

apply Fubini’s theorem [EG92, 1.4, Thm. 1]. With condition (B) from page 45 we get

1dt
// XDkQ UuQ,.. ,un+1)($ t) d:u( )
dt
~ [ [ v @S

kod(uo,u1)

i 1 ()

- d(ug,uy) tn ,LL t
ok B(uo,kzt)

=p(B(uo,k2t))
(B) kad(uo,u1) ¢

< (2k2)"Co /i(uo,ul) "
dlug.uy)

2

= (2ks)"(In(2k3))> Co.
With a similar argumentation as in V using IV and XDy (10 tn 41) (x,t) = xr, (U, -« -y Unt1,t),
we obtain for some fixed x € F' that the map
’Cp(u07 sy U +1)
(UO, ceey Un41, t) — X'Dk2 (uo,...,un+1)(‘r7 t) m =

is ((XZHOI ,u,> X @> measurable. Now we deduce with ko = ki + ko and Fubini’s theorem
[EG92, 1.4, Thm. 1]

o dt
// 5p;k(l’vt)p1{5k B(xt))>)\}7du(x)

<c// M’C" ) dyu(z)
—cf / /- /0 W’CP 0 ) ) (1) S ()

_ KP(ug, . . ., Unt1)
d

Ap(uo) - dps(an 1) i)

R 1 de
= C/ e ICp(ug, - ,un+1)/ / XDkQ(UO,~.-,un+1)(x7 t)tfnfdu( )
Fnt2 FJo

dp(uo) - - - dp(uns1)
; (2k2)™(In(2k3))2CCy / e KP(ug, ...y upt1)dp(uo) - . . dp(uny1)

Fn+2

= C(N7 n, ]Cvpv 007 ka kOa A)M/Cp (/J)

O]

Corollary 5.8. Let 0 < A < 2™, k > 2, kg > 1 and KP be some symmetric p-proper integrand
(see Definition 4.4). There ezists a constant C = C(N,n, K, p, Co, k, ko, \) such that

& dt
//0 Bl%k(‘r’t)pl{SkO(B(x,t))zx}Tdu(m)SCM’CP(“)'
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5.3 [B-numbers, approximating planes and angles

Proof. Let x € RV and t € (0,00). With Holder’s inequality and (B) (see page 45), we get

Bun(z,t) = Peg%]fv,n) Bin(a,t)
it Mdu(y)

PEP(N,n) t" B(x,kt) t

p—1

1
. 1 d(y,P))p P »_ P
< inf — / < du(y / 1r-Tdu(y
PEP(N,n) t" ( B(a,kt) t (®) B(a,kt) )
1 p—1
p D —
— inf 1/ <d(y7P)) du(y) (M(B(.I,kt))) P
PeP(Nn) \ t" JB(z,kt) t tr

(B) p—1
< /Bp;k(xat) (00(2k)n)T
= C(n,p,Co, k)Bp(z,1).

Together with the previous theorem, the assertion holds. O

5.3 [S-numbers, approximating planes and angles

The following lemma states, that if two balls are close to each other and if each part of the
support of p contained in those balls is well approximated by some plane, then these planes
have a small angle.

Lemma 5.9. Let z,y € F, c > 1, {£ > 1 and t;,t, > 0 with c‘lty <ty < cty. Furthermore,
let k > 4c and 0 < X < 2" with 6(B(x,tz)) > A, §(B(y,ty)) > A and d(z,y) < %tx. Then
there exists some constants C3 = C3(N,n,Co, A\, &, ¢) > 1 and g9 = €9(N,n, Co, A\, &, ¢) > 0 so
that for all e < gy and all planes Py, Py € P(N,n) with

(rts) <€ and  Pia(yty) < e
we get:

(i) For all w € Py, we have d(w, Py) < Cse(ty + d(w,xz)) and, for all w € P, we have
d(w, P1) < Cse(ty + d(w, ),

(ii) %(Pyp, P2) < Cse.

Proof. Due to §(B(x,t;)) > A and Corollary 5.3, there exist some constants C; > 3 and Cs
depending on N, n,Cyp, A\, and some simplex T' = A(xg,...,x,) € F N B(z,t;) so that

(i) T is an (n, 1Oné—11)—simplex,
(i) p (B (xi, é—ﬁ) N B(m,tx)) > é—% for all i € {0,...,n}.
For B; := B (:ci, é—’;) and i € {0,...,n}, we have

mo
w(Bi) = p(Bi N B(w,ta)) = - = cnyCQ' (5.21)
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With (ii), we get B; N B(x,t;) # 0 so that with k > 4¢ > 4

BiCB(xt$+2 )CB(x,ktgg)
Cy
and
B;,CB t+2tx+£t CB 2+E ty, | € B(y, kty)
) yax Cl 201‘ 970 20 Yy y) Yy
Now we see for i € {0,...,n}

d(z, Py) + d(z, Py)du(z)

1
= d(z, Py)du(z / d(z, Py)du
D L Jp, 1 )
(5.21)
(5.22)(5.23) P
£ oy, L / LGERIRIE
Uy B kty) lz

L, - / Mdﬂ(z)
ty JBykty) ty

= Oty Bii(w,ta) + " Caty Bi2(y, 1)
< (4Ot e

With Chebyshev’s inequality, there exists z; € B; so that
d(Zi, Pj) < d(z,;, Pl) + d(zi, PQ) < (1 + Cn+1) Co ty €

for i € {0,...,n} and j =1,2. We set y; := 7p, (2;) and with

e < e :_(1+c"1+1)(72§ {01 (10(1on+1)06 (22) >_1}

d(yi, x;) < d(ys, 2z) + d(zi, x;)

we deduce

§(1+c”+1)025txs+5<25
1 1

so, with Lemma 2.14, S := A(yo,...,yn) is an (n, Gn%)—simplex and S C B(
B(zx,2t,). Furthermore, we have

(5.24)
d(yi, Po) < d(ys, 2) +d(zi, Po) < (14" Cob ty €
——

d(zi,P1)
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5.3 [B-numbers, approximating planes and angles

Now, with Lemma 2.28 (C' = %, =2, t=1t,, 0= (1 + c”“) Caée, m = n) we obtain

C
n Cl Cl " n+1
I(Pr, ) < 4n(10 +1)€ 2? (1+ ") Cote = C(N,n, Co, A, €, c)e.

Moreover, we have

(5.24)
d(yo,7p,(20)) < d(z0, P1) + d(20, P2) < (14" Col ty e,

so finally, with Lemma 2.29 (0 = Ce, t = t4, p1 = yo. p2 = 7p,(20)), we get for w € Py

d(w, Py) < C(d(w,yo) + tz)e
< Cld(w,x) + ty)e

and for w € P

(d(w’ﬂ—PQ (20)) + ta?)
(d(w, ) + ty)e,

where C' = C(N,n,Cy, \,§, c). O

The next lemma describes the distance from a plane to a ball if the plain approximates the
support of 1 contained in the ball.

Lemma 5.10. Let o >0, z € F, t > 0 and A > 0 with 6(B(x,t)) > \. If P € P(N,n) with
BE, (z,t) < o, we have:

(i) There exists some y € B(z,t) N F so that d(y, P) < %o.
(ii) If additionally o < X\, we have B(x,2t) N P # ().
Proof. With the requirements, we get p(B(z,t)) > ™A, and so

! / t1 d(z, P) t p ¢
- d(z, P)du(z) < —— du(z) = <8P, (x,t) < ~0.
D) Sy DM S 3 [T e = (Bl < 3

With Chebyshev’s inequality, we get some y € B(z,t) N F with d(y, P) < %0’. If o <\ it
follows that B(z,2t) N P # (. O
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6 Construction of the Lipschitz graph

Our aim is to prove Theorem 4.6. We have to cover a major part of the support of the measure
p by some Lipschitz graph I'. To get I', we construct some Lipschitz function where the graph
of this function gives I'. The Lipschitz function will be defined on some n-dimensional plane
Py which approximates the support of the measure p in the sense of S-numbers. The existence
of such a plane P, is assumed in the following theorem, which is quite similar to Theorem 4.6.

Theorem 6.1. Let K : (RN)n+2 — [0,00) and p = 2. There exists some k > 2 such that for
every Cy > 10, there exists some n = n(N,n, K, Co, k) € (0,2= V] so that if p is a Borel
measure on RY with compact support F such that KC? is a symmetric p-proper integrand (cf.
Definition 4.4) and p fulfils

(A) u(B(0,5)) =1, u(RV\ B(0,5)) =0,
(B) w(B) < Cy(diam B)" for every ball B,

(C) Myz(p) <,

(D) ﬁi%m(o, 5) <n for some plane Py € P(N,n) with 0 € Py,

then there exists some Lipschitz function A : Py — Ps- C RY so that the graph G(A) C RY
fulfils
H(G(A)) = 2 u(RY).

Pt :={z € RN|z-v =0 for allv € Py} denotes the orthogonal complement of P,.

At first, we see that, under the assumption that this theorem is correct, we can prove
Theorem 4.6. The remaining proof of Theorem 6.1 is then given by the rest of this chapter 6
together with the following chapters 7 and 8.

Proof of Theorem 4.6. Let KC? be some p-proper integrand and let Cy > 0. Using Lemma 4.1,
we can assume that K is symmetric. Furthermore, let & > 2 and 0 < n < 2=+ he the
constants given by Theorem 6.1.

Now let i be a measure that fulfils the requirements of Theorem 4.6, that means [i is a
Borel measure with a compact support F and

(A) u(B(0,2)) > 1, @(RN\ B(0,2)) =0,

Gl

) i(B) < Cp(diam B)™ for every ball B,
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6 Construction of the Lipschitz graph

where C' = C(N n,KC,Co, k) > 1 is independent of i and given by the following estimate
(6.1). We have F' C B(0,2), as RN \ B(0,2) is a fi-null set. We have

a(B(0,2)) @

57(B(0,2)) = HEDA ST L

So the requirements of Theorem 5.6 with x =y =0,¢t =2, A = —n and kg = 1 are fulfilled
and using Holder’s inequality (see the proof of Corollary 5.8, page 59), we obtain

~ M 0,2 A ©)
B1op(0.2)? < Cln, Co.k)Basp(0.2)? < 302 o Dop (6

So there exists some n-dimensional plane Py € P(N,n) with ﬁﬁ%;ﬁ(o, 2) < 7. Using Lemma
510 (i) witho =n, 2 =0,t =2, A= 5, and P = Py, there exists some y € B(0,2) N F such
that |5 (0)] = d(0, Py) < d(0,y) +d(y, Py) < 24 2"y < 3. Now we define a measure y by
() == fi( - +mp,(0)). This is also a Borel measure with compact support F' := F' — 7 (0) C
B(0,5) and

(A) w(B(0,5)) > 1, p(RY\ B(0,5)) =0,

(B) n(B) < Cp(diam B)™ for every ball B,
. c
(C) Myca(p) = My (i) < Z <,

(D) 5. k#( 5 = (2 )n+1 By ku(0> 2) < 1, where Py := Py — 7p5,(0) and 0 € Fp.

Hence we can apply Theorem 6.1 and obtain some Lipschitz function A : Py — POl so that
the graph G(A) fulfils u(G(A4)) > 25u(RY). We set T := G(A) + 75, (0) and get

[L(F) = IU(G(A)) = 100M(RN) = 19090 N(RN)

6.1 Partition of the support of the measure 1

Now we start with the proof of Theorem 6.1. Let K : (RN)nJr2 — [0,00) and let Cy > 10 be
some fixed constant. There is one step in the proof which only works for integrability exponent
p=2. (p=2is used in Lemma 8.11 so that the results of Theorem 7.3 and Theorem 7.17
fit together.) Since most of the proof can be given with less constraints to p, we start with

€ (1,00) and restrict to p = 2 only if needed. Furthermore, let k > 2, 0 <7 <2~ (1)
Py € P(N,n) with 0 € Py and p be a Borel measure on RY with compact support F such
that KP is a symmetric p-proper integrand (cf. Definition 4.4) and

(A) u(B(0,5)) =1, p(R¥\ B(0,5)) =0,

(B) u(B) < Cy(diam B)" for every ball B,
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6.1 Partition of the support of the measure p

(C) Mir (1) <,
(D) 814, (0.5) < n.

In this chapter, we will prove that if k is large and 7 is small enough, we can construct some
function A : Py — POL which covers some part of the support F' of u. For this purpose, we
will give a partition of the support of y in four parts, supp(p) = ZUF|UF»UF3, and construct
the function A so that the graph of A covers Z, i.e., Z C G(A).

The following chapters 7 and 8 will give a proof of

(A
p(FLU R UF) < 5 < morRY),

hence we will obtain
p(G(A) > w(2) > FuRY),

which is the statement of the proof of Theorem 6.1.
From now on, we will only work with the fixed measure p, so we can simplify the expressions
by setting 1.5 := Bik;y and 9(-) := 6,(-). Furthermore, we fix the constant

10719 2
§i=ming 6.2
mm{60()”No’50"}’ (62)

where Ny = No(NV) is the constant from Besicovitch’s Covering Theorem A.12.
Definition 6.2. Let a,e > 0. We define the set

’ (i) O(B(w.1) >
§5 = d (2,t) € F x (0,50) B (2,1) < 2¢

total * =
(Z’LZ) 3 P(a;,t) S P(N, n) s.t. and
I (P, Po) <

\

Having in mind that the definition of StE (;?al depends on the choice of € and «, we will normally

skip these and write Sy instead. In the same manner, we will handle the following definitions
of H,h and S. For x € F we define

t t
H(x):= {t € (0,50) ‘ Jy e F, 3 7 with 1 <7< 3 d(z,y) < g and (y,7) ¢ Stotal}

and

h(z) := sup(H (z) U{0})

and set
S = {(.’L’,t) € Siotal ’ t > h(.’E)} .

Lemma 6.3. Let a,e > 0. If n < 2¢e, we have

(Z) F x [10,50) (- Stotal;
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6 Construction of the Lipschitz graph

(1)
(iii)
(iv)
(v)
(vi)

H(x) C (0,40) for allx € F,

h(z) <40 for all x € F,

F x [40,50) C {(z,t) € F x (0,50)|t > h(z)} = S,
If (x,t) € S and t <t < 50, we have (z,t) € S.

P,
For every (x,t) € Siotal, there exists some plane Py with Bl_(,:’t) (x,t) < 2e and
<I(P(z7t), Po) <a.

A
Proof. (i) Let z € F (C) B(0,5) and 10 <t < 50, which implies F' C B(0,5) C B(x,t). We

(v)

(vi)

obtain

p(B(z,t) A 1 (62

1)
m  5m 2

S(B(a,1)) =
s n+1 P (D)
e < e = (7)) 00h0.5) %y <2

Set P(3,10) := Po and we get (x,t) € Siotar, which implies that F' x [10,50) C Syotai-

Let z € F and ¢ € [40,50). For arbitrary y € F and 7 € [£, £], we get 7 > 10 and using
(i), we obtain (y,T) € Siotar, which implies that H(z) C (0, 40).

The statement follows directly from (ii).

The inclusion follows directly from (iii). For the equality it is enough to prove that the
central set is contained in S. Let z € F and ¢t € (0,50) with h(z) < ¢t < 50. Assume
that (z,t) ¢ S. Due to h(xz) < t, we obtain (x,t) ¢ Siotar, which implies with (i) that
t < 10. Hence we have 3t € (0,50) and

3t 3t t
HARS Fa Z S t S 37 d(:{?,l‘) < 5 and ($7t) ¢ Stotal»

which implies that 3¢t € H(z). We get h(x) > 3t > ¢. This is in contradiction to
t > h(x), so we obtain (z,t) € S.

Let (z,t) € Sand t <t < 50.
We have z € F and h(z) <t <t < 50 so with (iv) we conclude that (z,t) € S .

The existence of such a plane is guaranteed by the definition of Siyq.
O

Remember that the function h depends on the set Sjoie;, Wwhich depends on the choice of
and «. Hence the sets defined in the following definition depend on « and ¢ as well.

Definition 6.4 (Partition of F'). Let a,e > 0. We define
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6.1 Partition of the support of the measure p

e Fare M 20 with d(,y) < 3
FL:=XzeF\Z and ,
§(B(y,7)) <0

Sy e F3re M M) with d(e,y) < 3
Fy = IL‘EF\(ZUFl) and ,

/Bl;k’(ya T) > €

Jye F,3r e [@, @} , with d(z,y) < 3
Fy:=qz e F\(ZUFIUF)| and for all planes P € P(N,n) with

ﬁﬁk(y,f) < e we have 4 (P, Py) > 3a

In this chapter, we prove that Z is rectifiable by constructing a function A such that the
graph of A will cover Z. This is done by inverting the orthogonal projection 7|z : Z — F.
After that, to complete the proof, it remains to show that Z constitutes the major part of F.
Right now, we can prove that u(Fy) < 107% (cf. section 8.3, F; is small) where the control of
the other sets need some more preparations.

Lemma 6.5. Let a,e > 0. Definition 6.4 gives a partition of F', that means
F=ZUF UFUF;.
Proof. From the definition we see that the sets are disjoint. We show

F\ZCFlLJFQUFg.

(71)1en so that for all I € N, we have 0 < t; < h(z), t; — h(z), % <7< %l, d(z,y) < 5 and

(y1, 1) & Stotar- Due to 7 < %’ < @ < %, we have for every [ € N either

(a) 6(B(yi,m)) = % < 6 or
(b) 5(B(yl77—l)) Z %6 and Bl;k(ylyTl) Z 25 or

(¢) 8(B(yi, 7)) > 36 and Brx(y1, 71) < 2¢, and for every plane P € P(N,n) with
ﬁf;k(yl,n) < 2¢, we have 4 (P, Py) > a.

Choose [ so large that %(m) < t;. We obtain
Mz) 1B hla)
5 4 3 2

Furthermore, we have y; € F' and d(z,y;) < 7 < 7. Since (y;,7) fulfils either case (a) or case
(b) or case (c), it follows = € Fy U Fy U F3. O

The following lemma is for later use (cf. Lemma 8.10 and Lemma 8.11).
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6 Construction of the Lipschitz graph

Lemma 6.6. Let o > 0. There exists some constant € = (N, n,Cy, «) so that if n < 2€ and
k > 400, there holds for all € € [3,8):

If z € F3 and h(z) <t < min{100h(x),49}, we get ¥ (P51, Fo) > ta, where Py ) is the
plane granted since (z,t) € Siotar (¢f- Lemma 6.3 (vi)).

Proof. Let o > 0 and k > 400. We set & := min{eg, e}y, a(4C3 +4C5) "'}, where g, ), C3 and

Cé depend only on N, n and Cy will be chosen during this proof. Furthermore, let n < 2e < 2¢.
Due to = € F3, there exists some y € F and 7 € {@, @} with d(z,y) < Z so that for all
planes P € P(N,n) with ﬁfk(y,r) < e, we have < (P, Py) > %a. Furthermore, with Lemma

6.3 (iv), we deduce (z,h(z)) € S C Siotar and so /Bi(,:’h(z))(x, h(z)) < 2e. For z € B(y,T), we

get
d(w.2) < dw.g) +d(y. ) < - +7 <20 <2 —piay,

which implies B(y,7) C B(xz, h(x)). Using this inclusion and 7 > @, we deduce

n+1 d P
555:“””(3;,7) < h(x) 1 / (y, (a:,h(x)))d'u(y)
’ h( Bla,kh(z)) h

T )" ()
< 5B (3 ()
< 5t 9e

Since x € F3, we have x ¢ (Z U Fy U F») and so f1.,(y, 7) < €. Hence there exists some plane
P’ € P(N,n) with B, (y,7) <  and by definition of F3 we get

S(P',Ry) >

Q.

>~ w

Moreover, with z ¢ Fy, we have §(B(y, 7)) > ¢ and with Lemma 5.9 (ii) (z =y, t, = t, =T,
A=38=0(N,n), £ =25 ¢ =1), there exist some constants C3 = C3(N,n,Cp) > 1 and
g0 = €o(NV,n, Cp) > 0 so that /

<):(P ’P(a:,h(z))) < Cse.

We assumed h(z) <t < min{100h(zx),49} so, with Lemma 6.3 (iv), we get (x,t) € S. Hence
¢ n+1
f(k) (2, h(z)) < (h(x)) fﬁﬂ (z,t) < 2-100" e
and again, with Lemma 5.9 (ii) (z =y, t, = h(z), t, =t, A = g, ¢ =2-100" ¢ = 100),
there exist some constants Cy = C5(N,n,Cp) > 1 and &) = h(N, n, Cy) > 0 so that
L (P p(w))s Pray) < Cie.

Finally, we obtain with Lemma 2.20 (triangle inequality for <(-,-)) and using ¢ < e ‘: k)
3TL3

, ’ 3 , 1
AP Po) 2 (P, Bo) = 5P, Plap(a)) = 3(Pla (@) Play) 2 30— (C3+ Cg)e > San

O]
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6.2 The distance to a well approximable ball

6.2 The distance to a well approximable ball

We recall that the set S depends on the choice of o and €. Hence the functions d and D
defined in the next definition depend on « and ¢ as well. We introduce 7 := 7p, : RN - By,
the orthogonal projection on Fj.

Definition 6.7 (The functions d and D). Let a,e > 0. If n < 2¢, we get with Lemma 6.3
(iv) that S # 0. We define d : RV — [0, 00) with
d(z) = inf (d(X,z)+t
(@)= jnf (d(X.2)+1)
and D : Py — [0,00) with
D(y) :== inf d(x).
zer—1(y)

Let us call a ball B(X,t) with (X,t) € S a good ball. Then the function d measures the
distance from the given point = to the nearest good ball, using the furthermost point in the
ball. This implies that a ball B(z,d(x)) always contains some good ball. The function D
does something similar. Consider the projection of all good balls to the plane Py. Then D
measures the distance to the nearest projected good ball in the same sense as above (cf. next
lemma).

Lemma 6.8. Let a,e > 0. If n < 2e, we have for y € Py that

Dly) = inf (d(x(X).y) +1)

Proof. We get
inf  d(z)= inf  inf (d(X.2)+t
peitl 1@ = Jnf L X2 1)

> inf  inf (d(m(X), t
L P (X{%ES( (m(X),m(z)) +1)

= (£7%23(d(W(X)’ y) + t)'

Assume
inf d(z)> inf (d(x(X),y)+1).
xe;fjl(y) (v) ( 1}%65( (m(X),y) )

Let (Xi,t;) € S be some sequence with

Jim (d(v(X0) ) + ) = inf_ (d(x(X).5) +1).

Now there exists some [ € N so that

inf d(z) > d(n(X;),y) + t

zert(y)
= d(m(X) + X, — 7(X)),y + X; — 7(X))) +
=d( X, y+ X, — (X)) + 1
—_——

er—1(y)
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6 Construction of the Lipschitz graph

> inf d(Xl,.ilf) + 1
zer1(y)

> inf  inf (d(X,x)+1)
zer—1(y) (X t)eS

= inf d(x).

zer—1(y)

This is a contradiction. O

Lemma 6.9. The functions d and D are Lipschitz functions with Lipschitz constant 1.

Proof. Let z,y € R™V. We get with the triangle inequality d(z) < d(y) + d(x,%) and d(y) <
d(x)+d(x,y). This implies |d(x) —d(y)| < d(z,y). Using the previous lemma, we can use the
same argument for the function D. O

Lemma 6.10. We have {z € RN|d(z) < 1} C B(0,6) and d(x) < 60 for all x € B(0,5).

Proof. Let x € RY with inf(x pes(d(X, ) +1t) = d(z) < 1. Hence there exists some X € F' C
B(0,5) with d(0,z) < d(0, X) + d(X, z) < 6.
Now let z € B(0,5). We have d(z) = inf x ycg(d(X, ) +t) < 10 + 50 = 60. O

Lemma 6.11. Let a,e > 0. If n < 2e, we have d(z) < h(x) for all x € F and
Z={zeFldz)=0}, w(Z)={yeh|D(y) =0}

Furthermore, both sets Z and 7(Z) are closed. We recall that m denotes the orthogonal
projection on the plane Py.

Proof. Let z € F. With Lemma 6.3 (iv), we have (z,h(z)) € S and hence

. (z.h(z))€S
diz) = inf (d(X,z)+t) <  d(z,z)+ h(x) = h(zx).
(X,t)es
It follows
h(z)=0=d(z)=0

and consequently Z C {x € F|d(x) = 0}. Now we show
h(z) >0=d(z) >0

and, all in all, Z = {z € F|d(z) = 0}.

Let x € F with h(x) > 0. There exist some sequences (t;)ien, (71)ien and (y;)ien with

ti — h(x), % <7< %l, d(z,y) < F and (y1,7) ¢ Stotar for all I € N. There exists some
h(z)

M € N so that, for all [ € N with [ > M, we obtain =5~ < 7;. Furthermore, there exists some

sequence (X, 8;:)ien € SN with lim; o0 d(X;, x) + 55 = d(z).

1. Case: There exists some subsequence with d(X;;,z) — 0.
Choose another subsequence so that d(X;; ,z) < 3 —d(=z,y;) for all | > M. Now we obtain
for all I > M that d(X;; ,y1) < d(X;,

@) +d(z,y) < § and, according to the definition of ,
we deduce h(Xijl) > t;. Now we get with (Xijz , Siil) €S,

h
l‘)—FSi].l > Sij, > h(Xl )Ztl >3 > 3(51.) > 0.

Ji? - a

d(X;
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6.2 The distance to a well approximable ball

So we have d(x) > 0.
2. Case: There exists some ¢ > 0 so that, for all [ € N, we have d(X;,z) > ¢ > 0.
We conclude
d(z) = lim d(X;, @) + 5 > lim d(X),3) > ¢ > 0.

Now we prove the second equality. At first, let y € w(Z). There exists some z¢p € Z
with m(zg) = y and with the recently shown identity we obtain d(zg) = 0. Now we get
0 < D(y) = infyeqr—1(y) d(z) < d(x0) = 0.

Now let y € Py with 0 = D(y) = infycr-1(y) d(v). Hence there exists some sequence
x; € 7 (y) with lim; . d(z;) = 0. According to Lemma 6.10, we get

) n{zeRN|d(z) <1} c 7 (y) N B(0,6)

and 71 (y)NB(0,6) is compact. So there exists some accumulation point a € 7~*(y)N B(0, 6)
of (7;) and some subsequence (x;;) with lim; .. 7;; = a. Since d is continuous, we have
d(a) = 0, which is equivalent to a € Z. Thus y € 7(2).

According to Lemma 6.9, d and D are continuous and hence these sets are closed. O

Lemma 6.12. Let 0 < a < ;. There exists some € = £(N,n,Cy) so that if n < 2¢ and k > 4
for all € € [3,£), there holds:
For all x,y € F we have

6(d(x) + d(y)) + 2d(w(z), 7 (y)),
6(d(x) + d(y)) + 2ad(m(z), 7(y))-

Proof. Let 0 < a < i and k£ > 4. During this proof, there occur several smallness conditions
on €. The minimum of those will give us the constant £. Let n < 2e < 2&.
At first, we assume that d(x) + d(y) > 1. This implies for z,y € F C B(0,5) that

d(m (), 7 (y)) < d(z,y) < 10 < 10(d(2) + d(y)) + 2ad(n(z), 7(y)).

So for the rest of this proof, we assume that d(z) + d(y) <

We choose some arbitrary r, € (d(z),d(x) + 1) C (0,2). There exists some (X, t) € S with
d(x) < d(X,z) 4+t < ry. According to Lemma 6.3 (v) and because of t < ry < 50 it follows
that (X,7;) € S. Analogously, for all r, € (d(y),d(y) + 1), we can choose some Y € F with
d(Y,y) <ry and (Y,r,) € S.

1. Case: d(X,Y) < 2(ry +1y).
We deduce

d(m(2), 7 (y)) < d(z,y) < d(z,X) +d(X,Y) +d(Y,y) < 3ry + 3ry.
2. Case: d(X,Y) > 2(ry +1y).
We define By := B(X, 1d(X,Y)) and By := B(Y, 3d(X,Y)). Using 2,y € F C B(0,5), we

have

dX,)Y) <d(X,z)+d(z,y) +d(y,Y) <ry +10+7r, <d(z)+1+10+d(y) +1 < 13
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6 Construction of the Lipschitz graph

With Lemma 6.3 (iv) and r, < 3d(X,Y) < 50, r, < 3d(X,Y) < 50, we obtain (X, 1d(X,Y)),
(Y, 3d(X,Y)) € S. Let Py and P, be the associated planes to B and By (see Lemma 6.3 (vi)).
Since S C Siotar, we get by definition of Siueq; and k > 4 that the requirements of Lemma 5.9
are fulfilled (z = X, y=Y,c=1,{=2,t, =t, = %d(X, Y), A= %5) Hence there exist
some constants C5 = C3(N,n,Cy) > 1 and g = £9(INV,n,Cy) > 0 so that if € < g¢ for w € Py,
we obtain

d(w, Py) < C3(N,n,Cy,8)e (3d(X,Y) + d(w, X)) . (6.3)

Let B; = B(X, lemnd(X, Y) +7,) and By := B(Y,1e2d(X,Y) +r,). We have
(X, %5271 d(X,Y) + 1), ( ,252nd(X Y)+r,) € S because (X,r;) € S, (Y,r,) € S and if
g < 1, we have 1 ?% d(X,Y)+r, <742 <50. Now we conclude using S C Siotal

Since k >4, ry < 3d(X,Y) and € < 1, we have
B, = B(X, Ye2d(X,Y) +r,) C B(X, kid(X,Y)), (6.5)

and because (X, %d(X,Y)) € S C Siotal, We obtain

ﬁﬁ}ﬁ(X, 1d(X,Y)) < 2e. (6.6)
It follows
1 d(x', P ;. (64) 2 d(Xx', P, ,
’/léXYl)d“(X)S I "/’chYl)dM(X)
w(By) Jp, d(X,Y) dez (3d(X,Y))" /B d(X,Y)
63 1 1 / d(X’,Pl)du(X,)
— der (3d(XY))" Jpxrtax ) 3d(X,Y)
1 (6 6) 2

1
= —7 Aik(X,3d(X,Y)) < ez

and analogously

/ YP2 au(y') < et
d(X 0

With Chebyshev’s inequality, we deduce that there exists some X' € B/1 and some Y’ € B;
so that d(X', Py) < 562d(X Y) and d(Y', Py) < 652d(X Y).

Now let X; := 7p,(X') be the orthogonal projection of X' on Py, Y, := 7p,(Y') the
orthogonal projection of Y on Py, and X}, := 7mp,(X)) the orthogonal projection of X; on
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6.2 The distance to a well approximable ball

Py. If £ is small enough, we have with o € {7, 7}

d(o(X),o(X")) < d(X,X")
d(o(Y),0(Y")) <d(Y,Y")

IN

A

d(o(X), o(X})) < d(X', X)) = d(X, Py) < 2ebd(X,Y), 6.7

!

d(o(Y'),0(Y2)) <d(Y',Yy) = d(Y',Py) <

.3) ,
< Gy (Jd(X,Y) +d(X], X))

< Oye (%d(X, Y) +d(X), X') +d(X, X))

IN

Cae (Jd(X,Y) + 3e3d(X, V) + Lemd(X, V) + 1)
2052d(X,Y). (6.8)

A

According to Lemma 6.3 (vi), we have 4 (P, Py) < a and we get with Corollary 2.24 (X,,Y, €
Py) using a < ¢

A(Xj,¥3) < o d(x(X1y), 7(¥3)) < 2d(r(X1o), 7(¥)) (6.9)

—
o

d(?TL(XiQ)yﬂ-J_(YZ/)) < 1-a

A(r(X1e), 7(¥3)) < sad(r(Xia) w(¥2). (610

Inserting the intermediate points X " Xi, XiQ, YQI, Y’ using triangle inequality twice and
using inequalities (6.7), (6.8) and (6.9), there exists some constant C' so that
d(X,Y) < Chexd(X,Y) + 14 + 1y + 2d(n(X],), 7(Yy))
< CLemnd(X,Y) 4 3(ry +1y) + 2d(x(X), 7(Y))

and hence if ¢ fulfils C %5% < %, we get
d(X,Y) <6(ry +1y) +4d(n(X), 7(Y)). (6.11)

As for d(X,Y), we estimate d (71 (X),7(Y)) by repeated use of the triangle inequality and
(6.10). With (6.11), we deduce
d(m(X),7(Y))
< Clemd(X,Y) +3(ry + 1) + dad(x(X), 7(Y))

' CLedi[6(r, + 1) + 4d(m(X), 7V )]+ 3(ra + 1) + Bad(n(X), m(Y)

(6.11
<
< Ary +ry) + 2ad(n(X), 7(Y)).
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6 Construction of the Lipschitz graph

We get using d(n(x), 7+ (X

~—

) < d(2, X) < rp and d(x-(V), 7 (y)) < d(Y,y) < 7,

d(r(2), 7 (y)) < d(z, X) + d(z~(X), 7 (Y)) + d(Y, y)
< 5(rg +1y) + 2ad(n(X), 7(Y))
< 5(rz +1y) + 2ald(X, 2) + d(7(x), w(y)) + d(y, V)]
< 6(rz +1y) + 2ad(7(2), 7(y))-

Hence, in both cases, we obtain
d(m(x), 7 (y)) < 6(rs +1y) + 2ad(r(2), 7(y)).
Since r, and r, were arbitrarily chosen with d(x) < r, and d(y) < ry, we finally get
d(m(x), 7 (y)) < 6(d(2) + d(y)) + 2ad(x(z), 7(y)).

From this, we deduce

d(z,y) < d(r(z),7(y)) + d(m (), 7 (y)) < 6(d(z) + d(y)) + (1 + 2a)d(n(2), 7(y)).

6.3 A Whitney-type decomposition of P, \ 7(Z2)

In this part, we show that Py \ m(Z) can be decomposed as a union of disjoint cubes R;,
where the diameter of R; is proportional to D(z) for all z € R;. This result is a variant of
the Whitney decomposition for open sets in R", cf. [Gra08, Appendix J].

Definition 6.13 (Dyadic primitive cells).

1. We define the set of dyadic primitive cells in R™
D= {Qu, an|di €Z,i€{l.....,n}, 1 €N}
where

d; +1

d; .
Qi (dy,idn) = {(xl,...,:cn) e R" 2—; <x < —or ! € {1,n}}

2. The plane P, is an n-dimensional linear subspace of RY and therefore, isomorph to R™.
Now we set D to be the set of all dyadic primitive cells on Py in the same manner as D
on R".

3. Let 7 € (0,00) and @ be some cube in RY. By r@Q, we denote the cube with the same
centre and orientation as () but r-times the diameter.

We mention that the function D depends on the choice of « and € because D depends on
the set S C Sy ,. Hence the family of cubes given by the following lemma depends on the
choice of o and ¢ as well.
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6.3 A Whitney-type decomposition of Py \ 7(2)

Lemma 6.14. Let o,e > 0. Ifn < 2¢, then there exists a countable family of cubes {R;}icr C
D such that

(i) 10diam R; < D(x) < 50diam R; for all z € 10R;,
1) Po\7(Z)=U..; Ri =.-7 2R; and cubes R; have disjoint interior,
i€l i€l
i) for every i,j € I with 10R; N10R; # 0, we have + diam R; < diam R; < 5diam R,
J 5 J J
(i) for every i € I, there are at most 180™ cells R; with 10R; N 10R; # 0.

Proof. For z € Py, D(z) > 0, we define ), € D as the largest dyadic primitive cell that
contains z and fulfils

diam Q. < 2% nf D). (6.12)

At first, we show that for such a given z the cell @), exists and is unique. The function D
is continuous and D(z) > 0. Hence if we choose a small enough dyadic primitive cell @ that
contains z, we get diam ) < % inf,eq D(u). Due to the dyadic structure, there can only be
one largest dyadic primitive cell that contains z and fulfils (6.12).

We choose the smallest countable family of cubes {R;};c; where R; € D such that {R;|i €
It ={Q. € D|z € Py, D(z) > 0}. This implies that R; = R; is equivalent to i = j.

(i) Let z € 10R; and u € R;. We get

20diam R; < in}fz’ D(v) < D(u) < D(z) 4+ d(z,u) < D(z) + 10 diam R;,
veER;
and hence 10diam R; < D(z).
Let J; € D be the smallest cell in D with R; C J; and choose u € J; so that D(u) <
20diam J; = 40diam R;. This is possible because otherwise R; is not maximal relating to
diam R; < o inf,cp, D(v) . We obtain

D(z) < D(u) + d(u,z) < D(u) + 10diam R; < 50 diam R;.

(ii) If the interior of some cells R; and R; were not disjoint, because of the dyadic structure,
one cell would be contained in the other. But then one of those would not be the maximal
cell fulfilling (6.12). Hence the R;’s have disjoint interior.

Now we prove Py \ 7(2) = U;je; Ri = Ujer2Ri. For all z € 2R;, we have with (i) 0 <
10diam R; < D(x) which implies with Lemma 6.11 = ¢ w(Z). Hence we get Py \ 7(Z) D
Uier 2R;. Now let € Py \ m(Z). With Lemma 6.11, we get D(x) > 0. So there exists the
cube @, € D with x € Q. and hence z € | J;c; R;.

(iii) Let 10R; N 10R; # (). Then there exists some x € 10R; N 10R; and, with (i), we get

10 1 1

50 diam R; < %D(m) < diam R; < ED(m) < i)—g diam R;.

(iv) Let ¢ € I and R; with 10R; N 10R; # (. We conclude

d(R;, R;) = inf  d(z,y) < 5diam R; + 5diam R; < 30diam R;
J Tz€R;, yeER,; 7
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6 Construction of the Lipschitz graph

and so R; C (14 30+ 5)R;. Furthermore, we have diam R; > § diam R;. Since the cells R;
are disjoint, there exist at most

H™M(36R;) _ [36diamR;\
< — (180)"
HY(R;) — < %diam R; ) (180)

cells R; with 10R; N 10R; # 0. O
Now we set Uyg := B(0,12) N Py and I1o:={i € I|R; N U2 # 0} .

Lemma 6.15. Let a,e > 0. If n < 2e, we have that for every i € I12, there exists some ball
B; = B(Xl,tz) with (Xi,ti) €S and

(i) diam R; < diam B; < 200 diam R;,
(ii) d(m(B;), R;) < 100diam R;.

Proof. Let i € I1s. For x € R;, there exists some (X, t) € S so that we get with Lemma 6.8,
Lemma 6.11 and Lemma 6.14 (i), (ii)

d(m(X),z) +t <2D(z) < 100diam R;. (6.13)

Choose B; := B(X;,t;) == B(X,r) with r = max{t,%}. For any z € F C B(0,5), we
have (z,40) € S (Lemma 6.3 (iv)) and there exists some y € R; N B(0,12) which implies using
Lemma 6.14 (i) that 10diam R; < D(y) < d(n(z),y) +40 < 5+ 12 + 40 = 57. Hence in both
cases t < r < 50. With Lemma 6.3 (v), we have (X,r) € S and we obtain

(6.13)
2t < 200diam R;

di R; <2r =diam B; = .
iam R; < 2r iam { diam R,

} < 200 diam R;

and

(6.13)
d(m(B;), R;) <d(n(X),z) < 100diam R;.

O
6.4 Construction of the function A
We recall that 7 := 7p, : RN — P, is the orthogonal projection on Fy and introduce 7t =
7r1l30 : RN — Pg-, the orthogonal projection on Py, where Py := {xr € RN|z-v=0for all v €

Py} is the orthogonal complement of Py. To define the function A, we want to invert the
projection 7|z on Z.

Lemma 6.16. Let 0 < o < 1. There exists some & = £(N,n, Cy) so that if n < 2¢ and k > 4
for all € € [3,8), the orthogonal projection w|z : Z — Py is injective.

Proof. Let x,y € Z with m(x) = 7(y), which is equivalent to d(mw(z),n(y)) = 0. With Lemma
6.11, we obtain d(x) = 0 = d(y) and so, with Lemma 6.12, we conclude d(z,y) = 0. So we
get x = y and hence 7 is injective on Z. O
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6.4 Construction of the function A

Since 7|z : £ — Py is injective, we are able to define the desired Lipschitz function A on
m(Z) by
Ala) :== 7t (7T|§1(a))

where a € w(2).

Lemma 6.17. Under the conditions of the previous lemma, the map A : 7w(Z) — POJ- 18
2a-Lipschitz.

Proof. The projection 7 is injective on Z (Lemma 6.16), so for a,b € 7(Z) with a # b, there
exist distinct X,Y € Z with 7(X) = a and 7(Y) = b. We have A(a) = A(n(X)) = 7(X),
A(b) = (V) and, since X,Y € Z, we conlude with Lemma 6.11 that d(X) = d(Y) = 0. So,
with Lemma 6.12, we get

d(A(a), A(b)) = d(7(X), 71 (Y)) <0+ 2ad(n(X), n(Y)) = 2ad(a,b).
O

Now we have a Lipschitz function A defined on 7(Z). By using Kirszbraun’s theorem
[Fed69, Thm 2.10.43], we would obtain a Lipschitz extension of A defined on Py with the
same Lipschitz constant 2c;, where the graph of the extension covers Z. But until now, we do
not know that Z is a major part of F. We cannot even be sure that Z is not a null set. So
we do not use Kirszbraun’s theorem here, but we will extend A by an explicit construction.
This will help us to show that the other parts of F, in particular Fy, F5, F3, are quite small.

Definition 6.18. Let a,e > 0. If n < 2¢, for all i € I1a, we set P, := P(x, 4,), where P(x, 1)
is the n-dimensional plane, which is, in the sense of Lemma 6.3 (vi), associated to the ball
B(X;,t;) = B; given by Lemma 6.15.

Lemma 6.19. Let 0 < o < % and € > 0. Ifn < 2, then for all i € 112, there exists some
affine map A; : Py — POL with graph G(A;) = P; and A; is 2a-Lipschitz.

Proof. We know < (P;, Py) < a < % (cf. definition of Siyq;) and, with Corollary 2.25, there
exists some affine map A; : Py — P~ with graph G(4;) = P;. Using Corollary 2.24, we get
for all z,y € Py

[Ai(@) = Ai(y)| = A (Aile) +2), 7 (Ai(y) + 1))
< o d(m(Aile) + @), 7(Aily) + ) < 2ale — ]
O

In the following, we use differentiable functions defined on subsets of Py. For the definition
of the derivative see section A.2 on page 156.

Lemma 6.20. Let a,e > 0. Ifn < 2¢, then there exists some partition of unity
¢; € C®(Ur2,R), i € 12, and some constant C = C(n) with

e 0<¢; <1 on U and ¢; =0 on the exterior of 3R;,

77



6 Construction of the Lipschitz graph

® > icr, ®ila) =1 for all a € U,

o |0¥¢;(a)] < % where w is some multi-index with 1 < |w| < 2.

Proof. For every i € I 2, we choose some functlon gbl € C*(Py,R) with 0 < d;Z <1 d;Z =1on
2R;, (bz = 0 on the exterior of 3R;, ]8“’(1)2\ < dlamR for all multi-indices w with |w| = 1 and

05| < W for all multi-indices k with |x| = 2. Now on V := 2R;, we can define

i€l12
the partition of unity

¢i(a)
Zje]lg ¢] (CL)
For all a € V, there exists some ¢ € I1o with a € 2R; and hence Zjehz qu (a) > 1. Moreover,

due to Lemma 6.14 (iv), there are only finitely many j € 12 such that qgj(a) = 0. Hence ¢; is
well defined and fulfils the first and the second condition. With Lemma 6.14 (iv), a € V' and
|w| = 1, we obtain

pi(a) =

(86i(a)) 3 jer,, 9j(a) = dila) X ep, 805(a)]

10%¢i(a)] < =
| Zje.hg ¢]((I)|2
<[0¥¢ia)| + |dia) Y 0“¢;(a)l
j€h2
C 19
dlamR + ’ Z g ¢J ‘
j€liz
C C
< n
diam R; + (180) diam R;
C(n)
dlamR
and accordingly for |w| = 2
C(n)
W ) < .
0% ¢i(a)] < (diam R;)?

O]

Definition 6.21 (Definition of A on Ujz). Let a,e > 0. If n < 2¢ and k > 4, we extend
the function A : 7(Z) — P;- CRY, a — 7t (7r|§1(a)) (see page 77) to the whole set Ujs by
setting for a € Ujq

(rz' @)  een(@)
Ala) =
(a) Y ¢i(a)Ai(a) a € UiaNUsep, 2R
i€l12

With Z C F' C B(0,5), we get m(Z) C U2 and, with Lemma 6.14 (ii), we obtain
Uier,, 2Ri N (Z) = 0, hence we have defined A on the whole set
Uiz = (U2 NUjer,, 2Ri) U m(2).

78



6.5 A is Lipschitz continuous

6.5 A is Lipschitz continuous

In this section, we show that A is Lipschitz continuous. We start with some useful estimates.

Lem_ma 6.22. Let 0 < a < i. There exists some k > 4 and some & = EﬁN, n, Cy) so that if
k>Fk andn < 2¢ for alle € [4,£), there exist some constants C > 1 and C' = C(N,n,Cp) > 1
so that for all i,j € Iio with i # j and 10R; N 10R; # 0, we get

(i) d(Bj, Bj) < Cdiam Rj,

(ii) d(Ai(q),A;(q)) < Cediam R; for all g € 100R;,
(iii) the Lipschitz constant of the map (A; — Aj) : Py — Py~ fulfils Lipy, 4, < Ce,
(iv) d(A(u), A;j(u)) < Cediam R; for all u € 2R; N Uss.

Proof. Let 0 < a < i. We set £ = min {%,é’,go}, where 6 = §(N, n) is defined on page 65, &
is the upper bound for € given by Lemma 6.12 and ¢ is the constant from Lemma 5.9. Let
1 < 2¢€ and choose € such that n < 2e < 2¢é.

(i) Let B; = B(X;,t;) and B; = B(Xj,t;). With Lemma 6.14 and Lemma 6.15, we get

d(n(X;), m(X;)) < d(m(X;), Ri) + d(R;, Rj) + d(n(X;), Rj) + Cdiam R; < C' diam R;,
and for [ € {i,j}, we have (X;,t;) € S and hence
d(X;) < d(Xy, X)) + t; = 3 diam B; < 100 diam R; < 500 diam R;.
Now, with Lemma 6.12, there exists some constant C' > 1 with
d(B;, Bj) < d(X;, X;) < Cdiam R;.

(i) At first, we show for ¢ € 100R; that d(A;(q) + ¢, X;) < Cdiam R;. Since (X;,t;) €
S C Siotar and e < g, the requirements of Lemma 5.10 (ii) are fulfilled for o = 2¢, z = X;
t=t;, A\ = %5, P = P; and we get B(X;,2t;) N P; # (). Thus there exists some a € Py with
Ai(a) + a € B(X;,2t;) N P; and a € w(2B;). Let b € R;. Since A; is 2a-Lipschitz and o < %,
we obtain using Lemma 6.14 and 6.15

d(Ai(q) + ¢, Xi) < d(4i(q) + ¢, Ai(a) + a) + d(Ai(a) + a, X;)
< |Ai(q) — Ai(a)| + d(q, a) + diam B;
< 2d(q,a) + diam B;
< 2[d(q,b) 4+ d(b,a)] + diam B; < C'diam R;. (6.14)

With Lemma 6.14 and 6.15, there exists some constant C' > 2 so that %tj <t < Ctj.
Moreover, we have (Xj,t;),(X;,t;) € S C Stotar (Lemma 6.15) and hence Bffk(Xi,ti) < 2
and /Bf],;(Xj,tj) < 2¢ as well as 6(B(X;,t;)) > g and 0(B(Xj,t;)) > g. We have already seen
in the 7pr00f of (i) that d(X;, X;) < Ct;j. So, with k > k := 2C? > 4C, the requirements of
Lemma 5.9 (i) are fulfilled for . = X, y = X;, c=C, =2, t, =tj, ty =t; A= %, and hence
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6 Construction of the Lipschitz graph

there exists some €y > 0 and some constant C3 = C5(N,n,Cpy) > 1 so that, for e < & < &,
we get

d(Ai(q) +q, Pj) < Cse (tj + d(Ai(q) + a4, X;)) - (6.15)

Furthermore, there exists some o € Py so that Aj(o) + 0 = 7p;(Ai(q) + ¢q). Now, with
Lemma 6.14, Lemma 6.15 and using that A; is Lipschitz continuous with Lipschitz constant
2a < 1, we obtain

Il
2

d(Ai(q), Aj(9))

—
=)

5)
3036 (diam Bj + d(AZ(q) +4q, Xl) + d(XZ', XJ))

=
IN= A= IAN A A
QU

N
=

C(N,n,Cp)e diam R;.

(ili) Without loss of generality, we assume diam R; < diam R;. We have B(y,2diam R;)NPy C
20R; N 20R; for some y € 10R; N 10R; # (. We choose a,b € B(y,2diam R;) N Py with
d(a,b) > diam R;. Now, with (ii), we get

|(Ai = 4j)(a) — (Ai = 45)(b)] < [Aia) — Aj(a)| + |Ai(b) — A;(b)]
< Cediam R; < C(N,n,Cyp)ed(a,b).

Since A; and A; are affine maps, the map A; — A; is also affine. The estimates above hold
for all a,b € B(y,2diam R;) N Py with d(a,b) > diam R;, which implies that the affine map
A; — A; is Lipschitz continuous with Lipschitz constant C(N,n, Cp)e.

(iv) Let u € 2R; N Ug. Using > ;. #i(u) = 1 and Lemma 6.14 (iv), we obtain

A(A(w), () = | 32 i) Ai(w) = > du(w)4y(w)

el lels

(i)
<Y di(w) [A(u) — Aj(u)| < C(N,n, Co)e diam R;.
lelo

O

Lemma 6.23. Let 0 < a < %. There exists some k > 4 and some & = &(N,n,Co,a) < a so
that if k > k and n < 2¢ for all e € [3,€), the function A is Lipschitz continuous on 2R; N Utz
for all j € Iy with Lipschitz constant 3.

Proof. Let 0 < a < 1. We set £ := min {#, % , where &' is the upper bound for ¢ given by

Lemma 6.22 and C (N, n,Cp) is some constant presented at the end of this proof. Let n < 2&
and choose € > 0 such that n < 2e < 2¢&.
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6.5 A is Lipschitz continuous

Let a,b € 2R; N Ur2. We obtain using D ;. ¢i(a) =1=> .1, ¢i(b)

(@) = AW = | Y dil@)Aila) = 3 i) Ai(h)|

= b
= 32 G406 = 30 G@A0)+ 3 6040 - 3 @A)
- ; ¢i(a)4;(b) - ; 6i(b)A4;(b) + ; 6i(b) 4;(b) - le 6:(6) A,(0)
< Z o) ) — A o .
| 2 HAAD) = 3 H@AB+ D sO40) - 3 #i(b) 4i(0)|
3 a@a,0) = 3 a4, 0)]
& _én
< ZIZ $i(a)|Ai(a) — A,(D)| +; 6i(a) — 6s(b)]| Ai(b) — A;(b)]-

If ¢i(a) — ¢i(b) # 0, we get 3R; N 2R; # () and so we can apply Lemma 6.14 (iii), (iv) and
Lemma 6.22 (ii). Furthermore, we know from Lemma 6.19 that A; is 2a-Lipschitz and we
deduce with Lemma 6.20 that ¢; is ﬁm-LipSChitZ. Since e < € < %, we obtain

5C -
|A(a) — A(b)| < 2ala — b| + (180)”d, 7 la — b|Ce diam R;

iam R
= 2ala — bl + C(N,n, Co)ela — b| < 3ala — b].

O]

Lemma 6.24. Under the conditions of the previous lemma for a,b € Uiz \ m(Z) with [a,b] C
Uiz \ m(Z), we have that d(A(a), A(b)) < 3ad(a,b).

Proof. With Lemma 6.14 (ii) it follows that [a,b] C U;¢;,, R;- Hence, for all v € [a, b], there
exists some j € I1o with v € R; and, with Lemma 6.14 (i), we get D(v) > 10diam R; > 0.
Assume that the set Ij5 := {i € I12|R; N [a,b] # 0} is infinite. The cubes R; have disjoint
interior, so there exists some sequence (R;,)ieN, % € I» with diam R;; — 0. Hence there
exists some sequence (v;)ien With v; € R; N [a,b] and, with Lemma 6.14 (i), we obtain
D(v;) < 50diam R;, — 0. Since [a, b] is compact, (v;);en has an accumulation point T € [a, b]
and, since D is continuous (Lemma 6.9), we deduce D(v) = 0, which is according to Lemma
6.11 equivalent to ¥ € m(Z). This is in contradiction to [a,b] C Py \ 7(Z) and so the set Ijo
has to be finite.

With Lemma 6.23 and [a,b] C | R;, we get d(A(a), A(b)) < 3ad(a,b). O

i€]~12
Now we show that A is Lipschitz continuous on Ujs with some large Lipschitz constant.

After that, using the continuity of A, we are able to prove that A is Lipschitz continuous with
Lipschitz constant 3a.
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6 Construction of the Lipschitz graph

Lemma 6.25. Let 0 < a < i. There exists some k > 4 and some & = &(N,n,Cp,a) < a so
that if k > k and n < 28 for all e € [%,2), A is Lipschitz continuous on Uja.

Proof. Let 0 < a < %, k > k > 4, where k is the constant from Lemma 6.23, and let
£ = &(N,n,Cy,a) < g be so small that we can apply Lemma 6.12, 6.17, 6.22 and Lemma
6.24. Furthermore, let € > 0 such that n < 2e < 2¢.

Let a,b € Uia. We prove d(A(a), A(b)) < Cd(a,b).

1. Case: a,b € w(Z2).
This is already proven in Lemma 6.17.

2. Case: We have a,b ¢ m(Z) and [a,b] C U,;¢;,, 2R,
This is already proven in Lemma 6.24.

3. Case: We have a € m(Z) and there exists some j € 12 with b € 2R;.
According to Lemma 6.11, we have D(a) = 0. Since b € 2R;, we obtain with Lemma 6.14
and because D is 1-Lipschitz (Lemma 6.9)

diam R; < D(b) = D(b) — D(a) < d(a,b). (6.16)

We estimate d(A(a), A(b)) < d(A(a) + a, A(b) +b) < d(A(a) + a,X;) + d(X;, A(b) + b) where
X is the centre of the ball B; = B(Xj,t;) (see Lemma 6.15).

At first, we consider d(A(a) + a, X;). By definition of A on 7(Z), we get A(a) +a € 2
because a € w(Z). We already know that the function d = 0 on Z (see Lemma 6.11). Hence

d(A(a) +a) =0.
Moreover, with Lemma 6.15 (i) and (Xj,t;) € S, we deduce

di B. (6.16)
A(X;) = inf (Y, X;) +5) < t; = % <100diamR; < 100d(a,b),

and again by Lemma 6.15 (i), (ii)

d(n(A(a) + a),7(X;)) < d(a,b) + d(b,7(X;)) < d(a,b) + C diam R; (6%6) Cd(a,b).

With Lemma 6.12, we obtain
d(A(a) + a,X;) < 6(d(A(a) + a) + d(X;)) + 2d(m(A(a) + a), 7(X;)) < Cd(a,b).

Now we consider d(X;, A(b) +b). We have (X;,t;) € S C Siotar and hence, with Lemma

510 (ii) (0 = 2¢, = Xj, t = tj, A = g, P = Pj) using ¢ < € < %, there exists some

y € B(Xj,2t;) N Pj, where P; is the associated plane to B; (see Remark 6.3 (iii)). We
conclude

d(Xj, A(b) +b) < d(Xj,y) + d(y, A;(b) + ) + d(A;(b) + b, A(b) +b).
With Lemma 6.22 (iv) and € < £ < 1, there exists some C = C(N,n, Cp) so that

d(A;(b) + b, A(b) + b) = d(A(b), A;(b)) < Ce diam R; < Cd(a, b),
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6.5 A is Lipschitz continuous

so that, with y € 2B; N P; and (P}, Pp) < o <
6.15 (i), (ii)

%, we deduce with Lemma 2.23 and Lemma

d(X;, A(b) +b) < d(Xj,y) +d(y, A;(b) +b) +d(A;(b) + b, A(b) +b)
P
< diam Bj + 2d(7(y),b) + Cd(a,b)
(6.16)
< Cd(a,b).

4. Case: We have a,b ¢ 7(2) and there exists some d € [a,b] N 7(Z2).
We get using case 3

d(A(a), A(b)) < d(A(a), A(d)) + d(A(d), A(b)) < Cd(a,d) + Cd(d,b) = Cd(a,b).
O

Lemma 6.26. Under the conditions of Lemma 6.25 for some a € m(Z), i € I12 and b € 2R;,
we get

d(A(a), A(b)) < 3ad(a,b).

Proof. We set ¢ := inf,¢|q p)nr(z) d(,b). Since 7(Z) is closed (see Lemma 6.11), there exists
some v € [a,b] N 7(Z) with d(v,b) = c. Furthermore, there exists some sequence (v;); C [v, b]
with vy — v where I — co. With Lemma 6.14, we deduce ([v,] \ {v}) C U,¢y,, 2R;. For
every [ € N we obtain with Lemma 6.24

< d(A(v), A(w)) + d(A(vr), A(b))
< d(A(v), A(w)) + 3ad(v, b)
< d(A(v), A(ny)) + 3ad(v, b).

and, since A is continuous (Lemma 6.25) we conclude with | — co
d(A(v), A(b)) < 3ad(v,b).
We already know that A is 2a-Lipschitz on w(Z) so we get since v € [a, b]

d(A(a), A(b)) < d(A(a), A(v))) + d(A(v), A(b))
< 2ad(a,v) 4+ 3ad(v, b)
< 3ad(a,b).

Lemma 6.27. Under the conditions of Lemma 6.25 for a,b € | 2R; N Uiz, we have

j€l12

d(A(a), A(b)) < 3ad(a,b).
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6 Construction of the Lipschitz graph

Proof. Let a € 2R; and b € 2R;. If i = j, the statement is already proven in Lemma 6.23. So
we assume ¢ % j.
1. Case: There exists some v € 7(2Z) with v € [a, b].
We obtain with Lemma 6.26
d(A(a), A(b)) < d(A(a), A(v)) + d(A(v), A(b))
< 3ad(a,v) + 3ad(v, b)
= 3ad(a, b).
2. Case: We have [a,b] C Uz \ 7(2).
This is already proven in Lemma 6.24. O

Lemma 6.28. Under the conditions of Lemma 6.25, the function A is Lipschitz continuous
on Uy with Lipschitz constant 3a.

Proof. With Lemma 6.17 we already know that A is 2a-Lipschitz on 7(Z). Hence the previous
lemmas imply that A is Lipschitz continuous on Uiz = (U12NU,e,, 2R;) U m(Z) with Lipschitz
constant 3a. O

The following estimate is for later use.

Lemma 6.29. Let 0 < a < 1. There exists some k > 4 and some & = (N, n,Cp) so that if
k >k andn < 2¢ for all e € [4,€), there exists some constant C' = C(N,n, Cp) so that for all
J € Iz and for all multi-indices k with |k| =2 and a € 2R;

Ce
0" A(
| ()] = diam R;
Proof. Choose k and £ as in Lemma 6.22. Let x be some multi-index with |x| = 2. For i € I3,
the function A; is an affine map, so 9" A; = 0 and hence for some suitable /1,1l € {1,...,n}
we have
INA = aﬁ( > ¢iAi) =) (0"¢) Ai+ > (0, $i0L As + 01y 401, As) (6.17)
i€lio i€lio i€lio

Let j € I12 and a € 2R;. Since ¢; = 0 on the exterior of 3R; where ¢ € 12, with Lemma
6.14, there exist at most 180" cells R; so that 0%¢;(a) # 0 or 0“¢;(a) # 0, where w is a

multi-index with |w| = 1. So only finite sums occur in the following estimates. We have
Yoicl, 090 = 0% ) i, ®i = 0¥ 1 =0 so that, for a € 2R;, we get
0" A(a)]
(6. 17)
<7 S @) Aia) = D (0% 6i(@) Ay a)
S ED) 1€l12
+‘ > (04,0i(a)d, Ai(a) + Dy 6i(a)d, Ai(a)) — > (01, 0i(a)d1, Aj(a) + D1, ¢i(a) Dy, Aj(a))
i€l12 1€l12
< Y 107¢i(a)] [Ai(a) — Aj(a)]
1€l12
+ D 10y di(a)l [0, (Ai(a) = Aj(a)] + Y 18,0:(a)] 101 (Aia) — Aj(a))].
i€l12 i€l12
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6.5 A is Lipschitz continuous

To estimate these sums, we only have to consider the case when a is in the support of ¢; for
some i € I12. This implies 3R;N2R; # () and so we can apply Lemma 6.22. For a € 3R;N2R;,
we have the following estimates (see Lemma 6.22 and 6.20)

|Ai(a) — Aj(a)] < C(N,n,Co)e diam R,
|aw(Al(a) - Aj(a»’ < C(Nv n, 00)67
C(n)
diam RZ”
C(n)
(diam R;)?’

|0%¢i(a)| <

0% i(a)| <

and hence, with Lemma 6.14 (iii), (iv), we obtain

C(n) Ce < Ce
diamR; ~ ~ diamR;’

O e diam Ry +2- 180"

K < n
0 Afa)| < 180" et
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7 ~-functions

In this chapter, we introduce the v-function of some function g : Py — POL. This function
measures how well g can be approximated in some ball by some affine function. The main
results of this chapter are Theorem 7.3 on page 90 and Theorem 7.17 on page 103. We will
use these statements in section 8.4 to prove that p(Fj3) is small.

Definition 7.1. Let U C Py, ¢ € U and t > 0 so that B(q,t) N Py C U. Furthermore,
let A = A(Py, Pg) be the set of all affine functions a : Py — Pg-, P(N,n) the set of all
n-dimensional affine planes in RY and let g : U — P(f- be some function. We define

Yg(q,t) := inf / - ( ))dH"( )

acAt
and
) o d(u + g(u), P)
q,t) ;== inf / — 2 7 ZAdH™(u).
Yol 1) PeP(Nn) t" Jp(q.t)npy t ()

Lemma 7.2. Let U C Py, ¢ € U and t > 0 so that B(q,t) N Py C U. Furthermore, let
g:U— P[f- be a Lipschitz continuous function with Lipschitz constant

n+1 -1
Lip, < [GOn(IO" +1)27 (n%) , where w, denotes the n-dimensional volume of the

n-dimensional unit ball. Then we have

Fg(a,t) < vg(a,t) < 374(q, 1)

Proof. Let g be a Lipschitz continuous function with an appropriate Lipschitz constant. For
every a € A the graph G(a) of a is in P(N,n). We obtain

1 d P
Fe(q,t) = b, inf — Md?—[”(u)
EP(N,n) t B(q,t)ﬂPo t

< inf 1 d(u+ g(u), G(a))dH"(u)
a€A "™ Jpgnp t

< inf — A+ g(u) u+a() jom
acA t" B(g,t)NPo t

= inf — Md?—[”(u)
a€A L™ Jpg.np,

= "Yg(Q, )
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7 ~y-functions

which is the first inequality. Now we treat the second one. We deduce

e 1 d(g(w), a(u))
¢,t) = inf / AH™(u
79( ) acAtm B(q,t)NPy t ( )

1 n
<o [ W)

<Lip, d(u,q)<Lip, t

< o Lipy £ (Blg,t) N )

=wnt™

< Lip, wy,.
The first inequality implies

:Vg(Qvt) < ’Yg(Qvt) < Lipg Wn-

Let 0 < § < Lip, wy, and choose some P € P(N,n) so that

1 d P
™ / Md%”(ﬂ) < Fg(g,t) + & < 2Lip, wy. (7.1)
t" JB(g,H)nPo t
We obtain
" ({v € Blg,) N Rold(v + g(v), P) < 4Lip, 1} )
=:D1
> 1" (B(g,t) N Py) = H" ({v € Bla,1) N Rold(v + g(v), P) > 4 Lip, t})
—:Dy
P / 4 Lip, tdH" (u)
= Wnpt — - 1
“ 4Lip,t Jp, Py “
1
nt" — , P)dH"”
>~ /D d(u+ g(u), P)dH" (u)
1 d P
> pt" — — / At 9 P) jgn ()
4Lipg JB(g.0np ¢
(7.1)
< t"2Lipg wn
Wn
> —t". 7.9
> (7.2
Assume that every simplex A(ug,...,u,) € D; is not an (n, H)-simplex, where H = 12—,

4wn—1

With Lemma 2.16 (m = n, D = Dy), there exists some plane P € P(N,n — 1) with

D, C UH(P)QB(q,t) N Fy.

We get
Wn,

H'(D1) < H"(Un(P) N B(g,1) N Py) < 2Hw, " =

",
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This is in contradiction to (7.2), so there exists some (n, H)-simplex A(ug,...,u,) € Di. We
set Py := Po+g(ug), yi :=u;+g(ug) € Py for alli € {0,...,n}and S := A(yo,...,yn) C PoN
B(q+ g(up),t). We recall that P is the plane satisfying (7.1). We obtain for all i € {0,...,n}

d(yi, P) < d(u; + g(uo),w; + g(u;)) + d(u; + g(u;), P) < Lipg d(ug,u;) + 4Lipgt < 6Lipg t.

With Lemma 2.28, ¢ = “2=1 > 11, ¢ =1, m = n, 0 = 6Lip,, P\ = By, P, = P and
x=q+g(up), we get

. Ao n+1
2(Py, P) = <(Py, P) < 4n(10" + 1)2" (n “n 1) 6 Lip, <

Wn

57
and, with Corollary 2.25, there exists some affine map a : Py — Pg- with graph G(a) = P.

Now we obtain with Corollary 2.24 (P = P, P, = Fy), u,v € Py and < (P, P) < %

d(v + a(v),u +a(w) < 2d(mp, (v + a(v)), Tr, (v + a(u)))
ep ep

— 2d(mp, (v + a(v)), 7, (u + g(w))). (7.3)

That yields for u € B(q,t) N Py and some suitable v € Py

d(g(u),a(u)) = d(u+g(u),u+a(u))
< d(u+g(u), P)+d(mp(u+ g(uw)), v+ a(u))

=w+a(v)
(7.3)
< d(u+g(u), P)+2d(rp,( v +av) ) mp(u+g(u))
(utg(u))
=nmp(utg(u

< d(u+g(u), P)+2d(mp(u+ g(u)),u+ g(u))
—d(u-+g(u),P)

= 3d(u+ g(u), P).
Finally, we get

C ),

t B(q7 mPO

1 U+g() P) im
= 3 /qt)mPo dH()

(7.1)
< 3(Y(q,t) +€),

and 0 < £ < aw, was arbitrarily chosen. O

! As the volume of the unit sphere is strictly monotonously decreasing when the dimension n > 5 increases,
we get “2=% > 1 for all n > 6. With the factor 4 we have that 4=2~% > 1 for all n € N.
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7 ~y-functions

7.1 ~-functions and affine approximation of Lipschitz functions

In this section, we use the notation U; := B(0,1) N P, for | € {6,8,10}.

Theorem 7.3. Let 1 < p < oo and let g: Py — POl be a Lipschitz continuous function with
Lipschitz constant Lip, and compact support. For all 6 > 0, there exists some set Hy C Ug

and some constants C = C(n,p) and C = C’(n, N) with
C 2 dt\ 2
H"(Us \ Hy) < / </ yg(a:,t)2> dH"(x)
Uio 0 t

= gp(n+1) Lipg

so that, for all y € Py, there ewists some affine map a, : Py — POL so that if 1 < 6 and
B(y,r) N Hy # 0, we have

lg = ayll e (By.rnpe,py < Cr6 Lipg,
where || - HLOO(E‘) denotes the essential supremum on E C Py with respect to the H™-measure.

To prove this theorem, we need the following lemma. If v is some map, we use the notation
1 T
v(x) = v (2).
Lemma 7.4. There exists some radial function v € C§°(Py,R) with

1. supp(v) C B(0,1) N Py and v(0) =0,

2. there exists some constant ¢ > 0 so that for all x € Py \ {0} and i € {1,...,n}, we have

= di 0 — dt
/ ]ﬁ(tm)P? =1 and 0< / |(0iv)¢(2)]? " < ¢ < o0, (7.4)
0 0

3. for alli € {1,...,n}, the function O;v has mean value zero and, for all a € A(Py, Py")
(affine functions), we have

/ av M =0, (7.5)
Py

4. forallw € Py and i € {1,...,n}, we have

Oiv(—w) = —0iv(w), (7.6)

5. U is radial.

Proof. Let
v Py— R

be some non harmonic (Avy # 0), radial C*° function with support in B(0,1) N Py. We set
ve := Avy € C®(Py)NCE(B(0,1)NPy) and 0 < ¢ := [;° [a(te) 2%, where e is some normed
vector in Py. With Lemma A.22; we get v5 is radial as well. Using Lemma A.20, we obtain

Ba(te)] = | 3 B0 (te)| = 2m)n(te)| D 67 (te)? = 4|7 ()
j=1

J=1
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7.1 ~v-functions and affine approximation of Lipschitz functions

and hence
0< e = / Ar(te)? S = 16774/ #4173 (te) [2dt < oo
0 0

because v is in the Schwarz space and therefore 7} as well [Gra08, 2.2.15, 2.2.11 (11)]. The
previous equality also implies 75(0) = 0. Now we set

1
V= —VU9,
@]

which is a radial C§°(P,R) function that fulfils 1. With [Gra08, 2.2.12], we get v is radial,
so it fulfils 5. We have for all z € Py \ {0} (use substitution with ¢ = rﬁ and the fact that v

is radial)
< dt < d
| weors = [ praps <1
0 t 0 r
In a similar way, we deduce for i € {1,...,n} with Lemma A.20 (using |(¢~(tz))"| <
|¢p~L(tx)| = |[tx| where x is some multi-index with |x| = 1)
L, dt < dt BN ?
/ |(0v)e(2)]? = < 471'2/ itz |D(te)|* = = 471'2/ r|v <rx> dr < oo,
0 ¢ 0 t 0 ||

where we use that the Fourier transform of a Schwartz function is a Schwartz function as well
[Gra08, 2.2.15]. The left hand side of the previous inequality can not be zero, because this
would implicate that 0;v(z) = 0 for all x € Py, which is in contradiction to 0 # v € C§°(Py, R).
Hence v fulfils 2.

Now we get for all a € A(Py, P5-) (see Lemma A.17, partial integration)

1 1
/ av dH" :/ ay | —Avy dH" :/ Aa «/—uv dH" =0,
” n Ve ny Ve

and the same argument implies that 0;v has mean value zero. At last, we show that v fulfils
(7.6). For i € {1,...,n}, there exists some € € R" so that we get with Definition A.13, using
that v is radial,

(vo @) (¢~ (—w) + hé) — v(—w)

Oiv(—w) = lim

h—0 h
_ (Vo) (¢~ (w) + (=h)e) —v(w) _
= “h = —Ow(w)

For some function f : Py — P;- and x € Py, we define the convolution of v; and f by

(v # ) (x) = / vl — ) f(y)AH ).

Py
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7 ~y-functions

Lemma 7.5 (Calderén’s identity). Let v be the function given by Lemma 7.4 and let u €
Po\ {0} and f € L*(Py, Py") or let f € .7 (Py) be a tempered distribution and u € % (Py)
(Schwartz space) with uw(0) = 0. Then we have
o dt
flu) = ; (v * 1y % f)(u)T (7.7)
Remark. Léger calls this identity “Calderén’s formula” [Lég99, p. 862, 5. Calderén’s formula
and the size of F3]. Grafakos presents a similar version called “Calderén reproducing formula”
[Gra08, p.371, Exercise 5.2.2].

—

Proof. At first, let f € L*(Py, P5-) and u € Py \ {0}. We have with Lemma A.20 (1;)(u) =
v(tu) and, with Fubini’s theorem, Lemma A.19 and [Gra08, 2.2.4 The Fourier Transform on
L' + L?], we obtain with (7.4)

(/Ooo(yt*yt*f)(u)i’f> = /OOO (Vt*yt*ff(u)%

- [ mwmwiw
~ R dt
= Fw [P
—_—

= flu).

The Fourier inversion holds on L?(Py, Pg-) [Gra08, 2.2.4 The Fourier Transform on L! + L?],
which gives the statement.

Now let f be a tempered distribution and v € .(F) with «(0) = 0. Using Lemma 7.4 1.
and 2., we deduce for all x € Py that

—, o, .dt

uw) = ulz) [~ @)@

and hence we get with [Gra08, Prop. 2.3.22] and [Yos80, Chapter V, Section 5, Cor. 2]
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7.1 ~v-functions and affine approximation of Lipschitz functions

Proof of Theorem 7.3. Let g € Cg’l(Po,POJ—) and let v be the function given by Lemma 7.4.
We apply the previous lemma on g € L%(Py, Py-) and get for u € Py \ {0}

o0 dt
ng/(WWMMW-
0 t
We define

dt
t?

00 2
nw) = [ orenr0@F + [ @ Qnyng - )

dt

2
) i= [ Ay, 025 )0

The convolution fulfils the distributive property [Gra08, Prop 1.2.9, (2)], so we get g = g1+ go.
We recall the notation U; = B(0,1) N Py for [ € {6,8,10} and continue the proof of Theorem
7.3 with several lemmas.

Lemma 7.6.

1. g1 € C*(Ug) and there exists some constant C = C(v) so that for all multi-indices k
with |k| < 2

||8Hgl ||L°°(U8,P0J-) < C Llpg .
2. g9 is Lipschitz continuous on Us with Lipschitz constant C(v) Lipg,

Proof. We set for z € Py

dt
t?

gmwzéﬂwwwwm

dt

2
n2(o) 1= [ Qg (200

so that g1 = g11 + g12 and we set

dt

p(z) = /200(1/7& * 1) () .

At first, we prove some intermediate results:

I. gi2(z) =0 for all z € Usg

Proof. The integrand of gi5 is

(e (Lp\no - (e % 9))) (@) = /P vi(r = y)(Lrp\vy - (v % 9))(y)dH" (),

where z € Ug and 0 < ¢t < 2. By definition of v; and ¢ < 2, we obtain

supp(v) C supp(re) C B(0,2)N Py
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7 ~y-functions

II.

I11.

94

and hence, because x € Us,
supp(v(z —+)) € B(z,2) N Py C Uyp.

Furthermore, we get
supp(1p\vy, - (Ve * 9)) C Po \ Uto-
Now we conclude for all y € Py using v € C5°(B(0,1))

vi(x —y)(Lpp\uy, - (e 9))(y) =0,
andso forall 0 <t <2,z € Ug
(e x (Lp\tro - (Ve % 9)))(x) =0,
which gives the statement. O

For every multi-index r, there exists some constant C' = C(n, v, k) such that |0%¢| < C,
where 8%¢(y) := [~ 0" (v * Vt)(y)%.

Proof. We have supp (1/ (g)) C B(0,t) and hence, for all y € B(0,4) N Py,

ol =| [ (U55) v (5) aweo
1

< — v||? o dH"™(x
= oy Wl 03 2)

2 CL)
= ”V||Lo<>(P0,R)tT7;a

and analogously, using 0" (v(y)) = 0"(t"v(¥)) = t‘%l(ﬁ”‘y)t(y), we get

Wn

Y 1 K K
10" (v * 1) (y)| = W’((a V)ex ve) ()| < IVl zeepy,r) 11O VHLOO(PO,R)W-

This implies for all y € Py

ool < [ 10 e < Clnr)

For every multi-index k, the function 0" has bounded support in B(0,4) N Py.
Proof. Let 0 <t < 2. We have

supp(v¢) C supp(r2) C B(0,2)

and hence
supp(v¢ * v¢) C B(0,4),
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IV.

which implies
(e *x1y)(x) =0
for all x € Py \ B(0,4). It follows that

2
/0 (% yt)(m)% —0

for all z € Py\ B(0,4). Now we consider ¢ as a tempered distribution. The convolution
with dp, the Dirac mass at the origin [Gra08, Example 2.3.5, 1.], is an identity (cf.
[Gra08, Example 2.3.14]), hence we get with Calderdn’s identity (Lemma 7.5) for all
n € .7(Py) with n(0) =0

ot = o) ool = ([ § ) o= ([ o an ) o
~([Twnf) - ([T
- (/02<>Cf) ().

Since this holds for arbitrary n € .(Fy) with supp(n) C Py \ B(0,4), we conclude that
for such n we have

[ eomwanr = [ [ vw S o

supp(y) C B(0,4) N Py.

and hence

For the same kind of 7, we get using Fubini’s theorem and partial integration

/Poawm £)AH™ //Poawwt (@) dH" @)

lﬂl/ /P Vi % 01 (2)0%n(2) A (& )

= (1)l x)0"n(x "z
COM [ e @)
=0
since 0"n € ./ (Py) with supp(9©n) C Py \ B(0,4). O
(NS CSO(PO)

Proof. With II. and III. we conclude for every multi-index  that 0% € L'(Py,R). With
Fubini’s theorem and partial integration, we see that 0%y is the weak derivative of ¢
hence we have ¢ € W (Py) for every I € N. The Sobolev imbedding theorem [AF03,
Thm 4.12] gives us ¢ € C*(F) and, with II., we obtain ¢ € C§°(Fp). O
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7 ~y-functions

Now we have for all z € Ug with Fubini’s theorem [EG92, 1.4, Thm. 1]

(@)= [0

:/wz;%*wxx—wmmwwwf?
/P/ ver ) — ) Lol ()

—/ o — 1)g(y)AH (1)
Po

= (p*9g)(x).

We know, that ¢ € C§°() and g € Cg’l(PO,POL). Hence we have g11 € C§°(FRy), g €
W (Py) and for i,7 € {1,...,n}

0ig11 = @ * 0ig,
0;0;911 = O;p * Ojg.

With the Minkowski inequality [Gra08, Thm. 1.2.10] and III., we obtain for ¢,5 € {1,...,n}
I .
10ig1 |l o (s,R) = 195911l oo s Ry < 10igl oo (s r) 2l L1 (Py) < C(v) Lip,

L .
HaiajngLoo(Ug,R) = HaﬁjgnHLw(US,R) < Haz‘QHLOO(US,R)HajSOHLl(PO) <C(v) Llpg-

Now it is easy to see that go is C'Lip,-Lipschitz on Us because we have g2 = g — g1 and g as
well as g1 are C Lip,-Lipschitz on Us. ]

Remark 7.7. Under the assumption that

[ (i) v <

the next lemmas will prove that gs € T/VO1 P(Py, POJ-). We show for this purpose in Lemma 7.10

that

i0se) 1= [ 000+ A+ ) @)

is in LP(Py, Pi). In fact 0;g2 is the weak derivative of go because for all o € C§°(Py,R) we
get with Fubini’s theorem [EG92, 1.4, Thm. 1] and partial integration for ¢ € {1,...,n}

[ aoroi@ = [ [ a0 @t )oY serine)

= [ ] ot Qo @i @)
Po
= [ [ o o ) @retane @
Po

__ / g2();0(2)AH" ().
Py
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7.1 ~v-functions and affine approximation of Lipschitz functions

Lemma 7.8. We have foric {1,...,n}

supp(gz2) C B(0,12) N Ky,
supp(0ig2) C B(0,12) N P.

Proof. 1f0 < t < 2 and x € Py, we have supp(vi(x—-)) C B(z,2)N Py and supp(ly,,(vi*g)) C
B(0,10) N Py. This implies supp(v: * (1, (v * g))) € B(0,12) N Py and hence we obtain
supp(g2) C B(0,12) and supp(9;g2) C B(0,12) N Py. O

Lemma 7.9. Let x € Ujg and 0 <t < 2. We have

(ve * g)(x)

; < |[v[|Loo (po,R) Vg (1)

Proof. If a: Py — POL is an affine function, we get

(7.5) 0

s = [ 0 v (9” . y) )" ) = (<1)" [ vl)als — 1))

affine

and hence, with Lemma 7.4 1.

(ve * g)(x) = (v * a)(x)
t

(ve * (9 — a))(x)

(ve * g)(x)
t

" Jp,

1
< HV|L°°(PO,R)tn/PmB( )
0 Z,

t
Since a was an arbitrary affine function, we conclude
vex g)(x . 1 d(g(2),a(z n
( t g)( ) < ||V||L°°(P0,R) inf — <g< ) ( ))dzH (Z)
t a€A(Py,P;) t B(z,t)NPy

= vl oo (Py,R) Vg (1)

We have p € (1,00) and, for the proof of Theorem 7.3, we can assume that

/Um (/02 'Yg(af,t)2it> : dH" (z) < oo.
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7 ~y-functions

Lemma 7.10. We have g2 € Wol’p(Po, POJ-) and there exists some constant C = C(n,p,v), so
that for alli € {1,...,n}

2 dt
. p < 2 n
19i92117 py pry < € - </ Yo(,t) t) dH" (),

where 0;g2(x fo (v * (Luyo (e % 9))) (2 )%

Proof. We recall that 0;g2 is the weak derivative of ga (cf. Remark 7.7). Due to [AF03, Cor
6.31, An Equivalent Norm for Wy™?(Q)] and Lemma 7.8, we only have to consider ||0;ga||r»(py)
for all i € {0,...,n} to get g2 € Wy (P, Pg-).

For © € Py, we have d;v4(z) = 9;t""v (%) = t~!(div):(z) and hence

i0s@) = [ s v )@Y = [ (@ (10 (“52))) @

We want to show that the LP norm of ;g2 is bounded. Via duality, we obtain (cf. [AF03,
The Normed Dual of LP(2)])

10i92||Lo(py) =  sup F(2)0iga (z)dH" ()

| |L7’/(1"0):1

0]

where % + ﬁ = 1. So, let f € L¥(Py) with ||f||Lp/(PO) = 1. We get with property (7.6) from
Lemma 7.4, Fubini’s theorem [EG92, 1.4, Thm. 1] and Hélder’s inequality

f(@) Oiga(x) A" (x)
Py

_ /Pofm /02 [ @t =) (10 (*52)) ) @t L
(76 /PO /02/]30—(81'V)t(y—$) flz) A (z) <1Um (I/%kg))(y) ;d?—[”(y)‘

< [ [ 1@ (10 (“52)) w] Farew
</ (/ (@) W) ff)(/o (200 (“29)) ] ‘f)édw(y)
< H (0)e * fI2 ?)2

LY (Py)

(/PO (/02 ‘ <1U10 (V%g» (y)‘2 ?) : d“rl”(y)> % : (7.8)

There exists some constant C = C(n,v) with |0;v(z)|+ |VOiv(z)| < C(1+ |z|)~" ! because v
is a Schwartz function. Together with Lemma 7.4, all the requirements of Lemma A.23 with
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7.1 ~v-functions and affine approximation of Lipschitz functions

¢ = O and ¢ = p’ are fulfilled, which implies, since ||f|z»(p,) = 1, that the first factor in
(7.8) is some constant C(n,p,v) independent of f. All in all, we obtain

f(2)0iga(x)dH" (z)
Py

10ig2llLr(py) = sup
170t gy =1

2 et ([, ([ 1 C52) 0] 2) )

Finaly, we deduce with Lemma 7.9

/PO 10ig2||P (z)d(x) < C(N,p,v) /me </02 o, )2 dtt)gd’}-["(x).

3=

O]

Definition 7.11. Let B be a ball with centre in Py and f : Py — POL be some map. We
define the average of f on B

1 n
D= T o, T

some maximal function

N(f)(z) = sup {1Avg (!f—Avg(f)\>}

te(0,00) ey | 20 B(yt B(y,t
R (y:t) (yst)

where x € Py, and the oscillation of f on B

oscp(f) == sup [f(x) — Ave(f)[-
z€BNP, B

Lemma 7.12. There exists some constant C = C(n) so that

n

p3r
”N(g2)”LP(P0,R) < CEHD%HLP(PO,POL)-

Proof. With the Poincaré inequality [EG92, 4.5.2, Thm. 2, first part of the proof], there exists
some constant C(n) so that (g2 € Wol’p(Po, Py), see Lemma 7.9)

1 n
va(lor ~ Ava(0) = (o [ 1a(e) — Ava(an) 0 )

1
< iam B ——— "
< C(n) dlamB(diam By /BmPo |Dga(y)|dH" (y)

= C(n)diam B Avg(|Dga|),
B
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7 ~y-functions

(if f is a Matrix, we denote by |f| a matrix norm) and hence we get for x € B

N(g2)(x) =  sup Avg lg2 — Avg (g2)]
eoorvery | 2By B(y.1)

with d(y,z)<t

<C(n) sup  Avg(|Dgsl)

t€(0,00),y€Py B(y,t
with d(y, 1)<? (y )

= C(n)M(Dgs)(x),

where M (Dgs) is the uncentred Hardy-Littlewood maximal function. Finally, we obtain with
[Gra08, Thm. 2.1.6]

p3
IN(g2) |l o (pyr) < C()IM(Dg2)llLr(pyr) < C(n)p 1Dg2l Lo (py )

O
Definition 7.13. Let 6 > 0. We define
Hg := {z € Ug|N(g2)(z) < "1 Lip, } .
Lemma 7.14. Let 6 > 0. There exists some constant C' = C(n, p, 1/) so that
W\ 1) < i [ ([ e 02) dren(o
6 o) = 917 "+1 Llpp Uio "}/g t ’
Proof. With Lemma 7.12, Lemma 7.10 and HDggHLp Po,Pd) < Pty HangHIEP(PD’P&),
there exists some constant C' = C(n,p,v) with
Cnp 2 dt
p < = 2 n
N < o (22 Z el <€ [ ([ ot ) @)
Hence we get
1
WU\ Ho) = gy [ 07 Linh 4 ()
Hp(n+1) Llpg U6\H6 9
1
< N(g2)"(y)dH" (y
9p(n+1) Llp]; Us\Hy ( ( )
Sr ([ oteer?)
< Yg(,1) dH" ().
gp(n+1) Llpg Uto g t
O

Lemma 7.15. Let B be a ball with centre in Py. If (BN Py) C Usg, then there exists some
constant C' = C(N,n,v) with

1
n

nt+1 T
Avg(\gz — AVg(92)|>> Lipg ™ .
B B

1
< COdi
oscp(g2) < Cdiam B <diamB
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7.1 ~v-functions and affine approximation of Lipschitz functions

Proof. Let (BN Fy) C Ug and A := oscg(g2). The function gs is Lipschitz continuous on Ug
with Lip,, = C(v) Lip, (see Lemma 7.6 on page 93) and B N P is closed. Hence there exists

some y € BN Py with A = |g2(y) — Avgp g2| and we get for x € B with d(z,y) < ﬁ

rO| >

|g2(z) — A;g(gz)\ > |g2(y) — A;g(gz)! —lg2(z) — g2(y)| > A — Lip,, d(z,y) >

Furthermore, using that go is continuous on Ug for all I € {1,..., N}, there exists some
2 € BNPy, with gb(z) = Avg(gh) (where gb(2;) € R means the I-th component of go(2;) € RY),
B

and so

N

2
X = lga(y) — Ave(@2)l” = 3 (9htv) - Agg(gé)) < N (Lip,, diam B)®,
=1

<Lip,, d(y,z)

which implies \/Niip” < diam B. Since y € B, there exists some ball BcBNB (y, ﬁ)

with

diam B = min ( A diam B> A

, >
2 Lip,, 2 ~ 2N Lip,,

and hence

/ 02(z) — Avg(go) [dH" (z) > / 192(x) — Avg(ga)[dH" (2)
BNP, B BnP, B

| >

A n
>y | —————
- (4\/N Lip,, )

This implies with Lip,, = C'(v) Lip,

Avg(|g2 — Avggal)
A"t < C(N,n, v) Lip} (diam B)" ! £ 5

diam B
O

Lemma 7.16. Let y € Py. There exists some constant C = C(N,n,v) and some affine map
ay : Py — P~ so that if r < 0 and B(y,r) N Hp # 0, we have

lg — ayHLoo(B(y,r)mPO,POL) < Crf Lip,, .

Proof. Let y € Py. If @ > 1, we can choose a,(y') := g(y) as a constant and get the desired
result directly from the Lipschitz condition. Now let 0 < 6§ < 1. We set a,(y') := g(y) +
Dg1(y)¢p~(y' — y). For some arbitrary y' € B(y,r) N Py, we obtain (the explanations I - V
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7 ~y-functions

are stated below the calculation)

19(y) — [9(y) + Dg1 ()~ (v — y)|

y
L 191(y) + 92(4") — [91(y) + 92(9) + Dgr ()6~ (v — v)]|
<lg2(y/) — 22| + | (v) — [91(¥) + D1 ()™ (' — v)]]

< lgs(y/) — Ave (92)] + | Ave (g2) — g2(v)| + > 1071 oo |y — wl?
B(yﬂ") B(yvr) ‘H‘:Q

111
< 20scp(yy) 92 + C(n,v) Llpg

1

1 nt+1
————— Avg (g2 — Avg (g2)]) Llp"+1 +C(n,v) Lip,
diam B(y,r) 5 Bly.r) Bly.r) 9

v
< C(N,n,v)diam B(y,r) (

< C(N,n,v)r (N(g2)(y)) 7 Lips " +C(n, v) Lip, 1’
\

< C(N,n,v)rf Lip, .

I. We have g = g1 + go.

II. Let 3 € B(y,r)NPy. We have d(y',Us) < d(y/, Hp) < d(y',y)+d(y, Hp) < 2r <26 < 2.
So we get v,y € Ug. With Lemma 7.6, we have g; € C°°(Us) and so we obtain with
Taylor’s theorem (see Lemma A.15)

91(y)

1
=gl(y)+D91(y)¢‘1(y’—y)+/0 2(1—1) Y %3”‘91 v+t —y)lo~ (v —y)rde.

In|=2

III. See Definition 7.11 and Lemma 7.6.

IV. Since r < 0 < 1, B(y,r) N Hy # 0 and Hy C U, we obtain B(y,r) N Py C Us and we
can apply Lemma 7.15.

V. See definition of Hy and consider r» < 6.

Lemma 7.14 and Lemma 7.16 complete the proof of Theorem 7.3. O

7.2 The ~-function of A and integral Menger curvature

In this section, we prove the following Theorem 7.17. It states that we get a similar control

on the y-functions applied to our function A as we get in Corollary 5.8 on the S-numbers.
For a,e > 0, < 2¢ and k > 4, we defined A on Ujs (cf. Definition 6.21 on page 78). Since in

this section we only apply the v-functions to A, we set y(q,t) := va(q, t) and Y(q, t) := Ja(q, t).
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7.2 The ~-function of A and integral Menger curvature

Theorem 7.17. There exists some k > 4 and some & = o?(n) > 0 so that, for all o with
0 < a < @, there exists some € = (N, n, Cy,«) so that, if k > k and n < P, we have for all

1
e € [nr, €] that there exists some constant C = C'(N,n,K,p,Co, k) so that

/ / v(q,t dH"( ) < CePl + CMiyr (1)
Uio

< CeP,
where Ujgp = B(0,10) N Fy.

Proof. Let k > 4 be the maximum of all thresholds for k given in chapter 6 and let & =
a(n) < i be the upper bound for the Lipschitz constant given by Lemma 7.2. We set
k := max{k,C + 1,C} where the constants C' and C are fixed constants which will be set
during this section?. Let 0 < a < @ Let &€ = ¢(N,n,Cp,a) < a be the minimum of all
thresholds for e given in chapter 6. We set & := min{z, (2C"C1)~'} < 1% and assume that
k> k and n < EP. Now let € > 0 with n < eP < éP. For the rest of this section, we fix the
parameters k,n, a, € and mention that they meet all requirements of the lemmas in Chapter
6.
With Lemma 6.14, we obtain

Uigp C U(Rz N UlO) U 7T(Z) = U (Rl N UlO) U W(Z),
el i€l12

where I1o = {i € I|R; N U2 # 0} (see page 76) and so we get

dlam R;

dt
/ / erGarws Y[ [0 saerfar
Uio icls R;NU10
> / g Saun(g)
,LEII2 R mUlO dlam R; t

We continue the proof of Theorem 7.17 with several lemmas. At first, we prove

Lemma 7.18. There exists some constant C = C(N,n,p,Cy) so that

dlam R;

. /R / (4, t)p%d“rt”(q) < CeP.

i€l19 iNU10

Proof. Let i € I1s, g € R;, 0 < t < % and u € B(q,t) N Py C 2R;. The function A is
in C>(2R;, P;-) (see definition of A on page 78). This implies with Lemma A.15 (Taylor’s

2Cis given in Lemma 7.20, Cis given in Lemma 7.24 V
3 C'/, C are given in Lemma 7.23
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7 ~y-functions

theorem)

+Z@A “(u—q));

1
- 2/0 (1-— r){ Z %8”‘A(q +7(u—q)) (¢~ (u~— q))'{}dr. (7.10)

|r|=2

Let qo € B(q,t) N Py C 2R;. With Lemma 6.29, there exists some constant C' = C(N,n, Cj)
so that, for all |k| = 2, we have

. Ce
10" Alao)l < = (7.11)
With
(67 (u—g)) |fH|¢ 1“1<H\¢ QI <t = g2,
\—,_/
_|u q‘”l<tN
we have
v(q:t)
_ inf & d(A), alw)) 47 )
acA " B(g,t)NPy t
< mf n+17—["( (g, t)NPy) sup  d(A(u),a(u))
At u€B(q,t)NPoy
1
= inf wpt™ sup  d(A(u),a(u
acA tn+1 u€B(q,t)NPo ( ( ) ( ))
(710) ¢,
< —inf  sup )+ 0,A(q Yu—q a(u
t a€A yeB(q,t)NPo (‘ Z : )] ( )‘
G.A(P(),POJ‘)
1 1 _ .
+ 2/0 (1—r){ Z EG”‘A(q—i—r(u—q))((b "(u—q)) }dr)
|k|=2 ’
Wn, ! 1 -1 K
= 2% s | [ aend 3 oA ) (67 (- 0) pdr
uEB(q,t)NPy | JO =2
Wn, K — K
< 4 sup > 10"A(q)|  sup (67 (u— )"
q0€B(q, t)ﬂPo| =2 u€B(q,t)NPy
71 w, Ce |, n(n —1)
< — - @@ 7
¢ diam R, <”+ 2 )

y Ce wn(n—i—l)
diamR; © 2

104



7.2 The ~-function of A and integral Menger curvature

Hence, with Lemma 6.14, we conclude

dlam R;

S oo

iclo iNU10 J0

diam R;

1 2 dt
< CeP —_ 1dH" tr—
<O 2 Gammy Ju @ [

1 1 (diam R; \?
< P nip.y_ ke
< Ce Z (diam Ri)pH (Rl)p < 2 >

1€li2
< CePH™(Uyg) = C(N,n,p,Co)eP

Now we consider

2 pdt
S f @ @)
R;NU1g T’

i€lio

2 dt
[ [ ey fore.
(Z2)NU10

If g1 € R;, we get with Lemma 6.14 that 1(00) < d‘amR and, if g2 € 7(Z), we obtain with

Lemma 6.11 D(g2) = 0. Hence we conclude using Lemma 6.14

dt
> / / v(a,t)"—dH" (g / / (g, d”H”( )
RiNUy J S2m m(2)NU1o

i€lio

>/ / 1 19 L / / Lanr (o)
iel, ¥ iNUio L Z)NU1o

100

dt
y Jyrora s, fyurtane
Uio\7(Z m(2)NU1o D(q)
/Uw /D(q) dH”( ). (7.12)

100

and

In the following, we prove some estimate for (g, t) where ¢ € Uy and % <t<2. To get
this estimate, we need the next lemma.

Lemma 7.19. For all q € Uyg and for allt with 1(()0) <t < 2, there exists some X = X(q) € F
and some T = T'(t) > 0 with

(X,T) € S, d(rm(X),q) <T and 20t < T < 200¢. (7.13)

Proof. We have D(q) = inf x gcg(d(7(X), q)+5), and hence there exists some (X,3) € S with
d(m(X),q) +§ < D(q) + 100t < 200t. We set T := min{40, 200¢} which fulfils 20t < T < 200
as t < 2. Using Lemma 6.3 (iv), (v) and 200t > 3, we obtain (X,T)€S.

With d(7(X),q) < d(m(X),0) + d(0,q) < 5+ 10 we get d(n(X),q) < T. O
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7 ~y-functions

Now let ¢,¢, X and T as in Lemma 7.19. Furthermore, let X € B(f(, 200t) N F. We choose
some n-dimensional plane named P(@5X) with

BEE (X, 1) < 2814(X, 8) (7.14)

and define
I(q,t) := {i € Iia|R; N B(q,t) # 0} .

With Lemma 6.14, we have (B(q,t) N Po) C Uiz C 7(2) U ¢y, Ri which implies

(B(g,t) N Po) C | (Blg,1) u | Blgt) :
1€Z(q,t)

and, together with Lemma 7.2, we get

1
Y(g,t) < 3t"/
ﬂPo

t
A(u). P@tX)
B(g,t)nm(Z

d(u + A(u), PabX))

dH"(u)

t
e
+3 ) / At AW PO yin
i€Z(q,t) (¢,t)"R;
=K;
=Ko+3 > K (7.15)
1€Z(q,t)

At first, we consider K.

Lemma 7.20. There exists some constant C > 1 so that
/ d(u+ A(w), PE)AHM (1) < / d(z, PO\ A ().
B(g,t)Nm(Z) B(X,Ct)nZ

Proof. Let g : m(2) — Z,u — u + A(u). This function is bijective, continuous (A is 2a-
Lipschitz on 7(Z)) and g~! = 7|z is Lipschitz continuous with Lipschitz constant 1. With
f(z) = d(z, P4%)) and s = n, we apply [Sch12, Lem. A.1] and get

/ d(u+ A(u), POH0)dH" (u) =/ fg(u))dH" (u)
Bla)nm(2) Bla)nn(2)

1 —1 d n
< (Lip, 1) /g iy [PO)

d(z, POX)an" (z).

/g(B(qi)ﬂTr(Z))
Now it remains to show that there exists some constant C so that

g(B(g,t)Nm(Z)) C B(X,Ct)n Z.
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7.2 The ~-function of A and integral Menger curvature

Let € g(B(q,t) N 7(Z)). This implies x € Z and so, using Lemma 6.11, we get d(x) = 0.
With (7.13), we conclude

d(X) = (Yin)f S(d(Y,X) +5) < d(X,X) + T < 200t,
,8)€

and we obtain with (7.13)
d(m(z),m(X)) < d(n(x),q) + d(q,7(X)) <t + 200t = 201t.
So, with Lemma 6.12, we have
d(z, X) < 6(d(z) + d(X)) + 2d(r(z), 7(X)) < 1602t.
We deduce with C' = 1802
d(z, X) < d(z,X) +d(X, X) <1602t + 200t = Ct
and so g(B(q,t) N7(Z)) c B(X,Ct)N Z. O

Lemma 7.21. There exists some constant C = C(N,n,Cy) > 1 so that

/ (@, PO )anr @) <0 | d(e, PO)dp(a).
B(X,Ct)NZ B(X,(C+1)1)

Proof. At first, we prove for an arbitrary ball B with centre in Z
H"(ZNB) < C(N,n,Co)u(B). (7.16)

With [EG92, Dfn. 2.1], we get H"(ZNB) = lim,_,o H?(ZNB). Let 0 < 79 < min {428 50}
We define
F = {B(m,s)‘a} €ZNB,s< 7'0}.

With Besicovitch’s covering theorem A.12, there exist Nog = Ny(/V) countable families F; C F,
j=1,..., Nyp, of disjoint balls with

No
znBc|J | B
J=1BeF;

For every ball B = B(z,s) € Fj, we have € Z and hence, using the definition of Z (see
page 66), we deduce h(x) = 0. With h(z) = 0 < s < 50 and Lemma 6.3 (iv), we get

(xz,s) € S C Siotar and so
(dmmB) < Q/L(B).

2

The centre of B is also in Z and hence, analogously, we conclude

<diamB>” < otB)

2 0
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With (B) from page 64, we get

B

(B) |
1(2B) < Cy(diam 2B)" = 4", (dlamB

>n < 4”00§M(B). (7.17)

dlam B

Since x € B and s <19 < , we obtain

B = B(z,s) C 2B.

Now, by definition of H? [EG92, Dfn. 2.1] and because 0 = d(N,n) (see (6.2) on page 65),
we deduce

No diam B "
HE(ZNB) < Zan< 5 )

J=1 BE.F]'

IN

No B
PP

J=1 BeF;

IN

S No
25 Z
=1

(7.17)

< C(N7 n, CO)M(B)

So, with 79 — 0, the inequality (7.16) is proven.
Let C be the constant from Lemma 7.20. For an arbitrary 0 < ¢ < t, we define

Go = {B(a:,s)‘a: € ZNB(X,Ct),s < a}.

With Besicovitch’s covering theorem A.12, there exist Ny families G, ; C G, of disjoint balls,
where j =1,.., Ny, with

ZNB(X,Ct) U U (ZN B)
j=1B€G, ;

and where Ny depends only on V. We denote by pp the centre of the ball B and conclude
/ d(zx, P(q’t’X))d’H"(:E)
ZNB(

d(z,pp) + d(pg, PO )N dH" (z)

(]
BM
-

o+d(ps, platX) YAH" ()

(]
SM
-

- Z S (U—i—d(pB,P(q’t’X))) H"(Z N B)

Jj=1 Bega,j
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(7 16)

No
Z 3 (o dlws, PO (V. muB)
j=1 BEG,

- N,n,Cp) Z Z / o+d(ps, P(q’t’X))) du(x)

Jj= 186903

< oy Y | (o +dtwn)+ dla, P4 ) dta)
Jj= 1Begag

< NnCOZ Z / 20+d:13P(th)))d,u()
j=1 BeG,,;

< C(N,n,Cy) (u(B(X, (C+ 1)1))20 + / d(x, P<%fﬁx>>du<x>> .

B(X,(C+1)t)
With ¢ — 0, the assertion holds. ]

With Lemma 7.20 and Lemma 7.21, we get for Ky using that k > k> C + 1, where k is
defined on page 103

1
KO — 371
t" JB(gt)nm(2)

: /
2 d x’p(q,t,X) dH" (x
"t pex,cn ( ) (=)

(g:t,X)

<

1
< C(N,n, Co)tnﬂ/( (éﬂ))d(;p,p(q,t,x))du(x)

< C(N,n,Co) BL (X, 8)

(7.14)
< C’(N,n, C()) ,Bl;k(X,t). (718)

To estimate K;, we need the following lemma.

Lemma 7.22. There exists some constant Cy = C4(N,n,Cy) > 1 so that, for all i € T2 and
u € R;, we have
d(mp,(u+ A(u)), B;) < Cydiam R;.

We recall that P; is the n-dimensional plane, which is, in the sense of Lemma 6.3 (vi),
associated to the ball B(X;,t;) = B; given by Lemma 6.15 (cf. Definition 6.18).

Proof. For every i € I1o C I, we have with Lemma 6.15 that B; = B(X;,t;) and (X;,t;) €
S C Siotar- Hence we can use Lemma 5.10 (ii) (0 = 2¢, x = X;, t = t;, A = é P = P;) to get
some y € 2B N P;, where P; = P, ). We obtain with Corollary 2.24 (P1 P, P, = Fy),

o <& < (ais defined on page 103) and Lemma 6.15

d(u+ Ai(u),y) <

d(u,m(y)) < 2[d(u, m(X;)) + d(m(X;), 7(y))] < Cdiam R;.
——————

<d(X;,y)<diam B; <200 diam R;

1l -«
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7 ~y-functions

Figure 7.1: d(7p,(u + A(u)), B;) < Cdiam R;

Moreover, with Lemma 6.22 (iv) and € < & < 1 (£ is defined on page 103), we get

d(mp,(u+ A(u)), u+ Ai(u) ) <d(u+ Au),u+ A;j(u)) = d(A(u), Ai(u)) < Cdiam R;
=mp; (u+Ai(u))

for some C' = C(N,n,Cy). Using these estimates, we conclude

d(ﬂ-Pi (u + A(u))a BZ) < d(ﬂ-Pi (u + A(“))? U+ Al(u)) + d(u + AZ(“)? y) + d(y, Bz)
< Cdiam R;.

Now, with Lemma 7.22 and K; from (7.15), we obtain for i € Z(q,t) C I12

(g,t,X)
Ko A AP
" JB(g,)nR; 3

1 / d(u+ A(u), P) + d(mp,(u+ A(u)), P@tX))
" JB(g,H)NR;

IN

. dH"(u)

" JB(g,)nR;

IN

t

(q.t,X)
4 tinsup { dlmp, (v + Ai”))’ P2 o e Blg, )0 R,} H(B(g,t) N Ry)
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7.2 The ~-function of A and integral Menger curvature

AL t

di ; n d P(q,t,X)
. ( fam 1 ) sup {(“’t) we Pd(w,B;) < Cydiam Ry y . (7.19)

L. 7.22 i d(u+ A(u), P;) n
= /B(qt)ﬂR an ( )

Since P; is the graph of A;, we get for any u € B(q,t) N R; with Lemma 6.22 (iv) that there
exists some C' = C(N,n, Cy) with

d(u+ A(u), P;) < d(u+ A(u),u + Ai(u)) = d(A(u), Ai(u)) < Ce diam R;,

and so, using Lemma A.7,

q7 Ri

Lemma 7.23. There exists some constant C = C(N,n,Cy) so that for all i € Z(q,t)

(@:t:X))
sup{d(wP’w € P,,d(w, B;) < Cydiam R; }

diam R; 1 1 1 3
< ? _ - P(Q7t7X) 3 X
< Cem + 0 <(dia Ri)n/ d(z, )3du(z)

B;

Proof. Let i € Z(q,t). Due to the construction of B; = B(X;,t;) (see Lemma 6.15), we have
(Xi,ti) € S C Spotar and so 3(X;,t;) > §. With Corollary 5.3 (A = 3§, B(z,t) = B(Xi,t;),
T = RY), there exist constants C; = C1(N,n,Cy) > 3, Cy = C3(N,n,Cy) > 1 and some
(n, 10né—”1)—simplex T = A(xo,...,z,) € FN B; with

p <B <x,{, éfl) N Bi> > 22 (7.21)

for all k =0,...,n and, because C; >3 and k > k > 2 (/Nf is defined on page 103), we have

B <xm é) C 2B, C kBi = B(X, kt,). (7.22)
1

We set O := 400C,y, B ~,{ B (x,i, Cf ) and define for all k =0,...,n

Zy = {z € B.N Fld(z, P;) < C,sdiamRi} . (7.23)

We have (X;,t;) € Siotar and hence ﬁf_j,c(Xi,ti) < 2e. Using this and Lemma 6.15 (i), we
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7 ~y-functions

obtain

. 1 /
B\ Zs) = 5 di id
H(Bi\ Zr) C'ediam R; /BK\ZNCa tam Ridu(2)
1
—_— d(z, P;)d
C'ediam R; /BN\ZN (2, P)du(z)
(7.22) 1 Az P
< .
- C'ediamRi /B(Xi,kti) (Z’ Z) M(Z)

gl / d(z, Py , B
= z
C'ediam Rl t? kB, tz H
tﬂ+1 P
= 7 . N th
C'ediam R,ﬂl’k( irti)
1
t?+, 0o, _ &
C Eti 202
Using Lemma 6.15 (i) again, we get
- - (7.21) ¢ ¢ tr diam R}
Z > B.) — u(Bs \ Z > L L = L > L 0. 7.24
M( /{) il ,U( H) :u( R\ H) = 02 202 202 — 2n+102 > ( )
For all k € {0,...,n}, let z, € Z, C B, and set y,. = 7p,(25). Since € < & < 20}01 (€ was
chosen on page 103), we deduce
t (T2, ti ti
Ay, i) < d(Yu, 25) + A2, ) < d(zs, P) + =— < CediamR; + — < 2—-.
Ch Ch Ch
Due to Lemma 2.14, the simplex S = A(yo,...,yn) is an (n,ﬁné—a)—simplex and, using the
triangle inequality, we obtain S C 2B;. Now, with Lemma 2.27, (C' = %, C=2t=t,
m = n, z = X;) there exists some orthonormal basis (01, ..., 0,) of span(y1 —yo, ..., Yn—Y0) =
P; — yo and there exists 7, € R with
l
o= r(yr — o)
r=1
and
o \" C 201\" C
el < (2n22) == (50) —
6n 6nti 3 61’Lti
foralll1<l[<nand1l<r<I.
Now let w € P; with d(w, B;) < Cqdiam R;. We obtain
n n K
w—yo =3 (W—y0,0x)0x = > _(W—10,0x) > Vur(¥r — %0) (7.25)
k=1 k=1 r=1
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7.2 The ~-function of A and integral Menger curvature

and so, with Lemma 2.3 (b = w, P = P(4X)) and |w —yo| = d(w, yo) < d(w, B;) + diam B; +
d(B“yO) < Ctza we get

d(w, Pty

(7.25)
< (g:t,X) § plat,X) (g:t,X)
= d(y0>P )+H_1 W — Yo, Ok ‘Z|7nr| ( yra )—I—d(yo,P ))
<|w ol
- 201\" Cy

< P(q7t7X) . - P(qvth) P(q7t7X)
< dlw, PO) 3O, ;o: ) G (A PO 4 d(uo, P))
< nCCPH Y " d(yy, POMY)

r=0

IN

nCC"“Z( oo 2r) + d(zr, PON))

< nCC’"HZdzT, +nccn+12dz PlatX))

r=0 r=0

(7.23) n
< n*CCyTCediam Ry + nCCY Y " d(z,, POHY)), (7.26)

r=0

The previous results are valid for arbitrary z, € Z,, hence we get

d(w, P@X)) — p2CCr e diam R;

1

= (H"l,u(Z)/ / (d(w,P(q’t’X))—712(76’?“(7/6diannRi)§
r=0 T Zo n

A 3
(7%6) (M/Z / <n00{L+1Zd(zT’P(Q,t7X))> du(zn)..-du(zo))

3
() .. du(%))

r=0
3
< nocyt (Hnw / /Z S d(zr POY)E du(z,) du(%))
r= n r=0
= nC’C’f‘Jrl( (Z)/ d(zy, PLOHX)3 du(zr)>
1"=0'u T T
3
(7.24) n 2n+1C
< n+1 2/ (g,t,X)
nCC’ (r:o Gem Y |, d(z, P )3dp(zr)
o+ e ’
_ n+1 2 (g,t,X)
nCCj ( diam 2 /u _— d(z, P )sdu(z)>
(7.22) on+1 ey ) 3
< n+1 2 (¢:t,X)\3
< ooy (g [, AP
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7 ~y-functions

where we used that the sets Z, are disjoint. This implies

d(w, P(etX)) /8diam R;

<ncoptic

n+1 3 3
n+1 (2"*1Cy) 1 / (g:t,X)\ %
P q,t, .
+nCC ; <(dia R o, d(z, )adu(z)

Since w € P; was arbitrarily chosen with d(w, B;) < Cydiam R;, we get the statement with
C = C(N,n,Cp) := nCCM - max {nC’l, (2”+1C’2)3}. O

Lemma 7.24. There exists some constant C = C(n, Cp) so that

diam R; \" 1 1 ) 3
: N (¢,t,X)\3 < ,
Z ( t ) t <(diam Rl)” /2Bi d(Z’P )3dM(Z)> > Cﬁl,k(X, t),

1€Z(q,t)

Proof. Let i € I(q,t) (Z(g,t) is defined on page 106) and = € 2B;. We define

J(i) :== {j € Z(q,t)| diam B; < diam B;,2B; N 2B; # 0},
Ei(2) = ) X, (2)-

JeJ (@)
At first, we prove some intermediate results:

I. There exists some constant C' = C'(n, Cy) so that, for all i € Z(q,t), we have
/ Ei(z)dp(x) < C(diam R;)".
2B;
This implies that =Z;(z) < oo for p-almost all x € 2B;.

Proof. Let i € Z(q,t). At first, we prove that there exists some constant C' = C'(n) > 1
so that
Z (diam R;)" < C(diam R;)".
JeJ (@)
Let j € J(i). With Lemma 6.15 (i) applied to j and the definition of J(i), we deduce
diam R; < diam B; < diam B; < 200 diam R;.
Using Lemma 6.15 (i), (ii), we get

d(R;, Rj) < d(Rj,m(B;)) + diam B; + d(7(B;), Tr(Bj)) +diam B; + d(W(Bj), Rj)
—— ——
<d(ZB¢,ZBj)+diam B;+diam Bj
< Cdiam R;.
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7.2 The ~-function of A and integral Menger curvature

This implies for some large enough constant C' > 1 that R; C C'R;. Since the cubes ﬁ’j
are disjoint (see Lemma 6.14 (ii)), we get with Lemma A.7

> (diam Rj)" = Y (VR)"H"(R;) < (vVn)"H"(CR;) = C(n)(diam R;)".

jeJ (i) JjeJ(4)

In the following, we apply Fatou’s Lemma [EG92, 1.3, Thm.1] to interchange the inte-
gration with the summation. With (B) from page 64 and Lemma 6.15 (i), we obtain

/ | E)nt) = >

Xo, (x)dps(2)
tjEJ (i)

jeJ (@)

II. Let € RN and m € N. There exists some C = C(n) > 1 with

D Xap, () <C.

i€Z(q,t)

Z;(z)=m
Proof. Let l,0 € Z(q,t) with x € 2B; N 2B, and
Ei(z) =m = Z,(x).

Without loss of generality, we have diam B; < diam B,.
Assume that diam B; < diam B,. We define
J(l,z) :={1e J(l)|xr € 2B,} .
Let j € J(l,x). By definition of J(I), we get diam B; < diam B; < diam B, and
x € 2Bj. Since x € 2B,, it follows 2B, N 2B; # () and, because diam B; < diam B,,

we get j € J(o,z). Furthermore, we have o € J(o,z), but o ¢ J(l,z) because by our
assumption we have diam B; < diam B,. So we get

J(l,z) € J(o,x).
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7 ~y-functions

Now we obtain a contradiction
Z X2B = Z Xsz (:L') < Z Xsz (J}) = EO(x) =m.

jeJ() jeJ(l,x) j€J(0,x)

Hence there exists some A = A\(z,m) € (0,00) so that, for | € Z(q,t) with z € 2B; and
=i(z) = m, we have
diam B; = A,

and, we obtain with Lemma 6.15 (i), (ii)

A < 200 diam R; < 200 and d(Ry, 7(By)) < 100A.
Using
d(Ry,m(x)) < d(Ry,m(By)) + 2diam By < 102X,
we get Ry C B(w(x),103)\) N Py. With Lemma A.7, we have

H" (Ry) = (V)" (diam R)" > (v/n) ™" (g550)"

and, according to Lemma 6.14 (ii) the cubes R; have disjoint interior which implies that
there are at most

H"(B(m(x),103X) N Fy) _ wn (103X)™
(V)™ (550 A" (V)" (550 A"

indices | € Z(q,t) with Zj(z) = m and = € 2B;. Hence we deduce

Y X (@) < Cln).

i€Z(q,t)
Z;(z)=m

=C(n)

III. We have i € J(i) and so Z;(z) # 0 for all z € 2B;. Hence, with 2 € RY, the term

_ _ Ei($)72 if x € 2B;
X2g; ()Zi(x) 2= {

0 otherwise

is well-defined. Now there exists some constant C(n) so that, for all z € RV, we get

D e, @Zi@) P =) Y Xap, (@)Fi(2)

1€Z(q,t) m=1 ie(fc()(ﬁ?n
K2
<1 11
= Z mi Z XZBi (:U) < C(n)
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7.2 The ~-function of A and integral Menger curvature

IV. Let i € Z(q,t). Since i € J(i), we have Z;(x) # 0 for € 2B;. We obtain with Holder’s
inequality

<((diamlRi)n /232. <Ei('z)§) : du(z)> g) |

~ (diam R;)"

I 1
> C(na CO) (dlam Rz)n /;Bi d(za ) (Z) dM(Z)

|
—_
N
oy
o8
—~~
\.N
|
=
AH-
S
N
1]
—~
N
N~—
b
(oW
=
—~
N
S~—
N
=7
o)
B |~
&
S~—
N
&
[
O
(oW
E
s
S~
[\]

V. We have .

tn—i—l / d(27 P(qyt’X))d:u'(Z) S 251;k(X7t),
UiEI(q,t) 2B;
where X € B(X(q),200t) (cf. page 106).

Proof. At first, we prove that there exists some constant C > 1so that fori € Z (g,t)
2B; C B(X,Ct).

Let i € Z(q,t). By definition of Z(q,t) (see page 106), we obtain R; N B(q,t) # (). Let

@ € R; N B(q,t). Since %%) < t (see page 106), we get, using the triangle inequality,

D(a) < D(q) 4+ d(q,u) < 101¢. It follows with Lemma 6.14 (i) that

diam R; < £D(a) < 11t. (7.27)

With Lemma 6.15 (ii) and (7.13) from page 105, we get (X € B(X,200¢t), see page 106)
d(n(B;),m(X)) < d(n(Bi),a)+d(@,q) + d(g, 7(X)) + d(m(X), 7(X))
(7.13) - (7.27)
< d(n(Bj),Rij) + diam R; +t + 200t +d(X,X) < Ct. (7.28)
Now let x € 2B; = B(X;,2t;). Since (Xj,t;) € S, we get, using Lemma 6.15 (i),

7.27)
d(x) = (Yin)f S(d(Y, x)+s) < d(X;,x) +t; < 2diam B; < 400 diam R; ( <
,8)E

4400t,
and, because X € B(X', 200t) N F', we deduce

(7.13) 5 (7.13)
d(X):(Yin)fS(d(Y,X)Jrs) < dX,X)+T < 400t
,8)€
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7 ~y-functions

With Lemma 6.15 (i) and estimates (7.27) and (7.28), we obtain
d(n(z),n(X)) < d(n(z),n(B;)) + diam B; + d(7(B;), 7(X)) < Ct.
Now there exists some constant C' > 1 so that, we get with Lemma 6.12
d(z, X) < 6(d(z) + d(X)) + 2d(x(z), (X)) < Ct.
All in all we have proven that, for all i € Z(q,t), we have
2B; C B(X,Ct).

Since k > k> C (see page 103), we get with condition (7.14) from page 106

1 d(z, P@tX)
. / Az P 44
B(X,kt)

t

IN

1
it | d(z, PO ) dg(2)
UieI(q,t) 2B;
(7.14)
= BLI(X )< 280X,

O]

Now with the monotone convergence theorem [EG92, 1.3, Thm. 2| (used in the following to
interchange the summation and the integration), we deduce

5 (5 e

i€Z(qt)
v diam R; -
< C(n, Co) Z ( t > (dlamR / Az, PUOT)Ei() " du(z)
1€Z(q,t)
C(n,Cy) X -2
tn+1 Z / Z P ' )) ( ) dH(Z)
1€Z(q,t)
Wt 3 (5, PO40) 0 (2)Z:(2) 2du(2)
icz(gt) ' Uiezt, f)QBl
_ ¢ G / d(z, PU0) ST X (2)Ei(2) 2du(z)
t Uiez(q,t) 2B i€Z(g,t)
111 C(n CQ)

< d(z, PO )dp(2)
¢ Uiez(q,1) 2B

\%
< C(TL, CO)Bl;k(X> t)
and so Lemma 7.24 is proven. O

Now we can give some estimate for 7(q,t), where ¢ € Ujp and % < t < 2. Using the
inequalities (7.15), (7.18), (7.19), (7.20), Lemma 7.23 and Lemma 7.24, we get using T' < 200¢
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7.2 The ~-function of A and integral Menger curvature

(cf. Lemma 7.19) for every X € B(X,T)N F C B(X,200t) N F where C = C(N,n,Cp)

(7.15)
vg.t) < Ko+ ) K
1€Z(q,t)
(7.18)
< C Bl;k(X7t)+ Z KZ
1€Z(q,t)
(7.19) 1 dlu+ A n
< CRa(X )+ ) [tn/ ( t( ) i) 4y (u)
i€T(q,t) (@hNRs
. A\ q,t,X
b, <d1ar;1Rl> sup{d(wptlwepwd(w B)<C4d1amR}

(7.20) di ; n+1
< C,Bl;k(X,t) + Z [Ca < 1a1:1R )
t)

: : n P(q,t,X
+ wp, <d1artnR> Sup{d(w’weﬂ,d(w B)<C4d1amR}
L. 723 diam R;\ "

< CBa(X.)+ ), |Ce ( ; >
1€Z(q,t)

diam R; \ " diam R; 1 1 1 3
v ? — (q,t,X) 3
Wn < n ) (CE " + Ct ((dia R /QBi d(z, P )sd,u(Z)> ) ]

. o\ n+l
— X +Ce Y (dlale>

1€Z(q,t)

s <d1amR> <M /2B d(z7p(q»th))§dM(z)>3

1€Z(q,t) @

[N R (

i€Z(q;t)

< C(N,n,Co)Bix(X,t) + C(N,n,Co)e > (

i€Z(q,t)

diam R; ntl
)T o

diam R; ) ntl

With Lemma 7.19, we get (X',T) € S C Siota and 20t < T < 200t. Using this, the definition
of § = d(n) on page 65 and (B) from page 64, we get

v(g,t)?
< ?Wv(q,ﬂ
2

= — ’)/q,tpd/,LX
77 10 AX)
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7 ~y-functions

p

. o\ n+l
CBir(X,t)+Ce > (dlamRZ> ]dmx)

) t
i€Z(g,t)

< 5o |
6(20t)"™ ) p(x 2001)

® ¢ B
<¢ / LB (X, Pdu(X)
X,200t

2C(400t)™ diam R;

p et

* s | O 2 ( >
1€Z(q,t)

P
diam R; > ntl

<o X oraux) so | Y (

B(X,200t) i€T(a,t)

where C = C(N,n,p,Cy). We recall that for every ¢ € Ujg there exists some X = X(q) (cf.
Lemma 7.19) such that the previous inequality is valid. This implies

/ ) / Lan(q)

p_ at .
< 25710 [3( n/ i Brk(X, 1)Pdp(X) —dH" (q)
Uro J 55 1" JB(X(q),2001) t

=:a
10 eP / /
Uso D(q)

100 ZEI q1

t

=:b
< C(N,n,p,Cp) a+ C(N,n,p,Co) €Pb. (7.29)

To estimate a and b, we need the following lemma.

Lemma 7.25. Let q € Uy, I(Q) <t<2and X € B(X(q),200t) N F, where X (q) is given by
Lemma 7.19 on page 105. Then

d(n(X),q) < 400t (7.30)
and there exists some A = A(N,n,Cy) > 0 so that, with ko = 401, we have
. Bu.t s
S (B(X, 1) =  sup uj{” > A, (7.31)
yeB(X, kot) 13

where Oy, (B(X,t)) was defined on page 45. Furthermore, there holds for all i € I(q,t) that

d(q, R;) <t, diam R; < 11¢, (7.32)
and there exists some constant C' = C(n) with
di Rz n+1
3 ( lartn ) <C, (7.33)
1€Z(q,t)
) (diam R;)" < C. (7.34)
i€lio
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7.2 The ~-function of A and integral Menger curvature

Proof. Let q € Urg, 2 <t < 2 and X € B(X(q),200t) N F. We have d(X, X(q)) < 200t
and, with (7.13), we get d(7(X(q)), q) < 200¢. This implies

d(n(X),q) < d(n(X),7(X(q))) + d(x(X(q)),q) < d(X, X(q)) + 200t < 400t.

With (7.13), we obtain (X(q),T) € S C Siotar and, by definition of Sjpa;, We conclude
% > g. We have B(X(q),T) C B(X,400t) and hence

(7.13) %
5(B(X,400¢)) = W S ﬁu(B();iqu» . z.(;on-

Applying Corollary 5.3 (ii) with A = % on B(X,400t), we get constants C; = C1 (N, n, Cp),

Cy = C5(N,n,Cy) and in particular one ball B(xz, s) with s = %?t and

1(B(z,s) N B(X,400t)) >

(7.35)

We have defined § < 22+ (cf. (6.2) on page 65), and Lemma 5.2 gives us C; = 2120707 T NgCo

2-20M
400. That yields s < t. From (7.35), we get B(z,s) N B(X,400t) # () which implies d(z, X) <
400t 4+ s < 401t and

(7.35) n n
wp  MBOY) | p(B.s) (31 @00 00

= Dy
yeB(X,401t) tn - " - otn Oy Cy

Let i € Z(q,t). Due to the definition of Z(q,t) (see page 106), we have
d(q, Ri) <t

and we can choose some @ € R; N B(q,t). With Lemma 6.14 (i), we obtain

1
diam R, < —D(u) <

10 (D(q) + d(q,@)) < 11t.

1
10
The intervals R; have disjoint interior (see Lemma 6.14 (ii)) and, from R; N B(q,t) # 0 for all
i € Z(q,t), we get R; C B(q,12t). With Lemma A.7, this implies

diam R; \ "' (7.32) 1 , "
Z < ; ) < Htt”ﬁ Z (diam R;)

1€Z(q,t) 1€Z(q,t)
11
= o > W)"HM (R
1€Z(q,t)
1,
= (Vn)"H (Ba,120))
B %(\/ﬁ)n (126)" wy = 11 - 12"(v/n)"wn, = C(n).

121
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Now let i € I12. We have R;NB(0,12) # 0. If (Y,r) € S C Siotal, we get Y € F C B(0,5) (cf.
(A) on page 64) and hence we obtain d(7(Y),0) < 5 as well as » < 50. With © € R; N B(0, 12)
and Lemma 6.14 (i), we get

1 1 1
iam R; < —D(7) = — inf Y), s < (5412 .
diam R; < 0 (0) 0 (gges(d(w( ),0) + 1) < 10(5—i— +50) <7

Hence, for all i € Ij2, we have R; C B(0,19) and the cubes R; have disjoint interior (cf.
Lemma 6.14 (ii)). With Lemma A.7, we deduce

> (diam Ry)" = (vn)" Y H'(Ri) < (vVr)"H"(B(0,19)) = (19v/n)"w, = C(n).

i€l1o i€l1o

O]

To control the terms a and b we will use Fubini’s Theorem [EG92, 1.4, Thm. 1], in the
following abbreviated by (F). Now, using Lemma 7.25 and Corollary 5.8 (A = A, ko = 401),
we conclude

- [ / v 81 (X, 1P (X) Lann ()
D(‘Z) tn X(q 200t ’ ’ t
/ / /1{d q)<400t, &y, (B(X,t)) >A}51 w( X, )Pdu(X )ﬁdﬂn(q)
Uio tn ko t

. dt
€ /F/O t”/Um Lia(r(x),q)<4000,dH" () 1{5k0(B(X7t))25\}51;k(X>t)p TdM(X)

=Hn"(B(n(X),400t)NU10)

N 2 dt
= w,400 /};/0 1{5kO(B(X,t))25\}ﬂ1§k(X7 t)pletj,(X)
S C(N7 n, IC?,pv COa k) M}Cp(,u)

Now we consider the integral b. We get using Fatou’s Lemma [EG92, 1.3, Thm.1] to inter-
change the summation with the integration

diam R;\ "™ "t
/ ﬁ) ( iam ) —d?—["( )
UlO fl) t

100 1€Z(q,t)
<diam R; ) nHl gt
)

(7.33)
2 c/ ﬂ() Lanr(q)
U10 %

(7. 32 / /
Uio
dt

(£) n+1
< C Z diam R;)™" /dmmR/ Lia(q.r)<ydH" (g )tn+2

1€l

1€Z(g,t

diam R; \"™' dt .
{t>dlamRZ dq, <t}< ) 7dH ( )

100 i€l12

Swn<dlam R; +t> Swn(7t)"
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7.2 The ~-function of A and integral Menger curvature

o0 1
: An+1 -
< C ‘Z (diam R;) /dR St
i€lio 11
= C Z (diam R;)"
i€l12
(7.34)
< C(n,p) .

All in all, we obtain with the decomposition (7.9), Lemma 7.18, (7.12) and with (C) from
page 64

2 dt .. 2 dt
/ /v(q,t)pth (@) < C€p+/ /D“'v(q,t)ptd?{ (q)
U10 0 UlO s

100
(7.29)
< CeP+Ca+C ePh

< Ce? + CMyr(p) + Ce? = C(N,n,K,p,Co, k)P

©)
because Myr(p) < 1 < eP (see page 64 and page 103).
This completes the proof of Theorem 7.17. O
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8 Z Is not too Small

Our aim is to prove Theorem 6.1. In Definition 6.4, we defined a partition of the support F' of
our measure 4 in four parts, namely Z, Fy, Fo, F3. Then, in section 6.4, we constructed some
function A, the graph I' of which covers the set Z. To get our main result, we need to know
that we covered a major part of F. In this last part of the proof of Theorem 6.1, we show that
the p-measure of Iy, Fy, F3 is quite small. In particular, we deduce p(Fy U FoUF3) < 1—(1)0. As
stated at the beginning of section 6.1 on page 64, this completes the proof of Theorem 6.1.

8.1 Most of F'is close to the graph of A
With
K :=2(104-10 -6 + 214) (8.1)

we define the set

G:={x € F\ Z | Vi€ I with n(z) € 3R;, we have = ¢ KB;}
U{z e F\Z|n(z)en(2)}.

At first, we show that the p-measure of G is small.

Lemma 8.1. Let 0 < a < ﬁ. There exist some € = £(N,n,Cy,«) so that, if n < 2¢ and

k > 4, there exists some constant C = C(N,n,K,p,Cy) so that, for all € € [3,€), we have

©)
w(G) < CMiw () < Cn,
where the condition (C) was given on page 64.

Proof. Let 0 < a < ﬁ and € := min{é,% where £ is given by Lemma 6.12 and C =
C(N,n,Cp) is a fixed constant defined in this proof on page 128. Furthermore let n < 2,
k>4 and n < 2e < 2€.
Letz € G. If z € G\ 7 }(n(2)) C F C B(0,5), with Lemma 6.14 (ii), there exists some
i € Iy with w(x) € R; C 2R;. Let X; be the centre of B; (cf. Lemma 6.15). We set
X(z) = {Xi ?f z€G\ W:I(W(Z))
m(x) + A(r(z)) ifz € Gna(n(Z)).
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8 Z Is not too Small

Claim 1: For all z € G and X = X (x) defined as above, we have

d(z, X) < 7d(z) (8.2)
(), m(x)) < 42 (53
d(;) < d(X, ) (8.4)
(x1) o 6

Proof of Claim 1.

1. Case: z € G\ 1(7(2)).
Due to the definition of G and 7(z) € 2R; C 3R;, we have z ¢ K B;. It follows with Lemma
6.15 (i), (ii) and q € R;

d(m(x), m(X;)) < d(m(2),q) + d(g, 7(X3))

diam B;
< 2diam R; + d(R;, m(B;)) + 1a12n + diam R;
< 3diam R; + 100 diam R; + diam B;
< 104 diam B;. (8.6)
With Lemma 6.15, we know (Xi, %) € S and hence we get
. diam B; .
d(X;) = inf (d(Y,X;)+1t) <d(X;, Xi)+ < diam B;. (8.7)
(Y,t)eS 2

Since x ¢ K B;, we get with Lemma 6.12

5. diam B;

< d(z, X;) < 6(d(z) + d(X:)) + 2d(n(x), 7(X;)) < 6d(z) + 214 diam B;

which yields by definition of K (8.1)

d
104 diam B; < ig) (8.8)
From the previous two estimates, we get d(z,X;) < 7d(x), i.e., (8.2) holds in this case.
Furthermore, we have (8.3) since
(8.6) (®.8) d(x)

d(m(z),m(X;)) < 104diam B; < 0

We have (XZ-, %) € S, so we get

iam B; (8.8
dlar2n (<)d(Xi,:p)+d(2$),

d(z) < d(X;,z)+

diam B; (8.8) d(z)
2

and hence (8.4) holds in this case. Due to Lemma 6.10, we have < S5 <8 <50

so that with Lemma 6.3 (v) we deduce (8.5).
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8.1 Most of F' is close to the graph of A

2. Case: z € GNa~l(n(2)).
We have w(z) € 7(Z) and hence X = 7(z)+ A(n(z)) € Z (cf. Definition 6.21). By definition
of Z and Lemma 6.3 (iv), we obtain (X,0) € S for all o € (0,50) and hence
d(x)
2

d(z) = St JA(Y.2) +5) < d(X,2) o 720 A(X, 2),
,8)€

IA

which establishes (8.4). Moreover, we have d(7(X), n(z)) = d(7(x),m(x)) = 0. Using Lemma
6.11, we obtain d(X) = 0 and hence we get with Lemma 6.12 d(z, X) < 6(d(z) + d(X)) +
2(d(m(x),m(X))) = 6d(z). Furthermore, we have with Lemma 6.10 that #65) <6 < 50 so that

by definition of Z, we get (X, #5)) € S. End of Proof of Claim 1.

> 10

Let P(X dtz)) be the plane associated to B(X, #8)) (cf. Lemma 6.3 (vi)). Since S C Siotal,

we obtain
Pl aw d
BMSX’ ) (X, i?) < 2, (8.9)
5 (B (X, df?)) > %5 (8.10)
and
<I(P(X7%),P0) < a. (8.11)
We define the set
o d(x) 8 d(z)
T .= {ueB<X, 10) ‘d(u,P(X%))SETE . (8.12)
We get
d(z) 1 8 d(x)
(0 17) = S
10 g%% B(x,%)\r(S 10
o),
< d(u, P o\ ) du(u
R S
n d 7P T
ci(ay iy ),
8¢ 10 (@ B(X,k%) @
n P
_ b ()" ) [ d)
8 \ 1 Lk 10
(8.9) "
< i M 2e
— 8 \ 10
<:(%)
— 4\ 1
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8 Z Is not too Small

and hence, because T C B (X, d(ﬂ?)>7

o (5(x49) 1) ey

With Corollary 5.3 (A = %, t = %), there exist constants C; = Ci(N,n,Cy), Cy =

C3(N,n,Cp) and an (n, 10n%>—simplex

so that for all j € {0,...,n}

d(x) d(x) dz)\" 1
B j NB|lX,—|NT )| >(—| —=. 8.13
. < (xf’ 1001> ( ’ 710 =10 ) & (813)
Let y; € B (:Cj, fléé)l) NTY for all j € {0,...,n}. By applying Lemma 2.14 n + 1 times, we

find that A(yo,...,ys) is an (n, 8n flég)l )—simplex.

Claim 2: For all z € G, we have

d(x,aff(yo, ..., yn)) > d(f) (8.14)

Proof of Claim 2. Let Py := aff(yo, ..., yn) be the plane through yo, ..., y,. Applying Lemma

A d
228 (C=S,C=1,t=% 5=2% p =p, Py = Py amy; S = Ao, yn) v =X,

m = n) yields

’ 10

Lol o\"8
APy P ) S (0" + D3 (F ) Fe<a,

where we use that € < £ < % So, with (8.11) and Lemma 2.20, we obtain

L(Py, By < <I(Py7P(X d(z))) + <I(P(X d(z))fo) < 2a. (8.15)

’ 10 ’ 10

Let ﬁy € P(N,n) be the n-dimensional plane parallel to P, with X € Py, and Py € P(N,n)
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8.1 Most of F' is close to the graph of A

be the plane parallel to Py with X € Py. We have « <3 0 and hence

d(rp (x),7p () = |mp _y(z—X)—mp_y(z—X)|

r—X r— X
Tp,—Xx |x X| Thy—X iz — X|

< d(z,X) (P, — X, Py — X)

(8.2)
< Td(x) <(Py, Po)

(825) d(z)

— 20 )

— |z —X|

and using (8.3) we get

d(mp, (z), X) = d(mp, (x),7p (X)) = d(n(z),7(X)) < diﬁ
which implies
d(mp, (2), X) < d(rp, (2), 75, (2)) + d(mp (2), X) < dég“) N dix)

From this, we obtain using yo € T C B(X, EO)) and d(Py, Py) =d(X, Py)

d(z) (4

5 < d(z, X)
< d(l‘, Py) + d(ﬂpy(l’),X)
- 3d
< d(z, Py) +d(Fy, Py) + 2(033)
< d(z, Py) + M
4
and gain d(z, P,) > d(z) End of Proof of Claim 2.
With (8.2) and
d(z)  d(x)

we obtain yo, . .. yn, z € B(X,7d(x)) C B(X, & = d%)) where we used the explicit characterisa-

tion of C'1 given in Lemma 5.2. Hence we get with the second property of a u-proper integrand
(see Definition 4.4) the existence of some C' = C(N,n, K, p, Cy) > 1 with

p n(n+1)
! d(,aff(yo, - 9) ) _ Aoy (10 "
Icp(yov"'aynax) Z d(:E) Tb(?’H‘l) ~ < M ” C M .
()™l %
“2Y 3y
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8 Z Is not too Small

This estimate holds for all y; € B (mi, %) NY. It follows

/...//cp(yo,...,yn,x)du(yo)...du(yn)

KP(yo, - - s Yn, 2)dp(yo) - - - dp(yn)

(A4
—
—~
B
&
S~—
)
)_.%
—
Yoy
E:

”l)mT

n(n+1) ) d
/B( d<z>)m"'/3< 4 )y #(yo) - - dp(yn)

%0100

)
- ¢! (Cltm))n(nﬂ) " (B (a:o, 161(52*)1) n T) o (B (xn fé?l) n T)
)

> ¢loy ™Y, (8.16)

\Y
Q)
|
7N
‘H
[es}

We have proven the inequality (8.16) for all x € G, so finally we deduce with (C) from page
64

u(@) = e [ é7ey " Nau

< cefrty // //Cp Y0, - - - Yn> ©)dpe(yo) - - - dpp(yn)dp()
C(N,n, K, p,Co) Micr (1)
C

Lemma 8.2. Let a,e > 0. If n < 2e, we have for all x € F\ G that
(20K)'d(z) < D(r(x)) < d(z),
where K is the constant defined on page 125.

Proof. Let x € F\ G.
We have D(r(x)) = inf e —1(r@)) d(y) < d(z).

1. Case: z € Z.
With Lemma 6.11, we get d(x) = 0, so the statement is trivial.

2. Case: z ¢ Z.
Since x ¢ G U Z, by definition of G, there exists some i € I19 with 7(z) € 3R; and = € KB,;.
We have B; = B(X;,t;) where (X;,t;) € S (see Lemma 6.15) and K > 1 (see (8.1) on page
125) so we obtain

(X;,t:)€S i B; i B;
dx) = inf (dX.2)+8) L d(Xpa)+t; < gommBi  dan B e B,
(X t)eS 2 2
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8.1 Most of F' is close to the graph of A

Now, with Lemma 6.14 (i) and 6.15, we deduce
D(n(z)) > 10diam B; > —2 diam B; > ——d(x)
m(z)) > lam R; > 5o diam B; > oow-d(z).
O

Lemma 8.3. Let 0 < a < %. There exists some & = £(N,n,Cp) and some k > 4 so that,
ifn < 28 and k > k, for alle € [3,&) we have that the following is true. There exists some
d(x)

constant C' = C(n) so that, for all x € F with t > 55~, we have

/ d(u, m(u) + A(r(u)))du(u) < Cet"t,
Bz, )\G

Proof. Let 0 < a < i. We choose some ¢ with < 2e < 2¢ and some k > k= max{fc, é},
where & and k are given by Lemma 6.22 and C is a fixed constant introduced in step VI of

this proof.

Let x € Fand t > %. We define

I(z,1) == {z € I12|(3R; x PH)N B(z,t) N (F\ G) # @}
where 3R; x Py := {z € R¥|n(x) € 3R;}. At first, we prove some intermediate results:
I. If uw € Z, the definition of A (see page 78) yields d(u, 7w(u) + A(m(u))) = 0.
II. Let u € (B(z,t)NF)\ (GU Z). We have (cf. Lemma 6.20 and Definition 6.21)

d(u, 7(u) + A(m(u))) = d(m(u) + (), m(u) + A(r(w)))
= |7 (w) = A(m(w)|
= ‘ Z b (m(u))mt(u) — Z ¢j(m(u))A;(m(u))
i€l12 Jj€l2

< 3 aylr()|r(w) - 4;(r(w)|
Jj€ha

III. We have (B(z,t) N F) \ (GU 2) C Uje(p.)(3Ri x Bg) N K B;.

Proof. Let y € (B(z,t)NF)\ (GUZ). Since y ¢ GU Z, by definition of G, there exists
some i € I1o with 7(y) € 3R; and y € K B;. Hence we obtain ¢ € I(x,t) and

y € (3R; x Py") N K B;.
O

IV. Let u € 3R; x P;~. We have m(u) € 3R; and with Lemma 6.14 there exists at most
(180)™ cells R; with 3R; N3R; # 0. So > _,c,, ¢j(m(u)) is a finite sum (¢; is defined on
page 78).
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8 Z Is not too Small

V.

VI

VIIL

VIIL

IX.

X.

132

Let i € I(x,t) and j € Lia. If u € (3R; x Pi") N K B;, then we have ¢;(m(u)) < ¢,
where
biiim 1, if 3R;N3R; #0
7700, if 3RiN3R; = 0.

Proof. Let ¢j(m(u)) # 0. The definition of ¢; (see page 78) gives us 7(u) € 3R; and,
because 7(u) € 3R;, we deduce 3R;N3R; # (. Hence we obtain ¢;(m(u)) <1=¢;;. O

If ¢; ; # 0, then we have KB; C kB;.

Proof. If ¢; ; # 0, we can apply Lemma 6.14 (iii) and Lemma 6.22 (i). Hence, using
Lemma 6.15 (i), the size of B; as well as the distance of B; to B; are comparable to the
size of B;. Consequently, there exists some constant C' so that KB; C CB; C kB;. [

If u € kB;, we have |7t (u) — A;(m(u))| < 2d(u, P;). We recall that P; is the graph of
the affine map A; (cf. Definition 6.18 and Lemma 6.19).

Proof. We set Py := Py + Aj(m(u)) and v := 7(u) + A;j(r(u)) = 7 p, (u). Using Lemma
2.1, we get
7w (u) = v = |mp, (u) = mp (u)]
= |mpj—o(u—v) —7p _,(u—10)
- u-vy\ _ U—v
P\ Ju=ol) P Ju =l

<|u—v| <(P}, P).

= |u— v

All in all, we obtain with <(P;j, Py) < o < & (cf. Lemma 6.3 (vi) and Definition 6.18)

1
ool < u— g, )|+ [, () — 0] < s ) + glu— o]
and hence
| () — Aj(r(w)| = [u—v| < 2d(u, Py).

OJ

Let B; = B(Xj,t;). Since (Xj,t;) € S C Siotai, by definition of Siyq;, we obtain
P.

Bl;Jk(Xjatj) < 2e.

Let i € I(z,t) and j € I1o. If ¢;; # 0, we conclude that 3R; N 3R; # (. Hence,
with Lemma 6.14 (iii) and Lemma 6.15 (i), we deduce 2¢; = diam B; < 200 diam R; <
1000 diam R;.

For i € I(w,t), we have with Lemma 6.14 (iv) that >, ;  ¢:; < (180)".



8.1 Most of F' is close to the graph of A

XI. For i € I(x,t), there exists some y € B(x,t) N (F\ G) with 7(y) € 3R;. We obtain with
(
that

\/

Lemma 6.14, Lemma 8.2 and our assumption ¢ >

10diam R; < D(n(y)) < d(y) < d(z) + d(z,y) < 11t
XII. We have } ;¢ 4 (diam R;)" < Vi wn (TE)™.

Proof. Let i € I(z,t). With XI we obtain diam R; < 2t and, because (3R; x P5-) N
B(z,t) # 0, we get R; C B(w(x),t + diam3R;) N Py C B(n(z),7t) N Fy. Moreover,
with Lemma 6.14 (ii), the primitive cells R; have disjoint interior and hence we get with
Lemma A.7 (we recall that w,, denotes the volume of the n-dimensional unit sphere)

Z (diam R;)" Z Vi"H"(R

1€l(x,t) i€l (x,t)
- \/E”H"( U Ri>
ie[(x t)
< Vn"HY(B(r(z),7t) N Ry)

:\/ﬁnwnﬁ

Using all those results, we get

/ d(u, 7(u) + A(m () dpa()
B(a,)\G

||>—<

/ d(u, m(u) + A(r(u)))duu)

B(z,t)\(GUZ)

2 i (m(u WJ'U—AJ‘T(’U, du(u
& /B(x)\(GUZ)Zw())\ (u) — A (r(w))| dn(w)

j€l12
111
< X
(3

i€l(x,t)

vy

i€l(z,t) je€l12

> ay(r(w)) |7 () = Ay (x(w))| duu)

R1><P NKB; jelis

() |7 ) = Ay ()| daw)
R;xP;-)NKB;

Y Yo [rtw - A duw)
i€l(z,t) jeliz Bi
2y v %/ 2d (u, Py) du(u)
i€l(x,t) j€l12 Bj

1 d (u, P;
= 2> > ¢y ?“n " EREDRE

iel(z,t) j€li2
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8 Z Is not too Small

= 2 Z Z ¢27]t?+151k X;,t5)

1€l(z,t) jeliz2

VEI 2 Z Z qﬁwt"HQE

i€l(z,t) jelz

I%i C(n)g Z (diamRi)nH Z d)i,j

i€l(z,t) Jj€h2
< O Y (diam Ry (180)"
1€l(x,t)
XI
< C(n)et Z (diam R;)"
1€l(z,t)
XII

< C(n)et™tL,

Definition 8.4. We define

Fi= {a: € F\G | d(z,m(z) + A(r(z))) < E%d(a;)} .

Theorem 8.5. Let 0 < a < . There exists some ¢ = £(N,n,Cp) < 1 and some k>4 so
that, if n < 2¢ and k > k, there exists some constant Cs = C5(N,n, K, p,Cp) so that, for all
e €[4,8), we have u(F \ F) < Chet.

Proof. Let 0 < a < %. We choose some ¢ with n < 2¢ < 2¢ := min{2¢, 2¢, %} and some k > k
where € is given by Lemma 8.1 and £ and k are given by Lemma 8.3.
At first, we prove some intermediate results:

I. We have Z C F because for 2 € Z the definition of A on Z (see Definition 78) implies
that d(z,7(z) + A(r(x))) = d(z,z) = 0.

IL If z € F\ (FUG), we conclude with I that 2 ¢ Z and, with Lemma 6.11, we deduce
d(x) #0. So
d(x) ~
G =18 (0,5 ‘xeF\(FUG)

is a set of nondegenerate balls. For z € F' C B(0,5), we have d(x) < 60 (see Lemma 6.10)
so that we can apply the Besicovitch’s covering theorem A.12 to G and get Ny = No(N)
families

Bmcg mzl,...,No

of disjoint balls with

F\ (FUG) UUB.

m=1 BEB,,
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8.1 Most of F' is close to the graph of A

Iv.

Since d is 1-Lipschitz (Lemma 6.9), we obtain for all u € B (33, %)
d(z)
d(z) — d(u) < |d(z) = d(u)| < d(z,u) < =~
and hence
1 < Q 1 < 2
d(u) = 9 d(x) = d(z)

d
Let 1 <m < Ny and let B, = B (m, %) and B, = B (y, %{i)) be two balls in B,,.
Then we either have

a) 7 (g Bs) N7 (q0rBy) =0
or

b) if 2d(x) > d(y), we have B, C 200B, and diam B, > (40K)~! diam B,,

where K is the constant from page 125.

Proof. Let 7 (39 Bz) N7 (305 By) # 0 and 2d(z) > d(y). We deduce with Lemma 6.12
d(z,y) <6(d(z) +d(y)) + 2d(r (), 7(y)) < (18 + 1)d(x),
which implies

B,CB (m 19d(z) + %’}) © B(z,20d(x)) = 200B,.

With Lemma 8.2, we get

d(x) 3d(x) d(x)
—— <D <D < — —
S < D(n(x)) < D(n(y)) + d(w(x), 7(y)) < dy) + 1 ts < dly) + 2,
and hence . .
—_— = = (40K)~! .
1) > (g0 - o) 460) = (108) )
All in all, we have proven that either case a) or case b) is true. O

There exists some constant C' = C(n) so that, for all 1 < m < Ny, we have

Z (diam B)" < C.
BeBm

Proof. Let 1 < m < Ny. We recursively construct for every m some sequence of num-
bers, some sequence of balls and some sequence of sets. At first, we define the initial el-
ements. Let d}, := suppcp,diam B. We have dl, < oo because, for all z € F C B(0,5),
we have with Lemma 6.10 that d(x) < 60. Now we choose B}, € B,, with diam B}, > %
and define

Bl i={B € Bulr (e BL) N (e B) # 0}
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8 Z Is not too Small

136

We continue this sequences recursively. We set

df;{l = sup ~diam B,

B'€Bm\U}_, B

choose

Bi,fleBm\OBZn

i=1

) it1
with diam Bir! > %= and define

Bitl = {BeB \UB‘ (3 B N (s );é@}

If there exists some [ € N so that eventually B, \ Ué.:l an = (), we set for all i > [
Bt, := 0, and interrupt the sequences (d¢,) and (B%,). We have the following results:

(i)

(i)

For all I € N and B!, = B ( s (fé”)>, we have with Lemma 6.10 and 2!, € F' C

B(0,5) that ( n) < 6. Hence we get B, c B(0,11).
Foralll1 <m S Ny, we have

s
=1

Proof. 1. Case: There exist only finitely many d' . '
This means that there exists some | € N with B, \ Ué‘:1 By, = 0, which implies

B, € U2, Bh

2. Case: There exist infinitely many d!, .

Since B, is a family of disjoint balls, the set { B!, |l € N} is also a family of disjoint
balls. Due to (i), all of those balls are contained in B(0,11). If there exists some
¢ > 0 with diam B!, > c for all | € N, there can not be infinitely many of such
balls. Hence we deduce

diam B!, — 0 if | — oo. (8.17)
Let B € B,,. We assume that
B¢|JB,.
=1

We obtain for all { € N

d, 1 , _ diam B
diam B!, > Tm == sup diam B > 1a12n ,

B'eBn\U'Z) Bl

which is in contradiction to (8.17). So we get B € |2, BL,.
All in all, we have proven |J2; B%, D By,.
The inverse inclusion follows by definition of 3¢ . O]



8.1 Most of F' is close to the graph of A

(iii)

We have #B!, < (200-80K)" for all 1 < m < Ny and for all I € N.

Proof. Let 1 <m < Ny,l € Nand By = B (y, 1(0)) € Bfn, Bl =B ( d(lxé")) €
Bl,. We have 7 (557 BL,) N7 (305 By) # 0 and

d. diam B,

2d(x!,) = 10diam B!, > 10 > 10— —* = d(y).
Hence we obtain with IV
B, C 200B.,
diam B, > (40K)~! diam B!,.
s 1 s . . _ diam B!, dlamB
The balls in B;, are disjoint, so, with Lemma A.4 (s = —g5=, r = 200———=),
we deduce
! N N
#B. < (g) < (200 - 80K)V.
[
We have
o0
Z d1am7r 40K ))n < 22™,
=1
Proof. Let Iy # ls. We have
1 pl 1
T (orBim) N7 (407B11721) =0
Furthermore, we get with (i) for all € N
™ (0 Bm) € m(B(0,11)),
so that
- R - 1
> (diamm (e Bp))" = -3 A" (7 (g Bn))
=1 1=1
2 o0
_ l
= ;Hn (U” (0r B ))
" =1
n
< —H" (7 (B(0,11)))
Wn,
= 22",
O
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8 Z Is not too Small

Now we are able to prove V:

Z (diam B)" (;)Z (diam B)"
I=1 BeBt,

BeB,
< Z ()"
B

=1

8

iif)

[o.¢]
< (200-80K)"2" " (diam BY,)
=1

n

= (200 - 80K)"2"(40K)™ Y _ (diam 7 (30 BL,))
=1

O
Finally, we can finish the proof of Theorem 8.5. Let pp denote the centre of some ball B.

Using the definition of F' and Lemma 8.3, there exists some constant C' = C(n) so that we
obtain

SuF\(Fue) = [ oy
d(u,m(u) + A(m(u)))
= /F\(FUG) d(u) dulu)
I (u) + A(m(u)))
= o lBGB /B\(FUG d(u) dulw)

vy s )+ A

m=1 BeB,,

i Z 6(diamB)"“

m=1 BeB,, ( ) 2

2 de <diamB>n
= CE
m= 1B€Bmd 10 2

\%
< C(N,n)e

This leads to u(F \ (FUG)) < C(N, n)sé With n < 2¢ < ¢z and Lemma 8.1, we get
w(G) < C(N,n,K,p, C’o)z—:%. All in all, we deduce

p(F\ F) < u(F\ (FUG)) + u(G) < C(N,n,K,p, Co)e?.
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8.2 Fy is small

8.2 I} is small

Now we are able to estimate pu(Fy). We recall that n and k are fixed constants (cf. the first
lines of section 6.1), and (cf. Definition 6.4)

hz) hiz)

Flz{xeF\Z’ElyeF,EITE [5, >

] yd(z,y) < = and §(B(y, 7)) < 5}

-
2
where this definition depends on the choice of a, e > 0.

Theorem 8.6. Let 0 < a < %. There ezist some €* = e*(N,n,Cy) and some k>4 so that,
if n < 2e* and k > k, for all e € [, %), we have p(Fy) < 1075,

Proof. Let 0 < a < % and let €, Cs and k be the constants given by Theorem 8.5. We set
X R —14
e* := min {5, 10052

intermediate results:

} and choose some k > k and some ¢ € [g,s*). At first, we prove some

Qz{B(x,%?) ’xeFlmF}.

This is a set of nondegenerate balls because Z N F; = () and, by definition of h(-) (see
page 65), we get h(x) < 50 for all x € F. With Besicovitch’s covering theorem A.12,
there exist Ny = No(N) families B,,, C G, m = 1,..., Ny, containing countably many
disjoint balls with

I. Let

No
FNEC U U B.

m=1 BEBm

II. If 1 <m < Ng and B € B,,, we have u(B) < 3"§(diam B)".

Proof. Let x € F1 N F such that B = B (a:, %g)) Due to the definition of Fj, there

exists some y € F' and some 7 € —h(m), M2) | with d z,y) < T and §(B(y,7)) <. For
5 2 2
any z € B, we get

d(z,y) <d(z,z) +d(z,y) < hl(g) +

Hence we obtain B C B(y,7) and conclude

w(B) < By, 7)) <ot <6 <h(x)>n < 3"§(diam B)".

III. For all 1 <m < Ny, we have ZBeBm(diamB)” < 192™,
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8 Z Is not too Small

Figure 8.1: 7 (B (:Uo, %g))) cw (B (x, %) N A(U12)>

Proof. We define the function
A Ui — RN,UI—>U+A(U),

where Ujo = B(0,12) N F. A is Lipschitz continuous with Lipschitz constant less than

2 because A is defined on Uiy (see page 78), 3a-Lipschitz continuous (see Lemma 6.28)
and a < 1. Let B=B (a?, %) € B,,. We have F' C B(0,5) (see (A) on page 64) and
so m(F') C PyN B(0,5) because 7 is the orthogonal projection on Py and 0 € Py. With

the definition of F and Lemma 6.11, we obtain for zq := A(n(x))

d(z,z0) = d(z,7(z) + A(n(2))) < e2d(z) < e?h(z) < hQ(f))
For some z € 7 (B <w0, %g))) C U2, we get using 7(x) = 7(zo)
A(A(=),2) < d(AG), Alw(a0)) + d(ao, ) < 2(z, w(a0)) + o) < ")

which implies A(7(B (o, %))) C BN A(Up), and hence we gain (B (:po, %)) C
™ (B N A(Ulg)). Now we have with [EG92, 2.4.1, Thm. 1]

=2 (diam B)" = w, (2)" =w (v (B (20, 2)))) < M/ (BN AW2).  (3.18)
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8.3 Fy is small

Using [EG92, 2.4.1, Thm. 1] again, we obtain

H"(A(Ur2)) < (Lip 1)"H" (Ur2) < 24"wy,. (8.19)
The balls in B, are disjoint, so we conclude

(8.18) gn 5 n . (8.19)
S (damB)" < o S HUBAAUR) < S (AUR) < 1927,
BEBm “n BeB,. Wn

Now we have

No

No
~ 1 I 111
,u,(Fl N F) < E E ,u(B) < 3" E E (diam B)" < §Ny - 576"™.
m=1 BEB, m=1 BeB,

Since § < % (see (6.2) on page 65) and €3 < %, we deduce together with Theorem 8.5
that

w(F) < w(FyNF) + p(F\ F) < 107°.

8.3 I, is small

We recall that 0 < 7 < 2~("+1) and k > 1 are fixed constants (cf. the first lines of section 6.1)
and that (cf. Definition 6.4)

Jye F,3r e [@, @} , with d(z,y) < 3

Fy = fL‘EF\(ZUFl) and ,
Bhk(yv T) 2 €
where this definition depends on the choice of a, e > 0.

Theorem 8.7. Let a,e > 0. There exists some constant C = C(N,n,IKC,p, Co, k) so that, if
n < %10_6, we have

w(Fy) <1076,
Proof. Let x € Fy and t € (h(z),2h(z)). It follows that = ¢ F; U Z and hence, for all y € F
and for all 7 € [@, @} with d(x,y) < §, we obtain §(B(y,7)) > d. So, in particular, we
get § (B (x, @)) >dforz=yand 7= @ and hence with kg =1
- B(x,t
5o (B(ot) =  sup  3(B(2,1) > 5(Blant)) = 14 (ff’ )
z€B(z,kot) 13
h(x)
n(B(")) o
> At > —. (8.20)
)
2
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8 Z Is not too Small

Let (y,7) as in the definition of F5. Then we have d(z,y) + 7 < 27 < h(z) < t and hence
B(y,7) C B(z,t). We conclude

-_— h(z) ! -
Big(w,t) > (;) Brk(y,7) > <2h( )> &= gt (8.21)

Now, with Corollary 5.8 (A = 4n, ko = 1), there exists some constant C' = C(N,n, K, p, Co, k)
so that

dt
Micr(p) = C// Brix(z, )P L5, (B> e du(z)
2h(x iy
> (j/F2 /h(m) 51;k(1:,t)Pl{gko(B(x,t))zfn}Td,u(x)

2h(x)
(8.20) 1/ / ﬁl;k(x,t)p%du(x)
C Jg,
(8 21) 2h € pdt
—d
> C/FJ on+1 ;- du(z)

= C( 0n+1> #(F2) In(2)

Finally, with condition (C) from page 64 and using that n < In(2)

10r(n+1)

C 107 HIN\P 10P(n )
< — | — <= TPy <1075,
wu(Fy) 2)< . ) Micr () n(2) e n<10

P10, we get

8.4 Fj is small

We have defined F on page 134 in Definition 8.4. To review

We set

w(F N B(x,t) > %M(FHB(JU t)) for all t € (0,2)}.

F= {x € F\G | d(z,m(z) + A(r(z))) < E%d(x)} .

Lemma 8.8. Let 0 < o < i. There ezists some € = £€(N,n,Cp) < i and some k >4 so
that, if n < 2¢ and k > k, there exists some constant C = C(N,n,IKC,p,Cp) so that, for all
e €[4,€), we have

W(F\ F) < Cez.
Proof. Let 0 < a < % and choose &, k to be the constants given by Theorem 8.5 and let k > k,
n < 2 < 2. We have F C F C F and hence

W(F\ F) < u(F\ F) + p(F\ F).
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8.4 F3 is small

In Theorem 8.5, we have already proven that u(F"\ F) < C(N,n,K,p, CO)E%, so we only have
to consider p(F \ F). For all z € '\ F, there exists some t, € (0,2) with

W(F A B(o, ) < %M(F A B, t.))

< o (W(F\F) 0 B, 1)) + p(F 0 Bl 1))

and so

w(F N B(z,t,)) < 99u((F\ F)N B(x,t,)). (8.22)

Moreover, we have

so with Besicovitch’s covering theorem A.12 there exist Ny = No(INV) families B,,, m = 1, .., Ny,
of disjoint balls B(z,t,) so that

~ N .
Mmicl) |JFns
m=1 BEB,,

Finally, with Theorem 8.5, there exists some constant C = C (N, n, K, p, Cy) so that

l\J\»—i

w(E\ F) < Z > u(FnB) < 992 > u(F\F)NB) < 99Ny u(F \ F) < Ce
m=1 BeEB,, m=1 BEB,

O]

Lemma 8.9. Let 6, > 0. There exist some constant C = C(N,n,Cy,0) > 1 and some
constant eg = €o(N, n,Co,8) > 0 so that, if n < 2eq and k > 4, we have for all € € [%,e¢) that
the following is true. If (z,t) € S and 100t > 6, then we have <(P4), Po) < Ce.

Proof. Let 8, > 0, k > 4 and n < 2¢ < 2¢g where the constant ¢ is given by Lemma 5.9.
Let t > 60 and (z,t) € S. We get with (A) and (D) (see page 64)

5 n+1 500 n+1
o< (3) o< (3F) =

Furthermore, we have with Lemma 6.3 (vi) that Bl Plat) (x,t) < 2e and with (z,t) € S C Stotal
we obtain 0(B(x,t)) > 5. Now, with Lemma 5.9 (y =z, ¢c=1,§{ =2 (%)HH, ty =ty =1,
A= g), there exists some constant C3 = C3(N,n, Co, ) so that (P ), Po) < Cse. O

Lemma 8.10. Let 0, > 0. If k > 400, there exists some constant e* = £*(N, n, Cy, «, 0) so
that, if n < 2&*, we have for all e € [4,e*) that for all x € F3 we have h(x) < 1%0.
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8 Z Is not too Small

Proof. Let 6, >0 and k > 400. We set £* := min{¢, eo, 5 } where £ is given by Lemma 6.6
and gg as well as C' are given by Lemma 8.9. Let n < 2¢ < 2¢* and = € F3. With Lemma
6.3 (iv), we have (z,h(x)) € S and, with Lemma 6.6, we get % (P n(z)), Fo) > fa. Hence we
obtain h(z) < {55 with Lemma 8.9. O

Lemma 8.11. Let p = 2. There exists some k > 400, some & = a(n) > 0 and some
0 = O(N,n,Co) € (0,1) so that for all o € (0,&] and 6 € (0,0] there exists some é =
£(N,n,Cy,a,0) so that, if k > k andn < €2, we have for all ¢ € [\/1,€) that there exists some
set Hy C Ug and some constant C = C(N,n,K,Co, k) with H"(Us \ Hyp) < C (ﬁ)2

for all z € F3 N F, we have d(n(z), Hy) > h(z).

and,

Proof. Let k and @(n) be the thresholds given by Theorem 7.17 and let C' = C'(N,n) be the
constant given by Theorem 7.3. Moreover, let C; = C1(N,n,Cp) and Cy = Cy(N,n,Cp) be
the constants given by Corollary 5.3 applied with A = %, and 0 = (NN, n) is the value fixed

R il 11 R
on page 65. We set 0 := ;55 [1871(10” +1) (%) o C} and choose 6 € (0,6]. Let o € (0, 4],

and let & = é:(N, n, Co, Oé), €2 = §(N7 n, Co, Oé), g = €~(N, n, Co, Ck), €0 = 60(N7 n, Co, 9)7
e* =e*(N,n,Cy, a, ) be the thresholds given by Lemma 6.6, 6.25, Theorem 7.17, Lemma 8.9
and Lemma 8.10 respectively. Finally, let C' be the constant from Lemma 8.9. We set

n+1 -1
An(10™ 4+ 1) (Cl> (s

@
" 400

(07

€ := min 5175275,50,5*,(éea)2 ,W

4

and assume that k > k := max{k, 400} and n < £2. Now let & > 0 with n < &2 < £2.

Until now, we defined the map A only on Uiz = B(0,12) N Py (see page 78). Furthermore,
we have shown that A is Lipschitz continuous with Lipschitz constant 3o (see Lemma 6.28
on page 84). With Lemma A.8, an application of Kirszbraun’s Theorem, there exists an
extension A of A with

1. A: Py— RN,

2. A has compact support,
3. Lip; = Lip4 = 3a,

4. A= Aon Ujs.

If one wants to omit Zorn’s lemma, used for the proof of Lemma A.8, one can get the same
result with a slightly larger Lipschitz constant (see the remark after Lemma A.8 for details).
We denote this extension of A also by A.

Using Theorem 7.3 with ¢ = A, p = 2 and Theorem 7.17, there exist some set Hy C Ug and
some constant C = C(N,n, K, Cyp, k) with

H™ (Ug \ Hy) < ) g2

= 6200+ Lip%
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8.4 F3 is small

Furthermore, we get for all y € Py some affine map a, : Py — POl so that, if » < 0 and
B(y,r) N Hy # 0, we have

14 = ayll poe (Byrynm,pty < CT0Lipy - (8.23)

We recall that Lip 4 = 3« (cf. Lemma 6.28). For z € F3NF C F5NF, we have with the previous

lemma that h(z) < 1%0. Let t € [h(x), %]. With Lemma 6.11, we get d(x) < h(z) < t and

so for all 2/ € B(x,2t) N F we obtain by definition of F
d(x', 7(x') + A(m(2))) < e2d(a’) < & (d(z) + d(w, ) < 3e3t.

Let Pr(;) denote the n-dimensional plane, which is the graph of the affine map a,(,). Now
we assume, contrary to the statement of this lemma, that d(m(xz), Hp) < h(x), which implies
7(B(z,2t)) N Hy # (), and so, for all 2’ € B(z,2t) N F, we have with (8.23) (r = 2t, y = 7(z))

(@) + Ar(2). Paga)) < d (m(a') + A(r(@). 7(a!) + o ((a") = 6CBat.
We combine those estimates and obtain using 3e2 < 3ChHa

d(z', Priyy) < d(2',m(2') + A(m(2"))) + d(m(2") + A(m(2")), Przy) < 9Chat. (8.24)
Since h(x) < t, we get (x,t) € S C Stotqr with Lemma 6.3 (iv) so that we have 6(B(x,t)) > g.
Using = € F implies

- M(FHB($7t))

5(F A Bz, 1)) = > 20 5(B(a.1)) > .

tn — 100

Now we apply Corollary 5.3 (T = F, A\ = g), and so there exist constants Cy(NV,n, Cy),
C2(N,n,Cp) and an (n, 10nci1)—simplex T = A(zo,...,x,) € FNB(z,t) N F so that for all

(3 e {0, “ e ,’I’L}
“ B X 3 B(J?’ ]6) F > 7’”‘

=B,

With (x,t) € S C Siotar, we get for all i € {0,...,n}

d(z, P,
: / d(z, Plag))dp(z) < Cztin / d(z, Pa)

This implies for all i € {0,...,n} the existence of y; € B; with d(Yis Plapy) < 2Cate. With
Lemma 2.14, we deduce that S := A(yo,...,yn) C B(x,t) is an (n,SnCil)—simplex. Next, we

apply Lemma 2.28 (m =n, C' = G C=10= 2C4%¢) and get

8n?

du(z) = Cgtﬁi(k”’t) (x,t) < 2Cyte.

Ch Ci

n
«
<I(P(ﬂwf)’Pyo,m,yn) < 4n(10" +1) <n8n <2n8n> > 20%¢ < 100° (8.25)
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8 Z Is not too Small

We have y; € B; C B(x,2t) N F and hence we get with (8.24) and Lemma 2.28 (C' = %,
C=1,0=9Cha)

Ch Ch

™ . o
P P, <4n(10™+1 — | 2n— < —
I(Pyo,....ym» Pr(z)) < 4n(10™ +1) <n8n ( n8n> )90004 < 100

With (8.25), we conclude (P ), Pr(z)) < 165 + 160 = 200, Which is true for all z € F3 N P

with d(7(z), Hp) < h(x) and all ¢t € [h(z), 1%0]. Now we use this result for ¢ = h(z) and for
2] .

t = 15 hence we obtain (P, 4(z)), Pr(z)) < 555 and {(P(zﬁlg;o),Pw(m)) < 555- We conclude

<X(P(x7h(x)),P(x7%)) < 105- Furthermore, we obtain from Lemma 8.9 that {(P(xy%),Po) <

105> Which implies (P p(2)), Fo) < 5. This is in contradiction to Lemma 6.6 hence our

assumption that d(mw(z), Hyg) < h(z) is invalid for all z € F5 N F. O

Theorem 8.12. Let p = 2. There exists some constants k > 4, 0 < & = a(n) < % and

0<6= GZ(N,n, Co) so that, for all o € (0,a] and all 0 € (0,0], there exists some 0 < & =
E(N,n,Cy,a,0) < % so that, if k > k and n < &2, we obtain for all € € V7, €)

w(Fs) <1075,

Proof. Let k be the maximum and & < % be the minimum of all thresholds for k£ and « given
by Lemma 6.28, 8.8, 8.10 and 8.11. Furthermore, we set 0 := 0, where = O(N,n,Cp) is
given by Lemma 8.11. Let 0 < a < @ and 0 < 6 < 6. We define € = (N, n, Cy, a, 0) as the
minimum of TIG’ a small constant depending on N, n, IC, Cy, o, 8 given by the last lines of this
proof, and of all upper bounds for € stated in Lemma 6.28, 8.8, 8.10 and 8.11. Let k > k and
n < e? < &2 We have u(F3) < p(F3s N F) + pu(F3 \NF). With Lemma 8.8 (p = 2), there exists
some constant C' = C(N,n, K, Cp) so that pu(F3\ F)Y<u(F\F)< Cez. Hence we only have
to consider p(F3 N F). We set

G .= {B(:r,Zh(x))\x e FyN 15)} .

This is a set of nondegenerate balls because € F3 C F'\ Z. Furthermore, we have h(z) < 50
for all x € F' (see Definition of h on page 65). With Besicovitch’s covering theorem A.12 there
exist Ny families B; C G, 1 =1, ..., Ny, of disjoint balls with

~ N ~
FgﬂFCLj U BNF.
I—1 BEB,

Now we conclude with property (B) from page 64

= No = (B) No
p(FsNF) <Y Y wBNF) < Co» > (diam B)™.

=1 BeB; =1 BeB;

Let 1 <1< Ny and let By = B(z1,2h(z1)), Ba = B(x2,2h(x2)) € B; with By # Bs. Since the
balls in B; are disjoint, we deduce 2h(z1) + 2h(x2) < d(x1, x2) and, because of the definition
of F and Lemma 6.11, we get for i = 1,2

d(zs, w(2;) + Al () < e2d(z;) < e2h(ay).
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. 1 . . . . .
Since €2 < %, a < % and A is 3a Lipschitz continuous, we obtain

Z(h(xl) + h(z2)) < 2h(z1) + 2h(22) — €2 h(z1) — £2 h(z2)
< d(z1,22) — d(21, m(z1) + A(m(21))) — d(22, m(22) + A(7(22)))
<d(m(z1) + A(m(z1)), (22) + A(m(22)))
< d(m(z1), m(22)) + 3ad(m(21), 7(22))

d(w(xl), 7T($2)).

A
N

This implies h(z1) + h(x2) < d(m(21), 7(z2)). Thus (3 B;) and 7(3B>) are disjoint. We have
(I? N Fg) C F c B(0,5) for i = 1,2. With Lemma 8.10, we conclude that h(z;) < 100 <

. This implies 7T( ;) C Ug. Using Lemma 8.11, there exists some set Hy C Ug and some
Constant C = C(N,n,K,Co, k) with H"(Us \ Hg) < C (ﬁf so that d(w(z), Hp) > h(x)

for all z € F3N }%, in particular for x = x;. We conclude that W(%Bi) N Hy = 0, so that we
can deduce

Y (diam B)" = 4" >~ (3 diamm (3B))" = 4" Z 7—{” 1B)) < —”H"(Uﬁ \ Hp).

BeB, BeB, BEBZ

Now we obtain "

~ 4 2
u(If3NF) < C'ONO* "(Us \ Hp) < C (9”“@) :

and we have already shown that u(Fj \ P:’) < Ceo. Using € < &, we finally get u(F3) <
1076. O
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Appendix

A.1 Measuretheoretical statements

Lemma A.1. Let E C RY be a H™-measurable set with 0 < H™(E) < oo, where m € N.
Then E can be divided into two disjoint subsets

E=E,UE,
where E, is purely m-unrectifiable and E, is m-rectifiable.

Proof. This statement is proven in [Fed69, Thm. 3.3.13]. The idea of the following alternative
proof is from [Paj02, Chap. 1, 5.].
Define

M:= sup H™ENF)<H"(E)<o.

FCR™
F m-rectifiable

There is a sequence F; of m-rectifiable sets with H"™(E N Fj) > M — ]l Define

oo
E.:=En|JF, E,:=E\ E,.
j=1

‘We have to check:

1. E=E,UE,.
This holds by definition.

2. E, is H™-measurable.
Since rectifiable sets are H"-measurable and E is H"™-measurable, so is F;.

3. E} is m-rectifiable.

o0

Er:EﬂGFj: U EnF)
j=1 j=1

Since F; is rectifiable, there exists a countable family of Lipschitz functions (v;;)ien
with

H™ (Fj U yj,i(Rm)> =0 Vj € N.
=1
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We have

j=1li=1

<H™

UFZ\UU% R™)

j=1l:=1

<H™ (U (Fz \ U 'YZ,i(Rm)>>
=1 =1

<y Hm (Fl U fn,i(Rm)>
=1 =1

=0.

0<H™ (Er\ U U’Yj,i(R

So E; is rectifiable.
In addition this implies that the countable union of m-rectifiable sets is m-rectifiable.

4. E, is purely m-unrectifiable.
It holds that H™(Ey) = M because |J;2, Fj is m-rectifiable and, for all j € N, we have

> 1
M>=H™EN|JFR)=H"(E)>H"(ENF;)>M - -
=1

Now let v : R™ — R™ be an arbitrary Lipschitz function. Since (W(Rm) U U?‘;l Fj> is
rectifiable and E, is H"™-measurable, we have

M>H"|En|~vR™ U U

=H" ((Eﬂ’y (R™)) U

H™ ((Equ rme )

|
hy

(
Hm<<(E NY(R™) U (B ny(R™)) U E>
(

m(((By Ny (R™) U E)
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A.1 Measuretheoretical statements

Hence M = Hm<(Eu N W(R))) + M and it follows

H((Ban(R)) =0.
So E, is purely m-unrectifiable.
O

Lemma A.2. Let p be some outer measure on the R-vector space X, A C X some pu-
measurable set, a > 0, b € X, f : aA+b — [0,00] some puL(aA + b)-integrable function,
and let p(aB + b) = h(a)u (B) for all u-measurable sets B C X, where h : (0,00) — (0,00).
Then we have

[t = h@) [ flas -+ b)auto).
aA+b A

Proof. The terminology used in this proof is from [EG92, 1.3].

At first, we prove the statement for simple functions. Let g : X — [0, 00] be some simple
function. Then g: X — [0, 00|,z + g(ax + b) is some simple function as well. If y € [0, o],
we have

1

L ) —b) = e ) € Xgla) = v} = {= € Xlg(az +8) =5} =7 ({u}).

We set
M1 = :ULA>
p2 = pl(aA+0b)

and obtain
/ L o@dn() = [ ste)duao)
= > yu(s ()

0<y<o0

= > yulg'{y)n(aA+b)
0<y<o0

= 3 vt u (o (@) -0 na)
0<y<oco

=ha) > yp@'{yHnA)

0<y<oo

=h(a) Y ym (@ (v}

0<y<oo

— (o) [ o) (@)
— (o) [ glaz + D (z)

151



Appendix

= h(a) /A g(ax + b)du(z). (A.26)

Let f:aA+b— [0,00] be some pl(aA + b)-integrable function. We conclude the following
equivalence

g simple, po-integrable function with g > f po-almost everywhere
< g simple function, /g_dug < 00 Or /g+d,u2 < 00,
with g(x) > f(z) for p-almost all x € aA + b
(A<£2>6) g simple function, h(a) /g_dul < o0 or h(a) /g+du1 < 00,
with g(az +b) > f(az +b) for p-almost all z € A

& g simple, pi-integrable function with § > f pi-almost everywhere.

Let f: A—[0,00], 2+ f(az +b). We deduce

P00 = [ it

= inf {/g du2|g simple, upo-integrable fct. with g > f ,ug—a.e.}
= inf {h(a) /g dul‘g simple, us-integrable fct. with g > f ,ug—a.e.}

= h(a)inf {/g dpy \g simple., ui-integrable fct. with g > f m—a.e.}
0 [ Fa)m()

and analogously we obtain

AAer /f Jduz(z /f )dpz(z) = h(a )/f(l‘)dul(:c).

This implies

o [ T = [ | J@aut) = 1) [T

and hence f is p-integrable and we get

[ s@duta) = hta) [ “F@)dpu ()
aA+b

o) [ Fw)dn (@ /fa:r+bdu()
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A.1 Measuretheoretical statements

Lemma A.3. Let i be some measure on the R-vectorspace X and let a > 0. Then
ap : A ap(A)

is some measure on X as well and, if f: X — [0,00] is some p-integrable function, we have

o [ fan= [ faan

Proof. At first, we prove that au is some measure on X (cf. [Fal86, 1.1]). Let M(u) be the
set of all u-measurable sets. Then we have

(ap)(0) = a(u(0)) = a0 =0
and, if A; € M(u), ¢ € N, with A; N A; = 0 for i # j, we obtain

o0 o0 o0 [e.e] oo
(am)(|J A) = a <M(U Az-)) —a (Z M(/h)) = S ap(As) = 3 (an)(Ay).
i=1 i=1 i=1 i=1 i=1
Hence ap is some measure on X.
The statement is only proven for simple functions. The adaption to integrable function
can be done in the same way as in the previous proof. Let g : X — [0,00] be some simple
function. We have

/ g(@dap(z) = 3 v (am) (o~ ()

0<y<oo

= > wapu(g'(y)
0<y<oo

=a > yuls (v
0<y<oco

=a/pmmmm.

Lemma A.4. Let £ be a set of disjoint balls (open or closed) in RN with radius equal or
larger then s € (0,00) and B C B(x,r) for all B € £. Then £ is a finite set with #& < (E)N

Proof. Choose [ different balls B; € £ and let w, be the volume of the N-dimensional unit
sphere. We have

O]

DsVwn =Y was™ < > LY (B))

@ |3
=
]

This implies [ < (£ ) and hence #& < (£
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Lemma A.5. Let s > 0 and B(z,r) be an open or closed ball in R™ with s < r. There exists
some family £ of disjoint closed balls with

(i) diam B = 2s for all B € &,

(i) B(z,r) C | ] 5B,
Be&
Gii) #€ < (Z)™,
(iv) for all B(y,s) € €, we have y € B(x,r).

Proof. Set F = {B(y,s)|y € B(z,r)}. With Vitali’s covering theorem [EG92, 1.5.1, Thm 1]
there exists a countable family £ of disjoint balls in F such that

B(xz,r)c | c | 5B

BeF  Be&

Due to s < r, we get B C B(z,2r) for all B € £. With Lemma A.4, we obtain #& <
(&)m. O

s

Lemma A.6. Let A C RN be a closed set with v(A) > 0, where v is some outer measure on
R™. There exists some v € A so that v(B(xz,h)) >0 for all h > 0.

Proof. Assume that there exists some h > 0 so that, for all y € A, we have v(B(y,h)) = 0.
We are able to find a countable set D C A so that A C UJ,cp B(y,h). We have v(4) <
> yepV(B(y,h)) = 0. This is in contradiction, so, for every h > 0, there exists some y € A
with v(B(y, h)) > 0.

Now, for every i € N, we get some z; € A with v(B(x;, %)) > 0. Since A is closed, there exists
some subsequence x; and some x € A so that lim;_,o x; = .

Let h > 0. With ¢ small enough, we obtain v(B(z, h)) > v(B(z;, 1)) > 0. O

Lemma A.7. Let R be an n-dimensional cube in RN . Then
(diam R)" = (v/n)"H"(R).

Proof. Let a be the side length of R. Then diam R = \/na and so we get

H(R) = a" = <diz\1/n%R>n7

which gives the statement. O

Lemma A.8. Let K C R™ be a bounded set and f : K — RN be a Lipschitz function. Then f
has a Lipschitz extension g : R™ — RN with compact support and the same Lipschitz constant.

Remark. Instead of Kirszbraun’s Theorem [Fed69, Thm 2.10.43], we can use some simpler
theorem for the proof [EG92, 3.1.1, Thm 1] and get the same result but with the larger
Lipschitz constant Lip, = Vv/NLip Iz
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Proof. Let Lipy be the Lipschitz constant of f. K is bounded, so there exists some ball B(z, )
with K C B(z,t). We define

f(x) ifzeK,

T:=t+
0 if x € R™\ B(2,T).

d f(z):=
iy, T @) and i) {
Now we show that f : (R™\ B(z,T))UK — R" is Lipschitz continuous with the same Lipschitz
constant as f. We only have to prove this for a € R™ \ B(z,T) and b € K

|f(a) — f(b)| = |f(b)| < Lip#(T —t) < Lipy|a — b|.

By applying Kirszbraun’s Theorem [Fed69, Thm 2.10.43] on f, we obtain a Lipschitz extension
g : R™ — RY with compact support and the Lipschitz constant Lip Iz ]

Lemma A.9. Let (X,T,¢) be a topological Borel measure space where T' is the topology and

¢ 1is the Borel measure. If Q C X is a ¢p-measurable set and if f : Q — [0,00) is a continuous
flx) ifzeq

map, then the function f: X — [0,00), f(z) = is ¢p-measurable on X.
0 ifre X\Q

Proof. The function f is continuous on Q, so f is ¢ L Q-measurable. This implies that f —1(A)
is ¢ L Q-measurable for all open sets A C [0, 00), which is equivalent to f~(A4) N Q being
¢-measurable for all open sets A C [0,00). Now let A C [0, 00) be some open set.

1. Case: 0 ¢ A.
We conclude that f~1(A) = f~1(A) N Q is ¢-measurable.
2. Case: 0 € A.
We have that f— ( )= f" 1({0}) U f1(A\ {0}). Now we get
= (T ANQUITANQ)

( “A)NQ) U (N \ QU (I A\ {0))\ Q).

-X\Q =0

where the RHS is ¢-measurable.
All in all, f~1(A) is ¢-measurable for all open sets A C [0,00), which implies that f is
¢-measurable on X. O

Lemma A.10. Let ¢1 be some outer measure on X1, ¢ beN some outer measure on Xo and
f: X1 — R be a ¢p1-measurable function. Then the function f : X1 x Xo — R, (z1,22) — f(x1)
is (41 X ¢2)-measurable.

Proof. Let U C R be some open set. Then f:l(U ) is ¢1-measurable and hence we get using
Fubini’s theorem [EG92, 1.4, Thm. 1] that f~1(U) = f~1(U) x X3 is (¢1 X ¢2)-measurable,
which proves the lemma. O

Lemma A.11. Fori € {1,2}, let (X;,T;, i, M;) be a separable topological measure spaces
where T; is the topology, w; the measure and M, the set of p;-measurable sets. If p; are Borel
measures on X;, then the product measure p1 X pg is a Borel measure on X1 x Xo with the
usual product topology.
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Proof. Since the pu; X po-measurable sets are a o-algebra, we only have to prove that the
open sets are p X ps-measurable. Let E be some open set in X7 X Xo. We show that E
is a countable union of measurable sets. The set T} x Ty := {M C X; x Xo|3A € T1,3B €
Ty with M = A x B} gives a basis of the product space X; x X3. Hence there exists some
index set I and sets A; x B; € Ty x T so that E = | J;c; A; x B;. Since X1, Xo are separable,
there exist countable bases B1, B of the topologies T1,T>. Hence, for every i € I, we find sets
Ai,j € By and B € Ba, where j, k € N, so that

E:UAZ‘XBZ‘:U(UAZ"]‘) X(UBM): U Aij X Biy.

iel i€l jeN keN el
J,keN

Since the sets Bi,By are countable, the set By x By is countable, which implies that the
last union in the equation above is a countable union. Due to the definition of the product
measure and the fact that the measures pi, us are Borel measures, all sets in By x Bo are
p1 X po-measurable. So F is measurable as a union of measurable sets. O

For an easier verification, we cite Besicovitch’s covering theorem [EG92, 1.5.2, Thm. 2].

Theorem A.12 (Besicovitch’s covering theorem). There ezists a constant Ny, depending only
on N, with the following property: If F is any collection of nondegenerate closed balls in RN
with

sup{diam B|B € F} < o0
and if A is the set of centres of balls in F, then there exists Gi,...,Gn, C F such that each
Gi (1=1,...,Ny) is a countable collection of disjoint balls in F and

AC(VJUB.

=1 BegG;

A.2 Differentiation and Fourier transform on a linear subspace

Let Py € G(N,n) be an n-dimensional linear subspace of RY and f : Py — R be some
function, where R € {R, RN }. In this section, we explain what we mean by differentiating this
function and formulating Taylor’s theorem in this setting. Furthermore, we define the Fourier
transform of f and give some basic properties.

Let ¢ : R* — Py be a fixed isometric isomorphism. We set f : R* — R, f(z) = f(¢(x)) =
(f o 0)().
Definition A.13. Let [ € NU{0}. We say f € C!(Py, R) iff f € C'(R™, R) (I-times continu-
ously differentiable). If [ > 1, we set for all i € {1,...,n}

0if =Difo¢g ' =Di(fod)og
Af =" 0;0;f,
7j=1

Df = (0uf,...,0nf),
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A.2 Differentiation and Fourier transform on a linear subspace

and, if k = (K1, K2, ..., Ky) is a multi-index, we set
O f=07105%...05 f.

Furthermore, we use the following notations for z,y, z € R" and some multi-index

r=(21,...,2y),
x’{:xlfl.x';Q.....wZ"’
K! :Hl!KIQ!""'/‘Qn!,

|k] = K1+ + K,
ly, 2] : ={y +t(z —y)|t € [0,1]}.

Lemma A.14. Let k = (K1,K2,...,kn) be some multi-index with || =1 > 1 and f €
CY(Py,RN). We have

Of=Dfop™" =[D"(fog)og™
where D5 f = (D)™ (Da)"2 ... (D) f.

Proof. 1f |k| = 1, the statement follows directly by definition. We assume that for some [ € N
the statement is true for all multi-indices o with || = [. Now we choose some multi-index
k with |k| = I+ 1. There exists some i € {1,...,n} and some multi-index « with |a| =1 so
that 0" f = 9;0%f. We have

0" f = 0;0“f
= 0i(D*(fog)op™")
= Di(D*(f o ¢)0¢1 op)og!
= DD (fog)os!
— D*(fog)od.
All in all, we get the statement for all . O

Lemma A.15 (Taylor’s theorem). Let f € C**1(Py,RY) and [yo,y] C Py. We have

f(y) =ps(y) + Rs(y — vo),

where

)= 3 o) (0w — o))"

|k|<s

and

1 1
Ry(y — o) := /0 (s D=0 ( D =0 o+ 1y — o) (@ (v — o))" ).

|k|=s+1
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Proof. Let f:= fo¢:R* RN, so f e C*HHR™ RN), and let = := ¢~ (y), zo := ¢~ (o).
With Taylor’s theorem and Lemma A.14, we obtain

f(2) = ps() + Rs(z — x0),

where
1 ~
Ps(@) =Y =  Df(x) (v—=0)"
;8 K! — f—/io ’
=(D*f o¢=1)(yo)
= 3 )6 (o))"
|k|<s )
=:ps(y)
and

1
Rua=a0) = [ s+ 00 =0°( 3 5D o +te = o) —0)")at

|k|=s+1

1
= [na-0( X 50+t — w67 - )"

|k|=s+1
=: Rs(y — wo).
Consequently, we have
F@) = (fod)(@ ™ (v) = f(x) = ps(y) + Rs(y — w0)-
O

Remark A.16 (Transformation from R™ to P). Let ¢ : R — Py C RN be an isometric
isomorphism, Jy(x) := /det(D¢” - D¢) be the Jacobian determinant and let f o ¢ be an
L"-integrable function with [;, |f o ¢|dL™ < co. A consequence of the Area Formula [EG92,
3.3.3, Thm. 2] gives us

f((x))dL™(z) = f(@(x)) Jp(x) AL (x)
R R ——

=1
- [ sew]aerw

o~ {y}
¢ inj. n
= fy)dH" (y).
Py

Lemma A.17 (Partial integration). Letl € N, f € CY(Py,RY) and let ¢ € C°(Py,R). Then
for all multi-indices k with |k| =1

| F@"ely)d () = (=1l IR ().
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Proof. Let f = fo¢ be defined as above and let ¢ : R — R, 2 — ¢(é(z)). With Lemma A.14,
we obtain

(0"9)(d(x)) = ([D"(p 0 p)] 0 ™ ")(¢()) = (D")(x).

Now we get with Remark A.16 and partial integration (¢ has compact support)
: fW)o%e(y)dH" (y) = . f(8(2))(0%¢)(d(x))dL" (z) = . f(@)(D"@)(z)dL" (x)
= (=Dl [ (D) @)@(@)dL™ (@) = (1) [ 0" f(y)p(y)dH" (y).

R™ Py

O

Now we define the Fourier transform for some function f € 7 (Fy), where . (Fy) is the
Schwartz space of rapidly decreasing functions f : Py — C, cf. [Gra08, 2.2.1 The Class of
Schwartz Functions]. We will get the same results as for some function f € . (R").

Definition A.18 (Fourier transform). Let y € Py and f € /(). We set
Jw)=(Tod) o7 W) = [ Jlo@E)e 0L ().

If f: Py — CN with f; € #(P,), i.e., every component of f is a Schwartz function, then we
write f € (P, CY). We define the Fourier transform of some function f € .#(Py,C") by

f:: (f17"'afN)'

Lemma A.19 (Fourier transform and convolution) Let f,g € S (Py) and let the convolution
of f and g be defined by (g * f)(w fP g(w —v) f(v)dH™(v) . Then we have for w € Py

(g % [)(w) = g(w) f(w).

Proof. We compute using Remark A.16, Fubini’s theorem [EG92, 1.4, Thm. 1] and substitu-
tion

/ / (0)dH" (v)e 20 W 2qLn ()
n PO
9(9(2) — G(1) f(G(r))dL™ (r) 2T (W)2qLn(z)

J /R
= [ atols=msee e O san cac )
Joh

($())f ($(r))e > @I DAL (s)dL™ ()

Q

|
=
<

(8))e 207 L (s) [ f((r))e > AL ()
Rn
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Lemma A.20. Let f € S (Py), y € Py, t € R and set fi(y) == % f(¥). We have

and, with t¢~1(y) = ¢~ (ty), we get

W) = [ s (5) e 02 = [ pwe 0 w) = fe),

Lemma A.21. Let f € /(Py) be radial. Then f is radial as well.

Proof. Since ¢ is an isometric isomorphism, f o ¢ is radial. With [Gra08, Cor. 2.2.12], the
Fourier transform f o ¢ is radial and hence f o ¢ o ¢! = f is radial. O

Lemma A.22. Let f € /() be radial. Then Af is radial as well.

Proof. With Lemma A.21, the Fourier transform f is radial. Let z,y € Py C RN with lz| = |yl
We obtain using Lemma A.20

n

Af(x) = 8;0;f(z) = Y (2mio~ (2);)* (=)
j=1

j=1
= (2ri)? |9 (@) f(a) = @mi)*yPF(v) = Af(y).
2
=|z|
With Fourier inversion [Gra08, Thm. 2.2.14.], we conclude that Af is radial. O

A.3 Littlewood Paley theorem
The following Lemma is an exercise from [Gra08, Exercise 5.1.4]

Lemma A.23 (Continuous version of the Littlewood Paley theorem). Let ¢ be an integrable
CH(R™R) function with mean value zero fulfilling

6(2)] + |Vé(z)] < C(1 + |2]) "
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and (using the notation ¢(x) = tinqj(%))

o</0w|@(x)|2f <e< oo

for some fized constant ¢ independent of x. For all ¢ € (1,00), there exists some constant

C = C(n,q,¢) such that, for all f € LY(R™;RYN), we have

0 Ldt\ 2
(A m*ﬂt)

Proof. The proof is analogue to the proof of the Littlewood-Paley theorem [Gra08, Thm,
5.1.2]. We want to apply [Gra08, Thm. 4.6.1, Banach-Valued Singular Integral Opera-
tors] with r = 2, By = RY and By = L?((0,00), ), where A(A) := [, l% (which implies
1712 ooy = o7 LFOP ). For € RY\ {0}, > 0 and a € B, we set K (z)(a) i= 61(a) a
so that K(z) is a bounded linear operator from By to By and, for f € L2(R",RYN), we set

T(f)(w) := (&1 * f)(x) € L*((0,00), ).
At first, we prove that T is a bounded linear operator from L2(R™; By) to L2(R™; By). With

Fubini’s theorem [EG92, 1.4, Thm. 1] and Plancherel’s identity [Gra08, Thm. 2.2.14, (4)], we
obtain for f € L2(R",RY)

T sy = [ [ 160 1 F“
[ e
/ / (@la \v>mm
= [ 1@ [T 1P

< CO)flI72@m:z,)-

Now we prove that K fulfils Hérmander’s condition, that means we have to show for y €
R™\ {0} that

< Ol fllLarrsrry-
Li(R7R)

[ IR - R@)lapds <€ < .
[z[>2]y]
Let |z| > 2|y| and & € [0, 1]. This implies
1
o &yl > lal €yl > 5l

Since ¢ € C1(R™;R), there exists some ¢ € [0,1] with

|pt(z —y) — p(x)] = -

<o (Vb ggll) (A1)
C
<) (A2
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Moreover, we get

|pt(x — y) — ¢u()] <

A

| Q
N

[a—

_|_

We take the geometric mean of A.1 and A.3 and obtain

C 1o\ 20 1o\
r¢t<x—y>—¢t<x>|s(W(H%rm\) ol - 5 (14 5l )

20 1 1 —n—l
|y|z<1+x|) .

tn-‘r% 2t

Now we conclude

1K (z - y) = K (2)ll5, 5,
= sup [llgu( —y) = du(@)]all 20,000

a€R
la|=1

= </0°°‘¢t(x_y)_¢t($)2(?>§ |

[z| 2
Bl STRRES d
- ( |7 ote = - a@PS+ [ |¢t<m—y>—¢t<x>|2t>
2
(A(a2) e Lol —n-11% g *[o 1 2 at
2 _— N R
A R >4 /, il
Izl n+1 2
2 1 2t
(ol [ (2)
0 TN
|z 2m—2 %
—on— 2 dt 1 lz|\ "
< 2n—202n+2 [ 2 4l 2 1Z]
< 2c<ry|ra:\ 2 [l () )

1 e
Cn)|yl2[a| ™72 + C(n)lyll«| ™"

IN

IN
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Finally, we can prove Hormander’s condition

/ IRz — y) - B(@)l|ssda
|z|>2]y|

< Clyf} / 2|} d + Cly| 2] 1dz
j2|>2ly] 2 >2ly|
1 o0 3 o0
< C’|y|2/ r—2dr 4+ Cly| r—2dr
2Jy| 2|y|

1 1
< Clylz|y|"2 + Clylly|~" = C(n).

Using [Gra08, Thm. 4.6.1, Banach-Valued Singular Integral Operators] (p = ¢), for all 1 <
q < 0o, there exists some constant C' = C(n, ¢, ¢) so that, for all f € LY(R",RY), we obtain

oo d 1
H</O M)t*f‘Q:)

= 1T(f)ll a(rr:z2((0,00).)) < Cllflza(re m)-
La(R™R)
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