
On Development, Feasibility, and Limits

of Highly Efficient CPU and GPU Programs
in Several Fields

Fast Parallel SIMDized GPU-accelerated Reed-Solomon Encoding,
Heterogeneous Linpack Benchmark, and Event Reconstruction for the ALICE Experiment

Dissertation

for attaining the PhD degree

of Natural Sciences

submitted to the Faculty for Computer Science and Mathematics

of the Johann Wolfgang Goethe University

in Frankfurt am Main

by

David Rohr

from Mannheim

Frankfurt 2013

(D 30)

accepted by the Faculty for Computer Science and Mathematics of the

Johann Wolfgang Goethe University as a dissertation.

Dean: Prof. Dr. Thorsten Theobald

Expert assessor: Prof. Dr. Volker Lindenstruth
Prof. Dr. Udo Kebschull

Date of the disputation: 23.6.2014

Abstract

On Development, Feasibility, and Limits of
Highly Efficient CPU and GPU Programs in Several Fields

Fast Parallel SIMDized GPU-accelerated Reed-Solomon Encoding,
Heterogeneous Linpack Benchmark, and Event Reconstruction for the ALICE Experiment

With processor clock speeds having stagnated, parallel computing architectures like GPUs have
achieved a breakthrough in recent years. Despite of their shortcomings concerning efficient exe-
cution of serial tasks, their sheer parallel processing power makes them predestined for parallel
applications while the simple construction of their cores makes them unbeatably power efficient.
Unfortunately, old programs cannot profit through simple recompilation, and adaptation usually
requires rethinking and modifying algorithms. Modern clusters are often designed heterogeneously
and offer different processors for different applications. In order not to waste the available com-
pute power, highly efficient programs are mandatory. This thesis is about the development of
fast algorithms and their implementations on modern CPUs and GPUs, about the maximum
achievable efficiency with respect to peak performance and to power consumption respectively,
and about feasibility and limits of programs for CPUs, GPUs, and heterogeneous systems. Three
totally different applications from distinct fields, which were developed in the course of this thesis,
are presented.
The ALICE experiment at the LHC studies heavy-ion collisions at high rates of several hundred Hz,
while every collision produces thousands of particles, whose trajectories must be reconstructed.
For this purpose, ALICE HLT TPC track reconstruction and track merging have been adapted
for GPUs outperforming the fastest available CPUs by about a factor three. Since the beginning
of 2012, the tracker has been running in nonstop operation on 64 nodes of the ALICE HLT pro-
viding full real-time track reconstruction.
The Linpack benchmark employs matrix multiplication (DGEMM) to solve a dense system of
linear equations and is the standard tool for ranking compute clusters. Heterogeneous multi-
GPU-enabled versions of DGEMM and Linpack have been developed supporting CAL, CUDA,
and OpenCL as backend. An elaborate lookahead algorithm hides the serial CPU-bound tasks
of Linpack behind DGEMM execution on the GPU reaching the highest efficiency on GPU-
accelerated clusters. Employing this implementation, the LOEWE-CSC cluster ranked place 22
in the November 2010 Top500 list of the fastest supercomputers, and the Sanam cluster achieved
the second place in the November 2012 Green500 list of the most power efficient supercomput-
ers.
Failure erasure coding enables failure tolerant data storage and is an absolute necessity for
present-day computer infrastructure. The mathematical theory behind the codes involves matrix-
computations in finite fields, which are not natively supported by modern processors and hence
computationally very expensive. This thesis presents a novel scheme for fast encoding matrix
generation and demonstrates fast implementations for the encoding itself, which use exclusively
either integer or logical vector instructions. Depending on certain parameters, they always hit
different hard limits of the hardware: either the maximum attainable memory bandwidth, or the
peak instruction throughput, or the PCI Express bandwidth limit when GPUs or FPGAs are
employed.
The thesis demonstrates that in most cases GPU implementations can be as efficient as their CPU
counterparts with respect to the available peak performance. With respect to costs and power
consumption, they are much more efficient. For this purpose, complex tasks must be split in
serial as well as parallel parts such that multithreaded pipelines and asynchronous DMA transfers
can hide CPU bound tasks ensuring continuous GPU kernel execution. Few cases are identified
where this is not possible due to PCI Express limitations or not reasonable because practical GPU
languages are missing.

1

Table of Contents

Table of Contents 1

I Introduction 9

1 Motivation & Outline 10

2 CPUs 12

2.1 Intel . 12

2.1.1 Nehalem . 12

2.1.2 Westmere & Sandy Bridge . 13

2.2 AMD . 13

2.2.1 Magny-Cours . 13

2.2.2 Interlagos . 14

2.3 Summary . 14

3 GPUs 15

3.1 General GPU Architecture . 15

4 Benchmark Proceeding & Statistics 18

4.1 Conventions & Statistics . 18

4.2 Benchmark Conditions for NVIDIA . 18

4.3 Benchmark Conditions for AMD . 19

II Event Reconstruction for the ALICE Experiment 20

5 Introduction 21

5.1 The ALICE Detector of the LHC Experiment . 21

5.2 The High Level Trigger . 22

5.3 The ALICE HLT TPC Tracker . 22

5.3.1 Geometry . 23

5.3.2 Creating Track Seeds . 23

2 TABLE OF CONTENTS

5.3.3 Fitting Tracks with the Kalman Filter . 24

5.3.4 Initialization & Output . 24

6 TPC Slice Tracking on GPU 25

6.1 The ALICE HLT TPC GPU Tracker . 25

6.2 Porting the Tracker to the Fermi Architecture . 26

6.2.1 Fermi Support & Compiler Bugs . 26

6.2.2 First Comparison . 27

6.2.3 Tuning Parameters . 28

6.2.4 Integration in the HLT Framework . 31

6.3 Online Tracking during the November 2010 Heavy Ion Run 32

6.3.1 Evaluation & Quality Assurance for the Tracking Results 33

6.3.1.1 Verification of Simulated Data . 33

6.3.1.2 Verification of Physics Runs . 33

6.4 Further Optimizations & the Heavy Ion Runs in 2011 and 2012 35

6.4.1 Improving the Cluster Assignment . 35

6.4.1.1 Incorporating the χ2 Value . 35

6.4.1.2 Track Order . 36

6.4.1.3 Binary Comparison . 37

6.4.2 Using the GTX580 . 37

6.4.2.1 Variable Block Size . 37

6.4.3 Multi-Threading the CPU Parts . 38

6.4.4 Improved Scheduling . 39

6.4.4.1 Improved Scheduling Performance 40

6.4.5 Combined GPU/CPU Tracking . 41

6.4.6 Final Performance Analysis . 42

6.4.7 The 2011 Heavy Ion & 2012 Proton-Lead Runs 43

6.4.8 GPU Tracking on non-CUDA Hardware . 43

7 TPC Track Merging on GPU 44

7.1 Review of the Situation . 44

7.2 GPU-based Track Fit . 45

8 Global Tracking across Slice Borders 46

8.1 Limits of the Slice Tracking Approach . 46

8.2 Implementation . 46

8.3 Results . 48

9 Comparison to Offline & Conclusions 49

TABLE OF CONTENTS 3

III Heterogeneous High Performance Linpack Benchmark 54

10 Introduction to Linpack, DGEMM, and LOEWE-CSC 55

10.1 Heterogeneous Compute Clusters . 55

10.2 The LOEWE-CSC Compute-Cluster . 55

10.3 Linpack . 56

10.3.1 High Performance Linpack . 57

10.3.2 Double Precision General Matrix Multiplication 58

11 An Optimized HPL Variant for the LOEWE-CSC 59

11.1 Target Architectures . 59

11.2 CALDGEMM . 59

11.2.1 GPU-based DGEMM . 59

11.2.2 Implementation Details . 61

11.2.3 Combined GPU/CPU DGEMM . 61

11.2.3.1 CPU Affinity . 62

11.2.4 DGEMM Optimizations . 63

11.2.4.1 Kernel Optimization . 63

11.2.4.2 Data Buffer Format . 69

11.2.4.3 Exemplary 8ˆ 8 Kernel . 70

11.2.4.4 Scheduling & GPU/CPU Performance Ratio 72

11.2.4.5 Second & Third Phase . 74

11.2.4.6 Transfer Optimizations . 75

11.2.5 Vectorization & Patched AMD Driver . 78

11.2.5.1 Miscellaneous Optimizations . 79

11.2.6 Summary & Results . 81

11.3 GPU-based HPL . 81

11.3.1 Integrating CALDGEMM . 81

11.3.2 Optimizing HPL . 82

11.3.2.1 Alignment . 82

11.3.3 Multi-Node HPL . 83

11.3.4 Lookahead . 84

11.3.4.1 Lookahead 1 . 85

11.3.4.2 Lookahead 2 . 88

11.3.4.3 Performance Analysis . 91

11.3.5 Miscellaneous . 94

11.3.5.1 Rescheduling Workload . 94

11.3.5.2 MPI Threading Support . 94

11.4 DGEMM & Linpack Performance . 95

4 TABLE OF CONTENTS

11.5 Torture Tests . 96

12 Optimizations for other architectures 97

12.1 CPU-only HPL . 97

12.2 Real-Time Operating Systems . 97

12.2.1 The Chaos Operating System . 98

12.2.2 SUSE Linux Enterprise Server with Real-Time Extensions 98

12.3 CPU Scaling . 99

12.4 Heterogeneous Nodes . 99

12.4.1 Heterogeneous Solver for Triangular Matrices 100

12.4.2 Heterogeneous HPL Performance . 104

12.5 Zero-Copy DMA Transfer on Intel CPUs . 104

12.5.1 Kernel DMA Performance . 105

12.5.2 Alternative DMA Transfer Approach . 105

12.5.3 DMA Performance Comparison . 106

12.6 Dual-GPU & Multi-GPU . 106

12.6.1 Dual-GPU DGEMM Implementation . 106

12.6.1.1 CPU & GPU Utilization . 107

12.6.1.2 Performance . 108

12.6.2 Scaling to Multi-GPU DGEMM . 109

12.6.2.1 Memory & PCI Express Throughput 109

12.6.2.2 CPU Utilization . 110

12.6.2.3 Other Multi-GPU Improvements 111

12.6.3 Multi-GPU DGEMM Results . 112

12.6.4 Multi-GPU HPL . 113

12.6.4.1 GPU-based Factorization . 114

12.6.4.2 GotoBLAS Tuning . 114

12.6.4.3 Enabling Lookahead . 114

12.7 Energy Efficiency . 116

12.7.1 Multi-GPU Considerations . 116

12.7.2 First Results . 116

12.7.3 Improvements by more efficient Hardware 117

12.8 AMD 6000 Series GPU . 118

12.8.1 Temperature & Power . 118

12.8.2 DMA Performance . 119

12.8.3 Workaround for the DMA Issue . 120

12.8.3.1 Improving GPU to Host Transfer 120

12.8.3.2 Improving Host to GPU Transfer 121

12.8.4 6000 Series Multi-GPU DGEMM & HPL Performance 122

TABLE OF CONTENTS 5

12.9 CALDGEMM for Interlagos/Sandy Bridge and without GotoBLAS 125

12.10 Performance Limits & Exceeding Peak Performance 127

12.11 Systems with a slow CPU . 127

12.12 Overview of CALDGEMM DMA Paths . 128

12.13 Single Precision General Matrix Multiplication . 130

13 CALDGEMM Support for Arbitrary GPU Frameworks 132

13.1 Motivation . 132

13.2 A DMA Framework with better Scalability . 134

14 The Sanam Cluster & the Lattice-QCD Cluster at GSI 137

14.1 AMD 7000 Series (Tahiti) . 137

14.2 Putting the Pieces together . 138

14.2.1 Preliminary Improvements . 139

14.2.2 Early Lookahead . 140

14.2.3 Choosing a Platform . 141

14.2.4 Multi-Node, Fine-Tuning, and Results . 143

14.2.4.1 Grouped DMA Thread Mode . 143

14.2.4.2 Lookahead 2b . 143

14.2.4.3 Power Efficiency . 144

14.2.5 The November 2012 Top500 & Green500 Lists 146

15 Summary & Perspective for the Future 148

15.1 Summary . 148

15.2 Perspective for the Future . 149

IV Optimized High Performance Redundant Data Storage 150

16 Theory 151

16.1 Coding Theory . 151

16.2 Reed-Solomon Code . 153

16.3 Integer Calculations & Codes on finite Rings . 154

16.3.1 Deriving Codes from Algebraic Number Fields 154

16.3.1.1 Integrality . 154

16.3.1.2 An MDS-Code on Residue Class Rings 155

16.3.1.3 Codes on Z{pbZ (Integral Codes) 156

16.3.1.4 The general Case . 157

16.3.2 Deriving Codes from Finite Field MDS-Codes 158

16.3.3 Summary . 159

6 TABLE OF CONTENTS

16.4 Cauchy-Reed-Solomon Code . 160

16.4.1 XOR-only Codes . 160

16.4.2 Add -only Codes . 161

16.5 Variants . 161

16.5.1 Encoding by Matrix-Matrix Multiplication 161

16.5.2 Strassen Matrix-Matrix Multiplication . 162

16.5.3 Parallel Codes . 163

16.6 Code Overview . 163

16.7 Computational Complexity . 164

16.8 Lower Bound for l . 164

16.9 Partial Update-Codes (Differential Codes) . 165

17 Implementation 166

17.1 Metrics . 166

17.2 Matrix Multiplication based Codes . 167

17.2.1 IGEMM . 167

17.2.2 BGEMM . 167

17.3 Automorphic Assembly Codes . 168

17.3.1 XOR-only Encoding . 170

17.3.2 Blocking & Cache Usage . 170

17.3.2.1 Register Blocking . 170

17.3.2.2 L1 Blocking . 171

17.3.2.3 L1 Instruction Cache Blocking . 171

17.3.2.4 L2 Blocking . 172

17.3.2.5 L1 Blocking, Second View . 172

17.3.3 Code Optimizations . 172

17.3.3.1 Prefetching . 172

17.3.3.2 Ternary Instructions . 173

17.3.3.3 Register Selection . 173

17.3.4 Reducing Computational Complexity . 174

17.3.4.1 Local Matrix Optimizations . 175

17.3.4.2 Global Matrix Optimizations . 176

17.3.4.3 Eliminating Instructions . 177

17.3.5 Improved Matrix Size (Smaller l Dimension) 178

17.3.6 Large Matrices . 179

17.3.6.1 Assembling Large Codes . 179

17.3.6.2 L2 Instruction Blocking . 180

17.3.7 Exploiting the Strassen Algorithm . 180

17.3.8 Small Matrices . 181

TABLE OF CONTENTS 7

17.3.9 Complex Code Example . 181

17.3.10 Analysis . 183

17.3.11 Variants . 184

17.3.11.1 Add -only Encoding . 184

17.3.11.2 A 256-bit XOR-only Code with AVX 184

17.3.12 Comparison . 185

17.4 Multi-Threading . 186

17.5 Update-Codes . 187

17.6 Dependency on k . 187

18 Encoding with GPU & FPGA Accelerators 188

18.1 Matrix Multiplication based Codes for GPUs . 188

18.2 XOR-only Encoding with OpenCL . 188

18.3 An FPGA Implementation . 189

18.4 Performance . 190

19 Results 191

19.1 Achieved Results . 191

19.2 Conclusions . 194

V Synthetic Benchmarks & Real World Applications 196

20 Achievable CPU & GPU Performance 197

20.1 Overview of Synthetic and Application Benchmarks 197

20.2 Summary . 200

20.3 Conclusions & Comments . 200

Appendix 203

A GPU Architectures in Detail 203

A.1 NVIDIA . 203

A.1.1 GeForce . 203

A.1.2 Fermi . 203

A.2 AMD . 203

A.2.1 Cypress . 203

A.2.2 Cayman (Northern Islands) . 204

A.2.3 Tahiti (Southern Islands/Graphics Core Next) 204

B AMD Intermediate Language/ISA Assembler 205

8 TABLE OF CONTENTS

B.1 IL . 205

B.2 ISA . 206

C Specifications & Definitions 208

C.1 MPI Threading . 208

C.2 Matrix Representations . 208

C.3 Huge Pages . 209

C.4 LU -Factorization . 209

C.5 Interleaved Memory . 209

C.6 Field Programmable Gate Arrays . 210

D TPC Tracking Model 211

E CPU Tracker Performance Evaluation 212

F Explicit Encoding Examples 213

F.1 Code Examples . 213

F.2 Generation Encoding Matrices . 214

F.2.1 Codes on Z{pbZ . 214

F.2.2 XORonly Codes for arbitrary l . 215

F.3 C Example Code for QEnc Blocking Levels . 216

G CALDGEMM & HPL-GPU Settings 217

H Test & Development Systems 221

I Source Codes 222

List of Figures 223

List of Tables 230

List of Listings 232

Index 233

Glossary 235

Acknowledgements 237

Bibliography 238

Zusammenfassung 245

Curriculum Vitae 255

9

Part I

Introduction

Source of Image: Intel Press Room Website.

10

Chapter 1

Motivation & Outline

During the last decades, compute performance of microchips has been rapidly and steadily in-
creasing. Moore’s law states that diminution of manufacturing processes permits a doubling of
transistor count and performance every 18 months. It is physically evident that this exponential
growth must hit a limit in the near future. Accordingly, the increase of processor clock speeds,
which had followed Moore’s prediction for quite some time, has already begun to stagnate in re-
cent years because the heat density has reached an unmanageable level. Hardware manufacturers
have accomplished to find other ways of improving their chips and keep on track with Moore’s
law: Advanced designs significantly increase the work performed per clock cycle but – obviously –
cannot go beyond several orders of magnitude. Therefore, to overcome the serial computing limit,
broader chip designs perform various tasks in parallel.

There exist two traditional concepts for parallel computation: vectorization and parallelization.
Vectorization means the processor executes the same instruction not on a single data element
but on a vector (SIMD – Single Instruction Multiple Data). It was popular in the age of early
supercomputers, has been almost completely replaced by parallelization in the meantime, and has
experienced a revival recently. Parallelization stands for parallel execution of multiple instruction
streams on different datasets (MIMD – Multiple Instruction Multiple Data). Conventionally,
independent compute nodes connected by a network or multiple processors in one node perform
parallel computation. This has changed in the way that nowadays processors contain multiple
cores. Each core resembles a traditional processor and processes an independent instruction
stream. While it is often relatively easy and needs little effort to adapt a program to use multiple
cores, utilization of vector capabilities usually requires refactoring large parts of the code and
enhancing the implementation of algorithms or even algorithms themselves.

In order to provide competitive compute power, every state-of-the-art processor, irrespective of
whether the system is part of a compute cluster or an autonomous computer, must consist of
multiple cores, which all support vector extensions. Besides the usual processors (CPUs), there
are other hardware designs which excel under this perspective, among them special accelerators
like the Cell processor, the ClearSpeed chip used e. g. in the Tsubame cluster, but also off-the-shelf
graphics cards (GPUs). Graphics processing, where the same task must be performed indepen-
dently for each pixel, is a prime example for parallel computing and GPUs have been optimized
particularly for this purpose. Today, the former fixed function units of GPUs have been replaced
by flexible programmable shaders, which can be used for general-purpose programming. This the-
sis covers GPUs and CPUs (and presents one FPGA implementation), where CPUs are necessary
for data transfer as well as pre- and postprocessing, provide non-negligible compute performance
themselves, and are present in an accelerator-enabled system anyway.

There are several APIs for programming GPUs, all providing similar interfaces, mostly suppor-
ting C, C++, or even GPU assembler code. For different tasks in this thesis, different APIs are
employed, whichever is suited best. However, the subject of this thesis is not a comparison of
GPU programming models. Instead, the focus is put on exploiting the potential of GPUs and

CHAPTER 1. MOTIVATION & OUTLINE 11

modern CPUs for different problems. While it is comparatively easy to distribute a task among
the different multiprocessors on a GPU (which correspond to the CPU cores), usage of the vector
capabilities can require as much or even more effort as for the CPU. It depends greatly on the
field of application how much time and effort are actually necessary but also how well the GPU
can be utilized at all. The problems analyzed in this thesis can be categorized as follows:

• Synthetic Benchmarks: Measurements of a quantity directly related to a processor char-
acteristic, e. g. memory bandwidth. Certain low-level problems which can be mapped per-
fectly to the hardware fall in this category as well. One example is matrix-matrix mul-
tiplication, which requires exclusively alternating additions and multiplications perfectly
matching the processor capabilities. Such benchmarks are supposed to achieve close to
peak performance and indicate problems in the system if not. In general, they can verify
whether a processor delivers its specified performance under optimal conditions.

• Semi-Synthetic Benchmarks: Tasks which may be complex as a whole but whose compu-
tational hot spot belongs to the above category. An example is matrix factorization, which is
based on matrix-matrix multiplication. Such benchmarks consist of a synthetic task achiev-
ing peak performance and making up most of the runtime and other tasks, which cannot be
processed that efficiently. The main objective is to hide the execution time of those tasks
behind the synthetic task, for instance by pipelining. Problems in this category require more
optimization effort but can achieve almost the same performance as synthetic problems.

• Application Benchmarks: The most general case. A problem in this category can con-
sist of various subtasks, all of which contribute to the runtime differently; perhaps some
of them cannot be implemented efficiently, and each of them requires optimizations on its
own, which does not mean that they are independent, though.

Loosely speaking, this thesis presents several optimized GPU and CPU implementations for dif-
ferent problems that cover all of the above categories and analyzes their efficiency. The problems
belong to the following fields of applications:

• Experiments in high energy physics pose large challenges for many sciences, among
them physics, electronics, engineering, and also computer science. The latter is responsible
for the analysis of the massive amount of data generated by the detectors. Part II of this
thesis presents a GPU program for reconstructing particle trajectories in real-time. The
developed implementation is used in ALICE, which is one of the four major experiments of
the Large Hadron Collider at CERN in Geneva.

• Benchmarking modern heterogeneous compute clusters is a complex task. The
available performance for real applications cannot simply be calculated by accumulating the
peak performances of all available processors because many other factors such as memory
or network are important. Linpack is the most popular benchmark for ranking supercom-
puters. To obtain good results, it is usually optimized for each particular cluster. With the
emergence of heterogeneous clusters employing GPUs or other hardware accelerators, the
tuning effort has even increased. Part III is about an optimized Linpack implementation
for AMD GPUs, especially for the LOEWE-CSC cluster and the Sanam cluster.

• Failure erasure coding is a necessity for reliable data storage. Encoding that toler-
ates the loss of multiple hard disks or servers cannot be realized with simple parity and is
computationally very expensive. Part IV presents various algorithms and optimized imple-
mentations, especially a new approach for creating codes over residue class rings, and a new
general implementation of codes based on matrix multiplication, which is only limited by
either peak memory bandwidth or maximum instruction throughput of the hardware.

The rest of this introductory part of the thesis, complemented by Appendices A, C, E, and H, in-
troduces the hardware, explains the boundary conditions for the benchmarks, and provides the ba-
sis to comprehend all optimizations. The following parts deal with the above fields of application
one by one. In the end, Part V compares the achieved results with each other, between CPU and
GPU, and in relation to the theoretical peak performance arising from the hardware specifications.

12

Chapter 2

CPUs

For an in-depth understanding of the optimizations applied later, fundamental knowledge about
the hardware is required. This chapter gives a brief introduction to the employed CPUs and their
features while the next chapter covers the GPUs.

2.1 Intel

2.1.1 Nehalem

Intel introduced the quad-core Nehalem architecture in November 2008. It is the first Intel CPU
with integrated memory controller.1 A triple-channel memory interface provides an improved
memory bandwidth compared to traditional dual-channel interfaces.

In contrast to the former Intel Core2 quad-core CPUs, which are built by internally connecting
two dual-core CPU dies2 in one package, the Nehalem processors are native quad-cores. The
Hyperthreading feature makes all physical CPU cores available as two virtual CPU cores to the
operating system. Two virtual cores share a common ALU3 while registers and control logic are
present twice. When one virtual core waits for data from memory, the other one can use the ALU.
This can help to reduce latencies, especially for memory-bound applications. Since one virtual
core can already use the ALU to the full extent, the CPU’s peak performance is not increased.
Indeed, scheduling an additional virtual core can even have a negative effect. Hence, the benefit
of Hyperthreading depends greatly on the application. For instance, the Linpack benchmark
presented in Part III achieves close to peak performance and is faster with Hyperthreading
deactivated. The ALICE TPC tracker in Part II performs mostly random memory access and
benefits from Hyperthreading. In [Roh 10 I, 9.1.2], it is shown that the tracker performance
scales almost linearly with the number of Nehalem cores used, up to exactly half the number of
virtual cores.4 Using all virtual cores improves the performance, but not by a factor of two.

The Nehalem generation supports the SSE5 vector instructions6 in revision 4.2. SSE provides
integer and floating point instructions for vectors of four 32-bit or two 64-bit values. It does
not specify an FMA7 instruction. However, as all other CPUs presented here, the Nehalem can
process additions and multiplications in parallel, as long as they are independent. Thus, it can
do at maximum four double precision or eight single precision calculations per cycle.

1 AMD integrated the memory controller into the CPU with the introduction of the Opteron CPU years before.
2 A die is a raw unpackaged semiconductor chip.
3 Arithmetical Logical Unit.
4 The OS scheduler ensures that only one virtual core of each physical core is used in this situation.
5 Streaming SIMD Extensions (SIMD stands for Single Instruction Multiple Data).
6 See [Kre 09] for details on vectorization.
7 Fused-Multiply-Add is widely used in matrix operations.

CHAPTER 2. CPUS 13

2.1.2 Westmere & Sandy Bridge

Westmere is a die-shrink of Nehalem. It comes in quad- and hexa-core variants.8 Some new
special instructions primarily for cryptographic applications are supported. However, they are
not relevant for this thesis.

Sandy Bridge is the successor of Nehalem and Westmere. The most important change is the
increase of vector size by a factor of two. The new vector extension is called AVX9 instead
of SSE. FMA3 and FMA4 are extensions upon AVX using the VEX instruction coding introduced
with AVX. The consumer grade Sandy Bridge is restricted to two memory channels offering less
bandwidth than Nehalem, the server grade CPU has four memory channels. The server-grade
versions of Intel CPUs are called Xeon.

2.2 AMD

2.2.1 Magny-Cours

The Magny-Cours processor by AMD is available in an eight-core and a twelve-core variant.
Almost exclusively the twelve-core model is considered throughout this thesis. Internally, the
twelve-core Magny-Cours consists of two six-core dies connected via HyperTransport (HT).10
Each die provides a dual-channel memory interface. Systems with two Magny-Cours CPUs thus
provide 24 cores on four dies with eight memory channels (Fig. 2.1 visualizes the situation). This
is the most complicated NUMA11 architecture used in this thesis.

Memory
Channels 0 / 1

Memory
Channels 2 / 3

0 1 2

3 4 5

6 7 8

9 10 11

Socket 0

Die 0

Die 1

Memory
Channels 4 / 5

Memory
Channels 6 / 7

Socket 1

Die 2

Die 3

Chipset
0

Chipset
1

18 19 20

21 22 23

12 13 14

15 16 17

PCIe Slots
0 / 1

PCIe Slots
2 / 3

HT Links
x8:
x16:

Figure 2.1: Block Diagram of Dual Socket Magny-Cours CPU with NUMA

For a program running on one core, there are three different areas in the memory hierarchy:12

• Same Die: The memory connected to the memory controller of the die where a program
is executed.

• Same Socket: The memory connected to the second die on the same Magny-Cours CPU,
thus connected via HyperTransport.

• Other Socket12: The memory connected to one of the two dies of the second Magny-Cours
CPU on the other socket (connected via HyperTransport as well, but farther away).

8 There is an octo-core version of Westmere for multi-socket servers.
9 Advanced Vector Instructions.
10 AMD puts two six-core dies in one package – in the same way as Intel did for the quad-core Core2 processors.
11 Non Uniform Memory Architecture.
12 In fact, there are four categories in the memory hierarchy since within the “Other Socket” category one can distinguish

the two dies, which are connected by different links. However, Fig. 2.2a reveals that the width of the HyperTransport
link is not important – at least not for a single thread.

14 2.3. SUMMARY

2.2.2 Interlagos

Interlagos belongs to the Bulldozer family, which is the successor of Magny-Cours. It has up
to sixteen cores. Two cores are grouped to a module each. The AVX extension and FMA4 are
supported, but only one core per module can access them at a time and execute only one AVX
instruction per cycle. Hence, the peak performance per core is identical to Magny-Cours.13

2.3 Summary

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

Core 0 Core 6 Core 12 Core 18

Ba
nd

wi
dt

h
[G

B/
s]

Memory Address [GB]

(a) AMD Magny Cours [IX]

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

Core 0 Core 8

Ba
nd

wi
dt

h
[G

B/
s]

Memory Address [GB]

(b) Intel Sandy Bridge [VI]

Figure 2.2: Single Threaded NUMA Memory Performance
(Memory Read Bandwidth versus Memory Address)

The actual location of data in memory has a great influence on memory bandwidth – for both
CPUs and hardware accelerators connected via PCI Express (PCIe) [Dre 07].15 Intel CPUs show a
smaller dependency than AMD CPUs.16 Synthetic measurements in Fig. 2.2 show that the AMD
system has three performance levels while the Intel system has only two. They demonstrate
Intel’s superior per-core memory bandwidth due to direct access to three memory channels. It is
clearly visible which memory address is connected by which CPU die.

As a summary, Table 2.3 gives an overview of the characteristics of the CPUs mentioned.

CPU Cores Frequency Hyper- Multi-Die Flops/Cycle17 Memory
rGHzs threading Package (Single/Double) Channels

Nehalem 4 – 6 2.2 – 4.0 Yes No 4/8 3
Sandy Bridge 4 – 8 3.3 – 3.7 Yes No 8/16 2/4
Magny-Cours 12 2.1 – 2.3 No Yes 4/8 4
Interlagos 16 2.1 – 2.6 Special Yes 4/813 4

Table 2.3: Overview of the CPUs used throughout this Thesis

13 Interlagos has an FMA4 peak performance in double precision of 8 Flop{Cycle per core as long as only half of the cores
(one per module) are used, otherwise it is only 4 Flop{Cycle.

14 The author would like to thank Matthias Kretz for providing the synthetic benchmark results. The plots show the
single-thread memory read throughput. The bandwidth test is run on different cores corresponding to different dies.
On the AMD system, CPU 0 belongs to die 0, CPU 6 to die 1, and so on. The Intel system has only two dies. (For
reference: the bandwidth of all cores on one die is identical.)

15 On Magny-Cours, Interlagos, and Nehalem, the PCI Express interface is implemented in the chipset which is con-
nected via HyperTransport (or the Intel pendant QPI – Quick Path Interconnect) to only one of the CPUs. On
Sandy Bridge the PCI Express interface is integrated in the processor. In both cases, a PCI Express transfer to
memory on the other CPU has to pass through the CPU which connects the PCI Express hardware.

16 Fig. 11.4 in Section 11.2.3.1 shows the impact of NUMA on the performance of an application on an AMD system.
Fig. 12.13 shows that the effect is weaker on Intel CPUs.

17 Only one CPU core is considered here. Two numbers for double and single precision are given.

15

Chapter 3

GPUs

Some years ago, the increase in CPU clock speed began to stagnate while new processors started
to excel at SIMD and multi-core capabilities. A different, originally non-general-purpose, and
very parallel chip design had been used in Graphics Processing Units (GPUs) for quite some
time. Graphics processor manufacturers recognized the potential of GPUs for HPC1 applica-
tions and have been steadily adapting their chips for usage in compute clusters. They started
with support for the C programming language and have recently begun to offer ECC2 memory
and C++ support. This makes GPUs suitable for general-purpose programming (GPGPU).

There are several frameworks available for GPU programming. CUDA3, OpenCL4, and Di-
rectCompute are the most popular general-purpose frameworks. The CAL5 framework is still
used for low-level programming while AMD has discontinued its Stream framework based on
Brook+ [Adv 09, §2]. New approaches like C++ AMP [MS], OpenACC, and HMPP have poten-
tial to simplify GPU programming and Intel presents a different paradigm with the MIC6 [Int 10].

Typically, a GPU has some fixed function units, e. g. for rasterization, and many programmable
shaders (ALUs). Recently, the shaders have become more and more important as well as highly
flexible. Many tasks formerly performed by fixed function units can be processed by shaders in
software today.7 Fixed function units do not play a significant role in HPC but shaders with
their highly parallel architecture can bring optimized code to yet unknown performance levels.

This section gives a brief introduction to a generalized GPU chip and all features available on
today’s hardware. Of course, not every feature is supported by each of the real GPUs. The GPUs
used for this thesis are described in Appendix A by specializing the generalized design presented
here. Since only the shaders (ALUs) are relevant for HPC, fixed function units are omitted.

3.1 General GPU Architecture

Fig. 3.1 shows a scheme of an abstract GPU. A typical GPU combines a graphics processor
and a certain amount of global memory on one board. (There are GPUs employing two graphics
processors, but then both processors are equipped with their own global memory. Hence, these so
called dual-GPUs can be considered just as two distinct GPU boards.) The graphics processor
1 High Performance Computing.
2 Error Correction Code.
3 Compute Unified Device Architecture was the first framework for general-purpose programming. It is currently

restricted to NVIDIA as single vendor and allows programming in C and C++.
4 OpenCL is an open industry standard adopted for a huge variety of compute devices. This flexibility makes low-level

optimization more difficult than with CUDA, which is closer to the hardware. Still, OpenCL resembles CUDA very
much. At the moment, it supports only plain C, but recently AMD started to offer a C++ extension.

5 Compute Abstraction Layer allows writing applications in GPU assembler on AMD hardware.
6 Many Integrated Cores emerged from the Larrabee, which was discontinued. It can be programmed in C++ with

vector-intrinsics. A different name for the MIC is Xeon Phi.
7 In fact, Intel even tried to perform almost all tasks in software for the canceled Larrabee GPU [Int 08].

16 3.1. GENERAL GPU ARCHITECTURE

consists of m independent multiprocessors.8,9 Each multiprocessor has n arithmetical logical
units but only one instruction decoder. This means that all ALUs must execute the same common
instruction.10 Each multiprocessor can execute a large number of threads (also called work-
items), which may exceed the number of ALUs allowing the scheduler to hide memory latencies.
Such a group of threads running on one multiprocessor is called a block (or a work-group).
The blocks are divided into groups of w threads each, which are called warps (or wavefronts).
These warps build the basis for the GPU scheduler. Each cycle the scheduler takes threads out
of one warp that are ready to execute and dispatches them to the ALUs or the memory fetch
units. Typical warp sizes are w “ 32 for NVIDIA and w “ 64 for AMD.

Graphics Processor GDDR-Memory

Multiprocessor 1

Multiprocessor 2

Multiprocessor m

......

Instruction
Decoder

Shared
Memory

ALU 1

ALU 2

ALU 3

ALU n

......

Constant
Cache

Texture
Cache

GPU Board

L1 Cache

L1 Cache

L1 Cache

L1 Cache

Register
Pool

Figure 3.1: A generalized GPU Design11

It must be noted that all threads within a warp must execute one identical instruction. If
different threads in one warp take different branches in the code, thus decoding different instruc-
tions, the execution is serialized. This is called warp-serialization. On some GPUs there is
one exclusion to this: Very-Long-Instruction-Words (VLIW): k shaders are grouped into
a k-dimensional (k-D) VLIW shader and k different (small) instructions are encapsulated into
one (large) VLIW for the k-D shader. These k instructions are executed in parallel, even though
they are not identical.12 In other words, all VLIW shaders must execute the same common k in-
structions. They are inefficient if there are not k instructions executable in parallel.

A program executed on a GPU (or the sources for the GPU programm respectively) is called a
kernel. It is executed in a grid of blocks. Each thread in the grid executes the same kernel
with threads in one block running on one multiprocessor. The number of blocks may exceed the
multiprocessor count. Different blocks are executed on different or on the same multiprocessor –
8 Other names for multiprocessors are CUs (AMD Graphics Core Next), CUDA-Cores (NVIDIA Fermi), and SIMDs

(AMD Cypress, Cayman, and Tahiti).
9 Naturally, there are one or multiple memory controllers on the chip, each responsible for a group of multiprocessors.

However, for the programmer it does not make a difference for two reasons: first, the multiprocessors address the
memory transparently; second, there is no control over which part of the program runs on which multiprocessor.

10 Due to the single instruction decoder, the multiprocessor of a GPU resembles very much a vector processor. However,
it does not necessarily operate on vectors, but the data can be scattered in memory.

11 DDR stands for Double Data Rate and GDDR is optimized for graphics cards.
12 VLIWs are included in the OpenCL standard. If not supported by the hardware, a VLIW can easily be simulated

by k sequential scalar instructions.

CHAPTER 3. GPUS 17

sequentially or even concurrently if enough resources are available. Each multiprocessor offers
a register pool13 and an amount of shared memory (or LDS)14, which is shared among all
threads within one block. All threads have a compile-time determined register requirement and
each block has predefined shared memory requirements. This restricts the number of blocks a
multiprocessor can execute simultaneously and it restricts the number of threads per block as well.
Newer GPUs can partition their set of multiprocessors for executing multiple kernels in parallel.

The kernels are started by the host but executed asynchronously. GPUs usually have DMA15

engines that can handle DMA transfers independent of kernel execution. Thus, execution of host
code, of GPU code, and DMA transfers can overlap. The host memory for the DMA transfer must
be page locked.16 Direct access to this page locked host memory can be given to the GPU kernel.
This feature is called Zero-Copy. In the other way around, GPU memory can be mapped into
the virtual address space of host applications (also called Zero-Copy).

Each GPU has at least two different caches: A constant data cache17 and a texture cache, which is
read-only, optimized for two- or three-dimensional access patterns, and can perform some simple
on-the-fly data format conversions. Some GPUs offer general-purpose L1 and L2 caches. Each
thread maintains a local set of variables, which are stored either in registers or in private mem-
ory.18 As private memory is not on chip, in contrast to shared memory, access to it is very slow.
Therefore, if no L1 cache is present, usage of private memory should be avoided wherever possible.
For fast access to both shared and global memory, several vendor specific coalescing rules must
be obeyed, as presented e. g. in [Roh 10 I, 3.7] or [NVI 11, F.4.2/F.4.3] for NVIDIA hardware.

Most GPUs are available in a consumer-grade and a professional-grade version, where the latter
one is particularly optimized for the HPC market, e. g. by offering more memory, ECC support,
better double precision support, or special cooling that is optimized for rack-mount servers.

Appendix A lists the GPU architectures used within this thesis in detail. Fig. 3.2 gives an
overview how GPU and CPU performance have evolved.

 100

 1000

 2007 2008 2009 2010 2011 2012 2013

Pe
ak

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

Year

3870

4890

5870 6970
7970

AMD GPU

4890

5870
6970

7970

C870

C1060
M2070

M2090

 K20x
NVIDIA GPU

C1060

M2070
M2090

 K20x

8800
9800

GTX280 GTX285

GTX480
GTX580

GTX680

Titan

GTX280
GTX285

GTX480
GTX580

GTX680

Titan

Wolfdale

Harpertown Nehalem

Westmere

Sandy-Bridge

Intel CPU

Wolfdale

Harpertown Nehalem

Westmere

Sandy-Bridge

Interlagos
Magny-Cours

Istanbul

Barcelona

AMD CPU

Interlagos
Magny-Cours

Istanbul

Barcelona

5970 6990

7990

5970
6990

7990

S10000

S10000 Xeon Phi 7120

Xeon Phi 7120
GTX295

GTX590

GTX690

GTX295

GTX590

GTX690

Single Precision
Double Precision
Dual GPU

Figure 3.2: GPU and CPU Performance Evolution

13 Registers are allocated dynamically to all the threads currently executed on the multiprocessor.
14 In OpenCL, shared memory is called local memory, which conflicts with the NVIDIA notation. Therefore, in the

following it is denoted exclusively by shared memory. LDS stands for Local Data Storage.
15 Direct Memory Access.
16 For optimal performance, features as (speculative) write-combining, uncacheable memory, or GPU-registered memory

can be used.
17 A segment of usually up to 64 KB of constant global memory can be cached in constant memory.
18 It is a distinct part of global memory for every thread. Private memory is called local memory in CUDA terminology,

which conflicts with the OpenCL notation.

18

Chapter 4

Benchmark Proceeding & Statistics

4.1 Conventions & Statistics

In literature and vendor specifications depending on the field of application, SI prefixes such as
“kilo”, “mega”, and “giga” are used inconsistently, e. g. giga can mean either 109 or 230, which
differs by a factor 1.0243 « 1.0737. In this thesis, all prefixes denote exclusively powers of ten,
i. e. kilo means 103, mega means 106, giga means 109 and terra means 1012. There is one single
exception: For memory sizes (not memory bandwidths) it means powers of two.

Appendix H gives an overview of all nodes used for benchmarks throughout this thesis. The nodes
are indexed by Latin numbers. Latin numbers in square brackets at the end of performance
plot captions refer to the test-node the benchmarks were taken on (e. g. Fig. 4.1a is based on
measurements taken on node [I]). It should be kept in mind that even benchmarks taken on the
same node at different times are not necessarily comparable, e. g. due to different software versions.
Thus, if not explicitly stated differently, only the values inside one plot but not between plots
can be compared. Figures showing a comparison of different hardware refer to all participating
nodes in the figure caption. It will be clear from the context which dataset refers to which node.

The following sections demonstrate that usually the deviation of GPU kernel execution time is
so small that with relatively few runs it is possible to force the statistical error to an insignificant
magnitude. Throughout the thesis, the number of benchmark repetitions is chosen such that the
collected statistics suffice for a relative statistical error (relative Root Mean Square (RMS))
below 0.2%. In most cases, the error is negligible and error bars are omitted for an easier in-
spection. Since the reference clocks set by hardware vendors on different mainboards usually
differ by this order of magnitude, even though the installed hardware components are identical
in construction, a higher accuracy is unnecessary.

4.2 Benchmark Conditions for NVIDIA

In [Roh 10 I, 5.6], the statistical distributions of the execution times of NVIDIA GTX285 GPU
kernels and multi-threaded CPU programs are analyzed. They are more or less Gaussian dis-
tributed and the Root Mean Square is a good model for estimating the deviation from the average
of multiple measurements with reasonable effort. The exact conclusions are the following:

• The kernel execution time follows almost entirely a Gaussian distribution with the error so
small that usually already five runs give sufficient statistics to reach the 0.2 % relative RMS
limit (e. g. for the kernel employed in Fig. 4.1).

• The total execution time of a mainly GPU-based program with many kernel invocations is
Gaussian distributed, as long as the CPU code is pinned to the CPU core closest to the

CHAPTER 4. BENCHMARK PROCEEDING & STATISTICS 19

GPU and the FIFO scheduler is used. The RMS is generally a bit bigger than for the kernel
only (see Fig. 4.2), but still few runs are sufficient.

• Execution times of single-threaded CPU-bound programs are also Gaussian distributed, as
long as the thread is pinned to one core and the real-time scheduler is used.

• Without the FIFO scheduler or CPU pinning, dirt-effects appear in the distribution. In
this case, there is one large Gaussian distributed peak and multiple other (non-Gaussian)
peaks, some order of magnitudes smaller and possibly far away from the primary peak.

• The RMS for multi-threaded CPU tasks is generally larger compared to single-threaded or
GPU programs. Scheduling plays an important role. It requires 50 or more runs to gain
enough statistics.

These conclusions are based on a GTX285 GPU. Fig. 4.1 reveals that the time distributions of
kernels on Fermi and on GTX285 are alike. Thus, the above conclusions are valid for Fermi
GPUs as well. All following benchmarks are taken with proper CPU pinning and the real-time
scheduler, each measurement repeated often enough to get the stated accuracy of 0.2 %.

 0

 50

 100

 150

 200

 250

 300

 3840 3850 3860 3870 3880 3890
Kernel Time [μs]

(a) GTX285 [I]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778
Kernel Time [μs]

(b) Fermi [III]

Figure 4.1: Exemplary Kernel Time Distribution (ALICE GPU Tracklet Constructor)

4.3 Benchmark Conditions for AMD

Interestingly, the Cypress GPU (see Fig. 4.3) does not show a Gaussian distribution. Still, the
deviation is of the same order of magnitude as for Fermi. Benchmarks are taken under the same
conditions as for NVIDIA.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 508 509 510 511 512
Time [ms]

Figure 4.2: Time Distribution of a Full Run
of the ALICE GPU Tracker on Fermi [III]

 0

 5

 10

 15

 20

 25

 30

 35

 3940 3960 3980 4000 4020 4040
Kernel Time [ms]

Figure 4.3: Cypress Kernel Time Distribution
(DGEMM Kernel) [V]

20

Part II

Event Reconstruction for the
ALICE Experiment

Source of Image: CERN [CER 11].

21

Chapter 5

Introduction

5.1 The ALICE Detector of the LHC Experiment

The Large Hadron Collider (LHC) is the most powerful particle accelerator today. It is located
at CERN (Conseil Européenne pour laRechercheNucléaire) in Geneva (see [Brü` 04]). A Large
Ion Collider Experiment (ALICE) is one of the four major experiments (see [ALI 95]). The LHC
can collide protons as well as heavy ions (primarily lead). In contrast to the general purpose
detectors ATLAS and CMS, ALICE is specifically designed for the heavy ion case. Of particular
interest for ALICE is the so called Quark Gluon Plasma, a state where hadronic matter dissolves
into its constituents. The LHC commenced operation in November 2009. Yet, the LHC has been
running with reduced energy and luminosity. It is going to reach its design-values after an
upgrade of the magnet interconnects scheduled to finish in the end of 2014. In November and
December 2010, the first heavy ion collisions took place. Figures 5.1 and 5.2 show an overview
of LHC and ALICE.

Figure 5.1: LHC with four major Experiments
[CER 06]

ACORDE

EMCAL

TRD

HMPID

PMD/V0

TOF

Absorber

Muon
Filter

Tracking
Chambers

Dipole
Magnet

TPC

ZDC

PHOS
ITS

Trigger
Chambers

L3 Magnet

Figure 5.2: The ALICE Detector [ALI II]

An event comprises all data obtained from the detectors for one collision.1 Heavy ion events result
in many more particles inside the experiment compared to proton events. Reconstructing their
trajectories is a very complex task, which is called tracking. ALICE’ primary detector for this
purpose is the TPC2, which is a cylindrical chamber filled with gas. It is split in two halves, which
are further subdivided into 18 trapezoidal readout chambers each. These, in total 36 chambers,
are called slices (or sectors). (Fig. 5.3 shows an illustration of the TPC and the splitting in slices.)

1 One collision can contain multiple interactions. Due to the high collision rate, events also contain leftovers from the
previous collisions. This is called pileup.

2 Time Projection Chamber: See [ALI III] for more information.

22 5.2. THE HIGH LEVEL TRIGGER

Figure 5.3: ALICE Time Projection Chamber [ALI III]

5.2 The High Level Trigger

Most events contain no new physics (such as new, yet unknown particles) but only reproduce
effects which have already been studied sufficiently such that no more data are needed. Interesting
events are quite rare. By filtering for relevant events, the raw data obtained from the detectors can
be compressed by multiple orders of magnitude – without losing scientifically meaningful data.
This data rate decrease reduces storage costs dramatically and can, if the data rate exceeds the
storage capacity, ensure collecting more relevant data.

Triggers observe data from a certain subset of detectors and do a fast search for indications of
relevant events like jets or high momentum electrons. If they find something, they trigger the
readout of other (often slower) detectors and/or the storage of the event for later analysis. A
hierarchy of triggers is applied in ALICE, searching for physically relevant events – or parts
thereof. The last step in this trigger hierarchy is the High Level Trigger (HLT) [ALI 04], which,
in contrast to the lower level triggers, is a software trigger. The HLT is capable of a full real-time
event reconstruction and performs an on-the-fly data compression. For processing, a compute-
farm of about 250 nodes is employed, which can process up to 30 GB{s of data coming from the
detectors. Hereby, TPC tracking is the most compute-intensive task, especially for lead-lead
collisions. A more detailed introduction to ALICE, the TPC, and the HLT, in particular with
respect to TPC tracking, can be found in [Roh 10 I, 1.1].

5.3 The ALICE HLT TPC Tracker

Since a comprehension of the algorithm is required and because the terminology is used later,
a short description of the tracking algorithm is given here. Detailed introductions can be found
in [Gor 12, 2.3/5.3] and [Roh 10 I, 2.3].

The tracking algorithm consists of five steps. The first three are combinatorial and produce an
assortment of track candidates, which are called seeds. The latter two steps use the Kalman fil-
ter [Kal 60] to create the final tracks. Appendix D gives a very brief formulation, how the Kalman
filter is used for tracking. More elaborate descriptions can be found in [Gor 12, §1/§2], [Frü` 00],
[Man 04], and [Roh 10 I, 2.1]. Fig. 5.4 shows the reconstructed tracks of an exemplary event.

CHAPTER 5. INTRODUCTION 23

5.3.1 Geometry

As stated in Section 5.1, the TPC is divided in 36 slices. Tracking for each slice is done indepen-
dently by the so called slice tracker. The different track-segments within each slice are then
combined to complete tracks by the track merger. Slice-tracking is the time-critical task.

Within each slice the local coordinate system is chosen such that in the middle of the slice
the x-axis points in the radial direction. The z-axis is oriented parallel to the beam (see Fig. 5.5).
The TPC measures coordinates where particles which pass through the chamber ionize gas-
molecules. The data are digitized and processed by an FPGA3 cluster finder. The input for the
slice tracker is an assortment of three-dimensional space points, called clusters or hits hereafter.

The TPC measures the x-coordinate of clusters discretely in 159 possible distinct values, which
are called rows. The y- and z-coordinates are measured continuously. As particles produced by
the collision in the center of the TPC, and in particular the important high momentum particles,
can be assumed to pass the TPC slice in x-direction, the ALICE tracker searches for seeds in this
direction. It fits a set of track parameters to the clusters in the seed, then follows the extrapolated
trajectory using these parameters, collects more clusters positioned close to the trajectory, and
improves the fit with them.

Figure 5.4: Tracks found by the Tracker in a
simulated Heavy Ion Event

Figure 5.5: Geometry of a Single TPC Slice
[Gor 12]

5.3.2 Creating Track Seeds

The seeds are created in three steps. Figures 5.6 to 5.8 illustrate the tasks.

Neighbors Finder [I] In the first step, for each cluster C in each row i, the neighbors finder
searches for the pair of clusters in the adjacent rows4 (i ˘ 2), such that these three clusters
compose the best straight line. Such a connection is referred to as link.

Neighbors Cleaner [II] In the second stage, for each upward5 link from cluster C to cluster D
it is checked whether the downward5 link of cluster D points back to cluster C. The same is done
in the opposite direction. Links not meeting this criterion are removed.

Start-Hits Finder [III] A cluster with an upward but no downward link is a start-hit. A
set of at least three clusters connected by upward links from a start-hit is called a seed.
3 A Field Programmable Gate Array is an integrated circuit whose behavior can be configured after manufacturing

(see Appendix C.6).
4 The neighbors finder skips one row in order to lessen the relative impact of measurement errors as explained

in [Roh 10 I, 2.3.1].
5 Upward links point to the next row, downward links to the previous row.

24 5.3. THE ALICE HLT TPC TRACKER

dx-

row r dy+

dy-

C+

C0

C-

row r + 2

row r - 2

dx+

Figure 5.6: Links found by
Neighbors Finder for C0

row r

row r - 2

row r + 2

row r + 4

Figure 5.7: Links removed
by Neighbors Cleaner6

row r

row r - 2

row r + 2

row r + 4

row r - 1

row r + 1

row r + 3

Figure 5.8: Illustration of
Start-Hits and Seeds7

5.3.3 Fitting Tracks with the Kalman Filter

Tracklet Constructor [IV] Track parameters are fitted to the seeds (stage a). If a χ2 check
is passed, the seed, together with the parameters, forms a tracklet. Using the track parameters,
the tracklet is extrapolated upward (stage b) and downward (stage c) one after another to all
remaining rows. After each extrapolation step, the cluster in the respective row closest to the
extrapolated trajectory is determined (Fig. 5.9). The new cluster is incorporated in the tracklet
fit. If the χ2 condition is met, this cluster is finally added to the set of clusters in the tracklet. The
Kalman filter [Kal 60] is used for the extrapolation and the fit (Appendix D lists the formulas).

Tracklet Selector [V] This last step performs the final cluster to track assignment. (During
tracklet construction, the same cluster can be added to multiple tracklets.) Each cluster is
assigned to the longest tracklet it belongs to (see Fig. 5.10). To ensure a unique assignment, out
of multiple tracklets of the same length the first one is chosen. For handling multihit-clusters,
there is a heuristic to share clusters between tracks [Roh 10 I, 2.3.5].

Figure 5.9: Tracklet Constructor Extrapolation Step

Short Track

Long Track

Figure 5.10: Cluster Assign-
ment in Tracklet Selector

5.3.4 Initialization & Output

In addition to these five algorithmic steps, two more are implemented.

• Initialization: Creation of special data-structures such as the grid8 for fast cluster search.
• Track Output: The data are written to a consecutive memory segment in a new format.

6 Green links are kept, red ones are removed by the neighbors cleaner. The lower arrow on the left track is removed
since by construction there can never be a reciprocal link at the end of the track. (That would need three hits.)

7 The seeds are green, the start-hits orange.
8 The grid splits the space in cells for a fast spatial search (see [Roh 10 I, 2.2.3]).

25

Chapter 6

TPC Slice Tracking on GPU

6.1 The ALICE HLT TPC GPU Tracker

As the TPC-tracking is the most critical task, the HLT TPC tracker has been adapted to run on
GPUs as the author’s diploma thesis [Roh 10 I]. The first GPU implementation could not out-
perform the CPU. Many optimizations were required to reach good GPU performance. The CPU
could profit from these optimizations as well. In contrast to similar studies [Sch` 11], the ALICE
GPU tracker can stick to single precision, speeding up GPU processing tremendously.1 Results
of the initial GPU tracker have been published in [Gor` 11]. Fig. 6.1 shows the GPU tracker per-
formance in comparison to the CPU as a synopsis of the diploma thesis. This and the following
plots show measurements based on a central heavy ion events with more than 20000 tracks. For
enabling a fair comparison, an optimized multi-threaded CPU tracker is used [Roh 10 I, 9.2.1].
It can be seen that the GTX285 outperforms a Nehalem CPU by more than a factor of two while
it costs only a fraction. The implementation is such that CPU and GPU version share a common
source code. This ensures good maintainability and all advancements introduced later are realized
in this way. For this thesis, the tracker has been improved and modified to run on modern Fermi
GPUs. The Fermi tracker and its new features have been published in [Roh 12 I] and [Roh` 12 II].

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Initialization

Neighbors
Finder

Neighbors
Cleaner

Start-Hits
Finder

TrackletConstructor

TrackletSelector

TrackletOutput

Full Run

0

250

500

750

1000

1250

1500

1750

2000

Tr
ac

ke
r C

om
po

ne
nt

 T
im

e
[μ

s]

CPU Tracker (Old Code)

11
00

59
60

31
1

10
2

35
02

5

73
5

65
0

17
54

.0

CPU Tracker (New Code)

15
2

54
78

29
2

87

11
42

7

45
4

33
2

80
7.

5

GPU Tracker

28
25

23
87

54 87

39
54

14
80

17
58

31
8.

0

Fu
ll

Tr
ac

ki
ng

 T
im

e
[m

s]

Figure 6.1: GPU Tracker Performance on GTX285 [I] [Roh 10 I, 9.2.2]

One important aspect of the plot is not visible immediately: Component times are measured for
a single slice while the time for a full run refers to a full event with all 36 slices. Thus, one would

1 The Kalman filter was improved by Sergey Gorbunov to ensure numerical stability in single precision [Gor 12, 4.2.3].

26 6.2. PORTING THE TRACKER TO THE FERMI ARCHITECTURE

expect that the time of the full run is the accumulated component time times 36. However, this is
not the case. On the GPU-side, the full run is 30 % faster because of the pipeline [Roh 10 I, 6.3.3],
which executes certain steps concurrently. On the CPU side, the full run is 19 % slower because of
scheduling overhead and different track counts in different slices. The latter phenomenon depends
much on the event size and is discussed in Appendix E.

Originally, it was planned to employ the tracker on the GTX295: the dual-GPU version of
the GTX285 based on the same GT200b chip. As the tracker itself can only use a single GPU,
multiple tracker instances are needed to use both GPU chips.2

6.2 Porting the Tracker to the Fermi Architecture

The GPU tracker was developed primarily for lead-lead collisions.3 Heavy ion collisions at the
LHC started in late 2010. In fall 2010, the HLT was upgraded with GPU nodes for the upcoming
lead-lead runs. However, at this point the GTX295 GPU was already discontinued. It would
have been possible to still equip the nodes with the GT200b chip but it was not desired to use
outdated hardware.

The Fermi chip had been available for some months at that time. Unfortunately, the original
tracker code did not immediately work on the new architecture. Up to that point, it was seen
as a rather academic attempt to port the tracker to the Fermi. With the decision to employ
the Fermi chips, the efforts were concentrated on the Fermi tracker. Due to the limited time, a
comprehensive performance tuning for the Fermi chip was obviously not possible. The main goal
was to obtain a stable tracker for the run in November. The existent parameters were tuned as
far as possible. Major changes to the tracker were not feasible before November 2010 and delayed
until after the heavy ion run.

The Fermi port is presented in three steps. This section describes the steps that brought the GPU
tracker to the Fermi GPU and the results of parameter tuning. The next one analyzes the perfor-
mance of the GPU tracker in the November 2010 heavy ion run. The following section presents
further improvements implemented after 2010 in preparation for the next heavy ion phase in 2011.

6.2.1 Fermi Support & Compiler Bugs

The original GPU tracker implementation was recompiled for the Fermi architecture. Unfor-
tunately, the old code caused invalid memory accesses on the Fermi GPU (corresponding to
segmentation faults on the host). Most of these problems were related to a change in the com-
piler, which is related to shared memory. Shared memory locations accessed by multiple threads
must be declared as volatile. In principle, this rule had applied to all prior CUDA versions,
too. However, the access violation is only triggered by new optimizations the previous compiler
versions did not implement. This is a well-known issue with the Fermi compiler. In fact, the
same problem occurs even in many NVIDIA SDK examples.

Another problem was a compiler bug which exported inline static host functions to the object file.
This led to collisions during linking. Changes in the code structure circumvented this problem.

In addition, some kernel compiler bugs were revealed. With the help of NVIDIA, most bugs
could be circumvented by modifying the code: inserting extra variables, changing the order of
statements, etc. One crucial bug that could not be bypassed shall be described exemplarily here.
Listings 6.2 and 6.3 show test-cases used to track down the bug in CUDA 3.0. The if statement
accessing a member function may not alter the atomic instruction below in any way.
2 Multiple instances of the GPU tracker can be used to hide latencies in the framework, too.
3 The GPU tracker is inferior to the (multi-threaded) CPU version for PP collisions [Roh 10 I, 7.1]. A special version

was created for PP, but since the CPU tracker is by far fast enough for PP, it was only an academic topic.

CHAPTER 6. TPC SLICE TRACKING ON GPU 27

�
__global__ void example_kernel ()
{

example_cls obj ;
__shared__ in t tmp ;
atomicAdd (&tmp , 1) ;

}
� �
Listing 6.2: Working Kernel Example

�
__global__ void example_kernel ()
{

example_cls obj ;
__shared__ in t tmp ;
i f (obj . example (0) < 0)

atomicAdd (&tmp , 1) ;
}
� �
Listing 6.3: Miscompiling Kernel Example

Analyzing the PTX assembler code reveals the compiler bug.4 Listings 6.4 and 6.5 show the
compiled PTX codes for both cases. In the first case, the correct “atom.shared.add.s32“ instruc-
tion is used, while the second case compiles to “atom.add.s32“ accessing global instead of shared
memory.�
mov . u64 %rd1 , __cuda_tmp0 ;
mov . s32 %r1 , 1 ;
atom . shared . add . s32 %r2 , [%rd1] ,% r1 ;
� �

Listing 6.4: Working PTX Code Example

�
mov . s64 %rd1 , %rd2 ;
ld . s16 %r1 , [%rd1 +0] ;
mov . u32 %r2 , 0 ;
s e tp . ge . s32 %p1 , %r1 , %r2 ;
@%p1 bra $Lt_0_1026 ;
cvta . shared . u64 %rd3 , __cuda_tmp0 ;
mov . s32 %r3 , 1 ;
atom . add . s32 %r4 , [%rd3] , %r3 ;
$Lt_0_1026 :
� �
Listing 6.5: Miscompiled PTX Code Exam-

ple

With this and other bugs fixed by NVIDIA in the CUDA 3.1 release – and in combination with
the above mentioned workarounds for other bugs – the tracker accomplishes to run on the Fermi
card.

6.2.2 First Comparison

Compared to the reference performance of the original GTX285 tracker (Fig. 6.1), the neigh-
bors finder time decreased from 2387µs to 1801µs, the tracklet constructor time from 3954µs
to 3045µs, and the tracklet selector time from 1480µs to 1311µs. In contrast, the initialization
time increased from 2825µs to 3814µs, the tracklet output time from 1758µs to 5032µs, and
the total tracking time from 318 ms to 513 s. In total, the CPU tasks took more and the GPU
tasks took less time than before. Changes in the data format made the initialization and the
output computationally more expensive. It is obvious that for the multi-threaded CPU tracker,
the contribution of these pre- and postprocessing steps to the overall computation time is almost
irrelevant. However, the GPU tracker uses only one single CPU thread for these tasks. This
made it an urgent issue further amplified by the following two facts.

• CPU Change: All prior benchmarks were taken on Nehalem CPUs with at least 3 GHz.
The cluster’s GPU nodes are equipped with 2.1 GHz AMD Magny-Cours CPUs. Even
though the AMD CPU has a much higher total performance due to its many cores, its
single-threaded performance is far behind the Nehalem’s. Unfortunately, this is exactly
what is important for the GPU tracker. (Fig. 6.25, in the chapter after the next, shows a
tremendous difference in the total tracking time for the same GPU implementations on the
two CPU platforms.)

4 For an introduction to PTX, see [Roh 10 I, Appendix A] or [NVI 12].

28 6.2. PORTING THE TRACKER TO THE FERMI ARCHITECTURE

• Pipeline: The GPU tracker employs a pipeline to run the initialization and the neigh-
bors finder as well as tracklet selection and tracklet output on different slices in parallel.
In the Nehalem/GTX285 combination, the compute times for these two tasks are alike
(Fig. 6.65). However, the neighbors finder on the Fermi is much faster while the initial-
ization on the Magny-Cours is slower. Therefore, the pipelined initialization is rendered
inefficient (Fig. 6.7). In the output phase, the GPU is idling more than 75 % of the time.

Time

G
P
U

 T
ra

ck
in

g
 I
te

ra
ti
on

s

Tasks: Initialization Neighbor Finding Tracklet Construction Tracklet Selection Tracklet Output

DMA
GPU
CPU

DMA
GPU
CPU

DMA
GPU
CPU

Figure 6.6: Workflow for a Pipeline on the GTX285 with 15 Slices and Asynchronous Transfer
(The x-axis shows the time within one GPU tracker invocation. Multiple tracking runs are shown one below

the other. In each run three rows represent DMA, GPU, and CPU steps.)5 [I]

Figure 6.7: Pipeline of the first Fermi Tracker Implementation (Compare Fig. 6.6) [II]

The pipeline problems are approached in Section 6.4.3. The solution involves a redesign of the
pipeline, which was not possible in the short time frame available. The remainder of this section
presents optimizations which could be applied fast and easily prior to the 2010 run.

6.2.3 Tuning Parameters

Several parameters of the GPU tracker can easily be tuned for the Fermi cards. A detailed
description of the parameters can be found in [Roh 10 I, §6].

Integer Multiplication One example where the Fermi architecture differs from the previous
family is the support for 32-bit integer calculation. The GTX285 offers a fast 24-bit integer
multiplication instruction for address calculation but has to emulate 32-bit multiplications. Fermi
offers real support for 32-bit multiplication while the 24-bit instruction is dropped and has to be
emulated. Therefore, now the standard 32-bit instruction is used.

Texture Fetches The Fermi chip has an L1 cache and does not depend solely on the texture
cache. The original GTX285 GPU tracker reads the clusters for the neighbors finder and the track-
let constructor through the texture cache. Fig. 6.8 clearly demonstrates that global memory access
with the general-purpose L1 cache of the Fermi is superior to texture fetches for the given purpose.
5 Fig. 6.6 illustrates a pipelined run for a full event with asynchronous memory transfer and 15 simultaneous slices.

As 15 does not divide the slice count of 36, the third and last run contains a reduced number of 6 slices. The NVIDIA
CUDA profiler is used to obtain kernel and DMA start times and durations. Each step is assigned a different color.
Consecutive kernels for the individual slices are shown separately. The tracklet constructer processes all slices and
the tracklet selector some slices in parallel. Therefore, there are less kernel invocations for these routines.

CHAPTER 6. TPC SLICE TRACKING ON GPU 29

Shared Memory Size The Fermi chip has 64 KB of on-chip memory per multiprocessor. This
memory can be configured in two ways:

• 16 KB Shared Memory/48 KB L1 Cache
• 48 KB Shared Memory/16 KB L1 Cache

Some GPU tracker optimizations in [Roh 10 I, 6.2] suffered from limited shared memory, e. g.
the number of hits the neighbors finder can keep in shared memory is limited [Roh 10 I, 6.2.1].
The cache size can be increased with the Fermi. However, performance is better with 48 KB
of L1 cache available (Fig. 6.9). The same holds for shared memory in the tracklet selector.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Texture Fetch Global Memory

Ti
m

e
[μ

s]

Neighbors Finder

1800

1330

Tracklet Constructor
2767 2747

Figure 6.8: Texture Fetches
versus Global Memory Loads

with L1 Cache [III]

 0

 500

 1000

 1500

 2000

 2500

 3000

16KB Shared 48KB Shared

Ti
m

e
[μ

s]

Neighbors Finder

1330

2252

Tracklet Selector

1080

2055

Figure 6.9: Comparison of
16 KB versus 48 KB Shared

Memory [III]

 0

 500

 1000

 1500

 2000

256 384 512

N
eig

hb
or

s
Fi

nd
er

 T
im

e
[μ

s]

Threads

1330

1762
1568

Figure 6.10: Neighbors Fin-
der Performance for multiple

Thread Counts [III]

GPU Thread Count & Block Count The optimal execution configuration is determined in-
dividually for each kernel by parameter range scan. For instance, Fig. 6.10 shows that 256 threads
are optimal for the neighbors finder.

The oldest Fermi cards are called GTX480. They have 15 multiprocessors in comparison to
the 30 multiprocessors of the GTX285. On the GTX285 the internal GPU scheduler turned
out to work not optimally for the tracklet constructor and tracklet selector kernels. Thus, the
original GPU tracker executed these kernels in a grid of 30 blocks (matching 30 multiprocessors
on the GTX285) while the scheduling is governed manually by atomic instructions on global
memory. For the GTX285, 256 threads per block were optimal.

It seems natural to reduce the block count to 15 for Fermi, which has 15 multiprocessors. How-
ever, it turns out that a reduced block count results in decreased performance. A detailed analysis
reveals the following cause: as the Fermi has twice the number of registers available per multipro-
cessor, it can execute multiple blocks on one multiprocessor, and thus more concurrent threads
in parallel.6 (Be aware that from the ALU perspective 256 threads are enough for full GPU
utilization on both GPUs. Still, more threads can better hide latencies.)

There are in fact two possibilities to increase the concurrent number of threads: an increase of
the block count or an increase of the number of threads per block. It turns out that compared to
the version with 15 blocks of 256 threads, both settings improve the performance. The greater
benefit is with a larger block count. Increasing both parameters at the same time has a negative
effect. It was attempted to decrease the number of threads per block in order to increase the
block count even further, but this slows down the tracking.

The question remains why it is better to increase the block count. Naively, one would assume to
get optimal performance when the block count equals the number of multiprocessors. However,

6 In addition to the increased register count, the presence of the L1 cache reduces the urgency to keep all variables
in register. The penalty for accessing local variables in the global memory, which do not fit in the register file, has
decreased significantly. Therefore, the compiler creates code that requires less registers.

30 6.2. PORTING THE TRACKER TO THE FERMI ARCHITECTURE

the scheduling integrated in the tracklet constructor kernels always schedules an entire block at
a time. More but smaller blocks can be scheduled more fine-grained. Of course, the block count
should remain a multiple of the multiprocessor count.

Fig. 6.11 gives an overview. The tracklet constructor achieves its best result with 30 concurrent
blocks of 256 threads, while for the tracklet selector 45 blocks turn out to be optimal.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 15 30 45 60

Co
m

po
ne

nt
 T

im
e

[μ
s]

Blocks

Tracklet Constructor 512 Threads
Tracklet Constructor 384 Threads
Tracklet Constructor 256 Threads

Tracklet Selector 512 Threads
Tracklet Selector 384 Threads
Tracklet Selector 256 Threads

Figure 6.11: Tracklet Constructor/Selector
Performance for multiple Numbers of Threads

and Blocks [III]

 5000

 6000

 7000

 8000

 9000

 10000

 10 20 30 40 50 60 70 80
2500

2750

3000

3250

Ti
m

e
GT

X2
85

 [μ
s]

Ti
m

e
GT

X4
80

 [μ
s]

Rowblock Size

GTX285
GTX480

Figure 6.12: Tracklet Constructor Perfor-
mance for different Rowblock Sizes [III]

Tracklet Constructor Scheduling Parameters The tracklet constructor uses a custom in-
tegrated scheduler (see [Roh 10 I, 6.2.2.5]). Informally, the algorithm works the following way:

• The rows are grouped in rowblocks of r adjacent rows each.
• A tracklet pool contains all tracklets left for processing, grouped by the rowblock to which
the tracklet will be extrapolated next.

• A block of n threads processes n tracklets from the pool for one rowblock and does the
extrapolation step to all r rows in this rowblock. Each thread processes one tracklet.

• After the processing of one rowblock is finished, tracklets that need to be extrapolated to
further rowblocks are stored in the corresponding tracklet pools again whereas tracklets
whose processing is completely finished are stored to global memory.

• The scheduler repeats this procedure until all tracklets are fully processed.

Threads that have finished processing their tracklet idle as long as their block is still processing
its current rowblock. In this case, tracklet and thread are denoted inactive; otherwise active.
Thus, smaller rowblocks yield a better efficiency but introduce additional scheduling overhead.
As each multiprocessor on the GTX480 has 32 ALUs (the GTX285 only has 8), the efficiency is
more critical. Fig. 6.12 shows that in fact, the optimum rowblock size for the GTX480 is smaller.

Thread

T
im

e

Figure 6.13: GPU Utilization during Tracklet Construction7

7 The colors stand for: black = inactive thread (idling), blue = track fit of the seed [IV (a)], green = forward
extrapolation [IV (b)], red = backward extrapolation [IV (c)]. More information can be found in [Roh 10 I, 6.2.2.1].

CHAPTER 6. TPC SLICE TRACKING ON GPU 31

As the custom scheduler for the tracklet constructor is not altered, the scheduling efficiencies
for GTX285 and Fermi should be identical. Fig. 6.13 shows a scheduling plot on the GTX480.
The scheduling efficiency is the fraction of ALUs with active threads.8 The GTX285 reached 62 %
efficiency [Roh 10 I, 6.2.2.11] while the Fermi reaches 66 % utilization. The Fermi provides more
memory than the GTX285 and thus gives the scheduler more freedom by processing more slices in
parallel. This, in combination with the tuned parameters, leads to increased utilization. Running
the Fermi with the original parameters and slice count yields 62 % efficiency as for the GTX285.

Results Fig. 6.14 shows the gain by the tuned parameters. Besides the GPU-side improve-
ments, a patch by Sergey Gorbunov made the tracklet output with the new format as fast as
with the old one. This update was not available during the first Fermi tests. Since the new version
is incompatible with the GTX285, results for the GTX285 obtained with the original tracker ver-
sion are included. Even though most components are faster or equally fast, the GTX480 is only
marginally faster than the GTX285 for two reasons: due to the slow CPU parts in the pipeline,
the improvements in neighbors finder and tracklet selector are hidden; the slower initialization
compensates the gain in the tracklet construction. Solutions for this are presented later.

 0

 5000

 10000

 15000

 20000

Initialization

Neighbors
Finder

Neighbors
Cleaner

Start-Hits
Finder

TrackletConstructor

TrackletSelector

TrackletOutput

Full Run

0

300

600

900

1200

Tr
ac

ke
r C

om
po

ne
nt

 T
im

e
[μ

s]

Fu
ll

Tr
ac

ki
ng

 T
im

e
[m

s]

CPU (Nehalem 3GHZ)

98
9

76
73

35
9

32

15
91

7

73
2

78
8

10
06GPU GTX285 (Original Version)

28
25

23
87

54 87

39
54

14
80

17
58

31
8.

0

GPU GTX480

38
14

13
30

38 48

27
25

10
80 17

50

30
8.

3

Figure 6.14: Fermi GPU Tracker Performance with tuned Parameters [III]

6.2.4 Integration in the HLT Framework

The GPU tracker is available as a standalone version for tests and as a library that cooperates
with the HLT-TPC analysis library of AliRoot. AliRoot [ALI I] is the standard event reconstruc-
tion, simulation, and analysis framework for ALICE. It is based on ROOT [CER]. The HLT
chain is operated by the PubSub framework [Ste 04]. A common tracker interface can run the
CPU as well as the GPU tracker in an HLT mode, an AliRoot mode, and a standalone mode.9
See [Roh 10 I, §8] for details on the integration of the tracker in AliRoot and PubSub.
8 To be precise, efficiency is the ratio of threads whose tracklet is in phases [IV (a)] to [IV (c)] to the total number of

threads. Warps without active threads are excluded in both counts as they are not executed. This number measures
the raw scheduling efficiency, i. e. the percentage of threads processing a track. It does not consider threads which
are active but are waiting for data from memory, etc.

9 AliRoot and HLT mode are the common tracker operation modes for data analysis and differ only in the interface.
The plain standalone mode provides integrated replacements for ROOT functions. This simplifies the debugging
without having to deal with AliRoot and ROOT.

32 6.3. ONLINE TRACKING DURING THE NOVEMBER 2010 HEAVY ION RUN

6.3 Online Tracking during the November 2010 Heavy Ion
Run

In November 2010, a stable GPU implementation for Fermi was available. Due to the low LHC
luminosity during the first heavy ion run, even the CPU tracker was fast enough to perform the
tracking. Hence, the usage of the GPU tracker was not really vital. Because of high memory
consumption of the framework (see below), it was not possible to track many slices in parallel
on one node. In order to test the GPU tracker under real conditions with only a minimal risk
to disturb the HLT operation, a configuration was created that tracked only four slices on the
GPU. The rest was processed by CPU trackers.

(a) Perspective View

(b) Front View

Figure 6.15: Screenshots of Online Event Display during first Run with active GPU Tracking

In December, during the second phase of the 2010 heavy ion run, the GPU tracker was activated.
Fig. 6.15 shows two snapshots of the Online Event Display during the first physics run with GPU
tracking enabled. The tracker ran stable in the HLT chain. Two problems were discovered and
solved during the tests in the online framework:

CHAPTER 6. TPC SLICE TRACKING ON GPU 33

• GPU Initialization: The CUDA runtime API10 context is thread local. This posed
a problem because the HLT operation framework uses different threads for initialization
and actual usage of components. Originally, this was solved by skipping the framework
initialization phase and initializing the GPU tracker just before the first event is processed.
Unlike the GTX285, the Fermi initialization takes more than a second adding a large delay
to the first event. In contrast to the CUDA runtime API, the CUDA driver API offers the
possibility to migrate contexts between threads. An API change thus solves the problem.

• Memory Usage: The buffer sizes of the framework depend on the input data size. Since
the GPU tracker processes multiple slices in parallel, its input data size is much bigger
than for its CPU counterpart. Initially, due to very conservative settings, the framework
allocated many gigabytes and exhausted the system memory.

6.3.1 Evaluation & Quality Assurance for the Tracking Results

Two methods are used to check the functionality of the GPU tracker. Before the first heavy ion
run, the GPU results were checked with Monte-Carlo simulations. During the run, CPU and
GPU tracking results of real events were compared.

6.3.1.1 Verification of Simulated Data

Monte-Carlo simulations can be used to create particle trajectories and clusters as expected in
heavy ion collisions. The simulated clusters are processed by the GPU tracker, and the reobtained
tracks are then compared to the original tracks from the simulation. Verification is performed
with respect to different criteria:

• Efficiency: Percentage of simulated tracks that are found by the tracker.
• Fake Rate: Fraction of tracks found by the tracker that do not correspond to tracks from
the simulation.

• Clone Rate: Fraction of tracks found twice, e. g. two different segments of one track that
are not merged.

• Resolution: The resolution of the track parameters after the fit.

A comprehensive analysis of the GTX285 GPU tracker based on simulated data is presented
in [Roh 10 I, 9.1]. As the GTX285 already matches the CPU tracker in terms of efficiency and
resolution, no problems were expected with the Fermi card. Since the tracker and the evaluation
algorithms have evolved and the new version is incompatible with old GPUs, no direct comparison
can be made between the Fermi and the GTX285. Table 6.16 gives an overview over the tracking
quality of the tracker version used in the 2010 run. Fig. 6.17 reveals that CPU and Fermi GPU
tracker efficiency are even at any momentum. Detailed and more recent results are presented later.

Processor Efficiency Clone Rate Fake Rate Z-Resolution

CPU 87.33 % 8.852 % 4.055 % 0.1434 mm
GPU 87.33 % 8.817 % 4.057 % 0.1430 mm

Table 6.16: Tracker Efficiency for Pb-Pb-Simulations with maximum Multiplicity

6.3.1.2 Verification of Physics Runs

The tracks reconstructed in physics runs cannot be analyzed so easily since no Monte-Carlo
reference exists. In order to ensure that the GPU tracker works correctly, statistics of GPU
10 Application Programming Interface.

34 6.3. ONLINE TRACKING DURING THE NOVEMBER 2010 HEAVY ION RUN

Entries 7133

1 2 3 5 60

0.2

0.4

0.6

0.8

1

1.2

1.4

Fake Tracks

Clone Tracks

Efficiency

Tracking Efficiency

Tr
ac

ki
ng

 E
ffi

ci
en

cy
 /

 C
lo

ne
 R

at
e

/
Fa

ke
 R

at
e

P (GeV/c)
4

t

(a) CPU

Entries 7133

P (GeV/c)
1 2 3 4 5 6

Tr
ac

ki
ng

 E
ffi

ci
en

cy
 /

 C
lo

ne
 R

at
e

/
Fa

ke
 R

at
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fake Tracks

Clone Tracks

Efficiency

Tracking Efficiency

t

(b) GPU (Fermi)

Figure 6.17: Tracker Efficiency, Clone, and Fake Rate

and CPU runs are compared. Figures 6.18 and 6.19 show some QA11 plots of similar runs in
December 2010, created with the GPU and the CPU tracker. The usual cuts are not applied
since the raw tracker output shall be compared.

20 40 60 80 100 120 140 160
Number of Clusters

P
er

ce
n
ta

g
e

of
 T

ra
ck

s

CPU Tracker

GPU Tracker
0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

10.5.2012

(Run 138979)
(Run 139173)
(Run 139314)
(Run 139438)

Figure 6.18: Clusters per Track Statistic Comparison
of two GPU and CPU Runs12

The statistic for the number of clusters
per track (Fig. 6.18) shows a slight vari-
ation for longer tracks. This is caused by
an indeterministic cluster to track assign-
ment, which was improved for the next
heavy ion run in 2011 (see Section 6.4.1).
Tracking efficiency and resolution are not
affected since the tracker finds the same
tracks with almost identical parameters.
Only in some rather rare cases a clus-
ter close to the intersection point of two
tracks can be assigned to the one or the
other track. Fig. 6.19 shows that in-
deed the statistics for physical observ-
ables (pseudorapidity, polar angle distri-
bution, and momentum) overlap clearly. No difference between GPU and CPU tracker could be
observed in terms of tracking quality yet. Still, the inconsistency makes a direct comparison of
GPU and CPU tracks rather complicated. This poses two problems: even though no differences
have been found yet, in principle, every new algorithm that runs on top of the tracking result
should be verified with both versions. On top of that, full reevaluation of both trackers is needed
after every code update.

Pseudorapidity ()ç Polar Angle (Ö) Transverse Momentum (p) [GeV]/cT

0

0.004

0.008

0.012

0 0.5 1 1.5 2 2.5 3160140120100806040200
0

-1.5 -1 -0.5 0 0.5 1 1.5

0.01

0.02

0.004

0.008

0.012

1

2

180-2 2

CPU Runs

GPU Runs

Figure 6.19: Comparison of Physical Key Observables of two GPU and two CPU Runs12

11 Quality Assurance.
12 The author would like to thank Camilla Stokkevåg for providing the QA plots.

CHAPTER 6. TPC SLICE TRACKING ON GPU 35

6.4 Further Optimizations & the Heavy Ion Runs in 2011
and 2012

The GPU tracker succeeded in its first test under real conditions in 2010. Since the next lead-lead
run was scheduled to start in late 2011, there was plenty of time to better tune the tracker for the
Fermi hardware and resolve the issues observed during the 2010 period. This section describes
all optimizations in between of the two heavy ion runs.

6.4.1 Improving the Cluster Assignment

 0

 100

 200

 300

 400

 500

 600

 700

 23975 23980 23985 23990 23995
Tracks Found in Event

Track Count
Gaussian Fit

CPU Reference

Figure 6.20: Track Output Statistics of the orig-
inal GPU Tracker in an exemplary Event12

The results of the original GPU and CPU
trackers could not be compared bitwisely due
to an indeterministic cluster to track assign-
ment. The initial rule for the assignment was
to assign the clusters to the longest tracklet
possible. In case two tracklets were equally
long, the first one was used. The problem is
that the multi-threaded start-hits finder cre-
ates the start-hits in an undefined order. Thus,
the order of the track seeds is undefined as
well. For this reason, especially for central
lead-lead events, the GPU tracker did not de-
liver completely reproducible results. Even the
number of obtained tracks fluctuated slightly
because some tracks were rejected or not depending on the cluster assignment. Fig. 6.20 shows
that the number of found tracks has a Gaussian distribution. The number of tracks found by the
CPU tracker is reproducible and is just one of the possible numbers the GPU tracker can find.
In the example, it lies slightly outside the 1σ-bound. Clearly, the deviation is small and has no
implication on the physics performance. In particular, tracks which are rejected or not are very
close to the χ2 cut anyway, hence it is not relevant whether they are reconstructed.

A better criterion for the cluster assignment has been searched for. The idea is to replace the phys-
ically meaningless and random start-hit order by a more expedient value. A continuous parameter
is chosen to avoid the ambiguity that comes along with the few possible discrete track lengths.

6.4.1.1 Incorporating the χ2 Value

The cluster assignment is performed by giving each tracklet a hit weight. Clusters are then as-
signed to the tracklet with the highest possible weight. Yet, the tracklet length has been used as
hit weight. The χ2 value/residual (deviation between the clusters and the trajectory) is a contin-
uous floating point value and can be used in combination with the tracklet length as a criterion for
the cluster assignment. Two χ2 values exist: the deviation of the tracklet to one cluster (for each
cluster/tracklet combination) and the χ2 of the entire tracklet, which is the average of the devia-
tions to all its clusters. Multiple possibilities exist to use the χ2 value to determine the hit weight.

• The reciprocal of the χ2 for the cluster/tracklet combination.
• The reciprocal of the χ2 of the entire tracklet.
• A combination of one of the above and the tracklet length.

The first possibility sounds self-suggesting. However, the results are merely bad. Usually, at
least two tracklets for one track are found. This track is then reconstructed twice resulting in two
tracklets with almost identical clusters. It is desired to keep the better tracklet, assign all clusters
to this tracklet, and remove the other instance of the track as a clone. However, using the residual

36 6.4. FURTHER OPTIMIZATIONS & THE HEAVY ION RUNS IN 2011 AND 2012

between the cluster and the tracklet, about half of the clusters get assigned to one instance of the
track while the rest is considered to belong to the other one. If one of the tracklets is removed
and not merged correctly, half of the clusters are lost. In addition to this flaw, implementing the
first version is computationally the most expensive option. Thus, it is not used.

The second option suffers from another drawback. It is relatively easy to fit a helix to a small
number of clusters. In addition, the fewer the clusters the higher is the probability that no
cluster has a high residual. Thus, the χ2 value for short tracks might be inappropriately small.
In particular, one track might be found twice: once as a short tracklet and once as a long tracklet.
The shorter tracklet might well have the better χ2. Thus, this option is ruled out as well.

These considerations leave only the third option (with the χ2 of the entire tracklet) left. The
hit weight w is implemented as w “ n ¨ pα´ χ2

{βq. The χ2-cut is chosen as the value of β
such that χ2

{β is of order 1. This is only for normalization reasons. The factor α is called
the χ2-suppression factor and n is the tracklet length. Thus, α " 1 results in the old behavior,
where only the tracklet length is decisive. In general, the bigger α the lower is the influence of χ2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

4 8 32 128 1024 infinite

95

96

97

98

99

100

M
ea

n
/

RM
S

/
Fa

ke
 a

nd
 C

lo
ne

 R
at

e

Effi
cie

nc
y

2 Suppression Factor (α)

Efficiency [%]
Fake Rate [%]

Clone Rate [%]
Z-Resolution (Mean) [mm]
Z-Resolution (RMS) [mm]

Φ-Resolution (Mean) [mrad]
Φ-Resolution (RMS) [mrad]

pt-Resolution (Mean) [%]
pt-Resolution (RMS) [%]

Figure 6.21: Efficiency and Resolution using different χ2 Suppression Factors

Fig. 6.21 shows the variation of the tracking quality with respect to α. It turns out that incor-
porating the residual even improves the tracking efficiencies, reduces clone and fake rates, and
either improves or maintains the resolutions. Below about α “ 4 the situation changes and the
tracking becomes unstable. (At low α only the χ2 value is dominant and the problem explained
above sets in.) Finally, the tracker employs a value of α “ 6 as it is considered the best trade-off
between efficiency and stability.

6.4.1.2 Track Order

The χ2 usage negates the concurrency effects for the cluster assignment. Still, the sequential
arrangement of the tracks returned by the GPU tracker is arbitrary. The track merger output
depends on the order of the tracks in the same way the cluster assignment did. In certain
situations where two tracks are equally good, it takes the first one. To obtain reproducible
merger results, the slice tracks are sorted before they are passed to the merger.

CHAPTER 6. TPC SLICE TRACKING ON GPU 37

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40 60 80 100 120 140 160

Tr
ac

ks

Clusters

CPU
GPU

Figure 6.22: Clusters per Track Statistics with
improved Cluster Assignment

During the tracklet output, the tracks are copied
anyway. The sorting is performed by sorting an
array of track indices. The subsequent copy step
respects the resulting order. In principle, an
arbitrary sorting criterion can be used. In or-
der to avoid ambiguities, a combination of the
tracklet length, the Z-, and the Y -coordinate
of the track parameters is used. Depending on
the emphasis on each of these parameters dur-
ing the sort sequence, the merger output changes
marginally. Using a parameter range scan, the
weighting is chosen such that tracking efficiency
is optimal. The time required for sorting lies
within the measuring inaccuracy.

Fig. 6.22 shows the accumulated clusters per track statistics of the advanced GPU tracker for a
constellation of many proton-proton and heavy ion events of different energies and centralities.
In contrast to Fig. 6.19, the curves show a perfect match proving that the observed inconsistency
has been eliminated. A detailed comparison of the physics performance is presented in Chapter 9.

6.4.1.3 Binary Comparison

The improved algorithm allows for a binary comparison of CPU and GPU tracks. The slice tracker
only outputs the tracks in terms of sets of clusters. The final track parameters are completely
refitted by the merger. Therefore, as long as both CPU and GPU tracker find the same clusters,
the output is bitwisely identical. Comparing the clusters of the sorted tracks row by row reveals
that in Pb-Pb-events in average 0.00024 % of the clusters and 0.012 % of the tracks differ.

The difference is caused by different rounding due to non-associative floating point arithmetic,
which is a direct consequence of the “-ffast-math” compiler option. The same behavior is observed
when switching the compiler or even when selecting different compiler options for the CPU tracker.
In three situations the rounding affects the output:

• Two adjacent clusters in a row can have a similar distance to the extrapolated trajectory.
Depending on the rounding, either one of the two is chosen.

• It might depend on the rounding whether a cluster is rejected or accepted with respect to
the χ2 cut.

• Both above aspects change the track parameters slightly. This variation carries on in the
extrapolated trajectory. Thus, if a CPU and a GPU track differ at all, it is likely that they
differ by multiple clusters.

6.4.2 Using the GTX580

In December 2010, the GTX580 GPU was released. All following benchmarks are created with
the new GPU. As the chip is identical except for clock frequencies and multiprocessor count, the
optimal version for the GTX480 is considered optimal for the GTX580 as well.

6.4.2.1 Variable Block Size

The old GTX285 (and similar cards) have very tight register restrictions, which are especially
important in the tracklet constructor. Many constants, such as the number of blocks and threads
were thus defined at compile-time. Thus, derived constants were precalculated saving registers.
Due to the newly introduced general-purpose cache, this is no longer necessary. Performance does

38 6.4. FURTHER OPTIMIZATIONS & THE HEAVY ION RUNS IN 2011 AND 2012

not suffer measurably when replacing the constants with variables initialized at runtime. The
latter improves the usability, especially on development systems where different GPUs are present.
So far, multiple binaries had to be maintained for each GPU family. Now, one binary suffices.

6.4.3 Multi-Threading the CPU Parts

Fig. 6.23 shows the pipeline of the new tracker including all previous optimizations. Compared
to Fig. 6.7, the faster output improved the pipeline performance significantly. Still, quite a lot
of GPU time is wasted during the output. Also during initialization on the CPU, the GPU idles
regularly because of the faster neighbors finder.

Time

Tasks: Initialization Neighbor Finding Tracklet Construction Tracklet Selection Tracklet Output

DMA
GPU
CPU

Figure 6.23: Pipeline of the Fermi Tracker with improved Output Routine [II]

Both bottlenecks are approached by multi-threading the CPU parts. A thread-server based on
the pthread library has been integrated, which distributes the work. Initialization and output
are processed in a round-robin scheme on multiple CPU cores. Fig. 6.24 determines the optimal
number of additional threads to be two. Fig. 6.26 shows the pipeline plot with multi-threading.
Obviously, the GPU idling phases have been reduced to a minimum. Only during initialization
and transfer of the first slice as well as during the postprocessing of the last slices, the GPU idles.

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 1 2 3

Tr
ac

ki
ng

 T
im

e
[m

s]

Additional CPU Threads

Pb-Pb
Central Pb-Pb

Figure 6.24: Multi-Threaded GPU Tracker
Performance [II]

 0

 200

 400

 600

 800

GTX285 (Old

Version)

GTX480/Nehalem

(First Fermi

Version)

GTX480/AMD

(First Fermi

Version)

GTX480/Nehalem

(Parameters

Tuned)

GTX580/Nehalem

(Multithreaded

Pipeline)

Ti
m

e
[m

s]

Total Tracking Time

318.0

513.0
628.7

308.3
195.8

GPU Calculation Time

286.6
224.7 224.7 188.0 159.4

Figure 6.25: Total Tracking Time and GPU
Time for all Implementations [I,II,III]

DMA
GPU
CPU 1
CPU 2
CPU 3

Figure 6.26: Pipeline of the Fermi Tracker with Multi-Threading [II]

Fig. 6.25 shows the total tracking time and the time the GPU actually processes data. The
overhead for the Fermi is still slightly larger than for the first GTX285 implementation. However,
this is unavoidable for two reasons: increased GPU performance and increased complexity because
of multi-threading. Compared to all GTX480 versions without multi-threading, especially the
one with the Magny-Cours CPUs, the pipeline is working well again. It will be shown later (in
Section 9) that the GPU tracker performance no longer depends on the employed CPU.

CHAPTER 6. TPC SLICE TRACKING ON GPU 39

6.4.4 Improved Scheduling

For two reasons it was desired to implement a new scheduling algorithm:

• In [Roh 10 I, 6.2.2.13], a different scheduling algorithm was attempted, which competes
against the one used for the GTX285. It was discarded because of two bottlenecks, which
slow down this alternative algorithm on the old GPU but do no longer exist on the Fermi:

– The absence of an L1 cache is a disadvantage for algorithms where the threads access
data from different rows.

– Without the L1 cache, respecting the register limitations is extremely critical. Thus,
some improvements to the alternative scheme cannot be realized on the GTX285.

• In preparation for the 2011 heavy ion run, it was desired to have the GPU tracker participate
in proton-proton runs. First tests with proton-proton data showed two flaws:

– The dynamic rescheduling after each rowblock is completely unsuited for proton-proton
events. It leads to an enormous number of scheduling collisions (see [Roh 10 I, 6.2.2.7])
and slows down the tracking dramatically. The Fermi cards, being the faster cards,
suffer from this problem even more than their predecessors.

– A third type of scheduling collision appears, which was never detected on the old GPU
generation. Due to incoherent memory, the tracklet parameters can be corrupted when
passed from a thread of one multiprocessor to a different multiprocessor. The possibil-
ity of this type of collision was clear from the beginning and is a direct consequence of
the design of the scheduler. On the GTX285, the occurrence of this theoretical problem
was excluded statistically. On the Fermi, proton events can trigger this flaw.

The problem for proton-proton can be solved by disabling the dynamic scheduler. However,
this eliminates the possibility of using the proton-proton run as a test for heavy ion.

Thus, a scheduler similar to that in [Roh 10 I, 6.2.2.13] is implemented, which does never transfer
data between multiprocessors. This way, it completely rules out scheduling collisions. The
scheduler implements two parameters n ě 1 and 0 ď α ď 1 and works the following way (from
here on out, the dynamic scheduler is denoted old scheduler):

1. Each block picks a slice to start with13 and each thread is assigned a tracklet within this
slice. The initial assignment is predetermined statically to speed up the scheduling. Start
rows are arbitrary.

2. The tracklets are processed for n rows or until all of them are completely processed,
whichever comes first.

3. The scheduler checks whether the percentage of inactive threads14 is greater than α. If this
is not the case, it resumes with step 2.

4. Finished tracks are stored.

5. Via shared memory the tracklets are redistributed among the threads of the multiprocessor
in such a way that the lower numbered threads hold all active tracklets.

• In contrast to the old scheduler, redistribution within one multiprocessor does not pose
coherency problems.

• This reorganization is technically not necessary but can reduce the number of warp-
serializations since the active tracklets are likely to be in phase [IV b)] or [IV c)] while
new tracklets begin with phase [IV a)] (see Section 5.3.3).

13 In order to improve the load balancing, each multiprocessor starts with a different slice if possible.
14 The number of inactive tracklets divided by the number of total tracklets. For a definition see Section 6.2.3.

40 6.4. FURTHER OPTIMIZATIONS & THE HEAVY ION RUNS IN 2011 AND 2012

6. Organized via shared memory, new tracklets are fetched from the pool of unprocessed
tracklets such that afterward all threads process active tracklets again – if present.

7. If any thread has an unfinished tracklet, it is resumed with step 2.

8. The block switches to the next slice and proceeds with step 6 until all slices have been
processed.

Thread

It
er

at
io

n
s

w
it
h
in

 T
ra

ck
le

t
C
o
n
st

ru
ct

o
r

(a) Old Scheduler

Thread

(b) New Scheduler

Thread

(c) Simple Scheduler

Figure 6.27: Comparison of Scheduling Algorithms – Detailed
View15

Setting n “ 1 and α “ 0 en-
forces a rescheduling after each
row such that in every moment
each thread is active. How-
ever, the scheduling overhead
is enormous. Setting n “ 160
and α “ 1 no rescheduling is
performed at all but all track-
lets are completely processed
at once. The best parameters
are determined experimentally.
For comparison, a simple sched-
uler implements the behavior
for n “ 160 and α “ 1 directly.
This makes the above checks
(points 3 and 5) obsolete and
speeds up the process slightly.
The simple scheduler very much
resembles the initial scheduler
on the GTX285, which achieved
only a very low GPU utilization
and hence little performance.
Naturally, the prefiltering in-
troduced in [Roh 10 I, 6.2.2.9],
which removes track candidates with three clusters or less, remains active in all variants as it
comes at zero overhead. By construction, the simple scheduler profits most from it.

Fig. 6.27 shows the GPU utilization of four warps inside one multiprocessor for each scheduling
algorithm. The displacement of the active tracklets to the lower numbered threads can be seen
clearly in Fig. 6.27b. In contrast to the old scheduler, tracklets in phases [IV (b)] and [IV (c)]
are processed simultaneously. The simple scheduler naturally offers the worst utilization.

6.4.4.1 Improved Scheduling Performance

All schedulers have been tested on central lead-lead data. Table 6.28 presents the results. Against
all expectations and experience from the GTX285 boards, the simple scheduling algorithm is
clearly the fastest on the Fermi. The new scheduler is ahead of the old algorithm but the
advantage is almost negligible. Its main improvement is the ensured coherency.

The question arises why the simple scheduler performs so well in comparison to the new scheduler.
Fig. 6.29 shows the full plots for the entire tracking of all 36 slices. The y-axis in both plots is
scaled linear in terms of iterations of the Kalman filter. It is obvious that the new scheduler
requires significantly fewer iterations, so the iterations themselves must be slower. One reason
directly visible from the plot lies in the number of blocks (32), which is no divisor of the number of
slices (36). After the first 32 slices have been processed, the GPU utilization during the processing
15 The colors in the scheduling plots have the same meaning as in Fig. 6.13 and are explained there.

CHAPTER 6. TPC SLICE TRACKING ON GPU 41

Algorithm Tracking Time [µs]

Old Scheduler 2403
New Scheduler 2376
Simple Scheduler 2148

Table 6.28: Performance of Scheduling Algorithms [II]

of the remaining four slices drops. The efficiency drop is larger for the new scheduler. Another
and probably the main cause is the L1 cache. The shared memory based synchronization of the
new scheduler leaves only 16 KB of L1 cache while the simple scheduler version can use 48 KB.
Since, in contrast to the simple scheduler, the new scheduler extrapolates tracklets in arbitrary
rows in both directions, cache size has become even more critical. To estimate the effects, the
simple scheduler was modified to allocate as much shared memory as the new scheduler yielding
a 62 % longer execution time – much longer than the new scheduler. On top of that, the simple
scheduler benefits most from the above-mentioned prefiltering for short seeds. Finally, on the one
hand, it is a bit disappointing that the effort put into the scheduling, which achieved good results
on the old GPUs, does not yield anything for Fermi GPUs, and it is unsatisfactory to have no
proper solution and to miss a complete and detailed insight where the bottlenecks are. Fig. 6.27c
shows that the GPU utilization of the simple scheduler definitely leaves room for improvement.
On the other hand, the Fermi is still much faster than the GTX285, overall performance increase
would probably be in the range of 15 % only, leaving the advanced schedulers out reduces the
complexity significantly, two elaborate scheduler implementations already failed on the Fermi, and
development of new schedulers is time-consuming without any guarantee that they work well. In
the end, with the current code the GPUs in the HLT are already fast enough for real time tracking
at maximum TPC readout rate. Hence, in the following, only the simple scheduler is used. Since
GTX285 and Fermi GPUs show very different behaviors with different schedulers, a reexamination
of the schedulers should be performed when the next GPU generation becomes available.

Thread

It
er

at
io

n
s

w
it
h
in

 T
ra

ck
le

t
C
on

st
ru

ct
or

(a) New Scheduler

Thread

It
er

at
io

n
s

w
it
h
in

 T
ra

ck
le

t
C
on

st
ru

ct
or

(b) Simple Scheduler

Figure 6.29: Comparison of Simple and New Scheduling Algorithms –Total Overview15

6.4.5 Combined GPU/CPU Tracking

The availability of the GPU tracker makes lots of CPU resources available for other tasks. Ini-
tially, these resources were fully used by the merger but lately, optimizations to the merger (see

42 6.4. FURTHER OPTIMIZATIONS & THE HEAVY ION RUNS IN 2011 AND 2012

Section 7.1) have reduced the merger workload dramatically. The free CPU resources can be
used for tracking – in addition to the GPU.

This could be realized by using instances of both the GPU and the CPU tracker within the HLT
framework. However, the configuration would become very inflexible since the number of GPU
and CPU trackers is hardcoded. A transparent approach is wanted that enables one to change
the number of CPU cores via a simple software switch.

Thus, the GPU tracker itself has been improved and now offers the possibility to offload a certain
number of slices to the CPU. The thread server (see Section 6.4.3) has been extended to maintain
CPU tracker threads which are used for this purpose. Assume n CPU threads process m slices
each. As long as the single-threaded CPU tracker finishes the tracking of m slices earlier than
the GPU finishes its 36´mn slices, a speedup of 36

36´mn is possible.

The GTX580 GPU, for instance, has 16 multiprocessors to process 36 slices. Every multiprocessor
processes two slices and those that finish first jointly process the remaining four. If synchroniza-
tion slowed down the tracking of the last four slices, offloading them to the CPU would result in
an even larger speedup.

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02

 30 31 32 33 34 35 36

GP
U

Tr
ac

ki
ng

 T
im

e
[%

 o
f f

ul
l E

ve
nt

]

Number of processed Slices

Pb-Pb
Central Pb-Pb

Figure 6.30: Tracking Performance Depen-
dency on Slice Count [II]

 30
 31
 32
 33
 34
 35

 0 1 2 3 4

 T

ra
ck

in
g

Ti
m

e
[m

s]

CPU Trackers

Pb-Pb
Max Speedup, Pb-Pb

 152
 156
 160
 164
 168
 172
 176

Central Pb-Pb
Max Speedup, Central Pb-Pb

Figure 6.31: Performance of Combined GPU/
CPU Tracker [II]

Fig. 6.30 shows that for central heavy ion events, the tracking time depends linearly on the number
of slices processed. Therefore, the achieved speedup depends only linearly on the number of slices
processed by the CPU. The smaller non-central event shows a small effect at 32 slices (a multiple
of the multiprocessor count), where the speedup is more than linear. So the proclaimed positive
effect exists but is very small. Finally, Fig. 6.31 compares the achieved results with themaximum
possible speedup, which is defined as the tracking time the GPU takes for processing its part
of 36´mn slices. It reveals that for large events the implementation is almost optimal.

The combined GPU/CPU tracker complicates the QA. Hence, and due to the small benefit, it is
not used in the HLT for the time being. If tracking becomes a bottleneck in the future, it can be ac-
celerated with a software switch without having to wait for delivery and deployment of new nodes.

6.4.6 Final Performance Analysis

Fig. 6.32 shows a summary plot of this chapter. The new GPU tracker with all optimizations
is about three times faster than the CPU version on the highly clocked hexa-core Westmere.
Interestingly, the speedup is of the same order of magnitude as for the previous generation of
GPUs and CPUs (GTX285 and Nehalem). The GTX285 result lacks the newer optimizations from
this chapter since they have not been backported. Initialization and tracklet output are fastest
on the CPU (using twelve threads) and slowest for the GTX285 (single-threaded). The Fermi
cards lie in between using three CPU threads, which is sufficient for the pipelined processing.
More CPU cores do not speed up the overall process. The performance of joined GPU/CPU
tracking is shown for comparison. Four slices are offloaded to four CPU threads in this case.

CHAPTER 6. TPC SLICE TRACKING ON GPU 43

 0

 2000

 4000

 6000

 8000

Initialization

Neighbors
Finder

Neighbors
Cleaner

Start-Hits
Finder

TrackletConstructor

TrackletSelector

TrackletOutput

Full Run

Full Multi-
threaded Run

Full GPU/CPU

Combined Run

0

125

250

375

500

Tr
ac

ke
r C

om
po

ne
nt

 T
im

e
[μ

s]

Fu
ll

Tr
ac

ki
ng

 T
im

e
[m

s]

CPU (Westmere, 3.8 GHz, 6 Cores)

63
3

37
49

22
4

12
6

81
64

54
2

21
3

50
6

50
6

50
6GPU (GTX285, Nehalem, 3 GHz)

28
25

23
87

54 87

39
54

14
80 17
58

31
8

GPU (GTX480, Nehalem, 3 GHz)

14
10

13
41

39 48

25
26

85
0

84
6

29
3

21
0

GPU (GTX580, Westmere, 3.8 GHz)

11
47

11
28

29 41

21
48

71
2

58
2

23
4

17
3

15
5

Figure 6.32: GTX580 Tracker Performance with and without Multi-Threading17 [II,III]

6.4.7 The 2011 Heavy Ion & 2012 Proton-Lead Runs

For the 2011 run, the HLT was upgraded with more GPUs to be able to process central events
at a rate of 200 Hz. Due to data compression performed by the HLT, ALICE DAQ16 was able
to store heavy ion events at the full TPC readout rate. Triggering and thus also tracking were
not critical for operation. In addition, the transformation component that applies the calibration
corrections to the TPC clusters was not fast enough to run at 200 Hz. The GPU tracker processed
a subset of the events in real-time. After the TPC had changed the process for trip recovery in
the middle of November, it was possible that partially black events were passed to the GPU
tracker, where some TPC slices were filled with noise. This can exceed certain buffer sizes of the
GPU tracker causing it to skip the event and reinitialize. Depending on which buffer’s limit was
reached first, a race condition in the synchronization of the GPU tracker threads could trigger a
deadlock. This bug has been fixed. Other than that, the tracker ran stable.

The GPU tracker was operated during the entire proton run in 2012. After the cluster-transfor-
mation improvements by Sergey Gorbunov enabling higher rates, the GPU tracker accomplished
to provide incident-free full online tracking during the proton-lead run at the beginning of 2013.

6.4.8 GPU Tracking on non-CUDA Hardware

From a strategic perspective, it is desirable to use a vendor-independent API instead of CUDA
for the tracker. Initially, there was no alternative but in the meantime OpenCL has matured and
has been reevaluated. Since OpenCL does not have full C++ support, two strategies have been
followed. First, under the supervision of the author, Jens Börger has ported the corresponding
code to plain C for his master thesis [Bör 11]. Second, AMD has added C++ kernel language
extensions to their OpenCL SDK. Based on this, a wrapper is being developed that uses a
common C++ source code in NVIDIA CUDA and AMD OpenCL granting vendor-independence.
Following on one of these approaches, an OpenCL tracker is likely to be realized in the future.
16 Data Acquisition - The DAQ stores all data which are not rejected by the HLT to tapes.
17 For comparison, two twelve-core Magny-Cours CPUs with 2.1 GHz [V] perform the tracking in 495 ms and are thus

equally fast as the six-core Westmere [II]. The unequal per-thread performance arises from three facts: more efficient
scheduling on the Westmere since the slice count is a multiple of its core count, different frequencies, and different
single thread performance in general.

44

Chapter 7

TPC Track Merging on GPU

7.1 Review of the Situation

After the first well-performing version of the GPU tracker had been implemented, the track
merger was left as the most computationally intensive part of event reconstruction. The switch
from the single-threaded CPU tracker to the GPU tracker made the slice tracking time almost
negligible. Thus, in [Roh 10 I, 10.7] it was concluded mandatory to speed up the merger, possibly
using a GPU. However, meanwhile, Sergey Gorbunov has dramatically accelerated the merger by
algorithm optimizations. Fig. 7.1 gives an overview.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

Initial Tracker
(Single CPU)

Tracker
(GTX285)

Tracker
(Fermi)

Merger
(Old)

Merger
(New)

Ti
m

e
[m

s]

8143.8

318.0 173.0

1959.9

173.4

Figure 7.1: Initial Performance of Track Mer-
ger and Slice Tracker [I,II]1

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

Unpack
Slices

Merge within
Slices

Merge
Slices

Reformat
Tracks

Track Fit

Ti
m

e
[μ

s]

7735 5195 11238
18040

125498

Figure 7.2: Duration of Merger Steps [II]

The new merger and the Fermi tracker require comparable compute time. However, the merger
requires only a single CPU core while the tracker occupies the GPU and multiple CPU cores,
thus much more resources are spent for tracking. For this reason, less effort has been invested
into the GPU merger than into the GPU tracker.

The merger itself involves five steps: Unpacking the input data from the tracker, merging tracks
within slices, merging tracks between adjacent slices, reformatting the output, and the final
track fit. The final track fit involves the Kalman filter and a polynomial approximation to the
magnetic field. To be essentially correct, the fit in the merger uses the same formulas as the slice
tracker, which are presented in Appendix D. In contrast to the tracker, the merger does not apply
simplifications to speed up the fit. In particular, the slice tracker assumes a constant magnetic
field, it assumes that the errors of x- and y-coordinates are uncorrelated, and it ignores the
energy loss in the material during the propagation. This makes the fit in the merger much more
complex. Fig. 7.2 lists the duration of all merger steps measured with the new single-threaded
CPU version.

1 The benchmarks of the initial CPU tracking and for the GTX285 are taken on [I].

CHAPTER 7. TPC TRACK MERGING ON GPU 45

7.2 GPU-based Track Fit

The track fit is the most compute intensive task of the merger and all tracks can be fitted in
parallel. It is thus very well suited for parallelization using a GPU. The remaining tasks are
partially combinatorial and involve many substeps such as sorting and cannot be ported to GPU
easily. In addition, these steps require additional data. If they were offloaded to the GPU, this
data would have to be transferred to the GPU as well. Thus, only the track fit is ported to GPU.

Similarly to the tracker (see [Roh 10 I, 4.2]), the code has been modified to allow for a common
source code for GPU and CPU. For enabling a fair comparison, the CPU track fit has been
multi-threaded with OpenMP [OMP]. The GPU version transfers the data to the GPU, fits the
tracks, and transfers the result back to the host. To allow for a fast PCI Express (PCIe) DMA
transfer, the memory allocation routine of the merger has been altered such that it uses GPU
registered memory. Table 7.3 shows the duration of the GPU merger steps. The DMA transfer
uses the PCIe bandwidth (generation 2) almost to the full extent, thus the transfer cannot be
accelerated much more. Unfortunately, the transfer time still exceeds the computation time.

Task DMA Time [ms] Speed [GB{s]

Transfer to GPU No 10.25 3.51
Transfer to GPU Yes 6.25 5.77
Transfer to Host No 9.40 3.83
Transfer to Host Yes 5.61 6.43
Track Fit Kernel - 6.80 -

Table 7.3: Steps of GPU Track Fit [II]

Fig. 7.4 shows the achieved speedup. Although the GPU kernel itself is faster than the CPU coun-
terpart, the required PCIe transfer makes the GPU track fit fall behind the multi-threaded CPU
version. One interesting observation is that the difference between the track fit duration and the
total merger duration of the measurements is not equal. The reason is that the other CPU tasks
besides the track fit show small performance variations. They are faster if only one CPU thread
is used and if the GPU transfer is done via the DMA engine; they are slower with multi-threading
and without DMA. The differences arise most probably from OpenMP overhead and cache effects.
(A transfer by the DMA engine maintains the CPU cache while a CPU supervised transfer does
not.) In the end, this makes the GPU merger slightly faster than the multi-threaded CPU version.

 0

 50

 100

 150

 200

CPU
(1 Thread)

CPU
(Multithread)

GPU
(No DMA)

GPU
(DMA)

Ti
m

e
[m

s]

Track Fit (including DMA Transfer)

125.5

16.8
27.0 18.4

Full Merger
173.4

65.4
75.3

59.6

Figure 7.4: Speedup of GPU Merger [II]

Overall, the GPU merger speedup is almost negligible and using GPUs for tracking is much more
profitable. For this reason, the GPU merger is not used in the HLT at the moment. At long last,
it shall be mentioned that a very fast CPU is used for the test, which is much more expensive than
the GPU. Clearly, compared to a slower and cheaper CPU, GPU speedup is accordingly greater.

46

Chapter 8

Global Tracking across Slice
Borders

8.1 Limits of the Slice Tracking Approach

A particle trajectory that crosses the slice boundaries is reconstructed by first finding the track
segments within each slice independently (slice tracker) and then merging these segments to the
final track (merger). The slice tracker applies a cut for at least thirty clusters per track segment.
Thus, a track with an extension of less than thirty clusters into an adjacent slice cannot be
reconstructed completely. This flaw is coped with by a new feature called global tracking. The
track parameters of slice tracks which end in the inner or outer part of the TPC close to the slice
boundary are rotated into the local coordinate system of the neighboring slice and used as seeds
for an additional iteration of the tracklet constructor. The additional track segments obtained
this way are called global tracks. Fig. 8.1 illustrates the situation.

x

x

Slice n

Slice n-1

Slice n+1

Slice n+2

Slice n+3

45 owR s

45 Rows
Segment with less than
30 clusters, found only
with Global Tracking

Segment used as seed
for Global Tracking

Segment with more than
30 clusters; Global
Tracking not necessary

Figure 8.1: Illustration of Global Tracking Principle

8.2 Implementation

The search for global tracks is performed in the 45 highest and the 45 lowest rows of the TPC.
The area is larger than thirty rows since a track does usually not possess a cluster in each and
every row. Thus, the short track segments which are not found in the first place can range over
more than thirty rows. This poses the problem that a track segment which has been found in
the initial slice-local tracking phase can be found again as global track segment. There are two
ways to handle this:

CHAPTER 8. GLOBAL TRACKING ACROSS SLICE BORDERS 47

Figure 8.2: Global Track Segments (orange) found
in Proton-Proton Event [II]

Figure 8.3: Reconstruction of full Helix
(Upper right Image Section) [II]

• The clusters assigned to initial slice tracks can be ignored during the global tracking. This
is technically complicated and lengthens the execution time.

• Since the tracks are merged in the track merger afterward anyway, a subsequent filter can
remove duplicate clusters, i. e. it checks the IDs of all clusters assigned to a final merged
track and it removes one instance of the cluster if the ID is present twice.

Measurements show that only 0.1 % of the clusters of global track segments already belong to
a slice track from the first phase rendering the first variant immoderate. The second variant
is faster and is hence applied in the HLT. It has the additional benefit that it also filters for
identical clusters within the original slice tracks.1 Global tracking is available for both the CPU
and the GPU tracker. The GPU version performs the second tracklet construction phase on the
CPU since the tracklet count is much smaller than during the first phase. This additional task is
inserted into the pipeline in between of tracklet selection and tracklet output. The synchronization
must respect various boundary conditions, e. g. global tracking for a slice can begin only after
the tracklet selection for the neighboring slices have finished (since both write to the same data
structure). Fig. 8.2 shows the slice track segments (light green) and the additional global track
segments (orange) in a proton-proton event. (Unassigned clusters are shown in blue.)

The original combination of slice tracker and merger is unable to reconstruct a full helix. Due to a
cut on sinpϕq, with ϕ being the angle between the slice-local radial x-coordinate and the particle
momentum vector, the slice tracker cannot extrapolate tangential to the primary vertex and thus
cannot follow the entire helix. The merger only compares track segments of neighboring slices.
Due to a momentum cut, the maximum curvature of the helix is limited and without the global
track segments the range where the trajectory cannot be followed ranges over at least one full
slice. Thus, the track segments of the helix never reside in adjacent slices and cannot be merged.

Fig. 8.3 shows an example and reveals that the track segments are merged if global tracking is
used. The plot does not visualize the fitted trajectory but simply connects the clusters with lines.
The long straight part omits exactly the clusters where the extrapolation does not work due to
the cut on sinpϕq. Unfortunately, the ALICE offline framework is incapable of handling or even

1 The cluster to track assignment of the slice tracker is not completely unique but in certain situations a cluster is
shared between multiple tracks – in a deterministic way [Roh 10 I, 2.3.5]. In rare cases, a cluster can be shared
between two tracklets which are merged to one track containing the cluster twice.

48 8.3. RESULTS

Figure 8.4: Global Track Segments (orange)
found in Heavy Ion Event [II]

 0

 2000

 4000

 6000

 8000

 10000

 12000

 40 60 80 100 120 140 160

Tr
ac

ks

Clusters

Local Tracking
GlobalTracking

Figure 8.5: Cluster per Track Statistics for
Global Tracking [II]

storing track segments where the sign of cospϕq changes. Thus, such tracks are currently split
artificially in two parts with positive and negative cospϕq.

8.3 Results

Fig. 8.4 visualizes global tracking in a heavy ion event while Fig. 8.5 presents the clusters per
track statistics with and without global tracking. It is obvious that with global tracking by trend
more clusters per track are found.

Global tracking only prolongs tracks but does not find new ones. Hence, it is unlikely that the effi-
ciency changes. The resolution, however, should improve since more clusters are available for the
fit. Fig. 9.12 shows that these assumptions are correct. It further proves that CPU and GPU re-
sults match perfectly. (Curves in the efficiency plot for CPU, GPU, and global tracking lie exactly
on top of each other. So do curves for CPU and GPU in the resolution plots.) Global tracking
influence on the resolution is rather small because in the end not so many tracks are affected.

Finally, Table 8.6 shows that the global tracking feature increases the tracking time only slightly.
Due to its much shorter overall execution time, the relative increase is higher for the GPU tracker.
The time increase of the GPU tracker can be reduced to only 4.6 % by using one additional CPU
thread for the global tracking part. The very low overhead of the CPU global tracker is due to
its single thread. An exemplary multi-threaded global CPU tracker results in a tracking time
increase of 12.6 % compared to the multi-threaded slice tracker. Obviously, the number of threads
which must be synchronized plays an important role (three for the GPU version, twelve for the
multi-threaded CPU version).

Component Slice-Only Tracking Global Tracking Time Increase

CPU Tracker 553.3 ms 565.4 ms 2.19 %
GPU Tracker 35.8 ms 39.0 ms 9.03 %
Track Merger 30.3 ms 31.9 ms 5.23 %

Table 8.6: Global Tracking Time [II]

2 Figures 9.1 and 9.4 use the following notation: z is the beam axis, x and y are the radial and tangential axes
respectively, Φ is the polar angle (tan Φ “ py{px), pt the transversal momentum (the projection orthogonal to the
beam), tanλ “ pz{pt, η “ 1{2 ln

`

|p|`pz{|p|´pz

˘

the pseudorapidity, and the index “mc” denotes the Monte-Carlo truth.
Primary particles are those produced in the primary vertex. This must be understood geometrically not physically,
i. e. decay products of short-lived particles like J{Ψ are considered primary particles as well. Secondary particles
originate from secondary vertices accordingly. A track is declared findable if a check defined by the ALICE offline
software is met, which selects relevant tracks and discards tracks which are unlikely to be found – such as very short
tracks. Applied cuts where not stated differently are: pt ě 200 MeV, |η| ď 0.9, and at least 30 clusters per track.

49

Chapter 9

Comparison to Offline &
Conclusions

mc
η

-1.5 -1 -0.5 0 0.5 1 1.5

 [m
m

] (
Re

so
lu

tio
n)

m
c

z-
z

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

mc
η

-1.5 -1 -0.5 0 0.5 1 1.5

 [m
ra

d]
 (

Re
so

lu
tio

n)
m

c
φ- φ

0

0.5

1

1.5

2

2.5

3

3.5

mc
η

-1.5 -1 -0.5 0 0.5 1 1.5

 [%
] (

Re
so

lu
tio

n)
Tm

c
)

/
p

Tm
c

 -
p

T
(p

0

1

2

3

4

5

mc
η

-1.5 -1 -0.5 0 0.5 1 1.5

 [m
m

] (
R

es
ol

ut
io

n)
m

c
y-

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

mc
η

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

mc
η

-1.5 -1 -0.5 0 0.5 1 1.5

 [m
ra

d]
 (

Re
so

lu
tio

n)
m

c
λ-λ

0

0.5

1

1.5

2

2.5 CPU - Local Tracking - Resolution / Efficiency
CPU - Local Tracking - Mean Resolution / Clone Rate
CPU - Local Tracking - Fake Rate
CPU - Global Tracking - Resolution / Efficiency
CPU - Global Tracking - Mean Resolution / Clone Rate
CPU - Global Tracking - Fake Rate
GPU - Global Tracking - Resolution / Efficiency
GPU - Global Tracking - Mean Resolution / Clone Rate
GPU - Global Tracking - Fake Rate

Z Resolution ResolutionΦ

Y Resolution Resolution
T

Relative p

 ResolutionλEfficiency (Primary Tracks, Findable)

(E
ffi

cie
nc

y
/

Cl
on

e
Ra

te
 /

 F
ak

e
Ra

te
)

Figure 9.1: Efficiency and Resolution of GPU and CPU Tracker with and without Global
Tracking visualized versus Pseudorapidity2

50

Online tracking for the ALICE TPC is split in two tasks: the slice tracker, which searches track
segments in all slices independently, and the track merger, which merges associated track seg-
ments. GPU-enabled versions for both tasks have been implemented, which are in no way inferior
to their CPU counterparts. Fig. 9.1 shows a perfect match in terms of resolution and tracking
efficiency. Since GPU and CPU versions share a common source code, only little additional main-
tenance effort is needed. The tracking time depends linearly on the input data size (see Fig. 9.2),
the GPU tracker having a small offset for initialization etc.

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

8 · 105

9 · 105

0 · 106 1 · 106 2 · 106 3 · 106 4 · 106

Fu
ll

Tr
ac

ki
ng

 T
im

e
[μ

s]

Clusters

CPU Time
GPU Time
CPU Time Fit
GPU Time Fit

Figure 9.2: Tracking Dime Dependency on In-
put Data Size [I]

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Tr
ac

ki
ng

 T
im

e
[m

s]

CPU Frequency [GHz]

CPU Tracker
GPU Tracker

Figure 9.3: Performance of the GPU Tracker
depending on the CPU Frequency [II]

The track fit uses about 75 % of the total merger time and is the only relevant part for GPU
adoption. It is shown that the necessary data transfer for the GPU track fit already takes 71 % of
the time the CPU takes for the whole track fit (in the multi-threaded version). Hence, irrespective
of the GPU track fit performance, the GPU merger as a whole cannot outperform the CPU version
by much. For these reasons, the GPU merger is neither utilized nor developed further. Instead,
the GPUs are used for slice tracking where they deliver a significant benefit.

The original GPU slice tracker [Roh 10 I], which had been developed for the GTX280 series,
has been ported to the newer Fermi generation and many improvements have been applied.
Optimizations to the internals of the tracker improve the performance on the Fermi. In order
for the initialization task on the CPU to keep in step, the pipeline has been multi-threaded.
Consideration of the χ2 value together with fast sorting ensures a deterministic cluster assignment
and thus consistency between CPU and GPU tracker. On top of that, it improves both efficiency
and resolution. Finally, the global tracking feature collects missing track segments, which the
antecedent slice tracking cannot find by construction.

Overall, the GPU tracker speedup is about factor three compared to a high-end CPU, quite
exactly the same factor as measured with the old version on previous hardware [Roh 10 I, 9.2].
Taking into account the hardware prices, the cost benefit of the GPU tracker is even higher.
Fig. 9.3 shows that with the improved pipeline the GPU tracking time does no longer depend
on the CPU performance at all. As long as the CPU can feed the pipeline, it is irrelevant which
CPU is employed. With most of the compute performance in the GPU anyway, cheap CPUs can
be used.

A final interesting analysis compares the HLT tracker to the offline tracker, which is eventually
used for data analysis. Consider that the HLT tracker is optimized for fast processing in order to
enable real-time analysis while the offline version is tuned for optimal fit results. Ramifications
on the execution time are discussed later. Fig. 9.4 compares resolution and efficiency of both
tracker implementations broken down in pt intervals. Subject of the analysis are final global TPC
tracks, i. e. HLT slice tracker and merger are compared to TPC offline tracker without ITS (Inner
Tracking System) fit. In order to facilitate this comparison, the official offline QA scripts were
modified and complemented with the possibilities to use TPC-only tracks and to exclude ITS data.
In addition, HLT tracks are stored with slice-local coordinates and must be rotated accordingly.

CHAPTER 9. COMPARISON TO OFFLINE & CONCLUSIONS 51

 [Gev/c]
Tmc

p
2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

 [Gev/c]
Tmc

p
2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1 Offline - Efficiency
Offline - Clone Rate
Offline - Fake Rate
HLT - Efficiency
HLT - Clone Rate
HLT - Fake Rate

Efficiency (Primary Tracks) Efficiency (Secondary Tracks)

Efficiency (Secondary Tracks, Findable)Efficiency (Primary Tracks, Findable)

(E
ffi

cie
nc

y
/

Cl
on

e
Ra

te
 /

 F
ak

e
Ra

te
)

(E
ffi

cie
nc

y
/

Cl
on

e
Ra

te
 /

 F
ak

e
Ra

te
)

(E
ffi

cie
nc

y
/

Cl
on

e
Ra

te
 /

 F
ak

e
Ra

te
)

(E
ffi

cie
nc

y
/

Cl
on

e
Ra

te
 /

 F
ak

e
Ra

te
)

(a) Efficiency

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

 [m
ra

d]
 (

Re
so

lu
tio

n)
m

c
λ- λ

0

0.5

1

1.5

2

2.5

3

3.5

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

 [%
] (

Re
so

lu
tio

n)
Tm

c
)

/
p

Tm
c

 -
p

T
(p

0

2

4

6

8

10

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

 [m
m

] (
Re

so
lu

tio
n)

m
c

y-
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

 [m
m

] (
Re

so
lu

tio
n)

m
c

z-
z

0

0.2

0.4

0.6

0.8

1

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

 [m
ra

d]
 (

Re
so

lu
tio

n)
m

c
φ -φ

0

0.5

1

1.5

2

2.5

3

3.5
Offline - Resolution
Offline - Mean Resolution
HLT - Resolution
HLT - Mean Resolution

 Resolution
T

Relative p Resolutionλ

Y Resolution Z Resolution ResolutionΦ

(b) Resolution

Figure 9.4: Comparison of HLT and Offline Tracker1

Obviously, efficiencies are equal or the HLT efficiency is even better while offline resolutions are
superior under all perspectives. However, it is clear from the design that the offline tracker yields
better resolution result. Excellent efficiency and only a moderate difference in the resolution qual-

1 See footnote 2 on Page 48 for a description of the parameters.

52

ifies the HLT tracker for a fast data analysis. Selected events can be reexamined with the offline
version later. The comparison to offline serves as a tool to investigate possible improvements.
There are currently three apparent points with an unfavorable effect on HLT tracking:

• Due to the non-linearity in the propagation formula, the Kalman filter must be iterated such
that the result converges to the optimal estimator (see Appendix D). The offline tracker
performs three repetitions; the HLT tracker skips the repetitions for performance reasons.
This costs between one and two percent of the resolution.

• Previously, the offline QA macro used to generate Fig. 9.4 has not been compatible with
HLT tracks. The HLT tracker was tuned based on a similar script, which applies a different
set of cuts. Hence, there is a chance that tuning the HLT tracker with respect to the new
cuts can improve the results in the future.

• Fig. 9.1 shows a systematic error in the HLT pt resolution that depends on η. There are
indications that this is because the HLT tracker for performance reasons does currently
not respect the y- and z-components of the magnetic field during the propagation. At the
moment, there is an ongoing investigation how to implement a proper extrapolation without
slowing down the reconstruction.

 40

 60

 80

 100

 120

 140

 160

 40 60 80 100 120 140 160

Cl
us

te
rs

 (
H

LT
)

Clusters (Offline)

Figure 9.5: Clusters per Track Comparison

Fig. 9.5 relates the number of clusters found by
HLT and by offline for identical tracks. Identi-
fication is performed by comparing the assigned
Monte-Carlo labels. Most data points are close to
the green line which indicates equality. By trend,
HLT finds even more clusters. However, this is ac-
tually no deficiency of the offline tracker because
in certain situations the offline implementation dis-
cards clusters on purpose when this improves the
final track resolution.

The HLT tracker is wrapped by a component of
the HLT framework which collects and unpacks in-
coming data for all slices. Previously, sorting the incoming data fragments by slice number was
implemented inefficiently. This did not play a role for the single-threaded CPU tracker but had
to be completely rewritten to reduce the delay to a minimum for the GPU tracker. The improved
version is about ten times faster. Fig. 9.6 shows the remaining overhead. The merger component
requires quite exactly the same amount of time as the tracker component. Fig. 9.7 demonstrates
an improvement of an order of magnitude compared to the CPU tracker (single-threaded) and of
multiple orders of magnitude compared to the offline tracker.

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

0.5 · 106 1 · 106 1.5 · 106 2 · 106

Tr
ac

ki
ng

 T
im

e
[s]

Number of Clusters

HLT GPU Tracker
HLT GPU Tracker Component
HLT Merger Component

Figure 9.6: Processing Time of HLT Compo-
nents [II]

 0.01

 0.1

 1

 10

 100

 1000

0.5 · 106 1 · 106 1.5 · 106 2 · 106

Tr
ac

ki
ng

 T
im

e
[s]

Number of Clusters

HLT GPU Tracker
HLT GPU Tracker Component
HLT CPU Tracker Component
HLT Merger Component
Offline Tracker

Figure 9.7: HLT & Offline Processing Time
[II]

CHAPTER 9. COMPARISON TO OFFLINE & CONCLUSIONS 53

The HLT compute nodes are not used exclusively for tracking but the processors are also used
for other tasks such as cluster transformation and vertexing. Therefore, the final speedup in the
HLT is analyzed in the following way. The GPU tracking component uses three CPU threads, one
merger component needs one more CPU core. Since the HLT automatically pipelines the events
and since GPU tracker and merger times are alike, GPU tracking and track merging together
occupy about four CPU cores.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.5 · 106 1 · 106 1.5 · 106 2 · 106

Sp
ee

du
p

Fa
ct

or
 (

Co
m

pa
re

d
to

 O
ffl

in
e)

Number of Clusters

HLT GPU Tracker
HLT GPU Tracker Component
HLT CPU Tracker Component

Figure 9.8: Speedup of HLT [II]

In the speedup shown in Fig. 9.8, the time for GPU
tracking is thus taken as the maximum of GPU
tracker time and merger time times four – for the
four CPU cores. The speedup is then calculated
as the ratio compared to offline and CPU tracking
time. Overall, the plot shows the speedup of the
HLT CPU and GPU tracker if four CPU cores are
used for tracking leaving all other cores available
for other tasks. The HLT tracker is already fifteen
times faster than the offline version, and the GPU
tracker outperforms the CPU version by another
factor of ten.

In order to get an overview of the cost benefit, consider that a single GPU performs the tracking of
a whole event about as fast as a full compute node with two Magny-Cours processors and 24 cores.
Since the GPU tracker occupies only three cores, it is no unreasonable statement that the CPU
is still almost fully available during GPU tracking. CPU resources are required for various tasks
anyway. Hence, plugging a GPU in a compute node essentially saves the costs for one full
additional node and for the extra infrastructure required for more nodes. With GPU costs being
a fraction of the entire HLT facility costs, the GPU tracker allows TPC online tracking with
almost negligible investment in extra hardware. Assuming $ 5000 for a 24-core compute node
and $ 300 for a GPU, considering the 64 GPUs currently deployed in the HLT, and neglecting
the infrastructure, the net saving is about $ 300000.

Since the HLT tracker has competitive efficiency, an imaginable step for the future is to combine
the fast HLT track finder with its excellent efficiency and the better but slower offline track fit.
Currently, there is an ongoing joint investigation by the Offline group and Sergey Gorbunov to use
the HLT tracks as seeds for the offline tracker. In a later step, one could think about discarding
clusters not associated to HLT tracks in order to reduce the storage demands further.

With the modifications to the offline QA macros, they can be used to evaluate online tracking
quality automatically – and even more important – under exactly the same constraints as the
offline QA.

ALICE is the only LHC experiment that employs GPUs for online analysis. Other high energy
physics experiments like CMS and ATLAS employ conventional processors but have started eval-
uating GPUs for their update plans [Sch` 11, Eme` 12, Fun` 13]. In the current configuration,
the ALICE HLT can process central heavy ion events at a rate of more than 200Hz. The GPU
tracking was active and ran stable during the heavy ion phases in 2010 and 2011, during the
proton run in 2012 and during the proton-lead phase in 2013.2

2 In 2010 and 2011, only a subset of the incoming events were processed due to a memory limitation in the framework
and due to a bottleneck in the preceding cluster transformation component, which was unable to pass transformed
clusters to the tracker at full rate. Starting with the proton run in 2012, the HLT GPU tracker was steadily enabled,
tracking all events during data-taking.

54

Part III

Heterogeneous High Performance
Linpack Benchmark

55

Chapter 10

Introduction to Linpack, DGEMM,
and LOEWE-CSC

The second part of this thesis is about the Linpack benchmark: the standard tool for ranking
HPC systems. After the necessary terms and definitions are introduced, Chapter 11 will describe
a new HPL implementation for the LOEWE-CSC compute cluster. It is called HPL-GPU and
based on a new DGEMM (Section 10.3.2) library called CALDGEMM [Roh` 10 II]. Both are
available as open source (see Appendix I). The results achieved with this implementation on the
LOEWE-CSC have been published in [Bac` 11 I]. The following Chapter 12 extends HPL-GPU
to a wider set of architectures. In particular, it focuses on energy efficient clusters culminating
in the Sanam cluster. Results of this chapter have been published in [Roh` 11].

10.1 Heterogeneous Compute Clusters

In the last decades the size, the compute performance, and the power consumption of compute
clusters have steadily been increasing. A point has been reached where the power becomes the
dominant cost factor and where an enormous engineering effort is required for power supply
and heat dissipation. This makes it prohibitively expensive to buy more performance with more
electrical power [Fen 05]. The outdated pure speed metric must be replaced by a new measure that
considers power consumption as well [Kam` 08, Sha` 06]. Nonetheless, users expect the compute
performance to grow in the way they are used to. Evidently, conventional clusters cannot achieve
this. Heterogeneous clusters employing special energy efficient accelerators are one way out.

Some heterogeneous clusters use special hardware such as CELL processors or ClearSpeed ac-
celerators [End` 10]. Recently, the trend has been moving to GPUs. In the last five Top500
lists [Meu`], always two to three of the top ten clusters have employed GPUs. The design varies
from multi-GPU [Mat` 10] to low-power GPU [Cop 10, Sco` 10] approaches. When this work was
started, power efficiency of GPU clusters was below 1 GFlop{J and their achieved Linpack score was
only about half the theoretical peak performance.1 The following chapter introduces an optimized
Linpack version that can reach above 70 % of the theoretical performance on the LOEWE-CSC.

10.2 The LOEWE-CSC Compute-Cluster

The LOEWE-CSC [Bac` 13, Goe] is a heterogeneous compute cluster built by the University
of Frankfurt in 2010. It consists of 34 racks (Fig. 10.1) of 12 boxes (Fig. 10.2) with two nodes
1 The Tsubame cluster reached 53 % with ClearSpeed accelerators [End` 10], competitive clusters with NVIDIA

GPUs reach (in the June 2011 Top500 list) between 42.6 % (Nebulae) and 54.6 % (Tianhe-1A). The former Tianhe
cluster [Wan` 11] reached quite good 70 %, but on a single and slow node which boosts the efficiency.

56 10.3. LINPACK

each. AMD Magny-Cours twelve-core CPUs and AMD 5870 Cypress GPUs are employed. Most
compute nodes are equipped with two CPUs and one GPU, resulting in 24 CPU cores. Some
special nodes for applications with high CPU and memory demands provide four CPUs for a total
of 48 cores. These nodes are called “quads” hereafter. The GPU nodes are equipped with 64 GB
of main memory, the quads have twice that much. In total, 768 GPU-nodes and 40 quad-nodes are
present – in addition to separate nodes for login, infrastructure, mass storage, etc. Two separate
networks are installed: a gigabit Ethernet network for management and a high-speed 40 GBit{s

QDR InfiniBand interconnect providing half-bisectional bandwidth and low-latency RDMA2.

Figure 10.1: The LOEWE-CSC Supercomputer [Goe] Figure 10.2: One LOEWE-CSC
Rack [Goe]

A new cooling concept is used in the LOEWE-CSC. All racks are equipped with a heat exchanger
for water cooling in their back doors. The air pressure produced by the servers creates sufficient
airflow making additional fans obsolete. The water is cooled outside the building with one or two
evaporative coolers, depending on the environmental temperature. For these reasons, the extra
power required for cooling is very low compared to other compute-clusters. The LOEWE-CSC
has a PUE3 below 1.1 [Bac` 13].

Also the compute nodes are very power efficient. The double precision peak performance of
a Magny-Cours CPU is 100.8 GFlop{s. In combination with 544 GFlop{s provided by the Cypress
GPU, each node has a theoretical performance of 745.6 GFlop{s while consuming about 750 watts.

10.3 Linpack

Linpack is a widely used benchmark for supercomputers and builds the basis for the semiannual
Top500 supercomputer list [Meu`]. It solves a dense system of linear equations rA ¨ x “ y. The
Top500 rules demand that the factorization algorithm must be of complexity OpN3q where N
is the matrix size. This ensures a measurement of the compute cluster’s performance and not
of the algorithm. Still, the implementation of the benchmark may be optimized individually for
each supercomputer. In order to guarantee comparability of HPL results, which depend on the
dimension of the matrix, all single-GPU results in this thesis, if not stated differently, are based
2 Remote DMA – Remote Direct Memory Access.
3 Power Usage Effectiveness is defined as the ratio “Total Facility Power” divided by “IT Equipment Power”.

CHAPTER 10. INTRODUCTION TO LINPACK, DGEMM, AND LOEWE-CSC 57

on a 64 GB matrix while multi-GPU tests use a 128 GB matrix. Systems which are included for
comparison but do not have enough memory (see Appendix H) use the maximum possible matrix
size.

It can be shown that solving a system of linear equations can be reduced (complexity-wise)
to matrix multiplication. As a remark: the Strassen-Algorithm [Str 69] (see Section 16.5.2) can
perform matrix multiplication in OpN log2 7q. This can even be improved to OpN2.375477q as shown
in [Cop` 87]. However, the latter one has no application on HPC as the appearing constants
are far too large. In the following, the naive OpN3q matrix multiplication algorithm is used
exclusively and only its implementation improved.

10.3.1 High Performance Linpack

High Performance Linpack (HPL) is an implementation of the Linpack benchmark provided
by the University of Tennessee [Don` 03, UoT] and the University of Colorado. It employs
the “Basic Linear Algebra Subprograms” (BLAS) and the LAPACK libraries [Don` 90], which
are common interfaces for matrix/vector operations. HPL implements the benchmark by per-
forming an iterative LU -decomposition (rA “ rP rLrU with an upper triangular matrix rU , a lower
triangular matrix rL, and a permutation matrix rP) with row-partial pivoting and by solving the
triangular system rUx “ prL´1

rPyq afterward [Pre` 92, 2.3]. (See Appendix C.4 for a short intro-
duction.) The LU -decomposition is calculated via Gaussian elimination, which computes rL´1

rPy

as a side-effect. Let A “ p rA|yq PMN,N`1 be an N ˆpN ` 1q matrix. Fig. 10.3 shows all relevant
submatrices.

C

U

L

A - Matrix

To be Processed

Panel

Trailing Matrix

L - Matrix

Already Processed

U - Matrix

C - Matrix

U’
L’

Nested Factorization

Figure 10.3: Submatrices in HPL

Each iteration of the outermost loop of HPL implements the following steps:

• Recursive panel factorization (or only factorization): a panel of Nb columns is fac-
torized through LU -decomposition of the top-left Nb ˆNb submatrix into L1 and U 1 using
an arbitrary solver as a black box. For numerical stability, a row pivoting algorithm swaps
lines of the panel (which includes L, but neither U nor C) such that the diagonal matrix
element, which occurs in the denominator during the Gaussian elimination, is maximal.

• Panel broadcast (or only broadcast): After the panel has been factorized, it is broad-
casted to all nodes that take part in the computation.

58 10.3. LINPACK

• Replication of row pivotization (or only pivoting) consists of two steps: An LASWP
function applies the row swaps carried out during the factorization to the trailing matrix as
well. In preparation for the next steps, the U-broadcast distributes the current U -matrix
to all nodes.4

• U-matrix update (orDTRSM): The row-operations originating from the Gaussian elimi-
nation for calculating L1 and U 1 during the first step are replicated on the U -matrix. Math-
ematically, this corresponds to a multiplication by U 1´1 from the left or to solving the
triangular system U 1 ¨ Unew “ Uold, which is accomplished by the BLAS routine DTRSM.

• C-matrix update (orDGEMM): The row operations for zeroing out the former L-matrix
must be performed on C as well. The BLAS function DGEMM calculates Cnew “ Cold´L¨U .

The next iteration continues on the matrix C. After the last iteration, the matrix A has been
transformed as p rA|yq ùñ prLå rU|rL´1

rPyq (see Appendix C.4). It is important to note that
the panel factorization step involves lots of BLAS calls, among them many calls to DGEMM and
DTRSM. In the following, if not stated differently, DTRSM and DGEMM refer to the above steps
of the iterative factorization and not to the nested calls inside the recursive panel factorization.5

In multi-node runs on HPC-clusters, the matrix is distributed among many compute nodes. These
nodes are arranged in a grid. The distribution is further described in Section 12.4.

All steps except for the final matrix multiplication (DGEMM) can be performed in OpN2q.6
The OpN3q matrix multiplication is the time critical part of HPL, at least considering the com-
putational effort. Memory or IO-bound operations can still have a significant contribution to
execution time. Table 10.4 compares the contribution of all relevant functions to the overall HPL
execution time in an exemplary configuration of sixteen nodes (without distinguishing DGEMM
calls inside of and outside of the factorization). It becomes clear that the DGEMM, which does
the matrix multiplication, is the most important part and is thus analyzed in more detail.

Function DGEMM DTRSM DSCAL DGEMV DCOPY DAXPY
Time [%] 96.59 2.57 0.35 0.21 0.20 0.08

Table 10.4: Total Contribution of BLAS Functions to HPL Runtime

10.3.2 Double Precision General Matrix Multiplication

DGEMM performs a “Double-Precision General Matrix Multiplication”. It computes the gen-
eralized matrix-product C 1 “ α ¨ oppAq ¨ oppBq ` β ¨ C where C 1 is overwritten onto C, α and β
are scalars, A is an mˆ k-matrix, B is a k ˆ n matrix, and oppAq can be A or At. For the time
being, the transposition parameters shall be ignored. Both A and B are assumed transposed
or not transposed, whichever can be processed better. Section 11.2.5.1 explains how transposed
matrices are treated. Both row- and column-major format are supported (see Appendix C.2).

HPL can use different BLAS libraries. For the Linpack on the LOEWE-CSC, the GotoBLAS2
library [TAC] is used. Its DGEMM has an outstanding performance. It employs multiple blocking
levels7 and is specifically optimized to respect page boundaries and to minimize TLB8 misses.

The ACML-GPU9 library offloads BLAS routines to AMD GPUs but could not utilize the GPU
to the desired extent. Hence, it was decided to start a new approach from scratch.
4 The broadcast is performed by a spread and roll algorithm as described in [UoT].
5 The recursive factorization of the panel employs essentially the same algorithm with smaller and smaller block sizes

recursively. Finally, at very small block sizes, the above algorithm produces too much overhead and the matrix is
factorized directly instead.

6 The matrix multiplication is at least OpN2q as it must calculate at least N2 distinct values. All known algorithms
have a higher complexity. Hence, matrix multiplication is the dominant part of HPL.

7 Blocking improves cache utilization in matrix multiplication. See Section 11.2.4.1 for details.
8 Translation Lookaside Buffer.
9 AMD Core Math Library for GPU [Adv I].

59

Chapter 11

An Optimized HPL Variant for the
LOEWE-CSC

11.1 Target Architectures

During this thesis a version of HPL has been developed, which is specifically designed for good
GPU utilization. The main objective was to maximize the Linpack performance for the LOEWE-
CSC architecture. Therefore, in the first phase, only one particular architecture is considered:
Two AMD Magny-Cours CPUs with one Cypress GPU per node. Optimizations for this specific
hardware were pushed to their very limit until the submission for the Top500 list in late 2010.

In a second stage, the Linpack and especially the DGEMM library were optimized for good uti-
lization of other architectures as well. Of course, not each and every hardware constellation could
receive as much devotion as the LOEWE cluster. Special focus is laid on the AMD Cayman and
Tahiti GPU series, on multi-GPU configurations, on Intel platforms, on other GPU programming
APIs, and in particular on the Sanam cluster. See Appendix G for platform-related features.

11.2 CALDGEMM

The CALDGEMM library provides a GPU-based DGEMM. It has been developed at the Univer-
sity of Frankfurt for this thesis and is available as open source (see Appendix I). Initially, it ran
on AMD Cypress hardware only. It was later improved to run on a wider variety of hardware,
too (see Chapter 13). It consists of two parts: The kernel, which performs the actual matrix
multiplication on the GPU, and the framework, which handles DMA transfers as well as data
pre- and postprocessing. In the first version, the kernel from the “double_matmult” example of
the AMD Stream SDK [Adv 09] was adopted. The framework itself is written from scratch.

11.2.1 GPU-based DGEMM

At first, only the matrix-product C “ A ¨ B is considered. Scalars and addition can easily be
included later and are ignored for the time being. When not explicitly stated otherwise, k “ 1024
is assumed. The justification for this will come up later in this chapter. The BLAS interface
supports both column-major and row-major matrices.1,2 Switching from column- to row-major
and vice versa corresponds to the transition A ¨B ñ pAt ¨Btqt “ B ¨ A so only the order of the
operands needs to be changed. Therefore, in the following all matrices can be assumed row-major.
1 Refer to Appendix C.2 for the definition of row- and column-major.
2 Column-major matrices are primarily used by Fortran programs, while C code usually implements the row-major

version.

60 11.2. CALDGEMM

The 5870 AMD GPU has 1 GB of memory, the LOEWE-CSC nodes offer 64 GB of main memory.
Typically, the HPL matrix size is chosen as large as possible, i. e. as large as the host memory.
Therefore, it is not possible (or even desirable) to process the whole DGEMM calculation in a
single step on the GPU. Instead, a pipelined streaming approach is implemented, which operates
on tiles. The matrices A, B, and C are divided into submatrices Ai, Bj , and Ci,j as shown in
Fig. 11.1. Without loss of generality, k is assumed small (k « 1024) because a DGEMM with
large k parameter can be emulated by multiple DGEMMs with smaller k. All dimensions are
powers of two or multiples of higher powers of two for all but the last Ai and Bj respectively (and
the corresponding Ci,j). The Ci,j are called tiles. The matrix-product C “ A ¨B can thus be cal-
culated as Ci,j “ Ai ¨Bj . Each LOEWE-CSC node is equipped with two twelve-core Magny-Cours
processors. These 24 cores provide a non-negligible amount of compute power. They can be easily
used for the DGEMM as well by calculating some tiles on the CPU (see Section 11.2.3 for details).

m

k

n
A - Matrix

B - Matrix

C - Matrix

A1

A2

A3

A4

B1 B2 B3 B4

C
1,1

C
1,2

C
1,3

C
1,4

C2,1 C2,2 C2,3 C2,4

C3,1 C3,2 C3,3 C3,4

C4,1 C4,2 C4,3 C4,4

Crest

h

Figure 11.1: Splitting of Matrices in Tiles for Streaming DGEMM

If the CPU treats the remainder part CRest (corresponding to the last Ai and Bj), as a fur-
ther simplification, all GPU tiles Ci,j can be assumed as square matrices of dimension h. The
parameter h is later set to a value that is optimal for the GPU.

The best data arrangement for GPU memory fetches and stores is not necessarily the format of
the plain input and output matrices Ai, Bj , and Ci,j , e. g. it might be good to store multiple rows
in an interleaved format.3 CPU based pre- and postprocessing reformats the data accordingly.
These steps are called “DivideBuffer ” and “MergeBuffer ” respectively.4 The DivideBuffer
function can also be used to transpose the input matrices, as required by the BLAS specifications.

The first naive CALDGEMM implementation works in the following way. The output matrix C
is divided in two parts: one is processed by the CPU and the other by the GPU. This is done
in a way, such that the GPU part fulfills the above size constraints. GotoBLAS processes the
CPU part. The GPU part is streamed through the GPU. First, the input matrices A1 and B1

are preprocessed and then transferred to the GPU. Thereafter, the GPU kernel is executed to
calculate the matrix-product, which is transferred back to the host. Finally, the postprocessing
is performed. Then the steps are repeated with the next tile. Fig. 11.2 visualizes the process.
3 The storage format is described in Section 11.2.4.2.
4 The names originate from the AMD Stream SDK sample double_matmult, which CALDGEMM was originally based

on.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 61

GOTO
BLAS

Core 0Core 1Core 2

Divide 1
DMA to GPU 1

DGEMM 1
DMA to Host 1

......

Merge 1
Divide 2

DMA to GPU 2
DGEMM 2

DMA to Host 2
Merge 2
Divide 3

DMA to GPU 3
DGEMM 3

DMA to Host 3
Merge 3
Divide 4

DMA to GPU 4
DGEMM 4

DMA to Host 4
Merge 4

Synchronization

CPU GPU

Figure 11.2: Process-Flow of first CALDGEMM Implementation

There are two apparent issues. Workloads for GPU and CPU must be chosen such that none
of them idles toward the end. Hence, either the required computation time must be known in
advance or they must be scheduled dynamically. In addition, the pre- and post-processing as
well as the transfer to and from the GPU should overlap with GPU calculation. Otherwise, good
GPU utilization cannot be achieved.

11.2.2 Implementation Details

For certain reasons explained later, CALDGEMM spreads both each input and each output tile
over multiple buffers (in interleaved or more complicated formats). The usage of multiple input
buffers can reduce the register requirements (see Section 11.2.4.1), alter the cache access pattern,
and is a general prerequisite for Color Buffer output (see Section 11.2.4.1).

Theoretically, Zero-Copy allows for locating both the input and the output buffers on the host or
the GPU. In practice, CALDGEMM always locates the input memory on the GPU as the input
throughput of the kernel exceeds the PCI Express bandwidth by far. For the output memory,
both variants are implemented. Input data are preprocessed by DivideBuffer into page locked
buffers on the host of exactly the same size as the input buffers on the GPU. Then, these buffers
are transferred via one large DMA transfer. The output is either directly written to the host or
it is first written to GPU memory and transferred to the host via a single huge DMA transfer.
The original C-matrix is never sent to the GPU as it is read only once. The GPU calculates
only X “ α ¨ AB while the MergeBuffer routine calculates C 1 “ X ` β ¨ C. Section 11.2.4.1
explains how transposed matrices are processed. In this way, a full DGEMM is implemented.
The parameters m, n, k, and α are stored in constant buffers on the GPU.

11.2.3 Combined GPU/CPU DGEMM

This section describes in more detail how the combined GPU/CPU DGEMM is implemented.
The matrix is split in m-direction, where the upper part is processed by the GPU.5 To be
5 The reason to split the matrix in m direction is to have GPU and CPU both process consecutive memory segments.

62 11.2. CALDGEMM

precise, the GPU part ranges on the m-scale from 0 to u ¨h with u minimal such that u ¨h ě m ¨r
where r P r0, 1s is the GPU-ratio. The first naive implementation calculates the ratio by

r “
pGPU

pGPU ` pCPU

,

with pGPU and pCPU the projected performances of the CPU and the GPU DGEMM for the
employed matrix size. Section 11.2.4.4 explains the estimation of these parameters.

As Fig. 11.2 shows, one processing component is likely to idle toward the end of the DGEMM. It is
desired that rather the CPU idles because it is the slower processor. Hence, the GPU performance
is overestimated by requiring u¨h ě m¨r instead of taking the closest multiple of h. The GPU tiles
are calculated in a loop over the vertical direction and an inner loop over the horizontal direction
(see Fig. 11.3). The CPU computes also the rightmost n mod h columns due to size constraints.

m

k

n
A - Matrix

B - Matrix

C - Matrix

A1

A2

A3

A4

B1 B2 B3 B4

C1,1 C1,2 C1,3 C1,4

C2,1 C2,2 C2,3 C2,4

C3,1 C3,2 C3,3 C3,4

Crest

h

oB
L

G
ot

A
S

GotoBLAS

Part processed
by GotoBLAS

Overlapping part
that must be
processed by
GotoBLAS

GPU Processing
Order

Figure 11.3: Distribution of DGEMM Workload on GPU/CPU

Splitting the matrix in an upper and a lower part does not work well with flat matrices (n " m),
especially when m « h. Therefore, flat matrices are split in a left and a right part rather than
upper and lower parts. In that case, every step that depends on the splitting simply works the
other way around. In principle, everything remains the same. To keep the notation simple,
assume n ď m for the rest of this chapter.

11.2.3.1 CPU Affinity

CALDGEMM requires CPU resources, even for the GPU part of the matrix, namely the Divide-
Buffer and MergeBuffer functions. For this purpose, it includes a thread-server implemented
with pthreads synchronized by POSIX semaphores, which handles all multi-threading require-
ments. Each dual-CPU LOEWE-CSC node has four independent memory controllers: one per
CPU die.6 The available PCI Express bandwidth depends on which memory controller connects
the host memory for the transfer (see Fig. 11.4). Only one die, on the LOEWE-CSC it is the first
one (die 0), is connected directly via HyperTransport to the chipset which connects the GPU
via PCI Express. All GPU related memory (i. e. input and output buffers) is thus allocated on
DRAM connected to die 0.7 To allow for fast access by the DivideBuffer and MergeBuffer func-
6 Each Magny-Cours CPU internally consists of two dies with one memory controller each (see Section 2.2.1).
7 Measurements of 5870 and 6970 DMA performance in a multi-GPU environment are presented in Fig. 12.33 in

Section 12.8.2. They reveal that one should use different memory controllers for multi-GPU.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 63

tions, the threads executing those are pinned to cores on die 0 as well. Later, a multi-threaded
CALDGEMM (with parameter t) is introduced that runs t ` 1 GPU related threads. These
threads are pinned to cores 0 to t. For the serial version presented before, assume t “ 0.

 0

 1

 2

 3

 4

 5

 6

 7

DMA to GPU DMA to Host DivideBuffer MergeBuffer

Th
ro

ug
hp

ut
 [G

B/
s]

Same Die

5.27

6.68

2.02 2.26

Different Die

4.57 4.30

1.94 1.78

Figure 11.4: Dependency of PCI Express
Bandwidth on CPU Die (AMD) [V]

 0

 100

 200

 300

 400

 500

DGEMM / Kernel

Perfornmance

without Transfer

DGEMM / System

Performance

including Transfer

DGEMM / System

Performance under

high CPU Lload

DGEMM / Combined

GPU/CPU System

Performance

HPLPerformance

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
]

350

270 250

390

287

Figure 11.5: Performance of the very first
CALDGEMM/HPL Implementation [V]

Utilizing t` 1 threads for the GPU part of CALDGEMM leaves 23´ t of the 24 cores available.
To avoid congestion on the CPU cores, GotoBLAS should use only cores t ` 1 to 23. Since
GotoBLAS comes with its own thread pinning policy, a patch has been implemented that allows
for excluding CPU cores from its pinning mechanism.8 Fig. 11.5 shows the performance achieved
by the first implementation in the very first successful HPL run (with the CAL SDK kernel).

11.2.4 DGEMM Optimizations

CALDGEMM has been optimized in two steps. To ensure the maximum possible GPU perfor-
mance in the final version, the kernel performance is optimized independently of the framework.
Afterward, the framework is optimized with respect to the boundary conditions set from the
optimal kernel. The idea is that a good framework should be able to sustain almost the full
kernel performance in the application whereas, as a matter of fact, any performance lost in the
kernel is irretrievably lost in the application as well.

11.2.4.1 Kernel Optimization

Older GPU DGEMM implementations, especially for NVIDIA GPUs, usually used shared mem-
ory/Local Data Storage as described in [Vol` 08]. However, the AMD LDS is not capable
of delivering sufficient bandwidth to obtain full ALU utilization on Cypress GPUs. Therefore,
N. Nakasato [Nak 10] concludes that it is better to read the input data through the texture cache.9

This subsection only handles the processing of one tile Ci,j of size hˆ h, which will be called C
hereafter. The tile is subdivided into Cµ,ν again (with upper indices µ, ν – the lower indices i, j
are omitted). The same also holds for A and B. However, this is absolutely unrelated to the
previously described tiling. Lower indices determine the tile processed on the GPU at a time,
upper indices determine the block of the tile processed by one thread on the GPU (see below).
The reader should keep this in mind so that no ambiguity occurs.

The CALDGEMM kernel is written in the AMD Intermediate Assembler Language (IL) for
achieving optimal performance [Adv 10 II]. Preliminary tests with OpenCL yielded only unsat-
isfactory results and other high level languages were not yet available by then.
8 GotoBLAS implements two routines for this: one for NUMA aware operating systems and for the rest. Although only

the NUMA variant is used on the cluster, both routines are patched to allow for the greatest possible compatibility.
9 N. Nakasato [Nak 10] also provides a faster kernel implementation than the one from the AMD Stream SDK. However,

this was not available when the work for CALDGEMM started.

64 11.2. CALDGEMM

Blocking Since blocking is a common technique that can operate on non-square matrices in
general, this paragraph on blocking assumes a matrix tile Cp“ Ci,jq of size rm ˆ rn. (So C is
an rmˆ rn matrix, A an rmˆ k matrix, and B a k ˆ rn matrix.) This notation is used exclusively
in this paragraph and afterward, square tiles of size h “ rm “ rn are considered again.

Calculating the DGEMM result needs rm ¨ rn ¨ p2k ` 2q floating point operations, out of which
the GPU computes rm ¨ rn ¨ 2k operations. If all destination entries are processed independently
and no input data are reused, rm ¨ rn ¨ 2k memory fetches are required, i. e. exactly one memory
fetch per floating point operation. A peak performance implementation with this instruction to
memory fetch ratio exceeds the GPU memory bandwidth by far. Even the cache bandwidth is
insufficient.

The number of fetches can be reduced with a technique called blocking, which is already known
from CPU based matrix multiplication. In the literature, blocking is also called tiling. Since the
labeling “tiling” has already been used in another context throughout this thesis, it is not used in
this meaning. Each C-matrix tile is further subdivided into blocks Cµ,ν of dimension aˆb where a
is the vertical blocking size and b the horizontal, and each thread processes a different Cµ,ν .
The A- and B-tiles are also subdivided into Aµ,l and Bl,ν of dimension aˆ1 and 1ˆb respectively.
Then, C can be calculated by Cµ,ν “

řk
l“1A

µ,lBl,ν . The blocking optimization works in the
following way: in each addition step, the matrices Aµ,l and Bl,ν are loaded into registers. Then,
each element of the one is multiplied with each element of the other and the result is added to
the corresponding entry in Cµ,ν (see Fig. 11.6).

C
(=C)i,j

B
(=B)j

A
(=A)i

A - Matrix

B - Matrix

C - Matrix

Part of A read by Thread

Part of B read by Thread

Processed by One Thread

b Blocking

a Blocking

m,n
Cm,1

A

1,n
B

Data loaded from A at once

Data loaded from B at once

Figure 11.6: Blocking inside the DGEMM Kernel

This requires only k ¨ pa` bq memory loads to calculate a ¨ b entries of C, for a total of

rm

a
¨
rn

b
¨ k ¨ pa` bq “ rmrnk ¨

a` b

ab

memory fetches. The number of memory accesses is thus reduced by a factor 2ab
a`b . Obviously, a

symmetric blocking (a “ b) is optimal.

If x memory fetches of s bytes each are required for a calculation involving y floating point
operations, a memory bandwidth of xsg{y is needed for reaching a performance of g. The peak
performance of the employed GPUs is 544 GFlop{s in double precision which translates to 4352 GB{s

for a “ b “ 1 and 1088 GB{s for a “ b “ 4. The 5870 has 20 multiprocessors each offering a texture
cache bandwidth of 54.4 GB{s, i. e. 1088 GB{s in total. Thus, a 4ˆ 4 blocking is exactly sufficient
to achieve peak performance, given that the cache hit efficiency is 100 %. Of course, this is
unrealistic and suggests analyzing bigger blockings.

The following variants are implemented: 8ˆ 2, 4ˆ 4, 8ˆ 4, 4ˆ 8, and 8ˆ 8 blocking.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 65

Register Usage Since each GPU thread calculates one of the Cµ,ν submatrices of C, the thread
needs at least a ¨ b registers for Cµ,ν , a registers for Aµ,l, and b registers for Bl,ν , plus 3 registers
for µ, ν, and l, making a total of 3 integer registers and pa`1q¨pb`1q´1 double precision registers.
As the GPU offers common 128-bit registers for integer and floating point, pa`1q¨pb`1q`1

2 registers
are needed. All kernels benchmarked later are implemented such that they really hit this lower
register boundary, which is e. g. 41 for the 8ˆ 8 kernel, the biggest one implemented. A simple
trick to reduce the number of registers is to interleave multiple input data buffers. This way the
same relative pointer can be used within multiple buffers to fetch multiple entries, one from each
buffer, e. g. by four-fold row-based interleaving the pointer to the buffer position px, yq can be
used to fetch the matrix entries px, 4yq to px, 4y` 3q. Obviously, the highest possible number of
threads should be running concurrently to hide memory latencies. However, due to the limited
register file, thread-count and blocking size cannot both be maximized at the same time. This
shows that a larger blocking is not always preferable and that the trade-off point has to be found.

For large blockings the register usage is critical while for the 4ˆ 4 kernel it is not: the unrolled
kernel in the next paragraph caches some entries in registers and does not reach the lower limit.
Nonetheless, it is the faster version.

Unrolling & Hardcoding Constants The kernel source code explicitly contains the multipli-
cation of Aµ,l with Bl,ν , i. e. there is one line of code for each scalar multiply-add. The entry Cµ,ν
is calculated with a single loop over l. This loop can be unrolled to achieve optimal performance.
Fig. 11.7 shows the performance of the 4ˆ 4 kernel and different unrolling factors. The optimal
factor depends on the blocking size. (Bigger blocking sizes need less unrolling.) For each kernel
individually, the optimal parameter is determined experimentally.

Furthermore, the k constant can be hardcoded in the kernel instead of being read from a constant
buffer. A special kernel with hardcoded k “ Nb “ 1024 is in stock. The correct kernel is chosen at
runtime depending on the actual k. Fig. 11.8 shows the result. As can be seen, a hardcoded k does
not always improve kernel performance.10 However, for the B transposed kernel variant, which
is used for HPL in the end, the performance increases. Analogously, special kernels for α “ 1
and α “ ´1 have been, which spare oneself the scalar multiplication.

 0

 100

 200

 300

 400

 500

 600

1 2 4

D
GE

M
M

 K
er

ne
l P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

Unroll Factor

A Transposed

395.8
441.6

379.4

B Transposed

397.5

470.9

385.8

Figure 11.7: Performance of
unrolled Kernels [V]

 0

 100

 200

 300

 400

 500

 600

Variable k Hardcoded k

D
GE

M
M

 K
er

ne
l P

er
fo

rm
an

ce
 [G

Fl
op

/s
] A Transposed

450.1 442.7

B Transposed
462.9 470.9

Figure 11.8: Improvements
with hardcoded k [V]

 0

 200

 400

 600

 800

 1000

 0 300 600 900 1200 1500 1800

SG
EM

M
 K

er
ne

l P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

k

Compute Shader
Pixel Shader

Figure 11.9: Comparison of
SGEMM Shader Types [V]

Cache organization The texture cache can be configured in two ways: linear or tiled.11 The
tiled mode is optimized for two-dimensional access patterns such as for matrices. It is by far the
faster mode for CALDGEMM (470.8 GFlop{s v.s. 98.9 GFlop{s).12

10 The loop optimizer of the current compiler does not always work well and should be improved.
11 See [Adv 09, 1.11] for a description of the tiled mode.
12 It has to be admitted that the kernel used for the comparison has been tuned for the tiled mode. It should be possible

to improve the kernel for linear mode quite a bit. However, tuning for linear access is much more complicated and
was thus not attempted. On top of that, tiled mode is optimized for two-dimensional patterns and should be faster
for matrix operations anyway.

66 11.2. CALDGEMM

Output Memory The Cypress chip offers two ways to write data to the output memory:

• Color Buffers: Each thread can output to a maximum of eight buffers containing float4
(a vector of four floats) entries. The position of the thread in the execution configuration
automatically defines the storage position of each thread in the buffer, so address calculation
is neither necessary nor even possible. As a thread calculates adjacent entries of the desti-
nation matrix but the output is written to eight distinct buffers, the output format cannot
be the native memory format of the C-matrix. This already shows that the MergeBuffer
functionality is mandatory for Color Buffers. Eight float4 Color Buffers allow for storing
sixteen double values and are therefore unsuited for large blockings.13

• MemExport: The newer AMD chips starting with the Cypress support the MemExport
function. With MemExport threads can directly address and access a linear destination
buffer (the global buffer). However, only one Global Buffer can be used at a time. This
leads to some problems which are discussed in Section 11.2.5. All kernels with large blocking
use the MemExport function in lack of alternatives. Additionally, the smaller kernels have
been implemented with the MemExport function, too.

Besides the output method, different output locations can be chosen. The output can be written
to the global GPU memory or to page locked host memory. In the first case, the data are trans-
ferred to the host after the kernel execution in one big DMA transfer. In the second case, the out-
put is directly written to the host memory via DMA by the kernel (Zero-Copy). So either an extra
DMA transfer is required or the kernel execution might be slowed down due to latencies of the host
memory access. For each kernel variant the better implementation is determined experimentally.14

Shader Type In addition to Pixel Shaders, the Cypress chip supports Compute Shaders. Com-
pute Shaders are meant not for graphics but allow for more complex GPGPU programs. They do
not support Color Buffers but only the MemExport output. It turns out that the Compute Shader
version is inferior to the Pixel Shader version with MemExport, although the kernel is identical
except for the Shader Type definition. (Fig. 11.9 shows the SGEMM performance measured with
both shader types at different k.15) The Compute Shader approach was thus not followed.

Matrix Size The matrix size affects the memory access pattern and thus the cache hit ratio.
Hence, it is relevant for the performance. The tiling enables the usage of almost arbitrary matrix
sizes. So they are chosen in a way that maximizes the performance. Fig. 11.10 shows the perfor-
mance for multiple h and k values.16 In theory, non square matrices enable more degrees of free-
dom for the matrix size, but measurements demonstrated that the individual parameters rm and rn
(from the blocking paragraph) affect performance very similarly such that setting rm “ rn “ h is
no real restriction. Using such plots, for each kernel the matrix sizes suited best are determined.

The performance decreases significantly when h drops below 1024 while it increases very slightly
above 1024. CALDGEMM uses large h and drops below 1024 only if enforced by matrix size
restrictions. The total peak is observed at k “ 512. However, small k lead to a higher synchro-
nization overhead and thus a larger value is needed. Above k “ 1024, the performance decreases
more rapidly. Therefore, even as the kernel is not the absolutely fastest one, k “ 1024 remains the
chosen value for HPL. Figures 11.11 and 11.12 show more detailed plots for some chosen k and h.

The final values used for h are 512, 1024, 2048, 3072, and 4096 depending on the matrix size. Sec-
tion 11.2.5.1 has more information. The value 512 is used only when absolutely necessary, namely
in the case when one of the total matrix dimensions is very small, i. e. m ă 1024 or n ă 1024.
13 The 4ˆ 4 and 8ˆ 2 blockings can use Color Buffers. All other blockings are restricted to MemExport.
14 The performance of the output types is shown in Fig. 11.13 in the overall kernel comparison at the end of this section.
15 The SGEMM (Single-Precision General Matrix Multiplication) performance in the plot is obtained from the AMD

SDK example and not from the SGEMM implementation introduced in Section 12.13.
16 The kernel used for the figure is the best-performing kernel that is determined only at the end of this chapter.

Showing all plots for all kernels would by far exceed the scope of this document.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 67

 512 1024 1536 2048

k
 1024

 2048
 3072

 4096

h

200

300

400

500
D

G
E
M

M
 K

er
ne

l P
er

fo
rm

an
ce

[G
Fl

op
/s

]

 250

 300

 350

 400

 450

 500

Figure 11.10: DGEMM Kernel Performance for different Matrix Sizes [V]

 400

 420

 440

 460

 480

 500

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

D
GE

M
M

 K
er

ne
l P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

k

h = 1024
h = 1536
h = 2048
h = 3072
h = 4096

Figure 11.11: Kernel Performance at differ-
ent k [V]

 300
 320
 340
 360
 380
 400
 420
 440
 460
 480
 500

 500 1000 1500 2000 2500 3000 3500 4000

D
GE

M
M

 K
er

ne
l P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

h

k = 512
k = 1024
k = 1536

Figure 11.12: Kernel Performance at differ-
ent h [V]

Transposed Matrices For complying with the DGEMM specification, either the kernel or the
DivideBuffer routine must be capable of transposing input matrices. For the moment, only the
influence on kernel performance shall be considered.

The schemes how the matrices A and B are read in the innermost loop of matrix multiplication
with blocking are different: A is read column-wise and B is read row-wise. Consider a symmetric
blocking, which will turn out to be the most effective one: if A is transposed, it requires exactly
the row-wise scheme of B (untransposed) and vice versa. Either the row-wise or the column-wise
scheme is faster and thus should be used exclusively – for both A and B. For this reason, many
of the following sections only treat the case where exactly one matrix is transposed.

The GPU always reads a double2 value at a time. For a transposed B-matrix, this means that
two columns are read at once. This is unsuited regarding the blocking approach, where only
entries of one column are required at the same time. To avoid this, the data structure of the
input matrices can be altered in a way that two consecutive doubles in memory correspond to
the same column. (See Section 11.2.4.2 for an illustration of the storage format.) The conversion
is done by DivideBuffer. The same issue exists with non-transposed A-matrices and is solved
analogously. Unrolled kernels always need at least two columns and are unaffected. Kernels
without transposition, A transposed, B transposed, as well as both A and B transposed are
implemented with all blocking methods. The correct version of DivideBuffer is chosen depending
on how the kernel expects its input and how the data are actually formatted. For symmetric
blocking, the case with both matrices transposed is identical to the one with none transposed so

68 11.2. CALDGEMM

it is omitted. For the large 8ˆ8 blocking, the B transposed part has not been implemented after
the A transposed version turned out not to perform well and because the effort to introduce the
above-mentioned special data structure for reading single columns is considered inappropriate.

 0

 100

 200

 300

 400

 500

 600

A Transposed

4x4

4x4 B Transposed

4x4

A Transposed

8x4

A Transposed

4x8

A Transposed

8x8

8x2 A Transposed

8x2

B Transposed

8x2

A/B Transposed

8x2

D
GE

M
M

 K
er

ne
l P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

Tiling

GPU Memory Color Buffer Output
44

7.
0

45
1.

3

46
8.

0

35
1.

5

22
0.

2

35
1.

3

22
0.

3

Host Memory Color Buffer Output
44

4.
1

45
1.

0

47
0.

2

33
7.

8

22
0.

1

33
5.

7

22
0.

5

GPU MemExport Output
43

8.
9

44
5.

5

46
4.

4

38
3.

6

39
1.

5

34
3.

1

34
4.

4

22
1.

7

34
4.

0

22
1.

6

Host MemExport Output44
9.

1

45
0.

4

46
4.

0

37
0.

7

38
4.

6

32
1.

0

33
6.

0

22
2.

4

33
6.

1

22
2.

3

Figure 11.13: DGEMM Kernel Performance Overview [V]17

Fig. 11.13 shows the results using all kernels with all transposition, blocking, and output settings.
All presented results are tuned individually using the best unrolling factor, matrix blocking and
tiling sizes, as well as hardcoded constants.

In contrast to previous DGEMM implementations for Cypress GPUs [Nak 10, Vol` 08, NVI],
the 4ˆ 4 kernel reaches at least 450 GFlop{s independent of whether the input matrices are trans-
posed or not. It is obvious that the 4 ˆ 4 kernel with transposed B-matrix is the fastest one.
It turns out that the MemExport output is generally a bit slower than Color Buffers. This
is a fortunate coincidence as the MemExport output causes a problem which is described in
Section 11.2.5.

Comparing the output location unveils an interesting fact. For most kernels, the GPU memory
is faster – as expected due to the PCI Express delay. However, it is the other way around for the
fastest kernel: 4 ˆ 4 with B transposed. The most probable explanation is that the input data
rate already exhausts global GPU memory bandwidth. The PCI Express bandwidth is available
in addition, thus the output does not slow down the input. Since writing to host memory directly
is also the best case from the synchronization perspective, this version is used in CALDGEMM.

Best Parameters In summary, the kernel used in all later benchmarks on the LOEWE-CSC
has the following characteristics:

• 4ˆ 4 blocking.
• B-matrix transposed.
• Pixel Shader kernel.
• Output via Color Buffers.
• Output buffer located in host memory and accessed by the kernel directly via DMA (Zero-
Copy).

• Loop unrolled with an unrolling factor of two.
• k “ 1024.
• h P t512, 1024, 2048, 3072, 4096u (chosen at runtime as described in Section 11.2.5.1).
• Texture cache set to tiled mode.

17 The performance of the host memory output depends to a large extent on the system platform (see Section 12.5.1).

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 69

11.2.4.2 Data Buffer Format

B-Matrix

C-Matrix

k

k

a

a b

b

a/8 a/8 a/8 a/8

k

m/8

m

k

A-Buffer 1 A-Buffer 2 A-Buffer 4A-Buffer 3

A-Matrix

Figure 11.14: Storage Format of Input Buffers for 8ˆ 8 Kernel with A transposed

Figures 11.14 and 11.15 show the storage format of the input data for the 8ˆ8 A transposed kernel
and the 4ˆ4 B transposed kernel without unrolling. In every iteration, the 8ˆ8 kernel reads four
values from four distinct buffers, all storing a part of A. Analogously, four values of the B-matrix
are read. As A is stored in transposed form, A and B are read in exactly the same way.

A-Matrix

Buffer 1

Buffer 2

k

km

m/4

Figure 11.15: Storage Format of Input
Buffers for 4ˆ 4 Kernel with B transposed

and without Unrolling

The format for the B Transposed kernels is slightly
more complicated. In Fig. 11.14 eight values within
one row could be read by fetching four double2 -
values from the four distinct buffers. However, it
is not possible to read four values within one col-
umn using two double2 fetches because each dou-
ble2 fetch automatically reads two values from one
row. To cope with this behavior, data must be
stored interleaved, such that the two components
of the double2 -vector belong to the same column.
Fig. 11.15 visualizes the data format. Clearly, this
format prohibits the usage of simple streaming dou-
ble2 -copy instructions in DivideBuffer.

The situation is different for unrolled kernels be-
cause there, two columns are needed within each
iteration. Theoretically, registers could be saved
by reading the first column first, then performing the multiplication, and only then reading the

70 11.2. CALDGEMM

second column. However, the negative effect of the context switch between ALU instructions
and texture fetches outweighs the register benefit. (Storing four extra values for the A and
the B-matrix requires only four additional (128-bit) registers.)

11.2.4.3 Exemplary 8 ˆ̂̂ 8 Kernel

The 8 ˆ 8 kernel with A transposed, although not the fastest kernel, can be considered as the
reference implementation. Hitting the lower register boundary is most critical in this case. Every
other kernel (with A transposed) can be derived directly from this one by reducing the number
of input buffers. This section presents the original IL (Intermediate Assembler Language) code
and the compiled ISA (Instruction Set Architecture) code of the kernel. Appendix B gives a
short introduction to the assembler languages used. Listing 11.16 shows the IL DGEMM kernel
with hardcoded k “ 1024 and α “ 1 (α being the factor for the scalar multiplication).

�
1 il_ps_2_0
2 dcl_cb cb0 [4]
3 dc l_input_pos i t ion_interp (l i n ea r_nope r spec t i v e) vWinCoord0 .xy__
4 dcl_resource_id (0) _type (2d , unnorm)_fmtx(unknown) . . . _fmtw(unknown)

. . .
11 dcl_resource_id (7) _type (2d , unnorm)_fmtx(unknown) . . . _fmtw(unknown)
12 d c l_ l i t e r a l l0 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000
13 d c l_ l i t e r a l l1 , 1024 .0 , 1 . 0 , ´0.5 , 2 . 0
14 mov r1 , l 0

. . .
45 mov r32 , l 0
46 mov r0 .xy__, vWinCoord0 . xy00
47 mov r0 .w, l 1 . z
48 wh i l e l oop
49 add r0 .w, r0 .w, l 1 . y
50 ge r33 . z , r0 .w, l 1 . x
51 break_log i ca lnz r33 . z
52 sample_resource (0) _sampler (0) r33 , r0 . yw

. . .
59 sample_resource (7) _sampler (7) r40 , r0 . xw
60 dmad r1 . xy , r33 . xy , r37 . xy , r1 . xy
61 dmad r1 . zw , r33 . xy , r37 . zw , r1 . zw

. . .
124 dmad r32 . xy , r36 . zw , r40 . xy , r32 . xy
125 dmad r32 . zw , r36 . zw , r40 . zw , r32 . zw
126 endloop
127 f l r r0 . xy , vWinCoord0 . xy
128 f t o i r33 . xy , r0 . xy
129 imul r33 . x , r33 . x , cb0 [2] . z
130 imad r0 , r33 . yyyy , cb0 [2] . yyyy , r1 . xxxx
131 iadd r33 , r0 , cb0 [3]
132 iadd r34 , r33 , cb0 [4]
133 mov g [r33 . x] , r1

. . .
140 mov g [r34 .w] , r8

. . .
193 end
� �

Listing 11.16: DGEMM IL Kernel (8ˆ 8 Tiling, A transposed)

Eight input buffers are defined in lines 4 to 11: four buffers for the A-matrix and four buffers for
the B-matrix. The target registers for the C-matrix are initialized to zero in lines 14 to 45. l1.x

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 71

is the hardcoded k value. Lines 50 and 51 represent the loop exit condition.18 Assume the thread
is calculating rows a to a`7 and columns b to b`7 of the target matrix in the kth iteration. The
registers r0.x and r0.y (abbreviated by r0.xy) store the target location in the C-matrix divided
by eight (due to 8ˆ 8 blocking). Lines 52 to 59 read eight values from the A and the B-matrix
each. Every instruction reads two doubles. The location inside the A input buffers, row a and
column k, is stored in r0.yw. (Fig. 11.14 visualizes how the input data are stored in memory.)
They are swapped as A is transposed and the row is divided by eight because each iteration reads
two doubles from four buffers each (r0.y = a{8, r0.w = k). The same index can be used to access
all four buffers. In the same way, eight doubles are read from the B-matrix. Lines 60 to 125
multiply each element read from A with each element read from B and add the results to the
target registers. Lines 127 to 132 calculate the destination address for eight stores to the global
buffer. Lines 133 to 140 store eight of the target registers.19 This is repeated four times to store
all 32 target registers.

Register r0 stores the loop iteration counter and the two-dimensional index of the C-matrix
entry that is calculated. Registers r1 to r32 are used to accumulate the results. (64 entries
require 32 double2 registers.) Register r33 is used temporarily to store the result of the comparison
in line 50. Registers r33 to r40 cache the data read from A and B. Finally, registers r33 and r34
are reused during index calculations for storing the results. At no time more than 41 registers
are required.

Some tricks are needed to make the compiler stick with this lower bound of 41 registers, e. g. the
copying of the vWinCoord0 register to r0 in line 46. The “right” code for 41 registers was found
experimentally. Inspecting the corresponding ISA code shown in Listing 11.17 shows that the
kernel in fact uses only 41 registers (R0 –R40).20

�
1 00 ALU: ADDR(64) CNT(125)
2 0 x : MOV R9 . x , 0 . 0 f
3 y : MOV R9 . y , 0 . 0 f
4 z : MOV R9 . z , 0 . 0 f
5 w: MOV R9 .w, 0 .0 f
6 t : MOV R0 .w, ´0.5
7 1 x : MOV R10 . x , 0 . 0 f
8 y : MOV R10 . y , 0 . 0 f
9 z : MOV R10 . z , 0 . 0 f
10 w: MOV R10 .w, 0 .0 f
11 t : MOV R11 . x , 0 . 0 f

.
132 25 x : MOV R40 . x , 0 . 0 f
133 y : MOV R40 . y , 0 . 0 f
134 z : MOV R40 . z , 0 . 0 f
135 w: MOV R40 .w, 0 .0 f
136 02 LOOP_DX10 i 0 FAIL_JUMP_ADDR(9)
137 03 ALU_BREAK: ADDR(193) CNT(2) KCACHE0(CB0:0´15)
138 26 w: ADD R0 .w, R0 .w, 1 . 0 f
139 27 x : PREDGT ____, KC0 [1] . x , R0 .w
140 04 TEX: ADDR(560) CNT(8) VALID_PIX
141 28 SAMPLE R3 , R0 . yw0y , t0 , s0 UNNORM(XYZW)
142 29 SAMPLE R4 , R0 . yw0y , t1 , s1 UNNORM(XYZW)

.
147 34 SAMPLE R6 , R0 . xw0x , t6 , s6 UNNORM(XYZW)
148 35 SAMPLE R8 , R0 . xw0x , t7 , s7 UNNORM(XYZW)
149 05 ALU: ADDR(195) CNT(124)
150 36 x : FMA_64 R12 . x , R3 . y , R1 . y , R12 . y

18 Line 50 can be replaced by “ge r33.z, r0.w, cb0[0].x” for dynamic k.
19 In the example, α is fixed to 1.0. For dynamic α the lines must be preceded by “dmul r0.xy, r0.xy, cb0[0].zw“, etc.
20 The r123 register is used only as a fake register for the 64-bit FMA.

72 11.2. CALDGEMM

151 y : FMA_64 R12 . y , R3 . y , R1 . y , R12 . y
152 z : FMA_64 R123 . z , R3 . y , R1 . y , R12 . y
153 w: FMA_64 R123 .w, R3 . x , R1 . x , R12 . x
154 37 x : FMA_64 R123 . x , R3 . y , R1 .w, R12 .w
155 y : FMA_64 R123 . y , R3 . y , R1 .w, R12 .w
156 z : FMA_64 R12 . z , R3 . y , R1 .w, R12 .w
157 w: FMA_64 R12 .w, R3 . x , R1 . z , R12 . z

.
402 99 x : FMA_64 R123 . x , R7 .w, R8 .w, R37 .w
403 y : FMA_64 R123 . y , R7 .w, R8 .w, R37 .w
404 z : FMA_64 R37 . z , R7 .w, R8 .w, R37 .w
405 w: FMA_64 R37 .w, R7 . z , R8 . z , R37 . z
406 08 ENDLOOP i0 PASS_JUMP_ADDR(3)
407 09 ALU: ADDR(451) CNT(31) KCACHE0(CB0:0´15)

.
418 10 MEM_EXPORT_WRITE_IND: DWORD_PTR[0+R0 . x] , R12 , ELEM_SIZE(3) VPM
419 11 MEM_EXPORT_WRITE_IND: DWORD_PTR[0+R1 . x] , R20 , ELEM_SIZE(3) VPM
420 12 MEM_EXPORT_WRITE_IND: DWORD_PTR[0+R2 . x] , R17 , ELEM_SIZE(3) VPM
421 13 MEM_EXPORT_WRITE_IND: DWORD_PTR[0+R3 . x] , R25 , ELEM_SIZE(3) VPM
422 14 MEM_EXPORT_WRITE_IND: DWORD_PTR[0+R4 . x] , R14 , ELEM_SIZE(3) VPM

.
450 END_OF_PROGRAM
� �

Listing 11.17: DGEMM ISA Kernel (Corresponding to IL Kernel in Listing 11.16)

11.2.4.4 Scheduling & GPU/CPU Performance Ratio

The goal of the CALDGEMM scheduler is to utilize both GPU and CPU to the full extent and
hide all latencies. On the one hand, scheduling based on small tiles simplifies load balancing,
while on the other hand, both the CPU and the GPU DGEMM work better on larger matrices.
An optimum has to be found. First, recapitulate the situation: the matrix product C “ A ¨B is
calculated, where C is an mˆ n, A an mˆ k, and B a k ˆ n matrix. The matrix C is divided
in a GPU and a CPU part. The GPU part is further split in tiles of size hˆ h. The dimensions
of the GPU part can be assumed multiples of h as the CPU processes the borders.

As described in Section 11.2.3, the matrix is split in two parts, where one is processed by the
GPU and one by the CPU. Obviously, the optimal splitting ratio is not a constant but can depend
on the input parameters m, n, and k. A plausible assumption is that it does depend on the size
of C but not on the shape, so it depends on m ¨ n but not on m and n individually. Naturally,
because of the tiling, this assumption holds for the GPU part of CALDGEMM. GPU DGEMM
performance depends mostly on m ¨ n, a small dependency on m ` n is caused by the DMA
transfer. It is now analyzed whether the same holds true for GotoBLAS.

Fig. 11.18 visualizes the ratio of GPU and CPU performance as a function of m ¨ n using an
assortment of runs with various m and n. Optimally, the plot should show a curve that goes
asymptotically toward a constant for large m ¨ n with only tiny fluctuations on the y-axis. Un-
fortunately, this is not the case. A deeper analysis unveils that this is related to a slowdown
in GotoBLAS for certain input parameters. The green points in the figure correspond to runs
with n “ 2048, red points to runs with n close to 0 pmod 4096q, and blue points to all other
parameters. (The term pmod 4096q in brackets means the full (in)equation is read modulo 4096.)

In order to understand the behavior at n ” 0 pmod 4096q, Fig. 11.19 shows the performance in
a range of 2048 around n “ 40960 (which is congruent 0 pmod 4096q). It clearly demonstrates
that the slowdown only occurs in a small area around n “ 40960.

Fig. 11.20 shows the region near n “ 40960 in a higher resolution. In order to exclude the pos-
sibility that the slowdown is related to the thread count, two variants are shown; with similar

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 73

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 · 109 0.5 · 109 1 · 109 1.5 · 09 2 · 109 2.5 · 109

GP
U/

CP
U

D
GE

M
M

 S
pe

ed
 R

at
io

m · n

Standard Case
Special Case 1
Special Case 2

1

Figure 11.18: GPU/CPU DGEMM Performance Ratio [V]

behavior. Fig. 11.21 shows that there is no such dependence on the m parameter. As a con-
clusion there are two special cases, n “ 2048 and n ” 0 pmod 4096q, which have to be treated
independently. Otherwise it can be assumed that the ratio depends only on m ¨ n.

 144

 146

 148

 150

 152

 154

 156

 158

 38912 39936 40960 41984 43008

Go
to

BL
AS

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

n

Figure 11.19: Performance of
GotoBLAS depending on n

(21 Threads) [V]

 145

 150

 155

 160

 165

 170

 175

 180

 185

 190

 40928 40960 40992

Go
to

BL
AS

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

n

21 Threads
24 Threads

Figure 11.20: Performance of
GotoBLAS near n “ 40960

[V]

 144

 146

 148

 150

 152

 154

 156

 158

 38912 39424 39936 40448 40960

Go
to

BL
AS

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

m

Figure 11.21: Performance of
GotoBLAS depending on the

Value of m [V]

Fig. 11.22 shows two fits of rational functions to the experimental ratio results. The special cases
are excluded. Naturally, the data do not compose a smooth curve, but the fit is a simple method to
estimate the ratio, and the analysis in Section 11.3.4.3 demonstrates that the approach works per-
fectly. In the data for the “separated GPU/CPU DGEMM” ratio, independent DGEMMs are exe-
cuted on GPU and CPU respectively. However, finally they should run concurrently and are likely
to influence each other. Therefore, a new data-set is created, executing a “combined GPU/CPU
DGEMM” and measuring the GPU and CPU performance contribution to the combined DGEMM
independently. In this second combined run, the scheduling is based on the data obtained by the
previous separated runs. The ratio is slightly larger because the CPU DGEMM is slowed down
due to GPU pre- and postprocessing while GPU performance is hardly affected. A new fit is
done for the new data-set. The resulting curve is used to determine the ratio for CALDGEMM.

The two special cases ignored for the fit are handled the following way: If n lies in the problematic
region, the ratio is first determined normally. Then, a correction for a 5 % slower CPU accounts
for the slowdown. This is not entirely accurate, but these cases are rare anyway, rather GPU
than CPU performance is overestimated (motivated in Section 11.2.3), and finally, advanced
scheduling introduced in the next subsection corrects for small inaccuracies.

74 11.2. CALDGEMM

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 · 109 0.5 · 109 1 · 109 1.5 · 109 2 · 109 2.5 · 109

GP
U/

CP
U

D
GE

M
M

 S
pe

ed
 R

at
io

m · n

Separate GPU/CPU DGEMM runs
Combined GPU/CPU DGEMM run

Fit (Separate)
Fit (Combined)

Figure 11.22: Fitted GPU/CPU DGEMM Performance Ratio [V]

One additional fact must be considered. The CPU also has to process the rightmost part of the
matrix, as long as n ı 0 pmod hq. The size of the overlapping region depends on m and n. This
is handled the following way. First, the CPU part is calculated as normal. It is then downsized
to correct for the overlapping region and only then adjusted to be a multiple of h.

11.2.4.5 Second & Third Phase

Clearly, CPU and GPU DGEMM performance cannot be predicted well enough for the static
scheduling to result in optimal performance. Additionally, due to tiling size constraints, the
splitting position cannot be chosen arbitrarily but only in steps of h, which is 4096 for large
matrices. Therefore, a more fine-granular scheduling is needed. It can be argued that GotoBLAS
could process tiles the same way the GPU does. However, GotoBLAS shows an acceleration
of 7.25 % when processing large blocks compared to the largest tile size.21 Therefore, it is desirable
to schedule the largest possible submatrices.

For the above reasons, the scheduler contains a second and a third phase. (The first two CPU
DGEMMs, for the CPU part and the remainder of the C-matrix, are both considered phase
one.) When the CPU has finished the first phase run, it checks how many GPU tiles are still
unprocessed. It uses the same ratio as for the first phase to determine how many of these it
should process. Then, it takes a rectangular unprocessed section all at once, which is as large as
possible but contains at maximum this number of tiles. This is called second phase run.

Since CPU performance is regularly underestimated, rounding is always performed in favor of the
GPU, and the rectangular CPU part during the second phase once again poses some restrictions,
even with the two-phase scheduling the CPU sometimes idles for a short period at the end of the
run. Therefore, in a third phase a work-stealing CPU scheduler takes tiles from the GPU part,
as long as there are at least s tiles unprocessed. The optimal value of s on the LOEWE-CSC
turns out to be three. This can be explained as follows: for processing a tile, the CPU requires
about three times the time the GPU does; when the check is performed, the GPU still has to
process 50 % of its current tile in average; and after the GPU has finished its last tile, the output
must still be postprocessed by MergeBuffer, which takes roughly as long as the kernel execution.
Fig. 11.23 shows an exemplary matrix distributed between the GPU and different CPU phases.
(The second phase is not necessarily restricted to one row of tiles.)

21 The improvement of 7.25 % is measured between square matrices with m “ n “ 40960 and m “ n “ 4096.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 75

A

B

C, GotoBLAS, Phase 1a

C, GotoBLAS, Phase 1b

C, GotoBLAS, Phase 2

C, GotoBLAS, Phase 3

C, Processed by GPU

Figure 11.23: GPU/CPU Distribution of C-Matrix with three CALDGEMM Phases

11.2.4.6 Transfer Optimizations

Asynchronous Transfer Up until now, pre- and postprocessing, DMA transfer to the GPU,
and kernels have been executed serially. Only the DMA transfer to the host is done in parallel to
the computation using Zero-Copy and thus completely hidden (as described in Section 11.2.4.1).
It is desired to parallelize these tasks as far as possible. In principle, the GPU DGEMM simply
divides the part of the matrix to be calculated into several jobs. Each of these jobs consists of
DivideBuffer, data transfer to the GPU, DGEMM kernel execution together with data transfer
back to host memory, and MergeBuffer. The jobs are completely independent (except for GPU
resource usage) and can be arranged in a pipeline. In the nth iteration, the CPU preprocesses
tile n. In the meantime, tile n´ 1 can be transferred to the GPU via DMA. Concurrently, the
GPU can already process tile n ´ 2. And again at the same time, another CPU thread can
postprocess tile n´ 3. Principally, this can reduce the overall execution time to the pure GPU
calculation time – together with some overhead. This overhead consists of the accumulated time
for DivideBuffer, DMA transfer to GPU, and MergeBuffer – however, only for a single tile.

According to the CAL specifications, kernel execution and DMA transfer are completely unrelated
and asynchronous. Table 11.24 shows measurements of a CAL kernel and a DMA transfer that
take approximately the same time. Apparently, the execution time depends on the execution
order when both are called in parallel. Starting the kernel first gives the sum of the single
execution times while starting the DMA transfer first results in the maximum of the execution
times. This means that with the current drivers, a DMA transfer cannot be started while a kernel
is being executed. Still, it works the other way around.

Operation Time [s]

Kernel Execution 0.060
DMA Transfer 0.050
Combined (Kernel started first) 0.110
Combined (DMA started first) 0.060

Table 11.24: Asynchronous CAL DMA Transfer [V]

Due to this behavior, the CPU must be two steps ahead of the GPU in the pipeline. DMA
transfer for tile n` 1 must start prior to the kernel call for tile n. Hence, the pipeline overhead

76 11.2. CALDGEMM

consists of the time for DivideBuffer, MergeBuffer, and twice the DMA transfer. The CPU first
prepares only one tile, transfers it to the GPU, and calls the first kernel. While the first kernel
is running, the CPU preprocesses tiles two and three. Transfer of tile two is postponed until the
first kernel finishes. This is the point where the overhead of the second DMA transfer comes into
play. An alternative is to prepare two tiles in the very beginning, but this is counterproductive
since DMA transfer time is shorter than the DivideBuffer time (see Fig. 11.27).

As the runtime of the MergeBuffer routine exceeds the kernel execution time, or is at least of
the same order of magnitude, two MergeBuffer threads are required to ensure continuous kernel
execution. The threads postprocess the output tiles alternately. Let t be the number of output
threads. Together with one thread for DivideBuffer this makes t ` 1 threads to handle the
GPU DGEMM.22 Since the GPU writes directly to one output buffer in host memory as well, in
total t` 1 output buffers are needed. They are used in a cyclic fashion.

BBuffers Recapitulate the way tiles are processed by the GPU: an inner horizontal loop and
an outer vertical loop. First, the matrix Ai is transferred for processing Ci,1. The following tiles
in the stream, Ci,2 to Ci,n{h also require Ai, which should thus not be retransferred but simply
remain on the GPU. Afterward, Ai is never used again and Ai`1 is transferred. Now consider
the B-matrix: when calculating C1,1 to C1,n{h, each Bj is used exactly once. As long as it is
possible to store all the Bj-matrices in GPU memory, they never need to be retransferred again.
The Bj-matrices are cached in so-called BBuffers on the GPU. CALDGEMM allocates two
buffers for the A-matrix (to allow for concurrent DMA transfer and kernel execution of different
tiles) and as many BBuffers as possible. (For instance, 21 BBuffers fit on the 5870.)

GOTO
BLAS

Phase1
Rows:

12288 - 17000

Core 0Core 1Core 2
Divide (A ,B)1 1

DMA to GPU (A ,B)
1 1

DGEMM (A * B)1 1

......

DMA to GPU (B)2Merge C
1,1

Buffer 1
(B)3

(B)4

(A)2

DGEMM (A * B)
1 2

DGEMM (A * B)1 3

DGEMM (A * B)1 4

DGEMM (A * B)2 1

DGEMM (A * B)2 2

DGEMM (A * B)2 3

DGEMM (A * B)3 1

Divide (B)
2

Divide (B)3

Divide (B)4

Divide (A)2

Synchronization

Phase 2
C -C3,3 3,4

Phase 3: C3,3

Merge C1,2
Buffer 2

DGEMM (A * B)2 4

Merge C1,4
Buffer 1

Merge C2,1
Buffer 2

Merge C2,2
Buffer 3

Merge C2,3
Buffer 1

Merge C2,4
Buffer 2

Merge C3,1
Buffer 3

(A)3

Divide (A)3

Merge C1,3
Buffer 3

Columns:
16384 - 17000

T
im

e

GPU GPU

Figure 11.25: Process-Flow of improved CALDGEMM Implementation with Pipeline
(h “ 4096, m “ n “ 17000)

22 Compare to Section 11.2.3.1, which introduces the t variable. All GPU threads are pinned to cores on die 0.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 77

If n does not equal m, the matrices A and B require a different amount of memory. Swapping
the inner and the outer loop of the tiling process swaps the roles of A and B in the above con-
sideration. So the buffers in the GPU memory only need to store the smaller matrix. Hence,
the BBuffers are sufficient as long as minpm,nq ď 21 ¨ 4096. It has to be noted that the CPU
also processes a part of the matrix. This can be chosen in a way that lowers the smaller di-
mension – if otherwise the buffer size was insufficient. Finally, C only exceeds the buffer size on
the LOEWE-CSC if it is at least of dimension 129024ˆ 129025 (which requires 124 GB of main
memory).

Altogether, the BBuffers ensure that on the LOEWE-CSC both A- and B-matrix are transferred
and preprocessed exactly once.

Fig. 11.25 visualizes the implementation while Fig. 11.26 shows the effect of both optimizations –
individually and in combination. Since the overall performance dependencies on m and n are
alike, this and the following plots’ measurements are based on square matrices. It can be seen
that both attempts provide a considerable performance benefit. The combination, however, does
not result in another huge leap in performance because both optimizations approach the same
inefficiency (the GPU waiting for input data from the host). Still, especially for small matrices,
the combined implementation delivers definitely the best performance.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

GP
U

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

m= n

Asynchronous DMA Transfers / BBuffers
Synchronous serialized Transfers / BBuffers

Asnychronous DMA Transfers
Synchronous serialized Transfers

Figure 11.26: GPU DGEMM Performance for Asynchronous Transfer and BBuffers23 [V]

DivideBuffer & DMA The GPU kernel can write its result directly to host memory via
Zero-Copy. In the same way, the DivideBuffer routine could write its output directly to the GPU
memory via Zero-Copy DMA. This would make the subsequent large DMA transfer unnecessary.
However, Fig. 11.27 shows that a DivideBuffer version writing directly to GPU memory takes
more time than the usual DivideBuffer and the DMA transfer together. The reason lies in the
increased latency of the PCI Express DMA access compared to the host memory. This problem
is amplified since DivideBuffer does not write one but multiple streams in parallel, one for each
output buffer. The approach was therefore discarded.

Up until now, different schemes for buffer types and locations as well as DMA transfer scenarios
have been discussed. Certain extensions will follow throughout this thesis. A detailed overview
of all DMA paths which finally turn out to be relevant is given in Section 12.12. The discussion
is postponed until then in order to not repeat the extensive diagrams.

23 Since MergeBuffer execution takes even longer than kernel execution, all versions use two MergeBuffer threads.

78 11.2. CALDGEMM

11.2.5 Vectorization & Patched AMD Driver

Fig. 11.27 shows the throughput of the DMA transfer and the pre- and postprocessing routines.24
Consider the DMA bandwidth at first. Benchmarks show a huge dependence on the employed
system BIOS version. With earlier versions, the throughput was only about 3 GB{s. With the new
version, the transfer to the GPU is still inferior to the transfer to the host. This is unfortunate
since only the transfer to the GPU is used in practice (as the kernel writes directly to the
host). However, considering the matrix sizes appearing during HPL and remembering that all
matrices A, B, and C are transferred exactly once, the transfer to the GPU appears less relevant.
For instance, for k “ 1024, m “ n “ 81920 the data transferred to the host is 40 times the data
transferred to the GPU (50 GB versus 1.25 GB).

All versions of the DivideBuffer and MergeBuffer routines are vectorized. The author would like
to thank Matthias Kretz for his help with DivideBuffer. Prefetches26 are used and also streaming
stores27 are employed where they offer a benefit. The routines optionally use the prefetchw
instruction, which is available on AMD CPUs.

It is obvious that the DivideBuffer routine is much slower when it has to transpose the input
matrix. Section 11.2.5.1 will answer the question whether this is acceptable.

 0

 1

 2

 3

 4

 5

 6

 7

Divide/Normal

Divide/Transposing

Divide/Normal

(Zero-Copy)

Divide/Transposing

(Zero-Copy)

Merge (Zero Copy)

Merge
Merge (Zero Copy)

 Binary Driver Patch

DMA to GPU

DMA from GPU

Th
ro

ug
hp

ut
 [G

B/
s]

3.6780

1.6172
0.9765

0.6131
1.1937

2.5321 2.6287

5.2581

6.6811

Figure 11.27: Performance of Pre-/Postprocessing and DMA Transfer24,25 [V]

The MergeBuffer results need some explanation. At first, consider only the results without the
binary driver patch (introduced below). It turns out that the MergeBuffer routine is faster when
the data is transferred in one large DMA transfer than when the kernel writes directly to the host
memory. The reason is the following: In order to enable Zero-Copy access for the GPU kernel,
the memory region must be unmapped such that it has no virtual address. Naturally, the memory
must be mapped again in order to provide access for user space routines such as MergeBuffer.
Thereafter, MergeBuffer encounters a page fault for every page it accesses. To make things even

24 The best performing kernel writes directly to host memory via Zero-Copy. Thus, the calculation time and the DMA
transfer time cannot be distinguished. This makes the DMA throughput impossible to measure. Hence, for this
measurement a kernel is used that stores its output in GPU memory. The throughput of a subsequent DMA transfer
of this output to the host is shown.

25 For DivideBuffer results marked by Zero-Copy, the routine writes directly to GPU memory instead of CPU memory.
In contrast, MergeBuffer always reads from host memory. MergeBuffer results marked as Zero-Copy refer to situa-
tions where the result is transferred to the host by the kernel via Zero-Copy, otherwise the transfer is performed by
the DMA engine.

26 Prefetches explicitly load data from memory into the cache prior to their actual usage to avoid memory latencies
later.

27 A streaming store bypasses the cache and writes directly to the memory. Another scenario where streaming stores
bring a huge benefit is presented in Section 17.3.8.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 79

worse, every page is read exactly once. (Issuing a second MergeBuffer call on the same buffer,
without un- and remapping, yields the same performance as in the non Zero-Copy case.)

Unmapping memory regions prior to kernel execution is technically not necessary but it is enforced
by the AMD driver. A binary patch to the AMD driver has been created which removes this
check making the Zero-Copy version work perfectly.28 In addition to the higher throughput, the
system load of the CPU is lowered significantly without the page faults. This is analyzed in more
detail in Section 11.3.4.3.

Performing the Binary Driver Patch Disassembling the driver’s shared object files reveals
that the calCtxRunProgram API function calls a function, which checks the state of the buffer.
Its return value stored in the RAX register is checked. If the correct value is not found, a
conditional jump (JE – jump if equal) is not performed and the kernel is not executed. Replacing
the JE instruction (with opcode 0x74) by a JS (short jump) instruction (with opcode 0xEB) of
the same opcode size eliminates the check.

Global Buffer Review Recall that the global buffer is required for MemExport. At the mo-
ment, MemExport is not required in CALDGEMM but it might become relevant in the future.
The current kernel with 4ˆ4 blocking is coming to its very limit (due to the texture cache band-
width limit discussed in Section 11.2.4.1). For any further performance increase, a bigger blocking
is required. However, in that case MemExport is mandatory and thus also the global buffer.

The problem is: only a single global buffer is usable at a time. Currently, CALDGEMM re-
quires t` 1 output buffers for t output threads. As only one single global buffer is available, the
output buffers must all reside in this single big global buffer. MergeBuffer requires the buffer
to be mapped whereas a kernel, without the binary driver patch, would not start if the buffer
is mapped. This makes the binary driver patch mandatory for using both MemExport and the
asynchronous output processing at the same time.

11.2.5.1 Miscellaneous Optimizations

Tiling Size Section 11.2.4.1 analyzed the influence of the matrix size on kernel performance.
It was concluded that h “ 512 can be used for matrices with n ă 1024 or m ă 1024. Otherwise,
all 1024, 2048, 3072 and 4096 yield good results. However, up until now, only kernel performance
has been taken into account. Now the effect on overall performance shall be discussed. Naturally,
on the one hand, a larger h reduces the synchronization overhead. On the other hand, it increases
the overhead before the first and after the last kernel call and it leaves less freedom to choose
the splitting ratio. However, these negative effects should become less significant for large m
and n. Therefore, the best tiling size is expected to depend on m and n. It can be shown that
it depends only on m ¨ n so again only m “ n is considered. Fig. 11.28 shows the performance
relation between h and m “ n. As expected, bigger matrices favor bigger tilings. The tiling size
is thus auto-adjusted to be optimal for each input matrix by heuristics deduced from the figure.

One issue with the automatic tiling size selection shall be discussed. The CAL API does not
support transferring only a part of a buffer to the GPU. As the allocation takes comparably long,
the buffers are created during library initialization. This predetermines the buffer sizes. Since
the BBuffers multiply the number of input buffers, it is not possible to allocate distinct buffers
for different tiling sizes. Instead, only buffers for the maximum tiling size are allocated. For
smaller h, parts of these buffers are used. Still, the entire buffer must be transferred. This is a
huge overhead, especially for a small tiling. However, there is no other possibility to solve the
issue and benchmarks show that the performance increases regardless of this inefficiency.

28 AMD is aware of the problem, and for OpenCL kernels the corresponding check is already removed in the driver.

80 11.2. CALDGEMM

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000

Sy
st

em
 D

GE
M

M
 P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

m= n

h = 1024
h = 2048
h = 3072
h = 4096

Figure 11.28: Performance for different CALDGEMM Tiling Sizes [V]

Transposed Matrices Up until now, the correct input format has not been respected. Both
the possibility to transpose a matrix in the kernel and to perform the transposition during Di-
videBuffer have been discussed. It was concluded that for the kernel a transposed B-matrix is
optimal. Consider the usage of the transposed B kernel for a transposed A-matrix. Both matrices
have to be transposed by DivideBuffer, which is the worst case for this function. Alternatively,
the kernel for the transposed A-matrix can be used, which is the best case for DivideBuffer.
Table 11.29 compares the 4 possible combinations of kernel and input type.

Kernel A Input Transposed B Input Transposed

Kernel for A Transposed 600.1 GFlop{s 597.7 GFlop{s

Kernel for B Transposed 619.3 GFlop{s 618.0 GFlop{s

Table 11.29: Combined CPU/GPU DGEMM Performance for Transposed Input Matrices [V]

It turns out that the faster kernel whenB is transposed outweighs the penalty for the transposition
during DivideBuffer : the B transposed kernel is faster in both cases and is thus used exclusively.
Interestingly, the transposed A-matrix is processed even faster than the transposed B-matrix.
The explanation lies in the GotoBLAS library, which is slightly faster when A is transposed.

For very small matrices, theDivideBuffer function consumes a more significant amount of time. In
this case, the overhead for the transposition weights more and the A transposed kernel becomes
the faster one. However, the data format of the buffers must be declared at allocation time
(compare to the previous paragraph) but it differs for both kernel variants. Thus, it is impossible
to allocate buffers for both kernels at the same time. Hence, the B transposed kernel is used
regardless of input format and matrix size.29

Huge Pages CALDGEMM has been tested with huge pages (see Appendix C.3 for details).
Unfortunately, they do not always bring a benefit. It turns out that it is related to the employed
hardware and the operating system whether the performance gains or suffers. On the LOEWE-
CSC nodes (and similar systems) no improvement could be observed. However, on certain systems
dealt with in the next chapter, performance does improve indeed. For instance, the non-NUMA
SDS system in Section 12.7.3 shows good results with huge pages. Although NUMA might have
an influence on huge page performance, it is not true that the AMDMagny-Cours NUMA systems
29 CALDGEMM can still switch to the A transposed variant, but not at runtime.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 81

generally show worse performance with huge pages (as is shown in Section 12.8.4). In the follow-
ing, huge pages are used only where stated explicitly. On the LOEWE-CSC the feature is disabled.

11.2.6 Summary & Results

In summary, CALDGEMM is implemented the following way:

• The B transposed kernel is always used, regardless of whether a matrix (or which one) must
be transposed or not.

• The optimal tiling size is selected automatically depending on the input matrix size. Possible
values are 512, 1024, 2048, 3072, and 4096.

• The splitting ratio between GPU and CPU is chosen automatically based on the matrix size.

• A pipeline, asynchronous DMA transfers, and BBuffers on the GPU ensure continuous
DGEMM kernel execution and minimize data transfer.

• GotoBLAS is patched to allow for core reservation. Second and third phase GotoBLAS
runs ensure that both GPU and CPU are always fully utilized and do not idle.

• A patch to the AMD driver minimizes page faults and is needed to achieve full performance.

• Since the CPU can handle the borders, GPU matrix size can be subject to restrictions.

Finally, CALDGEMM can deliver a pure DGEMM performance of 625 GFlop{s on a LOEWE-
CSC node. DGEMM performance depends only marginally on whether matrices are transposed
or not. It depends slightly on the input parameters but remains high as long as the matrices do
not get too small. Fig. 11.30 gives an overview of the final CALDGEMM performance. CPU and
GPU utilizations during a run are analyzed in detail in Section 12.6.1.1. Appendix G lists the
CALDGEMM features and recommended settings for various hardware platforms.

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

 0 15000 30000 45000 60000 75000 90000

GP
U/

CP
U

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

m = n

Figure 11.30: Overview of CALDGEMM Per-
formance [V]

 1

 10

 100

 1000

 10000

 10 100 1000

Ac
cu

m
ul

at
ed

 T
im

e
[s]

k

Figure 11.31: Time Consumption of DGEMM
Runs with varying k during HPL (16 Nodes)

11.3 GPU-based HPL

11.3.1 Integrating CALDGEMM

The previous sections described the development of a fast GPU aware DGEMM implementation.
The HPL benchmark has been modified to make use of the CALDGEMM library. The adapted
HPL version called HPL-GPU is available as open source (see Appendix I). In the following,
the term HPL always refers to HPL-GPU if not stated differently. CALDGEMM provides only

82 11.3. GPU-BASED HPL

DGEMM but no full BLAS capability and it is based on GotoBLAS itself. Therefore, the combi-
nation of HPL, CALDGEMM, and GotoBLAS is used. CALDGEMM itself is multi-threaded and
involves multi-threaded GotoBLAS calls. Thus, the common HPL approach of multiple MPI30
processes per node, one per core, is not suited. Lots of problems would arise, e. g. which process
shall use the GPU, how to handle processes with different DGEMM performances, etc.

The solution is a single MPI process per node, which is multi-threaded itself. HPL uses pthreads
and TBB31. As a consequence, other tasks apart from BLAS have to be parallelized. DLACPY32

is accelerated by trivial parallelization, SSE loads and stores. Additionally, Matthias Kretz
implemented parallelized and vectorized versions of DLATCPY32 and all relevant LASWPs.32

Some initial benchmarks revealed that Nb “ 1024 is an appropriate value for HPL-GPU. Lower-
ing Nb reduces the GPU DGEMM speed. A larger Nb dramatically increases the time required
for factorization (the complexity is OpN ¨N2

b q) while the DGEMM performance suffers as well.

Throughout an HPL run there are lots of DGEMM calls in the factorization (with k ă Nb “ 1024)
and one huge DGEMM call with k “ Nb “ 1024 outside the factorization. At first, some
statistics about the DGEMM parameters and the time distribution of the DGEMMs are collected.
As expected, Fig. 11.31 shows that the calls during the factorization do not have a significant
contribution to the overall time. Hence, only the large DGEMM for the C-matrix update is
offloaded to the GPU. Later, execution time of all other HPL tasks is hidden as far as possible
to keep the GPU executing DGEMM kernels all the time.

The first HPL-GPU version is presented in Fig. 11.32. Factorization, LASWP and DTRSM are
multi-threaded. The DGEMM is multi-threaded as well and in addition uses the GPU. The
broadcasts of the panel and the U -matrix are not multi-threaded. All these tasks are executed
one after another. Hence, the performance is limited according to Amdahl’s law [Amd 67].

11.3.2 Optimizing HPL

Naturally, the first implementation leaves much room for improvement. At first, the given HPL
parameters, affecting mostly broadcast and recursive factorization, are tuned to their best. The
factorization parameters (see [UoT]) were determined by parameter range scanning to:

• NBMin “ 64
• NBDiv “ 2
• Panel factorization: Crout oriented
• Recursive factorization: Left oriented

11.3.2.1 Alignment

HPL usually aligns data to eight doubles, which is the cache line size. However, entries in the same
column but different rows (or vice versa in column-major representation) are likely to have the
same cache tag, so when accessing entries within a single column, only a tiny fraction of the cache
is used. The stride between the rows is thus altered such that consecutive rows start in addresses
with a cache tag difference coprime to the cache tag index range. This change in the leading
dimension33 of the HPL-matrix guarantees that the full cache is used and in particular speeds up
LASWP. In single-node runs, the U -matrix is contained within the matrix that is factorized. In
multi-node runs, not every node possesses the part of the large matrix A where U is stored. In
this case, the U -matrix is stored externally and the same alignment correction is applied to it.

30 HPL uses the Message Passing Interface (MPI) library for data transfer between processes/nodes.
31 Intel Threading Building Blocks [Int].
32 DLACPY, DLATCPY and LASWP are functions of the BLAS and LAPACK libraries. They copy and transpose

matrices or swap lines or columns. HPL comes with its own single-threaded version of these functions.
33 Refer to Appendix C.2 for an explanation of leading dimension.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 83

G
P
U

C
P
U

Time

Core 0
Core 1
Core 2
Core 3
Core 4

...

Core 23

...

...

...

za
i

n
F
ac

to
ri

t
o

Panel
Broadcast

U
BCAST

T
L
A

S
W

P
 +

 D
R
S
M

GPU DGEMM KERNEL

DivideBuffer, Initiate DMA Transfers, Call GPU Kernels

Merge Buffer

GotoBLAS CPU DGEMM

za
i

n
F
ac

to
ri

t
o

Iteration N Iteration N+1

BCAST

Core 9
Core 10

Figure 11.32: Process-Flow of GPU-based HPL34

11.3.3 Multi-Node HPL

The way how CALDGEMM is integrated allows for multi-node HPL-GPU runs without further
modifications. In the same way as for the original HPL, the matrix is distributed among a
grid of p ¨ q processes. (Details can be found in Section 12.4.) Still, plenty of tuning can be
applied. Again, the available HPL parameters [UoT] are tuned first. HPL offers a parameter
called lookahead which is intended to hide communication latencies and shorten the critical
factorization path. In addition, HPL offers multiple network transfer modes. Fig. 11.35 shows
that the long transfer mode is superior to the ring transfer mode (see [UoT]).35,36 It also shows
that the original lookahead with depth one as implemented in HPL has a negative effect. (Still,
with the lookahead the performance of the ring and the long transfer mode are equal. This shows
that the lookahead successfully hides the communication time. The bottle-neck is rather that
lookahead is not optimized for the chosen approach with large Nb and only one MPI process per
node. J. Kurzak [Kur` 12] shows that in principle, lookahead works for GPU-accelerated HPL
with small Nb and the standard MPI process approach.)

The RDMA feature of InfiniBand accelerates HPL by 2.3 %.37 It further turns out that copying
the L-matrix to a consecutive memory segment before the transfer brings a performance boost.

Another important parameter is the matrix-size. Obviously, for best performance the matrix
should be as large as possible. However, for stability reasons or short test, it might be interesting
to reduce the matrix size. Fig. 11.33 shows the performance in relation to the matrix size per
34 The time axis is not to scale.
35 The long mode is usually used for fast nodes and the ring mode for a fast network. At the LOEWE-CSC both the

nodes and the network are very fast so it is not immediately clear which algorithm to use.
36 With an increased number of nodes, the modified long mode performs even better.
37 Unfortunately, at the moment there are unsolved problems that lead to errors when using RDMA and PCI Express

DMA transfer to the GPU at the same time. These instabilities occur only when multiple hundreds of nodes
participate. The following exemplary benchmarks are mostly done on four nodes ([V]) with RDMA enabled. However,
for large runs on the cluster, RDMA has to be disabled for the time being.

84 11.3. GPU-BASED HPL

node in a pˆ q “ 2ˆ 2 grid-configuration. It demonstrates that down to 45 GB the performance
hardly suffers.38 The shape of the process grid (see Section 12.4 and [UoT] for details) also
plays an important role (Fig. 11.34). The number of process rows and columns should have a
three to two ratio or vice versa. If such a ratio is not possible due to a fixed finite number of
nodes, every grid shape similar to a square is acceptable, too. In contrast to HPL-GPU, the
unmodified HPL ([Don` 03, UoT]) favors a flat grid (p ă q) because its lookahead hides the
panel-broadcast time but not the U -broadcast time.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40 45 50 55 60

2x
2

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
]

Matrix Size per Node [GB]

Figure 11.33: Linpack Performance Depen-
dency on Matrix Size38 [IX]

 0

 50

 100

 150

 200

0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.5 1.9 2.5 3.0

Li
np

ac
k

Pe
rfo

rm
an

ce
 p

er
 N

od
e

[G
Fl

op
/s

]

Grid p / q ratio

Figure 11.34: Linpack Performance Depen-
dency on Process Grid Shape38 [IX]

11.3.4 Lookahead

The initial HPL benchmarks without GPU revealed that the DGEMM contributes 96.59 % to
the overall HPL time (see Table 10.4). The adoption of CALDGEMM decreases this portion
significantly. Thus, optimizing other steps, such as broadcast, factorization, or pivoting becomes
more and more important. Up until now, these steps are executed one after the other, resulting
in a high GPU idle time. Fig. 11.36 shows the contribution of all relevant steps of HPL-GPU.
According to Amdahl’s law ([Amd 67]), the HPL performance is limited to about 0.79 times the
DGEMM performance. This encourages trying to optimize the sequential parts.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Long Broadcast Mode Ring Broadcast Mode

2x
2

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
] Original Lookahead Disabled

1487 1445
Original Lookahead Enabled

1473 1476

Figure 11.35: Influence of HPL Parameters on
Performance [V]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

DGEMM
LASWP

Broadcast

Factorization

DTRSM
DLATCPY

DLACPY

DTRSV

Fr
ac

tio
n

of
 o

ve
ra

ll
Ti

m
e

[%
]

HPL Subroutine

78.8

6.31 6.16 4.03 4.01 0.36 0.24 0.1

Figure 11.36: Time Consumption of HPL
Subroutines [V]

As the original lookahead algorithm seemed useless and since its design does not take into account
the GPU, a completely new lookahead has been developed from scratch. The aim is to hide the
factorization and the broadcast, and later even the swaps and DTRSM, to keep the GPU executing
DGEMM kernels 100 % of the time. In the meantime, Intel has assimilated the new lookahead
into their HPL for the Xeon Phi [Hei` 13]. The lookahead is implemented in multiple steps.
38 The plots are created with results from the final HPL-GPU version presented at the end of this chapter. However,

thematically they belong here. Fig. 11.34 shows results for small matrices to amplify the influence of communication.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 85

11.3.4.1 Lookahead 1

In a first step, lookahead hides the panel broadcast and the factorization, on which the panel
broadcast depends. The U -broadcast, DTRSM, and LASWP are ignored for the time being.

Looking at the algorithm reveals that the factorization requires the DGEMM of the previous
iteration to have finished only the first Nb columns. Thus, it is possible to start the next fac-
torization iteration while the DGEMM is still running. After the factorization, the panel can
be broadcasted in parallel to the DGEMM computation, too. The dimension Nb “ 1024 is a
rather small size for a DGEMM call: tile size would be 1024 only and there would be only one
column of tiles. Thus, the first Nb columns are excluded from the GPU DGEMM and handled
by the CPU before the CPU even starts its actual part of the large DGEMM (according to the
GPU/CPU splitting). Between the two DGEMMs, the CPU performs panel factorization and
broadcast. This also makes the synchronization easier compared to the scenario where the GPU
processes the first Nb columns. (Section 14.2.2 reevaluates this strategy for multi-GPU systems.)

A “Linpack-Mode” is introduced in CALDGEMM, in which it supports callback functions for the
factorization and the broadcast. The first lookahead implementation is presented in Fig. 11.37.

G
P
U

C
P
U

Time

Core 0
Core 1
Core 2
Core 3
Core 4

...

Core 23

...

...

...

U
BCAST

W
+

T

L
A

S
P

D
R
S
M

GPU DGEMM KERNEL

DivideBuffer, Initiate DMA Transfers, Call GPU Kernels

GotoBLAS CPU DGEMM

Columns 1024-n, Rows 0-k

G
o

B
L
A

 C
lu

n
s

0
1
02

4
to

S
,

o
m

-

a
o
ri
za

ti
n

F
ct

o

Panel
Broadcast

Iteration N Iteration N+1

Columns 1024-n, Rows k-n

U
BCAST

Core 9
Core 10

MergeBuffer

Figure 11.37: Process-Flow of GPU-based HPL with Lookahead 1 (Initial Version)

The additional tasks of varying duration make a static load distribution between CPU and GPU
impossible. Therefore, CALDGEMM continuously measures CPU and GPU performance as well
as the time required for transfer and factorization. Based on this, it continuously adjusts the
GPU/CPU splitting ratio. With r the old ratio, g the GPU performance, c the CPU perfor-
mance, tg the GPU DGEMM time, and tc the pure CPU DGEMM time (not including factor-
ization and transfer), the new ratio r1 is calculated as r1 “ 1

2 ¨ pr `
g

c1`g q with c
1 “ ctc{tg. In a

multi-node run, not every node is involved in every factorization iteration. This depends on its
position inside the grid. CALDGEMM respects the grid position and maintains ratio parameters
for usage with and without factorization. It continuously rechecks whether the applied ratio has
been appropriate. If that is not the case, it reinitializes the ratio using the static curve originally

86 11.3. GPU-BASED HPL

used in CALDGEMM. For the (re)initialization, an empirically chosen penalty is applied to the
CPU performance to correct for factorization and broadcast time.

Maximizing CPU Utilization During the broadcast many CPU cores are inactive. This can
be improved by starting an additional DGEMM that utilizes the remaining cores. There are two
ways to implement this:

• One CPU core is reserved exclusively for the broadcast. It is idling afterward. The DGEMM
can start immediately and processes the entire matrix.

• Two DGEMMs are executed serially. The first one uses all but the communicating core
and the GPU cores. Its matrix size is chosen such that according to the performance
estimations, it should finish shortly after the broadcast. Afterward, the second DGEMM
uses all available cores.

HPL-GPU now uses the second variant, which results in 2090 GFlop{s versus 2075 GFlop{s for the
first version (measured with four nodes in a 2ˆ 2 grid).

The estimation for the matrix size of the first DGEMM is based on continuous measurements of
broadcast time and CPU DGEMM performance. The reduced DGEMM thread count is respected.
The matrix size is chosen slightly bigger than necessary to ensure that in any case the broadcast
finishes first. If the estimation concludes that the first call would already process most of the
matrix, CALDGEMM does not split the matrix and uses the first variant.

In case the predicted broadcast time has been too short nonetheless, the first DGEMM finishes
before the broadcast. As it makes no sense to wait for the broadcast to finish, the second DGEMM
is then started without the additional core.

Maximizing CALDGEMMGPU Performance Unfortunately, benchmarks reveal that the
lookahead mode – in the version just explained – is inferior to the version without lookahead. It
turned out that this is related to a decreased GPU DGEMM performance. The GPU contribution
to the DGEMM drops from about 450 GFlop{s to only 400 GFlop{s. However, this is the effect on
the overall GPU DGEMM performance. The factorization and the broadcast do not last for the
entire DGEMM. As long as they run, they reduce the GPU DGEMM performance even further:
to about 300 GFlop{s. (After they have finished, performance comes back to 450 GFlop{s resulting
in an average of 400 GFlop{s.)

The cause is a strongly reduced performance of the MergeBuffer routine due to memory conges-
tion. It was attempted to cope with this with an additional merge thread, i. e. by increment-
ing t from 2 to 3 during factorization and broadcast. The additional thread is only active during
factorization and broadcast. Fig. 11.38 shows a process-flow diagram.

Sadly, this approach does not improve the overall performance at all. As expected, the GPU
DGEMM performance returns to normal. However, the combined factorization and broadcast
time increases by an order of magnitude and even exceeds the DGEMM time. The problem just
moves to another spot.

Lowering the Memory Load with the AMD Driver Patch It shall be noted here that the
above tests had been made before the binary driver patch was performed. Now, the binary driver
patch allows for a reduction of the output thread count to a single thread while still achieving
about 620 GFlop{s of combined CPU/GPU DGEMM performance. (See Section 11.3.4.3 for an
analysis of the CPU utilization with and without the driver patch.) The driver patch lowers, in
particular, the memory load. Reverting to the previous lookahead version without the additional
merge thread and using the driver patch with only one single output thread (t “ 1) helps, but
does not solve the problem completely.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 87

G
P
U

C
P
U

Time

Core 0
Core 1
Core 2
Core 3
Core 4

...

Core 23

...

...

...

U
BCAST

Panel
Broadcast

Iteration N Iteration N+1

Third MergeBuffer

GPU DGEMM KERNEL

DivideBuffer, Initiate DMA Transfers, Call GPU Kernels

MergeBuffer

GotoBLAS CPU DGEMM

Columns 1024-n, Rows 0-k

Columns l-n, Rows k-n

U
BCAST

W
+

T

L
A

S
P

D
R
S
M

G
o

B
L
A

 C
lu

n
s

0
10

24
to

S
,

o
m

-

za
i

n
F
ac

to
ri

t
o

G
ot

o
L
A

S
B

C
o

u
m

n
s

10
4-

l,

ow
s

k
n

l
2

R
-

Core 9
Core 10

Figure 11.38: Process-Flow of GPU-based HPL with Lookahead 1 (Three Output Threads)

Further Reduction of the Memory Congestion Full GPU performance is finally achieved
by, in addition to the binary driver patch, reducing the factorization thread count to eight.
Actually, the factorization performance does not even suffer much because several memory-bound
tasks do not profit from more than eight cores. The very first factorization iteration, which does
not run concurrently to a DGEMM, still uses all available cores.

The lookahead performance with reduced factorization thread count is analyzed in more de-
tail. Since the binary driver patch is not generally available (e. g. for new driver versions), the
implications of a reduced factorization thread count are evaluated with and without the patch.

Fig. 11.39 shows the performance with and without lookahead throughout an HPL run. The x-axis
shows the iteration number in HPL, so on the right side of the diagram, the matrix size decreases.
The axis is not proportional to the time as the first iterations need much more time than the
later ones. Runs with the binary driver patch require only a single output thread. In contrast,
versions without patch and two or three output threads are shown.

It can be seen that with the binary driver patch and only a single thread, both versions (with and
without lookahead) are equally fast or even faster than the yet fastest version without the patch
but also without lookahead. This means the GPU DGEMM performance no longer suffers when
enabling lookahead. Without the driver patch but with lookahead enabled, the GPU DGEMM
performance is significantly lower.

A confusing observation is that with the patch, the GPU DGEMM performance close to the end is
even higher with lookahead than without. This is due to the fact that only the raw GPU contribu-
tion to the DGEMM performance is shown here. With lookahead, the CPU performs the factor-
ization and the broadcast during the GPU DGEMM. At the end of the run, the factorization takes
up a significant amount of the iteration time. This blocks CPU recourses, reduces the part of the
DGEMM processed by the CPU, and enlarges the GPU part. A bigger GPU matrix can increase
the GPU DGEMM performance as the pipeline can better hide the latencies. Accordingly, the
combined GPU/CPU DGEMM performance is always higher without lookahead (see Fig. 11.40).

88 11.3. GPU-BASED HPL

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80

GP
U

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

Iteration

1 Thread, Lookahead 0, Binary Driver Patch
1 Thread, Lookahead 1, Binary Driver Patch
2 Threads, Lookahead 0
2 Threads, Lookahead 1
3 Threads, Lookahead 0
3 Threads, Lookahead 1

Figure 11.39: GPU-only DGEMM Performance for Lookahead during Linpack [V]

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80

GP
U/

CP
U

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

Iteration

No Lookahead
With Lookahead

Figure 11.40: Total GPU/CPU DGEMM
Performance during Linpack with Lookahead

(With Binary Driver Patch) [V]

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

No Driver Patch,
3 Output Threads

No Driver Patch,
2 Output Threads

With Driver Patch,
1 Output Thread

1x
1

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
] Without Lookahead

504.4

520.3

536.5

With Lookahead

489.7

518.0

563.0

Figure 11.41: Lookahead Performance with
Binary Driver Patch [V]

In combination with binary driver patch and reduced factorization thread count, lookahead is
finally working well. Overall performance improves during the whole runtime. Fig. 11.41 shows
the performance summary and Fig. 11.42 demonstrates the process-flow.

11.3.4.2 Lookahead 2

In a second step, lookahead attempts to hide DTRSM and LASWP. Since these tasks create
the U -matrix used by the DGEMM, they must have finished before the DGEMM starts. However,
it is possible to swap only the first x columns and run DTRSM only on the first x columns of
the U -matrix. Then, the DGEMM can already process the first x columns of the C-matrix. So
the DTRSM, LASWP, and the C-matrix update by the DGEMM can be pipelined.

At first, x “ Nb`hmax “ 1024`4096 “ 5120 columns are processed. Afterward, the GPU can im-
mediately start processing columns 1024 – 5120, regardless of the tiling size. (The firstNb columns
are skipped as they are completely computed by the CPU DGEMM for lookahead 1 afterward.)
Concurrently to the DGEMM, LASWP and DTRSM are iterated over the entire matrix. Before
CALDGEMM processes a tile, it checks whether the swaps and the DTRSM for the correspond-
ing columns have already finished. The number of columns processed in each LASWP/DTRSM

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 89

G
P
U

C
P
U

Time

Core 0
Core 1
Core 2
Core 3
Core 4

Core 9
...

Core 10

Core 23

...

...

...

U
BCAST

MergeBuffer

Panel
Broadcast

Iteration N Iteration N+1

GotoBLAS CPU DGEMM

Columns l-n, Rows k-n

GPU DGEMM KERNEL
Columns 1024-n, Rows 0-k

DivideBuffer, Initiate DMA Transfers, Call GPU Kernels

W
+

T

L
A

S
P

D
R
S
M

G
ot

oB
L
A

S
 C

ol
u
m

n
s

0-
10

24
,

ot
o

L
A

S
G

B
C
o

u
m

n
s

10
4-

l,

ow
s

k
n

l
2

R
-

a
or

iz
at

i
n

F
ct

o
U

BCAST

Figure 11.42: Process-Flow of GPU-based HPL with Lookahead 1 (Final Version)

pipeline step is continuously increased by a factor of two since LASWP and DTRSM operate
faster on a bigger submatrix. The U -broadcast is still not included in the pipeline for its small
time contribution and since HPL has no functionality to transfer submatrices of U (see Sec-
tion 14.2.4.2). Since LASWP is split in two phases prior to and after the U -broadcast, the
multi-node version of HPL-GPU can only pipeline the second phase of LASWP.

The first lookahead 2 implementation suffered from the same problem as the initial lookahead 1
version. In order to avoid memory congestion, the number of threads processing LASWPs and
DTRSM is reduced as for the factorization. As the LASWPs are memory-bound, it seems reason-
able to employ all available memory controllers. This is done by running only on even numbered
cores, i. e. on half of the cores of each die. (The version is called improved lookahead 2.)

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90

Li
np

ac
k

Ite
ra

tio
n

Ti
m

e
[s]

Iteration

Lookahead 1
Lookahead 2

Figure 11.43: Iteration Times during Linpack
with Lookahead 1/2 [V]

-400

-300

-200

-100

 0

 100

 200

 300

 400

 0 10 20 30 40 50 60 70 80

Lo
ok

ah
ea

d
Ti

m
e

D
iff

er
en

ce
 [m

s]

Iteration

Figure 11.44: Iteration Time Difference [V]

Fig. 11.43 shows the time required for each HPL iteration using lookahead 1 and lookahead 2.
They are very much alike. Fig. 11.44 shows the time difference. It reveals that lookahead 2 is faster

90 11.3. GPU-BASED HPL

at the beginning of the Linpack run, but gets slower toward the end. Therefore, a mixed looka-
head 2 is implemented, which switches back to lookahead 1 when the new variant gets slower.39

Fig. 11.45 shows the performances for the different lookahead 2 variants. Only the mixed im-
plementation can slightly outperform the lookahead 1 code. From now on, lookahead 2 always
refers to this mixed/adaptive39 version. A comparison of single-node and multi-node runs with-
out lookahead and with lookahead 1 and 2 is shown in Fig. 11.46. The single-node performance
improves, too. This is due to the fact that not only broadcast time but also the factorization
and the LASWP times are hidden. In the end, lookahead 2 does not bring about the significant
improvement that has been expected. One reason, at least for the multi-node version, is that
LASWP is only partially pipelined. More reasons are discussed in the next subsection. Fig. 11.47
shows the final process diagram with lookahead 2.

 840
 842
 844
 846
 848
 850
 852
 854
 856
 858

Lookahead 1 Initial
Lookahead 2

Improved
Lookahead 2

Mixed
Lookahead 2

2x
2

Li
np

ac
k

Ti
m

e
[s]

850.5

856.6

850.8

845.9

Figure 11.45: Performance of different Looka-
head 2 Implementations [V]

 0

 500

 1000

 1500

 2000

 2500

No Lookahead Lookahead 1 Lookahead 2

2x
2

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
] Single-node

538.1 553.8 563.2

2x2 Multi-node

1942
2098 2108

Figure 11.46: Performance of different Looka-
head Modes [V]

G
P
U

C
P
U

Time

Core 0
Core 1
Core 2
Core 3
Core 4

...

Core 23

...

...

...

U
BCAST

Panel
Broadcast

Iteration N Iteration N+1

ot
o

L
A

S
G

B
C
o

u
m

n
s

10
4-

l,

ow
s

k
n

l
2

R
-

Core 9
Core 10

MergeBuffer

GotoBLAS CPU DGEMM

Columns l-n, Rows k-n

U
BCAST

GPU DGEMM KERNEL
Columns 1024-n, Rows 0-k

DivideBuffer, Initiate DMA Transfers, Call GPU Kernels

S
P

R
S

:
l

s
20

L
A

W
+

D
T

M
 C

o
u
m

n
 0

-5
1

G
o

B
L
A

 C
lu

n
s

0
10

24
to

S
,

o
m

-

a
or

iz
at

i
n

F
ct

o

P

 D
R
S

:
l

-n
L
A

S
W

+
T

M
 C

o
u
m

n
s

5
12

0

Figure 11.47: Process-Flow of GPU-based HPL with Lookahead 2

39 The mixed mode was a quick optimization for the LOEWE-CSC. Later, an adaptive lookahead has been implemented
which offers configurable turnoff points, where both lookahead 1 and 2 can be deactivated.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 91

11.3.4.3 Performance Analysis

This section analyzes how well the CALDGEMM features work within HPL. Also the effects of
the lookahead optimizations are discussed further.

CALDGEMM Performance in HPL First, an overview over the CALDGEMM scheduling
efficiency shall be given. The splitting position for the first phase GotoBLAS run cannot be chosen
arbitrarily. The optimal value from the performance perspective is usually unavailable due to
the tiling. It lies within one row of tiles. Therefore, it is very probable that when the first phase
is finished, there are still tiles unprocessed. Applying the same ratio again for the second phase
should assign tiles within that row of tiles to the CPU. (If the second phase processes multiple rows
of tiles, the first phase ratio was suboptimal.) Obviously, no third phase run is needed if all ratios
are optimal. Fig. 11.48 visualizes the scheduling in an HPL run without lookahead. It shows the
number of rows of tiles processed in the second phase and the total number of tiles processed in the
third phase. The scheduling is considered optimal when the second phase value is one40 and the
third phase value is zero. Applying these criteria, the figure reveals an almost optimal scheduling.

In contrast, Fig. 11.49 shows the same plot using lookahead 2. It can be seen that the second
phase value is still quite optimal. The third phase value, however, has a broader distribution.
The reason is that the parallel factorization and the swapping introduce additional inherent
inaccuracy into the ratio calculation. Anyway, the third phase value still drops to zero for quite
a few iterations. Therefore, the CPU part must not be chosen any larger.

 0

 1

 2

 0 10 20 30 40 50 60 70
Iteration

Lookahead 0, Rows in Second Phase
Lookahead 0, Tiles in Third Phase

Figure 11.48: Analysis of Scheduling Effi-
ciency without Lookahead [V]

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70
Iteration

Lookahead 2, Rows in Second Phase
Lookahead 2, Tiles in Third Phase

Figure 11.49: Analysis of Scheduling Effi-
ciency with Lookahead 2 [V]

Fig. 11.50 shows the total GPU and CPU utilization time as well as the CPU DGEMM time mea-
sured by CALDGEMM. The total HPL iteration time is included for comparison. At iteration 30
CALDGEMM switches from lookahead 2 to lookahead 1. With lookahead 2, CALDGEMM GPU
time and HPL iteration time are the same, with lookahead 1 they differ by the time for LASWP
and DTRSM, which are no longer processed by CALDGEMM. Furthermore, with lookahead 2 the
difference between the CALDGEMM CPU DGEMM time and the CALDGEMM GPU DGEMM
time is the sum of factorization, LASWP and DTRSM time. Later, with lookahead 1 it equals
the factorization time. One can see a jump in the CPU DGEMM time, precisely at the position
where the mixed lookahead switches to mode 1. (Since DTRSM and LASWP are serialized, the
CPU can process a larger part of the DGEMM in parallel to the GPU DGEMM.)

Obviously, the CALDGEMM total CPU and the CALDGEMM GPU time are almost the same.
Fig. 11.51 shows the difference of the two. For processing one tile (assuming h “ 4096), the GPU
requires about 75 ms, the CPU about 230 ms. Thus, the scheduling can be improved as soon as
the difference is above 230 ms or below ´75 ms. It can be seen that the latter is never the case
40 It is possible that the tiling allows for an optimal (or almost optimal) splitting position by coincidence. In these

cases, a second phase value of zero is optimal.

92 11.3. GPU-BASED HPL

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80

Ti
m

e
[s]

Iteration

CALDGEMM GPU Time
CALDGEMM CPU DGEMM Time

CALDGEMM Total CPU Time
HPL Iteration Time

Figure 11.50: Analysis of CALDGEMM Ratio
Calculation with Lookahead 2 [V]

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 10 20 30 40 50 60 70 80

Ti
m

e
[s]

Iteration

GPU - CPU Time
GPU Wait Time

Figure 11.51: Difference in GPU/CPU Time
during Linpack with Lookahead 2 [V]

except for the very end of the run. This, however, is unavoidable since here the CPU processes
only the absolutely necessary tasks (pivotization, factorization, and the remainder of the matrix
due to the tiling) but still takes longer for this than the GPU for the full DGEMM. In total, the
difference reaches up to 250 ms, which, however, does not allow for much optimization. It should
also be noted that at many points the GPU performance is overestimated, which is reflected here:
The CPU idle time is longer than the GPU idle time.

In addition to the time difference, the GPU wait time is shown. This is the duration the GPU
thread is waiting for the CPU thread’s semaphore to unlock. In an optimal situation, this should
be zero if the time difference is positive, and this should equal the absolute value of the difference
otherwise. As this is the case, the synchronization works well.

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ut
ili

za
tio

n
[%

]

CPU Core

Magny-Cours, 1 5870, DGEMM

Magny-Cours, 1 5870, HPL, Lookahead 2

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Magny-Cours, 1 5870, DGEMM, No Binary Driver Patch

Figure 11.52: CPU Utilization during Single-GPU DGEMM and HPL41 [V]

41 The fraction of system load is displayed in black. The system load corresponds to the time required by the operating
system while the general load accumulates the times of operating system and application. The high system load on
core 0 stems from the fact that at many points synchronization is performed by active waiting.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 93

CPU Utilization during CALDGEMM & HPL An indication for the quality of the multi-
threading can be given by analyzing the CPU load of all cores. For this purpose, Fig. 11.52 gives
an overview of the CPU utilization of all cores during HPL and DGEMM runs. Without the
binary driver patch, the two MergeBuffer threads on cores 1 and 2 produce a high system load
due to page faults. With the driver patch, the system load vanishes and one single CPU core (1)
is sufficient, although it is heavily loaded. All CPU cores used for GotoBLAS continuously
operate at 100 % load with a very small fraction of system load. The load of core 0 remains far
below 100 %. However, as a matter of fact, this is essential to ensure good responsiveness to
interrupts. So this tiny waste of computational power is a necessary evil.

In contrast to pure DGEMM, the average CPU load during HPL is below 100 %. First, the load
is reduced toward the end of the run. Second, the processor is fully loaded only during DGEMM
phases while pivotization and factorization are memory-bound and cannot utilize the CPU to its
full extent. Third, in HPL with lookahead, the GotoBLAS threads (2 to 23) are unequally loaded
due to the reduced factorization thread count (see Section 11.3.4).

In summary, it can be concluded that the CPU utilization during CALDGEMM is almost optimal.
During HPL, the utilization is very good but especially the reduced factorization thread count
results in a measurable drop of utilization.42

Linpack Performance during the Run The crucial task for the Linpack benchmark is to
maintain the DGEMM performance in HPL. The DGEMM-portion of the total workload of
each HPL iteration decreases during the run. Thus, at the beginning of the run, it is easier to
achieve close to full DGEMM performance. Fig. 11.39 in Section 11.3.4.1 showed the DGEMM
performance achieved in each HPL iteration. Its x-axis is not proportional to the progress because
the later iterations are shorter. Fig. 11.53 compares the HPL performance during the run to the
maximum possible DGEMM performance with the x-axis rescaled such that it is proportional to
the progress. The single-node version with lookahead 2 achieves 93 % of the DGEMM performance
at the beginning of HPL and maintains this for almost three quarters of the run. The loss of the
multi-node version is bigger.

HPL Overall Performance The question remains why the speedup by lookahead 2 is so much
less than by lookahead 1. A reason is given by Fig. 11.54. The LASWP and DTRSM times in-
crease significantly when these tasks are executed in parallel to the DGEMM, leaving less time for
the CPU DGEMM. For comparison: factorization time (of the first iteration) increases less when
enabling lookahead 1, namely from 1.608 s to 3.216 s. In addition, factorization and broadcast
require more time than DTRSM and LASWP anyway – hence serializing them costs more time.
In multi-GPU configurations, lookahead 2 becomes more important (see Section 14.2.4.2).

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

Li
np

ac
k

Pe
rfo

rm
an

ce
 p

er
 N

od
e

[G
Fl

op
/s

]

Progress [%]

4 Nodes Lookahead 0
4 Nodes Lookahead 2
1 Node Lookahead 0
1 Node Lookahead 2
Max DGEMM Performance

Figure 11.53: Linpack Performance during a
Run (Rescaled) [IX]

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

D
TR

SM
+

LA
SW

P
Ite

ra
tio

n
Ti

m
e

[m
s]

Iteration

Lookahead 0/1
Lookahead 2

Figure 11.54: Sum of DTRSM and LASWP
Time during Linpack [IX]

42 Possible improvements to the CPU utilization during factorization are discussed in Sections 12.6.4.3 and 15.2.

94 11.3. GPU-BASED HPL

Finally, Fig. 11.55 shows how the multi-node Linpack performance evolved over time with more
and more improvements.

 0

 500

 1000

 1500

 2000

 2500

No Lookahead

With Lookahead

Optimized Alignment, LASWP,

DLATCPY, HPL Parameter

Copy L Matrix

Dynamic GPU/CPU

Ratio Adjustment

Improve Lookahead

Overall Improvements

Lookahead 2

2x
2

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
]

1487
1665

1844 1864 1902 1980
2098 2108

Figure 11.55: Linpack Performance Evolution Summary [V]

11.3.5 Miscellaneous

11.3.5.1 Rescheduling Workload

One possibility to boost the DGEMM performance toward the end of a Linpack run would be
to redistribute the trailing matrix to fewer nodes so that the remaining matrix size per node
does not shrink too much. This would reduce the number of nodes but increase the per-node
performance. Fig. 11.56 shows the Linpack performance measured during the run normalized to
(divided by) the remaining trailing-matrix size. If, at any point, a reduction of the number of
nodes increased the overall performance, this would be visible as a falling slope. Obviously, this
is never the case. Still, this approach could boost the power efficiency in the future.

11.3.5.2 MPI Threading Support

Due to stability reasons, the mvapich MPI-library is used for tests on the cluster. This MPI
implementation is not reentrant43 and supports only funneled threading (see Appendix C.1),
which means that only the main thread which invoked MPI_Init may perform MPI calls. The
first lookahead implementation invoked its MPI calls from the broadcast thread running on core 2
in Fig. 11.47 but not from the main thread running on core 0, which invokes all other MPI calls of
HPL. This violates the MPI threading rules of mvapich. (Still, at no time two MPI routines are
called simultaneously but sequential MPI calls are issued from different threads. In terms of MPI
specifications, the first lookahead implementation requires MPI serialized threading support.)

This is solved by creating an extra dedicated CALDGEMM-main-thread. The HPL-main-thread
remains in a wait state. The broadcast and factorization threads started by CALDGEMM do
not issue MPI-calls themselves but delegate this work to the HPL-main-thread. The overhead in
total execution time for this workaround is 0.14 %.
43 A (library) function is called reentrant if it can be called concurrently by different threads.

CHAPTER 11. AN OPTIMIZED HPL VARIANT FOR THE LOEWE-CSC 95

 0.1

 1

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
or

m
al

ize
d

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/G
B]

Time [s]

4 Nodes LA 0
4 Nodes LA 2
1 Node LA 0
1 Node LA 2

Figure 11.56: Linpack Performance normal-
ized to Matrix Size (Lookahead 0 and 2) [IX]

 0

 100

 200

 300

 400

 500

 600

 700

DGEMM Kernel

GPU DGEMM

System

Combined GPU/

CPU DGEMM

Single Node
Linpack

Multi Node
Linpack

Pe
rfo

rm
an

ce
 p

er
 N

od
e

[G
Fl

op
/s

]

494.07 465.32

623.52
563.2

526.3

Figure 11.57: Peak Performances achieved
with CALDGEMM/Linpack [V]

11.4 DGEMM & Linpack Performance

In summary, Fig. 11.57 displays the peak performance per node reached in various disciplines.
Table 11.58 shows the numbers in relation to the theoretical peak performance. The kernel itself
can utilize above 90 % of the GPU peak performance, DGEMM 80 % of the combined GPU/
CPU peak performance, and single-node HPL still more than 75 %. The most direct competitor,
the GPU implementation for the Tianhe cluster with AMD GPUs [Wan` 11], is clearly beaten
even though the higher peak performance of the LOEWE nodes makes it harder to achieve a
high efficiency.

Discipline Performance per Node Peak Performance Efficiency

DGEMM Kernel 494.07 GFlop{s 544.00 GFlop{s 90.93 %
GPU DGEMM44 465.32 GFlop{s 544.00 GFlop{s 85.54 %
GPU/CPU DGEMM 623.52 GFlop{s 745.60 GFlop{s 83.63 %
Single-node HPL 563.20 GFlop{s 745.60 GFlop{s 75.54 %
Multi-node HPL (2ˆ 2) 527 GFlop{s 745.60 GFlop{s 70.68 %

Table 11.58: Peak Performance and Efficiency per Node [V]

Discipline Performance Peak Efficiency Network
Reached Performance Efficiency

Single-node HPL 563.2 GFlop{s 745.6 GFlop{s 75.54 %
Multi-node HPL (2ˆ 2) 2108.0 GFlop{s 2982.4 GFlop{s 70.68 % 93.57 %
Many-node HPL45 285200GFlop{s 409248 GFlop{s 69.69 % 92.26 %

Table 11.59: Multi-Node HPL Performance and Network Efficiency [V,IX]

The performance per node is used to analyze multi-node efficiency. Table 11.59 shows that the
lookahead is able to conserve almost the full single-node performance. (The four-node version
loses less than 7 %.) Additionally, it shows that HPL scales well to many-node systems. The num-
ber reported to the Top500 list is 285.2TFlop{s. It was achieved with 630 nodes and positioned

44 The fastest kernel achieves 494 GFlop{s at k “ 448, which causes too much overhead. The kernel used for all
other measurements runs with k “ 1024 and achieves 472 GFlop{s. The kernel performance itself is worse but the
system performance is better. Thus, the system performance of the GPU DGEMM is 98.6 % of the employed kernel
performance and thus almost optimal.

45 The many-node HPL run was performed with different GPU clock speeds and the peak performance is calculated
accordingly and thus no even multiple of 745.6 GFlop{s.

96 11.5. TORTURE TESTS

the LOEWE-CSC on place 22 in the Top500 and on place 8 in the Green500 [Sha` 06, Fen` 10]
in November 2010. The efficiency of 70 % greatly exceeds the results from competing GPU clus-
ters or other GPU-accelerated HPL implementations, which usually only achieve results slightly
above 50 % [End` 10, Kur` 12]. The number was later improved to 299 TFlop{s using more nodes
and a newer software version. Refer to Section 14.2.5 for results of the newer Sanam cluster and
a comparison to more up-to-date implementations developed after the November 2010 list. Ap-
pendix G compares the ramifications of the HPL-GPU features on different hardware platforms.

11.5 Torture Tests

Measuring the GPU temperature reveals that kernels which come close to peak performance can
easily overheat GPUs. This opens the possibility to use CALDGEMM as a torture test. For all
tests, both system and GPU fans are pinned to 100 %.

CALDGEMM should be superior to single-node HPL in this discipline because it can keep execut-
ing GPU kernels without interruption, whereas HPL is suspending GPU execution from time to
time. The CALDGEMM benchmark/torture test was originally supplied with two initialization
methods: a fast method that initializes all matrices with zero (used only for performance tests)
and a uniformly distributed linear congruence random number generator in the range p0 : 1q.
Fig. 11.60 unveils an interesting fact: single-node HPL causes much more heat on the GPU than
CALDGEMM using the original random number generator. This is in fact another indication
how well HPL uses the GPUs. CALDGEMM with the zero initialization is way behind. This is
due to the fact that no bits flip in the GPU (i. e. most flip-flops keep their state).

The reason why CALDGEMM remains cooler than single-node HPL turns out to be the random
number generator. Changing the CALDGEMM random number generator range to p´0.5, 0.5q
or p´10, 10q produces more heat but does still not reach the level of HPL. As HPL multiplies
matrices that are already altered in the factorization process, the HPL matrix entries are not in
the range p´0.5, 0.5q – even though the initial random numbers are. Over time, the factorization
makes the entries in the HPL matrix rather Gaussian distributed around zero.

A random number generator with a Gaussian distribution, estimation value zero, and variance 25
has been implemented for CALDGEMM, which finally results in the same temperature as single-
node HPL. No possibility has been found to optimize the torture test any further. The increased
heat generation stems from the larger variations in the exponent of the floating point represen-
tation, which lead to more shifts for the additions and more bit flips in the exponents in general.

Fig. 11.61 shows the torture test with CALDGEMM initialized by the Gaussian random number
generator and single-node HPL on different LOEWE-CSC nodes. It can be seen that the tem-
perature of both benchmarks is the same. The temperatures between the nodes, however, differ
tremendously. Some nodes overheat very soon, while others remain below 85˝C.

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

 0 100 200 300 400 500 600 700

Te
m

pe
ra

tu
r [

°C
]

Time [s]

Linpack
DGEMM, Fast Random Number Generator

DGEMM, Original Random Number Generator
DGEMM, Gaussian Random Number Generator

Figure 11.60: Heat produced by Linpack and
different Torture Tests

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400 450

Te
m

pe
ra

tu
r [

°C
]

Time [s]

Node1, Linpack
Node1, DGEMM
Node2, Linpack

Node2, DGEMM
Node3, Linpack

Node3, DGEMM

Figure 11.61: Temperature of Linpack and
Torture Test for different Nodes

97

Chapter 12

Optimizations for other
architectures

The previous chapter showed that CALDGEMM and HPL perform very well on one specific
architecture: AMD Magny-Cours twelve-core dual CPU and 5870 Cypress GPU. This chapter is
about achieving good performance in general configurations and on new hardware generations,
while completely maintaining the performance on the reference architecture. Appendix G lists
the features developed for various platforms and their impact on performance.

12.1 CPU-only HPL

One of the major changes in HPL-GPU is the restriction to one MPI process per node. The
original HPL supports this configuration as well, but it does not show good performance with it.
This is because only the BLAS library supports internal multi-threading but all other tasks, such
as the LASWPs, do not. HPL-GPU uses parallelized versions of these tasks. The question arises
how HPL-GPU performs compared to the original HPL with multiple MPI processes in CPU-
only runs, i. e. how well the internal multi-threading works compared to multiple MPI processes.
Table 12.1 shows the results on Intel and AMD platforms.

System HPL, 1 MPI HPL, Multiple HPL-GPU Theoretical
Process MPI Processes Peak

AMD 24ˆ 2.2 GHz 155.3 GFlop{s 174.6 GFlop{s 173.6 GFlop{s 211.2 GFlop{s

Intel 12ˆ 3.3 GHz - 120.4 GFlop{s 120.9 GFlop{s 128.2 GFlop{s

Table 12.1: Performance of CPU-only HPL [VI,XVI,XVII]

It is obvious that the original version does not perform well with a single MPI process. However,
the original version with multiple MPI-threads and HPL-GPU show almost equal CPU-only
performance. Hence, on the one hand, HPL-GPU brings no benefit for CPU-only runs. On the
other hand, since the original HPL is optimized well for CPUs, multi-threading in HPL-GPU
works very well. Comparing the results with the theoretical peak performance shows that the
AMD system has the better total performance but the Intel system comes closer to its peak
performance. The next section shows that also the operating system has an influence.

12.2 Real-Time Operating Systems

There exist special real-time operating systems offering better pinning and scheduling capabilities
as well as improved responsiveness to interrupts. Two systems are investigated.

98 12.2. REAL-TIME OPERATING SYSTEMS

12.2.1 The Chaos Operating System

The chaos operating system was based on Linux kernel 2.6.18 when the tests were performed.
Unfortunately, the multi-threaded GotoBLAS shows bad performance in combination with the
old kernel on Magny-Cours CPUs leading to only 135 GFlop{s in Table 12.2. Either upgrading the
kernel version (verified with old and new Vanilla Kernels) or switching from the AMD to an Intel
platform solves this. In contrast, the original HPL running with multiple MPI processes per node
and employing a single-threaded GotoBLAS performs well. Hence, the problem must lie in the
GotoBLAS threading. Since multiple MPI processes are no suitable solution for HPL-GPU, the
Chaos operating system can not be employed to test the GPU-based HPL. (Since Chaos consists
in particular of a large assortment of kernel patches, the kernel cannot be updated to a recent
version with better threading support.)

Still, the performance of CPU-only HPL runs can be compared. All measurements are taken
on two 6174 Magny-Cours CPUs and 64 GB of RAM. Table 12.2 gives an overview. In the
original HPL configuration, Chaos outperforms a standard Linux distribution measurably – with
HPL-GPU and a single MPI process, the Chaos results are underwhelming due to the old kernel.

Operating System Node HPL Version Performance

Chaos [XVI] Original HPL with multiple MPI Processes 174.6 GFlop{s

Chaos [XVI] HPL-GPU with a single MPI Process 135.0 GFlop{s

openSUSE 11.3 [VI] Original HPL with multiple MPI Processes 168.7 GFlop{s

openSUSE 11.3 [VI] HPL-GPU with a single MPI Process 173.6 GFlop{s

Table 12.2: Chaos HPL Performance (AMD Magny-Cours)

12.2.2 SUSE Linux Enterprise Server with Real-Time Extensions

Since SUSE Linux is available with a recent kernel version, it is not subject to the above threading
issue and it supports HPL-GPU. In order to measure the interrupt and scheduling capabilities,
the tests are done with the 5970 dual-GPU because this configuration puts more stress on the
scheduler. (See Section 12.6 for details on the dual-GPU implementation.) The combined GPU/
CPU DGEMM performance is measured.

The SUSE real-time extensions can shield CPU cores such that they are not used by the operating
system anymore. In the measurement, all GPU related cores are shielded. Table 12.3 shows the
results.

Configuration Performance

No Real-Time Extensions 777.6 GFlop{s

With Real-Time Extensions 774.6 GFlop{s

With Shielding 777.7 GFlop{s

Table 12.3: SUSE Real-Time DGEMM Performance [IV]

Enabling the real-time extensions decreases the performance slightly. The shielding feature only
brings the performance back to the level without real-time extensions – but it brings no additional
benefit. Obviously, the thread affinities set by CALDGEMM make the shielding obsolete. This
renders the SUSE real-time extensions useless for DGEMM and HPL. On top of that, the shielding
feature only supports up to sixteen CPU cores.

Finally, neither Chaos nor the SUSE real-time extensions bring a benefit and are not analyzed
further.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 99

12.3 CPU Scaling

The GPU/CPU splitting is based on experimental data provided in Section 11.2.4.4 on a dual
Magny-Cours system with 24 CPU cores. These data can be used as a good approximation for
other CPU architectures or core counts as well. The splitting ratio is rescaled respecting the CPU
frequency and the number of cores. A test on a 16-core Magny-Cours system results in about
the same efficiency with respect to the theoretical peak performance (compared to the 24-core
CPU).

12.4 Heterogeneous Nodes

HPL arranges all MPI nodes in a grid. In this section p denotes the number of process-rows
and q the number of process-columns. A special challenge when maximizing HPL performance
is a heterogeneous configuration. For instance, some LOEWE-CSC nodes are equipped with
GPUs whereas other nodes offer more CPU cores but no GPU. Thus, the HPL performance
of the nodes is unequal. Even the GPU nodes’ performance is not necessarily identical since
GPU clocks are reduced on some nodes for temperature and stability reasons. The original HPL
matrix-distribution among the nodes is visualized in Fig. 12.4. The example composes six nodes –
two process-rows, and three process-columns – in a column-major arrangement. The HPL-matrix
is divided into blocks of size Nb ˆNb. The process in process-row i P t0, . . . , p´ 1u and process-
column j P t0, . . . , q ´ 1u is assigned all blocks of the matrix in block-row a and block-column b
with a ” i pmod pq and b ” j pmod qq. In this configuration, each node is assigned a submatrix
of more or less equal size. This is obviously not suited for heterogeneous configurations.

Col 0 Col 1 Col 2

Row 1Row 0

0

1

2

3

4

5

Process Grid

Submatrix of
Process 4

Matrix to Factorize

Figure 12.4: Distribution of the Matrix in the Original HPL

HPL-GPU supports a heterogeneous mode where, compared to the original HPL, the matrix size
can differ among process-columns. Nodes of equal performance can be grouped in such columns.
(Process-columns are preferred over rows because the implementation is easier.) A configuration
file sets relative node-performances for MPI-ranks or hostnames. If no value is set, it defaults
to 1.0. Let γi,j be the setting for the process in row i and column j. The performance for each
process row γj is the minimum of the performances of all contained nodes (γj “ minkpγk,jq).
(Hence, if nodes of different performance are assigned to the same column, the matrix size is
chosen based on the slowest node.) The distribution is done such that the fraction δj of the
matrix assigned to a process-column j corresponds to the ratio of this column’s performance and
the sum of the column-performances (δj “ γj{

ř

k γk).

100 12.4. HETEROGENEOUS NODES

To be precise, the matrix-columns are distributed in a round-robin fashion where some pro-
cess columns are skipped in such a way that each connected submatrix is distributed among
the process-columns with the same ratios as the full matrix.1 This means that a process stor-
ing e. g. 30 % of the full matrix also stores 30 % of each connected submatrix. This ensures that in
each HPL iteration the distribution of the trailing matrix respects the performance ratios of the
process-columns. Clearly, due to finite matrix dimensions, the ratios cannot be chosen completely
arbitrarily. The matrix-row distribution-scheme is unchanged. A heterogeneous LOEWE-CSC
configuration contains three types of nodes: GPU-nodes at stock clock rates, GPU-nodes with re-
duced clock rates, and 48-core CPU-nodes without GPU (quads). Fig. 12.5 shows the distribution
for a heterogeneous HPL run with six nodes, two of each category.

HPL contains various functions for finding the process-column storing matrix entries and trans-
lating between local and global matrix coordinates. These indexing functions are altered to work
with the new heterogeneous distribution scheme.

Matrix to Factorize

Fast GPU-nodes
Slow GPU-nodes

CPU-nodes

CPU-node skipped

L
arg

e S
u
b
m

atrix
M

ed
iu

m
 S

u
b
m

atrix

S
m

all S
u
b
m

atrix

Process Grid

Slow GPU-node skipped

Figure 12.5: Distribution of the Matrix in the Heterogeneous HPL

12.4.1 Heterogeneous Solver for Triangular Matrices

Unfortunately, the distributed triangular matrix solver of HPL, PDTRSV, relies implicitly on
the homogeneous round-robin distribution scheme of the original HPL. Therefore, changing only
1 By and large, column j is skipped if the matrix-fraction already assigned to column j is larger than the total yet

assigned faction times δj . Some heuristics treat inefficiencies arising from discrete distribution and finite dimensions.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 101

the indexing functions without adjusting internals of the triangular solver is insufficient and
breaks the functionality of PDTRSV. The original PDTRSV implements a lookahead algorithm
to shorten the critical path – just like the lookahead for the original LU -factorization. Maintaining
this feature turned out to be the primary challenge. In the following, as a simplification it is
assumed that the process-grid contains solely a single process-row (p “ 1), i. e. process-column j
consists exactly of process j. Furthermore, it is assumed that the matrix-size is r ¨ Nb, i. e. a
multiple of Nb. The generalization is done in the obvious manner. Each process-row handles the
matrix-rows it stores and the lowermost and rightmost matrix blocks are accordingly smaller.

The original PDTRSV-solver for triangular matrices (without lookahead) works the following
way: Each process has a temporary storage for the RHS (Right Hand Side of linear equation
system) which is called swapspace. The process storing the last diagonal NbˆNb matrix block
initializes its swapspace with the RHS, solves the triangular subsystem of the last diagonal block,
and stores the solution subvector to the appropriate position of its swapspace. (For p ą 1, the
solution vector has to be replicated to all processes in the process-column.) Next, the matrix
entries above the solved block are zeroed out. Being no longer needed these entries themselves are
not updated at all but only the remaining swapspace (the RHS above the solution subvector just
stored) is updated. Afterward, the swapspace is sent to the process storing the previous diagonal
block, where the iteration starts from the beginning. After all diagonal blocks have been solved,
the swapspace (of process 0) contains the solution vector.

The original lookahead introduces the following change: without loss of generality, assume that
the last process (q´ 1) stores the RHS. Note that with lookahead the swapspaces do not directly
store the current RHS at any point in time but the RHS equals the sum of certain swapspaces as is
seen below. Processes 0 to q´2 initialize their swapspace to zero. Altogether, these q´1 processes
need only Nb ¨ pq ´ 1q rows of the RHS for the first block each of them solves. After solving the
diagonal block, process q ´ 1 does not update its entire RHS. Instead, only the entries of the
lowermost q´1 blocks above the diagonal block are updated. The updated part of the swapspace
is sent to the previous process, which adds this update to its swapspace. As this swapspace was
originally initialized with zero, the previous process now has the part of the RHS required for the
next q´ 1 triangular solve steps. While the remaining processes repeat these steps, process q´ 1
can update the rest of its RHS in order to zero out the remaining matrix entries above the diagonal
block it solved. After q steps the next diagonal block to be solved is stored by process q ´ 1
again. It receives the update for the current RHS belonging to the diagonal block from process 0,
namely blocks r ´ 2q ` 1 to r ´ q ´ 1. (The block index starts with 0. Recall that in the first
step only q ´ 1 blocks of the RHS were transferred, namely blocks r ´ q to r ´ 2.) Hence, the
update will not contain data from the original RHS (the other swapspaces were initialized with 0)
but only the updates to the RHS required for zeroing out the matrix entries above the diagonal
blocks processed by processes 0 to q´ 2. After solving its next diagonal block, process q´ 1 will
again update q ´ 1 blocks of the RHS and send this update to the previous column. With this
update the previous column also gets the remaining part of the updated RHS for the very first
iteration, which process q ´ 1 has calculated in the meantime.

Fig. 12.6 visualizes the solution process by showing how the swapspaces develop over time.
Here, SolvepM, bq denotes the solution x of M ¨ x “ b where M is an Nb ˆ Nb submatrix
block, Ri the r ´ ith block of the initial RHS, Mi,j the (r´ ith, r´ jth) NbˆNb submatrix block
of the HPL matrix, Mi “Mi,i the diagonal block,

Ri,j “

$

’

’

’

&

’

’

’

%

Ri if j “ 0

Ri,j´1 ` Ui,j if 0 ă j ă i

SolvepMi, Ri,i´1q if i “ j

Ri,j´1 if i ă j

the r ´ ith block of the RHS (not the swapspace) after iteration j, and

Ui,j “ ´Mi,j ¨Rj,j´1

102 12.4. HETEROGENEOUS NODES

the update to the r´ith block of the RHS in iteration j for 0 ă j ď i. The r´ith block of the solu-
tion vector x is then given by xi “ Ri,r “ Ri,i “ SolvepMi, Ri`

ři´1
j“1 Ui,jq. The clue of the looka-

head is that after iteration j block r´i of the swapspace does not necessarily have to contain Ri,j .
All the updates can be delayed until this block is used as second argument of Solve. On top of
that, the order of the accumulation (

ři´1
j“1 Ui,j) of the update steps is not important. After the

final iteration, all xi have been calculated and each is stored by exactly one process column only.

Initialization

Matrix Swapspaces

M1

M2

M3

M4

M5

M6

R1

R2

R3

R4

R5

R6

0

0

0

0

0

0

0

0

0

0

0

0

Iteration 1

M1

M2

M3

M4

M5

M6

x1

R2+U2,1

R3+U3,1

R4+U4,1

R5+U5,1

R6+U6,1

0

0

0

0

0

0

0

0

0

0

Iteration 2

M1

M2

M3

M4

M5

M6

0

U4,2

U5,2

U6,2

0

0

0

0

R3+U3,1

R2+U2,1

R3+U3,1

R2+U2,1x2

R3+U +U3,1 3,2

R4+U4,1

R5+U5,1

R6+U6,1

U4,2

R3+U +U3,1 3,2

Iteration 3

M1

M2

M3

M4

M5

M6

0

U6,2

0

0

U5,3

U6,3

R3+U3,1

R2+U2,1x2

R2+U +U2,1 2,2

R4+U +U +U4,1 4,2 4,3

R5+U +U5,1 5,3

R6+U6,1

U +U4,2 4,3

x3

Iteration 4

M1

M2

M3

M4

M5

M6

0

U4,2

U +R +U +U +U5,2 5 5,1 5,3 5,4

U +R +U U6,2 6 6,1 6,4

0

0

U5,3

U6,3

R3+U3,1

R2+U2,1x2

R2+U +U2,1 2,2

R5+U +U +U5,1 5,3 5,4

R6+U U6,1 6,4

U +U4,2 4,3

x3

x4

Iteration 5

M1

M2

M3

M4

M5

M6

0

U4,2

U +R +U +U +U6,2 6 6,1 6,4 6,5

0

0

U5,3

U +U +R +U +U +U6,3 6,2 6 6,1 6,4 6,5

R3+U3,1

R2+U2,1x2

R2+U +U2,1 2,2

R5+U +U +U5,1 5,3 5,4

R6+U U6,1 6,4

U +U4,2 4,3

x3

x4

x5

x1

x1

x1

x1

R =1,1

R =2,2

R =3,3

R =4,4

R =5,5

R =6,6

U4,2

U5,2

Process 0
Process 1
Process 2

Figure 12.6: Right Hand Side Update in Original PDTRSV (With Lookahead)

The above scheme does no longer work with a heterogeneous matrix-column assignment. If a
process is skipped, another process will contain two diagonal blocks which are less than q´1 blocks
away from each other. Without loss of generality, assume this is the case for process q ´ 1. In
the first iteration, it sends q´ 1 blocks of its swapspace, which contain a part of the initial RHS.
After less than q ´ 1 iterations it will receive an update containing at least one of the blocks it
sent in the first iteration. The problem is that this update will contain a part of the original
RHS. Accumulating this update to the swapspace will multiply a part of the initial RHS by 2
leading to a wrong result. Fig. 12.7 demonstrates the problem.

The solution (Fig. 12.8) is to make a process send an update for only so many blocks that the
first block which is not sent will be either processed by itself or the process will be skipped in the
round robin distribution between the last block updated and this next block. (The first criterion
addresses the above problem and the second criterion a similar issue for the process-column next to
the skipped one. Phenomenologically, updates are sent up to where the process is next considered

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 103

Initialization

Matrix Swapspaces

R1

R2

R3

R4

R5

R6

0

0

0

0

0

0

0

0

0

0

0

0

Iteration 1

x1

R2+U2,1

R3+U3,1

R4+U4,1

R5+U5,1

R6+U6,1

0

0

0

0

0

0

0

0

Iteration 2

0

U4,2

U5,2

U6,2

0

R3+U + +U +U3,1 3,1 3,2R3

R2+U2,1x2

R3+U +U3,1 3,2

R4+U +U4,1 4,2

R5+U5,1

R6+U6,1

x1

R =1,1

R3+U3,1

R2+U2,1R =2,2 0

0

0

0

0

0

0

Incorrect

M1

M2

M3

M4

M5

M6

M2

M3

M4

M5

M6

M1

M2

M3

M4

M5

M6

M2

M3

M4

M5

M6

M1

M2

M3

M4

M5

M6

M2

M3

M4

M5

M6

Process 1 skippedProcess 0
Process 1
Process 2

Figure 12.7: False Right Hand Side Update in incorrect PDTRSV of Heterogeneous HPL

Initialization

Matrix Swapspaces

M1

M2

M3

M4

M5

M6

R1

R2

R3

R4

R5

R6

0

0

0

0

0

0

0

0

0

0

0

0

Iteration 1

x1

R2+U2,1

R3+U3,1

R4+U4,1

R5+U5,1

R6+U6,1

0

0

0

0

0

0

0

0

0

0

Iteration 2

0

U4,2

U5,2

U6,2

0

0

0

0

R3+U3,1

R2+U2,1

R3+U3,1

R2+U2,1x2

R3+U +U3,1 3,2

R4+U4,1

R5+U5,1

R6+U6,1

U4,2

R3+U +U3,1 3,2

Iteration 3

0

U6,2

0

0

U5,3

U6,3

R3+U3,1

R2+U2,1x2

R2+U +U2,1 2,2

R4+U +U +U4,1 4,2 4,3

R5+U5,1

R6+U6,1

U +U4,2 4,3

x3

Iteration 4

0

U4,2

0

0

R3+U3,1

R2+U2,1x2

R2+U +U2,1 2,2

R5+U +U5,1 5,4

R6+U U6,1 6,4

U +U4,2 4,3

x3

x4

x1

x1

x1

R =1,1

R =2,2

R =4,4

Process 1 skipped

U5,2

U6,2

U4,2

U5,2

M1

M2

M3

M4

M5

M6

M1

M2

M3

M4

M5

M6

M1

M2

M3

M4

M5

M6

M1

M2

M3

M4

M5

M6

U +U +R +U +U5,3 5,2 5 5,1 5,4

U +U +R +U U6,3 6,2 6 6,1 6,4

R =3,3

R =5,5

Only one Row-Update since
Process 0 not 1 stores M .5

Updates from
two Processes.

Process 0
Process 1
Process 2

Two Row-Updates since
Process 1 is skipped between

M and M4 5.

Figure 12.8: Correct Right Hand Side Update in fixed PDTRSV of Heterogeneous HPL1

in the round robin distribution. Mathematically, after process j solves block b it sends an update
for blocks a to b ´ 1 with a minimal such that process j neither stores a block in the range a
to b´1 nor is skipped when round-robin distributing blocks a to b´1 .) Additionally, not only the
process storing the next diagonal block must send an update but also each process skipped in the
distribution since the last diagonal block. (These updates can be but are not necessarily empty.)

1 The distribution ratios are altered in comparison to Fig. 12.7 to demonstrate all effects.

104 12.5. ZERO-COPY DMA TRANSFER ON INTEL CPUS

12.4.2 Heterogeneous HPL Performance

In order to measure the efficiency of the heterogeneous HPL, a test-setup with six nodes is
used: two quad nodes without GPU, two GPU nodes clocked at 700 MHz, and two GPU nodes
at 750 MHz. The GPU clock discrepancy is chosen small to check whether the implementation
can cope with small performance differences. Each node category is first tested in a pˆ q “ 2ˆ1
grid-configuration separately. This way the performance ratios are determined. The best-case
performance is defined as the sum of the GFlop/s of the three 2 ˆ 1 runs. The matrix sizes are
chosen such that the average matrix size per node is equal in all tests. Due to the nature of the
heterogeneous HPL, only the average size can be compared. Afterward, the nodes are tested in
a 2 ˆ 3 configuration with equally fast nodes grouped in process-columns. (It has to be noted
that the heterogeneous run suffers from the disadvantage that the 2 ˆ 3 configuration is more
communication intensive than the 2ˆ1 configuration used as reference.) A reference test is done
without the heterogeneous feature (run I), a second test is performed with a reduced matrix size
for the quad nodes (run II), and a third test with fine-tuned matrix sizes also for differently
clocked GPU-nodes (run III). Table 12.9 shows the relative performance settings used for the
tests. Fig. 12.10 shows the results of the 2 ˆ 1 runs while Fig. 12.11 compares the reference
performance, the best-case scenario, and the heterogeneous benchmarks.

Run GPU @ 750 MHz GPU @ 700 MHz Quad

I 1.0 1.0 1.0
II 1.0 1.0 0.63
III 1.0 0.975 0.60

Table 12.9: Performance Ratios used in Configuration of Heterogeneous HPL Benchmark [IX,X]

 0

 200

 400

 600

 800

 1000

GPU 750 MHz GPU 700 MHz Quad

1x
2

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
]

987.1 943.9

600.3

Figure 12.10: Reference Performance of Node
Categories of Heterogeneous HPL [IX,X]

 0

 500

 1000

 1500

 2000

 2500

Reference
(I)

Quad / GPU
(II)

Fine Tuned
(III)

Best Case

2x
3

Li
np

ac
k

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
]

1867

2429 2453 2531.3

Figure 12.11: Heterogeneous HPL Perfor-
mance [IX,X]

The plot shows that it is possible to fine-tune the ratios in order to account for small performance
variations. The implementation achieves 96.9 % of the best-case scenario. As there are inevitable
losses due to finite matrix dimensions and thus restrictions to the applied ratios, it is probably
hardly possible to further improve these results.

12.5 Zero-Copy DMA Transfer on Intel CPUs

The Magny-Cours shows a very significant dependency of PCI Express throughput on the memory
controller which connects the DRAM (Fig. 11.4). If it is located on a foreign die connected via
HyperTransport, the bandwidth drops considerably. Fig. 12.13 shows that the effect is still
measurable but far less relevant on an Intel system.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 105

12.5.1 Kernel DMA Performance

In preparation for creating a multi-GPU DGEMM, the original CALDGEMM implementation
is tested on a Nehalem configuration with a 5970 GPU. For the moment, only one GPU chip of
the 5970 is active. Fig. 11.13 showed that writing the kernel output directly to the host using
Zero-Copy does not slow down the kernel on the Magny-Cours system. To the contrary, both the
kernel performance and the overall performance increase. This was very helpful and simplified
the scheduling on the Magny-Cours because no extra control logic is needed for retrieving data
from the GPU. If Zero-Copy is used on systems with Intel chipset, Fig. 12.14 shows that kernel
performance decreases by about 50 % (even though the DMA performance is comparable).2 Thus,
the transfer approach chosen for the Magny-Cours is infeasible for the Nehalem. The following
sections introduce a new strategy which enables CALDGEMM on Intel architectures. In addition,
although not encountering a breakdown of this magnitude, also some AMD systems3 show better
kernel performance without Zero-Copy.

12.5.2 Alternative DMA Transfer Approach

For Nehalem based systems, CALDGEMM offers the option to keep the kernel output in GPU
memory and copy data to host memory in an extra step because such transfers perform well on
Intel chipsets. The scheme is the following: up until now, the CALDGEMM main thread on
CPU core 0 handles only the DivideBuffer function as well as control logic for DMA transfer to
the GPU and kernel execution. The thread has a great amount of idle time and can thus also
handle the DMA transfer back to the host. Instead of directly delegating the postprocessing to
the MergeBuffer thread on CPU core 1, the main thread issues the DMA transfer back to host,
waits for the transfer to finish, and only then starts the postprocessing on core 1. Clearly, also
the MergeBuffer thread on core 1 could handle the DMA transfer. However, the load on core 1
is much higher than on core 0, thus delegating more tasks to core 1 turns out to perform worse.

Unfortunately, with the current AMD driver version, the above-described concept does not work
well. The driver is incapable of starting a DMA transfer while a kernel is being executed (see
Section 11.2.4.6). The kernel calls for tiles are queued. So, at the moment when the host
recognizes that the kernel for tile i has finished, the kernel for tile i` 1 is already running and
thus preventing any new DMA transfer. Unfortunately, there is no designated possibility to
queue kernels and DMA transfers automatically. Comparing Figures 12.12a and 12.12b reveals
how the DMA transfer is serialized. Principally, the pipeline could be extended by an additional
stage such that postprocessing was two steps behind GPU kernel execution in the same way
as preprocessing must be two steps ahead (see Section 11.2.4.6). However, this would require
additional buffers and complicate things and thus a different approach is favored.

To make a virtue out of necessity, the DMA transfer is issued directly after the kernel invocation
before any other command is sent to the GPU. According to the AMD CAL specifications, the
DMA transfer would start while the kernel is still running and the data would be corrupted.
However, since the driver implicitly serializes the kernel and the DMA transfer, the transfer
automatically waits for the kernel to finish. It shall be emphasized that the specification does
not provide the possibility to enforce synchronization in this way. The behavior of the driver
gives this possibility to enqueue kernels and DMA transfers, which is not even envisioned in the
specifications. Fig. 12.12c visualizes the fix.

This implicit synchronization improves the performance with the current driver, but it would fail
if a new driver allowed for starting a DMA transfer during kernel execution. However, in that
case the original version performs well. Since the new DMA approach does not comply with the
CAL specifications, there is the possibility that a new driver leads to unspecified behavior, but
is still subject to the DMA restriction. For this case, a third solution was developed. It waits
2 The bottleneck vanishes on an AMD chipset hence it cannot originate from the 5970 GPU’s PCI Express switch.
3 Disabling Zero-Copy improves the DGEMM kernel performance from 460.8 GFlop{s to 468.8 GFlop{s on [VI].

106 12.6. DUAL-GPU & MULTI-GPU

Time

Tasks: Divide A Divide B Transfer A Transfer B Fetch C Merge DGEMM Kernel

CPU 0
CPU 1
DMA
GPU

(a) Output to Host (Works well on AMD but not on Intel)

Time

Tasks: Divide A Divide B Transfer A Transfer B Fetch C Merge DGEMM Kernel

CPU 0
CPU 1
DMA
GPU

(b) Output to GPU (old) (Concurrent DMA does not work due to DMA Problems in AMD Driver)

Time

Tasks: Divide A Divide B Transfer A Transfer B Fetch C Merge DGEMM Kernel

CPU 0
CPU 1
DMA
GPU

(c) Output to GPU (new) (Workaround for Intel Systems - Concurrent DGEMM and DMA as in 12.12a)

Figure 12.12: Workflow of CALDGEMM with four Tiles [V]

until a kernel finishes, then it starts the DMA transfer and only then enqueues the next kernel.
It shows a performance decrease of 2.2 % and is only a fallback if both other versions fail. In
summary, good CALDGEMM performance is ensured in any case.

Another aspect is important. Using the GPU’s DMA engine instead of the kernel for DMA
transfers does not require the host side buffers to be unmapped. Thus, the problem that led to
the binary driver patch is null and void. If the driver patch is not available, the modified DMA
scheme is a useful option on AMD systems as well.

A comparison of the new DMA path, the original one, and some more which are introduced later
in this thesis is given in Section 12.12.

12.5.3 DMA Performance Comparison

Fig. 12.14 gives an overview of the performance of the new and the old output schemes on AMD
and Intel hardware. On Intel platforms, the original version (with Zero-Copy output) does not
even come close to the kernel performance. Comparing the new GPU output with the original
Zero-Copy output on the AMD systems shows that the new version is less than 1 % slower. This
demonstrates that the synchronization works quite well. In the end, also the Intel system reaches
outstanding DGEMM system performance with the new DMA approach.

12.6 Dual-GPU & Multi-GPU

12.6.1 Dual-GPU DGEMM Implementation

In dual-GPU (multi-GPU) CALDGEMM, each device side buffer is allocated on each of the
GPUs separately. Host side buffers must be bound to a specific GPU and rebinding the buffers

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 107

 0

 1

 2

 3

 4

 5

 6

DMA to GPU DMA to Host DivideBuffer MergeBuffer

Th
ro

ug
hp

ut
 [G

B/
s]

Same Die

3.67

5.82

4.54 4.44

Different Die

3.66

5.66

4.06 3.83

Figure 12.13: Dependency of PCI Express
Bandwidth on CPU Die (Intel) [IV]

 0

 100

 200

 300

 400

 500

Raw Kernel CPU Output
(Zero-Copy)

GPU Output
(New)

GPU Output
(Old)

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

] AMD / 5870
472 463 460

356

Intel / 5970
402

207

395

308

Figure 12.14: Comparison of CALDGEMM
Kernel Output Schemes (New GPU Output en-

ables CALDGEMM on Intel CPUs) [IV,V]

requires a considerable amount of time. On top of that, it triggers page faults similar to the
buffer remapping in Section 11.2.5. Therefore, host side buffers are replicated for each device,
too. As the MergeBuffer threads have turned out to be a critical part, each GPU gets its own
dedicated MergeBuffer threads running on different CPU cores.

The GPU tiles are distributed among the available GPUs. The input buffers are transferred to
the GPUs on demand just before the data are needed for computation (always one iteration ahead
due to the DMA problem). This minimizes the data transfer if one of the GPUs does not require
the whole input matrix for the tiles it processes. As described in Section 11.2.4.6, asynchronous
DMA transfer ensures permanent GPU kernel execution. To analyze the simplest case first, only
two GPUs are considered for the moment. In the first implementation, the tiles are distributed
by a round-robin scheduler. The following results are based on this scheduling. The modification
required for more than two GPUs will be small because the number of GPUs is only a parameter.

The GPU/CPU splitting ratio calculation has been adapted to respect the number of GPUs. To
support different GPU types, the number of shaders and the frequency is also taken into account.
In addition, the criterion for starting third phase DGEMM runs is changed and now respects the
performance of CPU and GPU. Still, for a completely different architecture, this is only a rough
approximation. For optimal tuning to a particular target system, the splitting ratio can be set
manually. In particular, for the comparatively slow Nehalem system with only eight cores, the
splitting ratio is extremely critical. Overestimating the CPU performance only slightly can lead
to a huge performance decrease. To account for this, a special filter compares the aggregated
CPU and GPU performances. If they differ much, a GPU-ratio increase shortens first and second
phase CPU runs and provides a safety-margin. The CPU is then driven by third phase DGEMMs
much more. The best value of h as obtained in Section 11.2.5.1 depends on the number of GPUs.
It turns out that the optimal h for a single GPU and a problem size N scaled down by a factor
of n yields a good approximation to the optimal h for n GPUs.

12.6.1.1 CPU & GPU Utilization

Fig. 12.15 visualizes the timing of a dual-GPU run.4 The close to 100 % GPU utilization is
obvious. The test was performed on an Intel based system, where the MergeBuffer routine is
very fast.5 Still, the load on cores 1 and 2 is above 50 % which shows that a single thread is
insufficient. In any case, offloading merge tasks onto CPU core 0 is counterproductive as this
reduces its responsiveness to hardware interrupts.

4 The time axis continues in a second row.
5 Section 12.6.2.2 shows that, compared to an Intel system, the merge thread on the AMD system causes almost full

CPU load.

108 12.6. DUAL-GPU & MULTI-GPU

Time

Tasks: Divide A Divide B Transfer A Transfer B Fetch C Merge DGEMM Kernel BLAS Phase 1-3

CPU 0
CPU 1
CPU 2
CPU 3-7
DMA
GPU 0
GPU 1

CPU 0
CPU 1
CPU 2
CPU 3-7
DMA
GPU 0
GPU 1

Figure 12.15: Workflow of CALDGEMM with eight Nehalem Cores and two GPUs [IV]

12.6.1.2 Performance

Fig. 12.16 shows the performance achieved on the Nehalem system with the 5970 GPU.

Two criteria are used to evaluate the quality of the implementation. First, the usual efficiency
defined as the ratio of the achieved performance divided by the theoretical peak performance
is of interest. This yields 85.0 % and is similar to the single-GPU version. A second approach
measures the actual scalability of the multi-GPU implementation. The efficiency definition in
the previous form includes inefficiencies arising from the original single-GPU version (e. g. the
kernel efficiency). Thus, even an optimal multi-GPU framework is not capable of reaching 100 %
efficiency.

Therefore, in order to analyze the scalability of the multi-GPU implementation, it is most instruc-
tive to examine the performance that is lost compared to the best case scenario. The accumulated
maximum performance is the sum of the individual DGEMM performances of all participating
components. Since every GPU requires CPU cores for pre- and postprocessing, these cores cannot
contribute to the CPU DGEMM anymore. Thus, in the best case, the corrected accumulated
performance is the sum of the CPU DGEMM performance with a reduced number of cores and
the product of the number of GPUs with the performance of a single GPU. The scalability
is then calculated as the achieved performance divided by the best case corrected accumulated
performance. This value is not related to the theoretical peak performance but measures the
quality of the multi-GPU implementation in relation to single-GPU performance.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

CPU Only 1 GPU 2 GPUs 1GPU +
CPU

2GPUs +
CPU

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

71.5

400.3

787.8

448.3

832.4

Figure 12.16: Performance of Dual-GPU Im-
plementation [IV]

 0

 200

 400

 600

 800

 1000

 0 1 2

75

80

85

90

95

100

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

Sc
al

ab
ili

ty
 [%

]

Number of GPUs

GPU Only
GPU + CPU

Accumulated Max. Perf.
Accumulated Max. Perf. (corrected)

Peak Perf.
Scalability

Figure 12.17: Scalability of Dual-GPU Imple-
mentation [IV]

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 109

Fig. 12.17 visualizes the scalability. On a Nehalem with two GPUs, CALDGEMM manages to
achieve 832 GFlop{s out of 846 GFlop{s corrected accumulated performance corresponding to a scal-
ability of 98.5 %, which is so close to 100 % that further optimization is unnecessary. The round-
robin scheduler is thus sufficient. A more complex scheduler is discussed for multi-GPU later.

12.6.2 Scaling to Multi-GPU DGEMM

The last section showed that the dual-GPU implementation performs almost optimally. Hence,
from the tile-scheduling perspective, there is no reason why this should be different for a multi-
GPU version. However, several other factors have an impact on multi-GPU performance.

12.6.2.1 Memory & PCI Express Throughput

With g the GPU DGEMM performance and s the size of a matrix entry in bytes, the required
PCI Express (p) and host memory (m) throughput can be calculated as:6

p «
g ¨ s

2k
m « 4 ¨

g ¨ s

2k
“ 4 ¨ p.

In contrast to the PCIe transfer, each matrix entry needs four memory transactions: the result is
stored by the GPU in the page-locked buffer via DMA; it is then read by the MergeBuffer thread
on the CPU, together with the old C-matrix entry; and finally, the updated C-matrix entry
is written back. An increase of k shifts the calculation-to-transfer ratio toward the calculation
and can thus hide transfer bottlenecks. Considering the 5870 top DGEMM system performance
of 465 GFlop{s measured in Section 11.4, this yields for n GPUs and k “ 1024 or k “ 2048
respectively:

p1024 “ 1.82 ¨ n [GB{s]
p2048 “ 0.91 ¨ n [GB{s]
m1024 “ 7.27 ¨ n [GB{s]
m2048 “ 3.63 ¨ n [GB{s]

The measured PCIe bandwidth on the LOEWE-CSC is 5.4 GB{s host to GPU and 6.7 GB{s GPU
to host. This is still sufficient for two GPUs connected via a PCIe switch to one second gener-
ation x16 PCIe link, even at k “ 1024. More GPUs are connected via independent PCIe links
and thus do not exceed the PCIe capacity. Hence, PCIe bandwidth does not pose a problem.

System open64 [GB{s] ICC [GB{s] GCC [GB{s]

Westmere, 12 Cores 39.13 39.34 -
Magny-Cours, 24 Cores 48.11 - 35.31

Table 12.18: Memory Bandwidth of Stream Benchmark [McC 95] (Copy Task) on Westmere
and Magny-Cours [XVI,XVII]

The situation is different for the memory bandwidth, e. g. running three 5870 GPUs in parallel
would require 21.8 GB{s only for the GPU DGEMM. Table 12.18 shows the peak memory transfer
rates measured on an Intel and an AMD system using different compilers. Apparently, the AMD
system has a superior peak bandwidth. However, the achievable bandwidth depends to a large
extent on memory access patterns and code optimizations. The Intel system has a lower peak
rate but is faster for non-specialized code.7 It must be noted that these peak rates are achieved
6 The factor 2k comes from the fact that approximately 2k floating point operations are required for each matrix entry.
7 A phenomenological explanation is that the dual-CPU AMD system offers eight memory channels for four CPU dies

whereas the Intel system offers six channels for only two dies. Therefore, the aggregate bandwidth is higher on AMD
whereas the Intel CPU excels at achievable bandwidth of single cores.

110 12.6. DUAL-GPU & MULTI-GPU

using all CPU cores (i. e. 24 cores on the AMD system) and that, in addition, each CPU core
accesses only local memory directly connected to its own memory controller. In the example
with three 5870 GPUs, a throughput of almost 22 GB{s must be achieved by only three CPU cores
and the DMA transfer by the GPU. This code is not specialized for memory throughput as it
is constrained by the required task and it has to access partially arbitrary memory locations.8
The parallel execution of the CPU-DGEMM even increases this demand for memory bandwidth.
Therefore, the available memory bandwidth sets a limit for the DGEMM performance, which can
only be raised by increasing the parameter k. Unfortunately, the kernel performance is optimal
for k “ 1024, it remains close to optimal up to k “ 2048, and it drops for higher k. Thus, a
larger k is not always better. Fig. 12.21 visualizes the k-dependency. A dual-CPU AMD Opteron
at 2.3 GHz with 128 GB RAM and three AMD 5870 GPUs is used as a reference system in
the rest of this section. The initial CALDGEMM multi-GPU implementation described above
reaches 1284 GFlop{s at k “ 2048 and has its peak of 1333 GFlop{s at k “ 2304.

12.6.2.2 CPU Utilization

Besides the memory throughput, the CPU load on the dedicated GPU pre- and postprocessing
cores can limit the achievable performance. Fig. 12.19 gives an overview of the CPU utiliza-
tion of all cores during a DGEMM run. For comparison, the optimized single-GPU run from
Section 11.3.4.3 is included.9 It must be considered that synchronization by active waiting is
performed in some situations, which artificially increases the system CPU load on core 0. The
dual-GPU run (one 5970) performs the preprocessing for both GPUs on core 0. The load is
high (96 %) but the single core is sufficient. The postprocessing uses a dedicated core for each
GPU. The measurement is based on an Intel Nehalem CPU with the 5970 GPU. Due to its
superior memory interface for general-purpose situations (refer to Table 12.18), the load is much
lower than on AMD. Still, it turns out that a single CPU core is insufficient.

The runs with three GPUs cannot be directly compared to those with fewer GPUs because k is
set to 2048. Postprocessing on cores 1 – 3 runs on medium load, but the preprocessing on core 0
saturates at 100 % load and limits the performance. This suggests a multi-threaded DivideBuffer
implementation. The next paragraphs describe how the multi-GPU implementation has been
improved based on these conclusions.

CPU Pinning The original single-GPU HPL pins the pre- and postprocessing cores to the
CPU closest to the GPU and allocates the GPU buffers there. There is no need to change
this for a dual-GPU like the 5970. However, the three-GPU system has the GPUs connected
to different CPU dies (see Fig. 12.33 in the next chapter). The pinning routine is altered such
that a CPU die can be set for each GPU. Multiple GPUs can be assigned to the same die.
CALDGEMM automatically runs the MergeBuffer threads on cores on that die and allocates the
memory accordingly. This requires a reservation of a non-continuous set of cores from GotoBLAS.
The GotoBLAS patch is thus extended to provide this functionality. This update provides more
memory bandwidth for CALDGEMM and the optimal k decreases from 2304 to 2048. The
performance increases from 1333 to 1366 GFlop{s.

Multi-Threaded DivideBuffer Fig. 12.19 reveals a very high CPU load for the DivideBuffer
core in a three-GPU configuration. Thus, in an improved version one thread is created per CPU
die that has at least one GPU connected to it. Such a thread then performs the preprocessing and
DMA transfer for all GPUs connected to this die (usually not more than two GPUs). The schedul-
ing tasks are processed by the firstDivideBuffer thread. In the three-GPU reference configuration,
8 The page-locked buffer is allocated on memory local to the CPU core but the C-matrix is stored in interleaved form,

i. e. it is spread among all available memory controllers in a round robin fashion.
9 The single-GPU run (one 5870) shows a medium load for the core doing preprocessing (43 % on core 0) and high

load for the postprocessing core (97 % on core 1). Still, the single postprocessing core is sufficient.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 111

one GPU is connected to die 0 (cores 0´ 5) and two GPUs are connected to die 2 (cores 12´ 17)
(Compare the PCI Express performance in Fig. 12.33). Thus, two DivideBuffer threads are
started, one on core 0 (for GPU 0) and one on core 12 (for GPUs 1 and 2). In addition, three
MergeBuffer threads are running on cores 1, 13, and 14. The figure shows that the load on core 0
does not decrease significantly but is very close to 100 %, probably due to the additional synchro-
nization overhead (core 0 does all the scheduling and synchronization). The second DivideBuffer
thread on core 12 has a considerably lower load. In the future, the scheduling could be improved
to not rely on a single thread. The reference performance improves from 1366 to 1410 GFlop{s.

0
25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ut
ili

za
tio

n
[%

]

CPU Core

Magny-Cours, 1 5870, DGEMM
Nehalem, 1 5970, DGEMM

Magny-Cours, 3 5870, DGEMM, Initial
Magny-Cours, 3 5870, DGEMM, Optimized

0
25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 12.19: CPU Utilization during Multi-GPU DGEMM10 [IV,V,VI]

12.6.2.3 Other Multi-GPU Improvements

Partial B-Matrix Caching Originally, BBuffers could be used as long as the smaller matrix
side was below b¨h

r , with r the splitting ratio, h the tiling size, and b „ 1
k the number of BBuffers.

Switching from k “ 1024, r « 0.7 to k “ 2048, r « 0.93 the maximum allowed matrix size
(to be precise its smaller dimension) drops from 129024 to 48128. This makes the multi-GPU
DGEMM infeasible for almost-square matrices as in HPL. In a first step to mitigate this problem,
a partial B-matrix caching is implemented.11 The highest possible number b of BBuffers is
allocated in each GPU’s memory. The first b ´ 2 blocks of the B-matrix required on a GPU
are cached on this GPU in dedicated buffers. Retransfer of these blocks is not necessary. All
other blocks, however, have to be retransmitted every time (stored in the remaining two buffers
alternately). This simple cache scheme is in fact optimal. If a more sophisticated approach (e. g.
an LRU) substituted block i by block j, block i will have been retransferred before block j will
be needed again. Partial caching also improves the single-GPU version for very large matrices.
10 The fraction of system load is displayed in black. The optimized GPU version includes all improvements of this

section whereas the initial version does not.
11 In the following, it is assumed (as in Section 11.2.4.6) that the B-matrix is smaller than the A-matrix (n ă m). If

this is not the case, inner and outer loop of the tiling are permuted such that all findings remain the same.

112 12.6. DUAL-GPU & MULTI-GPU

B-Matrix Splitting The next step bases on the partial BBuffers above and finally solves
the matrix size restrictions by replacing the round-robin scheduler with an improved version.
The B-matrix is split in as many parts as there are GPUs. The tiles corresponding to each part
of B are processed solely on one of the GPUs.12 Only a fraction of the B-matrix must be trans-
ferred onto each GPU. While possibly the GPU cannot cache the entire B-matrix, its memory
might very well suffice for this fraction. In this case, no tile is ever retransferred. This change in
the scheduling policy comes at zero overhead since one CPU core is dedicated for preprocessing
and DMA management anyway. As soon as a GPU has processed its part of B, it falls back to the
round-robin scheduler and can steal tiles from other GPUs. This ensures continuous GPU utiliza-
tion in any case. The corresponding blocks of B can still (in the round-robin phase at the end) be
cached if sufficient BBuffers are available. Fig. 12.20 shows how the matrix is distributed. This
enables one to run on square matrices spanning the full 128 GB of memory the system offers. The
maximum achieved performance is 1435GFlop{s. The multi-GPU scalability increases to 93.8 %.

A

B

C, GotoBLAS, Phase 1a

C, GotoBLAS, Phase 1b

C, GotoBLAS, Phase 2

C, GotoBLAS, Phase 3

C, Processed by GPU 1

C, GotoBLAS
(Preparation for Factorization)

C, Processed by GPU 3

C, Processed by GPU 2

Round Robin Scheduler

Figure 12.20: Multi-GPU Distribution of C-Matrix12

12.6.3 Multi-GPU DGEMM Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1500 2000 2500 3000

3
GP

U
D

GE
M

M
 P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

k

Figure 12.21: Dependency on k Parameter us-
ing three GPUs [VI]

 0

 300

 600

 900

 1200

 1500

 0 1 2 3

75

80

85

90

95

100

D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

Sc
al

ab
ili

ty
 [%

]

Number of GPUs

Westmere, 9350
Westmere, 9350, Scalability

Magny-Cours, 5870
Magny-Cours, 5870, Scalability

Nehalem, 5970
Nehalem, 5970, Scalability

Figure 12.22: Performance of multiple GPUs
on different Architectures [IV,VI,XV]

Fig. 12.22 visualizes performance and scalability while Table 12.23 lists various multi-GPU
DGEMM results on different platforms in more detail. Table 12.24 shows the corrected accu-
12 The actual implementation is a bit more sophisticated than indicated in this section. In case the B-matrix cannot

be distributed uniformly among the GPUs due to tiling size restrictions, tiles within one column of tiles are spread
onto two GPUs such that in the end each GPU computes the same number of tiles.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 113

mulated performances and multi-GPU scalabilities (as for the initial dual-GPU implementation
in Section 12.6.1.2). Out of the two-GPU measurements, the Intel system with the 5970 GPU
shows the best scalability. The reason is that its memory interface allows for running two GPUs
with k “ 1024 while the AMD system has to use k “ 2048, as soon as two GPUs are active. For
three GPUs or faster GPUs, all systems use k “ 2048 and the scalabilities are comparable.13

System GPUs Mode Performance [GFlop{s]
k “ 1024 k “ 2048

Nehalem, 8 Cores, 5970 [IV] 0 GPU/CPU 71.5
Nehalem, 8 Cores, 5970 [IV] 1 GPU/CPU 448.3
Nehalem, 8 Cores, 5970 [IV] 2 GPU/CPU 832.4

Nehalem, 8 Cores, 9350 [XV] 1 GPU 345.9 343.7
Nehalem, 8 Cores, 9350 [XV] 2 GPU 669.0 680.4
Nehalem, 8 Cores, 9350 [XV] 3 GPU 858.5 1003.7

Nehalem, 8 Cores, 9350 [XV] 1 GPU/CPU 469.7 468.0
Nehalem, 8 Cores, 9350 [XV] 2 GPU/CPU 722.6 783.2
Nehalem, 8 Cores, 9350 [XV] 3 GPU/CPU 770.0 1053.9

Magny-Cours 24 Cores, 5870 [VI] 1 GPU 463.1 445.6
Magny-Cours 24 Cores, 5870 [VI] 2 GPU 699.7 891.1
Magny-Cours 24 Cores, 5870 [VI] 3 GPU 887.7 1332.7

Magny-Cours 24 Cores, 5870 [VI] 1 GPU/CPU 616.9 594.8
Magny-Cours 24 Cores, 5870 [VI] 2 GPU/CPU 705.1 1024.3
Magny-Cours 24 Cores, 5870 [VI] 3 GPU/CPU 923.0 1435.3

Table 12.23: Multi-GPUs DGEMM Results on different Architectures

System GPUs k Performance Best Case Scalability

Nehalem, 8 Cores, 5970 [IV] 2 1024 832 846 98.35 %
Nehalem, 8 Cores, 9350 [XV] 3 2048 1054 1131 93.18 %
Magny-Cours 24 Cores, 5870 [VI] 3 2048 1435 1530 93.78 %

Table 12.24: Multi-GPU DGEMM Scalabilities on different Architectures

12.6.4 Multi-GPU HPL

The previous section optimized the CALDGEMM multi-GPU performance as far as possible.
The main bottleneck for multi-GPU HPL now lies in the factorization. Multiple reasons exist for
this: (Consider one HPL iteration)

• Increasing Nb “ k to 2048 doubles the DGEMM time (per iteration) for the trailing ma-
trix update whereas the factorization time goes with N3

b . Thus, the factorization, which
cannot be implemented as efficiently as the DGEMM, contributes much more to the overall
execution time.

• The multi-GPU CALDGEMM does speed up the DGEMM but not the factorization. Thus,
the factorization contributes even more to the overall time.

Obviously, there is no other solution except for speeding up the factorization.

13 In fact, the triple-GPU measurement on the Magny-Cours reveals a slightly higher scalability than on Intel CPUs.
The reason is that the Intel node has less main memory than all other test systems. At equal matrix sizes, due to
Intel’s better memory interface, it is the other way around. Still, the differences are marginal.

114 12.6. DUAL-GPU & MULTI-GPU

12.6.4.1 GPU-based Factorization

An obvious approach is to do the factorization on the GPU. In principle, there are two realizations:

• The entire factorization is performed by the GPU. The full matrix is transferred to and
from the GPU before and after the GPU factorization.

• Only time consuming BLAS calls during the factorization are offloaded to the GPU. This
requires many more PCIe transfers in between, namely two or more transfers per BLAS call.

Both possibilities are analyzed in [Bac 09, 5.3]. For obvious reasons, the first version is shown to
perform better. However, it only works well as long as the grid is configured as 1ˆ q. As soon
as the process-grid contains at least two rows, the pivotization requires one communication step
for each column processed, i. e. Nb “ 2048 transfers to and from the GPU in the given case. For
running tens to hundreds of nodes, this approach is thus not suited.

For the second approach, a case-study is conducted. The AMD ACML-GPU library [Adv I]
is linked to HPL and its GPU-based BLAS functions are used for the factorization. Clearly,
these GPU implementations are not as specialized for the hardware as CALDGEMM is for large
matrices, but the library allows one to easily examine the capabilities of the GPU. The BLAS
calls during the factorization have quite small parameters, the largest is an m “ n “ k “ 1024
DGEMM. Such small calls cannot benefit from multiple GPUs at all, thus only a single GPU is
used. Unfortunately, the overhead for DMA transfer, etc. greatly exceeds the speed gain of the
GPU BLAS calls such that the overall factorization time even increases. Naturally, computers
with less potent CPUs might still benefit (see Section 12.11). In the following, only optimizations
to the CPU factorization are discussed. From this perspective the deficient tuning of ACML-GPU
and the lack of an AMD counterpart to GPU Direct take their toll. Modern HPL implementations
for NVIDIA support GPU-based factorization with promising results [Kur` 12, Shi 13].

12.6.4.2 GotoBLAS Tuning

The recursive factorization is based on GotoBLAS calls, however, with a wide input parameter
range. Obviously, using 24 cores is not always optimal, e. g. for multiplying 4 ˆ 4 matrices.
Table 12.25 lists all GotoBLAS calls during the factorization with nonzero time consumption.

BLAS Call DTRSV DTRSM DSCAL DGEMV DCOPY DAXPY DGEMM
Time 0.22 % 2.38 % 18.60 % 11.07 % 10.71 % 4.34 % 52.91 %

Table 12.25: Time Distribution of GotoBLAS Routines during Factorization [VI]

These calls are analyzed deeper. The performance for multiple input parameters resulting in
various complexities is measured and related to the thread count. In this way, the optimal number
of threads for each level of complexity/input parameter range is determined and GotoBLAS has
been patched to use this number automatically. As an example, Fig. 12.26 shows the results for the
DGEMM, which is the most important call – also inside the factorization. Clearly, the obtained
thread count is only a vague approximation to the real optimum since different parameters can
lead to the same overall complexity. It turns out that the DGEMM performance does not depend
heavily on m, n, and k individually (compare to Section 11.2.4.4) except for special cases such
as m, k Ï 1, n « 1. Other calls, especially the memory-bound tasks, show a huge dependency
indeed. Thus, the thread count is chosen based on the matrix shape and the complexity.

12.6.4.3 Enabling Lookahead

Next, lookahead is enabled. In Section 11.3.4, it was concluded that the factorization thread
count has to be reduced to avoid memory congestion. A deeper analysis of this reveals that this

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 115

 1

 10

 100

104 105 106 107 108 109 1010 1011

Go
to

BL
AS

 D
GE

M
M

 P
er

fo
rm

an
ce

 [G
Fl

op
/s

]

m · n · k

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

Figure 12.26: GotoBLAS DGEMM Performance in Relation to Thread Count and computa-
tional Complexity [VI]

is only relevant for the memory-bound BLAS tasks. Thus, the cut for a maximum of eight threads
is applied only for them (in addition to the thread count reduction for small input parameters).
CPU-bound tasks, such as the DGEMM and in certain cases the DTRSM, can utilize all available
cores. Fig. 12.27 shows a scheme of multi-GPU HPL with lookahead.

G
P
U

C
P
U

Time

Core 0
Core 1

Core 23

...

U
BCAST

Panel
Broadcast

Iteration N Iteration N+1

G
ot

o
L
A

S
B

C
ol

u
m

0
24

l
n
s

1
-

R
w

s
k-

o
n

MergeBuffer GPU 0

GotoBLAS CPU DGEMM

Columns l-n, Rows k-n

U
BCAST

GPU DGEMM KERNELS
Columns 1024-n, Rows 0-k

Scheduling, DivideBuffer GPU 0

A
S

T
M

 0
0

L
W

P
 +

 D
R
S

:
-5

12

G
ot

oB
L
A

 C
lu

n
s

0
10

24
S
,

o
m

-

F
c

iz
at

io
n

a
to

r

A
S

T
M

 5
1

L
W

P
 +

 D
R
S

:
20

-n

GPU 2

GPU 0

Core 12
Core 13
Core 14
Core 2
Core 3

Core 9

...

Core 10

GPU 1

MergeBuffer GPU 1

MergeBuffer GPU 2

DivideBuffer GPU 1 & 2

Figure 12.27: Process-Flow of Multi-GPU HPL

Despite the GotoBLAS optimizations, the factorization time with lookahead is much higher than
without (9.5 s versus 5.8 s on the test system [VI]). Lookahead can only be used as long as the nec-

116 12.7. ENERGY EFFICIENCY

essary CPU tasks do not take longer than the GPU DGEMM. These tasks are: the factorization
itself, the processing of the first Nb columns to prepare the factorization, and the processing of the
borders of the matrix to ensure a matrix size divisible by h. For small matrices, these tasks exceed
the DGEMM time and only for large matrices above 64 GB lookahead can be used. In comparison
to the single-GPU version, the large value of k increases the factorization time enormously. The
adaptive lookahead (originally switching from mode 2 to 1), is complemented with the capability
to turn off lookahead completely as soon as the trailing matrix size shrinks below a certain config-
urable limit. The original pipeline implementation of lookahead 2 has been incompatible with the
initial multi-GPU implementation and is not used for the following benchmarks. (This has been
solved for the Cayman GPU family in Section 12.8.4.) The maximum HPL performance measured
with three GPUs, 128 GB of memory, and dynamic lookahead deactivation is 1114GFlop{s.

12.7 Energy Efficiency

12.7.1 Multi-GPU Considerations

Naively, with sg the single-GPU-DGEMM speed, sc the CPU-DGEMM speed, pg and ps the GPU
and system power consumption, α the multi-node HPL performance compared to the DGEMM
performance, and β the power-supply efficiency, the power efficiency (performance per watt)
relevant for the Green500 of an n-GPU system can be calculated as:

n ¨ sg ` sc
n ¨ pg ` ps

¨ α ¨ β.

(In reality, this ratio has to be multiplied by a factor γpnq which corrects for the reduced efficiency
when running multiple GPUs, e. g. caused by memory bandwidth limitations and the pre- and
postprocessing for the additional GPUs. In the following, it is assumed that the implementation
can achieve that γpnq remains of order one, at least for 1 ď n ď 4 .)

The GPU performance per watt (sgpg) greatly exceeds the CPU’s (scps). Thus, the overall power-
efficiency increases with more GPUs.

12.7.2 First Results

To measure the achievable power efficiency, a test-setup with three 5870 GPUs, two 6174 Magny-
Cours CPUs at 2.2 GHz, and 128 GB RAM [VI] is used. Two measurements are taken:

• A reference benchmark utilizing the full 128 GB of memory.

• A benchmark with only 64 GB of physical memory installed in the system. (HPL perfor-
mance generally increases with more memory but power consumption does as well. Thus,
the best configuration has to be determined experimentally.)

Fig. 12.28 shows the results. The power consumption jumps between two values: one high value
during the DGEMM and one low value during the pivotization when the GPU is inactive (because
lookahead 2 is not used due to incompatibilities with multiple GPUs). The power consumption
decreases toward the end, where the factorization becomes more important. To enable a fair
comparison, the average power through the entire run is considered. In average, the performance
divided by the power consumption during the tests is:

• 1167.6GFlop{J using a 128 GB Matrix
• 1020.6GFlop{J using a 64 GB Matrix

The curve for the 64 GB test lies slightly below the 128 GB curve. Still, the 128 GB run is more
efficient due to higher HPL performance.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 117

 400

 600

 800

 1000

 1200

 1400

Po
we

r C
on

su
m

pt
io

n
[W

]

Time

128 GB System Memory
64 GB System Memory

Figure 12.28: Power Consumption during Multi-GPU HPL Run [VI]

12.7.3 Improvements by more efficient Hardware

Highest performing enthusiast hardware is usually not the most power efficient one. More power
efficient hardware increases the performance per watt while decreasing the overall performance
of the system. Recall that multi-GPU usage increases the power efficiency as the relative CPU
contribution to the overall power consumption decreases with more GPUs. Clearly, the usage of
more efficient (but slower) GPUs weakens this effect. Thus, very low-power GPUs do not help, at
least as long as high performance CPUs are employed. In addition, the gain in power efficiency
is larger when switching from high-end to middle-class than when switching from middle-class to
low-end/low-power. This opens two ways to design energy-efficient systems:

Using both low-power GPUs and CPUs Splitted Desktop Systems (SDS) has designed a
system according to this approach, which remains within a total power envelope of below 200 W.
Using the special HPL versions for slow CPUs (see Section 12.11) and special optimizations
for the system, which were developed in cooperation with SDS, an efficiency of 1.12GFlop{J

was achieved [SDS` 11, Fra 11]. In contrast to the LOEWE-CSC nodes, huge pages (see Sec-
tion 11.2.5.1) have a positive effect.

Using multiple middle-class GPUs For the second approach, the three 5870 GPUs in the
reference system are substituted by lower clocked V7800 GPUs. In addition, the low-voltage
Hynix memory running at 1.35 V is exchanged by special low-power Samsung memory. The
Samsung memory is fabricated using a 30 nm process and saves about 10 W in total, even though
running at the same voltage. There is one more possibility to reduce the power consumption:
The CPU contribution to the DGEMM is very small while the CPUs drain much more power
when fully loaded than when idling. In a second attempt the work is thus offloaded from the CPU
as far as possible, i. e. the CPU processes only the remainder from the GPU DGEMM tiling but
all other CPU DGEMM phases are skipped. This lets several CPU cores idle for about 50 % of
the time. Still, a fast CPU is required to ensure a fast factorization. Table 12.29 lists all results.

Configuration HPL Result Average Power Efficiency

5870 / Hynix Memory 1114 GFlop{s 954.1 W 1.168 GFlop{J

V 7800 / Samsung Memory 983 GFlop{s 820.6 W 1.198 GFlop{J

V 7800 / Low CPU Load 949 GFlop{s 766.8 W 1.238GFlop{J

Table 12.29: Power Efficiency reached with more efficient Hardware [VI]

118 12.8. AMD 6000 SERIES GPU

These values can be extrapolated to multi-node runs relevant for the Green500. It is required to
add the power consumption of the InfiniBand network adapter and to adjust the HPL performance
for the multi-node efficiency. On the LOEWE-CSC, the multi-node network-efficiency is reduced
to 93.2 % compared to single-node results. Assuming 12.2 W for the InfiniBand interconnect
as specified by Mellanox [Mel 10], this yields an estimation for the multi-node power efficiency
of 1.136 GFlop{J. This would correspond to a second place in the November 2010 Green500 list,
which was the most recent list at the time the experiment was conducted.

12.8 AMD 6000 Series GPU

The kernel performance for the Cayman GPU (6000 series) has been optimized in the same way
as for Cypress (5000 series, see Section 11.2.4.1). For each blocking scheme, the best parameters
such as unrolling factor, matrix size, etc. are determined experimentally. As for the 5000 series,
the 4 ˆ 4 B transposed kernel turns out to be the fastest. Fig. 12.30 shows the performance
depending on the matrix size on an AMD Radeon HD 6970 GPU with Cayman chip.

 512 1024 1536 2048 2560 3072
k 1024

 2048
 3072

 4096

h

200

300

400

500

600

D
G

E
M

M
 K

er
ne

l P
er

fo
rm

an
ce

 [
G

Fl
op

/s
]

 460
 480
 500
 520
 540
 560
 580
 600

Figure 12.30: DGEMM Kernel Performance for different Matrix Sizes on 6970 [VI]

The GPU reaches a very good kernel performance of 617 GFlop{s at k “ 1024 and h “ 2304. For
both larger h and larger k, the performance decreases rapidly. The Cayman GPU suffers from a
DMA problem, which is explained and solved in Section 12.8.2. However, even with this DMA
problem fixed, the system performance was limited to 412 GFlop{s at first, which is not consistent
with the kernel performance of about 600 GFlop{s.

12.8.1 Temperature & Power

The Cayman GPU throttles itself under two conditions: high temperature and high power con-
sumption that exceeds its Thermal Design Power (TDP). While throttling due to temperature
can be monitored and excluded easily, it is hard to monitor the actual power consumption. Even
further, the GPU management tools do not even report that the GPU throttles due to power
consumption. The throttling starts after a short delay. This explains the performance drop in
Fig. 12.30 for large h or k: if kernel execution time exceeds the throttling delay, the kernel is slowed
down. It also explains the low system performance: system performance measurements involve
various kernel executions organized in a pipeline. While the first kernel (with medium h and k)
achieves the full performance, all following executions are slow, and so is the system performance.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 119

The AMD ADL library [Adv II] can set voltage and clock rates for all AMD GPU operating
modes. Having raised the clocks of the throttled mode to the stock clocks, the kernel works
perfectly. Fig. 12.31 shows the kernel performance again, this time without any throttling.

 512 1024 1536 2048 2560 3072
k 1024

 2048
 3072

 4096

h

300

400

500

600

D
G

E
M

M
 K

er
ne

l P
er

fo
rm

an
ce

 [
G

Fl
op

/s
]

 460
 480
 500
 520
 540
 560
 580
 600
 620

Figure 12.31: DGEMM Kernel Performance for different Matrix Sizes on 6970 with fixed
Clocks [VI]

The Cayman GPU shows an absolutely flat performance distribution as soon as the matrix reaches
a certain minimal size. The optimum of 624 GFlop{s, which is 92.3 % of the peak performance, is
found at matrix sizes which are suitable for HPL. In contrast, the fastest kernel on the 5000 series
uses k “ 512 where the overhead is too big. Unlike the 5000 series, the best performing Cayman
kernel writes to GPU device memory. The kernel writing directly to host memory achieves
only 610 GFlop{s.

12.8.2 DMA Performance

Unfortunately, the 6970’s initial system performance lacked far behind its kernel performance.
The first implementation achieved 316.4 GFlop{s, 50.7 % of its kernel performance – even af-
ter the power-throttling had been deactivated. (In contrast, Table 11.58 shows that the 5870
reaches 98.6 % of its kernel performance.) Table 12.32 demonstrates that asynchronous kernel
execution and DMA transfer take as long as the sum of kernel and DMA transfer time, regard-
less of the transfer direction and the order of execution. Apparently, in contrast to Cypress,
asynchronous DMA does not work. (For measurements on Cypress, see Table 11.24.)

Operation Time (GPU to Host) [s] Time (Host to GPU) [s]

Kernel Execution 0.103 0.103
DMA Transfer 0.116 0.097
Combined (Kernel started first) 0.208 0.185
Combined (DMA started first) 0.207 0.185

Table 12.32: Asynchronous CAL DMA Transfer on 6970 [VI]

This lack of DMA functionality leads to very poor transfer speeds as shown in Fig. 12.33, especially
when multiple GPUs are installed in one host. The PCI Express bandwidth of a single GPU is
measured for every PCI Express slot. The triple-GPU measurements differ from the single-GPU

120 12.8. AMD 6000 SERIES GPU

measurements in the way that all slots are populated. In both cases, the bandwidth to one GPU
is measured. The 5000 series DMA performance fulfills the expectations and does not depend
on whether one or multiple GPUs are present. In contrast to Cypress, the 6000 series shows
irregular effects and poor performance except for the transfer to the GPU in slot two.

In order to achieve good performance, one should allocate the page-locked memory on the CPU
die which is closest to the GPU. In multi-GPU environments, this die can vary with the GPU. One
can see that slot 0 is connected to CPU die 0 while slots 1 and 2 are connected to CPU die 2.14

 0

 2

 4

 6

 8

 10

Slot 0
(to Host)

Slot 0
(to GPU)

Slot 1
(to Host)

Slot 1
(to GPU)

Slot 2
(to Host)

Slot 2
(to GPU)

PC
Ie

 T
ra

ns
fe

r S
pe

ed
 [G

B/
s]

Single 5870 GPU

6.
71

5.
37

4.
34 4.
63

4.
33 4.
66

Three 5870 GPUs

6.
71

5.
37

4.
33 4.
64

4.
33 4.
64

Single 6970 GPU

2.
69 2.
80

2.
18

4.
77

2.
14

4.
74

Three 6970 GPUs

2.
68 2.
78

2.
02 2.

83

1.
88

4.
74

(a) CPU Die 0

 0

 2

 4

 6

 8

 10

Slot 0
(to Host)

Slot 0
(to GPU)

Slot 1
(to Host)

Slot 1
(to GPU)

Slot 2
(to Host)

Slot 2
(to GPU)

PC
Ie

 T
ra

ns
fe

r S
pe

ed
 [G

B/
s]

Single 5870 GPU

4.
33 4.
66

6.
71

5.
35

6.
71

5.
37

Three 5870 GPUs

4.
34 4.
60

6.
71

5.
35

6.
71

5.
37

Single 6970 GPU

2.
24 2.

80 3.
73

5.
74

3.
77

5.
73

Three 6970 GPUs

1.
98 2.

77

2.
68 2.
83 3.

80

5.
74

(b) CPU Die 2

 0

 2

 4

 6

 8

 10

Slot 0
(to Host)

Slot 0
(to GPU)

Slot 1
(to Host)

Slot 1
(to GPU)

Slot 2
(to Host)

Slot 2
(to GPU)

PC
Ie

 T
ra

ns
fe

r S
pe

ed
 [G

B/
s]

Single 5870 GPU

5.
39

4.
97 5.
07

4.
84 5.
07

4.
82

Three 5870 GPUs

5.
33

4.
94 5.
05

4.
84 5.
07

4.
82

Single 6970 GPU

2.
31 2.

80

2.
17

5.
05

2.
18

5.
05

Three 6970 GPUs

2.
09 2.

78

2.
00 2.

83

1.
88

5.
05

(c) CPU Die 1

 0

 2

 4

 6

 8

 10

Slot 0
(to Host)

Slot 0
(to GPU)

Slot 1
(to Host)

Slot 1
(to GPU)

Slot 2
(to Host)

Slot 2
(to GPU)

PC
Ie

 T
ra

ns
fe

r S
pe

ed
 [G

B/
s]

Single 5870 GPU

5.
02

4.
82 5.

33

4.
93 5.

39

4.
96

Three 5870 GPUs

5.
02

4.
81 5.

32

4.
94 5.
32

4.
93

Single 6970 GPU

2.
27 2.

80

2.
30

5.
30

2.
26

5.
29

Three 6970 GPUs

1.
98 2.

77

2.
12 2.

82

1.
99

5.
29

(d) CPU Die 3

Figure 12.33: 5870 and 6970 Multi-GPU DMA Performance14 [VI]

12.8.3 Workaround for the DMA Issue

With the help of AMD, the behavior could be understood: the DMA engine of the Cayman chip
is unable to handle the type of DMA transfer CALDGEMM performs and the driver handles the
transfer either via the CPU or via an artificial DMA transfer kernel. Workarounds exist for the
transfer to both the GPU and the host. The approaches for the two cases are totally different.

12.8.3.1 Improving GPU to Host Transfer

Since only the DMA engines do not work properly, the DGEMM kernel version writing directly
to host memory, although not the fastest on the 6970, is tested. For the moment, the transfer
to the GPU remains an explicit DMA engine transfer and thus synchronous. Table 12.34 shows
that this improves the 6970 system speed enormously. The 14 GFlop{s15 the employed kernel lacks
behind the fastest version is a price one has to pay.
14 The relation which GPU is connected by which CPU die becomes clear when one searches for the CPU die and PCI

Express slot combinations that yield the highest bandwidths.
15 See Section 12.8 for a comparison of the kernels.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 121

GPU Transfer of Output System Performance Kernel Performance

6970 Explicit Transfer after Kernel 316 GFlop{s 624 GFlop{s

6970 Transfer via DMA by Kernel 599 GFlop{s 610 GFlop{s

5870 Explicit Transfer after Kernel 460 GFlop{s 465 GFlop{s

5870 Transfer via DMA by Kernel 465 GFlop{s 472 GFlop{s

Table 12.34: Workaround for 6970 GPU to Host DMA Issue [VI]

Comparing the workaround for the 6000 series with the workaround for the Intel DMA issue
(Section 12.5.2) reveals that they are mutually exclusive to each other. As both workarounds are
mandatory on the respective platforms, it is currently not possible to reach good performance
using Cayman GPUs in combination with an Intel chipset.

12.8.3.2 Improving Host to GPU Transfer

The transfer from the GPU back to the host has been improved by making the DGEMM kernel
perform remote memory access via Zero-Copy. Of course, in the other way around, the kernel
could read its input from host memory via Zero-Copy, too. However, this limits the memory band-
width to the PCI Express speed, not to mention the latency. Thus, a different approach is needed.

64-bit Kernels It turns out that the problem with the DMA engine affects only 128-bit (dou-
ble2) transfers to tiled buffers. Both linear buffers and 64-bit (double) transfers work well. In
tiled mode, the data in the buffer are stored in a non-linear format. The pattern for buffers
storing double-values and double2 -values is different. Hence, a 64 bit transfer cannot be used
to fill a 128 bit buffer. Since in Section 11.2.4.1 the linear buffer was discarded for its poor
performance, as a last resort, the CALDGEMM kernel is modified to read from 64-bit buffers.
Two approaches are implemented:

1. The buffers are scaled by a factor of two in width (in terms of elements). The linear data
format in the host is unchanged. This is possible since a buffer storing n double2 elements
can be interpreted as a buffer storing 2n double elements. The 128-bit texture fetch for the
double2 element at coordinate px, yq is replaced by two 64-bit fetches for double elements
at coordinates p2x, yq and p2x` 1, yq.

2. The buffer size (in terms of elements) remains the same but the number of buffers is doubled.
The 128-bit fetch for the px, yq element of buffer i is replaced by two fetches for the px, yq
elements of buffers 2i and 2i ` 1. This approach requires a change to the DivideBuffer
function as the linear storage is changed. In exchange, the access pattern to the 64-bit
buffer is identical to the old pattern, which is known to perform well.

Table 12.35 compares the kernel performance of both approaches with the original kernel perfor-
mance using 128-bit buffers. To neglect side effects by the DMA transfer, the output is stored
on the GPU. Both approaches are underwhelming.

Input Format Kernel Performance

128-bit Reference Kernel 610 GFlop{s

64-bit Approach 1 335 GFlop{s

64-bit Approach 2 334 GFlop{s

Table 12.35: Workaround for 6970 Host to GPU DMA Issue [VI]

122 12.8. AMD 6000 SERIES GPU

A measurement of the raw cache bandwidth helps to understand why the 64-bit kernels perform so
badly. This can be done by continuously fetching data from the same address ensuring a cache hit
ratio of 100 %. In order to suppress compiler optimizations like dead code elimination, a constant
offset of 0 stored in the constant buffer is added after each texture fetch. This offset is not known
at compile time. To allow for coalescing (combining multiple memory accesses [Roh 10 I, 3.7]), the
test is repeated fetching 1ˆ1, 1ˆ2, 2ˆ1, and 2ˆ2 areas of the texture. Every time the resulting
bandwidth corresponds precisely to the bandwidth required for 335 GFlop{s in the DGEMM.

As a conclusion, it is not possible to achieve a good DGEMM performance with 4ˆ 4 blocking
and 64-bit texture fetches. For Intel processors it is known that the actual number of fetches
to the L1 cache is limited, no matter whether 64 or 128 bits are fetched. In fact, the proces-
sor’s L1 cache is limited by the throughput in fetches not the throughput in bytes. Most probably
the same holds for the Cayman GPU which means that 64-bit accesses inevitably halve the avail-
able texture cache bandwidth explaining the above results. The 64-bit kernels were thus dropped.

64-bit to 128-bit Conversion Kernels According to the last paragraph, either the blocking
size must be increased or one must combine 128-bit kernels with 64-bit DMA transfers. The
latter can be reached by introducing an additional conversion kernel in the pipeline, which copies
the data from a 64-bit DMA buffer to a 128-bit buffer, which is then used by the DGEMM
kernel. After all, the conversion time is almost negligible. As an example: assuming k “ 1024
and h “ 4096 the buffer size is 64 MB. Considering the GPU memory bandwidth of more
than 100 GB{s, this can be done in few milliseconds,16 while the DGEMM kernel execution takes
orders of magnitude longer. On top of that, the conversion is not necessarily repeated prior to each
kernel invocation since the kernel input data are cached on the GPU anyway (see Section 11.2.4.6).
Clearly, it makes sense to cache the converted input data. The implementation is straight forward
but involves rather complex scheduling since the buffer transfer must happen two iterations prior
to the kernel execution (see Section 11.2.4.6). Section 12.12 contains more details and an in-depth
comparison of all DMA data paths.

Results In order to verify that the additional overhead has only a small impact on the perfor-
mance, the results with and without the conversion kernel are compared on the Cypress hardware.
There, the performance loss is below 1 %. The optimization of the host to GPU transfer is mostly
relevant for small matrices. (For large matrices the transfer time is almost negligible due to the
caching.) Table 12.36 shows that the highest achievable performance increases from 599 GFlop{s

to 604 GFlop{s. The system performance comes very close to the kernel performance and the
efficiency is even higher than for the Cypress GPU (compare Table 11.58).

Measurement Performance [GFlop{s] Efficiency [%]

Theoretical GPU Peak Performance 675.8
DGEMM Kernel Performance (Best Kernel) 623.5 92.3
DGEMM Kernel Performance (DMA Workaround) 610.0 90.3
DGEMM System Performance 603.5 89.3

Table 12.36: Final AMD 6970 single-GPU DGEMM Performance [VI]

12.8.4 6000 Series Multi-GPU DGEMM & HPL Performance

The tests in this section are performed on a 2.3 GHz 24-core Magny-Cours system with two
AMD 6990 dual-GPUs, i. e. four GPU chips. The following optimizations and adjustments have
been made on top of those required for three 5870 GPUs in Sections 12.6.2 and 12.6.4.
16 Measurements show varying results between 2 ms and 6 ms for the conversion time.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 123

• Even more than in Section 12.6.2.1, memory bandwidth poses a problem. For achieving the
best DGEMM performance, k has to be increased to 2560. For HPL, such a large block size
is infeasible. Thus, Nb “ k “ 2048 is used despite the reduced DGEMM performance.

• Especially for single-GPU DGEMM, optimal performance is achieved by allocating GPU
related memory on and pinning pre- and postprocessing threads to a CPU die close to the
GPU. For four GPUs this paradigm changes entirely. The two GPU boards are connected to
two CPU dies, but these two dies cannot deliver enough memory performance. Hence, it is
essential to accumulate as much aggregate bandwidth as possible. CALDGEMM is modified
to allow for a more fine-granular pinning, which allows for explicitly and individually setting
the CPU core for all GPU related threads and for memory allocation. The best-performing
option is then determined experimentally. The author would like to thank Petr Borodkin
who contributed a lot for finding the best pinning. The optimal parameters are: memory
is allocated on dies 0 and 2, closest to the GPU. Preprocessing is performed on dies 0
and 2 as well, but postprocessing is performed on dies 1 and 3, thus accessing the GPU
memory via HyperTransport. For standalone DGEMM, four preprocessing threads (one per
GPU) deliver additional 10 GFlop{s compared to two threads. Still, only two threads (one
per dual-GPU) are better in HPL since they block less CPU resources.

• The pinning of the CPU threads is modified such, that during the phases with reduced
thread counts (factorization and LASWP during lookahead), the loaded threads are dis-
tributed equally among the NUMA nodes maximizing the available memory bandwidth.

• Lookahead 2 is now available in multi-GPU runs after the pipeline has been modified to
be compatible with multiple GPUs. As before, lookahead is running in adaptive mode, i. e.
both lookahead 1 and 2 are disabled as soon as this shortens the iteration time.

• DGEMM on four GPUs is so fast that the CPU processing time for the remainder part of
the matrix becomes a bottleneck. Especially due to the availability of lookahead 2, it is
essential to have enough free CPU resources. CALDGEMM has been modified such that it
can process arbitrary non-square tiles, still with the restriction that tile dimensions are a
multiple of 128. This downsizes the remainder part of the matrix.

• In contrast to the LOEWE-CSC nodes, the test system gains additional 67 GFlop{s if the
huge pages option introduced in Section 11.2.5.1 is enabled.

• At the very end of the run, the performance is dominated by the factorization. During this
phase, the block size Nb is halved to 1024. (This is impossible for multi-node tests.)

• The system is running very close to its memory bandwidth limit. Parallel execution of
GotoBLAS on the processor costs more GPU performance (because of memory load) than
the processor can contribute and thus overcompensates the advantage. Thus, the CPU load
is reduced as much as possible. The matrix is not split in a CPU and a GPU part, no second
and third phase runs are started. The processor computes only the absolutely necessary
remainder part of the matrix (which can be chosen very small due to the non-square tiles)
and, of course, it runs LASWP, DTRSM, and factorization for the lookahead.

• The HPL factorization parameters (see Section 11.3.2) can be tuned for lower memory
bandwidth requirements instead of best factorization performance. Since the CPU does not
contribute to the DGEMM, increased factorization time does not affect the total execution
time as long as it is hidden by lookahead. In contrast, the GPU DGEMM can benefit from
the reduced memory load, i. e. HPL overall performance increases even though factorization
performance decreases. With each HPL-iteration factorization time becomes more and more
important. As soon as the lookahead implementation can no longer hide the factorization
time, instead of turning off lookahead earlier, the parameters are modified gradually to
take the factorization performance to the highest possible level ensuring that lookahead can
remain active as long as possible before it is deactivated.

124 12.8. AMD 6000 SERIES GPU

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70

Ti
m

e
[s]

Iteration

Adaptive Mode, CALDGEMM GPU Time
Adaptive Mode, CALDGEMM CPU Time

Lookahead 0, Iteration Time
Lookahead 1, Iteration Time
Lookahead 2, Iteration Time

Figure 12.37: Multi-GPU Lookahead and
Factorization Parameter Analysis17 [XIII]

Fig. 12.37 shows the total iteration time for all
lookahead modes (the adaptive mode time equals
the minimum and is not shown for simplicity) and
the duration when GPU and CPU respectively are
active. Starting from the left side of the dia-
gram, GPU DGEMM time exceeds the CPU time
and the total iteration time equals the GPU time.
Factorization parameters are optimized for fastest
GPU DGEMM. At iteration 26 they are changed
to speed up the factorization (slightly slowing down
the DGEMM), to keep the GPU the dominant part
as long as possible. Afterward, the total iteration
time follows the CPU time.17 Lookahead 1 is never
the fastest mode. In iteration 49 CALDGEMM
switches directly from mode 2 to mode 0, speeding
up both GPU and CPU processing but serializing
them.

Table 12.38 summarizes the achieved performance.
The 6990 has slightly lower clocks than the 6970.
Hence, single-GPU results are included for comparison with Table 12.36. The four GPUs, com-
pared to the peak performance, achieve an outstanding efficiency in DGEMM, which exceeds the
efficiency of the triple-GPU measurements by far (compare to Section 12.6.3). This has three
reasons: the k-parameter is bigger, the CPU is not running DGEMM in parallel and thus also
not considered when calculating the DGEMM peak performance, and the employed processors
have a slightly higher clock rate than the ones in Section 12.6.2.3. The scalability (which for
a fair comparison includes the inactive thus wasted CPU cores) calculates to 94.8 %. With the
HPL parameter k “ 2048, the DGEMM achieves 2240.7 GFlop{s. HPL can maintain 80.1 % of
the DGEMM performance – which is almost identical to the percentage of the triple-GPU HPL
measurement.18

Measurement Performance [GFlop{s] Efficiency [%]

Theoretical GPU Peak Performance 637.5
Single-GPU DGEMM System Performance 573.7 90.0
Single-GPU/CPU DGEMM System Performance 729.4 85.0
Quad-GPU DGEMM System Performance 2291.9 89.9
Quad-GPU HPL Performance 1794.0 64.7

Table 12.38: AMD 6990 Multi-GPU DGEMM and HPL Performance [XIII]

As a final resort to squeeze out the highest possible performance, the memory in the test-node is
doubled to 256 GB using 16 GB DIMMs. Naturally, the following results cannot be compared to
any of the previous measurements and, in addition, the now available 10.67 GB of RAM per CPU
core exceed the application demands by far and are thus no viable option for a compute cluster.
Previously, the feasible block size range has been bound by 2048 due to the N3

b time dependency
of the factorization. Now, the huge memory allows to increase the block size to Nb “ 2560
because the CPU dominated period is less significant. Table 12.39 shows that in this extreme
situation the lookahead implementation works very well, with the adaptive lookahead coming
out fastest again achieving 2007 GFlop{s. Appendix G lists the new features and recommended
settings.
17 Between around iteration 30 to 40, iteration time and CPU time do not match completely. Because of the lookahead,

the CPU time includes the factorization of the next iteration which is faster than the factorization of the current
iteration.

18 For comparison: single-GPU HPL achieves 90.3 % of single-GPU DGEMM performance (see Table 11.58).

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 125

Lookahead Performance [GFlop{s] Improvement [%]

No Lookahead 1610
Lookahead 1 1792 11.3
Lookahead 2 1948 21.0
Adaptive Lookahead 2007 24.7

Table 12.39: AMD 6990 HPL Performance with 256 GB RAM [XIII]

12.9 CALDGEMM for Interlagos/Sandy Bridge and without
GotoBLAS

To run GPU DGEMM, CPU DGEMM, and HPL tasks such as factorization, pivoting and broad-
cast in parallel, a patch to the GotoBLAS library enables the reservation of CPU cores from
GotoBLAS in order to use them dynamically for multiple tasks. Without this feature, it is likely
that e. g. GPU postprocessing and a GotoBLAS DGEMM thread would run on the same core
leading to miserable performance. In order to make other BLAS libraries compatible with CAL-
DGEMM, the patch must be ported. This, however, is hardly possible if the source code of the
BLAS library is not publicly available.

Meanwhile, development of GotoBLAS has been discontinued and the latest version cannot use
the AVX vector extensions of recent processors like Interlagos or Sandy Bridge. While the
Nehalem version of GotoBLAS still achieves about half the peak performance on Sandy Bridge
using SSE, the Magny-Cours version is incompatible with Interlagos because AMD dropped
the 3DNow! [Adv 10 I] extensions for the Bulldozer CPU family.19 Both vendors offer proprietary
BLAS libraries, Intel MKL and AMD ACML [Adv I], specifically tuned for these new processors.
Unfortunately, since the sources are unavailable, the patch cannot be adapted easily for these
BLAS implementations.

In contrast to GotoBLAS, most BLAS libraries do not come with their own threading imple-
mentation, but rely on available threading APIs, e. g. ACML employs OpenMP [OMP]. When
entering the first OpenMP parallel section, OpenMP spawns as many threads as are required.
The following parallel sections reuse these threads, or spawn new ones if more threads than avail-
able are requested. If a parallel section is distributed on less threads than present, it uses the
lower numbered ones, e. g. if 24 threads are started and a section requires 18 threads, it runs
on threads 0 – 17.20,21 This provides an opportunity for reserving threads from OpenMP based
binary libraries. With respect to the core reservation, there are three phases in an HPL run:

I No parallel execution of tasks, e. g. during factorization without lookahead.
II Parallel execution of GPU DGEMM and BLAS, e. g. during factorization with lookahead, or

simply during combined GPU/CPU DGEMM.
III Parallel execution of GPU DGEMM, CPU DGEMM and MPI broadcast, during broadcast

with lookahead.

Phase I does not require core reservation, in phase II all GPU related cores must be reserved,
and in phase III an additional broadcast core must be put aside. For this purpose, at first
an OpenMP parallel section with as many threads as CPU cores is started ensuring that all
threads are spawned. Assume n CPU cores, g GPU related threads, and one broadcast thread.
OpenMP threads n ´ g to n ´ 1 are pinned to the same cores as the GPU pre- and postpro-
cessing threads, thread n ´ g ´ 1 is pinned to the same core as the broadcast thread. Every

19 It is possible to run the Nehalem version of GotoBLAS on Bulldozer CPUs, like the Interlagos, but since the timing
of the SSE instructions and the cache size is different on the AMD processor, this does not yield good performance.

20 The main thread which starts the OpenMP parallel section is thread 0.
21 Although the OpenMP specification does not explicitly enforce the described thread selection, all tested OpenMP

implementations behave this way. Unfortunately, it cannot be ensured for new implementations.

126 12.9. CALDGEMM FOR INTERLAGOS/SANDY BRIDGE AND WITHOUT GOTOBLAS

time HPL enters a different phase, CALDGEMM sets the number of threads that shall be
used using the omp_set_num_threads API function. The above pinning ensures that at no
time two threads are executed on the same core. For instance, during phase II, BLAS runs
with n ´ g threads (0 to n´ g ´ 1), thus using the broadcast core (thread n ´ g ´ 1) but not
the GPU related cores (since threads n ´ g to n ´ 1 are inactive). The workaround is not as
sophisticated as the GotoBLAS patch because in every additional phase only more and more but
not less cores can be reserved. (For instance, the broadcast core could not be reserved on its
own.) Still, it works for HPL and has been implemented for the OpenMP [OMP] and TBB [Int]
threading APIs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

H
PL

-A
CM

L
/

H
PL

-G
ot

oB
LA

S
Pe

rfo
rm

an
ce

 R
at

io
 [%

]

Iteration

DGEMM
DTRSM

Factorization
Overall

Figure 12.40: Relative ACML Performance
(compared to GotoBLAS) of multiple Tasks

during HPL on Magny-Cours [VI]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35

H
PL

-M
KL

 /
 H

PL
-G

ot
oB

LA
S

Pe
rfo

rm
an

ce
 R

at
io

 [%
]

Iteration

DGEMM
DTRSM

Factorization
Overall

Figure 12.41: Relative MKL Performance
(compared to GotoBLAS) of multiple Tasks

during HPL on Nehalem [II]

For directly comparing the performance of ACML and GotoBLAS, a Magny-Cours system is
used, which is supported by both libraries. Fig. 12.40 shows the performance ratios of HPL
tasks employing ACML and GotoBLAS. The trailing matrix size goes with 1{iteration2, thus the
rightmost part involves only tiny matrices where the matrix size can have a large effect on the
BLAS performance, especially on many-core processors, explaining the large variations in the plot.
Though, this does not affect HPL performance much since it applies only to a very small fraction
of the overall execution time. Since ACML produces more memory load than GotoBLAS, one
more postprocessing thread per GPU must be used. This reduces the available compute resources
for ACML by 4.5 %. In DGEMM, ACML is almost as fast as GotoBLAS (in the majority
of the time it achieves about 93 % of the GotoBLAS performance.); in DTRSM, the difference
already becomes significantly larger; and during the factorization, ACML hardly achieves half the
GotoBLAS performance. One reason is that the factorization includes various BLAS calls on tiny
datasets, where the OpenMP overhead for the threading weights much more than the overhead
of GotoBLAS, which has its own fine-tuned threading implementation. Another reason is that
the GotoBLAS optimizations in Section 12.6.4.2 are missing. For the overall HPL performance,
which is dominated by GPU DGEMM, the factorization does not play an important role as long
as it is hidden by the lookahead. Finally, the ACML run achieves 524.5 GFlop{s HPL performance
while the GotoBLAS version reaches 574.4 GFlop{s.

Fig. 12.41 shows that in contrast to ACML, MKL is only minimally slower than GotoBLAS in
DGEMM, but faster in any other discipline.22 During the very first factorization iteration, the
GPU DGEMM is not active. In this iteration, the performances of ACML, MKL, and GotoBLAS
do not differ so much. As soon as the GPU DGEMM causes heavy memory load, ACML becomes
much slower compared to GotoBLAS while MKL gets much faster. This shows that MKL is least
and ACML is most affected by memory load. Single-GPU HPL performance of GotoBLAS and
22 In this case, a Nehalem system is used as common basis.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 127

MKL is alike. Since factorization performance is the bottleneck for multi-GPU systems, the MKL
library, especially in combination with future AVX processors, forms an auspicious solution.

12.10 Performance Limits & Exceeding Peak Performance

Although DGEMM reaches almost peak compute performance, the main obstacle during its
development is limited memory bandwidth not limited instruction throughput. The optimization
task lies mainly in ensuring good cache utilization. The achieved kernel performance with optimal
cache utilization can be measured by altering the addressing such that always the same matrix
entry is fetched. This results in 100 % cache hit ratio. Obviously, this corrupts the DGEMM result
and can be used only for theoretical considerations. In order to force the compiler to create actual
texture fetches, an offset of 0 stored in the constant buffer, which is unknown at compile-time, is
added to the address in the texture (in the following called Constant Texture Fetch). With the
constant texture fetch, the L1 cache bandwidth still limits the performance. The raw computation
performance can be measured by omitting the memory access completely (No Texture Fetch).

The 5000 series offers 5D-VLIW-shaders and combines four of the single-precision ALUs of
one 5D-shader to a double-precision ALU. Therefore, each shader can process a single and a
double precision instruction simultaneously. It is well known [Hid` 01] that a double precision
FMA-instruction can be simulated using eight single precision instructions. Hence, the 5D-shader
can perform 9 double precision instructions in 8 cycles. (Unfortunately but obviously, the result
is not compliant with the IEEE double precision floating point specifications (IEEE 754) and
thus such an optimization is not allowed for HPL.) Still, this trick boosts the theoretical peak
performance of the 5870 by one eighth to 612 GFlop{s exceeding the official double precision peak
performance of 544 GFlop{s. Since the cache bandwidth limits the 4ˆ 4 kernel to 544 GFlop{s (Sec-
tion 11.2.4.1), only the test without texture fetch – if any – has the possibility to go beyond this.
Table 12.42 shows the results. All measurements use 4ˆ 4 blocking at k “ 1024.

Cache Mode Performance [GFlop{s]

Regular Double Precision 469
Constant Texture Fetch Double Precision 484
No Texture Fetch Double Precision 533
Regular Double Precision & Emulation 459
No Texture Fetch Double Precision & Emulation 545

Table 12.42: Synthetic DGEMM Peak Performance Analysis [VI]

Comparing the regular results with the results for constant texture fetches demonstrates that
the loss due to cache misses is only 3.1 %. Omitting the texture fetches entirely and using
the double-precision emulation technique exceeds the theoretical peak performance by 1 GFlop{s.
Unfortunately, with regular texture fetches the emulation technique is even counterproductive.
The cause is the compiler, which reorders the instructions such that the 5D-shaders are not
used efficiently. Due to these compiler problems, the limit by the L1 cache bandwidth, and the
disappearance of the 5D-shaders in the new generations, the idea was discontinued.

12.11 Systems with a slow CPU

The most critical task on systems with a GPU but a slow CPU is offloading work to the GPU.
CALDGEMM accomplishes this by omitting the second and third phase CPU DGEMM runs
and by utilizing non-square tiles (Section 12.8.4), such that the overlap processed by the CPU
is minimal. In addition, the CPU pinning is adjusted. If there are insufficiently many CPU

128 12.12. OVERVIEW OF CALDGEMM DMA PATHS

cores available, the tasks without a dedicated CPU core are assigned to the CPU core running
DivideBuffer since this routine in general requires fewer resources than MergeBuffer. With these
changes, e. g. a dual core AMD CPU clocked at 2.2 GHz in combination with a 5870 GPU23

and 32 GB RAM reaches 460 GFlop{s of DGEMM performance.

Achieving good HPL performance on such systems is a bigger challenge. In contrast to DGEMM,
the work cannot easily be offloaded completely to the GPU. Especially the factorization, the pivo-
tization, and the DTRSM pose a problem. Since small systems usually do not offer a large amount
of main memory, the following tests are restricted toN “ 24576 corresponding to a 4.8 GB matrix.

The above described optimizations for CALDGEMM increase the HPL performance of the dual
core AMD system with a 5870 GPU from 46.25 GFlop{s to 118.3 GFlop{s. The DTRSM can be
replaced by a DTRTRI (inversion of triangular matrix) and a subsequent DGEMM call where
the DGEMM can easily run on GPU. The DTRTRI remains on the CPU, but its complexity
is OpN2

b q in comparison to OpN ¨Nbq for DTRSM. This update further increases the performance
to 138 GFlop{s. The high energy efficiency of the SDS system in Section 12.7.3 is reached by, in
addition, offloading medium DGEMM calls during the factorization to the GPU.

12.12 Overview of CALDGEMM DMA Paths

This section gives an overview over relevant DMA paths which have been introduced throughout
this thesis. Only the scenarios with practical applications are presented. Ideas which have been
dropped are not repeated. The C-matrix is split in tiles, which are distributed among the GPUs.
Fig. 12.43 visualizes the situation. Roughly, the tiling scheme is such that the B-matrix is split
and each GPU processes a part of the B-matrix. (The detailed multi-GPU scheme is presented in
Section 12.6.2.3.) All buffers are replicated for each GPU. The only difference is that each GPU
stores a different part of the B-matrix. Therefore, only one GPU is treated in the following.

In general, there exist two DMA paths for the input and two paths for the output. As they are
unrelated, they are discussed one after the other. In any case, the framework circumvents the
DMA driver issue by initiating DMA engine transfers always two iterations prior to data usage.

Input DMA Paths Each submatrix (part of A and B respectively needed for the current
tile) is split in two halves and, for 4ˆ 4 -tiling, stored in two buffers. This reduces the register
requirement and optimizes the cache access patterns. These two buffers always belong together
and are shown on top of each other in Fig. 12.43. To simplify the notation, the word buffer
in the following refers to such a pair. For the A-matrix, two buffers (buffer-pairs) exist on both
the GPU and the CPU side. They are used in a round robin fashion such that the next buffer
can already be filled while the previous buffer is transferred to the GPU. The full A-matrix is
not stored on the GPU. Instead, one tile of the A-matrix is replaced as soon as it is no longer
needed. The situation for the B-matrix is different. While on the host side only two buffers
exist, too, on the GPU side as many buffers as possible are allocated. This allows for storing the
entire B-matrix (or at least a big fraction of it) on the GPU. When iterating all B-tiles over a
fixed A-tile, no (or fewer) retransfers are needed. In case the matrix does not fit entirely in GPU
memory, the first two buffers are used in a round robin fashion for the remaining tiles.

DMA Path 1a This path involves solely 128-bit buffers. The data are prepared by the
DivideBuffer function and then asynchronously transferred to the GPU by the DMA engine.
If supported by the hardware, this is the best solution.

DMA Path 1b This path stores the output of DivideBuffer in a 64-bit buffer and per-
forms a 64-bit DMA transfer to a temporary buffer on the GPU. Afterward, the conversion

23 Slow CPU benchmarks are performed on [VI] by restricting Linux to two CPU cores using a kernel setting.

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 129

Host Buffers GPU 1
Host Buffers GPU 2

Host Buffers GPU 3

GPU 1
GPU 2

GPU 3

DM
A

at
h

 P

2a

Convert
Kernel

DGEMM
Kernel

MergeBuffer 1

}

}

2 Input Buffers
per Matrix

8 Output
Color Buffers

64-bit
Buffers

er
l D

M
A

K
ne

DMA Path 1b DMA Path 1a

DMA Path 2b

Round Robin Use

of temporary Buffers

Processed by GPU 1 Processed by GPU 2 ...

B-Matrix

C-Matrix Result

1:1 Mapping of BBuffers

as long as possible

G
P
U

 S
id

e
H

os
t

S
id

e A
-M

at
ri
x

DivideBuffer 1

Figure 12.43: DMA Paths, Buffers, and Workflow of CALDGEMM

kernel converts the data to the 128-bit format. As for path 1a, data are then stored in 128-bit
format on the GPU until they are no longer needed. Therefore, as long as sufficient BBuffers
exist, neither retransfer nor repeated conversion are needed. This allows the kernel to read
double2 entries while enabling asynchronous DMA transfer on devices such as the 6000 series.
If 128-bit DMA is supported by the hardware, this is clearly inferior to path 1a due to the
additional overhead.24

Output DMA Paths The output buffers are grouped in eight buffers per submatrix shown
beneath each other again. As for the input, such a group is simply denoted as buffer. The sit-
uation is less conclusive than for the input path. In DMA path 2a, the kernel stores the results
directly to host memory using Zero-Copy. In path 2b, the output is first stored to a temporary
buffer on the GPU and then transferred to the host by the DMA engine. A trick described in
Section 12.5.2 automatically queues the DMA transfer. Path 2a provides better total memory
bandwidth as the GPU memory bandwidth and the PCI Express bandwidth accumulate. In addi-
tion, it requires less GPU memory bandwidth. In contrast, path 2b offers better latency for stores
by the kernel. The faster path varies with the employed GPU, and especially the performance of
path 2a depends on the chipset as well. On AMD, Cypress kernels favor path 2a (0.6 % faster),
Cayman and Tahiti kernels are faster with path 2b (2.3 %/1.2 % faster). On Intel systems only
path 2b works properly. In the end, the differences are measurable but not so significant.

When one path is not well supported by the hardware, choosing the correct path becomes much
more important. The Intel chipsets employed on Nehalem motherboards show a flaw with path 2a
whereas path 2b should be avoided if the DMA engine is restricted to 64-bit DMA transfers (like
for Cayman). Hence, at the moment Cayman cannot be used in combination with Intel CPUs. As

24 In addition to the conversion overhead, depending on the hardware, the 64-bit transfer speed in path 1b can be lower
than in path 1a.

130 12.13. SINGLE PRECISION GENERAL MATRIX MULTIPLICATION

a remark: a third output path, with 64-bit transfers as for input path 1b, is no feasible workaround
for the Cayman DMA problem since the output rates are much higher than the input rates.

12.13 Single Precision General Matrix Multiplication

Besides DGEMM, also SGEMM (Single Precision General Matrix Multiplication) is a relevant
BLAS function for scientific applications. It is thus analyzed how the work that has been put
into DGEMM can be used for obtaining an SGEMM implementation. The Cayman architecture
offers 4D VLIW shaders, which offers an easy way to move from DGEMM to SGEMM:

• The Cayman GPU can execute four single precision instructions instead of one double
precision instruction.
– This does not depend on whether the instruction is addition, multiplication, or fused-

multiply-add.

• For input matrices of equal size (in bytes) and identical k parameter, the SGEMM requires
almost four times the instructions DGEMM does.
– This is due to the C-matrix having exactly four times the number of entries while the

loop has equally many iterations.
– Even more, a double value used in the DGEMM can be interpreted as a float2 vector in

the SGEMM. Instead of multiplying two double values in the DGEMM, the components
of the float2 vectors must be multiplied with each other. (This requires the data
format of the input matrices to be chosen appropriately, i. e. each float2 fetched from
the A-matrix must contain two elements of the same column while each entry loaded
from B must hold two elements of the same row.)

According to the above considerations, a DGEMM kernel can be converted to an SGEMM kernel,
by just exchanging the double precision fused-multiply-add VLIWs for the VLIWs represent-
ing four single precision fused-multiply-add instructions on the same source registers. Such an
SGEMM kernel achieves exactly four times the DGEMM performance, at least as long as the
GPU employs 4D shaders. Thus, on Cayman it is as efficient as the DGEMM kernel. On the
Cypress architecture the situation is different because of the 5D shaders. With a 4 ˆ 4 tiling,
the cache bandwidth is exactly sufficient to achieve peak performance in the DGEMM (see Sec-
tion 11.2.4.1). As the 5000 series has five times the performance in single precision it has in
double precision, the above approach, per definition, limits the achievable Cypress performance
to 80 % of the peak, if the cache hit ratio is 100 %. For a better performance, the tiling size must
be increased. However, since the Cypress architecture is outdated, this drawback is considered
acceptable.

Unfortunately, reality is not exactly as simple as described above. Obviously, the result must be
stored, first in a temporary register, and later to memory. As the SGEMM thread processes four
times the number of entries (of the C-matrix) in parallel, it requires twice the number of registers
to store and accumulate intermediate results. In addition, it must write twice the amount of data
to memory. This poses two problems:

• Color Buffers can no longer be used for the output. (DGEMM with 4 ˆ 4 tiling already
generates the maximum output size that can be written to Color Buffers.) Thus, the output
must be done via MemExport. Section 11.2.5 explained that when combining asynchronous
transfer and MemExport, the binary driver patch is mandatory. This is a major but un-
avoidable drawback.

• The doubled output data size can pose bandwidth problems. As stated in Section 12.6.2.1,
these can be overcome by increasing the k parameter. The following results are achieved

CHAPTER 12. OPTIMIZATIONS FOR OTHER ARCHITECTURES 131

after a parameter range scan, which revealed that for the Cypress in fact an increased k pa-
rameter of 2048 is ideal. For the Cayman k “ 1024 remains optimal.

Having an SGEMM implementation, it is also interesting what the maximum achievable per-
formance for integer matrix multiplication is. Additionally, for reasons given in Section 17.2,
also a GEMM implementation with the multiplication replaced by logical AND and the addition
exchanged with a logical XOR operation are analyzed. In the following, these variants are called
IGEMM (Integer) and BGEMM (Binary) respectively. All variants are tested on Cypress and
Cayman hardware. Table 12.44 shows the results.

GPU SGEMM IGEMM BGEMM DGEMM

5870 Achieved 1432 GFlop{s 472 GOp{s 736 GOp{s 494 GFlop{s

6970 Peak 2703 GFlop{s 676 GOp{s 1352 GOp{s 676 GFlop{s

6970 Achieved 1844 GFlop{s 492 GOp{s 1024 GOp{s 624 GFlop{s

6970 Efficiency 68.2 % 72.8 % 75.7 % 92 .3 %

Table 12.44: SGEMM (and Variants) Kernel Performance [VI]

For understanding the results, it is essential that an n-D-VLIW shader can process n single
precision floating point or logical instructions but only one double precision or integer instruction.
This yields different theoretical peak performances for the investigated disciplines even though
all of them are based on 32-bit data-types.

SGEMM On the Cayman, the SGEMM achieves close to 70 % of the peak performance, on
the Cypress only slightly above 50 %. The difference of 20 % is likely to be related to the pro-
claimed 20 % loss caused by the 5D shaders of Cypress. In general, the reduced SGEMM perfor-
mance, compared to the DGEMM, is most probably based on the increased register requirement
and less effective MemExport output. Clearly, deducing the SGEMM kernel from the DGEMM
kernel is not necessarily optimal in terms of cache access pattern, tiling, register usage, etc.
N. Nakasato [Nak 10] achieves a performance of approximately 2 TFlop{s on a 5870, which is a bit
higher than the result presented here for the 6970.25

As a comparison: the LOEWE-CSC nodes achieve 360 GFlop{s in CPU-only SGEMM, which is
exactly twice their DGEMM performance of 180 GFlop{s.

IGEMM Naively, one would expect an identical IGEMM performance compared to SGEMM
as the GPU supports both floating point fused-multiply-adds and integer fused-multiply-adds.
Unfortunately, as for double precision, a VLIW instruction can only perform one 32-bit integer
operation per cycle. Thus, the IGEMM performance should be compared to the DGEMM rather
than the SGEMM. Obviously, on the Cypress the IGEMM and the DGEMM match up quite
good, on the Cayman the IGEMM falls behind. The most probable reason is that the IGEMM
uses the SGEMM framework, which relies on MemExport.

BGEMM Naturally, there is no “Fused-AND-XOR” operation on GPUs. This decreases the
achievable performance by a factor of two. Since the GPU with n-D shaders can perform n log-
ical operations per cycle (identical to single precision floating point), BGEMM performance is
expected to be half the SGEMM performance. For Cypress this is almost exactly the case. On
Cayman the BGEMM is faster than expected. Most probably the performance loss due to the
usage of MemExport weights heavier for the SGEMM as its required output bandwidth is higher.

25 As the 5870 and 6970 have almost identical theoretical single-precision performances (see Table A.2), it is not
unreasonable to compare them.

132

Chapter 13

CALDGEMM Support for
Arbitrary GPU Frameworks

13.1 Motivation

The foundation of the initial CALDGEMM implementation on the CAL API makes it little
portable. CAL was chosen for squeezing the last bit of performance out of the kernel. For multi-
GPU versions, this last bit is not that important since kernel performance is not the bottleneck
anymore. The performance is rather limited by the host, often by PCI Express or memory
bandwidth. Besides, it is desirable to use CALDGEMM with other processing devices apart
from AMD GPUs. For this purpose, the CALDGEMM library has been split in three parts: an
abstract interface class that encapsulates all access to the hardware accelerator like the GPU, an
implementation of this interface for CAL, and the actual CALDGEMM library class that utilizes
the interface. This makes CALDGEMM easily adaptable to different architectures like OpenCL,
CUDA on the NVIDIA Fermi, or the new Intel Xeon Phi [Int 10] accelerators. Adoption of new
hardware only requires the creation of a proper interface implementation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500

CA
LD

GE
M

M
 S

ys
te

m
 P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

Si
ng

le
GP

U
PC

Ie
 B

an
dw

id
th

 L
im

it

CALDGEMM Kernel Performance [GFlop/s]

k = 1024
k = 1536
k = 2048 (Zero-Copy)
k = 2048
k = 2568
1 GPU Peak
2 GPU Peak
3 GPU Peak
4 GPU Peak

Figure 13.1: Scalability of CALDGEMM System Performance1,2 [VI]

1 The four GPU measurement is performed on [XIII] with two dual-GPU boards.

CHAPTER 13. CALDGEMM SUPPORT FOR ARBITRARY GPU FRAMEWORKS 133

Before new implementations are discussed, the bottlenecks of the CAL implementation for multi-
GPU and for upcoming very fast GPUs are analyzed. In order to simulate faster and slower
GPUs respectively, the DGEMM kernel is modified to process only a partial or multiple k-loops
respectively (whereas the framework uses the correct k). Obviously, running a partial loop
speeds up the kernel while running multiple loops slows it down. Naturally, the results are
wrong but the kernel can simulate an arbitrary performance. The advantage of using the real
DGEMM kernel over an arbitrary kernel is that it uses the real DGEMM memory access patterns.
Fig. 13.1 gives an overview of the achieved DGEMM system performance in relation to kernel
performance, number of GPUs, and value of k. All remaining options are individually tuned for
the best performance at every measuring point. Thus, all curves are themselves the maximum
of multiple curves for different parameters, which explains the kinks in the curves where the
optimal parameters change. The Zero-Copy performance for one GPU and k “ 2048 is shown
exemplarily for comparison. All other kernels write to GPU memory. In general, the Zero-Copy
version is faster than or equally fast as the GPU output variant for slow kernels but the saturation
sets in earlier. Since no Cypress based system with four GPUs has been available, quad-GPU
benchmarks are performed with Cayman GPUs. Due to the DMA issue, only the Zero-Copy
variant can be used in this case.

The figure includes the single-GPU performance limits posed by PCI Express bandwidth at differ-
ent k.2 Obviously, this limit is never reached. System performance scales almost linearly with ker-
nel performance until it saturates due to the memory. The saturation point shifts to the right with
larger k and to the left with more GPUs. Section 12.8.4 concluded that k ą 2048 is impracticable
for HPL due to the N3

b dependency of the factorization time while k ă 2048 does not perform well
with three or more GPUs. Hence, the following discussion focuses on k “ 2048. The figure shows
that the current framework can well utilize single GPUs up to 1500 GFlop{s kernel performance, two
GPUs up to 1000 GFlop{s, three GPUs up to about 750 GFlop{s, and four GPUs up to 600 GFlop{s.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500

Sy
st

em
 M

em
or

y
Ba

nd
wi

dt
h

[G
B/

s]

CALDGEMM Kernel Performance [GFlop/s]

k = 1024
k = 1536
k = 2048
k = 2568

1 GPU
2 GPU
3 GPU
4 GPU

Figure 13.2: Memory Bandwidth required for Multi-GPU CALDGEMM [VI]

Fig. 13.2 shows the host memory bandwidth achieved during the runs: one GPU already saturates
at 13 GB{s while multiple GPUs reach 20´26 GB{s. Two postprocessing cores are used per GPU. In
the single-GPU case, this results in 4.875 GB{s memory bandwidth per CPU core and 3.25 GB{s by
the DMA transfer. Employing more cores does not increase the overall bandwidth. Since GPUs
are connected to particular CPU dies each, while all dies contribute to pre- and postprocessing, it
is improbable that the memory bandwidth can be increased much further. A quantitative analysis
is hardly possible. Due to the complicated dependencies between thread pinning and memory lo-
cation, it is not meaningful to compare the achieved bandwidth to the theoretical peak bandwidth.
2 The lines in the rightmost part of the diagram indicate the performance limit derived from the PCI Express bandwidth

for a single GPU at different k. For n GPUs the limit is n times that high – if all GPUs have a separate connection.
The grey line a curve approaches asymptotically on the left, indicates the number of GPUs in the measurement.

134 13.2. A DMA FRAMEWORK WITH BETTER SCALABILITY

13.2 A DMA Framework with better Scalability

It was a design decision of the original CALDGEMM implementation to calculate onlyX “ α¨A¨B
on the GPU and then calculate C 1 “ X ` β ¨C on the CPU. On the one hand, this saves oneself
the transfer of the original C matrix to the GPU. On the other hand, this results in four memory
accesses per matrix element (see Section 12.6.2.1). To cope with multiple fast GPUs in the
future, a scalable framework can perform the entire DGEMM calculation on the GPU. For this
purpose, the original C matrix must be transferred to the graphics card. Only two host memory
transactions per entry are required: one when sending the initial C matrix-entry per DMA and
one when receiving the new entry. This reduces the system memory load to one half while it
doubles the required PCI Express bandwidth. To be precise, this raises the required host to
GPU bandwidth, which has been negligible before, to roughly the same level as the GPU to host
bandwidth, which is unchanged. Since PCI Express is specified as full duplex and the maximum
unidirectional bandwidth does not change significantly, this should not pose a problem.

With the above approach, the host memory is read and written directly by DMA. Hence, neither
the host side DMA buffers nor pre- nor postprocessing threads are required. In addition, it
simplifies the host-scheduling significantly. In contrast, it poses high demands on the DMA
engine. First, the DMA transfer is not restricted to a small dedicated DMA buffer on the host
but the DMA engine must access the entire host memory. Second, instead of a consecutive
memory segment, the DMA transfer must work on submatrices of the C matrix, where each line
of the submatrix is a separate memory segment. Finally, it requires full duplex operation. Both
OpenCL and CUDA offer a DMA API that is capable of autonomically transferring submatrices
from host memory to continuous GPU memory and vice versa. Such a transfer is called a strided
transfer – in contrast to a linear transfer of a connected memory segment.

DMA transfers can be performed by the GPU DMA engine or by either a GPU kernel or a CPU
thread via Zero-Copy. This offers the following DMA transfer schemes:

I Both, transfer to GPU and back to host are performed by the GPU DMA engines prior to
and after kernel execution respectively.

II The GPU kernel directly reads and stores the entries from and to host memory via Zero-Copy.
The DMA engines are not used.3

III The processor copies the matrix to the GPU via Zero-Copy. The transfer back is done via the
DMA engine. This option is particularly useful for GPUs with only a single DMA engine.4

In theory, method II is sovereign since it does never store the C matrix in global GPU memory.
Both other methods do this and so, as the data are read and written by the kernel as well,
cause global GPU memory load equal to twice the PCI Express throughput.5 The host memory
can be allocated either via malloc as usual or via special API functions provided by CUDA/
OpenCL, which register the memory for fast GPU access. Table 13.3 lists uni- and bidirectional
DMA throughput measurements employing all methods and the maximum DGEMM performance
possible by reason of the available bandwidth (at k “ 2048 – Section 12.6.2.1 explains the
calculation). Results with linear transfers are shown for comparison although they are useless for
the task. The S10000 measurement shows that PCI Express generation three is likely to double
the performance in near future. However, the only available PCI Express 3.0 system employs
AMD GPUs on an Intel chipset and therefore it does not properly support the required DMA
transfer modes (as explained below). For this reason, and because no NVIDIA system with PCI
Express 3.0 is available for comparison anyway, the following discussion is limited to generation
two.
3 Naturally, this could be combined with method I, e. g. by sending via I and receiving via II. However, measurements

show that either of the two methods is faster for both sending and receiving and thus should be used exclusively.
4 The processor can write to the GPU quite fast with DMA write combining. Reading from the GPU is significantly

slower, thus this method cannot be used the other way around. Naturally, it could be used in combination with
method II instead of I, but if the kernel DMA is faster than the DMA engine, it can be used exclusively in any case.

5 For instance, on the LOEWE-CSC with k “ 1024, methods I and III require 7.3 GB{s of GPU memory bandwidth.

CHAPTER 13. CALDGEMM SUPPORT FOR ARBITRARY GPU FRAMEWORKS 135

GPU Method Memory To GPU To Host Bidirectional Max Flops
GB/s GB/s GB/s GFlop/s

GTX580 I (linear) malloc 3.725 3.973 3.908 1000.5
GTX580 I (linear) runtime 5.976 6.653 6.330 1620.5
GTX580 I (strided) malloc 3.764 4.024 3.919 1003.2
GTX580 I (strided) runtime 6.043 6.624 6.241 1597.7
GTX580 II (strided) runtime 7.547 1932.0
M2070 I (strided) runtime 5.959 6.591 8.717 2231.7
6970 I (linear) malloc 4.949 5.214 5.739 1469.1
6970 I (linear) runtime 6.293 6.679 6.479 1658.7
6970 I (strided) malloc 1.529 0.492 0.859 219.8
6970 I (strided) runtime 4.964 0.624 1.112 284.8
6970 II (strided) runtime 8.935 2287.4
6970 III (strided) runtime 4.500 0.624 1.112 284.8
S10000 I (linear) runtime 8.798 12.168 14.684 3759.1

Table 13.3: OpenCL/CUDA DMA Throughput [II,XIV,XVIII]

These measurements lead to the following considerations:

• The DMA engines of the Fermi Tesla (M2070) can do full duplex transfers, the engines of
the consumer-grade Fermis and of the AMD GPUs cannot.6

• The NVIDIA GPUs show good DMA performance as long as the memory is allocated by
the NVIDIA runtime. With more than 6 GB{s, the GTX580 can transfer data corresponding
to about 1.6 TFlop{s via method I, which is absolutely sufficient for the next GPU generation.
The Fermi excels with 2.2 TFlop{s.

• The GTX580 is faster with method II, which unfortunately turns out to be incompatible
with certain tested AMD chipsets and is thus no panacea.

• On runtime allocated memory, AMD’s DMA engine shows good host-to-GPU but poor
GPU-to-host strided transfer speed rendering method I unfeasible.

• Method III has acceptable host to GPU performance on AMD platforms but suffers from
the poor DMA transfer in the opposite direction, too.

• On AMD hardware both method I and III require the strided DMA transfer to the host to
be sped up in order to be practicable. If a future driver provided these necessary improve-
ments, and at the same time was still unable to access both DMA engines simultaneously6,
method III would probably be the faster one.

• Still, the above scenario depends on too many uncertain factors. On top of that, method III
requires three additional CPU cores creating extra scheduling overhead. For these reasons,
the idea was dropped.

• Until AMD improves the strided GPU to host bandwidth, the only feasible option for AMD
GPUs is method II. However, this works solely when Zero-Copy is well supported by the
chipset7 currently disqualifying Intel platforms.

In summary, method II is currently the only viable option for AMD and at the same time the faster
version for all non-Tesla NVIDIA GPUs, but it is not compatible with every chipset. In contrast,
method I is faster on the Tesla (although the competition is on a very high level), ensures good
performance on NVIDIA in every case, and shows no incompatibilities; but it is slow on AMD.
In order to ensure the greatest flexibility for upcoming GPUs and driver improvements, both
method I and II have been realized for two APIs each: CUDA and OpenCL. For this purpose,
two implementations of the abstract CALDGEMM interface have been created, one for each API.
6 In fact, all DMA engines themselves are half-duplex but every listed GPU possesses two engines for full duplex

transfers. NVIDIA deactivates one engine on the GTX580 to distinguish it from the professional market segment
whereas the current AMD driver seems to be incapable of driving both engines simultaneously.

7 Section 12.5.1 provides information on Zero-Copy support and discusses problems with Intel chipsets.

136 13.2. A DMA FRAMEWORK WITH BETTER SCALABILITY

The original CAL implementation uses preprocessing for transposing input matrices and provid-
ing the input data in an optimal format for the kernel. The new implementations relocate these
preprocessing tasks to conversion kernels on the GPU, which were introduced in Section 12.8.3.2
to cope with the Cayman DMA issues. In the same way as for the DMA issue, since usually the
input matrices A and B are relatively small compared to C, the performance impact is negligible.
Since no pre- or postprocessing is needed, the new framework is of incredible simplicity. All DMA
transfers and DGEMM kernels are queued into the CUDA or OpenCL command queues autom-
atizing the scheduling. Only the check for the availability of matrices in the BBuffers remains.

To analyze the scalability of the framework, the same technique as for the initial CAL imple-
mentation is employed: a fake kernel simulates a particular kernel performance. Currently, there
persists one problem with OpenCL drivers. For good performance method I requires the mem-
ory to be allocated by the runtime, method II enforces this restriction at all times. Both the
AMD and the NVIDIA driver only support a very limited amount of runtime allocated OpenCL
memory insufficient for large matrices. In contrast, the CUDA runtime has no such restriction.

Fig. 13.4 compares the scalability of the CUDA and the CAL framework. For the above rea-
sons, OpenCL is not included. Measurements with Zero-Copy and with three or more NVIDIA
GPUs are taken on a Sandy-Bridge platform since the reference AMD system does not support
Zero-Copy properly and since no AMD system with more than two NVIDIA GPUs was available.
A comparison with Table 13.3 reveals that the single-GPU CUDA performance with method I
saturates at about 90 % of the limit posed by PCI Express bandwidth, method II reaches 95 %
even with four GPUs. With up to two GPUs, the CAL framework can compete with the half-
duplex DMA CUDA-version on the GTX580. As soon as CUDA with full-duplex DMA, the
Zero-Copy method, or more than two GPUs are employed, the new framework easily outper-
forms the original implementation. The figure also shows clearly, that the old framework is not
capable of running more than two high performance GPUs of the next generation. It must be
noted that even in situations where CAL and CUDA performance is even, the new framework
causes only half the memory load and utilizes less CPU cores leaving significantly more resources
for concurrent tasks on the CPU. Even at low kernel performance, the Fermi Tesla outperforms
the GTX580, which encounters some delays due to half-duplex transfers. The new framework
scales to a kernel performance of nearly 2 TFlop{s for up to four GPUs, reaching 7.27 GB{s PCI
Express bandwidth per GPU, 29.1 GB{s memory bandwidth on the host, and about the threefold
total performance of the CAL implementation.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500

CA
LD

GE
M

M
 S

ys
te

m
 P

er
fo

rm
an

ce
 [G

Fl
op

/s
]

CALDGEMM Kernel Performance [GFlop/s]

CUDA / Fermi

1 GPU Peak
2 GPU Peak
3 GPU Peak
4 GPU Peak

CAL
CUDA / GTX580
CUDA / GTX580 (Intel Platform)
CUDA / GTX580 (Zero-Copy)

Figure 13.4: Scalability of CALDGEMM CUDA Backend [VI,VIII,XVIII]

137

Chapter 14

The Sanam Cluster & the
Lattice-QCD Cluster at GSI

This final chapter on Linpack optimizations introduces the current AMD GPU generation called
Tahiti and a compute cluster architecture basing on it. The architecture boosts power efficiency
by using multiple GPUs as primary compute devices while the CPU is merely used for data
movement and management instead of computation. The Sanam cluster [Adv 12] (Fig. 14.1) of
the King Abdulaziz City for Science and Technology (KACST [KAC]) employs this design and
the scheduled Lattice-QCD cluster, which will be built at GSI in the course of the year, will
use it as well. Evaluation of performance, power efficiency, and interaction of available hardware
components, which finally led to the decision on the node configuration, was completely performed
in the course of this thesis. Amongst others, the Linpack benchmark has been used to examine
hardware constellations. Due to missing driver support for certain fast OpenCL DMA operations,
the improved DMA framework introduced in the previous chapter could not be employed yet.

To provide an OpenCL version despite the current driver problems, a second OpenCL implemen-
tation with the old DMA scheme of the CAL version has been implemented. It shows similar per-
formance as with CAL (« 3 % slower). Therefore, and since Tahiti still supports CAL, and since
the CAL framework has been tested more extensively, the CAL version is still used in this chapter.

Figure 14.1: The Sanam Cluster at GSI

The proceeding for hardware selection is the follow-
ing: The setup for cooling and racks is inherited
from the LOEWE-CSC (see Section 10.2). Hav-
ing optimized the GPU kernels, the next step is
tuning the available system platforms to the very
end with respect to single-node performance with
the given GPU. Multi-node tests and acquisition
of additional prototypes are postponed until after
the decision on the system platform because this is
a considerable investment. Potential platforms are
Intel Sandy Bridge and AMD Interlagos. With the
platform fixed, a cost-benefit analysis with respect
to the utilizable multi-node performance (including
GPUs) points out the exact CPU model to be used. Then, the software is optimized for multi-
node tests and fine-tuned for the particular node design.

14.1 AMD 7000 Series (Tahiti)

Since the CALDGEMM framework design cleanly separates the GPU kernel from the host code,
adoption of a new GPU generation requires only a customized kernel. Analogously to the param-

138 14.2. PUTTING THE PIECES TOGETHER

eter range scan in Section 11.2.4.1, the Tahiti kernel was created. In contrast to its predecessors,
Tahiti favors a transposed A-matrix. Other kernel characteristics remain unchanged. Since
Tahiti does not show the DMA issue that Cayman has, all DMA schemes are available with
kernel output to a temporary GPU buffer being the fastest one. With one additional Tahiti
specific optimization, which shifts even numbered rows of the input matrices by one column in
order to reduce memory bank conflicts, the 7970 GPU achieves up to 805 GFlop{s in DGEMM
at k “ 1024 (85 % of the peak performance). Unfortunately, performance is not flat with respect
to matrix sizes (see Fig. 14.2), and due to memory bandwidth limitations for multi-GPU systems
(see Section 12.6.2.1), only k-settings of 1920 or 2048 are feasible still yielding about 790 GFlop{s.

 512 1024 1536 2048 2560 3072
k 1024

 2048
 3072

 4096

h

200
300
400
500
600
700
800

D
G

E
M

M
 K

er
ne

l P
er

fo
rm

an
ce

 [
G

Fl
op

/s
]

 450
 500
 550
 600
 650
 700
 750
 800

Figure 14.2: DGEMM Kernel Performance for different Matrix Sizes on 7970 [VII]

14.2 Putting the Pieces together

This section combines many – not to say most – of the advancements in the previous chapters,
among them: the CALDGEMM and HPL-GPU implementation with lookahead together with
the multi-node improvements for the LOEWE-CSC from Chapter 11, the DMA workaround for
Intel platforms in Section 12.5.2, the multi-GPU implementation from Section 12.6 together with
the memory bandwidth considerations in Section 12.6.2.1, improvements for the factorization in
Section 12.6.4.2, modifications to boost power efficiency in Section 12.7, quad-GPU DGEMM
and HPL optimizations from Section 12.8.4, changes in order to support other BLAS libraries as
MKL or ACML in Section 12.9, and finally, the optimized kernel for the Tahiti GPU.

The compute node design to be investigated is subject to the following boundary conditions: two
socket servers are usually the best compromise of price, performance, power efficiency, and hard-
ware support, i. e. number of available PCI Express lanes, memory channels and capacity, etc. Fea-
sible processors are six- and eight-core Intel Sandy Bridge or 16-core AMD Interlagos. Graphics
cards by AMD are more than competitive and still reasonably priced. Cards with two GPU chips
on one board are an effective option to assemble compact nodes with several GPUs. The AMD
S10000 is such a dual-GPU of the recent Tahiti family, which offers improved reliability being a
server grade card. Assembling two such cards in one chassis provides four GPUs, which is a good
tradeoff of performance and usability and a balanced approach with one CPU socket handling
two GPUs. Since 64 GB is insufficient to achieve high load on four GPUs (compare Fig. 12.28)
whereas 256 GB is completely out of scale for almost all applications, the nodes have 128 GB of
memory. Usage of eight modules of 16 GB each yields the best power efficiency while still populat-
ing all available channels. InfiniBand is used as high performance interconnect. Unused hardware
such as VGA port, additional LAN ports, and especially USB is disabled or set to auto-suspend,
the latter saving about 15 W. The main remaining question is which processor to choose.

CHAPTER 14. THE SANAM CLUSTER & THE LATTICE-QCD CLUSTER AT GSI 139

14.2.1 Preliminary Improvements

This section lists necessary adaptations and improvements for the Intel and AMD platforms as
well as generic optimizations.

AMD Platform The AMD platform is subject to the same restrictions as the Cayman system
in Section 12.8.4. Hence, lookahead 1 and 2 are turned off one after another, the optimal times
being determined experimentally. The processor only processes the absolutely necessary part of
the DGEMM since the negative effect on the GPU DGEMM overcompensates the gain of the
additional compute capacity. Since AMD CPUs react very sensitively to memory congestion
while the ACML causes even heavier load than GotoBLAS (see Section 12.9), a reduction of the
number of concurrent OpenMP threads similar to the GotoBLAS optimization in Section 12.6.4.2
is a logical step. This is realized in two ways: the most recent ACML has an experimental
switch to automatically determine the number of concurrent threads based on the problem size;
alternatively, a wrapper library that encapsulates all relevant BLAS calls manually applies the
heuristics that were developed for GotoBLAS by running omp_set_num_threads. Unfortunately,
both attempts result in the same problem. The OpenMP specification does not specify when
threads are created and terminated or how many threads to keep ready for subsequent parallel
sections. The GCC compiler implements a heuristics that terminates certain threads if they
have been unused during multiple parallel sections. When it respawns such a thread for a larger
parallel section afterward, the new thread inherits the CPU affinity from the spawning thread,
which does in general not coincide with the affinity of the terminated thread, rendering the core
reservation technique developed in Section 12.9 for ACML ineffective. There are workarounds for
this, which can reset the thread affinity but still, since the factorization issues countless BLAS
calls with arbitrary problem sizes, this leads to the creation and termination of millions of threads
during an HPL run deteriorating the performance. Since this is triggered by GCC internals which
comply with the OpenMP specification and are not configurable, the only way to tackle this is
modifying the OpenMP sources of GCC. An according patch has been developed and is used in
the following. Both methods yield similar results and the optimal Nb for AMD CPUs is 2048.

Intel Platform The HPL-GPU benchmark shows one big flaw on Intel platforms: Querying
GPU events from the CPU socket that connects a GPU is very fast, but querying from the other
socket introduces a tremendous latency, which costs about 30 % of HPL performance. It is not
known yet whether this is caused by the hardware, by the AMD driver, or by something else.
Since CALDGEMM uses a single thread for DMA management, the only feasible workaround
is repinning this thread to another core on the appropriate socket if necessary. This procedure
must be repeated prior to each GPU event query. The performance impact of this approach
can be checked on an AMD system, where the repinning is not needed. It is below 1 %. This
approach permits another strategy in lieu of the multiple DivideBuffer threads suggested in
Section 12.6.2.2. If the main thread that supervises DMA transfers is repinned to the correct
cores anyway, it can preprocess all tiles itself for all GPUs, always writing to locally connected
memory. This frees up certain CPU resources. However, it turns out that during preparation
of the BBuffers at the beginning of the run, four Tahiti GPUs temporarily require more CPU
power than a single thread can deliver since at this point in time all GPUs wait for new B-tiles
simultaneously. The overall performance penalty is in the range of 2 % so it is not used.

Apart from that, HPL-GPU runs literally out of the box on Sandy Bridge without necessity
for customization or tuning. In contrast to the AMD processors, factorization and pivotization
with the MKL library are much faster and, even further, the interdependency with the GPU
DGEMM is so weak that there is no need to turn off lookahead. On top of that, after the fac-
torization the CPU can contribute to the DGEMM. Fig. 14.3 shows HPL runs with combined
GPU/CPU DGEMM using no, two-phase, and three-phase dynamic scheduling. (A GPU-only
run achieves 2282 GFlop{s, early lookahead is a related improvement introduced below.) Even

140 14.2. PUTTING THE PIECES TOGETHER

though the three-phase run can reduce the CPU idle duration slightly further, it is still slower
than the two-phase run due to scheduling overhead. The core reservation technique introduced in
Section 12.9 works fine without further modifications. More changes to the thread count such as
in Section 12.6.4.2 are not necessary. Intel achieves its maximum DGEMM performance already
with Nb “ 1920 further speeding up the factorization compared to AMD with Nb “ 2048.

Generic Improvements All benchmarks are performed with transparent huge pages (see Ap-
pendix C.3). In many cases, it turns out that the optimum implementation from a performance
perspective differs from the most power efficient code. In order to position the system as good as
possible in both the Top500 and the Green500 list, two code versions are maintained for both pur-
poses. (For instance, the power efficient version reduces CPU load as far as possible whereas the
fast version utilizes the CPU to the full extent if that speeds up processing (see Section 12.7.3).)
With the support for non-square tiles (see Section 12.8.4) the tile size of the outermost GPU tiles
can be adjusted such that GPU tile size restrictions for the first phase CPU part become negli-
gible. This adaptive tile size renders the dynamic scheduler obsolete for very fast multi-GPU
configurations. Measurements reveal that the row shifts in the Tahiti kernel optimized for highest
performance speed up the processing but cause much higher power consumption thus reducing
the power efficiency. Hence, an alternate kernel is optimized for power efficiency.

14.2.2 Early Lookahead

 0

 5

 10

 15

 20

 25

 0 20000 40000 60000 80000 100000 120000

Ti
m

e
pe

r I
te

ra
tio

n
[s]

Remaining Matrix Size (Decreasing each Iteration)

HPL/CALDGEMM Configuration:
No Dynamic Scheduling (2323 GFlop/s)

Two-Phase Dynamic Scheduling (2340 GFlop/s)
Three-Phase Dynamic Scheduling (2332 GFlop/s)

Early Lookahead / Adaptive Tile Size (2375 GFlop/s)
Early Lookahead / CPU Load Minimized (2309 GFlop/s)

Two Measurements per Configuration:
CPU Time
GPU Time

Figure 14.3: Dynamic Scheduling and Early Lookahead Performance1 [VIII]

Processing is slowed down especially toward the end of the run when CPU time exceeds GPU
time and lookahead can no longer hide the CPU tasks. Lookahead is implemented such, that it
takes the first Nb columns of the matrix and processes them on the CPU to avoid unnecessary
synchronization. This is not optimal at the end of the run, where the GPU should take care
of this part. Therefore, lookahead is complemented by an early lookahead mode: the CPU
processes only the matrix remainders from the GPU matrix size restrictions, and then waits
until the GPU has finished all tiles containing entries of the leftmost Nb columns. The GPU
tile scheduler ensures that these tiles are processed first. As a side effect, this boosts the power
efficiency for the setup with minimized CPU load (since it reduces the minimum CPU problem
size). So, the Top500 run switches to early lookahead as soon as it is faster whereas the Green500
1 In Figures 14.3 to 14.6 dashed lines represent GPU time and DGEMM performance respectively for every configu-

ration while continuous lines represent CPU time and HPL performance respectively.

CHAPTER 14. THE SANAM CLUSTER & THE LATTICE-QCD CLUSTER AT GSI 141

run uses early lookahead right from the beginning. Fig. 14.3 shows that both CPU load for
the power efficient run as well as GPU idle period in general are reduced significantly. Energy
efficiency improves from 1935 MFlop{J with the old lookahead to 2028 MFlop{J with early lookahead
and reaches 2066 MFlop{J in the minimal CPU load configuration.

14.2.3 Choosing a Platform

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100
Progress (Time) [%]

HPL Performance
DGEMM Performance during HPL
DGEMM Peak Performance

Interlagos / 2 · 7979 (1339 GFlop/s)
Interlagos / 3 · 7970 (1613 GFlop/s)
Interlagos / 2 · S10000 (1846 GFlop/s)
Sandy-Bridge / 2 · 7970 (1499 GFlop/s)
Sandy-Bridge / 3 · 7970 (2000 GFlop/s)
Sandy-Bridge / 4 · 7970 (2222 GFlop/s)
Sandy Bridge / 2 · S10000 (2264 GFlop/s)

Systems: Three Measurements per System:

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
]

Figure 14.4: Multi-GPU HPL Performance on Intel and AMD Systems1 [VII,VIII]

The primary objective of the processor is to support and to load the GPU at its best but not
necessarily to work as a number cruncher. Hence, even though the Interlagos has a superior
theoretical peak performance at an even lower price, the AMD platform does not automati-
cally yield better overall performance. In order to measure the influence of the CPU on HPL
performance, plots like Figures 14.4 and 14.5 are used. Fig. 14.4 presents the peak GPU-only
DGEMM performance and sets this in relation to the DGEMM performance during an HPL
run and to the HPL overall performance. It shows preliminary measurements with 7970 GPUs
and measurements with the final S10000. The preliminary measurements with the 7970 measure
the pure GPU scaling, hence CPU processing is restricted to the necessary matrix borders. The
final S10000 configuration employs a full combined GPU/CPU DGEMM where applicable. With
two GPUs, peak performance of AMD and Intel platforms are equal, but only the Intel system
can sustain this level during HPL. Sometimes it even exceeds the GPU DGEMM performance
since the processor contributes some GFlop{s for the matrix borders. With three GPUs, the Intel
DGEMM peak performance is lower than AMD’s due to the loss caused by the above-mentioned
repinning workaround. In HPL, the Intel system maintains the full performance for quite a while
whereas the loss on AMD is tremendous. With a fourth 7970 GPU, the Intel system reaches
its limits and can no longer achieve full DGEMM performance during HPL. The AMD system
cannot house four single-GPUs. In the four-GPU measurement (with two dual-GPUs), the AMD
system has to turn off lookahead after 60 % of the time, and the Intel system can play the strength
of its processor, which can well contribute to the GPU DGEMM. Besides the achieved perfor-
mance during the fast part of the run at the beginning, also the point where the CPU starts to
limit the performance is an important indication. Fig. 14.4 demonstrates that the Intel platform
can maintain good performance for a longer time in either configuration. In summary, the Intel
platform is superior in multi-GPU configurations justifying the higher processor price.

142 14.2. PUTTING THE PIECES TOGETHER

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000 120000

Sandy Bridge, 8 Core, 2.2 GHz (2309 GFlop/s)
Sandy Bridge, 8 Core, 2 GHz (2294 GFlop/s)

Sandy Bridge, 6 Core, 2.6 GHz (2264 GFlop/s)
Interlagos, 2.4 GHz (1846 GFlop/s)

CPU Time
GPU Time

Ti
m

e
pe

r I
te

ra
tio

n
[s]

Remaining Matrix Size (Decreasing each Iteration)

Figure 14.5: HPL Iteration Times on Intel and
AMD Systems [VII,XIV]

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100
Progress (Time) [%]

HPL Performance
DGEMM Performance in HPL
Single DMA Thread (Reference) (2215 GFlop/s)
Parallel DMA Threads (2287 GFlop/s)
Grouped DMA Threads (2267 GFlop/s)
Adaptive DMA Mode (2344 GFlop/s)

Pe
rfo

rm
an

ce
 [G

Fl
op

/s
]

Figure 14.6: Grouped DMA Mode Perfor-
mance [XIV]

Fig. 14.5 analyzes the above results in more detail. It relates the GPU DGEMM time to the
duration of the tasks necessarily performed by the processor. It becomes clear that the AMD pro-
cessors suffer from the poor performance during factorization and pivotization. This is not neces-
sarily a hardware flaw but the Intel MKL library is probably optimized better. Looking ahead to
multi-node tests where the broadcast increases the necessary CPU time since it cannot run in par-
allel to the other CPU tasks, it is clear that the Intel platform provides by far more margin while
the AMD CPU is already at its very limit. All these reasons, together with the fact that adapta-
tion and optimization for the Intel platform are much easier because the processor is less sensitive
to memory load, lead to the selection of the Sandy Bridge Processor. A cross-check with other
benchmarks and PCIe 3.0 support confirm this choice. The question remains, which Sandy-Bridge
model to choose. The six-core version is significantly cheaper delivering almost competitive per-
formance through higher clock rates. However, CALDGEMM requires six CPU cores for pre- and
postprocessing of four GPUs, leaving six cores available in the six-core configuration and ten cores
with the eight-core CPUs. For this reason, the eight-core variants in Fig. 14.5 show significantly
shorter CPU times, the frequency having only a minor influence. Finally, the 2.0 GHz Sandy
Bridge E5-2650 is chosen being the best compromise as cheapest eight-core CPU.

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 200 400 600 800 1000 1200 1400 1600 1800

Pa
ne

l-B
ro

ad
ca

st
Ba

nd
wi

dt
h

[M
B/

s]

Transfer Size [MB]

QDR
FDR

OpenMPI 1.6 - Rank 0
OpenMPI 1.6 - Rank 1
OpenMPI 1.6 - Rank 2
OpenMPI 1.6 - Rank 3

Figure 14.7: InfiniBand Throughput in HPL
(Transfer Size decreases each Iteration) [XIV]

In order to predict the estimated multi-node
performance, a network mockup was created,
emulating the influence of the network (panel
broadcast, U -broadcast, etc.) by introducing
latencies and producing memory load. The
reference values for this simulation are esti-
mated by extrapolating the observations from
the LOEWE-CSC to faster nodes and a faster
network. This led to an expected network loss
of less than 10 %, which is in accordance with
the measurements below. The estimated per-
formance penalty on the AMD system is – as expected – significantly larger.

With the platform decision made, the ASUS ESC4000/FDR G2 server, which provides on-
board FDR InfiniBand, turned out to be well capable of housing two dual-GPUs and Adtech
was selected as reseller. The nodes are comprised of: the ASUS ESC4000/FDR G2 chassis
with 2U, an ASUS Z9PH-D16/FDR mainboard with onboard 56 GBit{s FDR InfiniBand, 128 GB
of DDR3-1600 memory at 1.35V in form of eight 16 GB DIMMs, two Intel Xeon E5-2650 pro-
cessors, and two AMD S10000 dual-server-GPUs. SUSE Linux Enterprise 11 SP2 is used as
operating system since Mellanox supports it for their ConnectX-3 HCA and since it comes with a
recent 3.0 Linux kernel with transparent huge pages support (see Appendix C.3). Four prototype
nodes were installed and tested with a QDR and an FDR switch. Fig. 14.7 demonstrates that
HPL-GPU achieves peak InfiniBand bandwidth except for the very first and very last iterations.

CHAPTER 14. THE SANAM CLUSTER & THE LATTICE-QCD CLUSTER AT GSI 143

14.2.4 Multi-Node, Fine-Tuning, and Results

With the exact hardware configuration known, final optimizations can be applied.

14.2.4.1 Grouped DMA Thread Mode

One bottleneck, which has persisted for a long time and which was already addressed in Sec-
tion 12.6.2.2, is the reliance on a single thread for scheduling, management, and supervision of
DMA transfers. With four Tahiti GPUs this gains priority. Since thanks to adaptive tile sizes
the dynamic scheduler is not used anyway, a simpler and faster management scheme is feasible:
the matrix is split in fixed parts for the CPU and each GPU at the very beginning. Parallel
DMA threads drive the GPUs independently, perform the preprocessing for their GPU, handle
the DMA transfer, and synchronize only with the MergeBuffer thread for this GPU. This also
makes the additional DivideBuffer threads obsolete. Grouped DMA threads are an advanced
version, where GPUs are divided in groups each group managed by one DMA thread. The latter
frees some CPU resources and is especially useful when multiple GPUs are connected to the
same CPU socket. In the given configuration, one S10000 is connected to one socket and the
other S10000 to the other socket requiring two grouped DMA threads instead of four parallel
DMA threads. Fig. 14.6 shows that each mode is fastest at a certain time, hence the adaptive
DMA mode switches from parallel to grouped to a single DMA thread at the optimal points in
time. The power efficient code uses only the grouped DMA threads because the two additional
loaded CPU cores during the parallel DMA phase lead to a worse net power efficiency.

14.2.4.2 Lookahead 2b

 0

 5

 10

 15

 20

 25

Ti
m

e
pe

r I
te

ra
tio

n
[s]

CALDGEMM GPU Time
Total CALDGEMM CPU Time

CPU DGEMM Time
Factorization Time

DTRSM Time
LASWP Time

Lookahead Initialization Time
Result 2679 GFlop/s

 0 20000 40000 60000 80000 100000 120000
Remaining Matrix Size (Numbers) / Iterations (Tics)

Figure 14.8: Single-Node Lookahead Efficiency
and Duration of HPL Steps [XIV]

With all of the above optimizations, CAL-
DGEMM accomplishes to achieve a peak per-
formance of 2923GFlop{s in combined GPU/
CPU DGEMM. Fig. 14.8 relates GPU and
CPU time of the best performing single-node
run, pointing out the time contribution of all
CPU tasks in different colors. The GPU idle
time corresponds exactly to the integral over
the colored area above the green line for the
GPU time. It consists of the lookahead initial-
ization time in the first iteration, of the negligi-
ble pipeline initialization time every iteration,
and of the CPU dominated part at the end.
The figure shows that lookahead hides almost
all CPU tasks and how well the scheduling distributes the DGEMM workload. The GPU is kept
under full load and CPU idle time is minimum. The final single-node HPL result is 2679GFlop{s.

The first lookahead 2 implementation (lookahead 2a) pipelined DTRSM and a part of LASWP2

but not the U -matrix broadcast achieving good single-node efficiency but leaving some room for
multi-node improvements. On the LOEWE-CSC, the U -broadcast has not been that relevant
for its minor time consumption but on much faster multi-GPU systems, it becomes significant.
The DLACPY3 deliberately remained single-threaded on the LOEWE since it can run in parallel
to the DGEMM, but with CPU execution time becoming critical with faster and faster GPUs,
this is no longer ideal. Fig. 14.9a visualizes the time which is lost (again as the integral over the
2 The LASWP consists of two parts, one prior to and one after the U -broadcast. Without the U -broadcast pipelined,

lookahead 2a could only pipeline the latter one by construction.
3 DLACPY and DLATCPY are BLAS [Don` 90] routines for submatrix copies with and without transposition. There

is one large call to both of them in each HPL iteration.

144 14.2. PUTTING THE PIECES TOGETHER

colored area above the GPU time) in a four-node setup achieving 8677 GFlop{s or 2169 GFlop{s per
node. Consider that panel broadcast and CPU DGEMM overlap.

 0

 5

 10

 15

 20

 25

Ti
m

e
pe

r I
te

ra
tio

n
[s]

CALDGEMM GPU Time
Total CALDGEMM CPU Time

CPU DGEMM Time
Panel-Broadcast Time

Factorization Time
DLATCPY Time
DLACPY Time
DTRSM Time
LASWP Time

U-Broadcast Time
Lookahead Initialization Time

Result 8677 GFlop/s

 0 50000 100000 150000 200000
Remaining Matrix Size (Numbers) / Iterations (Tics - Alternating with and without Factorization)

(a) Mode 2a

 0

 5

 10

 15

 20

 25

Ti
m

e
pe

r I
te

ra
tio

n
[s]

CALDGEMM GPU Time
Total CALDGEMM CPU Time

CPU DGEMM Time
Panel-Broadcast Time

Factorization Time
DLATCPY Time
DLACPY Time
DTRSM Time
LASWP Time

U-Broadcast Time
Lookahead Initialization Time

Result 9706 GFlop/s

 0 50000 100000 150000 200000
Remaining Matrix Size (Numbers) / Iterations (Tics - Alternating with and without Factorization)

(b) Mode 2b

Figure 14.9: Quad-Node Lookahead Efficiency and Duration of HPL Steps [XIV]

An advanced new lookahead 2b mode pipelines the full LASWP and the U -broadcast. It also
includes the DLATCPY into the pipeline and employs multiple threads for DLACPY. In order to
pipeline the U -broadcast, submatrices of the U -matrix must be transferred which are not stored
in continuous memory. This is realized with custom MPI data-types.4 Fig. 14.9 demonstrates the
improvement. GPU idle time is reduced to a minimum. At the beginning, the pipeline even works
equally well as in the single-node case but due to the additional CPU workload, the processor
dominated period is larger. The final four-node performance is 9706GFlop{s or 2427GFlop{s per
node. To give some more insight, Fig. 14.10 presents an MPI trace of the run. All hidden, non-
GPU-related threads of each node contribute to factorization, GPU DGEMM, LASWP, etc. For
a similar plot visualizing the GPU related threads (which are omitted here), refer to Fig. 12.15.

14.2.4.3 Power Efficiency

Having demonstrated the potential of the high performance code, this section works out the
characteristics of the energy efficient version. The GPU voltage has a significant influence on the
system power consumption since power drain goes with the square of the voltage. Also the GPU
4 At the moment, there is a bottleneck with non-continuous MPI data-types, FDR, and interleaved memory, which is

currently investigated by Mellanox. Thus, the following measurements with lookahead 2b use QDR only.

CHAPTER 14. THE SANAM CLUSTER & THE LATTICE-QCD CLUSTER AT GSI 145

GPU DGEMM

CPU DGEMM

DGEMM Border

Factorization

Panel Broadcast

U Broadcast

LASWPLASWP

DTRSM

DLATCPY

MPI Calls

Process 1

Process 2

Process 3

Process 0

Thread 0:1

Thread 0:2

Thread 1:1

Thread 1:2

Thread 2:1

Thread 2:2

Thread 3:1

Thread 3:2

7.5s 15s 22.5s 30s 37.5s 45s 52.5s 60s 67.5s 75s 82.5s 90s 97.5s

Figure 14.10: Timeline Trace of Four-Node HPL [XIV]

frequency has an impact. However, even though a lower frequency reduces the power consump-
tion, it does not automatically improve the efficiency for reasons explained in Section 12.7.3. The
minimum voltage required for stable operation also depends on the frequency and because of
fluctuations in the manufacturing process, it also differs from GPU to GPU. Hence, the optimal
voltage/frequency combination with respect to power efficiency was determined experimentally
using four prototype nodes. The optimum in this case is 1.005 V at 900 MHz compared to stock
values of 1.03 V at 950 MHz. To give an impression on the voltage dependency: average system
power consumption with 1.005 V, 1.03 V, and 1.08 V is 967.5 W, 1002.7 W, and 1084.7 W respec-
tively. Besides, using fewer BLAS threads in the GPU dominated period improves the efficiency.

Using an LMG95 power meter, the average power consumption during the HPL run is measured.
Fig. 14.11 shows the power measurements for a single- and a four-node run. The factorization
increases the power consumption measurably while it does not contribute significantly to the com-
pute performance. The fact that a computer participating in a multi-node run does not have to
factorize during each HPL iteration compensates the network losses to some extent. The decrease
in power consumption toward the end of the run when the GPUs idle a lot makes the average
power consumption much smaller than the maximum power consumption. The Green500 run rules
demand a measurement over at least 20 % of the runtime which excludes the first 10 %, in order
to ensure the hardware components have reached operating temperature. Appropriate Green500
measurements are listed in all power efficiency plots. It is questionable whether this procedure
makes sense or not because it overrates the low-power period at the end. On the other hand, the
figure shows only a tiny difference between the average and the Green500 measurement. There are
two reasons: first, power consumption at the very beginning is slightly lower since the hardware is
cooler; second, the distribution of the matrix entries gradually changes from uniform to Gaussian
and Section 11.5 argues that a Gaussian distribution results in higher power consumption.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700

2382 GFlop/s
Max: 1084.1 W

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700

Po
we

r [
W

]

Time [s]

Average: 979.3 W (2432.4 MFlop/J)
Green500: 983.4 W (2422.1 MFlop/J)

(a) Single-Node

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

8857 GFlop/s
Max: 1125.8 W

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

Po
we

r p
er

 N
od

e
[W

]

Time [s]

Average: 955.0 W (2318.7 MFlop/J)
Green500: 952.3 W (2325.2 MFlop/J)

(b) Four-Node

Figure 14.11: HPL Power Efficiency with Intel E2650 and AMD S10000 [XIV]

146 14.2. PUTTING THE PIECES TOGETHER

The run rules allow for the unfair trick to measure exactly the last 20 % which leads to ridiculous
results of about 3000 MFlop{J for Sanam. The Green500 authors are aware of this and have
announced to modify the rules for the next list. All Green500 measurements here measure the
average consumption between 10 % and 100 % of the runtime. Compared to the high performance
version of HPL-GPU with about 2100 MFlop{J, the power efficient code loses several hundreds
of GFlop/s of performance, but it reaches a power efficiency of 2422MFlop{J for one node and
more than 2300MFlop{J for all tested multi-node configurations. To be precise, the energy-
optimized HPL-GPU run (single-node) yields a 23.2 % decreased power consumption at a 11.1 %
reduced performance resulting in 15.8% improved power efficiency.

14.2.5 The November 2012 Top500 & Green500 Lists

Figure 14.12: Green500 Award for
Sanam [Fen` 10]

The Sanam supercomputer consists of 314 compute nodes
employing the architecture described above. Since the last
shipment of nodes arrived only less than a week before the
submission deadline, only 210 nodes took part in the sub-
sequent runs. In order to reach a stable system in a very
short time frame, the GPU frequency was reduced fur-
ther to 825 MHz. Of course, these two points have a large
impact on the Top500 result while the Green500 result is
almost unchanged. The large scale test on Sanam unveiled
a statistical GPU instability, which is so rare that it had
not been observed on the prototypes before but which pro-
hibits any large run over the whole cluster. To investigate
this, a full AMD CAL API emulation was written, which
does a complete internal event and resource accounting. It
can pass all calls through to the real library checking for proper API utilization by performing a
bunch of sanity checks such as ensuring that a kernel-finish event is queried before output memory
is read. In the end, the cause was tracked down to be inside the GPU driver and AMD could pro-
vide a new version within few working days facilitating the measurement presented in Fig. 14.13,
which was finally submitted to the list. The cluster achieved rank 52 in the Top500 [Meu`]
with 421.2TFlop{s, 2000 GFlop{s per node, and secured and outstanding second place (see
Fig. 14.12) in the Green500 [Fen` 10] with 2351.1MFlop{J – only second to a very special cluster
that employs the most expensive Intel eight-core processors, four single-GPUs, and 256 GB of
memory per node. Unfortunately, there was no time for an improved Top500 run with the high
performance code. A run after the deadline achieved 532.6 TFlop{s with 256 nodes, 2.08 TFlop{s per
node (still with reduced clocks for temperature reasons). Table 14.14 summarizes the results.

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000

Po
we

r p
er

 N
od

e
[W

]

Time [s]

Result 421.2 TFlop/s
Max 1051 W

Average 854.7 W (2346.8 MFlop/J)
Green500 853.1 W (2351.1 MFlop/J)

Figure 14.13: HPL Power Efficiency of Sanam Cluster reported to Green500 [XIV]

The efficiency with respect to peak performance of the four-node run is about 4 % below the
corresponding LOEWE-CSC result (Table 11.58), although the new benchmark version is much

CHAPTER 14. THE SANAM CLUSTER & THE LATTICE-QCD CLUSTER AT GSI 147

Discipline GPU Perf. per Node Peak Performance Efficiency

DGEMM Kernel 7970 805 GFlop{s 947 GFlop{s 85.0 %
DGEMM (4GPU` 2CPU) S10000 2923 GFlop{s 3661 GFlop{s 79.8 %
Single-node HPL S10000 2679 GFlop{s 3661 GFlop{s 73.2 %
Multi-node HPL (2ˆ 2) S10000 2427 GFlop{s 3661 GFlop{s 66.3 %
256-node HPL S10000 2080 GFlop{s 3212 GFlop{s 64.8 %

Table 14.14: Peak Performances and Efficiencies achieved on Tahiti [XIV]

more advanced. The reason is that with much faster nodes housing multiple GPUs, exploiting the
full potential becomes harder and harder. Meanwhile, Intel uses most HPL-GPU features such as
lookahead in their HPL with similar results [Hei` 13]. Other GPU-enabled HPL implementations
take different approaches. J. Kurzak [Kur` 12] achieves good performance without the modifi-
cations of HPL-GPU (one MPI process per node and large Nb). It implements a tiling similar to
HPL-GPU but with much smaller tile sizes and it performs more tasks on the GPU not only the
DGEMM. The NVIDIA HPL implementation for the Titan supercomputer [Bla 12, Shi 13] per-
forms the entire processing on the GPU using the processor exclusively for management. On top
of that it uses a relatively small matrix that fits in GPU memory. With CPU and main memory
idling, they drain much less power resulting in excellent power efficiency. With this approach, Ti-
tan achieves 64.9 % of its peak performance and demonstrates a power efficiency of 2142.8 MFlop{J.

Such approaches can boost energy efficiency as they allow to offload more work from the GPU;
however, in the author’s opinion, they are generally not optimal with respect to performance.
GPUs excel at simple tasks such as matrix multiplication, where they can access a large fraction
of their theoretical peak performance. Other tasks can benefit from GPU acceleration as well but
it is very unlikely they experience an acceleration of the same order of magnitude. It is thus the
best strategy to try to fully load the GPUs with DGEMM kernels all the time, process other tasks
on the processor, and hide the CPU time behind GPU calculation. This has two advantages: first,
the CPU can usually reach a higher fraction of its peak performance than the GPU for general
tasks; second, this makes the full GPU performance available. Admittedly, during the phase at
the end of the run where the CPU tasks become dominant, the other approaches are superior
and would be a valuable extension for HPL-GPU in the future. Since for efficient operation
they require a feature analogues to GPU Direct, which is not offered by AMD yet, they are not
realized within HPL-GPU. This chapter concludes with Fig. 14.15, which shows how HPL-GPU
performance has evolved on various platforms culminating in the above result for Sanam.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000
Remaining Matrix Size per Node

LOEWE-CSC, 1-node, LA 0 (534.3 GFlop/s)
LOEWE-CSC, 1-node, LA 2 (562.5 GFlop/s)
LOEWE-CSC, 4-node, LA 2 (2108 GFlop/s)
Magny-Cours, 3 GPU (1114 GFlop/s)
Dual 6990, LA1 (1351 GFlop/s)
Dual 6990, LA2 (1791 GFlop/s)
Dual 6990, LA2, 256 GB (2020 GFlop/s)
Sanam, 1-node (2678 GFlop/s)
Sanam, 4node, LA 2a (8677 GFlop/s)
Sanam, 4node, LA2b (9706 GFlop/s)

HPL Performance
DGEMM Performance

Pe
rfo

rm
an

ce
 p

er
 N

od
e

[G
Fl

op
/s

]

Figure 14.15: Evolution of HPL-GPU Performance – From LOEWE-CSC to Sanam

148

Chapter 15

Summary & Perspective for the
Future

15.1 Summary

A GPU-based DGEMM has been created, integrated into HPL, and tuned specifically for the
LOEWE-CSC architecture. The GPU DGEMM kernel achieves 494 GFlop{s on a 5870 AMD GPU
and 624 GFlop{s on a 6970 AMD GPU, in both cases more than 90 % of the peak performance.
Almost the entire DGEMM kernel performance is made available in the system. This requires
well-known techniques like pipelining, asynchronous DMA transfer, and setting CPU affinities. In
addition, special optimizations are applied, such as a binary patch to the AMD driver that reduces
page faults. A dynamic scheduler distributes the workload among multiple GPUs and CPUs.

Meanwhile, other DGEMM implementations [Nak 10] show comparable kernel performance on
Cypress GPUs (5000 series), however, only for certain transposition parameters. On top of that,
they do not offer a sophisticated framework that hides PCI Express latencies and schedules CPU
and GPU dynamically. With CALDGEMM the LOEWE-CSC nodes reach 623.5 GFlop{s DGEMM
performance (83.6 % of peak). Multiple GPUs can be used at the same time. The multi-GPU
scalability1 is 98.35 % for two, 93.6 % for three, and 95.3 % for four GPUs.2 In addition to Go-
toBLAS, AMD ACML and Intel MKL can be used as BLAS library. Patches alter the thread
pinning policies such that collisions with the GPU threads do not occur. The OpenMP code in
GCC has been modified to avoid unnecessary termination and recreation of threads. Besides the
CAL framework, also CUDA and OpenCL are supported. The CUDA and OpenCL implementa-
tions use an advanced DMA transfer scheme that occupies significantly less system resources. As
the new scheme is not generally supported by all OpenCL implementations, a fallback to the orig-
inal scheme is foreseen. The CUDA DMA framework was shown to scale to at least 8 TFlop{s per
node with multiple next-generation GPUs. All device code is encapsulated in the implementation
of an abstract interface class making CALDGEMM easily adaptable to new hardware.

HPL has been parallelized, vectorized, and its lookahead rewritten from scratch. Lookahead in-
volves pipelining the pivotization and hiding the factorization and broadcast times. The LOEWE-
CSC nodes reach 563 GFlop{s (75.5 % of peak) and 527 GFlop{s (70.7 %) in single and multi-node
configurations. The performance scales linearly to hundreds of nodes. Due to the heteroge-
neous nature of the LOEWE-CSC, HPL has been adapted to allow for an inhomogeneous matrix
distribution among the nodes. A test setup with six nodes of three speed-grades demonstrated
only 3.1 % granularity loss. The per-node performance becomes very close to the average node per-
formance instead of being limited to the minimum node performance – which is the case for other
Linpack implementations. In the November 2010 Top500 list employing HPL-GPU, the LOEWE-
1 The scalability is defined in Section 12.6.1.2 and measures the efficiency of the multi-GPU implementation in relation

to the single-GPU version.
2 Four GPUs scale better than three because the load is distributed more evenly among the CPU sockets.

CHAPTER 15. SUMMARY & PERSPECTIVE FOR THE FUTURE 149

CSC ranked place 22 and in the Green500 list it ranked place eight. The efficiency of 70 % with
respect to peak performance significantly exceeds the results for all competitive GPU clusters
in that list, and even up until the June 2012 list no other GPU cluster had reached this bench-
mark. The high efficiency is facilitated by the lookahead algorithm. To the best knowledge of the
author, no equally advanced implementation for the Linpack benchmark exists. An experiment
with three Cypress GPUs achieved an HPL performance of 1114 GFlop{s and an average power effi-
ciency of 1.238 GFlop{J, which would correspond to place two in the November 2010 Green500 list.
This result, and an efficiency of 1.12 GFlop{J demonstrated by a low-power SDS system employing
HPL-GPU, were among the first results breaking the 1 GFlop{J barrier with a GPU. A DMA prob-
lem with the Cayman GPU series was identified and a solution presented. (Appendix G lists all
HPL-GPU features.) With four Cayman GPUs, an HPL performance of 2007 GFlop{s was reached.

Intel and AMD platforms have been evaluated as basis for a quad-GPU system. The Sanam
cluster, each of its nodes equipped with four GPUs of the new AMD Tahiti GPU generation,
was deployed at GSI in cooperation with Sebastian Kalcher and five students from the KACST
institute in Riyadh. Head node, cluster operating system, and benchmark setup was jointly
installed with Sebastian Kalcher. To facilitate easy benchmarking with fast deployment of new
software versions to all compute nodes, a network boot setup with read-only NFS root directory
was created, that can optionally mount its root directory via InfiniBand. CALDGEMM and
HPL-GPU have been fine-tuned for this particular architecture, reaching a GPU kernel efficiency
of 85 % with 805 GFlop{s on a 7970. Combined GPU/CPU DGEMM achieves 2923 GFlop{s. HPL
reaches 2679 GFlop{s (73.2 %) in single-node and 9706 GFlop{s (66.4 %) with four nodes. This is less
efficient with respect to the peak performance than on the LOEWE-CSC but it must be noted
that node performance increased dramatically making it more difficult to reach high efficiency.
A special HPL version optimized for energy efficiency has been developed, which enabled the
Sanam cluster to achieve the second place in the November 2012 Green500 list with 2351.1 MFlop{J.
With 532 TFlop{s reached by 256 nodes, which cost about $ 2.5 million including the infrastructure,
Sanam facilitates a cost/performance ratio of outstanding 213 MFlops{$.

15.2 Perspective for the Future

Some possibilities for optimizations have not yet been approached or could be followed further.
Instead of dynamically using CPU cores for the factorization and letting the rest idle, the free CPU
cores during factorization and LASWP could be used to contribute to the large CPU DGEMM.
This should be possible as it is observed that in most cases CPU DGEMM does not slow down
the GPU. It is unclear, however, how to run the factorization and the DGEMM in parallel:
Currently, the GotoBLAS library is not capable of running multiple independent multi-threaded
tasks simultaneously. For proprietary BLAS libraries, this is even more complicated since the
source code cannot be modified. Finally, with node performance moving further and further from
the processors to accelerators, wasting a small fraction of the CPU performance has little impact
on the overall results. The possibilities to offload the factorization or parts of it to the GPU
could be analyzed further. However, this will have to be tuned for each particular configuration.
It is highly improbable that a fast generic version can be implemented. For this improvement a
method to transfer data directly from GPU memory via InfiniBand to remote GPU memory on a
different node is essential. NVIDIA provides such a functionality with GPU Direct in CUDA 5 as
does Intel for its Xeon Phi. AMD is still lacking support for this. Besides, a dynamic block size
during the HPL run could decrease the CPU load and shift some work from the factorization to
the update DGEMM at the end of the run when the CPU becomes the limiting factor. However,
this would make the multi-node distribution extremely complex.

Recently, Intel has adopted the lookahead algorithm of CALDGEMM into their HPL implemen-
tation for the Xeon Phi inheriting many CALDGEMM features [Hei` 13]. Currently, the work
is focused on a cooperation with AMD to create an end-user Linpack version for AMD GPUs
employing OpenCL based on CALDGEMM and HPL-GPU.

150

Part IV

Optimized High Performance
Redundant Data Storage

Source of Image: [ECO].

151

Chapter 16

Theory

16.1 Coding Theory

In data centers, but also in every production environment, redundant data storage is of paramount
importance. In case of a hard disk failure, a server crash, or a broken network link – just to men-
tion some common examples – it must be ensured that no data are lost, and even further, that the
system as a whole keeps operational. This part of the thesis is about encoding for redundant data
storage and has mostly RAID1 arrays of hard disks and distributed network storage on multiple
servers in mind. However, the principles can also be used for failure-tolerant network communi-
cation, etc. This work is focused on the redundant encoding itself but not on its applications.

Besides linear algebra, this chapter assumes familiarity with Galois theory and p-adic num-
bers [Lan 05]. At first, some notation on coding theory is introduced. In the following, consider
a fixed ring R and natural numbers n ą 0, k ą 0.

Definition 1: Let R be a commutative ring with unity, n, k P N. An pn, kq-code (on the ring R)
is a map

ĂM : Rn Ñ Rn`k

that is injective. The code is called linear if the map is linear. In that case, ĂM is called
the encoding-matrix. If the parameters n and k are clear from the context, they are omit-
ted. In the literature, also the alternative notation (N 1, k1q “ pn` k, k) is used often.

Denotation: Let M P Rpn`kqˆn be a matrix, I Ď t1, . . . , n ` ku Ă N a finite set of natural
numbers. Then M I denotes the pn` k´#Iqˆn submatrices of M with all rows removed whose
indices lie in I.

Definition 2: A linear code ĂM : Rn Ñ Rn`k is called an MDS-code (Maximum Distance
Separable) if ĂM I is regular for all I Ă t1, . . . , n ` ku with #I “ k. Obviously, this means
every nˆ n square submatrix2 of ĂM is regular. The inverses of these nˆ n square submatrices
are called decoding-matrices. If only the term “decoding-matrix” is used, it will be clear from
the context which of the decoding-matrices is meant. The standard denotation is rC for code words
and D for data words, s. t. rC “ ĂM ¨D.

Definition 3: A linear code is called systematic if rCi “ Di for 1 ď i ď n and rC “ ĂM ¨D. Two
linear codes ĂM and ĂM 1 are called equivalent if there is a regular matrix A such that ĂM “ ĂM 1 ¨A.

Lemma 4: Every linear MDS-code is equivalent to a systematic code.

Proof: For an MDS-code ĂM , the square submatrix A :“ ĂM rn`1: n`ks is regular with inverse A´1.
Then ĂM ¨A´1 is an equivalent systematic code.
1 Redundant Array of Inexpensive Disks – or – Redundant Array of Independent Disks.
2 A square submatrix of a matrix M is a square matrix obtained by removing lines and columns of M .

152 16.1. CODING THEORY

D1

D2

D3

D4

D5

D6

D7

D8

Encoding

D1

D2

D3

D4

D5

D6

D7

D8

C1

C2

C3

C4

D1

D3

D4

D6

D7

C1

C2

C4

n=8,k=4

Data Loss
Restoration

D1

D2

D3

D4

D5

D6

D7

D8
Decode Matrix

-1{2,5,8,12}
(Ã)Encode Matrix

A

Figure 16.1: Failure Tolerant Encoding/Decoding Scheme3

From now on, every code is assumed to be a linear MDS-code. Due to Lemma 4, without loss of
generality, the code can be assumed systematic. In applications, there are n data words Di P R
with 1 ď i ď n to be stored. There are n` k data storages available. Each of them stores one
of the code words rCi (1 ď i ď n ` k) that are defined by rC “ ĂM ¨D. Due to the postulation
in Definition 2, the data words can be recovered by any set of n code words, i. e. the system
survives the failure of up to k storages without any data loss. Consider that the lost data words’
indices must be known since erasure codes do not have to detect data corruption by definition.3
Fig. 16.1 visualizes the process. The encoding-matrix of a systematic MDS-code ĂM has the form

ĂM “

¨

˚

˚

˚

˚

˝

1 0
. . .

0 1

M

˛

‹

‹

‹

‹

‚

“

ˆ

1

M

˙

and the encoding yields

ĂM ¨D “

ˆ

1

M

˙

¨D “

ˆ

D
C

˙

“ rC.

The code is determined completely by the k ˆ n matrix M . Despite the ambiguity, M is called
encoding-matrix as well. The encoding equation simplifies to C “M ¨D.

Definition 5: A matrix whose every square submatrix is regular is called locally regular (or
locally invertible). In particular, every matrix entry is a 1ˆ 1 submatrix itself. Thus, all entries
of a locally regular matrix are units and especially nonzero.

Lemma 6: A matrix M yields an MDS-code ĂM “
`

1
M

˘

if and only if it is locally regular.

Proof: It must be verified whether every nˆ n square submatrix of ĂM is regular. (Definition 2
poses no requirement on smaller square submatrices.) Each such nˆn square submatrix has the
form

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
. . .

1
0 1

. . .
1

0 1
. . .

M˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

CHAPTER 16. THEORY 153

with a submatrix M˚ of M . By elementary row and column operations the form
ˆ

1 0
0 M ˚˚

˙

can be obtained. This is invertible if and only if the square submatrix M˚˚ of M is regular.
Assume I Ď t1, . . . , n ` ku with #I “ k. Define I1 “ I X r1: ns and I2 “ I X rn` 1: n` ks.
Verifying whether the n ˆ n square submatrix ĂM I of ĂM is regular leads to the square subma-
trix M˚˚ of M with the rows removed whose index shifted by n lies in I2 and with the columns
removed whose index lies in I1. Thus, there is a one to one correspondence between the square
submatrices M˚˚ of M and the sets I. A square submatrix M˚˚ is regular if and only if the
corresponding matrix ĂM I is regular. All square submatrices can be obtained by removing rows
and columns hence all square submatrix M˚˚ must be regular, which completes the proof.

16.2 Reed-Solomon Code

Reed-Solomon Codes [Ree` 60] are examples of linear MDS-codes. It is known that for each
prime power q “ pl there is (up to isomorphism) a unique finite field Fq with q elements. It is
an algebraic Galois extension of Fp – Z{pZ, i. e. Fq – FprXs{fpxq with fpxq P FprXs an irreducible
polynomial of degree l.

Definition 7: Let λi P R for 0 ď i ď n. The Vandermonde matrix

V “

¨

˚

˝

1 λ0 λ20 ¨ ¨ ¨ λn0
...

...
...

. . .
...

1 λn λ2n ¨ ¨ ¨ λnn

˛

‹

‚

is defined by Vij “ λji .

There is the following well known

Lemma 8: The determinant of the Vandermonde matrix V is

detpV q “
ź

0ďiăjďn

pλj ´ λiq.

It is invertible if and only if all λj ´ λi are units. Therefore, if R is a field, the matrix V is
regular if and only if the λi are pairwise distinct.

Also the inverse of the Vandermonde matrix is known explicitly [Tur 66]. Now, the Reed-Solomon
code can be introduced.

Definition & Proposition 9: Assume q ě n` k and consider the matrix ĂM defined by

ĂM “

¨

˚

˝

λ01 ¨ ¨ ¨ λn1
...

. . .
...

λ0n`k ¨ ¨ ¨ λnn`k

˛

‹

‚

with pairwise distinct λi P Fq. This defines an MDS-code: the Reed-Solomon code.

Proof: By construction, every n ˆ n square submatrix is a Vandermonde matrix with pairwise
distinct λi and thus regular. Therefore, ĂM is a linear MDS-code.
3 The theory of erasure codes can be extended to error-correction-codes which can detect a corruption of up to a

certain number of data words and can also identify the corrupted ones. Hamming codes are one example. Another
possibility is to store checksums for each chunk, such that corrupted storages can be identified easily [Kal 13, 5.9].

154 16.3. INTEGER CALCULATIONS & CODES ON FINITE RINGS

16.3 Integer Calculations & Codes on finite Rings

From the implementation perspective, the Reed-Solomon code suffers from the fact that com-
puters do not natively support calculations in the field Fq. Usually, q is chosen to be 22

α

which
maps nicely to the CPU registers and the calculation in F22α is emulated. In this case, the
addition in F22α maps directly to a logical XOR operation. However, the multiplication involves
a polynomial division and is thus quite expensive. It is usually implemented using logarithm
tables [Pla 97], which hardly fit into CPU caches. S. Kalcher [Kal` 11] demonstrates how to
overcome the memory issue with a vectorized direct approach, however, the emulated operation
is still much slower than native integer or floating point operations.

It is thus desired to have an encoding scheme that only performs integer operations the CPU
has native support for.4 Consider a processor that operates on b-bit registers, e. g. 32 bits. In
fact, such a CPU does not really support full integer calculation but it encounters overflows when
exceeding 2b. This is equivalent to operations in the residue class ring Z{2bZ. Nevertheless, such
calculations are called integer calculations in the following.

The following two subsections present two constructions of integer codes. The first one was
developed during this thesis. It uses integral Z-algebras and algebraic number fields in order to
derive codes over finite rings. This is the approach the implementation in Chapter 17 follows.
Codes can be constructed and implemented explicitly this way. The second construction is more
direct and in fact more general as it can handle rare cases which cannot be treated by the first one.
In the end, both methods lead to the same encoding matrices. The codes are also described e. g.
in [And` 05], where the derivation is similar but not identical to the second approach presented
here. The main advantage of the first approach is a fast inversion method for ring elements and
thus a faster encoding-matrix generation than the other approaches provide.

16.3.1 Deriving Codes from Algebraic Number Fields

This section derives codes from commutative Z-algebras with unity and without zero divisors (i. e.
the algebra is an integral domain), which are finitely generated as Z-modules. It is clear that all of
the above postulations are natural, e. g. computation in algebras which are not finitely generated
is possible on computers only in special cases. At first, only rings of integers of algebraic number
fields are treated. It is proven later (see Section 16.3.1.4) that this is no restriction.

16.3.1.1 Integrality

In the following,K always denotes a number field, i. e. a finite algebraic extension of Q, of degree l.

Definition 10: The set of all elements

OK “

!

z P K s. t. D fpXq P ZrXs normalized 5 : fpzq “ 0
)

,

is called the ring of algebraic integers of the number field K.

It is a well-known fact [Neu 99, I §2] that this set is a finitely generated Z-module of rank l and
carries the structure of a ring. A basis of this module is called an integral basis. Clearly, it
is an integral domain and thus lies in the above described category. Since Z is a principal ideal
domain and OK is torsion-free, OK is a free Z-module, i. e. OK – Zl as a Z-module. It follows
that for p P Z prime

OK{pbOK –

´

Z{pbZ
¯l

(as an abelian group).

4 Floating point computation is by definition unsuited for encoding since it is not associative.
5 A polynomial is normalized if its highest coefficient is one.

CHAPTER 16. THEORY 155

In the following, K{Q is assumed a Galois extension with Galois groupG “ GalpK{Qq andP “ pOK

is the ideal generated by p in OK . It shall be analyzed when a Vandermonde matrix V (respec-
tively its residue class) with entries in OK is invertible in the matrix ring over OK{pbOK. According
to Cramer’s rule, this is the case if and only if detpV q is invertible (in OK{pbOK).

In general, OK is not a unique factorization domain6, but it can be shown that it is a Dedekind
domain, and thus there is a unique prime ideal factorization instead [Neu 99, I 3.2/3.3].

Proposition 11: Assume P is a prime ideal in OK and V a Vandermonde matrix, such that
the λi are pairwise distinct modulo P. Then V is invertible in OK{Pb.

Proof: By construction the differences λj ´ λi are not divisible by P thus neither is

N pdetpV qq “
ź

σPG

σpdetpV qq “
ź

σPG

ź

1ďiăjďn

σpλj ´ λiq

since P is prime. Using the extended Euclidean algorithm there exist integers x, y P Z such
that x ¨N pdetpV qq ` y ¨ pb “ 1. This yields that detpV q is invertible in OK{Pb with inverse

x ¨
ź

1‰σPG

σpdetpV qq.

Before a code can be generated from this, a little more theory is needed. There is the follow-
ing [Neu 99, I §3] well-known

Definition & Proposition 12: A prime number p P Z factors uniquely in OK as

pOK “

r
ź

i“1

Pi
e

with Pi C OK prime where the index calculates to

f “ dimFp OK{PiOK @i

with e ¨ f ¨ r “ l. It is said that p splits in r prime ideals of ramification index e and inertia
degree f . The prime p is called unramified if e “ 1, it does not split if r “ 1, and it is inert
if f “ l. (If K{Q is not Galois, a similar proposition holds.)

By definition a prime number p P Z generates a prime ideal P “ pOK C OK if and only if it is
inert.

16.3.1.2 An MDS-Code on Residue Class Rings

Proposition 13: Assume p is inert in OK and pl ě n ` k. Then there is a linear MDS-code
on OK{PbOK for all b ě 1.

Proof: Since p is inert, the equation l “ f “ dimFp OK{POK holds. Thus, there are pl ě n ` k
elements λi pairwise distinct modulo p. Using the encoding-matrix ĂMij “ λji the claim follows
from Proposition 11 in the same way as for the Reed-Solomon code.

Remark 14: Assume either pl ă n`k or both pl ě n`k with l minimal and p not inert in OK .
In both cases, there are less than n ` k pairwise disjoint elements available and thus the above
construction cannot lead to an MDS-code.
6 A counter-example is K “ Qp

?
´5q where 6 “ 2¨3 “ p1`

?
´5q¨p1´

?
´5q has no unique prime number factorization.

156 16.3. INTEGER CALCULATIONS & CODES ON FINITE RINGS

In order to minimize the computational complexity, it is desirable to choose l as small as possible.
The natural number l is called admissible if there exists a Galois extension of degree l such that p
is inert. This requires p not to split and to be unramified. The question arises which numbers l
are admissible.

Lemma 15: Every factor of an admissible number l is admissible itself.

Proof: Since p does not split, the local extension KP{Qp has the same degree l with isomorphic
Galois group. Since the extension is unramified, the Galois group must be abelian and even
cyclic. Therefore, every subextension Q Ď L Ď K is Galois as well. Clearly, if p is inert in K,
the same holds in L. Since for every factor l1 of l there exists a subextension of degree l1, if l is
admissible, every factor is.

The question which l are admissible is answered (with few exceptions) by the following

Theorem 16 (Grunwald Wang): Let S be a finite set of primes. Let G be a finite abelian group.
For all p P S let KP{Qp be local Galois extensions with Galois group Gp such that Gp Ď G are
subgroups. Assume either 2 R S or #G2 R 8Z. Then there exists a Galois extension K{Q with
Galois group G such that for all p the local extensions coincide with the predetermined KP.

The theorem in fact applies to an even more general case. The general formulation and a proof can
be found in [NSW 08, 9.2.8]. With the theorem of Grunwald Wang, the existence of admissible l
can be proven in almost every case.

Proposition 17: Let p ‰ 2 or l R 8Z. Furthermore, assume pl ě n ` k. Then l is admissible
and an MDS-code exists.

Proof: Apply Theorem 16 with S “ tpu and G “ Gp “ Z{lZ with KP{Qp unramified.7 In the re-
sulting extension K, the prime p does not split since G “ Gp and it is unramified by construction.
Hence p is inert. With Proposition 13 the claim follows.

In the following, only the case p “ 2 is regarded. First, this is the special case in the theorem
of Grunwald Wang and second, it is the case relevant for the implementation on a computer.
The Grunwald Wang theorem does not make any assertion for the special case so the question
arises whether l “ 8 could still be admissible for p “ 2. Unfortunately, this is not the case as
is shown in [AT 67, §10 Theorem 1]. Due to Lemma 15, every multiple of 8 is not admissible,
either. Hence in summary, l is admissible if and only if it is no multiple of 8.

As a remark: from Section 16.3.2 it follows that every l is admissible if the assumption is dropped
that K{Q is Galois. In contrast, the above theory can only cover the cases where l is not divisible
by eight. Appendix F.1 lists examples how codes from Proposition 17 can be generated for many l.

16.3.1.3 Codes on ZZZ{pbZZZ (Integral Codes)

Reflecting the last section reveals that the implementation of the above algorithm requires calcu-
lations in the ring OK which usually involves polynomial division as for the Reed-Solomon code.
However, there is a simple approach to overcoming this. As an additive group, OK is isomorphic
to Zl and every OK-linear map ϕ is clearly Z-linear. The data words Di and the redundancy data
words Ci are considered elements of Zl. The k ˆ n encoding-matrix M with entries in OK{2bOK
thus yields a klˆ nl matrix with entries in Z{2bZ. The new matrix is called encoding-matrix and
is denoted by M , too. Such codes are also called integral codes.

Later, the implementation operates on 2b-bit values interpreted as elements of Z{2bZ. Consecu-
tive l elements are considered an element of R{2bR – pZ{2bZql and are stored on the same storage
each. Such a set of l elements makes up a data word Di or a redundancy word Ci. These words
7 From class field theory it is known that an unramified extension of Qp of degree l exists [Neu 99, IV §5].

CHAPTER 16. THEORY 157

are stored on mutually exclusive storages. This means, losing one storage results in losing one of
the data words Di or one of the redundancy words Ci, i. e. after losing arbitrary k storages the
original data can in any case be reconstructed. The matrix multiplication for the encoding can be
performed by every processor by simple integer multiplications and additions. It shall be noted
here that the occurrence of integer overflows is essential. Naturally, the above considerations hold
for the decoding-matrix as well. In formula, the encoding is done via:

C “

¨

˚

˝

C1

...
Ck

˛

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˝

pC1q1
...

pC1ql

˛

‹

‚

...
¨

˚

˝

pCkq1
...

pCkql

˛

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˝

pM11q11¨ ¨ ¨pM11q1l
...

. . .
...

pM11ql1 ¨ ¨ ¨pM11qll

˛

‹

‚̈

¨ ¨

¨

˚

˝

pM1nq11¨ ¨ ¨pM1nq1l
...

. . .
...

pM1nql1 ¨ ¨ ¨pM1nqll

˛

‹

‚

...
. . .

...
¨

˚

˝

pMk1q11¨ ¨ ¨pMk1q1l
...

. . .
...

pMk1ql1 ¨ ¨ ¨pMk1qll

˛

‹

‚̈

¨ ¨

¨

˚

˝

pMknq11¨ ¨ ¨pMknq1l
...

. . .
...

pMknql1 ¨ ¨ ¨pMknqll

˛

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˝

pD1q1
...

pD1ql

˛

‹

‚

...
¨

˚

˝

pDnq1
...

pDnql

˛

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“MD

where Ci, Dj P pZ{2bZq
l are tuples of l associated 2b-bit words and the entries Mij P pZ{2bZq

lˆl

are lˆ l matrices themselves with 2b-bit entries.

The above-obtained code does not exactly fit the definition of an MDS-code on Z{2bZ but it is
quite similar. Instead of tolerating the loss of k single words, the loss of k tuples of l consecutive
words is tolerated. In the following, codes of this kind are called vector-MDS-codes (over the
base ring Z{2bZ).

16.3.1.4 The general Case

Proposition 18: Every code obtained using an integral domain R which is finitely generated as
a Z-module can be obtained from the ring of algebraic integers OK of a number field K.

Proof: The integral domain R is torsion-free and thus free over the principal ideal domain Z.
Therefore, assume its dimension is r and let teiu1ďiďr be a basis. For fixed i consider the
powers eji . The module created by all these powers is a submodule of R and thus finitely generated
since Z is a principal ideal domain. Hence, there exists m such that e0i , ...,emi are linearly
dependent and thus ei is integral over Z, i. e. DαjPZ s. t.

řm
j“0 αje

j
i “ 0 and at least one of the αj

is nonzero. Without loss of generality, assume α0 ‰ 0. (Consider that R is free and factor out ei.)
The quotient field of R is hence a finite algebraic extension K of Q and has a ring of algebraic
integers OK . It is clear that R is a subring of OK but it is not necessarily identical.

Since R is a free Z module generated by teiu1ďiďr, also RbZ Q is a free Q module generated
by tei b1u1ďiďr and thus a Q-vector space of dimension r. In RbZ Q, this yields:

pei b1q ¨
´1

α0

m
ÿ

j“1

αjpei b1qj´1 “ 1.

An analogous equation holds for every element 0 ‰ x P R.8 Hence RbZ Q is already a field and
thus RbZ Q – K. In total, this yields: r “ dimZpRq “ dimQpRbZ Qq “ degpK{Qq “ rankZpOKq.
Therefore, R and OK have the same rank and are isomorphic as Z-modules but not necessarily
as algebras. Still, there is a natural inclusion ι : R ãÑ OK , which can be lifted (component-
wise) to the matrix algebras ι˚ : Rnˆn ãÑ Onˆn

K and an endomorphism ϕ of Rn with matrix
representation A P Rnˆn Ď Onˆn

K extends to an endomorphism of On
K with representation ι˚pAq.

The above paragraphs proved that R is a subalgebra of OK of the same rank. According to the
structure theorem for finitely generated modules over principle ideal domains [Lan 05, 7.8], there
8 The module generated by the powers of x is a finitely generated submodule of R since Z is a principal ideal domain.

158 16.3. INTEGER CALCULATIONS & CODES ON FINITE RINGS

are bases teiu1ďiďr of R and te1iu1ďiďr of OK such that ei “ βi ¨ e
1
i with βi P Z. These bases

yield Z-module isomorphisms ψR and ψOK and the following commutative diagram.

Rnˆn

–

ψR

��

�

ι˚
// Onˆn

k

–ψOK
��

Znrˆnr �
ι˚˚

// Znrˆnr

A simple calculation reveals9 ι˚˚ “ Id, i. e. every encoding-matrix obtained through R can be
obtained through OK as well.

16.3.2 Deriving Codes from Finite Field MDS-Codes

The above derivation generates codes explicitly (Appendix F.1). However, the parameter l is in
a certain sense restricted. The goal is to create a code for words in Z{pbZ for arbitrary l. Consider
the fixed finite field Fq “ Fpl and an MDS-code (e. g. Reed-Solomon) ĂM on Fq.

Proposition 19: Every MDS-code on Fq (q “ pl) can be lifted to an MDS-code on a Z{pbZ-algebra
of dimension l.

Proof: There is an irreducible polynomial fpxq P FprXs such that Fq – FprXs{fpxq. It is clear
that Fq is a vector space of dimension l over Fp. Consider a normalized lift fpxq P Z{pbZrXs
of fpxq. Define R “ pZ{pbZq{fpxq. Clearly, R is a free Z{pbZ-module of dimension l. By construc-
tion, R{pR – Fq is a field and p is maximal. Conversely, for any maximal ideal p, the quotient R{p
is a field whose characteristic can only be p. Therefore, p “ pR and R is a local ring. Take
an arbitrary lift M P Rpn`kqˆn of ĂM P Fpn`kqˆnq . The projection of the determinant detpM

I
q of

an nˆ n submatrix of M equals the determinant of the corresponding submatrix of ĂM and is
thus nonzero. It follows that detpM

I
q does not lie in the maximal ideal and is thus invertible

in R. Thus, M is locally regular and yields an MDS-code on R.

Remark 20: There are the following properties of vector-MDS-codes derived from finite fields:

(i) In the same way as in Section 16.3.1.3, a vector-MDS code can be obtained (Fpl is regarded
as vector space over Fp). Even further, analogously to the proof of Proposition 19, each
vector-MDS-code on Fp can be directly lifted to Z{pbZ by lifting the encoding-matrix ĂM .

(ii) As a warning it should be noted that in general, an arbitrary lift of the decoding-matrix does
not lead to the decoding-matrix for a lifted MDS-code.

(iii) Consider a vector-MDS-code with p “ 2. As the lift of the encoding-matrix can be chosen
arbitrarily, it is possible to choose the lift of the encoding-matrix from Fn`kˆk2 such that all
entries are either 0 or 1.

For actually generating both encoding and decoding matrices, it is necessary to invert units of R.
Since R is a finite ring, elements can be inverted in finite time using brute force. However, for
large rings this is not possible or practical respectively in practice. In Proposition 11, the units
are inverted by multiplication with Galois conjugates. In the case of a non-Galois extension,
this is naturally not possible. Still, there is an algorithm for inverting elements in acceptable
runtime.
9 Naturally, ι˚˚ depends on the choice of the basisteiu1ďiďr, but every change of basis matrix applied to the ba-

sis teiu1ďiďr can be applied to te1iu1ďiďr as well yielding the same ι˚˚.

CHAPTER 16. THEORY 159

Lemma 21: Consider the situation from Proposition 19.

R “

´

Z{pbZ
¯

{fpxq Fq – FprXs{fpxq – ZrXs{p pZ, fpxq q – R{pR

Take a unit x P R˚. The units of R are all elements of RzpR. By the theorem of Lagrange it
follows that xγ “ 1 for γ “ #R˚ “ pbl´ppb´1ql. The inverse can thus be calculated by x´1 “ xγ´1.

16.3.3 Summary

Yet, two different approaches have been presented for creating codes on finite rings. The algebraic
number field approach generates a subset of the encoding matrices obtained from the second
approach. Still, it covers all cases with l R 8Z, which is sufficient in almost every case. During
generation of encoding and decoding matrices, inversion of ring elements is a compute intensive
task. In both approaches, this task is put down to multiplication in the ring, which is compute
intensive itself. (Ring multiplication is explained in Appendix F.2. It is performed distributively
requiring pl´1q2 integer multiplications and needs a subsequent reduction step of at least the same
complexity.) Hence, the number of ring multiplications is a suitable measure for the performance.
The following lemma gives a partial answer which approach is faster.

Lemma 22: In terms of ring multiplications, the method involving algebraic number fields
(Proposition 17) is in average at least 3b

2 ln2 p times faster then the method in Lemma 21.

Proof: The number of ring multiplications for the algebraic number field approach can be counted
easily in Equation F.2 in Appendix F.2.1: it is l´ 2. The finite field method requires computing
the ppbl´ppb´1ql´1qth power, which can be done using binary exponentiation (see [Knu 97, 4.6.3])
in α ¨ ln2pp

bl ´ ppb´1ql ´ 1q steps with 1 ď α ď 2. For p ě 2, l ě 3, b ě 2 the quotient calculates
to:

α ¨ ln2pp
bl ´ ppb´1ql ´ 1q

l´ 2
“ α

ln2pp
blq ` ln2p1´ p´l ´ p´blq

l´ 2
ě

αb ln2ppq ¨
1` ln2p1´ p´l ´ p´blq

1´ 2{l
ě αb ln2ppq ¨

1` ln2p1´ 2´3 ´ 2´6q

1´ 2{l
ě αb ln2ppq.

The lemma does not take the costs of the operation of the Galois group into account, which
depend on the particular field. However, since the Galois group acts linearly, the operation can
be performed via matrix multiplication (on the ring as a Z-module). Therefore, calculating the
Galois conjugates is less than or equally expensive as multiplication in the ring. The lemma also
does not consider the extended Euclidean algorithm at all, which is calculated in Z though, and
thus very fast.

In the cyclotomic example in Appendix F.1, calculation of the Galois conjugates takes zero time
since the Galois group only permutes the basis vectors ζjm “ e2πi¨j{m. In addition, the relation
between the powers of ζm makes most of the reduction steps for ring multiplication obsolete.
Thus, the speed advantage for cyclotomic fields is much higher than stated in Lemma 22.

The following proposition concludes the section, taking into account the explicit example in
Appendix F.1 and the calculations in Appendix F.2:

Proposition 23: Let b P N, p prime, and n, k, l P N such that pl ě n` k:

• There exists an (n, k)-vector-MDS-code on the ring Z{pbZ.
• The code can be derived from the ring of integers of an algebraic number field if and only
if l is no multiple of 8 (i. e. l R 8Z) or p ‰ 2.

• Every code that can be obtained from an integral domain which is finitely generated as
a Z-module can already be obtained from a ring of algebraic integers.

160 16.4. CAUCHY-REED-SOLOMON CODE

• Cyclotomic fields yield codes for l P t1, 2, 4, 6, 10, 12, 18, 20, 28u. Their totally real subfields
yield additional codes for l P t3, 5, 9, 14u.

• If the code can be derived from an algebraic number field, ring elements can be inverted
easily using multiplication with Galois conjugates and the extended Euclidean algorithm as
described in Appendix F.2.1. If the code cannot be derived from an algebraic number field,
inverses can still be calculated using the theorem of Lagrange as described in Lemma 21.

• Using algebraic number fields results in an about 3b
2 ln2 p times faster inversion algorithm.

For cyclotomic fields, the factor is even higher.

16.4 Cauchy-Reed-Solomon Code

Definition & Proposition 24: Let ai, bj P R (1 ď i ď k, 1 ď j ď n) be pairwise distinct
elements. The matrix

M “

¨

˚

˝

1
a1´b1

¨ ¨ ¨ 1
an´b1

...
. . .

...
1

a1´bk
¨ ¨ ¨ 1

an´bk

˛

‹

‚

defined by Mij “
1

ai´bj
is called a Cauchy matrix. In the case that n “ k and that R is a field,

the determinant calculates to

detpMq “

n
ź

i“2

i´1
ź

j“1

pai ´ ajqpbi ´ bjq

n
ź

i“1

pai ´ biq

(16.1)

and is nonzero for pairwise distinct ai and bj. Clearly, every submatrix of a Cauchy matrix is a
Cauchy matrix itself and a Cauchy matrix is locally regular. With Lemma 6 it follows that each
Cauchy matrix yields an MDS-code.

A proof for the determinant formula can be found in [Sch 59]. By specializing the principle
of a vector-MDS-code based on a Cauchy matrix to b “ 1 (or alternatively by applying the
vector-MDS principle to the original Reed-Solomon code with a Cauchy matrix instead of the
Vandermonde matrix), the Cauchy-Reed-Solomon code (CRS) [Blö` 95] is obtained. The
integral matrix multiplication from Section 16.3.1.3 becomes a matrix multiplication with binary
entries in F2. In the following, vector-MDS-codes over F2 are called CRS codes, regardless of
which matrix is used. The implementation in the next chapter still uses the Vandermonde matrix.

16.4.1 XOR-only Codes

The binary matrix multiplication of the Cauchy-Reed-Solomon code has a simplified form. Clear-
ly, multiplication in F2 is equivalent to a logical AND while addition is equivalent to a logi-
cal XOR. However, elements multiplied by 0 can be omitted while elements multiplied by 1 are
untouched. Thus, the multiplication can be eliminated. This is called an XOR-only code.
To simplify the equations, this section uses C-syntax for logical operations, i. e. & stands for a
logical AND, | stands for a logical OR, and ˆ stands for a logical XOR.

Example 25: Consider the simple example of M ¨D “ C:
¨

˚

˝

1 0 0 1
0 0 1 1
0 1 0 1
1 1 0 0

˛

‹

‚

¨

˚

˝

D1

D2

D3

D4

˛

‹

‚

“

¨

˚

˝

C1

C2

C3

C4

˛

‹

‚

CHAPTER 16. THEORY 161

Writing this in terms of logical AND and XOR operations yields:

¨

˚

˝

C1

C2

C3

C4

˛

‹

‚

“

¨

˚

˝

p1 & D1q ˆ p0 & D2q ˆ p0 & D3q ˆ p1 & D4q

p0 & D1q ˆ p0 & D2q ˆ p1 & D3q ˆ p1 & D4q

p0 & D1q ˆ p1 & D2q ˆ p0 & D3q ˆ p1 & D4q

p1 & D1q ˆ p1 & D2q ˆ p0 & D3q ˆ p0 & D4q

˛

‹

‚

“

¨

˚

˝

D1 ˆ D4

D3 ˆ D4

D2 ˆ D4

D1 ˆ D2

˛

‹

‚

(16.2)

The binary matrix multiplication originally involving sixteen logical AND and twelve logical XOR
operations can thus be evaluated by only four operations.

Under the assumption that for large encoding-matrices equally many zeroes and ones are present,
half of the XOR operations can be eliminated (in addition to all AND operations). This reduces
the calculation effort by a factor of four. Obviously, the same result holds for the decoding-matrix.

16.4.2 Add-only Codes

Proposition 19 showed that an arbitrary lift of an encoding-matrix with entries in F2 yields an
encoding-matrix with entries in Z{2bZ. Clearly, this lift can be chosen such that the encoding-
matrix contains only the elements 1 and 0 (Remark 20 (iii)). In the same way as in Example 25,
the multiplication can be eliminated in this case. Encoding is then performed only by addition
while the calculation effort is reduced by a factor of four, as for the XOR-only code. This variant
is called an Add-only code.

In contrast to XOR-only codes on the field F2, only the encoding-matrix can be restricted to the
elements zero and one. Since the encoding-matrix uniquely defines the decoding-matrix, which
has entries in Z{2bZ, the full matrix multiplication must be performed for decoding.

16.5 Variants

16.5.1 Encoding by Matrix-Matrix Multiplication

In practice, the data that are stored on redundant storage systems greatly exceed the size of the
data word vector D. The encoding is then performed block by block. The input data are split in
blocks Dpsq “ pDpsq1 , ¨ ¨ ¨ , D

psq
l q (1 ď s ď S), which are encoded independently:

Cpsq “M ¨Dpsq.

All code words Cpsqj for fixed j are stored on the same storage device.

Proposition 26: Combining the data and code words in matrices

CT “

¨

˚

˝

C
p1q
1 ¨ ¨ ¨ C

pSq
1

...
. . .

...
C
p1q
k ¨ ¨ ¨ C

pSq
k

˛

‹

‚

DT “

¨

˚

˝

D
p1q
1 ¨ ¨ ¨ D

pSq
1

...
. . .

...
D
p1q
n ¨ ¨ ¨ D

pSq
n

˛

‹

‚

the encoding of the entire dataset can be performed by a matrix-matrix multiplication:

CT “M ¨DT . (16.3)

This can be rewritten to
C “ D ¨MT . (16.4)

162 16.5. VARIANTS

Equation 16.4 is more practical than 16.3 since the input and output matrices are stored in
row-major format (see Appendix C.2). The previous single-block case is the special case with
a matrix consisting of a single column. Mathematically, nothing new has been obtained. How-
ever, from the computational side this is a great advantage. While matrix-vector multiplication
is usually bandwidth-bound, matrix-matrix multiplication can achieve the computational peak
performance. All the common techniques such as blocking (see Section 11.2.4.1) can be applied
to speed up the encoding.

16.5.2 Strassen Matrix-Matrix Multiplication

According to the previous section, the encoding can be performed by matrix multiplication. Thus,
for fast encoding a fast matrix multiplication is required. In contrast to Part III, the rules for
the Linpack benchmark demanding an Opn3q algorithm do not apply. Hence, the fast Strassen
matrix-matrix multiplication algorithm [Str 69] can be used.10 In the following, the algorithm is
presented briefly.

Theorem 27 (Strassen): Consider square nˆ n matrices A and B. The matrix product A ¨ B
can be calculated with Opnlog2p7qq operations.

Proof: Write the matrices

A “

ˆ

A11 A12

A21 A22

˙

B “

ˆ

B11 B12

B21 B22

˙

C “

ˆ

C11 C12

C21 C22

˙

.

(The naive algorithm calculates Cij “
ÿ

k

Aik ¨Bkj .) After calculating the intermediate matrices

I “ pA11 `A22q ¨ pB11 `B22q

II “ pA21 `A22q ¨ B11

III “ A11 ¨ pB12 ´B22q

IV “ A22 ¨ pB21 `B11q

V “ pA11 `A12q ¨ B22

V I “ pA21 ´A11q ¨ pB11 `B12q

V II “ pA12 ´A22q ¨ pB21 `B22q

the matrix C can be obtained (with seven instead of eight multiplication steps) by

C11 “ I ` IV ´ V ` V II

C21 “ II ` IV

C12 “ III ` V

C22 “ I ` III ´ II ` V I.

Applying this scheme recursively until only scalars are multiplied, the claim follows by induction.
(The addition steps in each recursion iteration do not contribute to the asymptotic complexity
since matrix addition is only of complexity Opn2q.)

The Strassen algorithm can still be applied for non-square matrices. The maximum number of
Strassen iterations is limited by the lowest occurring matrix dimension. Each iteration reduces
the complexity by 7/8 compared to the naive approach.

10 There are even faster algorithms for matrix multiplication like the Coppersmith-Winograd algorithm [Cop` 87],
whose time constants, however, make them infeasible.

CHAPTER 16. THEORY 163

16.5.3 Parallel Codes

Definition 28: Let R be a ring, A an R-module, and M : Rn Ñ Rk the encoding-matrix
of an MDS-code (or a vector-MDS-code over a ring S). There is a canonical linear opera-
tion M : An Ñ Ak, which has all the properties of a vector-MDS-code over R (or S). A spe-
cial case is A “ Rt for t P N. Such a code is called a parallel (vector) MDS-code of
width t. The encoding-matrix M̂ : pRtqn Ñ pRtqk is composed of blocks. The pi, jqth block is
defined by M̂ij “Mij ¨ 1tˆt.

Example 29: The parallel code version of Example 25 reads:

M̂ “

¨

˚

˝

1 0 0 1

0 0 1 1

0 1 0 1

1 1 0 0

˛

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˝

1
. . .

1

˛

‚ 0 0

¨

˝

1
. . .

1

˛

‚

0 0

¨

˝

1
. . .

1

˛

‚

¨

˝

1
. . .

1

˛

‚

0

¨

˝

1
. . .

1

˛

‚ 0

¨

˝

1
. . .

1

˛

‚

¨

˝

1
. . .

1

˛

‚

¨

˝

1
. . .

1

˛

‚ 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

By defining a component-wise AND-operation (i. e. 0 &D “ 0, 1 &D “ D for D P Ft2), Equa-
tion 16.2 from Example 25 holds exactly.

16.6 Code Overview

All presented codes can encode via matrix multiplication CT “M ¨DT , in long11:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˝

pM11q11 ¨ ¨ ¨ pM11q1l
...

. . .
...

pM11ql1 ¨ ¨ ¨ pM11qll

˛

‹

‚

¨ ¨ ¨

¨

˚

˝

pM1nq11 ¨ ¨ ¨ pM1nq1l
...

. . .
...

pM1nql1 ¨ ¨ ¨ pM1nqll

˛

‹

‚

...
. . .

...
¨

˚

˝

pMk1q11 ¨ ¨ ¨ pMk1q1l
...

. . .
...

pMk1ql1 ¨ ¨ ¨ pMk1qll

˛

‹

‚

¨ ¨ ¨

¨

˚

˝

pMknq11 ¨ ¨ ¨ pMknq1l
...

. . .
...

pMknql1 ¨ ¨ ¨ pMknqll

˛

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˝

pD1q
p1q
1

...
pD1q

p1q
l

˛

‹

‹

‚

¨ ¨ ¨

¨

˚

˚

˝

pD1q
pSq
1

...
pD1q

pSq
l

˛

‹

‹

‚

...
. . .

...
¨

˚

˚

˝

pDnq
p1q
1

...
pDnq

p1q
l

˛

‹

‹

‚

¨ ¨ ¨

¨

˚

˚

˝

pDnq
pSq
1

...
pDnq

pSq
l

˛

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

T

For a Reed-Solomon code (i), the elements pMijqkl, pDiq
psq
k are in F2α , for codes on finite rings (ii)

in R, for Cauchy-Reed-Solomon (iii) in F2, for vector codes on finite rings (iv) in Z{2bZ and for par-
allel Cauchy-Reed-Solomon codes of width t (v) in pF2q

t. Computers cannot compute (i) and (ii)
natively but have to emulate the operations. The CRS-code (iii) is computed via logical AND
and XOR operations on single bits. With SSE, single-bit operations can be vectorized 128-fold.
However, the reduction during the matrix multiplication poses a problem for such a broad vec-
torization. Assume t “ b “ 32. Versions (iv) and (v) perform native integer operations and
component-wise logical operations on 32-bit values. Hence, for these codes, similar to single pre-
cision floating point, the matrix multiplication can achieve the computational peak performance.
Thus, they are suited best for implementation on a computer.
11 For codes (i) and (ii) there are single scalar entries Mij instead of the l ˆ l submatrices, which, however, makes no

difference for a computer.

164 16.7. COMPUTATIONAL COMPLEXITY

16.7 Computational Complexity

For comparability, in this entire part an AOp is defined as a 32-bit generalized arithmetical
operation. This can be single precision floating point addition/multiplication, 32-bit integer
addition/multiplication or a 32-bit logical operation, i. e. AND, OR or XOR.

Assume fixed parameters n and k with a k ˆ n encoding-matrix. Consider either the integral
code on Z{232Z or the parallel Cauchy-Reed-Solomon code with t “ 32. This results in integral or
binary encoding matrices of dimension lk ˆ ln. Assume a dataset of S ¨ nl data words of 32 bits
each. The encoding is performed by multiplying an S ˆ ln matrix with an ln ˆ lk matrix and
requires S ¨ lk ¨p2ln´1q operations in both cases. Introducing the input size in bytes: I “ 4 ¨S ¨nl,
this yields asymptotically 1

2IlkAOps for the matrix multiplication.

The XOR-only variant of the parallel Cauchy-Reed-Solomon and the Add -only variant of the
integral code do the matrix multiplication faster, namely in r

4Ilk operations where r is the
matrix fill-ratio.12 In any case, x Strassen iterations reduce the complexity by a factor p8{7qx.
For both the Vandermonde and the Cauchy matrix, the dimension l must not be chosen smaller
than l ě log2pn`kq. Thus, all encoding schemes have asymptotical complexityOpI¨k¨log2pn`kqq.
The constants, however, are very different. The XOR-only and Add -only variants are faster by a
factor of 2{r « 4 (which is shown later).

16.8 Lower Bound for l

Both the Vandermonde and the Cauchy matrix demand that pl ě n` k. Since a larger l leads
to a higher computational complexity, the question arises whether a code can be created with a
smaller l. A simple lower bound for l is given by the following

Lemma 30: An (n, k)-MDS-code on a local ring R with residue field κ “ R{m and k ě 2 is
subject to the inequality

#κ ą maxpn, kq (for the above codes consider κ “ Fpl , #κ “ pl).

Proof: Without restriction, the code can be assumed to operate on a field by calculating every-
thing modulo the maximal ideal. Assume the MDS-code ĂM in reduced form. (Since M is locally
regular all its entries are nonzero.)

ĂM “

ˆ

1

M

˙

Multiplying columns or rows with nonzero scalars does not affect the local regularity of the
encoding-matrix. By multiplying each column with a scalar, the elements of the pn ` 1qth row
can be changed to one. Multiplying each row with scalars yields the form:

ĂM “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0
. . .

. . .
0 1
1 ¨ ¨ ¨ ¨ ¨ ¨ 1
1 ˚ ¨ ¨ ¨ ˚
...

...
. . .

...
1 ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Since ĂM is locally regular, all entries of the n` 2th row must be nonzero. In addition, they must
be pairwise distinct for the following reason: assume ĂMn`2,i “ ĂMn`2,j . Then the 2ˆ2 submatrix
12 The matrix fill-ratio is defined as quotient of the number of nonzero entries divided by the total number of entries.

CHAPTER 16. THEORY 165

of ĂM consisting of columns i and j and of rows n` 1 and n` 2 is not regular.
Likewise, the elements of the first and second column below row n must be nonzero and pairwise
distinct. But then, the field must at least contain n`1 or k`1 elements, whichever is higher.

One idea to overcome this limitation (while losing the MDS property) is presented in the following

Example 31: Let p “ 2, Fq – F2l – F2rXs{f, R “ ZrXs{2b,f, and K “ QrXs{f. Consider the
Cauchy-like matrix M “ 2N defined by

M “

¨

˚

˝

2
a1`2`a1

¨ ¨ ¨ 2
an`2`a1

...
. . .

...
2

a1`2`ak
¨ ¨ ¨ 2

an`2`ak

˛

‹

‚

for ai pairwise distinct modulo 2. (This is actually twice the Cauchy matrix N with bi “ ai` 2.)
Its entries lie in R and according to Proposition 24 it is locally invertible in K. Consider a square
submatrix M 1 of M and the corresponding submatrix N 1 of N . With the adjoint matrix M# of M
the invert has the form M 1´1 “ 1

2 ¨
1

detpN 1qN
1#. According to the determinant formula for Cauchy

matrices (Equation 16.1), every factor of 2 in a denominator of any entry of N 1 occurs also in the
denominator of detpN 1q. Therefore, the matrix 1

detpN 1qN
1# “ X has entries in R. Now both M

and X have entries in R with M ¨X “ 2 ¨ 1.

In summary, only 2l ě maxpn, kq distinct elements are required instead of 2l ě n ` k for the
previous methods. When encoding and decoding a dataset

C “M ¨D Drestored “ X ¨ C “ 2D,

the original data are not restored but multiplied by two, i. e. the binary representation is shifted
left by one bit and the most significant bit is lost. To account for this, this bit must not be used
to store data. Assume for instance b “ 64 and n “ k “ 32. In this case, the storage requirement
increases by 1{64. The dimension l can be reduced from six to five while the encoding has to operate
on 64 bits to encode only 63 bits of data. The computational complexity (considering single bit
operations) decreases by factor

6 ¨ 63

5 ¨ 64
“ 1.18125.

Naturally, for larger l or smaller b the improvement is less.

Finally, due to the small benefit, the increased storage requirement, and the complex data han-
dling13 this approach is not used.

16.9 Partial Update-Codes (Differential Codes)

Assume that the redundancy information pCjq, (1 ď j ď k) has already been generated for the
data words pDiq, (1 ď i ď n). Assume that one data word Di0 is changed. The question is
whether the redundancy information has to be completely recalculated from scratch or whether
there is a simpler possibility for an update. A scenario where this applies to is a redundant
network storage, where only a part of the data is updated. On one storage at most one of the
redundancy words pCjq is available. The following lemma shows how this redundancy word can
be updated. (This is called differential code or update-code.)

Lemma 32: Let M be the encoding-matrix of an MDS-code and C “ M ¨ D the redundancy
information for the data D. Let D1 be a different set of data words such that Di “ D1i for
all i ‰ i0. In this case, C 1 “M ¨D1 can be calculated by

C 1j “ Cj `Mji0 ¨ pD
1
i0 ´Di0q.

13 The input data in Example 31 still consist of 64 bits. Thus, the most significant bit of each quad-word must be
treated independently.

166

Chapter 17

Implementation

While the last chapter handled the theoretical part of failure erasure coding, this chapter in-
troduces implementations of the algorithms. As codes (iv) and (v) from Section 16.6 are best
suited for computers, these are implemented. Both variants encode via matrix multiplication.
Asymptotically, all algorithms have the same complexity, namely the complexity of matrix multi-
plication. Still, optimized implementations can vary strongly in performance. This chapter starts
with simple pure matrix multiplication based codes and then proceeds to more advanced versions.

17.1 Metrics

For the following analysis, only the case k “ n is considered. Except for very flat matrices, the
performance depends rather on the total matrix size but not on its shape. The dependency on k
will be analyzed independently in Section 17.6. Assume that the encoding process takes t seconds
for encoding I bytes. In order to analyze the performance of the codes, multiple metrics are used
(compare to the computational complexity derived in Section 16.7):

1. Bandwidth: The code bandwidth B is defined as the maximum incoming data rate which
can be processed. It is defined by B “ I{t. In the case n “ k, the total required memory
bandwidth is twice the code bandwidth as the data must be both fetched from and stored
to memory. The bandwidth is the metric which is finally relevant for the user.

2. Update Bandwidth: The simple bandwidth definition above does not reflect the increased
computational complexity for larger k. The metric should reflect that creating k code
words has the k-fold complexity of creating one code word. This is described by the update
bandwidth1 Bu defined by Bu “ k ¨ B “ I¨k

t . This metric is a transparent measure of the
performance of the implementation which is finally available to the user.

3. Matrix-Multiply (MM) AOp{s: The parameter l is irrelevant for the user as a higher l
brings no benefit. Instead, it is entailed by internals of the implementation with larger l
resulting in higher complexity. Hence, the update bandwidth is insufficient to compare the
performance in terms of operations per second for different matrix sizes. For this purpose,
the raw matrix multiplication performance G “ I¨l¨k

2t is used. In short, this measures the
performance of the matrix multiplication assuming the naive algorithm is employed.

4. Throughput: The XOR-only and Add -only codes can do the matrix multiplication with
fewer operations than the naive version. So the MM AOp{s metric G can exceed the theoreti-
cal peak performance of the processor. Thus, the raw assembler instruction throughput2, as

1 The background of the name is that the encoding can be interpreted as a series of partial updates (see Section 16.9).
The update bandwidth is the bandwidth of these updates.

2 For the matrix multiplication based codes, which are derived from GotoBLAS, this throughput is set to the MM AOp{s

performance achieved. In fact, this is not absolutely correct as slightly more instructions are needed for loads, stores,
and shifts. However, the effort to calculate the real assembler instruction count for GotoBLAS runs is impracticable.

CHAPTER 17. IMPLEMENTATION 167

a fourth metric, analyzes how much potential is left. For better taking into account vector-
processor architectures, the metric is scaled by the vector width w (in terms of 32-bit
values). For instance, the throughput of an SSE processor is the number of instructions
actually executed per second times four for the vector width. This takes into account all
instructions (not only SSE) since they share the same pipelines. With a the total number
of assembler instructions executed, the throughput is thus defined as T “ a¨w

t .

17.2 Matrix Multiplication based Codes

Section 16.3.1.3 introduced a matrix-vector multiplication based code, which is generalized to
matrix-matrix multiplication in Section 16.5.1. In the following, matrix multiplication codes re-
fer to a full naive matrix multiplication without the shortcuts used for XOR-only and Add -only
codes. Matrix multiplication in the HPC sector usually employs SGEMM, DGEMM, or their
complex-valued versions. These variants operate on floating point data, while for the vector
MDS-code over Z{2bZ (iv) an integer and for the parallel CRS code (v) a binary valued implemen-
tation is required. All following matrix multiplication codes are implemented using 128-bit SSE
instructions. The AVX instruction set could theoretically double the encoding speed in the future.
In the first phase, only the matrices from Example 36 in Appendix F.1 have been implemented.
As described before (Proposition 23), this poses some restrictions on the dimension l.

17.2.1 IGEMM

In the following, the term IGEMM (in allusion to SGEMM) denotes integer-valued matrix-matrix
multiplication. It is desired to utilize the common expertise for floating-point matrix multipli-
cation which is available from BLAS libraries. In Part III, the GotoBLAS library demonstrated
outstanding SGEMM and DGEMM performances on recent CPUs. Both SGEMM and IGEMM
process data-types of the same size. Thus, an IGEMM implementation can be obtained from the
GotoBLAS SGEMM by exchanging the floating point additions and multiplications with their
integer counterparts. In practice, this is not so simple since some SSE floating point instructions
do not have an integer equivalent. This enforces some minor changes in the code. Shift and move
instructions of the GotoBLAS SGEMM are unchanged.

To optimize the IGEMM for the special case of encoding, the operation is simplified from the
standard SGEMM formula C 1 “ αAB ` βC to C 1 “ AB. This saves the multiplication by
the scalar factors and especially the loading of the former C-matrix. As the current version of
the 256-bit AVX vector extension does not support integer computation, only SSE is used.

17.2.2 BGEMM

In contrast to IGEMM, a binary matrix multiplication (BGEMM) for the standard CRS code
cannot be obtained directly from the GotoBLAS SGEMM. CRS operates on 1-bit values. This
has no counterpart in GotoBLAS. In general, the implementation of a vectorized version of
the single-bit BGEMM is a straight-forward task. The BGEMM involves solely binary XOR
and AND operations. The SSE instructions for XOR and AND can thus be used and the 128-bit
SSE registers are used as vector registers with 128 components. Unfortunately, there is one
drawback: the vectorized binary matrix multiplication requires the reduction of a 128-bit vector
and bit shifting of the results to the correct position for the output. This makes the 1-bit BGEMM
inferior to the IGEMM, where the reduction and the scatters can be handled better.

This problem and the fact that the BGEMM would have to be written from scratch led to a
different approach. Instead of the plain CRS code, a parallel CRS code with t “ 32 is used. The

168 17.3. AUTOMORPHIC ASSEMBLY CODES

encoding-matrix is formed such that each bit is replicated 32 times, e. g. Example 29 looks like:3
¨

˚

˝

1111 ¨ ¨ ¨ 1111 0000 ¨ ¨ ¨ 0000 0000 ¨ ¨ ¨ 0000 1111 ¨ ¨ ¨ 1111
0000 ¨ ¨ ¨ 0000 0000 ¨ ¨ ¨ 0000 1111 ¨ ¨ ¨ 1111 1111 ¨ ¨ ¨ 1111
0000 ¨ ¨ ¨ 0000 1111 ¨ ¨ ¨ 1111 0000 ¨ ¨ ¨ 0000 1111 ¨ ¨ ¨ 1111
1111 ¨ ¨ ¨ 1111 1111 ¨ ¨ ¨ 1111 0000 ¨ ¨ ¨ 0000 0000 ¨ ¨ ¨ 0000

˛

‹

‚

¨

˚

˝

D1

D2

D3

D4

˛

‹

‚

“

¨

˚

˝

C1

C2

C3

C4

˛

‹

‚

In this representation, the 1-bit logical operations of plain CRS are exchanged by 32-bit logical
operations. This approach allows for using a modified GotoBLAS SGEMM again. Single precision
floating point addition and multiplication are replaced by 32-bit logical AND and XOR operations
respectively. As for the IGEMM, neither shift nor load/store instructions have to be modified.

Fig. 17.1 shows IGEMM and BGEMM performance on Westmere and Sandy Bridge. A matrix
size of at least n “ k “ 48 is required until performance saturates. On the Westmere, IGEMM
shows quite exactly half the performance of BGEMM while on Sandy Bridge both are equally fast.
Westmere IGEMM performance is poor because the Westmere can process only one and not two
integer SSE operations per cycle (in contrast to floating point operations or logical operations;
see Table 17.3). The BGEMM performance equals quite exactly the SGEMM performance on
both architectures. Theoretically, the BGEMM could be even faster since both architectures can
execute three logical SSE operations per cycle. However, GotoBLAS is designed and optimized
for two operations per cycle (which is the floating point limit). The adapted GotoBLAS does not
exceed this. An improved BGEMM version could theoretically speed up the encoding by 50 %. It
was not realized because a different approach below performs better, as shown in the following.

 0

 5

 10

 15

 20

 25

 30

4 6 8 12 16 24 32 48 64 96 128 192
n = k

Sandy Bridge, SGEMM
Westmere, BGEMM
Westmere, IGEMM

Sandy Bridge, BGEMM
Sandy Bridge, IGEMM

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s
/

GF
lo

p/
s]

Figure 17.1: IGEMM/BGEMM Performance
[II,XII]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60

M
at

rix
 F

ill
 R

at
io

 [%
]

n = k

Figure 17.2: Matrix Fill-Ratios of Vander-
monde Matrix employed by QEnc [XII]

17.3 Automorphic Assembly Codes

Section 16.7 deduced that the encoding time complexity constant of XOR-only (or Add -only)
codes is smaller than the one for naive matrix multiplication based codes. The constant depends
on the matrix fill-ratio r. Fig. 17.2 shows fill-ratios for Vandermonde encoding matrices at
different n “ k. The fill-ratio is high for very small matrices but goes asymptotically to 0.5 very
fast. Thus, in the following r “ 0.5 is assumed.

An optimal encoding could reach three logical or move SSE-instructions per cycle (Table 17.3),
a 50 % improvement over the BGEMM above. Since the CPU can still execute a scalar operation
in addition, address calculation can be hidden and the peak performance is achievable. On top
of that, according to Section 16.7 assuming r “ 0.5, an optimally implemented XOR-only code
(or Add -only code) can outperform the matrix multiplication based version by a factor of:

150 % ¨
pComplexityXOR-onlyq

´1

pComplexityBGEMMq
´1

“ 1.5 ¨
p r4Ilkq

´1

p12Ilkq
´1
“ 6.

3 In the BGEMM, the multiplication is a component-wise AND while the addition is a component-wiseXOR.

CHAPTER 17. IMPLEMENTATION 169

Recall that the encoding is performed by C “ D ¨MT . Since M contains exclusively zeros and
ones, the C-matrix entries are obtained by taking the XOR (or Add) of certain entries of D. The
entries to use are determined by M , namely where the corresponding entry in M is nonzero.

Instruction Type Westmere Sandy Bridge

Floating Point (SSE) 2 / cycle 2 / cycle
Integer (SSE) 1 / cycle 2 / cycle
Logical / Move (SSE) 3 / cycle 3 / cycle
Floating Point (AVX) - 2 / cycle
Integer (AVX) - -
Logical (AVX) - 1 / cycle
Move (AVX) - 2 / cycle

Table 17.3: SSE Instruction Throughput on Intel Architectures4

The question is how to store which entries of the matrix are nonzero. With a fill-ratio of r “ 0.5,
a binary matrix storage maximizes the entropy [Sha 48] and is thus the densest form. Sadly,
decoding the data requires either a logical AND with the matrix entry or a conditional jump/
assignment. All of this makes the advantage of the XOR-only code null and void. Alternatively,
a list can be maintained for each entry of C specifying which entries of D to use. This, however,
requires many loads from the list itself. In addition, it is difficult to reuse entries of D for the
calculation of different elements of C, which is of eminent importance for reducing the required
memory bandwidth.

The only possible way to not waste instructions for decoding the M -matrix – in whatever for-
mat – is to encapsulate the M -matrix into the source code itself. The matrix multiplication is
written down explicitly in the sources. Listings 17.4 and 17.5 demonstrate how this is meant. In
practice, 128-bit SSE datatypes are used, i. e. parallel codes with t “ 128 for the XOR and t “ 4
for the Add variant, eliminating all shift instructions that are used in GotoBLAS for 32-bit
data-types.�
i n t M[3] [3] = {

{0 , 1 , 1} ,
{1 , 0 , 0} ,
{1 , 1 , 0}

} ;

void enc (i n t D[3] [3] , i n t C [3] [3])
{

f o r (i n t i = 0 ; i < 3 ; i++)
{

f o r (i n t j = 0 ; j < 3 ; j++)
{

C[i] [j] = 0 ;
f o r (i n t k = 0 ; k < 3 ; k++)
{

C[i] [j] ^= D[i] [k] & M[j] [k] ;
}

}
}

}
� �
Listing 17.4: Standard Matrix Multiplication

Code

�
void enc (i n t D[3] [3] , i n t C [3] [3])
{

C [0] [0] = D[0] [1] ^ D [0] [2] ;
C [0] [1] = D [0] [0] ;
C [0] [2] = D[0] [0] ^ D [0] [1] ;
C [1] [0] = D[1] [1] ^ D [1] [2] ;
C [1] [1] = D [1] [0] ;
C [1] [2] = D[1] [0] ^ D [1] [1] ;
C [2] [0] = D[2] [1] ^ D [2] [2] ;
C [2] [1] = D [2] [0] ;
C [2] [2] = D[2] [0] ^ D [2] [1] ;

}
� �
Listing 17.5: Encoding-Matrix encapsu-

lated in Instruction Stream

4 Under certain conditions [Int 11, 2.1.4], the CPU can execute one scalar instruction in parallel, too.

170 17.3. AUTOMORPHIC ASSEMBLY CODES

Naturally, this blows up the code size for larger matrices tremendously. An even bigger problem
is that the matrix is hardcoded in the source code. It is definitely impossible to include each and
every encoding-matrix for all n and k parameters, not to mention the decoding matrices. The
solution to the latter problem is an automorphic code. After the encoding-matrix is generated,
binary assembler instructions for this matrix are created and written to memory which is assigned
the executable flag. This assembler-code can then be executed as if it were contained in the regular
source code. Unfortunately, all the compiler optimizations are not available automatically but
they must be implemented by hand. Generating and compiling C code does not work well for two
reasons (as seen in Section 18.2): the compiler can barely handle the huge source codes for large
matrices and evaluation trees get so complex that the compiler can hardly apply its optimizations.

17.3.1 XOR-only Encoding

An XOR-only code based on the above principle has been implemented. It is available as open
source library called QEnc (see Appendix I for the sources). The first version bases on 128-bit
SSE instructions. A new frontend for the YASM [Yas] assembler has been written, which provides
the possibility to compile the generated source code directly within QEnc. Sufficient executable
memory is allocated using VirtualAlloc (on Windows) ormmap (for Linux). Having generated the
assembler code once, the code can be executed to encode data multiple times. Changing the n or k
parameters requires a new matrix and a new assembler code. So does a decoding-matrix as well.

Fortunately, a matrix multiplication in assembler is not so complicated. Thus, the lack of compiler
optimizations can be handled. The most important optimizations are related to cache usage where
a compiler cannot help that much anyway. The following sections present cache and compiler opti-
mizations applied to the assembler code. Some examples are shown later. Trivial multi-threading
over the input data is possible. In order to simplify the evaluation, only one CPU core is used in
the following. Development is performed on a Sandy Bridge system [XII]. Sometimes, results on a
Westmere [II] are presented for comparison. Since the code is single-threaded, both processors can
utilize their turbo boost functionality, which can overclock a single CPU core as long as it remains
within the ThermalDesign Power (TDP). With turbo boost, the Westmere runs at 3.8 GHz while
the Sandy Bridge is clocked with 3.7 GHz. This makes the results quite comparable.

17.3.2 Blocking & Cache Usage

The fact that the assembler code performs a matrix multiplication (C “ D ¨MT) suggests itself
to use the blocking technique (Section 11.2.4.1). In fact, a whole hierarchy of blocking levels is
implemented in the QEnc automorphic code. In the following, these levels are introduced step
by step. (See Appendix F.3 for a C++ example illustrating all blocking levels.)

17.3.2.1 Register Blocking

The lowest possible blocking level is on a register basis. Assume r elements of C are calculated
in parallel, which requires r registers to store and accumulate the intermediate results. These
registers are called accumulation registers. Entries of D are fetched one after another. Each
of them is used to update all r registers corresponding to r entries of C. In average, 50 % (the
matrix fill-ratio) are affected, i. e. the data can be reused r{2 times. The SSE instruction set offers
sixteen 128-bit registers (xmm0 – xmm15). (AVX offers sixteen ymm 256-bit registers.) Some of
them are required to store the elements of D (scratch registers). Due to the read-after-write
latency, it is inefficient to use a value directly after it has been stored to a register. Thus, at least
two registers are used to store the entries of D in a round robin fashion. The next entry is fetched
before the calculation for the current entry starts. Listing 17.6 demonstrates the register blocking
for the example in Listing 17.5 with two scratch registers xmm14 and xmm15. The values C[0]0]
to C[0][2] are stored in registers xmm0 to xmm2 (accumulation registers), rbx points to D[1][0].

CHAPTER 17. IMPLEMENTATION 171

�
movdqa xmm14, [rbx] //Fetch D[1] [0]
. . . // Previous I t e r a t i o n
movdqa xmm15, [rbx + 16] //Fetch D[1] [1]
movdqa xmm1, xmm14 // Process D [1] [0] (movdqa f o r the i n i t i a l i z a t i o n)
movdqa xmm2, xmm14 // . . .
movdqa xmm14, [rbx + 32] //Fetch D[1] [2]
movdqa xmm0, xmm15 // Process D [1] [1]
pxor xmm2, xmm15 // . . . (pxor f o r a l l f u r t h e r ope ra t i on s)
. . . //Fetch value f o r next I t e r a t i o n
pxor xmm0, xmm14 // Process D [1] [2]
� �

Listing 17.6: QEnc Assembler Code, Register Blocking

The optimal number of scratch registers depends on the latency for the load operations. From
Fig. 17.7 it is obvious to use as many registers for blocking and as few for scratch as possible.

17.3.2.2 L1 Blocking

An additional blocking is applied to the loop calculating a C-matrix entry Cji “
řn
q“1MiqDjq.

The computation is split in partial loops starting with Cp0qji “
řc
q“1MiqDjq. This loop is calcu-

lated for the first set of registers 0 ă i ď r. The entries Dj1 to Djc reside in the CPU L1 cache
afterward. Next the partial loops Cp0qji “

řc
q“1MiqDjq are calculated for r ă i ď 2r and so

forth. The cached entries of D are reused. Having finished the first partial loop for all i, the
next part of Cji is computed (Cp1qji “ C

p0q
ji `

ř2c
q“c`1MiqDjq). To fully understand the effect of

the L1 blocking, a comprehension of the full blocking hierarchy is required. Thus, at first con-
sider Fig. 17.8 in the range 1 ď n ď 16. The performance increases with a larger blocking and
saturates at c “ 96. The rightmost part of the diagram will be analyzed in Section 17.3.2.5 later.

 40

 50

 60

 70

 80

 90

 100

 110

 8 9 10 11 12 13 14
Register Blocking (Number of Accumulation Registers)

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.7: XOR128 Register Blocking Per-
formance [XII]

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 6 8 12 16 24 32 48 64
n = k

Blocking 8
Blocking 16
Blocking 32
Blocking 48
Blocking 64
Blocking 96
Blocking 128

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.8: XOR128 L1 Data Blocking Per-
formance [XII]

17.3.2.3 L1 Instruction Cache Blocking

The size of the generated binary code (after assembly) scales linearly with the size of the matrix
(i. e. with nl ¨ kl). Besides the L1 data cache, the processor employs a dedicated L1 instruction
cache sized 32 KB. Fig. 17.9 correlates the performance with the size of the instruction stream.
As soon as the code size exceeds the L1 cache size of 32 KB, the performance drops tremendously.
To cope with this, an L1 instruction cache blocking is applied. The instruction stream is split
in blocks of less than 32 KB. Since the entries of M do not depend on j, the following is
possible: instruction stream blocks of less than 32 KB are first iterated over j in the above
loop (Cji “

řn
q“1MiqDjq) reusing the code from the L1 instruction cache. Having finished

this j-loop, the next 32 KB part of the instruction stream is executed.

172 17.3. AUTOMORPHIC ASSEMBLY CODES

17.3.2.4 L2 Blocking

The L1 instruction blocking does not completely solve the problem. The reason is that after the
loop over j, the higher L2 and L3 CPU caches contain the entries ofM for a high j index whereas
the next instruction stream will require low j values again. Thus, an L2 data blocking is applied
such that the loop over j is only executed so far that the relevant source data for the next instruc-
tion stream block are still in the cache. It shall be noted that the L2 blocking is a second level
blocking, not necessarily related to the L2-cache. It can span over the L3 cache as well. Fig. 17.10
shows the performance with instruction cache blocking without and with different L2 blocking
levels. It can be concluded that almost any L2 blocking size is good while 64 comes out best –
but with only little advance. (See Appendix F.3 for a C++ example of all blocking levels.)

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 6 8 12 16 24 32 48 64

128

512

2K

8K

32K

128K

512K
Co

de
 S

ize
 [B

yt
es

]

n = k

AOp/s
Code Size
Cache Size

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.9: XOR128 Performance depending
on Code Size [XII]

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 6 8 12 16 24 32 48 64
n = k

No L2 Blocking
L2 Blocking 8
L2 Blocking 16
L2 Blocking 32
L2 Blocking 64
L2 Blocking 128
L2 Blocking 160

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.10: Performance with Instruction
Cache Blocking and L2 Data Cache Block-

ing5 [XII]

17.3.2.5 L1 Blocking, Second View

Now the entire L1 blocking behavior becomes clear. Fig. 17.8 already includes L1 instruction
blocking and L2 data blocking. Both only set in for n ą 16. With larger L1 blocking constant c,
fewer iterations over i can be executed before the instruction stream blocks hit the L1 instruction
cache size.6 In summary: the larger c the more data are cached in L1, the smaller c the more
often data from L1 are reused. An L1 blocking size of 96 turns out to be the best trade off.

Using the four blocking levels yet introduced (registers, L1 data, L1 instruction, L2 data), perfor-
mance remains high up to medium sized matrices. (Large matrices are treated in Section 17.3.6
later.) The matrix-multiply performance reaches more than 120 GAOp{s, which is about four times
the performance achieved by the BGEMM implementation visualized in Fig. 17.1.

17.3.3 Code Optimizations

17.3.3.1 Prefetching

Since QEnc performs a matrix multiplication, the memory access pattern is known in advance. It
can thus benefit from prefetching. The prefetcht0 instruction is used exclusively, which prefetches
a cache line of 64 bytes to the L1 cache. With L1 instruction blocking, QEnc stores and reloads
results of the partial calculations in buffers in memory. The reload can benefit from prefetching
the buffer as well. It is also tested whether it is better to prefetch data one or multiple iterations
prior to their usage. Fig. 17.11 demonstrates the results.
5 All presented curves include L1 instruction blocking. L2 blocking size is measured in terms of iterations of one

instruction stream block.
6 When the L1 instruction cache blocking is hit, the following loop over j evicts the L1 data cache.

CHAPTER 17. IMPLEMENTATION 173

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 6 8 12 16 24 32 48 64
n = k

No Prefetching
Prefetch Input, 1 ahead
Prefetch Input, 2 ahead
Prefetch Input, 3 ahead

Prefetch Input and Buffers, 1 ahead

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.11: Prefetching XOR128 Input Data and Buffers [XII]

It turns out that the exact delay between prefetch and read does not play a great role, the speedup
is always significant. Gathering enough statistics shows that a delay of one iteration is the fastest
option. Prefetching the buffer for L1 instruction blocking slightly improves the performance.

17.3.3.2 Ternary Instructions

SSE instructions support only two operands enforcing one of the source registers to work as
destination register, too. In contrast to that, AVX supports three-operand instructions, also called
ternary instructions. These ternary instructions can also operate on 128-bit SSE registers.
For now, only these 128-bit AVX instructions are considered. Full AVX usage is discussed in
Section 17.3.11.2 later. Without macro-op fusion, the Sandy Bridge instruction decoder can
decode up to sixteen bytes containing four instructions per cycle [Int 11]. The pxor and movdqa
SSE instructions employed by QEnc have a four-byte opcode if both register indices are low,
i. e. below eight (xmm0 – xmm7). Otherwise the encoding is five bytes long. For optimal QEnc
performance, the CPU should decode and execute three SSE/AVX instructions per cycle and
one scalar instruction for address calculation if necessary. Three five-byte instructions leave only
one byte in the instruction decoder window left, not enough for the scalar instruction. Hence,
address calculation can only be hidden behind the calculation if instructions with small encoding
are used. In addition, smaller encodings improve the cache utilization.

In contrast to the SSE instruction pxor, the ternary AVX counterpart vpxor has a five-byte
encoding only if its third operand is a high SSE register (xmm8 – xmm15). Thus, in many cases
it has a smaller encoding than pxor. One approach to improving the performance is to replace
all pxor by vpxor instructions.

In addition to movdqa and pxor which are meant for integers, there are the floating point in-
structions movaps and xorps which do basically the same. The floating point variants have a
smaller encoding of three to four bytes. Unfortunately, they do not reach the throughput that
can be achieved with the integer instructions. Most probably this is related to domain crossing
of registers between the floating point and the integer domain [Int 11], which can cause a latency.

17.3.3.3 Register Selection

According to the last section, the opcode size depends on the registers used. Registers with low
index usually lead to a smaller encoding. To account for this, QEnc uses low numbered registers
as scratch registers because they are used more frequently than accumulation registers. Since the

174 17.3. AUTOMORPHIC ASSEMBLY CODES

third operand of a ternary instruction is always a scratch register, this enforces permanent four
byte encoding of all instructions with 128-bit AVX operations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 6 8 12 16 24 32 48 64
0

5

10

15

20

25

30

35

40

Co
de

 S
ize

 R
ed

uc
tio

n
[%

]

n = k

Reference
Low Reg.
Low Reg. / AVX128
Size (Low Reg.)
Size (Low Reg. /
AVX128)

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.12: XOR128 Performance in Rela-
tion to Code Size [XII]

 0

 10

 20

 30

 40

 50

1 2 3 4 6 8 12 16 24 32 48 64

Th
ro

ug
hp

ut
 [G

O
p/

s]

n = k

Reference
Low Temp Register

Low Temp Register / AVX128
SSE Peak Performance

Figure 17.13: Instruction Throughput using
all Optimizations [XII]

Fig. 17.12 demonstrates how the performance increas1es with the above optimizations. Besides,
it reveals that the total size of the instruction stream can be reduced by up to 16 %. The
matrix-multiply performance reaches G “ 155 GAOp{s which is about five times the BGEMM
performance. Clearly, the processor is getting close to its peak performance. The peak throughput
for the Sandy Bridge with turbo boost clocks at 3.7 GHz and at maximum three SSE instructions
per cycle calculates to 3 ¨ 4 ¨ 3.7 GHz “ 44.4 GOp{s. Fig. 17.13 reveals that the processor actually
achieves its theoretical peak performance and in some cases even slightly exceeds it, with a highest
throughput of T “ 47.540 GOp{s (3.21 instructions per cycle). The latter can have three reasons:

• The processor can process three SSE instructions but in some cases can process a fourth
scalar instruction in parallel, e. g. for address calculation.7

• The processor supports macro-op fusion and micro-op (µ-op) fusion, mainly for scalar and
control flow instructions, which can raise the throughput.7

• Mainboard vendors normally set the reference clock rather slightly above the specification
than below which usually raises the CPU clock rate in the range of 0.5 % to 1 %.

The number of assembler instructions per actual XOR operation for the encoding calculates
to T

4G “ 1.23. This shows that, in fact, the assembler code contains only little overhead.

17.3.4 Reducing Computational Complexity

The previous section shows that QEnc hits the theoretical peak performance of the processor with
only little overhead left in the code. This does not leave much room for improvements on the
assembler side. Instead, this section introduces ways to speed up the matrix multiplication itself.

The computational complexity scales linearly with the matrix fill-ratio r. The ratio was shown
to go asymptotically to 0.5 (Fig. 17.2). J. S. Plank [Pla 05] introduces ways to create Cauchy
matrices with a lower matrix fill-ratio – called Good Cauchy Matrices (GC) – by choosing
good ai and bj values. It is even shown that the minimal possible dimension l is not always the
best choice since a higher l leads to larger matrices but with possibly lower fill-ratio.

The QEnc implementation uses the Vandermonde construction. Thus, the Cauchy matrix opti-
mizations cannot be implemented out of the box. Therefore, a different method was invented,
which applies to all types of matrices, not only to Cauchy type matrices.
7 Alternatively, either the peak throughput could be calculated with four instructions per cycle not three (a) or the

throughput metric could count only SSE instructions (b). However, (a) overestimates the peak throughput of real
SSE instructions while (b) ignores the shared pipeline of SSE and scalar instructions, which are only executed in
parallel in certain cases. Micro- and macro-op fusion happen at runtime and cannot be considered anyway.

CHAPTER 17. IMPLEMENTATION 175

In retrospect, the new method presented below proves to be superior to the GC matrices for the
purpose of QEnc. The GC matrices show the best performance for low n and k. However, it will
be demonstrated that QEnc is entirely memory-bound up to n “ k “ 12 in Section 17.3.10 and
thus cannot benefit from a lower fill ratio anyway. This makes the GC matrices less attractive.
For medium n and k, e. g. 12 ď n ď 64 and k ě n

2 , the average benefit of GC matrices is less
than 13 %, which is significantly lower than the results of the new method below.

Still, the GC matrices constitute an opportunity for an additional reduction of the computational
complexity. In combination with the new technique, they might increase the performance further
and may be a valuable improvement for the future.

17.3.4.1 Local Matrix Optimizations

During matrix multiplication, intermediate results can be reused to save instructions. This opti-
mization is best explained by means of an example. (For the sake of simplicity, the data matrix
consists of a single row.) Let Cji “

řj
k“1Dk ¨Mi,k be defined as the intermediate result of Ci

with the partial loop only going till j. Consider:

C “ D ¨MT “
`

D1 D2 D3 D4 D5 D6

˘

¨

¨

˚

˚

˚

˚

˚

˝

1 0 1 0 1 1
1 0 1 0 0 1
0 0 1 0 1 1
1 0 1 0 1 0
1 1 1 0 0 1
0 1 0 0 1 1

˛

‹

‹

‹

‹

‹

‚

T

Copying Rows The first and the second row of M resemble each other except for the last two
columns. Thus, C2 can be calculated as C4

1 ˆ D6 instead of D1 ˆ D3 ˆ D6. The intermediate
result of the first row after four columns is copied to the second row saving one operation.

Similar Rows Row three equals row one except for the first column. Since the first columns
differ, the above copying scheme cannot be used. Instead, row three can be replaced by the
column-wise XOR of both rows: (1, 0, 0, 0, 0, 0). After the calculation, the result with the
(replaced) row three is taken XOR with the result for row one. This means C3 “ C 13 ˆ C1

(“ C3 ˆ C1 ˆ C1 “ C3) with C 13 the temporary result for the replaced row (C 13 “ D1). This saves
one instruction compared to the original naive C3 “ D3 ˆ D5 ˆ D6.

Complex Row Similarity The row similarity optimization could be applied for rows three
and four as well. However, in this case a combination of the row copy and row similarities is
better: Not necessarily the full result C3 has to be used, but it is better to use the intermediate
result C5

3 as this does not yet incorporate D6, which is not needed for C4 after all. Therefore, only
the first five columns of the fourth row are replaced by the XOR of row three and four leading to
((1, 0, 0, 0, 0), 0). The intermediate result can be calculated as C5

4 “ C5
4
1
ˆ C5

3 (with C5
4
1
“ D1).

Multi Row Similarity Finally, if one row does not resemble any other row, it might still
resemble the XOR of two rows. For instance, the last row in the example can be calculated
as C6 “ C4 ˆ C5. This can also be exploited for intermediate results as in the paragraph above.

Since all intermediate results must be available, the improvements can only be applied to entries
processed at the same time, namely rˆc submatrix blocks (register blocking ˆ L1 blocking). All
blocks are optimized independently – hence the name local optimization. Each combination of
submatrix-rows and the above optimizations is checked and the one saving the most instructions
is applied. Afterward, the search is repeated until no further optimization is possible. The check
is performed using exhaustive search. The register blocking factor of c “ 14 limits the number of

176 17.3. AUTOMORPHIC ASSEMBLY CODES

rows checked at a time making the exhaustive search feasible. Fig. 17.14 shows the reduction of
the XOR-operation count (in the following denoted fill-ratio reduction). With increasing n the
possible reduction factor first rises rapidly to 45 % but then falls again and remains at about 30 %.
The reason is that the exploited similarities arise by coincidence. Unfortunately, the probability
for similar rows decreases with the number of columns, i. e. with the matrix size. Since at maxi-
mum an rˆc block is considered at a time, larger matrix sizes do not affect the row similarity prob-
ability anymore. Besides, fill-ratios of small matrices are above 50 % leading to more similarities.

As a remark: the row similarity optimization is only available at runtime. It is not possible to
do the row operations on the encoding-matrix itself because changing the encoding-matrix might
destroy its MDS-code property. Instead, the local optimizations maintain exactly the result of
the encoding, however, with fewer operations.

17.3.4.2 Global Matrix Optimizations

The above optimizations are applied to local parts of the matrix only. The question is whether
the matrix fill-ratio can be globally optimized by elementary operations on the matrix’ rows and
columns. In general, such operations would destroy the MDS property of the matrix. Still, some
special cases are allowed. For an MDS-code, the matrix must be locally regular. After applying
elementary row operations, this property is in general lost. After adding row i to row j and
removing row i afterward, the matrix might not have full rank. In vector-MDS-codes, instead
of single rows or columns, always a block of l rows or columns is removed. Thus, elementary
operations within such a block do not destroy the MDS property. Since the above row similarity
optimizations operate in blocks of 14 rows (for the register blocking of c “ 14), the global
matrix optimization has another degree of freedom as it operates on blocks of l rows (at least
as long as l and c are coprime). Clearly, global elementary column operations (operating on
columns not rows) introduce additional degrees of freedom for the optimization, regardless of
local optimizations. Of course, the approaches are similar and probably not independent.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

1 2 3 4 6 8 12 16 24 32 48 64

M
at

rix
 F

ill
 R

at
io

 R
ed

uc
tio

n
[%

]

n = k

Row Copies
Row Similarity

Complex Similarity
Multi-Row Similarity

Figure 17.14: Matrix Fill-Ratio Reduction by
Local Optimizations8 [XII]

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

1 2 3 4 6 8 12 16 24 32 48 64

M
at

rix
 F

ill
 R

at
io

 R
ed

uc
tio

n
[%

]

n = k

Local Optimizations
Global Optimization

Combined

Figure 17.15: Total Matrix Fill-Ratio Reduc-
tion8 [XII]

Fig. 17.15 shows the fill-ratio reduction by global and by local matrix optimizations. While
the reduction factor for local optimizations becomes asymptotically constant, the potential for
global optimizations decreases with the matrix size. The reason is that the possibility for global
optimizations occurs by coincidence, too. Thus, the probability falls with more columns and
rows respectively. In contrast to local optimizations, there is no upper limit on the submatrix
size considered at a time.

The figure shows that both local and global optimizations can reduce the fill-ratio. The local
version brings greater benefit. Applying both optimizations together brings some improvement
8 Possible optimizations arise by coincidence and depend on the employed matrix, i. e. on the chosen λi. This explains

the large variations especially for small matrices. (In large matrices they are averaged out.)

CHAPTER 17. IMPLEMENTATION 177

but definitely not the sum of the individual reduction factors. This is due to both optimizations
utilizing more or less the same degrees of freedom. Considering this result, it is likely that
the GC method for fill-ratio reduction uses similar degrees of freedom. It is very well possible
that the combination of GC matrices as well as local and global optimizations will bring no or
only little speedup. The final optimized fill-ratio itself goes asymptotically to 35.5 %.

A statistical analysis reveals that the fill-ratio of the decoding-matrix is similar to the one of the
encoding-matrix: about 50 %. Local optimizations are applied at runtime and perform equally
well during decoding. Since global optimizations are applied during matrix creation and since
the encoding-matrix predetermines the decoding matrices, global optimizations cannot be used
for decoding. Still, statistics shows that they alter the encoding matrix in a way which does not
change the fill-ratio of the decoding-matrix and thus they have no negative effect.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1 2 3 4 6 8 12 16 24 32 48 64
n = k

Reference
Row Copies

Row Similarity
Complex Similarity

Multi-Row Similarity
Operand Reordering

Local and Global Matrix Optimizations

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

(a) Matrix Multiply Performance

 0

 10

 20

 30

 40

 50

1 2 3 4 6 8 12 16 24 32 48 64

Th
ro

ug
hp

ut
 [G

O
p/

s]

n = k

Reference
Row Copies

Row Similarity
Complex Similarity

Multi-Row Similarity
Operand Reordering

Local and Global Matrix Optimizations

(b) Instruction Throughput

Figure 17.16: Improvements by Optimized Matrices width reduced Fill-Ratio [XII]

Eventually, Fig. 17.16 shows matrix-multiply performance and throughput for all above described
optimizations. While the matrix-multiply performance increases, the throughput had already
reached the peak and can not increase at all. Instead, it even falls slightly because the optimiza-
tions introduce additional more complicated register dependency chains [Int 11, 2.1.3]. The same
work is performed faster with fewer instructions in total but also fewer instructions per cycle.

One more optimization is tacitly applied: inspecting Fig. 17.16 in detail reveals that in average,
especially for medium to large matrices, all the matrix optimizations improve the performance.
For small matrices, however, the encoding can get even slower. Due to the local optimizations,
high xmm registers appear as third operand in ternary instructions leading to a larger encoding
(see Section 17.3.3.2). For larger matrices, this effect also occurs but is simply averaged out.
This has been coped with by operand reordering. The instruction pxor ra, rb, rc is equivalent
to pxor ra, rc, rb but the encoding size can vary depending on the value of b and c. In an optimized
version, the optimal order of the operands is chosen. This ensures a speedup for all matrices.

17.3.4.3 Eliminating Instructions

Besides matrix optimizations, improvements to the assembler code itself can also save some
instructions or cycles respectively (which is the work the compiler usually does). This section
lists the applied optimizations.

Direct Loads Due to the matrix optimizations, there are rare cases where a data word of D
is used only once in a register blocking phase. In this case, there is no sense in loading it to a
scratch register first but it can be used directly as a source operand for the XOR instruction.

Page Alignment In very rare cases, a slowdown is observed when an instruction starts one or
two bytes before a page boundary. If so, the instruction is aligned to the page size of 4096 bytes

178 17.3. AUTOMORPHIC ASSEMBLY CODES

by padding with nop (no operation) instructions. In most cases, this does not change anything
at all; it negates the slowdown and never has a negative effect.

Register Renaming In general, an accumulation register ra is not initialized with zero. In-
stead, the first nonzero element Mi0,j0 (stored in the scratch register rs) of M affecting the value
of ra initializes the register via ra “ rs. In this case, the scratch register rs is actually not
needed. The register ra can be directly initialized from memory and then used as the source for
further move or XOR instructions instead of the scratch register. This saves the instruction for
copying rs to ra.

Load/Store Interleaving The processor can issue two SSE loads and one SSE store to
the L1 cache per cycle. When the intermediate results for the instruction level blocking are
stored, the instructions can be interleaved such that one store is combined with two loads – as far
as possible. This ensures that the pipeline is not stalled because of too many successive stores.

It was attempted to extend that to a store/calculation interleaving but this slows down the XOR
instructions in some cases. The attempt was thus dropped.

Ternary Optimizations In rare cases, movdqa ra, rb is followed by vpxor ra, ra, rc. The
move can be eliminated by writing vpxor ra, rb, rc.

Small Pointer Offsets Loads and stores are performed with a base address in a register and
offsets corresponding to the index i of Di. The offset x is encoded in the opcode either as one
byte if ´128 ď x ă 128 or as four bytes else. Regularly incrementing the base register by 256
results in a smaller code size. Unfortunately, most probably due to register dependency chains,
this slows down the encoding and was discarded. Still, a simpler optimization is possible. Shifting
all base pointers by `128 bytes at least doubles the period with ´128 ď x ă 128, where the
small opcode is used.

Results Figures 17.17 and 17.18 show how many instructions can be saved and how the per-
formance develops. The influence on the performance is rather small. It must, however, be
considered that the code is getting close to the computational peak performance. This makes im-
provements harder and harder. In fact, many assembler optimizations were developed prior to the
matrix optimizations presented before. Without the matrix optimizations, the speedup is higher.

 0

 5

 10

 15

 20

 25

1 2 3 4 6 8 12 16 24 32 48 64

Sa
ve

d
In

st
ru

ct
io

ns
 [%

]

n = k

Ternary Instructions
Register Renaming

Direct loads
Combined

Figure 17.17: Low Level Assembler Instruc-
tion Optimizations [XII]

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

1 2 3 4 6 8 12 16 24 32 48 64
n = k

Reference
Direct Loads
Register Renaming
Load/Store Interleaving
Ternary Instructions
Page Alignment

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.18: Performance Gain by Instruc-
tion Optimizations [XII]

17.3.5 Improved Matrix Size (Smaller l Dimension)

Since with all above improvements it became very hard to optimize the implementation of the
automorphic XOR-only code any further, a bottleneck from which all codes suffered since the be-
ginning has been eliminated. Up until now, only the matrices from Example 36 in Appendix F.1

CHAPTER 17. IMPLEMENTATION 179

have been used. Thus, in many cases the dimension l was not optimal. Matrices for arbitrary l
can be obtained according to Section 16.3.2. The proof is not constructive. Still, in the CRS
case relevant for BGEMM and XOR-only codes, the matrices can be easily calculated (see Ap-
pendix F.2). They are not included for IGEMM and the Add -only variant since this is more
complicated and the binary codes are faster anyway.

Figures 17.19 and 17.20 show the results. Measurements classified as ”polynomial list“ use ar-
bitrary l while the others do not. Similarly to Section 17.3.4.2, the achieved update bandwidth
rises while the matrix-multiply performance even falls. The reason lies in the simple fact that
fewer operations are needed for the same task. New possible values of l are: 3, 5, 7, 8, 9. Especially
the filled gap between six and ten (corresponding to 32 ă n “ k ă 512) results in a significant
performance gain. For values of l that have been possible before, everything stays the same.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

4 6 8 12 16 24 32 48 64 96 128 256 384
n = k

BGEMM / Polynomial List
XOR-only / Polynomial List

IGEMM
BGEMM

XOR-only

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.19: Performance Gain by Opti-
mized Matrix Dimension [II,XII]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 6 8 12 16 24 32 48 64 96 128 256 384

Up
da

te
 B

an
dw

id
th

 [G
B/

s]

n = k

BGEMM / Polynomial List
XOR-only / Polynomial List

IGEMM
BGEMM

XOR-only

Figure 17.20: Instruction Throughput for Op-
timized Matrix Dimension [II,XII]

17.3.6 Large Matrices

Up until now, only small to medium size matrices have been considered (n ď 64). With larger
matrices (n ą 64) new aspects become relevant.

17.3.6.1 Assembling Large Codes

Both assembler source code and binary code grow linearly with the matrix size, i. e. with the
product n ¨ k ¨ l2. For huge matrices this can become several hundreds of megabytes up to a
gigabyte or even more. It turns out that the memory size required by the YASM assembler for
internal buffers is multiple times the size of the source code. This makes it hard, if not impossible,
to assemble the binary code for large matrices (n ě 512).

To cope with this problem for good and all, a new integrated assembler has been written from
scratch, optimized for speed and memory usage. The assembler does not support the full x86 in-
struction set. It is sufficient to implement support for x86, SSE, and AVX instructions required.
Measurements show that it outperforms YASM by a factor of three to four in compilation time
for large source files. Even further, it can compile input files of almost arbitrary size with less
than a hundred megabytes of internal buffers.9

For even larger matrices, the source code itself becomes too big to fit in memory. The binary
code is usually one fifth to one fourth of the source code in size. There are situations in which
the binary code fits in memory while the source code does not. The assembler is written such
that it can assemble a source stream in a single pass, instruction by instruction.10 This way, the
source code is never stored in memory completely but compiled directly.
9 Internal buffers are used primarily for jump addresses, which are not frequently needed by QEnc.
10 Assemblers usually perform a multi-pass assembly to handle jump addresses.

180 17.3. AUTOMORPHIC ASSEMBLY CODES

17.3.6.2 L2 Instruction Blocking

At about n “ k “ 128, the code size comes in the range of the L3 cache size of the Sandy Bridge.
As the L3 cache is used for the D-matrix entries as well (L2 blocking), not the entire cache is
available for the instruction stream. This leads to a non-dramatic but significant decrease in
performance. The following optimizations mitigate the problem.

Adapted L2 Blocking The optimal L2 blocking is redetermined after all the above optimiza-
tions have been applied. The optimal value for the new code is 96. It is used from now on.

L2 Instruction Blocking Analogously to L1 instruction blocking, an L2 instruction blocking
option is implemented.

Huge Pages The standard page size of 4 KB is not very well suited for instruction streams of
such size. QEnc can utilize huge pages (see Appendix C.3 for details) for storing its automorphic
code. The benchmark suit optionally uses huge pages for the input and output data, too.

Fig. 17.21 shows the improvements. Increasing the L2 blocking brings a general speedup. L2 in-
struction blocking becomes only relevant for huge matrices (n ą 256) and is not significantly
faster. Huge pages for code and especially for data speed up the encoding, in particular for large
matrices. With the combination of huge pages and L2 instruction blocking, performance remains
good up until n “ 512. (QEnc automatically disables L2 instruction blocking for small matrices.)

 172
 174
 176
 178
 180
 182
 184
 186
 188
 190
 192
 194
 196
 198

16 24 32 48 64 96 128 192 256 384 512
n = k

Reference
Increased L2 Blocking

L2 Instruction Blocking
Huge Pages for Code

Huge Pages for Code / Data
uge Pages / L2 Instruction Blocking

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

H

Figure 17.21: XOR128 Performance for Large
Matrices [XII]

 120

 140

 160

 180

 200

 220

 240

 260

64 128 192 256 384 512 768 1024
n = k

Reference
Single Strassen Recursion
Optimal Strassen Recursion

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.22: Performance Gain by Strassen
Algorithm [XII]

17.3.7 Exploiting the Strassen Algorithm

The Strassen algorithm performs a recursive matrix multiplication. Each recursion step can
bring a speedup of up to 8{7 while the matrix dimensions for the next iteration are halved (see
Section 16.5.2). However, the Strassen method introduces overhead, which is significant for small
matrices. Therefore, at a predefined size the Strassen recursion is usually not continued but
naive matrix multiplication is used. In order to determine this break-even point, a run with one
Strassen iteration is compared to the naive matrix multiplication version. The break-even point
sits where the Strassen algorithm becomes faster. For twice that matrix dimension, a second
Strassen iteration can be used, for four times that size a third iteration, and so forth.

Fig. 17.22 determines the minimal dimension to n “ k “ 192. The optimal number of Strassen it-
erations is thus calculated by log2p

n
96q rounded down. With this number of recursions, at n “ 1024

a matrix-multiply performance of 251GAOp{s is achieved (by only one single CPU core). Com-
pared to the single-threaded peak SGEMM performance of 27.5 GFlop{s (and the derived and equal
BGEMM performance), the matrix multiplication is accelerated by a factor of 9.1.

CHAPTER 17. IMPLEMENTATION 181

17.3.8 Small Matrices

In contrast to large matrices, their small counterparts are limited by memory bandwidth not
by instruction throughput. To determine an upper bound for the possible performance, the
maximum achievable memory bandwidth is measured on the test systems. Two benchmarks are
used: Stream [McC 95] and a simple self-written benchmark in assembler which simply performs
SSE loads to consecutive memory addresses over one gigabyte of memory (in the following called
Maximum Memory Throughput). The results are given by Table 17.23.11

System Stream Benchmark (Copy) Maximum Memory Throughput

Westmere, 1 Cores 11.74 GB{s 16.62 GB{s

Westmere, 6 Cores 15.85 GB{s 28.62 GB{s

Sandy Bridge, 1 Cores 12.12 GB{s 19.81 GB{s

Sandy Bridge, 4 Cores 12.18 GB{s 20.00 GB{s

Table 17.23: Maximum Memory Bandwidth on Westmere and Sandy Bridge [II,XII]

Multiple observations can be derived from the table:

• Single-thread throughput is better on the Sandy Bridge due to architectural optimizations.
• The multi-thread memory throughput achieves the maximum bandwidth which can be
delivered by the memory controller. In this discipline, the Westmere is superior since it
offers a triple-channel interface in comparison to two channels for Sandy Bridge.

• One single thread on the Westmere cannot achieve peak bandwidth, one thread on the
Sandy Bridge can. So, multi-threading on the Westmere is likely to speed up the encoding
while on Sandy Bridge from this perspective one single thread suffices – theoretically.

• The Stream benchmark (copy task) does not achieve the peak bandwidth.

The QEnc implementation described before achieves an encoding bandwidth of 5 GB{s on West-
mere and 6 GB{s on Sandy Bridge. Since input and output are of equal size, the corresponding
memory bandwidth is twice that high. These values are very similar to the single-thread Steam
benchmark copy results on both architectures. It turns out that both Stream and QEnc lack
behind the peak throughput for the same reason.

From the memory perspective, QEnc is very similar to the copy in the Stream benchmark. It
reads one data stream and writes another (the calculation in between does not affect the memory).
Both streams are of the same size. The Stream/QEnc performance is pretty much two third of
the peak bandwidth. This is due to stores to memory locations which are not already contained
in the cache. They lead to a memory access fetching the remaining entries of the cache line
the store is performed to. Thus, the output data stream is both read and written doubling the
memory load while the input stream is only read explaining exactly the factor of two third.

This (general problem) is resolved by streaming stores which bypass the cache [Dre 07, 6.1]. The
improvement is demonstrated in Fig. 17.24. Both architectures show a nice speedup and come
very close to the peak bandwidth. The Sandy Bridge achieves 9.03 GB{s .

17.3.9 Complex Code Example

Listing 17.25 shows an example of the generated assembler code for n “ k “ 64 demonstrating
all optimizations. An L1-blocking size of 48, L2-blocking size of 96, and an instruction stream
11 According to the specification, the theoretical bandwidth is 38.4 GB{s for Westmere and 25.6 GB{s for Sandy Bridge,

which is significantly higher than the maximum bandwidths measured. Still, the maximum bandwidth actually
measured is the better reference for examining whether QEnc achieves the highest attainable bandwidth or not since
the theoretical peak bandwidth may be unreachable.

182 17.3. AUTOMORPHIC ASSEMBLY CODES

 0

 2

 4

 6

 8

 10

1 2 4 6 8 12 16

Ba
nd

wi
dt

h
[G

B/
s]

n = k

Regular Stores, Sandy Bridge
Streaming Stores, Sandy Bridge
Peak Bandwidth, Sandy Bridge

Regular Stores, Westmere
Streaming Stores, Westmere
Peak Bandwidth, Westmere

Figure 17.24: Performance Gain using Streaming Stores [XII]

blocking in 40 blocks is used. The first instruction stream block is presented in some detail, the
following blocks are skipped as they are similar. (See Appendix F.3 for a C++ example.)

�
push rbx //Save non´v o l a t i l e r e g i s t e r s
. . . // Input parameters : r d i : source address ,
add rdi , 128 // r s i : d e s t i n a t i on address , rdx : b lock count
add r s i , 128 //SMALL_POINTER_OFFSETS: Sh i f t base po in t e r
asmouterloop : //Outermost loop over L2 b locks
sub rdx , 96 //L2 Data Blocking over 96 b locks
mov rcx , 96 // I n i t i a l i z e r e g i s t e r f o r inner loop
mov rax , r s i
mov rbx , r d i
asminnerloop_0 : // Inner loop over f i r s t i n s t r u c t i o n stream

//L1 data b lock ing (Columns 1 ´ 48 , Rows 1 ´ 14)
//Column 1
p r e f e t ch t 0 [rbx + 7168 ´ 128] // Pre f e t ch next input data block
movdqa xmm2, [rbx + 0 ´ 128] //REGISTER_RENAMING: Use xmm2 as s c ra t ch
movdqa xmm6, xmm2 //DIRECT_LOAD: [rbx+16] not loaded to s c ra t ch
movdqa xmm15, xmm2
//Column 2
movdqa xmm3, [rbx + 32 ´ 128] //Load column 3 whi l e p ro c e s s i ng column 2
movdqa xmm13, [rbx + 16 ´ 128] //DIRECT_LOAD: [rbx+16] d i r e c t l y used
//Column 3
vpxor xmm6, xmm6, xmm3 //DIRECT_LOAD: [rbx+48] not loaded to s c ra t ch
movdqa xmm12, xmm3
//Column 4
movdqa xmm8, [rbx + 64 ´ 128]
vpxor xmm2, xmm8, [rbx + 48 ´ 128] //DIRECT_LOAD + TERNARY_INSTRUCTION
//Column 5
p r e f e t ch t 0 [rbx + 7232] // Pre f e tch f o r next i t e r a t i o n
movdqa xmm1, [rbx + 80 ´ 128]
vpxor xmm3, xmm8, xmm3 //OPERAND_REORDERING: xmm8 not th i rd operand
//Column 6
movdqa xmm4, [rbx + 96 ´ 128]
. . .
//ROW_SIMILARITY updates
vpxor xmm9, xmm9, xmm3
vpxor xmm14, xmm14, xmm6
vpxor xmm8, xmm8, xmm4 //MULTÍ ROW_SIMILARITY
vpxor xmm8, xmm8, xmm6

CHAPTER 17. IMPLEMENTATION 183

// Store in t e rmed ia t e r e s u l t s f o r L1 data b lock ing
movdqa [rax + 0 ´ 128] , xmm2
. . .
movdqa [rax + 208 ´ 128] , xmm15
//L1 data b lock ing (Columns 1 ´ 48 , Rows 15 ´ 28)
. . .
//L1 data b lock ing (Columns 49 ´ 96 , Rows 1 ´ 14)
. . .
// Inc lude in te rmed ia t e r e s u l t s from prev ious s tep o f L1 data b lock ing
vpxor xmm2, xmm2, [rax + 0 ´ 128]
vpxor xmm3, xmm3, [rax + 16 ´ 128]
// Store updated in te rmed ia t e r e s u l t s f o r L1 data b lock ing
movdqa [rax + 0 ´ 128] , xmm2 //STORE_INTERLEAVING: 1 s t o r e per 2 loads
vpxor xmm4, xmm4, [rax + 32 ´ 128]
vpxor xmm5, xmm5, [rax + 48 ´ 128]
movdqa [rax + 16 ´ 128] , xmm3
. . .
movdqa [rax + 144 ´ 128] , xmm11
//L1 data b lock ing (Columns 49 ´ 96 , Rows 15 ´ 28)
. . .
add rax , 7168 //Load address f o r next L1 block
add rbx , 7168 //Same increment f o r rax and rbx s i n c e n = k
dec rcx
jnz asminnerloop_0 //End o f f i r s t i n s t r u c t i o n stream
mov rcx , 96 // R e i n i t i a l i z e r e g i s t e r f o r inner loop
mov rax , r s i
mov rbx , r d i
asminnerloop_1 : // Inner loop over second i n s t r u c t i o n stream
. . .
jnz asminnerloop_39 //End o f l a s t i n s t r u c t i o n stream
add rdi , 688128 //Load addre s s e s f o r next L2 block
add r s i , 688128
cmp rdx , 0
jne asmouterloop
pop r s i //Restore non´v o l a t i l e r e g i s t e r s
. . .
r e t
� �

Listing 17.25: QEnc Elaborate Assembler Code Example for n “ k “ 64

17.3.10 Analysis

The final performance of the XOR-only code with 128-bit SSE registers over the full range of
matrix dimensions is visualized in Fig. 17.26. It is clearly visible that either the bandwidth is
limited by the peak bandwidth or the instruction throughput is limited by the peak throughput
of the hardware. (For the same reasons as for Fig. 17.13, the peak throughput can be outmatched
in some cases.) Using the peak bandwidth, the peak throughput, the fill-ratio of the employed
matrices, and the average number of assembler instructions per XOR operation, the highest
possible update bandwidth can be calculated. Comparing this to the achieved update bandwidth
reveals how close the implementation comes to the hardware limits.

Analyzing the metrics in detail reveals:

• The bandwidth is close to the peak bandwidth until the instruction throughput becomes
the limiting factor. At all time, the performance hits hard architectural limits.

• The update bandwidth increases strongly at the beginning reaching a peak where the matrix-
multiply performance has its first plateau. Afterward, it falls slowly due to the increasing

184 17.3. AUTOMORPHIC ASSEMBLY CODES

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

Ba
nd

wi
dt

h
/

Up
da

te
 B

an
dw

id
th

 [G
B/

s]

n = k

Bandwidth
Update Bandwidth
MM GAOp/s

Instr. Throughput
Peak Bandwidth
Peak Throughput

Peak Update BW

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]
/

In
st

ru
ct

io
n

Th
ro

ug
hp

ut
 [G

O
p/

s]

Figure 17.26: Final QEnc XOR128 Performance [XII]

dimension l which causes a greater computational complexity at constant matrix-multiply
performance. Toward large matrices the update bandwidth becomes more or less constant.
The Strassen algorithm compensates the growth of l and for even larger matrix sizes, it
actually increases the bandwidth again since its performance increases much faster than l.

• Matrix-multiply performance falls slightly at two points: at n « 20 and at n « 128. At
these matrix sizes, the code size exceeds the L1 and L3 cache size of the processor.

• The instruction throughput increases until it saturates closely below the theoretical peak.
When the code size hits the L1 cache size, it falls slightly in the same way the matrix-
multiply performance does. Above n “ 192 it falls again due to the Strassen overhead.

Fig. 17.27 shows how the size of the code increases with the matrix dimension. The mostly poly-
nomial dependency yields a linear curve in the bilogarithmic plot with two exceptions. For small
matrices the slope is smaller since the matrix fill-ratio is lower. At three matrix sizes a small step
is observed: namely at n “ 192, n “ 384, and n “ 768. These numbers correspond to where the
Strassen recursion gets one step deeper, which increases the code size by seven fourth each time.

17.3.11 Variants

17.3.11.1 Add-only Encoding

An Add -only code (see Section 16.4.2) can be implemented in the same way as the XOR-only
code. The encoding-matrix is encapsulated in the instruction stream. In fact, pxor and vpxor
instructions are simply exchanged by paddd and vpaddd. In contrast to logical operations, the
processor can perform only two integer SSE operations per cycle (see Table 17.3). Still, one
move instruction can be executed in parallel. Thus, the Add -only code reaches an instruction
throughput between two and three SSE instructions per cycle – less than the XOR-only code.

17.3.11.2 A 256-bit XOR-only Code with AVX

Full AVX support can be added easily, especially since ternary AVX operations are already
used: ymm registers are used instead of xmm registers. Unfortunately, since the Sandy Bridge

CHAPTER 17. IMPLEMENTATION 185

processor can execute only one logical AVX instruction and one AVX move in parallel, only
slightly above one AVX instruction is executed per cycle. This corresponds to two to three SSE
instructions and thus results in similar performance as for the Add -only SSE code. An Add -only
AVX code can not be implemented as Sandy Bridge lacks AVX support for integer calculation.
This is foreseen for the next AVX version (AVX2), which will be introduced with the new Haswell
CPU family.

10 bytes

100 bytes

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

1 2 4 8 16 32 64 128 256 512 1024

Co
de

 S
ize

n = k

Figure 17.27: Binary Code Size of XOR128
Implementation [XII]

 0

 10

 20

 30

 40

 50

 60

4 8 16 32 64 128 256 512 1024
In

st
ru

ct
io

n
Th

ro
ug

hp
ut

 [G
O

p/
s]

n = k

XOR128
IGEMM
BGEMM
XOR256

Add128
XOR128 Westmere
IGEMM Westmere
BGEMM Westmere

Figure 17.28: Final Instruction Throughput
of all Encoding Implementations [II,XII]

17.3.12 Comparison

The performance of IGEMM and BGEMM as well as XOR-only and Add -only codes using SSE
and AVX are presented in Figures 17.28 to 17.31. Clearly, the XOR-only code with SSE emerges
as winner. The AVX variant suffers heavily from the fact that only one single simultaneous
logical operation is possible on Sandy Bridge. This is very likely to improve with the next
processor generations. Then, most probably, AVX will achieve twice the performance of the SSE
implementation. The Add -only code shows similar performance as the XOR-only AVX code.
Certain matrix dimensions show significantly lower performance. The reason is that the Add -only
version suffers from the same implementation flaw as the IGEMM version, which cannot encode
with arbitrary l. However, implementing the missing matrices for Z{2bZ codes was considered a
waste of time as the XOR code is faster anyway. All automorphic codes outperform the IGEMM
and the BGEMM codes by an order of magnitude.

 0

 50

 100

 150

 200

 250

4 8 16 32 64 128 256 512 1024
n = k

XOR128
IGEMM
BGEMM
XOR256

Add128
XOR128 Westmere
IGEMM Westmere
BGEMM Westmere

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.29: Final MM Performance of all
Encoding Implementations [II,XII]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

4 8 16 32 64 128 256 512 1024

Ba
nd

wi
dt

h
[G

B/
s]

n = k

XOR128
IGEMM

BGEMM
XOR256
Add128

XOR128 Westmere
IGEMM Westmere

BGEMM Westmere

Figure 17.30: Final Bandwidth of all Encod-
ing Implementations [II,XII]

186 17.4. MULTI-THREADING

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 8 16 32 64 128 256 512 1024

Up
da

te
 B

an
dw

id
th

 [G
B/

s]

n = k

XOR128
IGEMM

BGEMM
XOR256
Add128

XOR128 Westmere
IGEMM Westmere

BGEMM Westmere

Figure 17.31: Final Update Bandwidth of all Encoding Implementations [II,XII]

17.4 Multi-Threading

Up until now, only a single processor core has been used. The encoding process can be multi-
threaded trivially by making each thread encode a different portion of the source data. This is
implemented using OpenMP [OMP]. The speedup is shown in Fig. 17.32 while the multi-threaded
bandwidth is visualized in Fig. 17.33.

 0

 1

 2

 3

 4

 5

4 8 16 32 64 96
n = k

2 Threads, Sandy Bridge
4 Threads, Sandy Bridge
2 Threads, Westmere
4 Threads, Westmere
6 Threads, Westmere

Sp
ee

du
p

Fa
ct

or

Figure 17.32: Speedup of the XOR-Code by
Multi-Threading [XII]

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 8 16 32 64 96

Ba
nd

wi
dt

h
[G

B/
s]

n = k

1 Thread, Sandy Bridge
2 Threads, Sandy Bridge
4 Threads, Sandy Bridge

1 Thread, Westmere
2 Threads, Westmere
4 Threads, Westmere
6 Threads, Westmere

Figure 17.33: Memory Bandwidth achieved by
Multi-Threaded XOR-Code [XII]

On Sandy Bridge, there is no significant speedup for small matrices simply as a single thread
can already reach peak memory bandwidth (see Section 17.3.8). Increasing the number of cores
shifts the tradeoff point where the limitation switches from bandwidth-bound to compute-bound
to the right. For medium to large matrices, the speedup factor for four CPUs is at least three.
Apparently, the memory controller is unable to sustain the full load of all four CPU cores and
the shared CPU caches take their toll.

On the Westmere, also the small matrix performance improves on multiple cores (since one core
cannot reach the full memory bandwidth), although not to the same extent as the performance
for large matrices. Using all six Westmere cores, the processor can play the strength of its
three memory channels and reach an encoding bandwidth of 14.3 GB{s. As for Sandy Bridge, the
performance does not scale completely linearly with the number of cores.

Naturally, the OpenMP approach is not very optimized leaving room for improvement.

CHAPTER 17. IMPLEMENTATION 187

17.5 Update-Codes

Partial updates according to Lemma 32 are a critical task for all redundant storage systems.
Recall that an update computes C(new)

i “ C
(old)
i `Mij ¨ pD

(new)
j ´D

(old)
j q. For this purpose, a

special update implementation is made available. The update is performed simply by a mul-
tiplication with one matrix element of the MDS-code which corresponds to a binary or inte-
gral lˆ l matrix multiplication for vector-MDS-codes. Since the matrix sizes are tiny, the update
process is entirely memory-bound. In contrast to full encoding, QEnc does not only write to the
output stream but also reads the old redundancy data from it. Thus, the streaming stores cannot
be used and the highest achievable encoding bandwidth is one third of the memory bandwidth
instead of one half. Prefetching the output stream guarantees maximum bandwidth in this case.
Fig. 17.34 shows that the peak bandwidth measured by the SSE sequential read benchmark for
Table 17.23 is actually achieved for all matrix sizes.

A question is what is the maximum matrix size for which the update implementation reaches
the peak bandwidth. The matrix dimension n “ k “ 64 corresponds to l “ log2 128 “ 7
(due to 2l ě n ` k) and requires about 20 GAOp{s matrix-multiply performance to achieve peak
bandwidth. The required matrix-multiply performance (in order to achieve peak bandwidth)
is linear in l. Extrapolating to l “ 56 predicts a required performance of 160 GAOp{s. The
peak performance achieved on Sandy Bridge is more than 190 GAOp{s leaving a safety margin
of 30 GAOp{s. Naturally, l “ 56 is high enough to ensure maximum memory bandwidth in the
update process for arbitrary n and k (to be precise n ` k ď 256). Hence, QEnc achieves peak
bandwidth for update-codes in any case – also in the future.

17.6 Dependency on k

Fig. 17.35 shows the dependency of all metrics on the k parameter for n “ 64 fixed. In this
case, the peak encoding bandwidth is not constant but depends on k because input and output
streams are of different size. Up to k “ 4, 75 % or more of the peak bandwidth are achieved.
For k “ 6 the instruction level blocking is activated which explains the slight decrease in the
matrix-multiply performance. For larger k, the matrix-multiply performance steadily increases
from 165 to 190 GAOp{s. For comparing arbitrary k at fixed n to the well-known case n1 “ k1,
a square encoding-matrix for n1 “ k1 of about the same total size is chosen as a reference, i. e.
nl ¨ kl « n1l1 ¨ k1l1. The figure reveals that for every k the matrix-multiply performance is very
similar to the reference performance of such a square matrix, as long as the bandwidth is no
limiting factor. This analysis confirms that the QEnc performance depends mostly on the matrix
size but not on the matrix shape and thus not on k.

 1

 2

 3

 4

 5

 6

 7

2 4 8 16 32 64

8

12

16

20

24

Ba
nd

wi
dt

h
[G

B/
s]

n = k

SSE, Bandwidth
AVX, Bandwidth

SSE, AOps
AVX, AOps

Peak Bandwidth

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.34: Update Performance of the
XOR-only Code [XII]

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32 64

40

80

120

160

200

Ba
nd

wi
dt

h
[G

B/
s]

k

Bandwidth
Update Bandwidth
MM Performance

Instruction Throughput
Peak Bandwidth

Reference MM
Performance

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 17.35: Encoding Performance Depen-
dency on k [II,XII]

188

Chapter 18

Encoding with GPU & FPGA
Accelerators

Both, matrix multiplication based codes and automorphic codes are ported to GPUs. In addition,
a proof of concept FPGA (see Appendix C.6) implementation exists. The bottleneck for small ma-
trices is the PCI Express bandwidth while for large matrices the accelerator can play its strength.
In the following, only GPU kernel/FPGA performance is analyzed. To achieve good performance
on the host, a streaming framework as in Section 11.2 is required. As long as the PCI Express
bandwidth does not pose a limitation, the ratio of GPU kernel performance to host performance
should be the same as in the CALDGEMM case (94.1 % – 98.5 % depending on the platform).

18.1 Matrix Multiplication based Codes for GPUs

Section 12.13 introduced IGEMM and BGEMM implementations for AMD GPUs. Good perfor-
mance is achieved for matrix sizes h, k ě 2048 which translates to n “ k ě 256, l ě 9. The encod-
ing performance of the kernel is exactly the GPU IGEMM/BGEMM kernel performance shown
in Table 12.44, i. e. IGEMM encoding achieves 492 GAOp{s and BGEMM can reach 1024 GAOp{s.

18.2 XOR-only Encoding with OpenCL

The automorphic approach has been ported to GPUs by generating OpenCL source code rather
than binary x86 assembler code. The blocking factors and register counts are optimized for the
GPU architecture by parameter range scanning in the same way as for the CPU. As a reference,
the OpenCL version on the CPU is compared to the assembler version as well. Three OpenCL
compilers are used: namely from the Intel OpenCL SDK 1.1, from the NVIDIA CUDA SDK 4.0.1,
and from the AMD APP SDK 2.4 for both CPU and GPU.

It turns out that the AMD and the Intel compilers cannot compile the code for n ě 16.1 The
NVIDIA compiler can compile the code up to n “ 128. For larger matrices, it runs out of mem-
ory.2 Fig. 18.1 shows the compilation time for all compilers. For comparison, also YASM and the
QEnc integrated assembler are included. The compilation time depends greatly on the compiler.
The NVIDIA compiler can process the biggest code and comes out fastest.3 Fig. 18.2 shows that
the OpenCL performance on the CPU lacks far behind the assembler performance – as expected.
The Intel compiler produces much faster code than the AMD compiler. The multi-threaded
OpenCL code scales well to the six Westmere cores but is much slower than the assembler code.
1 The AMD compiler causes a segmentation fault during compilation while the Intel compiler produces incorrect code.
2 Since the compiler is a 32-bit executable, it is limited to 2 GB.
3 In fact, also the compiler version is very relevant. The previous NVIDIA compiler of the SDK version 3.2 required

about 5000 seconds for the n “ 16 code.

CHAPTER 18. ENCODING WITH GPU & FPGA ACCELERATORS 189

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

4 8 16 32 64 128 256

Ti
m

e
[s]

n = k

AMD OpenCL for CPU
AMD OpenCL for GPU
NVIDIA OpenCL
Intel OpenCL
YASM Assembler
QEnc Internal Assembler

Figure 18.1: Compilation/Assembly Time
of XOR-only Code [II]

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 8 16 32 64 128
n = k

ASM 1 Thread
ASM 6 Threads

OpenCL (AMD) 1 Thread
OpenCL (AMD) 6 Threads

OpenCL (Intel) 1 Thread
OpenCL (Intel) 6 Threads

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 18.2: QEnc OpenCL Performance on
CPU [II]

18.3 An FPGA Implementation

While GPUs are designed specifically for the highest calculation throughput, FPGAs are more
flexible and excel in bit manipulation. The XOR-only code is the natural choice for the FPGA
implementation. Instead of assembler and OpenCL code, QEnc can generate VHDL4 FPGA code
as well. The following tests are performed with a Xilinx Virtex 6 XC6VLX240T-2 FPGA, which
is of medium size and costs about as much as the most expensive CPUs or GPUs used in this
thesis. The current implementation is not as seamless as the assembler or OpenCL versions, but in
principle, compilation, place and route, and image deployment to the FPGA can be automatized
with scripts making the FPGA encoding as transparent as the other versions to the user. The
blocking for the matrix multiplication with intermediate results stored in memory is exchanged
for a pipeline, which is very similar to a one-level blocking: the innermost loop corresponds to all
calculations the FPGA performs in one clock cycle. The pipeline length depends on the number
of operations per clock cycle and on the employed matrix size. The number of operations per
clock cycle defines the maximum possible clock rate. Since encoding is a streaming process by
definition, a large pipeline is no problem at all. Hence, the pipeline steps are designed rather
small to achieve high frequencies. As the assembler code, the VHDL code grows with the matrix
size and is limited by the number of FPGA slices (which contain LUTs and registers).

Every computed codeword Cj is computed independently and has its own independent, parallel
logic path on the FPGA. Hence, disregarding the latency, the FPGA computes a full set of
codewords each cycle. The encoding bandwidth is thus B “ f ¨n ¨ l ¨ t{8 [Bytes{s], with f the FPGA
frequency and t the width of the parallel code. Unlike the CPU, there is no general restriction
on t. The value of t can be chosen small to reduce the usage of slices; it can be chosen large to
speed up the encoding. The user can flexibly select the best option depending on the task. It
seems irritating, that more complex codes with bigger n are faster than those with small n, but
this comes from the fact that the complex code with large n requires significantly more logic,
which operates in parallel. In the same way, a small matrix with larger t requires more cells but
becomes faster, too. Still, because the complexity goes with n ¨ l2 „ n ¨ plog nq2 but it depends
linearly on t, codes with small n and large t are faster – if they occupy the same number of slices.

Interestingly, the FPGA can benefit from many of the assembler optimizations since lots of them
reduce the required number of operations in the computation. Still, compared to the memory
capacity of contemporary systems, the amount of slices is certainly limited. Hence, large codes
that require several gigabytes of assembler code can never run on the FPGA. Actually, the code
size limitation is much smaller. The Xilinx compiler has enormous problems with the n “ k “ 64
code. Synthesis takes about ten times as long as for n “ k “ 48 and the achieved frequencies are
much worse than with smaller parameters. A workaround for the future might be emulating the
large matrix multiplication with multiple smaller ones reducing the complexity of the entities.
4 VHSIC Hardware Description Language – VHSIC standing for Very-High-Speed Integrated Circuits.

190 18.4. PERFORMANCE

18.4 Performance

Figures 18.3 and 18.4 show the bandwidth and the matrix-multiply performance of the OpenCL
GPU code. The NVIDIA GPU achieves 75 % of the peak memory bandwidth for very small
matrices. The AMD GPU remains slower. For larger matrices the NVIDIA GPU reaches
about 900 GAOp{s, the AMD GPU reaches about 780 GAOp{s. The comparison of GPU to CPU
performance is postponed to the next chapter.

 0

 20

 40

 60

 80

 100

4 8 16 32 64 128

Ba
nd

wi
dt

h
[G

B/
s]

n = k

GPU NVIDIA
GPU AMD

NVIDIA GPU Peak Bandwidth
AMD GPU Peak Bandwidth

Figure 18.3: QEnc Bandwidth on GPU [II]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

4 8 16 32 64 128
n = k

GPU NVIDIA
GPU AMD

M
at

rix
 M

ul
tip

ly
 [G

AO
p/

s]

Figure 18.4: QEnc Performance on GPU5 [II]

The performance of the FPGA implementation is difficult to compare to the other versions, be-
cause one can trade more slices for more performance more or less linearly. To compare FPGA
versions with different n against each other and against CPU/GPU encoding, it is most in-
structive to scale the FPGA results to 100 % FPGA utilization. Hence, Table 18.5 contains the
extrapolated maximum bandwidth, which is defined as the bandwidth (with t “ 1) divided
by slice occupancy. The advertised maximum design frequency of 600 MHz is reached or exceeded
except for the large matrices, whose code the compiler can hardly handle. For the latter case,
the previously suggested splitting of the multiplication into multiple entities might help.

n “ k f [MHz] Bandwidth [GB/s] Pipeline Occupancy [%] Max. Bandwidth [GB/s]

8 682 2.73 4 stages 0.12 2187
12 685 5.14 6 stages 0.38 1344
16 638 6.38 8 stages 0.68 939
24 614 11.07 15 stages 2.14 518
32 621 14.90 20 stages 3.78 394
48 556 23.35 34 stages 9.43 248
64 321 17.98 45 stages 14.48 124

Table 18.5: FPGA Encoding Performance

The extrapolated FPGA results are outstanding, of course; but there are two major drawbacks:
FPGAs are impractical for small to medium n due to PCI Express bandwidth limitations; they
are unqualified for large n due to finite slices and compiler problems. The most promising field of
application for FPGA encoding is a design which requires encoding capabilities on the chip with
reasonable performance and low slice utilization. Since FPGA results are off scale compared to
traditional processors and graphic cards, they are not included in the next chapter’s comparison.

5 There is a dip in the performance of both the multi-threaded CPU version and the GPU version exactly at the point
where L1 instruction level blocking and L2 blocking set in. These are also the measuring points with the greatest
demands on the caches because the caches are used, but they are refilled extremely frequently. For larger matrices,
data can remain in the caches for longer and performance returns to the normal level. Smaller matrices simply do
not use the L2/L3 caches and never refill the instruction cache. For this reason, a cache bottleneck is the most
plausible explanation. This assumption is fortified by the fact that the single-threaded version, with smaller stress
on the shared caches by design, does not show this behavior.

191

Chapter 19

Results

19.1 Achieved Results

 0

 200

 400

 600

 800

 1000

 1200

4 8 16 32 64 128 256 512 1024
n = k

XOR128, Sandy Bridge
IGEMM / BGEMM, Sandy Bridge

XOR128, Westmere
XOR128, Westmere 6 Threads

XOR128, NVIDIA GPU
XOR128, AMD GPU
BGEMM, AMD GPU

M
at

rix
 M

ul
tip

ly
 P

er
fo

rm
an

ce
 [G

AO
p/

s]

Figure 19.1: Final Encoding Performance Comparison (Performance)5 [II,XII]

The QEnc library, which enables failure erasure coding via BGEMM and IGEMM as well as via
automorphic assembler and OpenCL XOR code has been presented. Figures 19.1 and 19.2 gives
an overview. Clearly, the assembler code is the fastest on a CPU. BGEMM (and IGEMM) lack far
behind. On a single core, Sandy Bridge is slightly faster than Westmere, due to smaller opcodes.
The single-threaded code is bandwidth-limited up to n “ 10, above it is compute-limited. The
multi-threaded code can maintain this (Sandy Bridge) or a higher (Westmere) bandwidth up to
about n “ 20. Unfortunately, the speedup does not grow linearly with the number of cores. Still,
the Westmere’s six-core matrix-multiply performance reaches 800 GAOp{s which is (at different
matrix sizes) as fast as the AMD GPU and only slightly slower than the NVIDIA GPU.

On the GPU, the automorphic OpenCL code performs well but does not even come close to the
theoretical peak performance. In contrast to the CPU, the BGEMM code is faster but works only
for large matrices. However, the BGEMM code is optimized CAL code. Most probably an auto-
morphic GPU IL or PTX code can raise the automorphic GPU encoding to higher performance
levels. Such an implementation has not been attempted for multiple reasons: GPU compilers
encounter problems with huge source codes, no general framework for writing GPU assembler
exists, and GPU architectures differ more than CPU ones complicating universal optimizations.

192 19.1. ACHIEVED RESULTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

4 8 16 32 64 128 256 512 1024

En
co

di
ng

 B
an

dw
id

th
 [G

B/
s]

n = k

XOR128, Sandy Bridge
IGEMM / BGEMM, Sandy Bridge

XOR128, Westmere
XOR128, Westmere 6 Threads

XOR128, NVIDIA GPU
XOR128, AMD GPU
BGEMM, AMD GPU

Figure 19.2: Final Encoding Performance Comparison (Bandwidth)5 [II,XII]

GPU kernel performance for small matrices is unmatched due to the immense memory band-
width. Unfortunately, there is literally no gain in practice because the PCI Express interface
poses a bandwidth limit of about 6 GB{s. (The theoretical peak throughput of PCI Express 2.0
is 8 GB{s but this is not reachable in practice. Compare Table 7.3 as well as Figures 11.4
and 12.13.) At n “ 40 the GPU kernel’s encoding bandwidth drops to 6.3 GB{s. For smaller
matrices, GPU encoding is inevitably PCI Express bandwidth-bound to 6 GB{s (with PCI Ex-
press 2.0). By coincidence, the CPU bandwidth drops below 6 GB{s at quite exactly n “ 40, too
(see Fig. 17.33). Thus, below n “ 40 the multi-threaded CPU encoder is fastest, for larger ma-
trices the GPU encoder performs better – and is not inherently PCI-Express-bandwidth-limited.
Above n “ 128 the OpenCL compiler is unable to compile the sources. In this region, only the
matrix-multiplication version works on the GPU, which achieves peak performance at n “ 256
and above.

Related publicly available failure erasure coding implementations can be categorized as follows:

• Most implementations of the original Reed-Solomon-Code use logarithm lookup tables and
are inevitably memory-bound [Pla 97]. (Lookup table access is the bottleneck hitting the
bandwidth limit. This is totally unrelated to the bandwidth metric measuring the raw
encoding rate, which poses a limit for QEnc performance at small matrix sizes.) Optimized
direct Reed-Solomon approaches [Kal` 11] can overcome this problem, but are still limited
by the slow emulation of the ring operation. In general, codes of this category often put
tight restrictions on the possible l (e. g. l “ 216), unnecessarily loosing performance (compare
Section 17.3.5). Eventually, Reed-Solomon implementations can hardly show competitive
performance compared to QEnc by construction. Implementations of the update-procedure
reach bandwidths between 100 MB{s and 1.6 GB{s on a CPU or up to 2 GB{s on a GPU while
QEnc reaches peak bandwidth, which is about 6 GB{s on Sandy Bridge.

• Available Cauchy-Reed-Solomon implementations are either suboptimally vectorized or re-
stricted to predefined matrix sizes. For instance, for a fixed matrix with n “ 5 ad k “ 3,
they reach about 50 % of the theoretical peak bandwidth [Ste` 10]. QEnc, in contrast,
reaches the full attainable memory bandwidth for all matrix sizes with n ď 12, k ď 12.

In the end, QEnc demonstrates unrivaled performance at arbitrary matrix sizes, only bound by
hard limits of the employed hardware. It offers the greatest possible flexibility by not restricting
the matrix size in any way.

A simple consideration reveals some natural limits for encoding performance. Since every code
word depends on every data word, it seems plausible that per data word, at least k instructions are

CHAPTER 19. RESULTS 193

required for creating k code words. In other words, the minimum number of b-bit instructions α
necessary per b-bit data word and code word is one. In fact, this assumption is false. It arises
from the same misconception which made people think that matrix multiplication has cubic
complexity for a long time. Consequently, the Strassen algorithm proves that α is smaller than
one, at least for large matrices. For the moment, this shall be ignored; assume α « 1, and
consider the automorphic code without the Strassen optimization. This is actually reasonable
and fair since the Strassen improvement speeds up the encoding exactly to the same extent as it
reduces α.

With the optimizations from Section 17.3.4, the matrix fill ratio is 0.3. Per b-bit data word, QEnc
needs 0.3 ¨lk b-bit instructions for creating k code words (Section 16.7). With l ě log2pn` kq this
yields αQenc ď 0.3 ¨ log2pn`kq. Assuming n ď 512, k ď 512 this results in αQenc ď 3. Obviously,
emulation of ring operations can by no means reach this efficiency. The emulation with a modified
Russian peasant algorithm [Kal` 11] needs up to 2l shift and 2l XOR operations, together with
more complex conditional statements than used in the automorphic code. In addition, only
certain powers of two are possible values for l. The plain matrix multiplication, for comparison,
needs about 2l instructions. Furthermore, the instruction throughput is an important aspect.
QEnc reaches up to 3.21 instructions per cycle (Section 17.3.3.3) requiring 1.3 – 1.4 assembler
instructions per XOR operation (in certain cases even down to 1.23 – see Section 17.3.3.3). It
executes up to 2.61 XOR operations per clock cycle, 3 being the hard limit defined by the CPU
architecture. Since the implementation also needs instructions for loads, stores, logic, prefetches,
and address calculation, there is almost no margin for further improvements. In total, QEnc
needs about 1 cycle per 128-bit data and code word.

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

4 8 16 32 64 128 256 512 1024

Cl
oc

k
Cy

cle
s

pe
r 1

28
-b

it
D

at
a

an
d

Co
de

 W
or

d

n = k

Figure 19.3: Number of Clock Cycles required
by QEnc per 128-bit Data and Code Word

[XII]

 0.1

 1

 10

 100

 1000

 10000

4 8 16 32 64 128 256 512 1024

Ba
nd

wi
dt

h
[G

B/
s]

n = k

Sandy Bridge 1 Thread
Westmere 6 Threads

NVIDIA GTX580
AMD Radeon 6970

Virtex6 LX240
PCI Express 2.0 Limit
PCI Express 3.0 Limit

Figure 19.4: Overview of QEnc Encoding
Bandwidth on CPU, GPU, and FPGA [II,XII]

The required clock cycles per data and code word from the measurement presented in Fig. 19.3
are in good accordance with the above considerations. Values for small n “ k are larger because
there the memory bandwidth is the limiting factor and the processor cannot reach its peak
instruction throughput. The results are excellent around n “ 12 where the number of assembler
instructions per XOR operation is minimal. For larger matrices the computational effort increases
as the l dimension becomes larger while for even larger matrices the Strassen algorithm sets in
reducing the complexity again. This demonstrates that QEnc hits limits under two perspectives.
From the mathematical side, α “ 3 operations per data and per code word are extremely efficient
and to the best knowledge of the author there is no better algorithm. (For large n this becomes
even better when the Strassen algorithm sets in.) From the implementation side, with up to 2.61
calculations (not instructions) per cycle, QEnc hits the utmost limitations of the hardware.
Taking into account that each data word affects each code word, there is very little room to
achieve a factor significantly below 1 clock cycle per data and code word.

This section concludes with Fig. 19.4, which demonstrates the peak encoding bandwidth mea-
sured on all hardware platforms: single-threaded CPU, multi-threaded CPU, GPU and FPGA.

194 19.2. CONCLUSIONS

The indicated PCI Express limits reveal where the implementations are bandwidth bound and
where they can reach their full performance. The figure illustrates that for most situations CPU
encoding is sufficient and points out the areas where GPU encoding or the FPGA can deliver a
real benefit.

19.2 Conclusions

The original Reed-Solomon code suffers from the fact that computers cannot calculate natively
in finite fields and have to employ a slow emulation. The problem can be overcome with two
strategies: the parallel Cauchy-Reed-Solomon code encodes with logical operations on bit-vectors;
certain codes on finite rings can encode via integer operations. Both operations are well supported
on all hardware today. In addition to codes on finite rings from the literature, a new approach is
presented in this thesis, which results in the same encoding matrices but generates them faster.

Both codes are implemented via matrix multiplication and achieve peak performance on all tested
CPUs and a high fraction of peak performance on GPUs. The matrix multiplication can be sped
up by assimilating the encoding-matrix into the source code. Usually, this entrains the prob-
lem that only one fixed erasure code is included in the source code. To ensure the greatest
possible flexibility, an automorphic encoder is presented, which modifies itself to incorporate
every particular encoding-matrix as needed. In addition to the XOR-only encoding based on
the parallel Cauchy-Reed-Solomon code, an Add -only variant based on integral codes is imple-
mented.

The two automorphic variants are realized with low-level assembler optimizations and achieve
peak performance on the tested processors. At any time, the implementation is either limited by
memory bandwidth or by instruction throughput, which are hard limits set by the architecture.
The plain matrix multiplication based code is outperformed by about a factor of 6.5. On a
single Sandy Bridge core, the maximum measured encoding bandwidth is above 9 GB{s and the
maximum compute throughput is 3.21 instructions per clock cycle. The algorithm needs less
than three operations per code and data word and the implementation is very efficient with an
overhead of 1.23 instructions per operation. Finally, QEnc creates about one code word per clock
cycle and per data word, which leaves very little room for improvements.

Multi-threaded encoding on the processor achieves the maximum possible aggregate memory
bandwidth. Unfortunately, for large input parameters, where the single-thread version is entirely
instruction-throughput-bound, the multi-thread variant does not scale completely linearly. Cache
and memory effects are two reasons. The four-thread version reaches a speedup of up to 3.3.

Both pure matrix multiplication and automorphic codes are ported to GPUs. The plain ma-
trix multiplication achieves close to peak performance on both GPU and CPU, i. e. its GPU
implementation achieves the maximum possible speedup. The automorphic code on the GPU is
implemented in OpenCL and is subject to less sophisticated optimizations than the assembler
code on the CPU. This explains that the code does not reach the theoretical GPU peak per-
formance. In the end, CPU encoding is memory-bandwidth-limited for a great input parameter
range. Since CPU memory bandwidth exceeds PCI Express bandwidth by far, GPU encoding is
throttled by the DMA transfer in many applications. For this reason, and due to the inhomo-
geneous GPU architectures of different vendors, no optimized GPU assembler implementation of
the automorphic encoding was created. GPU encoding gets interesting for large datasets and very
large input parameters, where PCI Express does no longer pose a bottleneck. One imaginable
field of application is rebuilding a full large RAID-array with many disks after multiple drives
failed. In contrast, GPUs bring little or no benefit for normal RAID operation as the CPU is
already fast enough. The FPGA version provides unrivaled but unfortunately inaccessible per-
formance orders of magnitude faster than even the GPUs. PCI Express limits the FPGA even
stronger than the GPU making the FPGA encoder always bandwidth-limited.

CHAPTER 19. RESULTS 195

The performance of QEnc does not depend on the input parameters n and k but only on available
memory bandwidth and maximum instruction throughput, at least for nowadays hardware. In
addition to encoding and decoding, also update-codes (differential encoding) are implemented.
They achieve the peak bandwidth attainable from memory in any case.

Encoding is possible using either SSE or AVX vector extensions. At the moment, SSE is faster
because the instruction level parallelism for logical vector operations with SSE is much higher
and overcompensates the smaller vector width. If a new processor was able to process logical
AVX instructions at the same rate as SSE, performance would most likely double.

The newest Intel specifications for the Haswell CPU even include a fourth port for logical op-
erations. This opens the possibility for an acceleration by another 33 %, if four 256-bit XOR
operations can be executed in parallel – but this remains to be seen.

196

Part V

Synthetic Benchmarks & Real
World Applications

Sources of Images: Anandtech - NVIDIA Launches Tesla K20 & K20X:GK110 Arrives At Last; Tom’s Hardware -
Intel Xeon E5-2600: Doing Damage With Two Eight-Core CPUs.

197

Chapter 20

Achievable CPU & GPU
Performance

20.1 Overview of Synthetic and Application Benchmarks

Comparing GPUs and CPUs from a synthetic perspective is relatively easy as compute perfor-
mance (GFlop{s) or bandwidth (GB{s) can be measured. Using the correct access patterns, such
benchmarks usually come very close to the theoretical peak performance. An absolute measure of
this kind is hardly available in application benchmarks. Instead, the application runtime allows
for calculating the GPU speedup.

However, the pure GPU speedup itself has little validity. The GPU is the faster processor by
design, which has to be taken into account. Usually, a GPU implementation achieves a smaller
fraction of the GPU’s peak performance than its CPU counterpart. To set the GPU speedup
in relation to the highest possible speedup considering the peak performance ratio, a speedup-
index γ is defined. With ag and ac the achieved GPU and CPU performance and pg and pc the
respective peak performance, the index is defined as:

γ “
ag{pg
ac{pc

(20.1)

“
ag{ac
pg{pc

. (20.2)

Equation 20.2 allows for using different measures for the achieved and for the peak performance,
e. g. achieved performance is often measured in one over seconds which is obviously impossible
for the peak performance. Depending on the bottleneck of the application, the peak performance
is either defined as peak memory bandwidth or peak compute performance.

An index significantly above 100 % is highly unlikely and implies that the GPU version scales
even better than the CPU version. Such a result mostly indicates a poor CPU implementation.
Depending on the boundary conditions, close to 100 % may be unattainable and a lower index is
optimal. One simply tries to come as close as possible to 100 %. In the majority of the cases, a
value between 60 % and 100 % is optimal.

Table 20.1 lists the results and the speedup-indexes on a representative selection of architectures
for all problems examined in this thesis. Grouped results are taken on comparable GPUs and
CPUs available and state-of-the-art at the same time. By and large, most measurements reveal
a speedup of about three for a single GPU, for multiple GPUs it is larger. However, this may
not lead to the conclusion that GPUs scale equally well on both synthetic benchmarks and
applications. The synthetic measurements mostly base on double precision calculations while
many applications in the table stick to single precision, where often the possible GPU speedup is

198 20.1. OVERVIEW OF SYNTHETIC AND APPLICATION BENCHMARKS

Benchmark Type Hardware Performance % of Speed- γ [%]
/Time peak up

(old) HLT Single Nehalem 4C 3 GHz 1122 ms
Tracker GTX285 + CPU 312 ms 3.60 53

(new) HLT Single 2ˆMagny-Cours 2.2 GHz 495 ms
Tracker GTX580 + CPU 155 ms 3.19 85

Track Single Westmere 6C 4 GHz 65 ms
Merger GTX580 + CPU 60 ms 1.10 13

Track Fit Single Westmere 6C 4 GHz 16.8 ms
GTX580 6.8 ms 2.47 29

SGEMM Single 2ˆMagny-Cours 2.1 GHz 360 GFlop{s 89.3
(Kernel) 5870 2014 GFlop{s1 74.0 5.59 83

6970 1844 GFlop{s 68.2 5.12 76

DGEMM Double 2ˆMagny-Cours 2.1 GHz 180 GFlop{s 89.3
(Kernel) 5870 494 GFlop{s 90.8 2.74 102

6970 624 GFlop{s 92.3 3.47 103
7970 805 GFlop{s 84.4 4.47 95

DGEMM Double 2ˆMagny-Cours 2.1 GHz 180 GFlop{s 89.3
(System) 5870 + CPU 623.5 GFlop{s 83.6 3.46 94

3ˆ5870 + CPU 1435 GFlop{s 78.3 7.98 87
2ˆ6990 2292 GFlop{s 89.9 12.73 104
2ˆS10000 2923 GFlop{s 79.8 16.24 89

One-Node Double 2ˆMagny-Cours 2.1 GHz 174.6 GFlop{s 86.6
HPL 5870 + CPU 563.2 GFlop{s 75.5 3.23 87

3ˆ5870 + CPU 1114 GFlop{s 60.7 6.38 70
2ˆ6990 + CPU 2007 GFlop{s 72.4 11.49 84
2ˆS10000 + CPU 2679 GFlop{s 73.1 15.34 84

Erasure 32-bit Westmere 6 ¨ 3.8 GHz 14.3 GB{s 74.7
Codes logical GTX580 72.5 GB{s 75.3 5.32 102
(small n) 6970 51.1 GB{s 58.0 4.10 78

Virtex 6 LX240 FPGA 2187.0 GB{s 152.94

Erasure 32-bit Sandy Bridge 1 ¨ 3.7 GHz 251.0 GAOp{s2

Codes logical Westmere 6 ¨ 3.8 GHz 807.0 GAOp{s2

(large n) GTX580 908.4 GAOp{s 1.13 19
6970 1024 GAOp{s 1.27 26

Table 20.1: GPU/CPU Performance Summary and Speedup-Indexes

greater. Harking back to the classifications of benchmarks from the very beginning (Chapter 1),
the examined problems are handled one after another.

SGEMM and DGEMM belong to the synthetic benchmarks for compute performance; failure
erasure coding for small n is a synthetic benchmark as well but it measures memory bandwidth.
All these benchmarks reach very close to peak performance. In particular, the erasure code
efficiency looks worse than it actually is: The achieved bandwidth on the CPU is 75.3 % of the
specified peak bandwidth, but even pure memory bandwidth benchmarks cannot attain higher
1 The performance stated in the table for the 5870 was measured by N. Nakasato [Nak 10].
2 The matrix-multiply performance as defined in Section 17.1 is the number of instructions a plain matrix multiplication

would require. Optimized implementations can thus exceed the specified peak performance.

CHAPTER 20. ACHIEVABLE CPU & GPU PERFORMANCE 199

results either. A comparison with Table 17.23 reveals that the encoding utilizes the accessible
bandwidth to quite exactly 100 %. The GPU encoding is limited by the DMA transfer anyway.
Therefore, not much effort was invested in order to increase the utilized GPU memory bandwidth
(which is already quite acceptable). Standalone DGEMM comes closest to peak performance
everywhere, hence γ « 100 %. SGEMM on GPU is slightly less efficient due to less tuning and
since it requires more memory bandwidth.

HPL is based primarily on DGEMM and hence a semi-synthetic benchmark. It has been
shown that processing time for all other HPL tasks can be hidden behind the DGEMM time. For
this reason, HPL performance is close to DGEMM performance. In summary, all synthetic and
semi-synthetic benchmark results come close to peak performance, both on GPU and on CPU,
regardless of whether double or single precision is used. Hence, for all these benchmarks, the
speedup-index is quite good, to be precise between 70 % and 104 %.

HLT tracker and merger belong to the application benchmark category. For the GPU
merger, the DMA transfer takes almost as long as the CPU needs for the entire processing. Thus,
the actual performance of the GPU track fit is irrelevant; the GPU merger can never be much
faster than the CPU version. This explains the small speedup and speedup-index. Currently, the
GPU track fit itself is more than twice as fast as the CPU one. For the above mentioned reason,
very little effort has been spent for the GPU track fit – it was considered a waste of time. It is
highly probable that the GPU version (of the fit only) can be sped up, at least by the same order
of magnitude as the tracker.

In contrast to the track merger, the slice tracker is not limited by PCI Express. It shows a nice
speedup and its speedup-index is in the same order of magnitude as for synthetic benchmarks.
Table 20.1 lists that the speedup-index for the new tracker version has even increased and is
now almost optimal. However, the index increase is misleading. The new version is compared
to AMD compute nodes, which have been installed in the HLT recently. The old version is
compared to an Intel CPU, which reaches a higher efficiency in slice tracking even though the
absolute performance is better on AMD. So, the speedup-index depends on the CPU which is used
for comparison. Still, as stated before, applications have a hard time achieving 100 % speedup-
index and 53 % – 85 % are very good. This is an interesting observation in combination with the
analysis from Section 6.4.4, which concludes that the tracker triggers many warp-serializations
and its GPU-utilization is by far not optimal. Even though the tracking algorithm is really fast
compared to other approaches, its implementation cannot attain the full potential neither of GPUs
nor of CPUs. This conclusion is in accordance with investigations about tracking accelerations
by explicit SSE programming [Kre 09]. Hence, the tracker is a counter-example to the naive
thought that in general, complicated algorithms can be realized better for CPUs than for GPUs.
Of course, it does not proof the opposite as well.

Failure erasure coding is implemented in two versions. The first one is based on naive
matrix multiplication. It is compute-bound for large n and all conclusions made for SGEMM are
valid without restrictions. Since the second version (XOR-only/Add -only code) is superior, only
this one is discussed further. A GPU speedup exists but it is much smaller than for all other
benchmarks. The reason is that the CPU version employs manually optimized assembler code.
A competitive GPU implementation would have to be written in GPU assembler, too. Such a
version has not yet been realized. The necessary effort is tremendous, and every GPU architecture
would require its own implementation. (The CPU version solely requires an x86 instruction set.
Only the parameters for the cache sizes need to be modified.) In contrast to HPL, where the
relatively small DGEMM kernel is the critical task, encoding requires much more assembler code.
On top of that, many GPU compilers encounter problems when compiling source code of that size.
At small matrix sizes, where the GPU is significantly faster, PCI Express poses an insuperable
limit. Eventually, in most cases the CPU is fast enough for the encoding anyway.

200 20.2. SUMMARY

The FPGA encoder easily outperforms the GPUs but all just-mentioned restrictions hold for it
as well – and they deteriorate the performance even stronger. Considering the FPGA on its own
and ignoring that it is simply impossible to get the data in and out the FPGA at that speed, it
peaks at few terabytes per second.

20.2 Summary

In summary, it is possible to utilize a great fraction of the theoretical peak performance of GPUs
in synthetic benchmarks. It is much harder and often not possible to obtain a speedup in the order
of the theoretical value for real world-applications. Still, for most applications the improvement
is significant and a similar fraction of the peak performance can be used on CPU and GPU. In
most but the special cases (merger and encoding), a speedup-index of about 75 % or more is
achieved. The PCI Express transfer can pose limits, such as for the merger. It must be noted
that usually at least some CPU cores are required for GPU pre- and postprocessing or scheduling.
These tasks can usually be pipelined, regardless of whether the problem is synthetic like HPL
or an application like the tracker. In all examined programs, pipelines and asynchronous DMA
transfer are absolutely necessary to achieve good performance. Thus, speaking of a GPU speedup
is a bit unfair as the processor contributes its part as well. However, this contribution is mostly
restricted to few cores so that a big fraction of the CPU is still available for other tasks.

Concluding on the analyzed problems individually, the GPU tracker demonstrates that it is
possible to employ GPUs for complex tasks in a production environment. The tracking in the
HLT is sped up by about a factor three compared to a CPU, the cost benefit is even larger.
The GPU tracker proved its stability in the heavy ion phases from 2010 to 2013. In contrast to
the tracker, the example of the merger shows that problems exist which by definition cannot be
solved well on a GPU. The reason lies in the data transfer. Vectorization of the Kalman filter,
which makes up for most of the merger execution time, is very well possible [Gor` 08] – as well
as is a GPU based Kalman filter [Bac 09].

CALDGEMM is among the fastest realizations of matrix multiplication. In contrast to other
implementations, it achieves its outstanding performance irrespective of the transposition param-
eters and makes close to 100 % of the kernel performance available in the system. The improved
HPL implementation demonstrates that under certain conditions it is possible to reach the GPU
peak performance also for non-synthetic benchmarks. It further proves that limited GPU mem-
ory is no general deficiency but can be overcome e. g. by the tiling approach. Up to the June 2012
Top500 list, no other GPU cluster could reach a comparable efficiency with respect to theoretical
peak performance. With HPL-GPU, the LOEWE-CSC cluster ranked place 22 in the Novem-
ber 2010 Top500 list and the Sanam cluster ranked second in the November 2012 Green500 list.

Last but not least, the automorphic failure erasure codes, using either logical or integer operations,
show the potential of CPU vector extensions. They are an example of a problem which can benefit
from GPUs in some cases, but where mostly an optimized CPU implementation is sufficient, or
even faster. This problem might benefit much from new architectures like fused CPU/GPU chips
such as the AMD Fusion [Bra` 12], where the GPU can access the host memory directly and PCI
Express is no bottleneck anymore. The presented QEnc library reaches the maximum attainable
bandwidth of up to 15 GB{s for small matrices while other CRS implementations [Ste` 10] are
limited to around 50 % and other approaches for optimized Reed-Solomon codes achieve even less.

20.3 Conclusions & Comments

GPUs have proven to be excellent accelerators for all examined problems that are not bandwidth-
bound. Even further, GPUs excel in many bandwidth-bound problems not mentioned here such

CHAPTER 20. ACHIEVABLE CPU & GPU PERFORMANCE 201

as lattice QCD [Bac` 11 II], where the problem, or an isolated part of it, fits in GPU mem-
ory. In that case, the superior GPU memory bandwidth can play its strength. An insolvable
problem appears only when the PCI Express bandwidth limit cannot be overcome because data
transferred via PCI Express are only accessed few times and then replaced by new data for the
next task (like the HLT merger). In some cases, theoretically doable optimizations for the GPU
are hard to realize in a universal and practical way due to missing software infrastructure, rapid
hardware development, and large differences in GPU architectures (automorphic GPU encoding
is an example). Then, implementations can be so laborious and non-portable that they do not
pay off in the long run.

In general, the question arises whether the time invested for GPU optimizations is worth it.
The answer, if there is one, depends to a large extent on the particular problem and on the
employed computers. Naturally, if an algorithm runs for a macroscopic time on large-scale clusters
for several millions of dollars, even small optimizations are worthwhile. In this case, besides
the financial perspective, it is even possible that the available compute time is insufficient for
unoptimized code. On smaller systems the duration of the development is more important. It is
cheaper to buy a second computer than to employ a programmer for half a year. Consider the
GPU Linpack benchmark as one example: the development time required for the actual GPU
kernel was much less than the total development time. Of course, the CPU part must be modified
as well to make use of the GPU. The modifications involve two tasks: DMA transfer management
and scheduling. The DMA management is purely GPU related overhead. On top of that, GPU-
based programs complicate the scheduling since processors with different capabilities must be
synchronized; but most multi-threaded high-performance codes need some kind of scheduling
anyway – irrespective of the GPU. In summary, the effort for the actual GPU part of HPL-GPU
is significant but not the single dominant contribution to total development time. By and large,
GPU optimizations are usually rewarding if algorithms have isolated computational hot spots
which can be well processed by GPUs. In such cases, good performance gains can be achieved
with only few small and focused modifications. Speaking generally, there are many applications
with tens of thousands of lines of code, but less then 1 % of them are executed during 95 % of
the runtime. Moving this part to a GPU can yield significant gains at reasonable effort.

An example that does not possess an isolated hot spot is the ALICE HLT tracker. Still, GPU
adaptation is possible. In this case, a large fraction of the tracker code runs on the GPU.
Naturally, the individual tracking steps have not been tuned as comprehensively as the DGEMM
kernel for HPL. Still, development time of the GPU parts for both problems are comparable
because the tracker simply contains much more code. However, it must be noted that the tracker
is a full scientific application while HPL merely solves a system of linear equations. While in
general, fast solvers for linear equations are required in plenty of applications, the matrix sizes
typically used in HPL have grown beyond any reasonable scale; the implication of the Linpack
score on the processing performance for small matrices is diminishing. On top of that, the
benefit of GPU tracking cannot be quantified simply by the achieved speedup. The ALICE HLT
GPU tracker currently uses two to three CPU cores out of 24 cores in a compute node. It is
therefore not unreasonable to claim that the processor is still available during tracking. Various
HLT tasks such as track merging, cluster transformation, vertexing, and so forth require these
CPU resources anyway. In terms of tracking performance, a single GPU is equivalent or even
superior to both Magny-Cours processors. Hence, plugging a GPU in a compute node actually
saves the cost of an additional full node and of the additional infrastructure required for more
nodes. Since the GPUs cost only a tiny fraction of the entire HLT facility, the extra hardware
costs for tracking are negligible. In summary, HPL-GPU achieves a larger speedup due to more
sophisticated optimizations to a distinguished computational hot spot. The tracker acceleration
is a bit smaller even though development time has been similar. Still, its speedup factor of 3.19 is
enormous and certainly justifies the invested effort. The HLT approach with tracking on GPUs
and other tasks on CPUs is probably a universal model because most clusters do not exclusively
run a single but various programs – all of them more or less suited for GPUs. Hardware can

202 20.3. CONCLUSIONS & COMMENTS

be used best by porting those tasks to GPUs which can benefit from parallel architectures and
whose optimization does not require changing millions of lines of code. Problems unsuited for
GPUs can occupy the processors at the same time. Complex applications can make use of GPUs
by internally splitting the problem in GPU and CPU tasks.

For the future it is evident that scientific and other HPC applications cannot ignore technological
hardware changes. With more and more CPU cores in the system, trivial parallelization gets
more and more inefficient. In addition, auto-vectorization features are limited to certain types
of loops [Kre` 11]. In order not to neglect a large fraction of the available performance, proper
vectorization is unavoidable. This is a fact, and it is true for all modern processors. Hence,
programming paradigms must comply with these features irrespective of the target platform. In
the end, CPU and GPU architectures are converging: the AMD Fusion chip [Bra` 12] is one real
example, NVIDIA has plans to include “latency cores” [Dal 10] in their chips, and Intel had plans
for a GPU based on a CPU instruction set [Int 08], which was later modified to an HPC-only
product [Int 10]. All these developments aim at a heterogeneous processor with fast scalar cores
and broad vector cores accessing a unified host memory. The only such chip available today, the
AMD Fusion, shows good compute performance but suffers from the fact that host memory is
about one order of magnitude slower than onboard GPU memory. This is a price one has to pay
for in exchange having access to a large memory; and it is currently a general deficiency of such
approaches. It is not yet clear how this bottleneck can be overcome; an explicit big L4 DRAM
cache is a possible solution. No matter what, the single-threaded scalar programming concept
is outdated, not to say antiquated, and programmers must adapt in order to programm CPUs,
GPUs, and what else the future holds in an efficient way.

New programming languages appear that encapsulate GPU kernels in high-level code and take
care of the data transfer internally. Microsoft C++ AMP [MS], OpenACC, and HMPP are some
examples. The future question is not whether to use GPUs or not to use GPUs but rather to
which extent low-level optimizations are desired – or required. This determines programming
language and concept. GPU assembler is the lowest possible level; current programming models
like CUDA or OpenCL are still close to the hardware. Their high-level counterparts are yet
under development with first pragma based approaches like OpenACC currently hitting the mar-
ket. Many people proclaimed a soon death to C++ suggesting it will be replaced by managed
languages like Java. They were proven wrong. In the same way, it is very probable that mul-
tiple programming models will coexist, the current ones becoming the lower-level ones possibly
allowing for better and more focused optimization. GPUs might be an intermediate step but the
programming concepts may survive even for fused processors and new graphics cards, e. g. the
AMD Fusion is programmed in OpenCL. Therefore, code written in current languages (except
for GPU assembler) will likely work on future hardware as well (with moderate modifications).

The final question that comes up is how well code optimized for a particular processor performs
on future hardware. There is no universal answer to this question. In general, the closer op-
timizations are to the hardware the more likely it is that the code must be optimized again
in the future. However, it is often possible to abstract hardware characteristics and make im-
plementations offer many parameters that can be tuned for new architectures with little effort.
The ALICE tracker is one such example. Most optimizations for the Fermi could be realized by
changing existing parameters. There is one modification that required larger code modifications:
the multi-threaded pipeline. However, in that case the necessity arises simply because the GPUs
have become faster but not because of changes in the architecture.

In the end, all problems analyzed in this thesis could benefit greatly from modern CPU vector
extensions or from GPUs; often a combination of both together with asynchronous processing
is required. It has been shown that not every problem is suited for every type of processor
or optimization approach respectively. Instead, the right combination must be found for each
particular task. Having accomplished this, the improvements are usually well worth the effort.

203

Appendix A

GPU Architectures in Detail

A.1 NVIDIA

A.1.1 GeForce

The GeForce GT200b chip belongs to a previous NVIDIA generation and is used in the GTX285
and GTX295 cards, of which the latter one is a dual-GPU board with slightly reduced clocks.
Neither an L1-cache nor VLIW-shaders are employed. It offers eight single precision ALUs per
multiprocessor and its warp size is 32. The chip has 30 multiprocessors resulting in 240 shaders.
Double precision calculations can be done by combining all eight ALUs to one double precision
ALU reducing the performance by a factor of eight.

A.1.2 Fermi

The Fermi is the successor to the GT200b offering approximately twice as many shaders. For a
long time it has been the only GPU offering a general-purpose L1 cache. The consumer-grade
version suffers from the same penalty of factor eight for double precision. The GTX480 was the
first consumer variant, which was later replaced by the improved GTX580. The professional-
grade (M2070) corresponds to the GTX480. It has special double precision ALUs, which reduce
the penalty to a factor of two and supports ECC memory as well. It was replaced by the M2090
corresponding to the GTX580. Compared to the GTX285, the number of multiprocessors is
roughly halved but the ALU count rose to 32 per multiprocessor. The warp size remains at 32.
This reduces the number of concurrent threads required for optimal performance, in comparison
to the old design.

The successor to the Fermi is the Kepler generation, with the consumer card GTX680 and the
professional card K20x. They have been released only recently and are not used in this thesis.
Table A.1 lists all the NVIDIA GPU types that are used.

A.2 AMD

A.2.1 Cypress

The Cypress chip (5000 series) is used in the 5870, V7800, and 5970 cards, the latter one being a
dual-GPU board. As the old NVIDIA family, Cypress does not offer a general-purpose L1 cache.
Cypress consists of up to 20 multiprocessors with 80 shaders each. The shaders are organized
as 5-D VLIW shaders. Within each VLIW shader, four ALUs can be combined to one double
precision ALU resulting in a double precision penalty of five.

204 A.2. AMD

GPU GTX285 GTX295 GTX480 GTX580 GTX680 M2070

GPU Chips 1 2 1 1 1 1
Multiprocessors 30 30 15 16 8 14
Shaders/MP 8 8 32 32 192 32
Total Shaders 240 480 480 512 1536 448
Memory 1 GB 2 ¨ 896 MB 1.5 GB 1.5 GB 2 GB 6 GB
Core Clock [MHz] 648 550 700 772 1006 700
Shader Clock [MHz] 1476 1350 1401 1544 1006 1150
Memory Clock [MHz] 12421 10001 924 1002 1502 750
Peak (Single) [GFlop{s] 713.8 1296 1344 1581 3090 1030
Peak (Double) [GFlop{s] 88.6 162 168 197.6 128.75 515.2
Mem. Interface [bits] 512 448 384 384 256 384
Mem. Bandwidth [GB{s] 159 223.8 177.4 192.4 192.3 144
Prof.-Grade No No No No No Yes
Cooling Active Active Active Active Active Passive

Table A.1: Overview of the NVIDIA GPUs used throughout this Thesis

A.2.2 Cayman (Northern Islands)

The Cayman chip of the 6000 series is the successor to Cypress. The 5D-shader design is changed
to 4D reducing the double precision penalty to four. It has 24 multiprocessors with 64 shaders
each.

A.2.3 Tahiti (Southern Islands/Graphics Core Next)

With the Tahiti (7000 series) AMD abandoned the VLIW principle. Like the Fermi, the Tahiti
offers general-purpose caches. The double precision penalty remains at four.

Table A.2 lists all the AMD GPU types that are used.

GPU 5870 5970 6970 6990 7970 V7800 S10000

GPU Chips 1 2 1 2 1 1 2
Multiprocessors 20 2 ¨ 20 24 2 ¨ 24 32 18 2 ¨ 28
Shaders/MP 80 80 64 64 64 80 64
Total Shaders 1600 3200 1536 3072 2048 1440 3584
Memory 1 GB 2 ¨ 1 GB 2 GB 2 ¨ 2 GB 3 GB 2 GB 2 ¨ 3 GB
Clock [MHz] 850 725 880 830 925 725 950
Memory Clock [MHz] 1200 1000 1375 1250 1375 1000 1250
Peak (Single) [GFlop{s] 2720 4640 2703 5099 3789 2088 6810
Peak (Double) [GFlop{s] 544 928 675.8 1275 947.2 417.6 1702.4
Mem. Interface [bits] 256 256 256 256 384 256 384
Mem. Bandwidth [GB{s] 153.6 256 176 320 264 128 480
Prof.-Grade No No No No No Yes Yes
Cooling Active Active Active Active Active Active Active

Table A.2: Overview of the AMD GPUs used throughout this Thesis

1 The GPU uses GDDR3, which transfers only half the amount of data per clock cycle compared to GDDR5, which
is used by other GPUs.

205

Appendix B

AMD Intermediate Language/ISA
Assembler

AMD provides two low-level programming languages: the Intermediate Language (IL) [Adv 10 II]
and the Instruction Set Architecture (ISA) [Adv 10 III] language. High level code, such as for
OpenCL [Khr] or Brook+ [Adv 09], is compiled to the architecture independent intermediate
assembler language (IL). This IL code is then compiled to ISA assembler code respecting the
target architecture. Contrary to NVIDIA, which only enables the user to view the intermedi-
ate PTX code produced when compiling CUDA files, the AMD SDK allows for writing explicit IL
or ISA code. The 7000 series (also called Tahiti or Graphics Core Next) introduced a new inter-
mediate language called FSAIL. This series is still compatible to the old IL, which is marked as
deprecated today, however.

To keep the code portable, only IL assembler code is used in this thesis. However, for optimizing
the IL code, a deep inspection of the derived ISA code is required. It is a common practice
to have a particular ISA code in mind and alter the IL code such that the compiler produces
the desired ISA code. This appendix does not provide a full documentation of the assembler
languages but is meant for a reader already familiar with assembler programming. It only points
out the aspects of the GPU languages needed to understand the kernels shown in this thesis.
Only float4 and double2 vectors are used. Other types are handled analogously.

B.1 IL

All AMD stream GPUs (5000 and 6000 series) use 128-bit registers. No distinction is made
between the data-types stored in the registers. A register can store four single precision floats,
two double precision floats, or four 32-bit integers. The single components of the registers can be
accessed using the “.x”, “.y”, “.z”, and “.w” suffixes, for 64-bit types “.xy” and “.zw” are used.
All operations can be performed on a single component of the register or on the entire vector.
During a read, the vector-components can be shuffled using an “.abcd” suffix, where a, b, c, and
d can be:

• x/y/z/w The respective component of the vector.
• 0/1 The constant 0 or 1.
• _ Omit this component in the target register.

As an example: “a.xy_w = b.yx01” stands for “a.x = b.y”, “a.y = b.x”, “a.w = 1”.

IL uses instructions with up to four operands. The first operand is the target. Registers are
denoted by ri where i is the index. Constants (except for 0 and 1) must be declared as 128-bit
constants explicitly and are accessed the same way the registers are. Constants are usually
identified by li. The following other definitions are important:

206 B.2. ISA

• dcl_input_position_interp(mode) register: Declare a register containing the position
of the thread in the grid.1

• dcl_resource_id(i)_type(dim, normalization)_fmtx(format)_..._fmtw(format):
Declare an input resource buffer; usually each entry consists of 128 bits.2

• dcl_cb cbirjs: Declare the constant buffer i of size j.

While-loops are enclosed by “whileloop” and “endloop” clauses. A “break_logicalnz reg-
ister” statement exits the loop depending on the value in the register. The input buffers are
accessed by the “sample_resource(i)_sampler(i) r1, r0.xy” instruction, which reads from
location r0.x, r0.y in buffer i to register r1. The global buffer can be accessed with “graddrs”.
Table B.1 shows some examples.

Instruction Explanation
whileloop Start of while loop

mad r1.xy_w, r3.1yzw, r4.zwxy, r2.xy00 Single Precision Multiply-Add:
r1.x “ r2.x` r4.z,
r1.y “ r2.y` r3.y ˚ r4.w,
r1.w “ r3.w ˚ r4.y

add r5.x, r5.x, r5.1 Increment r5.x by 1

ge r5.y, r5.x, cb0r0s.x Compare r5.x to element 0 in
constant buffer 0

break_logicalnz r5.y Exit loop if above comparison
(stored in r5.y) was true

endloop End of while loop

Table B.1: IL Assembler Instruction Examples

B.2 ISA

Consider the VLIW shaders introduced in Section 3.1. (For instance, the Cypress chip of the 5870
has 5D-shaders). Each VLIW instruction for a 5D-shader encapsulates five single instructions
for the five X, Y, Z, W, and T shaders. Five sequential instructions of the IL code are combined
in one VLIW instruction as long as they are independent. Clearly, the use of vector instructions
for the four .x to .w components of the 128-bit registers simplifies this work for the compiler.
The T shader can execute an additional instruction, e. g. in the example in Table B.1 the counter
increment can be performed by the T shader in parallel to the fused-multiply-add.

Double precision operations are performed by the X to W shaders which leaves the T shader
available. Thus, the Cypress can perform a single and a double precision instruction per clock
cycle. In the 6000 series chip, the T shader is no longer present. Hence, the 128-bit registers map
directly to the 4D-shaders and, in addition, during double precision calculation no shader idles
anymore.

The ISA code is separated into clauses. There are clauses for different execution units. A clause is
prefixed with “ALU:” if it is executed by the ALUs or with “TEX:” for the texture engine, etc. On
the one hand, the context needs to be changed between the clauses3, thus, intermixing calculation
1 The parameters define the interpolation mode (e. g. linear) and whether the coordinates are normalized to the unity

interval.
2 Dim is the dimension of the buffer. Values read from the buffer can be interpolated according to the normalization

parameter. The format parameters define the type for each 32-bit subset.
3 A clause switch causes up to 40 cycles of latency.

APPENDIX B. AMD INTERMEDIATE LANGUAGE/ISA ASSEMBLER 207

and texture fetches can decrease performance. On the other hand, ALU and TEX clauses can be
executed in parallel.

Table B.2 shows an example for a VLIW ISA instruction. The corresponding IL code is:

- mad r0, r1, r2, r0
- add r3.x, r3.x, r3.1

Shader Instruction

X: MULADD R0.x, R1.x, R2.x, R0.x
Y: MULADD R0.y, R1.y, R2.y, R0.y
Z: MULADD R0.z, R1.z, R2.z, R0.z
W: MULADD R0.w, R1.w, R2.w, R0.w
T: ADD R3.x, R3.x, 1.0f

Table B.2: ISA Assembler Example VLIW Instruction

Table B.3 shows a similar example with a double precision FMA instruction executed by four
shaders jointly. (The register R123 is an internal dummy register inserted by the compiler.)
The IL code is:

- dmad r0.xy, r1.xy, r2.xy, r0.xy
- add r3.x, r3.x, r3.1

Shader Instruction

X: FMA_64 R0.x, R1.y, R2.y, R0.y
Y: FMA_64 R0.y, R1.y, R2.y, R0.y
Z: FMA_64 R123.z, R1.y, R2.y, R0.y
W: FMA_64 R123.w, R1.x, R2.x, R0.x
T: ADD R3.x, R3.x, 1.0f

Table B.3: Double Precision FMA ISA Assembler Example

208

Appendix C

Specifications & Definitions

This appendix is meant as a summary of specifications and definitions which the reader is not
automatically assumed to be familiar with. Still, the information is very brief and more details
can be found in the references given.

C.1 MPI Threading

The Message Passing Interface (MPI) [MPI] is a common library for handling communication
in cluster-computation. The specification defines multiple levels of support for threaded applica-
tions:

• MPI No Threading: The application using the library must not be threaded at all.

• MPI Funneled Threading: The application may be threaded but only the thread that
invokes MPI_Init is allowed to call MPI routines.

• MPI Serialized Threading: The application may be threaded. However, the MPI library
is not reentrant. Thus, the application must ensure that only one single MPI routine is
running at a time.

• MPI Multiple Threading: The MPI library is completely thread-safe.

C.2 Matrix Representations

Consider an mˆ n matrix M . Let p be a pointer to the matrix. Besides special cases, there are
two common ways to represent the matrix in memory:

1. row-major: Rows are stored in consecutive memory. The matrix entries are accessed via:

Mij “ pri ˚ n` js.

2. column-major: Columns are store in consecutive memory. Access is carried out via:

Mij “ pri` j ˚ms.

Usually, a generalization of the above is employed. A leading dimension LDM of the matrix
is introduced (LDM ě n or LDM ě m respectively). Entries are accessed via

Mij “ pri ˚ LDM ` js and Mij “ pri` j ˚ LDM s

respectively. This allows for easy access to submatrices.

APPENDIX C. SPECIFICATIONS & DEFINITIONS 209

C.3 Huge Pages

The size of memory pages for the virtual memory of x86 processors has traditionally been 4 KB.
This size was chosen when computers had only a system memory capacity of several megabytes.
Still today, it works well for managing lots of small memory allocation requests usually used in
object oriented programming. However, for scientific applications that work on a single huge
dataset and do not need to allocate and free memory in between, 4 KB pages introduce a tremen-
dous overhead. (For instance, a dataset of 100 GB consists of 25 million pages and takes about a
minute to allocate.) The processor TLB is not designed for accessing such an enormous number
of pages and can easily become a bottleneck.

Modern processors and operating systems offer support for huge pages (Linux) (or large pages
(Windows) respectively). In both cases, the increased page size is 2 MB or more. Huge pages can-
not be allocated via a simplemalloc command but instead, there is special support inside the oper-
ating system. On Linux a huge page pool must be reserved beforehand, onWindows administrator
privileges are needed. With Linux kernel 2.6.38 and later, the operating system automatically
stores large memory chunks in huge pages. (This is called transparent or anonymous huge pages.)

Huge pages bring no benefit for most applications. Programs that require very little memory
would allocate at least 2 MB each if they used huge pages. In contrast, applications that allocate
a huge amount of memory in the beginning and then work on this memory for quite some time
can greatly benefit. At several points throughout this thesis, huge pages are used. A special
remark points this out each time.

C.4 LU -Factorization

Every regular square matrix M can be written as a product

M “ PLU U “

¨

˚

˝

˚ ¨ ¨ ¨ ˚

0
. . .

...

0 0 ˚

˛

‹

‚

L “

¨

˚

˝

1 0 0

˚
. . . 0

˚ ˚ 1

˛

‹

‚

with an upper triangular matrix U , a lower triangular matrix L with diagonal entries 1, and
a permutation matrix P . When solving a system of linear equations Mx “ y, the permuta-
tion is usually applied to the right hand side directly: LUx “ Py. The solution vector x is
obtained by solving Lb “ Py and Ux “ b via backward substitution. The factorization al-
gorithm is usually implemented by applying Gaussian elimination to the matrix A “ pM |yq.
Mathematically, Gaussian elimination multiplies the system with L´1P from the left yield-
ing L´1PA “ pL´1PM |L´1Pyq “ pL´1PPLU |L´1Pyq “ pU |bq since PP “ 1 and b is de-
fined by Lb “ Py. During the process, the lower left part of the former A is zeroed out. This
creates space to store the L matrix (without the ones on the diagonal and the zeroes above).
The LU -factorization thus carries out the transformation:

M “ pA|xq ùñ
´

LåU
ˇ

ˇ

ˇ
L´1Py

¯

“

´

LåU
ˇ

ˇ

ˇ
b
¯

.

See [Pre` 92] for more details.

C.5 Interleaved Memory

On NUMA systems, applications running on one CPU core usually allocate memory local to
that core. If all CPU cores in the system jointly work on one memory segment, the NUMA

210 C.6. FIELD PROGRAMMABLE GATE ARRAYS

architecture cannot provide equal memory bandwidth for all cores. In that case, an interleaved
memory allocation can be better, where the memory pages are distributed among all NUMA
nodes in a round-robin fashion.

C.6 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are integrated circuits whose behavior can be con-
figured by the user. To put it in a nutshell, in a circuit design driven by a clock, the design
describes how the signal on the output pins depends on the input signal and on the internal state
as well as how the internal state is modified every clock cycle. The FPGA is internally build
by many fixed function units (like FIFOs and shift registers) and it offers a huge set of registers
and LUTs (lookup tables). Registers store the internal state. LUTs are small cells with few in-
and outputs whose input to output mapping is configurable. In addition, the FPGA has a large
route grid, which allows to connect inputs and outputs of arbitrary components. The behavior
of the FPGA is determined by the LUT mappings and by the routes. Nowadays, FPGAs have
become more complex. They have block RAMs, PCI Express interfaces, DSPs, floating point
dividers, and even integrated PowerPC cores.

Hardware description languages like VHDL or Verilog formally specify structure and operation
of electrical circuits and are used to program FPGAs. The compiler compiles the source code
and creates the firmware, which is then flashed to the FPGA. This task consists of synthesis
(comprehending the code and mapping it to generalized units like registers, LUTs, and logic
gates), placement (physically placing the units on the FPGA, i. e. deciding which FPGA register
stores which signal, etc.), and routing (configuring the route network to provide the required
connections). For simplifying the programming for the user, enabling code reuse, and for suppor-
ting the compiler in interpreting, designs are usually composed of multiple entities encapsulating
subcomponents (in a way similar to classes in C++).

The frequency the FPGA operates at is not fixed but it depends on the configuration. The
compiler computes the maximum operation frequency out of known setup and hold times of
registers, delay of logic gates, length of routes and electrical signal speed, etc. It is possible to
pass timing constraints to placer and router, which they will try to meet while mapping the
design to the device. This allows one to specify a desired design frequency.

FPGA units such as registers and LUTs are grouped in slices. Larger and more expensive FPGAs
offer more slices. This means that they can carry a larger design but generally cannot run faster.
FPGAs of the same size are available in multiple speed grades declaring how fast the FPGA can
perform certain tasks – just like there are CPUs identical in design, which can operate at different
frequencies. All measurements in Section 18.4 are taken with an FPGA of speed grade 2, which
is the medium version. As an example, the n “ k “ 48 design which is listed with 556 MHz in
Table 18.5 can be run at 618 MHz by the faster FPGA version with speed grade 3.

The functionality of an FPGA design can be verified by a behavioral simulation. Fig. C.1 presents
such a simulation for the FPGA failure erasure coding introduced in Section 18.3. The simulation
design connects an encoding entity with a decoding entity and checks whether the final output
matches the input. After a certain time, the input data has propagated through the pipeline and
the simulation shows that the design operates correctly.

Figure C.1: Simulation of FPGA-based Reed-Solomon Encoding and Decoding

211

Appendix D

TPC Tracking Model

Let measurements mk depend linearly on state vectors rtk such that rtk`1 depends linearly on the
previous state rtk ([Roh 10 I, 2.1] presents the model in detail). Let rk be an estimator:

rtk “ Akr
t
k´1 ` νk mk “ Hkr

t
k ` ηk εk “ rtk ´ rk Ck “ covpεkq

The Kalman filter determines the best linear unbiased (xεky “ 0) estimator, which minimizes σ2
k “

x||εk||
2y, if the following conditions are met: (See [Kal 60] for a proof.)

xηkη
T
l y “ xνkν

T
l y “ xηky “ xνkby “ 0 covpηkq “ Vk covpνkq “ Qk

It initializes r0 arbitrarily and C0 to infinity, then alternately performs an extrapolation (D.1)

r̃k “ Akrk´1 C̃k “ AkCk´1A
T
k `Qk (D.1)

Ck “ C̃k ´KkHkC̃k χ2
k “ χ2

k´1 ` ζTk pVk `HkC̃kH
T
k q
´1ζk (D.2)

Kk “ C̃kH
T
k pVk `HkC̃kH

T
k q
´1 ζk “ pmk ´Hkr̃kq rk “ r̃k `Kkζk

and a filter step (D.2). A particle of charge q in a magnetic field follows a trajectory1:

rptq “ r0 `
`

R ¨ cosωpt´ t0q ` ϑ0, R ¨ sinωpt´ t0q ` ϑ0, λpt´ t0q
˘T

The employed state vector rtk “ rtpxkq is modeled after X not t. It has transformed coordinates:

Y “ r0,y `R ¨ sinpωpt´ t0q ` ϑ0q Z “ r0,z ` λpt´ t0q sinpϕq “ cospϑq

λ “
dz

ds
“

pz
|p|

κ “
q

pt
“
Bz
R

pds “ |dr|q

The extrapolation from x0 to the state vector rrt “ prY , rZ, sinprϕq,rλ,rκqT at x “ x0 `4x

rZ “ Z ` λ ¨ 2
´

κBz

¯´1

arcsin
´1

2
κBz

4x
cospϕ` rϕq

¯

loooooooooooooooooooooomoooooooooooooooooooooon

ds

sinprϕq “ sinpϕq `4x ¨Bz ¨ κ

rY “ Y ` cosprϕq ´ cospϕq “ Y `4x ¨ tan
´ϕ` rϕ

2

¯

“ Y `4x ¨ sinpϕq ` sinprϕq

cospϕq ` cosprϕq

is non-linear. In this case, one can linearize rr « Flinprq “ Fxpr0q ` BFx|r0pr ´ r0q and repeat
all the Kalman filter iterations, using each result as linearization point in the next repeat to
approximate the optimal estimator [Gor 12, 1.3]. In contrast to the merger, the slice tracker
assumes covpY, Zq “ 0 for performance reasons. Its filter step (D.2) reads:

Yk “ rYk `
C0,0
k

σ2
y ` C0,0

k

py ´ rYkq Zk “ rZk `
C1,1
k

σ2
z ` C1,1

k

pz ´ rZkq λk “Ăλk `
C3,1
k

σ2
z ` C1,1

k

pz ´ rZkq

κk “Ăκk `
C4,0
k

σ2
y ` C0,0

k

py ´ rYkq sinpϕkq “ Ăsinpϕkq `
C2,0
k

σ2
y ` C0,0

k

py ´ rYkq

1 The transversal momentum pt is the projection of the momentum orthogonal to the beam.

212

Appendix E

CPU Tracker Performance
Evaluation

The CPU tracker uses trivial parallelization in which each thread processes a different slice. This
turned out to be both the simplest and most efficient way. For many-core processors, this leads
to a problem. Each event consists of 36 slices. The compute nodes at CERN, dual socket systems
with either twelve-core Magny-Cours or quad-core Nehalems with Hyperthreading, offer 16 or 24
(virtual) cores, both no divisor of 36. Hence, no balanced scheduling is possible. Processing
multiple events concurrently would overcome this problem. The GPU tracker could benefit from
this approach, too. However, the current HLT framework does not support processing multiple
events in one component simultaneously. For this reason, in order to enable a fair comparison,
in this entire thesis both GPU and CPU tracker always process only one event at a time. The
benchmarks are performed mostly on a single quad-core Nehalem. Since the tracker can benefit
from Hyperthreading (see [Roh 10 I, 9.2.1]), but the thread count eight does not divide 36, the
benchmarks use twelve concurrent slices. Fig. E.1 demonstrates that the scheduler introduces
huge variations, which are high for four threads already and increase enormously with twelve
threads because twelve is no multiple of the core count eight. In order to reach the 0.2 % statistical
error limit, several hundred runs are needed.

 0

 50

 100

 150

 200

 250

 130 135 140 145 150 155 160 165
Time [ms]

(a) Four Threads

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 100 200 300 400 500 600
Time [ms]

(b) Twelve Threads

Figure E.1: Processing Time of a Single Slice
[III]

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4

Th
re

ad
 T

im
e

[m
s]

Thread

1112 1156 1195 1197

(a) Four Threads

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7 8 9 101112
Thread

652

841
897

1057

836

960

656

1072
988

682

966

779

(b) Twelve Threads

Figure E.2: Active Tracking Time of each
Thread [III]

Fig. E.2 shows the total execution time of each thread for a single event in a four- and a twelve-
thread configuration. The average thread execution time of twelve threads is about 19 % lower
than the maximum thread execution time. In this thesis, performance plots like Fig. 6.1 always
show average values for a single slice as the time for independent tracking steps. But since the
tracker always processes one full event at a time, the full tracking time is defined as the maximum
of the thread times (even though the average time is lower). Hence, the full tracking time is longer
than the sum of the individual times.

213

Appendix F

Explicit Encoding Examples

F.1 Code Examples

From the theorem of Grunwald Wang, only the existence of MDS-codes on R{2bR can be deduced.
Naturally, an explicit description of a code is desired. For many l, such codes can be gained
through cyclotomic fields. This section presents the example of these fields in detail.

Definition 33: The mth roots of unity are the complex numbers ζjm “ e
2πij
m . A root is called

primitive if j and m are coprime. The field Qpζmq is called the field of mth roots of unity. In the
following, it is denoted by Km. All these fields are called cyclotomic fields.

The Galois theory of cyclotomic fields is pretty well understood. The following proposition
summarizes the (well-known) properties.

Proposition 34: Consider the field Km. Then:

(i) rKm : Qs “ ϕpmq with ϕ being the Euler-ϕ function, which is the count of numbers smaller
than and coprime to m.

(ii) Both the field and the ring of algebraic integers are generated as an algebra by a single
primitive mth root of unity.

(iii) The Galois group G “ GalpKm{Qq is isomorphic to pZ{mZq
˚
.

(iv) The minimal polynomial Φmpxq can be calculated recursively by

Φmpxq “
Xm ´ 1
ź

d|m
dăm

Φdpxq
.

(v) An integral basis of OKm is given by t1, ζm, ζ2m, ..., ζ
ϕpmq´1
m u.

The integral basis is of particular importance for generating encoding matrices. A proof can be
found in [Neu 99, 10.2]. Fortunately, also the ramification of primes in Km{Q is well known and
given by the following

Proposition 35: Write m “ pν ¨ x with p - x. Let f be minimal with pf ” 1 mod x. Then the
ramification index is e “ ϕppνq and the inertia degree equals f .

For a proof see [Neu 99, 10.3]. From Proposition 35 it follows immediately that the prime 2
is inert if and only if 2 - m and f “ ϕpmq is minimal such that 2f ” 1 mod m. The latter
condition is equivalent to 2 generating the multiplicative group pZ{mZq

˚
. This further translates

to 2
ϕpmq

2 ı 1 mod m ô 2
ϕpmq

2 ” ´1 mod m ô m | 2
ϕpmq

2 ` 1. Furthermore, the proof of
Lemma 15 showed that the extension must be cyclic, i. e. m must be a prime power. This gives
some examples for MDS-codes on OKm .

214 F.2. GENERATION ENCODING MATRICES

Example 36: Assume p “ 2, m “ p1s a prime power with p1 ‰ 2, ϕpmq “ pp1´1qp1s´1 “ l ě n`k

and m | 2
l
2`1. Consider n`k pairwise disjoints elements λi of the form (out of 2l combinations)

λi “

#

1

0
`

#

ζm

0
`

#

ζ2m
0

` ¨ ¨ ¨ `

#

ζ
ϕpmq´1
m

0
.

Then the matrix defined by Mij “ λji represents an MDS-code. Clearly, an analogous result holds
for an arbitrary prime instead of 2.

Each of the l automorphisms of the Galois group maps ζm to a different primitive root of
unity ζjm. This gives an explicit rule for inverting elements using the algorithm from the proof
of Proposition 11. Using the explicitly known minimal polynomial, elements of Km can be
multiplied. A simple bound for the complexity of creating the encoding and decoding-matrix
is Oppn` kq3 ¨ plogpn` kqq2q.

A simple calculation reveals that cyclotomic fields deliver the following admissible l:
1, 2, 4, 6, 10, 12, 18, 20, 28.

Since all of them are imaginary extensions, the corresponding totally real subextensions extend
this list to:
1, 2, 3, 4, 5, 6, 9, 10, 12, 14, 18, 20, 28.

F.2 Generation Encoding Matrices

The following appendix explicitly formulates how matrices for codes on Z{pbZ are generated using
cyclotomic extensions. It is assumed that l P t2, 4, 6, 10, 12u. In the second part, a code that
operates on F2 is created for arbitrary l.

F.2.1 Codes on ZZZ{pbZZZ

In the following, R denotes the ring Z{2bZ and S denotes the extension RrXs{f with a normalized
irreducible polynomial f “

řl
i“0 αiX

i of degree l. For computations on computers, the algorithm
is expressed only in terms of operations within R, i. e. setting b “ 32 usual integer calculation
with 32-bit integers can be used. All following operations are integer calculations with overflow
where every division is rounded down.

At first, by exhaustive search an admissible l is determined that satisfies the conditions (see
Example 36):

m “ ps, ϕpmq “ pp´ 1qps´1 “ l ě n` k, p prime.

For cyclotomic extensions, the roots of the irreducible polynomial (of a root of unity) are the
primitive roots of unity. Thus, the polynomial Φm can be recursively calculated by

Φmpxq “
xm ´ 1
ź

d|m
d‰m

Φdpxq
.

Consider the basis 1, X,X2, ¨ ¨ ¨ , X l´1 of S over R. In the following, every element x of S is
represented by a tuple of elements xpiq P R, (0 ď i ă l). Addition (z “ x ` y) is performed
component-wise (zpiq “ xpiq ` ypiq). Multiplication (z “ x ¨ y) is performed in two steps: first a
distributive multiplication is performed:

wpiq “
ÿ

j`k“i

xpjq ¨ ypkq p0 ď i ď pl´ 1q2q.

APPENDIX F. EXPLICIT ENCODING EXAMPLES 215

Second, high power coefficients are reduced recursively using the minimal polynomial. For k ě l,
starting with the highest k (in this case k “ pl´ 1q2), the wpiq are updated via

wpiqnew “

$

’

&

’

%

0 i “ k

wpiq ´ wpkq ¨ αi`l´k k ´ l ď i ă k

wpiq i ă k ´ l

(F.1)

until all elements wpiq, i ě l are zero. These wpiq form the result zpiq “ wpiq.

For creating the Vandermonde matrix, n ` k values λj , 0 ď j ă n ` k are chosen which are
pairwise distinct modulo 2. A possible choice is λpiqj “

j
2i mod 2. (Calculated in Z and rounded

down.) An pn` kq ˆ n Vandermonde matrix V is generated by Vji “ λij .

The inverse I of the upper nˆn submatrix of V is calculated by Gaussian elimination. For this,
the inverse of a scalar element x P S is calculated in the following way: first the Galois conjugates
of x are multiplied:

w “
ź

σPGalpKm{Qq
σ‰1

σpxq “
ź

gcdpd,mq“1
1ădăm

σdpxq with pσdpxqq
piq “

ÿ

d¨j“i
jăl

xpjq. (F.2)

Next, w is reduced in the same way as for the multiplication and the product y “ w¨x is calculated
(using the reduced w). Since y is the norm of x, it is ensured that y P R, i. e. ypiq “ 0 for i ‰ 0 and
that gcdpy, 2q “ gcdpyp0q, 2q “ 1. Using the extended Euclidean algorithm two integers β, γ can
be calculated such that βyp0q ` 2bγ “ 1. The inverse of x is obtained by calculating x´1 “ βw.

The lower kˆn submatrix M of V ¨ I is the encoding-matrix of the MDS-code. The multidimen-
sional lkˆ ln encoding-matrix is created by substituting the scalars Mi1j1 P S of M by lˆ l sub-
matrices with entries pMi1j1qij . The matrix A corresponding to a scalar a is constituted such that
its jth column consists of the components of the tuple obtained by the product a ¨ ej . Here, ej is
the jth basis vector defined by epiqj “ δij .

The resulting matrix can be used for IGEMM encoding. For BGEMM encoding, the least signifi-
cant bit of each matrix entry is replicated to all bits of that entry (xÑ px mod 2q¨0xFFFFFFFF).
The decoding-matrix is created by Gaussian elimination. (A faster version could use the explicitly
known inverses of Vandermonde matrices.)

F.2.2 XOR-only Codes for arbitrary l

The above described algorithm requires a cyclotomic extension with a particular m. This is not
possible for arbitrary l. A simple change to the algorithm allows one to use arbitrary l but only
for BGEMM and XOR-only encoding.1

The minimal polynomial f must be replaced by an arbitrary irreducible polynomial of degree l
which remains irreducible in F2. QEnc uses the polynomials from [Ser 98]. In the inversion step
of scalars, w is calculated by:

w “
ź

0ădăl

σdpxq with pσdpxqq
piq “

ÿ

2d¨j“i
jăl

xpjq.

Also the IGEMM and the Add -only code can in principle operate with arbitrary l. However, as
described before, in certain cases the construction with cyclotomic fields employed by QEnc does
not work. It is a straight forward task to use the alternative construction from Section 16.3.2, but
that is a major effort which turned out to be unnecessary since the binary codes perform better.
1 A more elaborate modification (see Lemma 21) could provide support for the IGEMM with arbitrary l as well, but

this was not implemented in QEnc since BGEMM showed better performance anyway.

216 F.3. C EXAMPLE CODE FOR QENC BLOCKING LEVELS

F.3 C Example Code for QEnc Blocking Levels

Listing F.1 illustrates all the blocking levels of QEnc in form of a C++ example. It includes the
temporary variables for register blocking, but in order to keep it simple, it neither includes the
scratch registers nor the Strassen algorithm nor any of the optimizations applied to the assembler
code in Chapter 17. The assembler code is in principle the completely unrolled version (except
for the loops over k and k0 of course) of this C++ example, with all the tweaks applied. (See
Listing 17.25 for an exemplary assembler code.)�
void encode (i n t ∗ pC, i n t ∗ pD, i n t ∗ pM, i n t nRows , i n t nCols , i n t nBlocks)
{
const i n t bReg i s t e r = 14 , bL1Data = 96 , bL2Code = 2048 , bL2Data = 96 ;
//The L1 In s t r u c t i o n Blocking Constants are chosen f o r 32 KB In s t r u c t i o n Blocks
const i n t bL1CodeX = getCodeBlockingNBlocksX (bL1Data , bRegister , nRows , nCols) ;
const i n t bL1CodeY = getCodeBlockingNBlocksY (bL1Data , bRegister , nRows , nCols) ;
memset (pC, 0 , nRows ∗ nBlocks ∗ s i z e o f (pC [0])) ;

f o r (i n t i 0 = 0 ; i 0 < nCols ; i 0 += bL2Code)
{ //Outermost loop over Columns o f M
f o r (i n t j 0 = 0 ; j 0 < nRows ; j 0 += bL2Code)
{ //Outermost loop over Rows o f M
const i n t nCols0 = min (nCols , i 0 + bL2Code) , nRows0 = min (nRows , j 0 + bL2Code) ;
f o r (i n t k0 = 0 ; i 0 < nBlocks ; k0 += bL2Data)
{ //Outermost Loop over Input Data (I n s i d e the Loop over M f o r L2 Code Blocking)
f o r (i n t i 1 = i 0 ; i 1 < nCols0 ; i 1 += bL1CodeX ∗ bL1Data)
{ //X Part o f L2 I n s t r u c t i o n Blocking
f o r (i n t j 1 = j0 ; j 1 < nRows0 ; j 1 += bL1CodeY ∗ bReg i s t e r)
{ //Y Part o f L2 I n s t r u c t i o n Blocking
const i n t nCols1 = min (i 1 + bL1CodeX ∗ bL1Data , nCols0) ;
const i n t nRows1 = min (j1 + bL1CodeY ∗ bRegister , nRows0) ;
f o r (i n t k = k0 ; k < k0 + bL2Data && k < nBlocks ; k++)
{ //L2 Data Blocking
f o r (i n t i 2 = i 1 ; i 2 < nCols1 ; i 2 += bL1Data)
{ //X Part o f L1 I n s t r u c t i o n Blocking
f o r (i n t j 2 = j1 ; j 2 < nRows1 ; j 2 += bReg i s t e r)
{ //Y Part o f L1 I n s t r u c t i o n Blocking
r e g i s t e r i n t tmp [bReg i s t e r] ; // Reg i s t e r s f o r Reg i s t e r Blocking
f o r (i n t j = 0 ; j < bReg i s t e r ; j++) tmp [j] = 0 ;

f o r (i n t i = i 1 ; i < i 1 + bL1Data && i < nCols1 ; i++)
{ //L1 Data Blocking
f o r (i n t j = j1 ; j < j1 + bReg i s t e r && j < nRows1 ; j++)
{ // Reg i s t e r Blocking
i f (pM[j ∗ nCols + i]) tmp [j] ^= pD[k ∗ nCols + i] ;

}
}

//Save Data from Reg i s t e r Blocking
f o r (i n t j = 0 ; j < bReg i s t e r ; j++) pC[k ∗ nRows + j] ^= tmp [j] ;

} } } } } } } } }
� �
Listing F.1: All Blocking Levels in QEnc

In the code, nRows is the number k of rows of M , nCols the number n of columns of M , nBlocks
the number S of data blocks, pC points to the encoded data C, pD points to the source data D,
and pM points to M . (Consider that the multiplication is C “ D ¨MT .) All blocking levels are
visual as one loop, some requiring two loops due to the two-dimensional nature of matrices.

The modifications for other data types or the Add -only variant are marginal. The latter can
be realized simply by exchanging the XOR operations for additions. The 32-bit int data type
can be replaced by __mm128 for SSE (and by __mm256 for AVX) – in that case also SSE
loads, stores, and logical operations must be used. The matrix M contains only single-bit entries
storable with a char or in bit-arrays.

217

Appendix G

CALDGEMM & HPL-GPU
Settings

Table G.1 lists most of the parameters CALDGEMM and HPL-GPU offer for tuning. The table
lists suggested values and whether a feature should be used respectively for different exemplary
platforms: a system with a slow CPU (e. g. one dual core processor), a system where both CPU
and GPU provide significant processing capabilities (e. g. the LOEWE-CSC), and multi-GPU
systems like Sanam based on an Intel and an AMD platform. The section of this thesis which dis-
cusses a feature is listed below the feature name. In cases where sufficient benchmarks have been
performed, the relative performance gain on the exemplary systems is shown. It must be noted
that these values are only based on the servers used for benchmarks in this thesis. Other but simi-
lar systems might show different results. Certain features have constrains, have been developed for
a particular hardware, or improve energy efficiency rather than performance (and might even slow
down HPL slightly). Such relevant dependencies are printed in boldface within the comments be-
low each feature. The suggestions of features for the exemplary systems are categorized as follows:

• No: Does not apply to this platform/Should not be used.
• Optional: Might yield small improvements but is not that relevant.
• Recommended: Should be used if there are no issues.
• Mandatory: Required on this platform to reach good performance or to enable other
features.

• Depends: Results depend on other factors mentioned in the respective comment below.

Feature Slow CPU Single-GPU Multi-GPU Multi-GPU
(Intel) (AMD)

Blocking Size Nb “ k 512 – 1024 « 1024 « 1920 « 2048
(12.6.2.1) Larger Nb shifts workload from the DGEMM to the less efficient factorization,

smaller Nb needs more memory and PCIe bandwidth. Large and small Nb can
slow down GPU DGEMM.

DGEMM Tile Size (h) ď 4096 ď 4096 ď 3072 ď 3072
(11.2.5.1) Usually automatically adjusted, large h for large matrices and small h for small

matrices. Larger blockings (Nb) favor smaller tiles. Certain values might lead
to bad DGEMM kernel performance.

Kernel Output via Zero-Copy
to Host

Depends Depends No
(« 91 % slower)

Depends

(12.5.2) Usually faster on Cypress and slower on Tahiti but depends on the system. On
multi-GPU systems this can slow down the GPU DGEMM due to memory
latencies. Mandatory on Cayman due to DMA problem (Section 12.8.3.1). Not
compatible with Intel chipsets (Section 12.5.2).

Continued on next page

Table G.1: CALDGEMM & HPL-GPU Settings

218

Feature Slow CPU Single-GPU Multi-GPU Multi-GPU
(Intel) (AMD)

Table G.1 – Continued from previous page

Implicit DMA Synchronization Depends Depends Mandatory
(« 28 %)

Depends

(12.5.2) Should be used if supported by the driver if the Zero-Copy output is not used.
Hence it is strongly recommended on Intel platforms. If the driver does not
support this, there is a fallback for Intel platforms.

MergeBuffer Threads per GPU 1 1 – 2 1 2
(11.3.4.1) If Zero-Copy is used without the binary driver patch, two such threads are re-

quired on AMD systems. Interlagos can run two threads on the two cores of one
module but should not mix DGEMM and MergeBuffer threads on one module.

Asynchronous DMA Transfer Recommended Mandatory
(« 16 %)

Mandatory Mandatory

(11.2.4.6) The asynchronous transfer is required for the pipeline and is the more important
the faster the system is.

Lookahead 1 No Recommended
(« 8 %)

Recommended
(« 22 %)

Recommended
(« 11 %)

(11.3.4) Hides factorization and broadcast time behind GPU DGEMM. Systems with slow
CPU should rather offload more tasks to GPU.

Lookahead 2a No Optional
(« 2 %)

Recommended
(« 14 %)

Recommended
(« 12 %)

(11.3.4.2) Pipelines DTRSM and LASWP with GPU DGEMM.

Lookahead 2b No Optional Recommended
(« 12 %)

Recommended

(14.2.4.2) Pipelines Z-Broadcast with GPU DGEMM.

Early Lookahead No Optional Recommended
(« 2 %)

Recommended

(14.2.2) Shifts more DGEMM workload to GPU with lookahead enabled. Important if
CPU is the limiting factor (multi-GPU AMD systems) and for power effi-
ciency.

Dynamic Lookahead Turnoff No Depends No Mandatory
(11.3.4.2) Mostly on AMD systems it is better to turn of lookahead at a certain time,

serializing and speeding up the individual tasks.

Parallel DMA Threads No No Recommended
(« 8 %)

Recommended
(« 16 %)

(14.2.4.1) Uses one management thread per GPU. Grouped DMA threads should be used
instead if power efficiency is more important than performance.

Grouped DMA Threads No No Recommended Recommended
(14.2.4.1) Group management threads for GPUs.

Repinning DMA Threads No No Mandatory
(« 30 %)

No

(14.2.1) This is mandatory on Intel platforms when GPUs are connected to different CPU
dies and when the grouped DMA mode is not used.

Combined CPU/GPU
DGEMM

Optional Mandatory
(« 34 %)

Recommended No

(11.2.3) Use both CPU and GPU for DGEMM. Does not always work for multi-GPU
since it causes plenty of memory load and can slow down the GPU DGEMM.

Second Phase CPU DGEMM Optional Recommended Optional No
(11.2.4.5) Dynamically schedule a second large CPU DGEMM run in order to achieve

higher CPU utilization.

Continued on next page

Table G.1: CALDGEMM & HPL-GPU Settings

APPENDIX G. CALDGEMM & HPL-GPU SETTINGS 219

Feature Slow CPU Single-GPU Multi-GPU Multi-GPU
(Intel) (AMD)

Table G.1 – Continued from previous page

Third Phase CPU DGEMM Optional Optional No No
(11.2.4.5) Uses a work-stealing scheduler for full CPU and GPU utilization after the initial

two large CPU DGEMM runs. Causes too much overhead for multiple GPUs.

Non Square Tile Size Mandatory No Recommended Mandatory
(12.8.4) Use non square tiles in DGEMM. This provides more freedom to choose the

CPU/GPU splitting ratio. It can be used to shift more DGEMM workload to the
GPU (by reducing the minimum CPU part) or to improve the CPU utilization
without the dynamic scheduler. This feature is important when the CPU is a
bottleneck and for power efficiency. Can slightly slow down GPU DGEMM.

Balanced CPU Affinities Mandatory
(« 156 %)

No No Recommended

(12.8.4) Usually, GPU-related threads should be pinned to CPU cores close to the GPU.
When memory bandwidth is the bottleneck, they should be distributed on all CPU
dies to aggregate more bandwidth. Systems with few CPU cores should use all
cores anyway.

NUMA-aware Thread Affinities No Optional Recommended Recommended
(12.8.4) Distributes all CPU-related workloads equally on all NUMA nodes as far as

possible.

Factorization Parameters 64/2 64/2 32/2 16/4 – 32/2
(NBMin/NBDiv)
(12.8.4)

The parameters can be optimized for faster factorization and for less resource
requirements on multi-GPU AMD platforms. They can be adjusted during
the HPL run speeding up the DGEMM during the GPU dominated phase and
the factorization during the CPU dominated phase.

Reduced Factorization Thread No Depends Depends Mandatory
Count
(11.3.4.1)

Important for AMD systems with lookahead. Improves power efficiency in
general.

Dynamic BLAS Thread Count No Depends No Recommended
(12.6.4.2) This improves the performance on AMD systems. CALDGEMM provides a

patch for GotoBLAS and a wrapper for ACML.

Offload Factorization to GPU Recommended No No No
(12.6.4.1) In general, all systems could profit from GPU-based factorization at the end of

the run. However, the current implementation does not support this. This would
also improve the power efficiency.

Split DTRSM in DTRTRI and
DGEMM

Recommended
(« 16 %)

No No No

(12.11) This offloads a large fraction of the DTRSM workload to the GPU.

Dynamic Nb Reduction Recommended No No Optional
(12.8.4) Speeds up the last iterations of HPL by shifting workload to the GPU. Incompat-

ible with multi-node runs.

Huge Pages Recommended Depends Recommended Recommended
(« 3 %)

(11.2.5.1) Does not work well on certain systems. Must be evaluated for each server indi-
vidually.

Interleaved Memory No Depends Recommended Mandatory
(C.5) Interleaved memory should be used on all NUMA systems. The influence is

stronger on AMD CPUs than on Intel CPUs.

Alternate Tile-Scheduler No No Recommended Recommended
(12.6.2.3) The alternate scheduler (about 2 % faster) becomes mandatory on multi-GPU

systems if the GPU memory does not suffice for enough BBuffers.

Continued on next page

Table G.1: CALDGEMM & HPL-GPU Settings

220

Feature Slow CPU Single-GPU Multi-GPU Multi-GPU
(Intel) (AMD)

Table G.1 – Continued from previous page

Multithreaded Divide Buffer No No Recommended Optional
(up to 2 %)

(12.6.2.2) At the beginning of the run when the BBuffers are not already filled, the Divide-
Buffer routing can be the bottleneck. A second thread is useful if multiple GPUs
are present and connected to different CPU dies. In that case, it is strongly rec-
ommended on Intel systems, where the obligatory repinning of the DMA thread
occupies an additional CPU core anyway.

Binary AMD Driver Patch Depends Depends
(up to 9 %)

No Depends

(11.2.5) Recommended on all AMD systems with the Zero-Copy kernel output.

GotoBLAS Patch
(11.2.3.1)

Mandatory if GotoBLAS is used as BLAS library. Newer systems like Inter-
lagos and Sandy-Bridge should use MKL or ACML and do not need this.

MKL BLAS Library Depends Depends Mandatory No
(12.9) About as fast as GotoBLAS on older Intel CPUS, mandatory for AVX and for

multiple GPU since it lowers the memory load.

ACML BLAS Library Depends Depends No Depends
(12.9) Only recommended for AMD CPUs withAVX support. On Magny-Cours CPUs

GotoBLAS is significantly faster

GCC OpenMP Patch
(14.2.1)

Recommended for AMD ACML 5.2, since it adds support for ACML’s variable
thread count feature.

Transposed Matrices in Kernel
(11.2.5.1)

Usually, transposed B-matrix for Cypress and Cayman GPU, transposed A-
matrix for Tahiti GPU. For very small matrices the kernel with the matching
parameter is better since the pipeline cannot hide the latency for transposition.

Shift Even Matrix Rows
(14.1)

Enable on Tahiti GPU, disable on Cypress GPUs, on Cayman GPU, and for
power efficiency.

InfiniBand RDMA
(11.3.3)

Improves performance by up to « 2 % but leads to incompatibilities in combina-
tion with GPUs on certain platforms.

Include Padding
during U -broadcast
(14.2.4.2)

This is incompatible with lookahead 2b but it is recommended otherwise.

MPI Data Types
during U -broadcast
(14.2.4.2)

Should be used if the padding is not transferred during U-matrix broadcast. Cur-
rently slow with FDR InfiniBand.

64-bit DMA Transfers
(12.8.3.2)

Should be enabled on all Cayman GPUs to circumvent a problem with the DMA
engine.

DMA Fallback without implicit
synchronization
(12.5.2)

Fallback for AMD drivers where the implicit synchronization does not work.
About unitr2 s% slower.

Table G.1: CALDGEMM & HPL-GPU Settings

221

Appendix H

Test & Development Systems

The following systems were used for benchmarks:

System CPU Clock GPU Clock Memory Clock Operating System

[I] qon0 (Development system
of the author)

Intel Nehalem Core i7-975 4C 3.78GHz NVIDIA GeForce GTX285 700MHz 12GB DDR3 1600MHz Windows Vista &
Gentoo Linux 64-
Bit

[II] qon1 (Upgrade of qon0 with Intel Nehalem Core i7-975 6C 4GHz NVIDIA GeForce GTX580 772MHz 24GB DDR3 1600MHz Windows 7 & Gen-
new CPU, GPU and Mem-
ory)

AMD Radeon 6970 880MHz too Linux 64-Bit

[III] gpu-dev00 (NVIDIA deve- 2ˆIntel Nehalem Core i7-930 4C 2.8GHz NVIDIA GeForce GTX295 576MHz 12GB DDR3 1333MHz Ubuntu Linux
lopment system at FIAS) NVIDIA GeForce GTX480 700MHz 64-Bit

NVIDIA GeForce GTX580 772MHz

[IV] gpu-dev01 / gpu-dev02
(AMD dual-GPU develop-
ment system at FIAS)

2ˆIntel Nehalem E5520 4C 2.27GHz AMD Radeon 5970 700MHz 24GB DDR3 1066MHz Ubuntu Linux 64-
Bit / SUSE Enter-
prise Server 11.3
with Real-Time
Extensions

[V] gpu-dev03 – gpu-dev08 2ˆAMD Magny-Cours 6172 12C 2.1GHz AMD Radeon 5870 850MHz 48GB (02 / 03) / 1333MHz openSUSE Linux
(Early development nodes
with LOEWE-CSC configu-
ration for HPL)

64GB (05-08) DDR3 11.2 64-Bit

[VI] gpu-dev09 2ˆAMD Magny-Cours 6174 12C 2.2GHz 3ˆAMD Radeon 6970{ 880MHz 128GB DDR311333MHz openSUSE Linux
(Development system for
multi-GPU DGEMM)

5870{V7800{79702 11.3 64-Bit

[VII] gpu-dev10 2ˆAMD Interlagos 6278 16C 2.4GHz 3ˆAMD Radeon 7970 925MHz 128GB DDR3 1600MHz openSUSE Linux
(Development system for
multi-GPU DGEMM on
Interlagos)

11.3 64-Bit

[VIII] gpu-dev11 2ˆIntel Sandy Bridge E2650 8C 2.0GHz 4ˆAMD Radeon 7970 925MHz 128GB DDR3 1600MHz openSUSE Linux
(Development system for
multi-GPU DGEMM on
Sandy Bridge)

12.1 64-Bit

[IX] LOEWE-CSC GPU Node 2ˆAMD Magny-Cours 6172 12C 2.1GHz AMD Radeon 5870 700 - 64GB DDR3 1333MHz Scientific Linux
(GPU-Nodes of the
LOEWE-CSC)

850MHz 64-Bit

[X] LOEWE-CSC CPU Quad
Node (Quad-Nodes of the
LOEWE-CSC)

4ˆAMD Magny-Cours 6172 12C 2.1GHz - 128GB DDR3 1333MHz Scientific Linux 64-
Bit

[XI] cngpu01 – cngpu34 (GPU-
Compute-Nodes at CERN
for the ALICE GPU Tracker)

2ˆAMD Magny-Cours 6172 12C 2.1GHz 1ˆNVIDIA GTX480 700MHz 64GB DDR3 1333MHz Ubuntu Linux 64-
Bit

[XII] avx-dev (Intel based AVX
development system)

1ˆIntel Sandy Bridge i5-2500 4C 3.3GHz3 - 8GB DDR3 1600MHz Linux 64-Bit

[XIII] dual6990 1ˆAMD Magny-Cours 6176 12C 2.3GHz 2ˆAMD Radeon 6990 830MHz 128 {256GB DDR3 1333MHz Linux 64-Bit

[XIV] kacst (Sanam Node) 2ˆIntel Sandy Bridge E2650 8C 2.0GHz 2ˆAMD S10000 950MHz 128GB DDR3 1600MHz SLES 11 SP2

[XV] tyan0 2ˆIntel Xeon X5680 6C 3.33GHz 3ˆAMD FireStream 9350 700MHz 24GB DDR3 1333MHz Linux 64-Bit

[XVI] sm0 (SuperMicro AMD
blade system)

2ˆAMD Magny-Cours 6174 12C 2.2GHz - 64GB DDR3 1333MHz Chaos

[XVII] sm1 (SuperMicro Intel blade
system)

2ˆIntel Xeon X5650 6C 2.67GHz - 64GB DDR3 1333MHz Chaos

[XVIII] tesla (NVIDIA Fermi Tesla
test syste)

2ˆIntel Xeon X5650 6C 2.67GHz 2ˆNVIDIA M2070 700MHz 24GB DDR3 1333MHz Linux 64-Bit

Table H.1: List of Benchmark and Development Systems

1 The node offers 128 GB memory for scalability tests. To keep the HPL and the DGEMM results comparable with
other systems, all single-GPU runs were restricted to 64 GB matrices where not explicitly stated otherwise.

2 For some DMA comparison tests, the 6970 were exchanged by 5870 GPUs. For power efficiency tests, also V7800
GPUs were employed. In 2012, the node was upgraded with 7970 GPUs.

3 In turbo mode the CPU clocks up to 3.7 GHz.

222

Appendix I

Source Codes

This appendix lists references on where the source code of all programs developed during this
thesis can be obtained:

ALICE HLT TPC GPU Tracker: The standalone version can be obtained via subversion
from: http://qon.zapto.org/var/svn/catracker/standalone. For running the tracker in the
ALICE Off-line Project (http://aliweb.cern.ch/Offline/), the cagpu library is needed, which
can be obtained from http://qon.zapto.org/var/svn/catracker/standalone/cagpubuild.

CALDGEMM/AMDBinary Driver Patch/GotoBLAS Patch/GCC OpenMP Patch:
The patches for GotoBLAS, for the GCC OpenMP library (libgomp), and the binary patch for
the AMD Driver are bundled with CALDGEMM in a git repository: git://code.compeng.
uni-frankfurt.de/caldgemm.git.

The project page is located at http://code.compeng.uni-frankfurt.de/projects/caldgemm.

HPL-GPU: HPL-GPU is hosted via git at: git://code.compeng.uni-frankfurt.de/hpl.
git (See also http://code.compeng.uni-frankfurt.de/projects/caldgemm).

QEnc: The QEnc encoding library is available via subversion from: http://qon.zapto.org/
var/svn/qenc.

DMA/MPI Benchmark Suite: The DMA benchmark suite for PCIe bandwidth measure-
ments, verification of full duplex asynchronous DMA capabilities, and MPI benchmarks is avail-
able at http://qon.zapto.org/var/svn/benchsuite.

http://qon.zapto.org/var/svn/catracker/standalone
http://aliweb.cern.ch/Offline/
http://qon.zapto.org/var/svn/catracker/standalone/cagpubuild
git://code.compeng.uni-frankfurt.de/caldgemm.git
git://code.compeng.uni-frankfurt.de/caldgemm.git
http://code.compeng.uni-frankfurt.de/projects/caldgemm
git://code.compeng.uni-frankfurt.de/hpl.git
git://code.compeng.uni-frankfurt.de/hpl.git
http://code.compeng.uni-frankfurt.de/projects/caldgemm
http://qon.zapto.org/var/svn/qenc
http://qon.zapto.org/var/svn/qenc
http://qon.zapto.org/var/svn/benchsuite

223

List of Figures

2.1 Block Diagram of Dual Socket Magny-Cours CPU with NUMA 13

2.2 Single Threaded NUMA Memory Performance (Memory Read Bandwidth versus
Memory Address) . 14

3.1 A generalized GPU Design . 16

3.2 GPU and CPU Performance Evolution . 17

4.1 Exemplary Kernel Time Distribution (ALICE GPU Tracklet Constructor) 19

4.2 Time Distribution of a Full Run of the ALICE GPU Tracker on Fermi 19

4.3 Cypress Kernel Time Distribution (DGEMM Kernel) 19

5.1 LHC with four major Experiments . 21

5.2 The ALICE Detector . 21

5.3 ALICE Time Projection Chamber . 22

5.4 Tracks found by the Tracker in a simulated Heavy Ion Event 23

5.5 Geometry of a Single TPC Slice . 23

5.6 Links found by Neighbors Finder for C0 . 24

5.7 Links removed by Neighbors Cleaner . 24

5.8 Illustration of Start-Hits and Seeds . 24

5.9 Tracklet Constructor Extrapolation Step . 24

5.10 Cluster Assignment in Tracklet Selector . 24

6.1 GPU Tracker Performance on GTX285 . 25

6.6 Workflow for a Pipeline on the GTX285 with 15 Slices and Asynchronous Transfer 28

6.7 Pipeline of the first Fermi Tracker Implementation 28

6.8 Texture Fetches versus Global Memory Loads with L1 Cache 29

6.9 Comparison of 16 KB versus 48 KB Shared Memory 29

6.10 Neighbors Finder Performance for multiple Thread Counts 29

6.11 Tracklet Constructor/Selector Performance for multiple Numbers of Threads and
Blocks . 30

6.12 Tracklet Constructor Performance for different Rowblock Sizes 30

6.13 GPU Utilization during Tracklet Construction . 30

224 LIST OF FIGURES

6.14 Fermi GPU Tracker Performance with tuned Parameters 31

6.15 Screenshots of Online Event Display during first Run with active GPU Tracking . 32

6.17 Tracker Efficiency, Clone, and Fake Rate . 34

6.18 Clusters per Track Statistic Comparison of two GPU and CPU Runs 34

6.19 Comparison of Physical Key Observables of two GPU and two CPU Runs 34

6.20 Track Output Statistics of the original GPU Tracker in an exemplary Event . . . 35

6.21 Efficiency and Resolution using different χ2 Suppression Factors 36

6.22 Clusters per Track Statistics with improved Cluster Assignment 37

6.23 Pipeline of the Fermi Tracker with improved Output Routine 38

6.24 Multi-Threaded GPU Tracker Performance . 38

6.25 Total Tracking Time and GPU Time for all Implementations 38

6.26 Pipeline of the Fermi Tracker with Multi-Threading 38

6.27 Comparison of Scheduling Algorithms – Detailed View 40

6.29 Comparison of Simple and New Scheduling Algorithms –Total Overview 41

6.30 Tracking Performance Dependency on Slice Count 42

6.31 Performance of Combined GPU/CPU Tracker . 42

6.32 GTX580 Tracker Performance with and without Multi-Threading 43

7.1 Initial Performance of Track Merger and Slice Tracker 44

7.2 Duration of Merger Steps . 44

7.4 Speedup of GPU Merger . 45

8.1 Illustration of Global Tracking Principle . 46

8.2 Global Track Segments found in Proton-Proton Event 47

8.3 Reconstruction of full Helix . 47

8.4 Global Track Segments found in Heavy Ion Event 48

8.5 Cluster per Track Statistics for Global Tracking 48

9.1 Efficiency and Resolution of GPU and CPU Tracker with and without Global
Tracking visualized versus Pseudorapidity . 49

9.2 Tracking Dime Dependency on Input Data Size 50

9.3 Performance of the GPU Tracker depending on the CPU Frequency 50

9.4 Comparison of HLT and Offline Tracker . 51

9.5 Clusters per Track Comparison . 52

9.6 Processing Time of HLT Components . 52

9.7 HLT & Offline Processing Time . 52

9.8 Speedup of HLT . 53

10.1 The LOEWE-CSC Supercomputer . 56

LIST OF FIGURES 225

10.2 One LOEWE-CSC Rack . 56

10.3 Submatrices in HPL . 57

11.1 Splitting of Matrices in Tiles for Streaming DGEMM 60

11.2 Process-Flow of first CALDGEMM Implementation 61

11.3 Distribution of DGEMM Workload on GPU/CPU 62

11.4 Dependency of PCI Express Bandwidth on CPU Die (AMD) 63

11.5 Performance of the very first CALDGEMM/HPL Implementation 63

11.6 Blocking inside the DGEMM Kernel . 64

11.7 Performance of unrolled Kernels . 65

11.8 Improvements with hardcoded k . 65

11.9 Comparison of SGEMM Shader Types . 65

11.10 DGEMM Kernel Performance for different Matrix Sizes 67

11.11 Kernel Performance at different k . 67

11.12 Kernel Performance at different h . 67

11.13 DGEMM Kernel Performance Overview . 68

11.14 Storage Format of Input Buffers for 8ˆ 8 Kernel with A transposed 69

11.15 Storage Format of Input Buffers for 4ˆ 4 Kernel with B transposed and without
Unrolling . 69

11.18 GPU/CPU DGEMM Performance Ratio . 73

11.19 Performance of GotoBLAS depending on n (21 Threads) 73

11.20 Performance of GotoBLAS near n “ 40960 . 73

11.21 Performance of GotoBLAS depending on the Value of m 73

11.22 Fitted GPU/CPU DGEMM Performance Ratio 74

11.23 GPU/CPU Distribution of C-Matrix with three CALDGEMM Phases 75

11.25 Process-Flow of improved CALDGEMM Implementation with Pipeline 76

11.26 GPU DGEMM Performance for Asynchronous Transfer and BBuffers 77

11.27 Performance of Pre-/Postprocessing and DMA Transfer 78

11.28 Performance for different CALDGEMM Tiling Sizes 80

11.30 Overview of CALDGEMM Performance . 81

11.31 Time Consumption of DGEMM Runs with varying k during HPL (16 Nodes) . . 81

11.32 Process-Flow of GPU-based HPL . 83

11.33 Linpack Performance Dependency on Matrix Size 84

11.34 Linpack Performance Dependency on Process Grid Shape 84

11.35 Influence of HPL Parameters on Performance . 84

11.36 Time Consumption of HPL Subroutines . 84

11.37 Process-Flow of GPU-based HPL with Lookahead 1 (Initial Version) 85

226 LIST OF FIGURES

11.38 Process-Flow of GPU-based HPL with Lookahead 1 (Three Output Threads) . . 87

11.39 GPU-only DGEMM Performance for Lookahead during Linpack 88

11.40 Total GPU/CPU DGEMM Performance during Linpack with Lookahead (With
Binary Driver Patch) . 88

11.41 Lookahead Performance with Binary Driver Patch 88

11.42 Process-Flow of GPU-based HPL with Lookahead 1 (Final Version) 89

11.43 Iteration Times during Linpack with Lookahead 1/2 89

11.44 Iteration Time Difference . 89

11.45 Performance of different Lookahead 2 Implementations 90

11.46 Performance of different Lookahead Modes . 90

11.47 Process-Flow of GPU-based HPL with Lookahead 2 90

11.48 Analysis of Scheduling Efficiency without Lookahead 91

11.49 Analysis of Scheduling Efficiency with Lookahead 2 91

11.50 Analysis of CALDGEMM Ratio Calculation with Lookahead 2 92

11.51 Difference in GPU/CPU Time during Linpack with Lookahead 2 92

11.52 CPU Utilization during Single-GPU DGEMM and HPL 92

11.53 Linpack Performance during a Run (Rescaled) . 93

11.54 Sum of DTRSM and LASWP Time during Linpack 93

11.55 Linpack Performance Evolution Summary . 94

11.56 Linpack Performance normalized to Matrix Size (Lookahead 0 and 2) 95

11.57 Peak Performances achieved with CALDGEMM/Linpack 95

11.60 Heat produced by Linpack and different Torture Tests 96

11.61 Temperature of Linpack and Torture Test for different Nodes 96

12.4 Distribution of the Matrix in the Original HPL 99

12.5 Distribution of the Matrix in the Heterogeneous HPL 100

12.6 Right Hand Side Update in Original PDTRSV (With Lookahead) 102

12.7 False Right Hand Side Update in incorrect PDTRSV of Heterogeneous HPL . . . 103

12.8 Correct Right Hand Side Update in fixed PDTRSV of Heterogeneous HPL 103

12.10 Reference Performance of Node Categories of Heterogeneous HPL 104

12.11 Heterogeneous HPL Performance . 104

12.12 Workflow of CALDGEMM with four Tiles . 106

12.13 Dependency of PCI Express Bandwidth on CPU Die (Intel) 107

12.14 Comparison of CALDGEMM Kernel Output Schemes 107

12.15 Workflow of CALDGEMM with eight Nehalem Cores and two GPUs 108

12.16 Performance of Dual-GPU Implementation . 108

12.17 Scalability of Dual-GPU Implementation . 108

LIST OF FIGURES 227

12.19 CPU Utilization during Multi-GPU DGEMM . 111

12.20 Multi-GPU Distribution of C-Matrix . 112

12.21 Dependency on k Parameter using three GPUs . 112

12.22 Performance of multiple GPUs on different Architectures 112

12.26 GotoBLAS DGEMM Performance in Relation to Thread Count and computa-
tional Complexity . 115

12.27 Process-Flow of Multi-GPU HPL . 115

12.28 Power Consumption during Multi-GPU HPL Run 117

12.30 DGEMM Kernel Performance for different Matrix Sizes on 6970 118

12.31 DGEMM Kernel Performance for different Matrix Sizes on 6970 with fixed Clocks 119

12.33 5870 and 6970 Multi-GPU DMA Performance . 120

12.37 Multi-GPU Lookahead and Factorization Parameter Analysis 124

12.40 Relative ACML Performance (compared to GotoBLAS) of multiple Tasks during
HPL on Magny-Cours . 126

12.41 Relative MKL Performance (compared to GotoBLAS) of multiple Tasks during
HPL on Nehalem . 126

12.43 DMA Paths, Buffers, and Workflow of CALDGEMM 129

13.1 Scalability of CALDGEMM System Performance 132

13.2 Memory Bandwidth required for Multi-GPU CALDGEMM 133

13.4 Scalability of CALDGEMM CUDA Backend . 136

14.1 The Sanam Cluster at GSI . 137

14.2 DGEMM Kernel Performance for different Matrix Sizes on 7970 138

14.3 Dynamic Scheduling and Early Lookahead Performance 140

14.4 Multi-GPU HPL Performance on Intel and AMD Systems 141

14.5 HPL Iteration Times on Intel and AMD Systems 142

14.6 Grouped DMA Mode Performance . 142

14.7 InfiniBand Throughput in HPL . 142

14.8 Single-Node Lookahead Efficiency and Duration of HPL Steps 143

14.9 Quad-Node Lookahead Efficiency and Duration of HPL Steps 144

14.10 Timeline Trace of Four-Node HPL . 145

14.11 HPL Power Efficiency with Intel E2650 and AMD S10000 145

14.12 Green500 Award for Sanam . 146

14.13 HPL Power Efficiency of Sanam Cluster reported to Green500 146

14.15 Evolution of HPL-GPU Performance – From LOEWE-CSC to Sanam 147

16.1 Failure Tolerant Encoding/Decoding Scheme . 152

228 LIST OF FIGURES

17.1 IGEMM/BGEMM Performance . 168

17.2 Matrix Fill-Ratios of Vandermonde Matrix employed by QEnc 168

17.7 XOR128 Register Blocking Performance . 171

17.8 XOR128 L1 Data Blocking Performance . 171

17.9 XOR128 Performance depending on Code Size . 172

17.10 Performance with Instruction Cache Blocking and L2 Data Cache Blocking 172

17.11 Prefetching XOR128 Input Data and Buffers . 173

17.12 XOR128 Performance in Relation to Code Size . 174

17.13 Instruction Throughput using all Optimizations 174

17.14 Matrix Fill-Ratio Reduction by Local Optimizations 176

17.15 Total Matrix Fill-Ratio Reduction . 176

17.16 Improvements by Optimized Matrices width reduced Fill-Ratio 177

17.17 Low Level Assembler Instruction Optimizations 178

17.18 Performance Gain by Instruction Optimizations 178

17.19 Performance Gain by Optimized Matrix Dimension 179

17.20 Instruction Throughput for Optimized Matrix Dimension 179

17.21 XOR128 Performance for Large Matrices . 180

17.22 Performance Gain by Strassen Algorithm . 180

17.24 Performance Gain using Streaming Stores . 182

17.26 Final QEnc XOR128 Performance . 184

17.27 Binary Code Size of XOR128 Implementation . 185

17.28 Final Instruction Throughput of all Encoding Implementations 185

17.29 Final MM Performance of all Encoding Implementations 185

17.30 Final Bandwidth of all Encoding Implementations 185

17.31 Final Update Bandwidth of all Encoding Implementations 186

17.32 Speedup of the XOR-Code by Multi-Threading 186

17.33 Memory Bandwidth achieved by Multi-Threaded XOR-Code 186

17.34 Update Performance of the XOR-only Code . 187

17.35 Encoding Performance Dependency on k . 187

18.1 Compilation/Assembly Time of XOR-only Code 189

18.2 QEnc OpenCL Performance on CPU . 189

18.3 QEnc Bandwidth on GPU . 190

18.4 QEnc Performance on GPU . 190

19.1 Final Encoding Performance Comparison (Performance) 191

19.2 Final Encoding Performance Comparison (Bandwidth) 192

LIST OF FIGURES 229

19.3 Number of Clock Cycles required by QEnc per 128-bit Data and Code Word . . . 193

19.4 Overview of QEnc Encoding Bandwidth on CPU, GPU, and FPGA 193

C.1 Simulation of FPGA-based Reed-Solomon Encoding and Decoding 210

E.1 Processing Time of a Single Slice . 212

E.2 Active Tracking Time of each Thread . 212

230

List of Tables

2.3 Overview of the CPUs used throughout this Thesis 14

6.16 Tracker Efficiency for Pb-Pb-Simulations with maximum Multiplicity 33

6.28 Performance of Scheduling Algorithms . 41

7.3 Steps of GPU Track Fit . 45

8.6 Global Tracking Time . 48

10.4 Total Contribution of BLAS Functions to HPL Runtime 58

11.24 Asynchronous CAL DMA Transfer . 75

11.29 Combined CPU/GPU DGEMM Performance for Transposed Input Matrices . . . 80

11.58 Peak Performance and Efficiency per Node . 95

11.59 Multi-Node HPL Performance and Network Efficiency 95

12.1 Performance of CPU-only HPL . 97

12.2 Chaos HPL Performance (AMD Magny-Cours) 98

12.3 SUSE Real-Time DGEMM Performance . 98

12.9 Performance Ratios used in Configuration of Heterogeneous HPL Benchmark . . 104

12.18 Memory Bandwidth of Stream Benchmark [McC 95] (Copy Task) on Westmere
and Magny-Cours . 109

12.23 Multi-GPUs DGEMM Results on different Architectures 113

12.24 Multi-GPU DGEMM Scalabilities on different Architectures 113

12.25 Time Distribution of GotoBLAS Routines during Factorization 114

12.29 Power Efficiency reached with more efficient Hardware 117

12.32 Asynchronous CAL DMA Transfer on 6970 . 119

12.34 Workaround for 6970 GPU to Host DMA Issue 121

12.35 Workaround for 6970 Host to GPU DMA Issue 121

12.36 Final AMD 6970 single-GPU DGEMM Performance 122

12.38 AMD 6990 Multi-GPU DGEMM and HPL Performance 124

12.39 AMD 6990 HPL Performance with 256 GB RAM 125

12.42 Synthetic DGEMM Peak Performance Analysis 127

LIST OF TABLES 231

12.44 SGEMM (and Variants) Kernel Performance . 131

13.3 OpenCL/CUDA DMA Throughput . 135

14.14 Peak Performances and Efficiencies achieved on Tahiti 147

17.3 SSE Instruction Throughput on Intel Architectures 169

17.23 Maximum Memory Bandwidth on Westmere and Sandy Bridge 181

18.5 FPGA Encoding Performance . 190

20.1 GPU/CPU Performance Summary and Speedup-Indexes 198

A.1 Overview of the NVIDIA GPUs used throughout this Thesis 204

A.2 Overview of the AMD GPUs used throughout this Thesis 204

B.1 IL Assembler Instruction Examples . 206

B.2 ISA Assembler Example VLIW Instruction . 207

B.3 Double Precision FMA ISA Assembler Example 207

G.1 CALDGEMM & HPL-GPU Settings . 217

H.1 List of Benchmark and Development Systems . 221

232

List of Listings

6.2 Working Kernel Example . 27

6.3 Miscompiling Kernel Example . 27

6.4 Working PTX Code Example . 27

6.5 Miscompiled PTX Code Example . 27

11.16 DGEMM IL Kernel (8ˆ 8 Tiling, A transposed) 70

11.17 DGEMM ISA Kernel (Corresponding to IL Kernel in Listing 11.16) 71

17.4 Standard Matrix Multiplication Code . 169

17.5 Encoding-Matrix encapsulated in Instruction Stream 169

17.6 QEnc Assembler Code, Register Blocking . 171

17.25 QEnc Elaborate Assembler Code Example for n “ k “ 64 182

F.1 All Blocking Levels in QEnc . 216

233

Index

accumulation register, 170
ACML, 125, 139
active tracklets, 30
adaptive DMA mode, 143
adaptive tile size, 140, 143
Add -only code, 161, 168, 184
application benchmarks, 11
automorphic code, 160, 170

BBuffers, 76, 79, 111, 128
BGEMM, 131
binary driver patch, 79, 86, 106
BLAS, 57
block

GPU architecture, 16
GPU tracker parameters, 29

blocking, 58, 64, 118, 162, 170
broadcast, 57, 142

CALDGEMM, 55, 59
Cauchy matrix, 160, 174
Cauchy-Reed-Solomon code, 160
χ2 value, 35
clone rate, 33, 36, 49, 51
cluster, 23
code, 151
coding theory, 151
Color Buffers, 66
column-major, 59, 208

decoding-matrix, 151
DGEMM, 58
differential code, 165
DivideBuffer, 60, 77, 80
DMA, 17, 28, 38, 45, 59, 61, 66, 75, 77, 104,

109, 119, 128, 134, 143
dual-GPU, 15, 106, 110, 122, 141, 203

early lookahead, 140
efficiency

peak performance, 93, 108, 193
power efficiency, 94, 116, 140, 144
scalability, 108, 124
tracker GPU utilization, 30, 40
tracking results, 33, 36, 49, 51

encoding-matrix, 151, 156

factorization, 57
fake rate, 33, 36, 49, 51

GC matrices, 174
generalized arithmetical operation, 164
global buffer, 66, 71, 79, 206
global tracking, 46
GotoBLAS, 58, 72, 80, 82, 91, 98, 114, 125, 167
GotoBLAS patch, 63, 110, 125
GPU tracker parameters, 37
grid

GPU architecture, 16, 206
HPL, 58, 84, 99, 114
tracker, 24

grouped DMA threads, 143

high register index, 173
hit, 23
hit weight, 24, 35
HPL-GPU, 55
Hyperthreading, 12, 212
HyperTransport, 13, 62

IGEMM, 131, 167
initialization, 24, 27
integral basis, 154
integral codes, 156

kernel, 16, 63, 70

LASWP, 58
LDS, 17
linear code, 151
linear transfer, 134
link, 23
Linpack, 11, 55, 81, 199
locally regular, 152
lookahead, 83, 94

early version, 140
PDTRSV, 101
version 1, 85
version 2, 88
version 2a, 143
version 2b, 144

234 INDEX

low register index, 173
LU -factorization, 57, 209

matrix fill-ratio, 164, 168, 170, 174
MDS-code, 151
MemExport, 66, 79
MergeBuffer, 60, 76, 86
merger, 23, 44, 46
MKL, 125, 139
multiprocessor, 16

NUMA, 13, 14, 63, 107, 123

operand reordering, 177

panel broadcast, 57, 85, 142
parallel code, 163
parallel DMA threads, 143
PDTRSV, 100
pipeline

GPU tracker, 26, 28, 31, 38, 47
lookahead 2, 88, 143
tiling, 60, 75, 105, 122

pivoting, 58
private memory, 17

QEnc, 170
quad, 56, 100

RAID, 151
Reed-Solomon code, 153
resolution, 33, 36, 49, 51
RHS, 101
ring of algebraic integers, 154
row, 23
row-major, 59, 162, 208
rowblock, 30

scalability, 108, 124, 132
scratch register, 170
second phase run, 74, 91, 107, 139
seed, 22, 23, 35, 46
semi-synthetic benchmarks, 11
SGEMM, 66, 130
shared memory, 17, 26, 29, 63
slice, 21, 25, 31, 38, 44

track merger, 23, 44, 46
slice tracker, 23
speedup-index, 197
start-hit, 23, 35
strided transfer, 134
swapspace, 101
synthetic benchmarks, 11, 14, 131, 135, 181

systematic code, 151

TDP, 117, 118, 170
ternary instructions, 173
third phase run, 74, 91, 107, 139
tiling, 64, 72, 91, 107

tile, 60
track

tracklet, 24, 30, 35
tracklet pool, 30

track merger, 23, 44, 46
track output, 24, 27
tracking, 21

slice tracker, 23
track merger, 23, 44, 46

U -broadcast, 58, 89, 142, 143
update-code, 165, 187

Vandermonde matrix, 153, 168, 174
vector-MDS-code, 157, 158
VLIW, 16, 203, 206

warp, 16
warp-serialization, 16, 39
wavefront, 16
work-group, 16
work-item, 16

XOR-only code, 160, 168, 170, 188, 215

Zero-Copy, 17, 61, 66, 68, 75, 77, 105

235

Glossary

ACML AMD Core Math Library

ADL AMD Display Library

ALICE A Large Ion Collider Experi-
ment

ALU Arithmetical Logical Unit

AMD Advanced Micro Devices

AOp Arithmetical Operation

API Application Programming Inter-
face

ATLAS A Toroidal LHC Apparatus

AVX Advanced Vector Instructions

BGEMM Binary General Matrix Multipli-
cation with Matrix

BLAS Basic Linear Algebra Subpro-
grams

CAL Compute Abstraction Layer

CERN Conseil Européenne pour la
Recherche Nucléaire

CMS Compact Muon Solenoid

CPU Central Processing Unit

CRS Cauchy-Reed-Solomon

CSC Center for Scientific Computing

CU Compute Unit

CUDA Compute Unified Device Archi-
tecture

DAQ Data Acquisition

DAXPY Double Precision Alpha X Plus
Y

DCOPY Double Precision Copy Vector

DDR Double Data Rate

DGEMM Double Precision General Matrix
Multiplication with Matrix

DGEMV Double Precision General Matrix
Multiplication with Vector

DIMM Dual In-line Memory Module

DLACPY Double Precision Linear Algebra
Matrix Copy

DLATCPY Double Precision Linear Algebra
Matrix Transposed Copy

DMA Direct Memory Access

DRAM Dynamic Random Access Mem-
ory

DSCAL Double Precision Scale Vector

DSP Digital Signal Processor

DTRSM Double Precision Triangular Sys-
tem Solver versus Matrix

DTRSV Double Precision Triangular Sys-
tem Solver versus Vector

DTRTRI Double Precision Triangular Sys-
tem Inversion

ECC Error Correction Code

FDR Fourteen Data Rate

FIFO First In First Out

Flop Floating Point Operation

FMA Fused Multiply Add

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GDDR Graphics DDR Memory

236 Glossary

GPGPU General Purpose Graphics Pro-
cessing Unit

GPU Graphics Processing Unit

HCA Host Channel Adapter

HLT High Level Trigger

HPC High Performance Computing

HPL High Performance Linpack

ICC Intel C++ Compiler

IEEE Institute of Electrical and Elec-
tronics Engineers

IGEMM Integer General Matrix Multipli-
cation with Matrix

IL Intermediate Assembler Lan-
guage

ISA Instruction Set Architecture

ITS Inner Tracking System

LAN Local Area Network

LAPACK Linear Algebra PACKage

LASWP Linear Algebra Swap

LDS Local Data Storage

LHC Large Hadron Collider

LOEWE Landes-Offensive zur Entwick-
lung Wissenschaftlich-ökonomi-
scher Exzellenz

LRU Least Recently Used

LUT LookUp Table

MDS Maximum Distance Separable

MIC Many Integrated Cores

MIMD Multiple Instruction Multiple
Data

MKL Math Kernel Library

MPI Message Passing Interface

NUMA Non Uniform Memory Architec-
ture

Op Operation

OpenCL Open Compute Language

OpenGL Open Graphics Language

OpenMP Open MultiProcessing

PCI Peripheral Component Intercon-
nect

PCIe PCI Express

PDTRSV Panel Double Precision Triangu-
lar System Solver versus Vector

PTX Parallel Thread Execution

PUE Power Usage Effectiveness

QA Quality Assurance

QDR Quad Data Rate

QGP Quark Gluon Plasma

RAID Redundant Array of Indepen-
dent/Inexpensive Disks

RAM Random Access Memory

RDMA Remote Direct Memory Access

RHS Right Hand Side

RMS Root Mean Square

SDK Software Development Kit

SDS Splitted Desktop Systems

SGEMM Single Precision General Matrix
Multiplication with Matrix

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

TBB Threading Building Blocks

TCO Total Cost of Ownership

TDP Thermal Design Power

TLB Translation Lookaside Buffer

TPC Time Projection Chamber

USB Universal Serial Bus

VGA Visual Graphics Adapter

VHDL VHSIC Hardware Description
Language

VHSIC Very-High-Speed Integrated Cir-
cuits

VLIW Very Long Instruction Word

XOR Exclusive Or

237

Acknowledgements

I would like to thank all who contributed directly or indirectly to this thesis.

First of all my supervisor Prof. Volker Lindenstruth. I always felt that he put confidence in me
and I had all the freedom I could have wanted to realize my ideas. When I was stuck in a point,
a discussion usually showed up new ways to go.

I would like to thank Prof. Udo Kebschull for being the second assessor. Prof. Hans Jürgen
Lüdde was my second supervisor in the HGS-Hire programm and, not being directly involved in
the projects, was an excellent consultant if an external view was needed.

I own special thanks to Sergey Gorbunov, who invented the original tracking algorithm, helped
a lot implementing the GPU tracker, had plenty of great ideas, and proofread parts of my thesis.

Matthias Bach helped a lot with server administration and with his profound knowledge about
GPUs he was usually the first one to ask when my kernels did not behave as expected. I would
also like to thank him for proofreading.

I want to thank Matthias Kretz, whose experience with Linux and C++ I could profit from to a
huge extent. I would like to thank him for proofreading as well.

Sebastian Kalcher was seriously involved in deploying and installing the Sanam cluster at GSI.
Without him the second rank in the Green500 had been impossible.

For installing the GPU tracker at CERN, I had great support from Timm Steinbeck, Torsten Alt,
Thorsten Kollegger, Timo Breitner, Artur Szostak, and Olav Smorholm. I also thank Thorsten
for Proofreading. Camilla Stokkevåg helped me out with the QA plots.

Thanks go to Andreas Ertelt, Jan de Cuveland, and Oliver Thomas for proofreading.

I would like to express my thanks to Udeepta Bordoloi who helped a lot with driver and hardware
problems and also proofread parts of this thesis. Rod Macdonald provided much Linux support
for AMD GPUs.

Timothy Lanfear put quite some effort in having the GPU tracker compiled with the Fermi CUDA
Framework in the first place.

I would like to thank Petr Borodkin, Alex Tutubalin, Jean-Marie Verdun, Peyman Blumstengel,
Zhongze Li, Hermann von Drateln, and Marc Romankewicz for their feedback to my work and for
their support to the projects. Especially Petr spent quite some time finding good CPU mappings
for CALDGEMM.

Jörg and Nadine Körner have been a reliable assistance for design and photography.

I would like to thank AMD, SuperMicro, Samsung, Splitted Desktop Systems, Adtech, ASUS
and Rombo for their support to all projects.

Katharina Hübner provided many good ideas for the coding theory and I want to thank her for
proofreading.

I would like to thank the HLT crew and all people who helped installing the LOEWE-CSC and
the Sanam cluster. Without them many projects would not have been possible.

In the end, I would like to thank my family and all my friends who were always supporting me.

238

Bibliography

[Adv I] Advanced Micro Devices: “AMD Core Math Library”.
URL: http://developer.amd.com/tools-and-sdks/cpu-development/
amd-core-math-library-acml/

[Adv II] Advanced Micro Devices: “AMD Display Library (ADL) SDK”.
URL: http://developer.amd.com/sdks/adlsdk/pages/default.aspx

[Adv 09] Advanced Micro Devices: “AMD Stream Computing Guide”, [2009].
[Adv 10 I] Advanced Micro Devices: “3DNow!™ Instructions are Being Deprecated”,

[2010].
URL: http://blogs.amd.com/developer/2010/08/18/3dnow-deprecated/

[Adv 10 II] Advanced Micro Devices: “ATI Compute Abstraction Layer Intermediate Lan-
guage Reference Manual”, [2010].

[Adv 10 III] Advanced Micro Devices: “ATI Evergreen Family Instruction Set Architecture
Reference Manual”, [2010].

[Adv 12] Advanced Micro Devices: “AMD FirePro Server Graphics Redefining Super-
computing Performance through Power Efficient, Sustainable Technology”, Press
Release 14.11.2012 [2012].
URL: http://www.amd.com/us/press-releases/Pages/amd-firepro-server-2012nov14.
aspx

[ALI I] ALICE Collaboration: “Alice Experiment Offline Project”.
URL: http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html

[ALI II] ALICE Collaboration: “ALICE Home Page”.
URL: http://aliceinfo.cern.ch/

[ALI III] ALICE Collaboration: “ALICE Time Projection Chamber, the homepage of
the ALICE TPC”.
URL: http://aliceinfo.cern.ch/TPC

[ALI 04] ALICE Collaboration: “ALICE Technical Design Report of the Trigger, Data
Acquisition, High-Level Trigger, and Control System”, Tech. rep. [2004].
URL: https://edms.cern.ch/document/456354/2

[ALI 95] ALICE Collaboration: “Technical proposal for A Large Ion Collider Experi-
ment at the CERN LHC”, Tech. rep., CERN [1995].
URL: http://cdsweb.cern.ch/record/293391/files/cer-000214817.pdf

[Amd 67] G. Amdahl: “Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities”, in AFIPS Conference Proceedings, vol. 30, pp. 483–485
[1967].

[And` 05] A. A. D. Andrade, R. Palazzo Jr.: “Linear Codes over Finite Rings”, TEMA
Tend. Mat. Apl. Comput., vol. 2 , no. 2 : pp. 207–217 [2005].

[AT 67] E. Artin, J. Tate: “Class Field Theory” [W. A. Benjamin, Inc., 1967], ISBN
0-8053-0291-3.

[Bac 09] M. Bach: “Utilization of Graphics Processing Units in Applications for High En-
ergy Physics”, Diploma thesis, University of Heidelberg [2009].

http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acml/
http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acml/
http://developer.amd.com/sdks/adlsdk/pages/default.aspx
http://blogs.amd.com/developer/2010/08/18/3dnow-deprecated/
http://www.amd.com/us/press-releases/Pages/amd-firepro-server-2012nov14.aspx
http://www.amd.com/us/press-releases/Pages/amd-firepro-server-2012nov14.aspx
http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html
http://aliceinfo.cern.ch/
http://aliceinfo.cern.ch/TPC
https://edms.cern.ch/document/456354/2
http://cdsweb.cern.ch/record/293391/files/cer-000214817.pdf

BIBLIOGRAPHY 239

[Bac` 11 I] M. Bach, M. Kretz, V. Lindenstruth, D. Rohr: “Optimized HPL for AMD
GPU and Multi-Core CPU Usage”, Computer Science - Research and Development,
vol. 26 , no. 3-4 [2011].
URL: http://www.springerlink.com/content/m232n83h73271228/

[Bac` 11 II] M. Bach, O. Philipsen, C. Pinke, C. Schäfer, L. Zeidlewicz: “LatticeQCD
using OpenCL”, in proceedings of the XXIX International Symposium on Lattice
Field Theory - Lattice 2011, p. 7 [2011].
URL: http://arxiv.org/abs/1112.5280

[Bac` 13] M. Bach, J. De Cuveland, H. Ebermann, D. Eschweiler, M. Kretz,
M. Pollok, D. Rohr, H. J. Lüdde, V. Lindenstruth: “The LOEWE-CSC:
A Comprehensive Approach for a Power Efficient General Purpose Supercomputer”,
in 21st Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, pp. 1–17 [2013].

[Bla 12] B. Bland: “Titan - Early Experience with the Titan System at Oak Ridge
National Laboratory”, SC12 Keynote Slides [2012].
URL: http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/
BuddyBland_Titan_SC12.pdf

[Blö` 95] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, D. Zuckerman:
“An XOR-Based Erasure-Resilient Coding Scheme”, [1995].

[Bör 11] J. Börger: “Enabling the ALICE High-Level Trigger Event Reconstruction for
OpenCL”, Master thesis, Goethe University of Frankfurt [2011].

[Bra` 12] A. Branover, D. Foley, M. Steinman: “AMD Fusion APU: Llano”, Ieee Micro,
vol. PP, no. 2 : p. 1 [2012], ISSN 02721732, doi:10.1109/MM.2012.2.
URL: http://www.computer.org/csdl/mags/mi/2012/02/mmi2012020028-abs.html

[Brü` 04] O. S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole,
P. Proudlock: “LHC Design Report”, Tech. rep., CERN [2004].
URL: http://lhc.web.cern.ch/LHC/LHC-DesignReport.html

[CER] CERN: “ROOT - Architectural Overview”.
URL: http://root.cern.ch/drupal/content/architectural-overview

[CER 06] CERN: “Overall view of the LHC - CERN Document Server”, [2006].
URL: http://cds.cern.ch/record/987579?ln=en

[CER 11] CERN: “Events recorded by ALICE from the first lead ion collisions in 2011”,
[2011].
URL: https://cdsweb.cern.ch/record/1400435

[Cop 10] A. Copenbarger: “Illinois wins greenest self-built cluster at SC10”, [2010].
URL: http://www.ncsa.illinois.edu/News/Stories/GreenGPU/

[Cop` 87] D. Coppersmith, S. Winograd: “Matrix multiplication via arithmetic progres-
sions”, Proceedings of the nineteenth annual ACM conference on Theory of com-
puting, vol. 9 , no. 3 : pp. 1–6 [1987], doi:10.1145/28395.28396.
URL: http://dl.acm.org/citation.cfm?id=28396

[Dal 10] B. Dally: “GPU computing to exascale and beyond”, SC10 keynote slides [2010].

[Don` 03] J. J. Dongarra, P. Luszczek, A. Petitet: “The LINPACK Benchmark:
past, present and future”, Concurrency and Computation: Practice and Experi-
ence, vol. 15 , no. 9 : pp. 803–820 [2003], ISSN 1532-0626, doi:10.1002/cpe.728.

[Don` 90] J. Dongarra, J. D. Croz, S. Hammarling: “A Set of Level 3 Basic Linear Al-
gebra Subprograms”, ACM Transactions on Mathematical Software, vol. 16 , no. 1 :
pp. 1–17 [1990], ISSN 00983500, doi:10.1145/77626.79170.
URL: http://portal.acm.org/citation.cfm?doid=77626.79170

http://www.springerlink.com/content/m232n83h73271228/
http://arxiv.org/abs/1112.5280
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/BuddyBland_Titan_SC12.pdf
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/BuddyBland_Titan_SC12.pdf
http://www.computer.org/csdl/mags/mi/2012/02/mmi2012020028-abs.html
http://lhc.web.cern.ch/LHC/LHC-DesignReport.html
http://root.cern.ch/drupal/content/architectural-overview
http://cds.cern.ch/record/987579?ln=en
https://cdsweb.cern.ch/record/1400435
http://www.ncsa.illinois.edu/News/Stories/GreenGPU/
http://dl.acm.org/citation.cfm?id=28396
http://portal.acm.org/citation.cfm?doid=77626.79170

240 BIBLIOGRAPHY

[Dre 07] U. Drepper: “What Every Programmer Should Know About Memory”, [2007].
URL: http://www.akkadia.org/drepper/cpumemory.pdf

[ECO] ECO Data Recovery: “Seagate Data Recovery”.
URL: http://ecodatarecovery.wordpress.com/tag/seagate-data-recovery/

[Eme` 12] D. Emeliyanov, J. Howard: “GPU-Based Tracking Algorithms for the ATLAS
High-Level Trigger”, Journal of Physics: Conference Series, vol. 396 , no. 1 : p.
012018 [Dec. 2012], ISSN 1742-6588, doi:10.1088/1742-6596/396/1/012018.
URL: http://stacks.iop.org/1742-6596/396/i=1/a=012018?key=crossref.
df9ce06ac107615d9c97381116e9f3ef

[End` 10] T. Endo, S. Matsuoka, A. Nukada, N. Maruyama: “Linpack evaluation on
a supercomputer with heterogeneous accelerators”, 2010 IEEE International Sym-
posium on Parallel Distributed Processing IPDPS, pp. 1–8 [2010], ISSN 15302075,
doi:10.1109/IPDPS.2010.5470353.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470353

[Fen 05] W.-c. Feng: “The Importance of Being Low Power in High Performance
Computing”, CTWatch Quarterly, vol. 1 , no. 3 [2005].
URL: http://www.ctwatch.org/quarterly/articles/2005/08/
the-importance-of-being-low-power-in-high-performance-computing/

[Fen` 10] W.-c. Feng, K. W. Cameron: “The Green500 List :: Environmentally Respon-
sible Supercomputing :: The Green500”, [2010].
URL: http://www.green500.org/greenlists

[Fra 11] Frankfurt Institute for Advanced Studies: “Frankfurter Superrechner-
Technologie passt auf jeden Schreibtisch Weltrekord für französische Workstation
durch LOEWE-CSC-Energiespartechnik”, Press Release 22.6.2011 [2011].

[Frü` 00] R. Frühwirth, M. Regler: “Data analysis techniques for high-energy physics”
[Cambridge University Press, 2000], ISBN 0521635489.

[Fun` 13] D. Funke, T. Hauth, V. Innocente: “CMS Track Reconstruction Investigation
of OpenCL and Cellular-Automata”, [2013].
URL: http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=
slides&confId=235844

[Goe] Goethe University of Frankfurt Center for Scientific Computing:
“LOEWE-CSC Cluster”.
URL: http://csc.uni-frankfurt.de/index.php?id=51
URL: http://compeng.uni-frankfurt.de/index.php?id=86&L=1

[Gor` 08] S. Gorbunov, U. Kebschull, I. Kisel, V. Lindenstruth, W. F. J. Müller:
“Fast SIMDized Kalman filter based track fit”, Computer Physics Communications,
vol. 178 : pp. 374–383 [2008].

[Gor` 11] S. Gorbunov, D. Rohr, K. Aamodt, T. Alt, H. Appelsh, A. Arend,
M. Bach, B. Becker, T. Breitner, et al.: “ALICE HLT High Speed Tracking
on GPU”, IEEE Transactions on Nuclear Science, vol. 58 , no. 4 [2011].

[Gor 12] S. Gorbunov: “On-line reconstruction algorithms for the CBM and ALICE ex-
periments”, Dissertation thesis, Goethe University of Frankfurt [2012].

[Hei` 13] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov,
R. Dubtsov, G. Henry, A. G. Shet, G. Chrysos, P. Dubey: “Design
and Implementation of the Linpack Benchmark for Single and Multi-node Sys-
tems Based on Intel® Xeon Phi Coprocessor”, 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, pp. 126–137 [May 2013], doi:
10.1109/IPDPS.2013.113.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6569806

http://www.akkadia.org/drepper/cpumemory.pdf
http://ecodatarecovery.wordpress.com/tag/seagate-data-recovery/
http://stacks.iop.org/1742-6596/396/i=1/a=012018?key=crossref.df9ce06ac107615d9c97381116e9f3ef
http://stacks.iop.org/1742-6596/396/i=1/a=012018?key=crossref.df9ce06ac107615d9c97381116e9f3ef
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470353
http://www.ctwatch.org/quarterly/articles/2005/08/the-importance-of-being-low-power-in-high-performance-computing/
http://www.ctwatch.org/quarterly/articles/2005/08/the-importance-of-being-low-power-in-high-performance-computing/
http://www.green500.org/greenlists
http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=235844
http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=235844
http://csc.uni-frankfurt.de/index.php?id=51
http://compeng.uni-frankfurt.de/index.php?id=86&L=1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6569806

BIBLIOGRAPHY 241

[Hid` 01] Y. Hida, X. S. Li, D. H. Barley: “Algorithms for Quad-Double Precision
Floating Point Arithmetic”, 15th IEEE Symposium on Computer Arithmetic, pp.
155–162 [2001].

[Int] Intel Corporation: “Intel Threading Building Blocks Reference Manual”.
URL: http://www.threadingbuildingblocks.org/

[Int 08] Intel Corporation: “Larrabee: A Many-Core x86 Architecture for Visual Com-
puting”, ACM Transactions on Graphics, vol. 27 [2008].
URL: http://software.intel.com/file/18198/

[Int 10] Intel Corporation: “Intel Unveils New Product Plans for High-Performance
Computing”, Press Release 31.5.2010 [2010].
URL: http://www.intel.com/pressroom/archive/releases/2010/20100531comp.htm

[Int 11] Intel Corporation: “Intel ® 64 and IA-32 Architectures Optimization Refer-
ence Manual”, [2011].

[KAC] King Abdulaziz City for Science and Technology: “Official Website”.
URL: http://www.kacst.edu.sa/

[Kal` 11] S. Kalcher, V. Lindenstruth: “Accelerating Galois Field Arithmetic for Reed-
Solomon Erasure Codes in Storage Applications”, in 2011 IEEE International Con-
ference on Cluster Computing, pp. 290–298 [IEEE, 2011], ISBN 9781457713552,
doi:10.1109/CLUSTER.2011.40.
URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6061147

[Kal 13] S. Kalcher: “An Erasure-Resilient and Compute-Efficient Coding Scheme for
Storage Applications”, Dissertation thesis, Goethe University of Frankfurt [2013].

[Kal 60] R. E. Kalman: “A new approach to linear filtering and prediction prob-
lems”, Journal Of Basic Engineering, vol. 82 Series D : pp. 35–45 [1960],
doi:10.1109/ICASSP.1982.1171734.
URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.6247&rep=
rep1&type=pdf

[Kam` 08] S. Kamil, J. Shalf, E. Strohmaier: “Power Efficiency in High Performance
Computing”, Proc of the 2008 IEEE Intl Symp on Parallel and Distributed Pro-
cessing, pp. 1–8 [2008], ISSN 15302075, doi:10.1109/IPDPS.2008.4536223.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4536223

[Khr] Khronos Group: “OpenCL Specifications”.
URL: http://www.khronos.org/opencl/

[Knu 97] D. E. Knuth: “Seminumerical algorithms”, vol. 2 of The art of computer pro-
gramming [Addison-Wesley Longman, 1997], ISBN 978-0201896848.
URL: http://adsabs.harvard.edu/abs/1981acp..book.....K

[Kre 09] M. Kretz: “Efficient Use of Multi- and Many-Core Systems with Vectorization
and Multithreading”, Diploma thesis, University of Heidelberg [2009].

[Kre` 11] M. Kretz, V. Lindenstruth: “Vc: A C++ library for explicit vectorization”,
Software Practice and Experience [2011], ISSN 1097024X, doi:10.1002/spe.1149.
URL: http://dx.doi.org/10.1002/spe.1149

[Kur` 12] J. Kurzak, P. Luszczek, M. Faverge, J. Dongarra: “LU Factorization with
Partial Pivoting for a Multicore System with Accelerators”, IEEE Transactions on
Parallel and Distributed Systems, vol. 6 , no. 1 : pp. 1–1 [2012], ISSN 1045-9219,
doi:10.1109/TPDS.2012.242.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6280548

[Lan 05] S. Lang: “Algebra (Graduate Texts in Mathematics)” [Springer, 2005], ISBN 978-
0387953854.

http://www.threadingbuildingblocks.org/
http://software.intel.com/file/18198/
http://www.intel.com/pressroom/archive/releases/2010/20100531comp.htm
http://www.kacst.edu.sa/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6061147
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.6247&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.6247&rep=rep1&type=pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4536223
http://www.khronos.org/opencl/
http://adsabs.harvard.edu/abs/1981acp..book.....K
http://dx.doi.org/10.1002/spe.1149
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6280548

242 BIBLIOGRAPHY

[Man 04] R. Mankel: “Pattern Recognition and Event Reconstruction in Particle Physics
Experiments”, Rep. Prog. Phys. 67, pp. 553–622 [2004].
URL: http://arxiv.org/abs/physics/0402039

[Mat` 10] S. Matsuoka, T. Endo, N. Maruyama, H. Sato, S. Takizawa: “The Total
Picture of TSUBAME 2.0”, TSUBAME e-Science Journal, vol. 1 : pp. 16–18 [2010].

[McC 95] J. D. McCalpin: “STREAM: Sustainable Memory Bandwidth in High Perfor-
mance Computers”, [1995].
URL: http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/

[Mel 10] Mellanox Technologies: “ConnectX® Single/Dual-Port Adapter Cards
supporting up to 40Gb/s InfiniBand”, [2010].
URL: http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX_VPI.
pdf

[Meu`] H. Meurer, E. Strohmaier, J. Dongarra, H. Simon: “Top 500 Supercom-
puting Sites”.
URL: http://top500.org

[MPI] MPI Forum: “Message Passing Interface Standard”.
URL: http://www.mpi-forum.org/docs/docs.html

[MS] Microsoft: “C++ Accelerated Massive Parallelism (C++ AMP)”.
URL: http://msdn.microsoft.com/en-us/library/hh265137(v=vs.110).aspx

[Nak 10] N. Nakasato: “A Fast GEMM Implementation On a Cypress GPU”, 1st Interna-
tional Workshop on Performance Modeling Benchmarking and Simulation of High
Performance Computing Systems PMBS 10 [2010].
URL: http://dl.acm.org/citation.cfm?id=1964227

[Neu 99] J. Neukirch: “Algebraic number theory” [Springer, 1999], ISBN 3-540-65399-6.
[NSW 08] J. Neukirch, A. Schmidt, K. Wingberg: “Cohomology of number fields”, vol.

323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences] [Springer, 2008], ISBN 9783540378884.

[NVI] NVIDIA Corporation: “CUBLAS library”.
URL: http://docs.nvidia.com/cuda/cublas/index.html

[NVI 11] NVIDIA Corporation: “CUDA C Programming Guide 4.0 (June 2011)”, [2011].
URL: http://docs.nvidia.com/cuda/index.html

[NVI 12] NVIDIA Corporation: “CUDA PTX: Parallel Thread Instruction ISA Version
3.1”, [2012].
URL: http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf

[OMP] OpenMP Architecture Review Board: “The OpenMP® API specification
for parallel programming”.
URL: http://www.openmp.org

[Pla 05] J. S. Plank: “Optimizing Cauchy Reed-Solomon codes for fault-tolerant storage
applications”, Tech. rep., Citeseer [2005].
URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8887&rep=
rep1&type=pdf

[Pla 97] J. S. Plank: “A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems”, Software Practice and Experience, vol. 27 , no. 9 : pp. 995–1012 [1997].

[Pre` 92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: “Nu-
merical Recipes in C: The Art of Scientific Computing”, vol. 1 of ISBN 0-521-43108-
5 [Cambridge University Press, 1992], ISBN 0521431085, doi:10.2307/1269484.

[Ree` 60] I. S. Reed, G. Solomon: “Polynomial codes over certain finite fields”, Journal
of the Society for Industrial and Applied Mathematics, vol. 8 , no. 2 : pp. 300–304
[1960], ISSN 03684245, doi:10.1137/0108018.
URL: http://www.jstor.org/stable/2098968

http://arxiv.org/abs/physics/0402039
http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX_VPI.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX_VPI.pdf
http://top500.org
http://www.mpi-forum.org/docs/docs.html
http://msdn.microsoft.com/en-us/library/hh265137(v=vs.110).aspx
http://dl.acm.org/citation.cfm?id=1964227
http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf
http://www.openmp.org
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8887&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8887&rep=rep1&type=pdf
http://www.jstor.org/stable/2098968

BIBLIOGRAPHY 243

[Roh 10 I] D. Rohr: “ALICE TPC Online Tracking on GPU based on Kalman Filter”,
Diploma thesis, University of Heidelberg [2010].

[Roh` 10 II] D. Rohr, M. Kretz, M. Bach: “Technical Report, CALDGEMM and HPL”,
Tech. rep., University of Frankfurt [2010].

[Roh` 11] D. Rohr, M. Bach, M. Kretz, V. Lindenstruth: “Multi-GPU DGEMM and
HPL on Highly Energy Efficient Clusters”, IEEE Micro, Special Issue, CPU, GPU,
and Hybrid Computing [2011], doi:10.1109/MM.2011.66.

[Roh 12 I] D. Rohr: “ALICE TPC Online Tracker on GPUs for Heavy-Ion Events”, in 13th
International Workshop on Cellular Nanoscale Networks and their Applications,
pp. 298–303 [2012].

[Roh` 12 II] D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breit-
ner, T. Alt: “ALICE HLT TPC Tracking of Pb-Pb Events on GPUs”, Journal of
Physics: Conference Series, vol. 396 , no. 1 : p. 12044 [2012].
URL: http://stacks.iop.org/1742-6596/396/i=1/a=012044

[Sch` 11] C. Schmitt, The Atlas Collaboration: “Track finding using GPUs”, in
14th International Workshop On Advanced Computing And Analysis Techniques
In Physics Research, [2011].
URL: http://cdsweb.cern.ch/record/1379496

[Sch 59] S. Schechter: “On the inversion of certain matrices”, Mathematics of Com-
putation, vol. 13 , no. 66 : pp. 73–73 [May 1959], ISSN 0025-5718, doi:10.1090/
S0025-5718-1959-0105798-2.
URL: http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1959-0105798-2

[Sco` 10] T. R. W. Scogland, H. Lin, W.-c. Feng: “A first look at integrated GPUs for
green high-performance computing”, Computer Science Research and Development,
vol. 25 , no. 3 : pp. 125–134 [2010], ISSN 18652034, doi:10.1007/s00450-010-0128-y.
URL: http://www.springerlink.com/index/10.1007/s00450-010-0128-y

[SDS` 11] SDS, CEA, FIAS, AMD: “mBox and mBlade : GPGPU computing pushed to
the low power world . 1GFlops / Watt barrier is now the past .”, Press Release
22.6.2011 [2011].
URL: http://www.splitted-desktop.com/

[Ser 98] G. Seroussi: “Table of Low-Weight Binary Irreducible Polynomials”, Tech. rep.,
Hewlett Packard [1998].
URL: http://www.hpl.hp.com/techreports/98/

[Sha` 06] S. Sharma, C.-H. Hsu, W.-C. Feng: “Making a case for a Green500 list”, in
Proceedings 20th IEEE International Parallel Distributed Processing Symposium,
p. 343 [IEEE, 2006].
URL: http://www.green500.org/resources/pubs/making-case-green500-list

[Sha 48] C. E. Shannon: “The mathematical theory of communication”, Bell System Tech-
nical Journal, vol. 27 Series The mathematical theory of communication: pp. 379–
423 [1948], ISSN 00058580.

[Shi 13] G. Shipman: “The Titan Supercomputer”, [2013].

[Ste 04] T. Steinbeck: “A Modular and Fault-Tolerant Data Transport Framework”, Dis-
sertation thesis, University of Heidelberg [2004].

[Ste` 10] T. Steinke, K. Peter, S. Borchert: “Efficiency Considerations of Cauchy
Reed-Solomon Implementations on Accelerator and Multi-Core Platforms”, [2010].
URL: http://saahpc.ncsa.illinois.edu/10/papers/paper_12.pdf

[Str 69] V. Strassen: “Gaussian Elimination is not Optimal”, Numerische Mathematik,
vol. 13 : pp. 354–356 [1969].

http://stacks.iop.org/1742-6596/396/i=1/a=012044
http://cdsweb.cern.ch/record/1379496
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1959-0105798-2
http://www.springerlink.com/index/10.1007/s00450-010-0128-y
http://www.splitted-desktop.com/
http://www.hpl.hp.com/techreports/98/
http://www.green500.org/resources/pubs/making-case-green500-list
http://saahpc.ncsa.illinois.edu/10/papers/paper_12.pdf

244 BIBLIOGRAPHY

[TAC] Texas Advanced Computing Center: “GotoBLAS Basic Linear Algebra Li-
brary”.
URL: http://www.tacc.utexas.edu/tacc-projects/gotoblas2

[Tur 66] L. R. Turner: “Inverse of the Vandermonde matrix with applications”, [1966].
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.2019

[UoT] University of Tennesse: “High Performance Linpack Algorithm”.
URL: http://www.netlib.org/benchmark/hpl/algorithm.html

[Vol` 08] V. Volkov, J. Demmel: “Benchmarking GPUs to Tune Dense Linear Algebra”,
in SC ’08 ACM/IEEE conference on Supercomputing Proceedings, pp. 1–11 [2008].

[Wan` 11] F. Wang, C.-Q. Yang, Y.-F. Du, J. Chen, H.-Z. Yi, W.-X. Xu: “Optimizing
Linpack Benchmark on GPU-Accelerated Petascale Supercomputer”, Journal of
Computer Science and Technology, vol. 26 , no. 5 : pp. 854–865 [2011], ISSN 1000-
9000.
URL: http://dx.doi.org/10.1007/s11390-011-0184-1

[Yas] Yasm Development Team: “The Yasm Modular Assembler Project”.
URL: http://yasm.tortall.net/

http://www.tacc.utexas.edu/tacc-projects/gotoblas2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.2019
http://www.netlib.org/benchmark/hpl/algorithm.html
http://dx.doi.org/10.1007/s11390-011-0184-1
http://yasm.tortall.net/

245

Zusammenfassung

Motivation

Seit den siebziger Jahren folgte die Entwicklung integrierter Schaltkreise dem von Gordon Moore
formulierten Gesetz, welches besagt, dass sich die Anzahl der Transistoren und damit grob
gesagt auch die Leistungsfähigkeit von Computern alle achtzehn Monate verdoppelt. Zu Be-
gin des einundzwanzigsten Jahrhunderts begann die Taktrate neuer Prozessoren zu stagnieren,
da die Wärmeentwicklung das höchstmögliche Niveau erreicht hatte, das noch mit verhältnis-
mäßigem Aufwand beherrschbar ist. Darüber hinaus ist der Stromverbrauch moderner Groß-
rechner zu einem gravierenden Kostenfaktor geworden. Um das Verlangen der Anwender, die
von der gewohnten Steigerung der Rechenleistung ausgehen, nach schnelleren Computern zu
stillen, haben Hardwarehersteller begonnen, andere Wege zu gehen, ihre Chips zu verbessern.
Dies umfasst die Steigerung der pro Takt verrichteten Arbeit, was aber nur in relativ geringem
Umfang möglich ist, und insbesondere den Umstieg auf breit angelegte parallele Architektu-
ren.

In den letzten Jahren haben parallel arbeitende Computer zu einer gewaltige Verbreitung gefun-
den. Jeder neuere Prozessor verfügt über mehrere Kerne und einfache Vektorinstruktionen. Leis-
tungsfähiger und energieeffizienter sind Many-Core Prozessoren, wie z. B. Grafikkarten (GPUs),
die mit sehr vielen parallel arbeitenden einfach gestrickten Kernen Hunderte von Aufgaben gleich-
zeitig bearbeiten, oder auch Prozessoren mit breiten Vektorregistern wie beispielsweise Intels
Xeon Phi. Für parallel ausgelegte Programme bieten diese eine vormals nicht für möglich gehal-
tene Rechenleistung. Im Gegenzug sind sie jedoch konstruktionsbedingt ungeeignet für konventio-
nelle seriell arbeitende Programme. Leider kann man deren Potenzial auch nicht durch einfaches
Neukompilieren alter Software ausschöpfen.

Die Anpassung erfordert häufig ein Durchdenken des und Modifikationen am Algorithmus, um
die mögliche Parallelität auszunutzen. Oftmals ist dies kompliziert, zeitaufwendig und die Ren-
tabilität schwer abschätzbar. Viele Programmierer scheuen noch neuartige Prozessoren und viele
Stimmen raten von deren Nutzung ab, weil sie schwer und nicht effizient programmierbar seien,
und dies ihre Vorteile nivelliere.

Häufig lassen sich Anwendungen in serielle und parallele Unterroutinen aufteilen, wobei erste-
re schwer, gar nicht oder nur teilweise parallelisierbar sind. Daher sind viele moderne Cluster
heterogen aufgebaut, mit breiten parallelen Prozessoren für parallele und schnellen für seriel-
le Aufgaben. Geschickte Programmierung kann oft die langsamen seriellen Teile mit den par-
allelen überlappen und so deren Ausführungszeit verstecken. In jedem Fall sind jedoch hoch-
effiziente Programme obligatorisch, um nicht einen Großteil der Rechenleistung zu verschen-
ken.

Diese Arbeit setzt sich mit drei Themen auseinander: Entwicklung schneller Algorithmen und de-
ren Implementierung auf modernen Prozessoren und Grafikkarten, maximal erzielbare Effizienz in
Bezug auf die spezifizierte Maximalrechenleistung und die Leistungsaufnahme sowie drittens Um-
setzbarkeit und Grenzen von Programmen für Prozessoren, Grafikkarten und heterogene Systeme.
Zu diesem Zweck werden drei völlig unterschiedliche Programme aus verschiedenen Gebieten, die
im Umfang der Arbeit realisiert wurden, vorgestellt, analysiert und verglichen.

246 ZUSAMMENFASSUNG

Ereignisrekonstruktion für ALICE

Der Large Hadron Collider (LHC) der Europäischen Organisation für Kernforschung (CERN) in
Genf ist momentan der weltweit leistungsstärkste Teilchenbeschleuniger. A Large Ion Collider
Experiment (ALICE) ist eines der vier großen Experimente, die am LHC installiert sind, und
dient hauptsächlich dem Studium von Schwerionenkollisionen. Hierbei werden die Kerne von
Bleiatomen nahezu auf Lichtgeschwindigkeit beschleunigt und aufeinander geschossen. Die dabei
erreichte Temperatur ist hoch genug, um ein so genanntes Quark Gluon Plasma zu erzeugen:
eine Form der Materie, bei der Quarks und Gluonen nicht in Hadronen gebunden sind, son-
dern sich frei bewegen können, und die vermutlich wenige Sekundenbruchteile nach dem Urknall
existierte. Eine der größten Herausforderungen bei der Analyse der Kollisionen besteht in der
Rekonstruktion der Trajektorien (Tracking) abertausender Teilchen, die bei jedem Zusammen-
stoß entstehen. ALICE besitzt mehrere Detektoren zur Spurerkennung, der wichtigste ist die
Time Projection Chamber (TPC): eine zylindrische mit Gas gefüllte Kammer. Die durchflie-
genden Teilchen ionisieren Gasmoleküle, wobei man die Ionisierungspunkte (Hits) messen kann.
Die Aufgabe der Spurrekonstruktion besteht nun darin, aus der gewaltigen Menge gemessener
dreidimensionaler Raumpunkte (Hits) die Teilchenspuren zu rekonstruieren, die Messpunkte den
einzelnen Teilchen zuzuordnen und die physikalischen Teilcheneigenschaften anhand der Flugbahn
zu bestimmen.

Abbildung 1: Screenshot des Online Event Dis-
play während des Ersten GPU Tracker Einsatzes

Typische zentrale Blei-Ereignisse sind mehre-
re zehn Megabyte groß und werden mit einer
Rate von einigen hundert Hz gemessen, was ei-
ner eingehenden Datenrate von bis zu 30 GB{s

entspricht, rechentechnisch eine enorme Her-
ausforderung. Der ALICE High Level Trigger
(HLT) ist eine Rechenfarm aus circa 250 Com-
putern, die in Echtzeit einen Großteil der Er-
eignisrekonstruktion durchführt. Aufgaben des
HLT bestehen in einer schnellen Analyse der
Daten, einer Entscheidung welche Daten ge-
speichert werden und einer Kompression eben-
dieser Daten. Die gespeicherten Daten werden später von der ALICE Offline Software ausgewer-
tet, die genauere und mehr Analysen liefert, aber dafür wesentlich mehr Zeit in Anspruch nimmt.
Um eine Spurrekonstruktion in Echtzeit zu ermöglichen, wurde der ALICE HLT TPC Tracking
Algorithmus angepasst und auf NVIDIA Fermi Grafikkarten portiert. Nach einer Testphase wur-
den 64 HLT-Server mit GPUs ausgestattet und der Tracker dort installiert. Der GPU Tracker war
während des gesamten Jahres 2012 ohne besonderen Vorkommnisse im Dauereinsatz und stellte
ein vollständiges Tracking aller von ALICE aufgenommenen Events bereit. Abb. 1 zeigt einen
Screenshot des Online Event Displays im ALICE Kontrollraum während des ersten Betriebs des
GPU Trackers.

Zur besseren Ausnutzung der Datenlokalität teilt der HLT TPC Tracker das TPC Volumen in 36
gleichförmige Sektoren ein, die unabhängig voneinander bearbeitet werden. Die zueinander ge-
hörenden, in den jeweiligen Sektoren gefundenen Tracksegmente werden danach durch den Track
Merger zu vollständigen Tracks zusammengefasst. Der Algorithmus funktioniert im Grunde in-
tern wie folgt: Zuerst werden im Neighbors Finder mit einer Heuristik auf lokaler Ebene kom-
binatorisch Seeds gesucht: sehr kurze Trackkandidaten bestehend aus wenigen Hits. Anhand des
bekannten Verhaltens geladener Teilchen in dem den Detektor umgebenden Magnetfeld, werden
vom Tracklet Constructor die wahrscheinlichsten Trackparameter bestimmt. Diese umfassen
die Flugbahn des Teilchens sowie einige physikalische Eigenschaften wie die Ladung. Mittels
der Trackparameter wird die Flugbahn des Teilchens durch die gesamte TPC extrapoliert. Dar-
auf aufbauend werden weitere Hits gesucht, die nahe der Flugbahn liegen und vermutlich zu
dieser Trajektorie gehören, dem Track zugeordnet und zur Verbesserung der Abschätzung der

ZUSAMMENFASSUNG 247

Trackparameter genutzt. Am Ende filtert der Tracklet Selector Spuren mit Problemen bei der
Parameterbestimmung heraus. Der Tracker benutzt den Kalman Filter zur Extrapolation der
Spuren und zur Errechnung der Spurparameter.

DMA
GPU
CPU 1
CPU 2
CPU 3

Zeit

Routine: Initialization Neighbor Finding Tracklet Construction Tracklet Selection Tracklet Output

Abbildung 2: Pipeline des GPU Trackers mit mehrere CPU Threads

Einige am Tracking Algorithmus vorgenommene Optimierungen verkürzen die Bearbeitungs-
zeit auf der GPU und verbessern die Resultate. Beispielsweise besitzt der GPU Tracker für die
Datenein- und -ausgabe noch einige Routinen, die weiterhin auf dem Prozessor ablaufen, wobei
eine Portierung auf die GPU wenig Sinn ergibt, da sie die Daten nur umformatieren und dabei
lediglich ein- bis zweimal anfassen. Damit die GPU während diese Zeit und während der Zeit der
Datenübertragung durch den PCI Express Bus nicht stillsteht, wird eine Pipeline eingesetzt, die
das Tracking der einzelnen Sektoren nacheinander durchführt und dabei Vor- bzw. Nachbearbei-
tung auf der CPU, DMA Transfer und das eigentliche Tracking auf der GPU von aufeinanderfol-
genden Sektoren zeitlich überlagert. Da ein Prozessorkern nicht schnell genug ist, um die GPU
mit ausreichend Daten zu versorgen, arbeitet die Pipeline mit mehreren Kernen und nutzt diese
reihum. Abb. 2 veranschaulicht den Vorgang.

An mehreren Stellen ging der Algorithmus ursprünglich nicht vollständig deterministisch vor.
Beispielsweise wird an gewissen Punkten der jeweils längere Track bevorzugt. Im seltenen Fall
von zwei Tracks gleicher Länge ist dieses Kriterium nicht eindeutig und der erste Track wurde
gewählt. Dies hat auf die Qualität der Ergebnisse überhaupt keinen Einfluss und funktionier-
te in der CPU Version über Jahre hinweg tadellos. Bei der parallel arbeitenden Grafikkarte
jedoch, die alle Tracks nebenläufig erstellt, ist die Reihenfolge der Tracks nicht wohldefiniert.
Daher können bei obigem nichtdeterministischen Kriterium durch unvermeidliche Schwankungen
in der Bearbeitungsreihenfolge leicht verschiedene Resultate herauskommen. Diese unterschiedli-
chen Ergebnisse sind physikalisch alle gleichwertig, erschweren allerdings die Qualitätssicherung
ungemein, da man die Ausgabe von zwei Läufen nicht auf unterster Ebene vergleichen kann. Alle
solche Effekte, die von Nebenläufigkeit herrühren, wurden eliminiert; meist durch Wahl besse-
rer Kriterien, wodurch nebenbei sogar Effizienz und Auflösung des Trackers verbessert wurden.
An anderer Stelle tritt leider noch eine kleine Schwankung auf, die auf Computern unvermeid-
lich ist: Da computerbasierte Fließkommaberechnung nicht assoziativ ist (falls die “-ffast-math”
Compilereinstellung aktiv ist), führen unterschiedliche Programmoptimierungen verschiedener
Compiler zu leicht unterschiedlichen Ergebnissen; Dieses Phänomen tritt auch auf dem Prozessor
bei Verwendung unterschiedlicher Compilereinstellungen auf. Vergleicht man die Ausgabe der
CPU- und GPU-Tracker auf Basis von Tracks und zugeordneten Hits, ergibt sich im Mittel eine
Abweichung bei 0, 00024 % der Hits und 0, 012 % der Tracks – eine gänzlich vernachlässigbare
Größenordnung.

Als letztes Beispiel soll eine prinzipbedingte Schwäche der Aufteilung der TPC in Sektoren die-
nen. Falls eine Spur größtenteils in einem Sektor liegt, aber ein sehr kurzes Stück in einen be-
nachbarten Sektor hineinreicht, ist es wahrscheinlich, dass dieses zweite kurze Segment nicht
gefunden wird. Hierfür wurde ein Feature mit Namen Global Tracking implementiert, das nach
solchen Kandidaten sucht, und dann die wohldefinierten Spurparameter innerhalb des Sektors
mit dem langen gefunden Segment nutzt, um die fehlenden Hits im angrenzenden Sektor zu
finden.

Abb. 3 analysiert die Qualität der Trackingergebnisse und stellt diese dem Offline Tracker gegen-
über, welcher von der ALICE Offline Gruppe zur nachträglichen Datenanalyse eingesetzt wird.
Hierbei sind Findable Primary Tracks Spuren, die dem Primären Vertex, also dem Kollisions-

248 ZUSAMMENFASSUNG

 [Gev/c]
Tmc

p
2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Offline - Effizienz
Offline - Clone Rate
Offline - Fake Rate
HLT - Effizienz
HLT - Clone Rate
HLT - Fake Rate

Effizienz (Primary Tracks, Findable)

 [Gev/c]
Tmc

p
2 4 6 8 10 12 14 16 18 20

 [%
] (

Au
flö

su
ng

)
Tm

c
)

/
p

Tm
c

 -
p

T
(p

0

2

4

6

8

10

Offline - Auflösung
Offline - Versatz
HLT - Auflösung
HLT - Versatz

 Auflösung
T

Relative p

 (
Effi

zie
nz

 /
 C

lo
ne

 R
at

e
/

Fa
ke

 R
at

e)

Abbildung 3: Qualität der Ergebnisse des GPU Trackers und des Offline Trackers

mittelpunkt, entstammen und gewissen von der ALICE Offline Gruppe definierten Kriterien für
relevante Spuren genügen. Als Basis wird ein großer Satz simulierter Ereignisse genommen, deren
echte Spuren bekannt sind, so dass diese mit den vom Tracker aus den simulierten Hits erzeugten
Spuren verglichen werden können. Die Effizienz gibt den Anteil dieser Spuren wieder, die der
Tracker gefunden hat. Die Clone Rate beschreibt den Anteil der Spuren, die doppelt gefunden
aber nicht vom Merger zusammengefasst wurden. Die Fake Rate misst den Anteil der Spuren,
die keiner realen Spur entsprechen und die Relative pt Auflösung ist die relative Abweichung des
vom Tracker berechneten Transversalimpulses vom simulierten Referenzwert.

Klar erkennbar erzielen beide Tracker quasi die höchstmögliche Effizienz (wobei der GPU Tra-
cker sogar noch ein klein wenig besser ist) und die Fake Rate liegt bei null. Die Clone Raten
sind sehr gering und beim GPU Tracker deutlich besser. Die Auflösung hingegen ist beim Offline
Tracker genauer. Dies ist allerdings in keiner Hinsicht verwunderlich, da der HLT GPU Tracker
eine schnelle Echtzeitrekonstruktion durchführt und der Offline Tracker zur späteren genauen
Datenanalyse genutzt wird, wobei mehr Zeit und mehr Rechenleistung zur Verfügung stehen.
Aus Performancegründen nimmt der HLT GPU Tracker deshalb ein paar Vereinfachungen vor,
die die Echtzeitanalyse ermöglichen, sich aber hier in der Auflösung niederschlagen. In jedem
Fall ist die erzielte Auflösung mehr als ausreichend für die Echtzeitanalyse. Zusätzlich wurden
einige Korrekturen identifiziert, die der Offline Tracker anwendet, und die möglicherweise mit
geringen Performanceeinbußen in Zukunft auch für den GPU Tracker implementiert werden kön-
nen. Momentan wird von der HLT und der Offline Gruppe gemeinsam daran gearbeitet, den
schnellen GPU Tracker mit der Offline Implementierung zur Bestimmung der Trackparameter zu
verknüpfen, um so die Vorzüge beider Versionen zu kombinieren.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.5 · 106 1 · 106 1.5 · 106 2 · 106

St
eig

er
un

g
(im

 V
er

gl
eic

h
zu

 O
ffl

in
e)

Anzahl der Hits

HLT GPU Tracker
HLT GPU Tracker Komponente
HLT CPU Tracker Komponente

Abbildung 4: Vergleich der Performance von
GPU, CPU und Offline Tracker

Vergleicht man die benötigte Rechenzeit der
am HLT eingesetzten Grafikkarten vom Typ
GTX480 und GTX580 mit den schnellsten mo-
mentan erhältlichen Prozessoren, so gewinnt
die Grafikkarte, die obendrein günstiger ist, et-
wa um den Faktor drei. Für die Leistung im
HLT ist eine andere Abschätzung sinnvoll. Da
der HLT viele weitere prozessorintensive Ar-
beiten verrichtet (wie z. B. der Track Merger,
Cluster Transformation und Suche nach se-
kundären Vertices), können ohnehin nicht al-
le CPU Ressourcen der Rechenknoten für die
Spurrekonstruktion verwendet werden. Abb. 4
vergleicht daher die Rechenzeit des Offline
Trackers und des HLT Trackers auf CPU und auf GPU, in Konfigurationen, die jeweils genau vier
der CPU Kerne für die Spurrekonstruktion benutzen und alle verbleibenden Kerne für andere

ZUSAMMENFASSUNG 249

Aufgaben freihalten. Die Messung für den HLT GPU Tracker berücksichtigt nur die eigentliche
Rechenzeit des Trackers. Die HLT GPU Tracker Komponente beinhaltet den Overhead, der von
der HLT Framework Software zum Übergeben der Datenpakete erzeugt wird. Letzteres ist für
die CPU Implementierungen irrelevant, hat aber auf die Performance des GPU Trackers einen
großen Einfluss und wurde deshalb im Umfang dieser Arbeit optimiert und benötigt nur noch ein
Zehntel der früheren Zeit. Insgesamt gesehen, ist der CPU Tracker des HLT bereits etwa fünfzehn
Mal so schnell wie die Offline Variante, der GPU Tracker übertrifft die CPU Version um einen
weiteren Faktor zehn.

Abgesehen von der Rechenzeit bewirkt der GPU Tracker auch eine deutliche Senkung der Kosten
des HLT. Um die Kostenersparnis abzuschätzen, muss man bedenken, dass Tracking auf der
GPU etwa so schnell ist wie auf der CPU bei gemeinsamer Nutzung aller Rechenkerne eines HLT
Servers. Die GPU nutzt dabei nur vier der 24 Kerne und lässt einen Großteil der Ressourcen
für andere Aufgaben frei. So gesehen kann man durch Installieren einer GPU in einen ohnehin
vorhandenen Server quasi einen vollständigen Server einsparen. Unter Berücksichtigung der Preise
von 300 $ pro GPU und 5000 $ pro Server ergibt sich für den HLT durch den Einsatz der 64 GPUs
eine Kostenersparnis von 300000 $ – zusätzlich benötigte Infrastruktur und Strom für mehr Server
nicht mitgerechnet.

Abgesehen vom Tracker wurde auch der Track Merger für GPUs umgesetzt. Hier konnte jedoch
gezeigt werden, dass sich aufgrund der limitierten PCI Express Bandbreite keine deutliche Verkür-
zung der Bearbeitungszeit erzielen lässt. Daher ist es sinnvoller, den Tracker, der davon deutlich
mehr profitiert, auf der GPU auszuführen, und den Merger auf dem Prozessor zu belassen.

Heterogene HPC Benchmarks

Der Linpack Benchmark (oft auch High Performance Linpack (HPL) genannt) ist das Standard-
werkzeug zur Klassifikation der Rechenleistung von Hochleistungsrechnern. HPL löst ein dicht
besetztes lineares Gleichungssystem iterativ mittels LU -Faktorisierung mit zeilenweiser Pivotisie-
rung. Jede Iteration besteht aus der Panel-Faktorisierung, dem Panel-Broadcast, der Replikation
der Pivotisierung (LASWP genannt), dem U -Matrix Update (DTRSM) und dem Trailing-
Matrix Update. Der letzte Schritt ist eine Matrix-Matrix-Multiplikation, die von einer Routine
mit Namen DGEMM durchgeführt wird und die das Gros der Rechenzeit beansprucht.

Der LOEWE-CSC ist ein Supercomputer der Goethe Universität bestehend aus circa 800 Servern
mit Magny-Cours Prozessoren und AMD Radeon 5870 GPUs, der im Herbst 2010 in Frankfurt
installiert wurde. Sanam ist ein Großrechner der King Abdulaziz City for Science and Technolo-
gy, der in Kooperation mit dem Frankfurt Institute for Advanced Studies geplant und installiert
wurde. Die Evaluation der Hardware für Sanam wurde vollständig im Umfang dieser Arbeit vor-
genommen. Da keine für AMD GPUs optimierten Versionen von DGEMM und HPL existierten,
wurde eine DGEMM Bibliothek für GPUs mit Namen CALDGEMM und darauf aufbauend
eine Linpack Implementierung (HPL-GPU) geschrieben, die beide als Open Source Software
verfügbar sind.

CALDGEMM nutzt einen in AMD GPU Assembler (CAL) geschriebenen DGEMM Kernel, der
auf den getesteten AMD GPUs circa 90 % der theoretischen Peakperformance erreicht. Um par-
allel zur GPU den Prozessor zu nutzen, setzt CALDGEMM schnelle DGEMM Routinen hochop-
timierter BLAS Bibliotheken wie GotoBLAS, MKL oder ACML ein. Ein elaboriertes Framework
bietet viele Features, welche die hohe Kernel Performance auch real im System zur Verfügung
zu stellen. Dazu gehören vektorisierte Vor- und Nachbearbeitungsschritte auf dem Prozessor mit
manuellem Prefetching, welche die Daten geeignet umformatieren und gewisse einfache Rechnun-
gen übernehmen, um PCI Express Bandbreite zu sparen; eine Pipeline, die die Matrix aufteilt
und dann die CPU Berechnungen, Datentransfers, und DGEMM Kernels auf der GPU zeitlich
überlagert; ein dynamisches Caching von Daten auf der GPU, welches sicherstellt, dass alle Da-

250 ZUSAMMENFASSUNG

ten nur einmal übertragen werden müssen; und ein dynamischer mehrphasiger Scheduler, der die
Rechnungen auf mehrere CPUs und GPUs verteilt. Patches für GotoBLAS und für die OpenMP
Bibliothek von GCC verhindern, dass mehrere Threads gleichzeitig denselben Kern belegen, ein
binärer Patch des AMD Grafikkartentreibers ändert das Verhalten der Pufferverwaltung und ver-
ringert signifikant die Häufigkeit von Page Faults. Die LOEWE-Knoten erreichen damit beispiels-
weise 98, 5 % der Kernelperformance in echten Anwendungen. Weiter erzielen sie im kombinier-
ten CPU/GPU DGEMM 623, 5 von 745, 6 GFlop{s theoretischer Peakperformance. Der zwei Jahre
neuere mit vier GPU Chips ausgestattete Sanam erreicht 2923 von 3661 GFlop{s auf einem Server.

Für HPL-GPU wurde ein neuartiger, auf mit GPU-Beschleunigern ausgestattete Computer zuge-
schnittener Lookahead entwickelt, der die seriellen Teile des HPL hinter der GPU Berechnung
versteckt. Hierzu beginnt er bereits während des DGEMM der aktuellen Iteration mit der Faktori-
sierung des Panels und dem Broadcast der nächsten Iteration. Zusätzlich sind DGEMM, LASWP
und DTRSM in einer Pipeline angeordnet. Der Scheduler sorgt dafür, dass die jeweils zuerst be-
nötigten Ergebnisse der Matrix Multiplikation auch zuerst bereitstehen. Mittlerweile hat Intel
die in CALDGEMM eingeführten Algorithmen in deren HPL Implementierung für Beschleuniger
weitestgehend übernommen.

Moderne Cluster bestehen oft nicht mehr nur aus gleichartigen Knoten. Der LOEWE-CSC bei-
spielsweise hat einige Knoten mit mehr CPU Kernen und mehr Speicher aber ohne GPU für
spezielle CPU- und speicherintensive Anwendungen. Herkömmliche Linpackimplementierungen
verteilen die Rechenlast völlig gleichmäßig auf alle vorhandenen Knoten und können mit solch
einer heterogenen Situation nicht umgehen, denn sie bremsen damit alle Knoten auf das Niveau
des langsamsten teilnehmenden Knotens herunter. HPL-GPU hat einen neuen Algorithmus, um
die Matrix der vorhandenen Rechenleistung entsprechend zu verteilen. Hierfür musste insbeson-
dere der Algorithmus zum Lösen von Dreieckssystemen modifiziert werden. Ein exemplarischer
Test mit sechs Knoten drei verschiedener Leistungsklassen erreichte 96.9 % der akkumulierten
Einzelleistungen aller Knoten und damit lediglich 3.1 % Granularitätsverlust.

Für multi-GPU Systeme ändern sich einige Paradigmen. Während es bei einer GPU möglich ist,
den Kernel bis ins letzte Detail zu optimieren und diese Kernelperformance durch ein geschicktes
Framework im System verfügbar zu machen, stellen Beschränkungen in der PCI Express und der
Speicherbandbreite bei mehreren GPUs das vorherrschende Problem dar. Beispielsweise nutzt
CALDGEMM bei nur einer GPU in Mehrsockelsystemen für GPU bezogene Aufgaben nur Pro-
zessorkerne auf dem CPU-Sockel, der direkt die GPU anbindet. Bei mehreren GPUs ist es viel
wichtiger, möglichst viel Aggregatspeicherbandbreite zu akkumulieren, und hierzu müssen Kerne
auf allen Sockeln genutzt werden. Einige interne Parameter können anders gewählt werden, so
dass die DGEMM Rechenleistung des Kernels zwar minimal abnimmt, dafür aber die benötigte
Speicherbandbreite so stark reduziert wird, dass sich netto eine Beschleunigung ergibt. Während
des Linpack Benchmarklaufes ändern sich mit jeder Iteration die Anteile der verschiedenen Schrit-
te an der Gesamtrechenlast. Dem kann Rechnung getragen werden, indem gewisse Parameter
laufend angepasst werden, so dass zu jedem Zeitpunkt die maximale Leistung ausgeschöpft wird.

Da GPUs nur sehr einfache, aber dafür viele Kerne einsetzen, sind sie für optimierte Anwendungen
konstruktionsbedingt energieeffizienter als Prozessoren. Beim HPL ist es möglich, die Energie-
effizienz weiter zu steigern, indem man weitere Teile des Algorithmus vom CPU auf die GPU
auslagert und die Prozessoren damit soweit als möglich absichtlich brach liegen lässt. HPL-GPU
bietet einen effizienzoptimierten Modus, der auf dem Sanam zwar eine um 11, 1 % reduzierte
Leistung, dafür aber eine um 23, 2 % reduzierte Stromaufnahme ermöglicht. Auch für speziel-
le Systeme im Niedrigenergiebereich gibt es besondere Anpassungen, um deren verhältnismäßig
langsame Prozessoren zu kompensieren. Mit optimierten Versionen von HPL-GPU konnte be-
reits Anfang 2011 sowohl auf einem solchen Niedrigenergiesystem von SDS als auch auf einem
multi-GPU System jeweils eine Energieeffizienz von mehr als 1 GFlop{J demonstriert werden.

Schließlich erreicht der Linpack 563 von 745 GFlop{s Peakperformance (75, 5 %) auf einem LOEWE-
CSC Knoten und 2679 von 3661 GFlop{s (73.2 %) auf einem Sanam Knoten. Läufe mit mehreren

ZUSAMMENFASSUNG 251

Knoten liegen pro Knoten bei 90 % oder mehr der Einzelknotenperformance. Der LOEWE-
CSC platzierte sich unter Verwendung von HPL-GPU im November 2010 mit 285 TFlop{s auf
Platz 22 in der Top500 Liste der schnellsten Supercomputer, Sanam erzielte im November 2013
mit 2, 35 GFlop{J den zweiten Platz in der Green500 Liste der energieeffizientesten Supercomputer.
(Die Top500 Leistung beläuft sich auf 532 GFlop{s.) HPL-GPU bot damit auf dem LOEWE-CSC
eine bis dato auf GPU-Clustern unerreichte Effizienz im Vergleich zur Peakperformance und erst
kürzlich konnten andere Implementierungen von NVIDIA und Intel aufschließen, wobei NVIDIA
z.B. auf dem Titan Supercomputer nur auf den Grafikkarten rechnet und die Prozessoren außen
vorlässt, und Intel den Lookahead von HPL-GPU übernommen hat.

Um mit weiteren Architekturen kompatibel zu sein, kann CALDGEMM alternativ CUDA und
OpenCL als Backend nutzen. Ein alternatives DMA Schema halbiert die erforderte Bandbreite
zum Hauptspeicher, stellt dafür aber höhere Ansprüche an die DMA Engines. Ein Test mit
NVIDIA Grafikkarten demonstrierte eine Skalierung dieses Schemas bis zu etwa 8 TFlop{s DGEMM
Performance auf einem Server.

Fehlertolerante Kodierung

Die Menge der von der Menschheit produzierten digitalen Daten steigt rasant an und hat in-
zwischen viele Exabyte pro Jahr erreicht. Dies stellt eine enorme Herausforderung bei der Da-
tenspeicherung dar. Unzählige Speichermedien müssen parallel eingesetzt werden, wodurch das
regelmäßige Versagen einzelner Medien vorprogrammiert ist. Die Kodierungstheorie ermöglicht
die fehlertolerante Datenspeicherung und ist eine absolute Notwendigkeit für jedwede heutige
Computerinfrastruktur. Darüber hinaus gibt es Verbindungen zur fehlertoleranten Datenüber-
tragung, zur Fehlererkennung und zu ausfallsicheren redundanten Computersystemen, bei denen
sichergestellt ist, dass der Ausfall einzelner Komponenten das Gesamtsystem nicht beeinträchtigt.
Diese Arbeit handelt nur von fehlertoleranter Kodierung, die Prinzipien lassen sich aber leicht
auf andere Gebiete übertragen.

Die Mathematik hinter vielen fehlertoleranten Codes findet in endlichen Körpern Fq mit einer
Primzahlpotenz q “ pl statt, wobei die Rechenoperationen nicht nativ von Computern unterstützt
werden, sondern emuliert werden müssen, was aufwändig ist und viel Rechenzeit verschlingt. Im
Folgenden bezeichnet ein pn, kq-Code einen Code, der n Datenwörter in n ` k Codewörter ko-
diert, so dass beim Verlust von bis zu k Codewörtern alle Datenwörter wiederhergestellt werden
können. Prominente Beispiele solcher Codes sind Reed-Solomon Codes, deren Funktionswei-
se sich auf Eigenschaften der Vandermonde-Matrix stützen, oder darauf aufbauende Cauchy-
Reed-Solomon Codes. Die eigentliche Kodierung bzw. die Wiederherstellung von Daten aus
den Codewörtern wird über eine Matrix-Vektor-Multiplikation realisiert. Bei den obigen zwei
Beispielen liegen die Werte in F2l bzw. in F2, meistens mit l “ 8 oder l “ 16, wobei immer gelten
muss 2l ě n` k.

Diese Arbeit behandelt die Kodierung in zwei Schritten. In einem ersten theoretischen Teil wer-
den Codes diskutiert, deren Operationen sich besser auf die vorhandenen Rechenoperationen von
Computern abbilden. Es wird eine Methode vorgestellt, mit Hilfe der Ganzheitsringe algebraischer
Zahlkörper Codes mit Integer-Rechenoperationen in Z{2bZ zu erzeugen, die jenen aus [And` 05]
entsprechen, die aber mit der vorgestellten Methode um den Faktor 3b

2 ln2 p schneller erzeugt wer-
den können. Cauchy-Reed-Solomon Codes können durch geeignete Vektorisierung so formuliert
werden, dass die Rechenoperationen in Fb2 durchgeführt werden können. Beides können Compu-
ter effizient bewerkstelligen. Schließlich kann man die wiederholte Matrix-Vektor-Multiplikation,
die per Konstruktion speicherbandbreitenlimitiert ist, in eine Matrix-Matrix-Multiplikation um-
schreiben und damit die volle Rechenleistung von Prozessoren ausschöpfen.

Im zweiten Teil werden neue schnelle Implementationen der besprochenen Codes vorgestellt, die
in Form der Open Source Bibliothek QEnc frei zur Verfügung gestellt werden. Hierfür werden

252 ZUSAMMENFASSUNG

zuerst vorhandene leistungsfähige DGEMM Bibliotheken zur Flieskomma-Matrixmultiplikation
abgewandelt, um eine Implementierung für den Integerfall (IGEMM) in Z{2bZ sowie den Binärfall
(BGEMM) in Fb2 zu erhalten. Für relativ große Matrizen (n, k ě 48) erreichen diese Bibliothe-
ken die spezifizierte Spitzenleistung der Prozessoren. Die Cauchy-Reed-Solomon Codes erlauben
noch eine weitere Optimierung, die jedoch für Computer gewöhnlich nicht im Allgemeinen rea-
lisiert werden kann, sondern nur für fest vorgegebene Werte von n und k. Hierbei wird ausge-
nutzt, dass man Multiplikationen in F2 gar nicht durchführen muss (man kann ja nur mit 0
oder mit 1 multiplizieren, wobei man jeweils das Ergebnis schon kennt), und dass man darüber
hinaus die Hälfte der Additionen auslassen kann, da der konstante Wert 0 addiert wird. Dar-
über hinaus wurde eine analoge Optimierung für die auf Integeroperationen in Z{2bZ basierende
Kodierung entwickelt. Beide Versionen setzen aber eine a priori Kenntnis der jeweiligen Matrix
voraus.

QEnc löst dieses Problem, indem zur Laufzeit binärer Assemblercode generiert und ausgeführt
wird, der auf die spezifische Matrix hin optimiert ist (Automorphe Kodierung). Hierbei
wird eine ganze Reihe an Optimierungen vorgenommen. Einige ähneln Compileroptimierungen
für C Code – Jedoch ist es nicht zielführend, C Code zu generieren und zu kompilieren, da
die Codes sehr groß werden und die Auswertungsbäume so komplex werden, dass die Compi-
ler ihre Optimierungen nur schwer anwenden können. QEnc generiert SSE (XOR128) oder AVX
(XOR256) Vektorinstruktionen mit folgenden Optimierungen:

• Einsatz von Prefetching Instruktionen und Streaming Stores.

• Techniken, die auch von Compilern eingesetzt werden, wie unter anderem Register Rena-
ming zum Einsparen von Registern, Load/Store Interleaving zur besseren Auslastung der
CPU Ausführungseinheiten, Einsatz von Ternary Instruktionen, Padding mit NOP Instruk-
tionen für besseres Alignment, et cetera.

• Mathematische Optimierungen, wobei Teilergebnisse an anderer Stelle wiederbenutzt wer-
den, um Instruktionen zu sparen.

• Einsatz der Blocking-Technik zur Reduktion der nötigen Speicherbandbreite.

• Nutzung des Strassen-Algorithmus zur schnellen Matrixmultiplikation.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 6 8 12 16 24 32 48 64

128

512

2K

8K

32K

128K

512K

Gr
öß

e
de

s
Bi

nä
rc

od
es

 [B
yt

es
]

n = k

AOp/s
Größe des Codes
Größe des Caches

M
at

rix
m

ul
tip

lik
at

io
n

[G
AO

p/
s]

Abbildung 5: Leistungseinbruch von QEnc ohne
Instruktionsblocking

Die Blocking-Technik iteriert nicht alle Schlei-
fen nacheinander vollkommen, sondern wech-
selt hin und her. Dies ist möglich, so lange die
Ergebnisse unabhängig sind, und hilft die ak-
tuellen Daten immer in den CPU Caches zu
halten. QEnc nutzt eine Vielzahl an Blocking-
Stufen: ein Register-Blocking, ein zweistufiges
Daten-Blocking sowie ein zweistufiges Blocking
auf Instruktionsebene. Instruktionsblocking ist
eine neue Technik die von QEnc eingeführt
wurde. Da die Matrixeinträge in den Instruk-
tionen enthalten sind, läuft ab einer bestimm-
ten Matrixgröße der Instruktionscache voll und
die Leistung leidet beträchtlich, wie Abb. 5 il-
lustriert.

Abb. 6 zeigt die beim Kodieren auf einem Sandy Bridge System erreichte Bandbreite sowie den In-
struktionsdurchsatz an 32-bit Operationen. Die Speicherbandbreite entspricht genau dem doppel-
ten der angegebenen Bandbreite, da die Eingangsdaten gelesen und gleich große Ausgangsdaten
geschrieben werden. Die eingezeichnete Maximalbandbreite wurde durch synthetische low-level
Assemblerbenchmarks gemessen und entspricht der höchsten erzielbaren Bandbreite auf dem
System. Der maximale Instruktionsdurchsatz wurde aufgrund der Taktfrequenz berechnet unter

ZUSAMMENFASSUNG 253

der Annahme, dass der Prozessor pro Takt drei Operationen durchführen kann. Dies ist aller-
dings nicht ganz korrekt und wird auch teilweise überschritten. Unter gewissen Umständen kann
parallel zu den drei SSE Instruktionen noch eine vierte skalare Instruktion ausgeführt werden,
und durch µ-op Fusion und Macro-op Fusion kann der Prozessor mehrere Instruktionen in einer
Ausführungseinheit ausführen. Die Abbildung zeigt ganz klar, dass QEnc bei kleinen Matrizen
bis n, k ď 8 speicherbandbreitenlimitiert ist, darüber liegt eine Limitierung durch den maxima-
len Instruktionsdurchsatz vor. Bei sehr großen Matrizen verringert sich der Instruktionsdurchsatz
wieder geringfügig sobald die Optimierungen des Strassen-Algorithmus greifen. Zwar können Tei-
le des Strassen-Algorithmus prinzipbedingt keinen Maximaldurchsatz erreichen können, trotzdem
ist er aber insgesamt schneller. Damit ist sehr deutlich, dass QEnc über alle Matrixgrößen hinweg
an harte Grenzen der eingesetzten Hardware stößt. Messungen mit k ă n zeigen das gleiche Ver-
halten. Darüber hinaus kann QEnc auch differentielle Codes generieren. Hierbei wird in jedem
Fall die maximale Speicherbandbreite erzielt.

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128 256 512 1024
0

10

In
st

ru
kt

io
ns

du
rc

hs
at

z
[G

O
p/

s]

Ba
nd

br
eit

e
[G

B/
s]

n = k

Bandbreite Instr.-Durchsatz Max. Bandbreite Max. Durchsatz

Abbildung 6: Erreichte Speicherbandbreite und Instruktionsdurchsatz der Automorphen Codes

Die bisherige Diskussion beschränkte sich auf einen einzelnen CPU Kern. QEnc kann über
OpenMP mehrere Kerne nutzen und kann sowohl die auf einfacher Matrixmultiplikation be-
ruhenden Codes als auch automorphe Codes auf Grafikkarten ausführen. Zu letzterem Zweck
generiert QEnc OpenCL Code. Als dritte Möglichkeit kann QEnc VHDL Code generieren, um
auf FPGAs zum Einsatz zu kommen. Abb. 7 gibt einen Überblick über die erreichte Rechenleis-
tung, die, um eine gewisse Vergleichbarkeit zu bieten, als die Leistung angegeben ist, die eine
naive Matrixmultiplikation benötigt, um die gleiche Gesamtleistung zu erzielen.

 0

 200

 400

 600

 800

 1000

 1200

4 8 16 32 64 128 256 512 1024
n = k

XOR128, Sandy Bridge
IGEMM / BGEMM, Sandy Bridge

XOR128, Westmere
XOR128, Westmere 6 Threads

XOR128, NVIDIA GPU
XOR128, AMD GPU
BGEMM, AMD GPU

M
at

rix
m

ul
tip

lik
at

io
n

[G
AO

p/
s]

Abbildung 7: Performance der Matrixmultiplikation in QEnc

Man sieht, dass auf Prozessoren die einfache Matrixmultiplikation weit abgeschlagen ist. Der
automorphe Code leistet beeindruckende 251 GAOp{s mit nur einem Prozessorkern, eine Steigerung
um das 9, 1-Fache im Vergleich zur naiven Matrixmultiplikation mit SGEMM, IGEMM oder

254 ZUSAMMENFASSUNG

BGEMM, bei denen selbst die schnellsten Bibliotheken jeweils nur etwa 27, 5 GAOp{s bieten. Der
Westmere Prozessor zeigt eine Beschleunigung von etwas mehr als dem Faktor vier unter Einsatz
von sechs Threads. Die hohe Last auf den gemeinsamen Caches fordert hier einen gewissen Tribut.
Auf Grafikkarten funktioniert die naive Matrixmultiplikation bei großen Matrizen besser, da
der OpenCL Code nicht so optimal übersetzt wird wie der Assemblercode auf dem Prozessor.
Abb. 8 gibt einen Überblick über die erreichte Bandbreite. Die GPUs demonstrieren immense
Bandbreiten und der FPGA spielt in einer völlig anderen Liga. Allerdings sind aufgrund des
beschränkten PCI Express Durchsatzes diese Bandbreiten in der Realität nicht verfügbar.

 0.1

 1

 10

 100

 1000

 10000

4 8 16 32 64 128 256 512 1024

Ba
nd

br
eit

e
[G

B/
s]

n = k

Sandy Bridge 1 Thread
Westmere 6 Threads

NVIDIA GTX580
AMD Radeon 6970

Virtex6 LX240
PCI Express 2.0 Limit
PCI Express 3.0 Limit

Abbildung 8: Übersicht der Bandbreite beim
Kodieren auf CPU, GPU und FPGA

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

4 8 16 32 64 128 256 512 1024

Ta
kt

e
pr

o
12

8-
bi

t
D

at
en

- u
nd

 C
od

ew
or

t

n = k

Abbildung 9: Anzahl der benötigten Taktzy-
klen pro 128-bit Daten- und Codewort

Die QEnc Implementierung benötigt weniger als drei arithmetische Operationen pro 128-bit Da-
tenwort, um ein 128-bit Codewort zu erzeugen. Dies sind weit weniger als andere Implementierun-
gen benötigen, und es ist anschaulich plausibel, dass man diese Zahl nicht viel weiter reduzieren
kann. Pro durchgeführter arithmetischer Operation führt QEnc 1, 23 CPU Instruktionen aus. Be-
rücksichtigt man die Operationen zum Laden und Speichern von Daten, für Prefetches und zum
Kontrollfluss, so ist dies ein sehr geringer Overhead. Mit jedem Takt führt QEnc 2, 61 128-bit SSE
XOR-Operationen aus, wenn man nur die arithmetischen Operationen der Matrixmultiplikation
zählt. Abb. 9 visualisiert wie viele Takte pro Code- und Datenwort nötig sind, und unterstreicht
damit, wie wenig Spielraum es noch für Optimierungen gibt. Auf Prozessoren kodiert QEnc mit
über 10 GB{s bei Matrixgrößen bis etwa n “ k “ 20, was mehrfach schneller ist als andere Imple-
mentierungen selbst bei kleinen Matrizen schaffen.

Vergleich der Ergebnisse

Um die Ergebnisse zu vergleichen wird die Metrik

γ “
ag{pg
ac{pc

“
ag{ac
pg{pc

definiert, wobei ag und ac die auf GPU und CPU erreichte Leistung sind, pg und pc die theo-
retischen Spitzenwerte. Die Metrik γ vergleicht nicht den Leistungsunterschied zwischen GPU
und CPU – dies ist nicht immer zweckdienlich, da die GPU konstruktionsbedingt der schnel-
lere Prozessor ist – sondern setzt den Leistungszuwachs in Bezug zur Spitzenperformance. Die
Anwendung dieser Metrik auf die hier vorgestellten Programme ergibt in fast allen Fällen einen
Wert zwischen 0, 7 und 1, 0, d. h. dass die GPU Implementierungen ähnlich effizient arbeiten wie
ihre CPU Analoga. Bei den Beispielen mit γ ă 0.7 konnte immer ein eindeutiger Flaschenhals
identifiziert werden, wie z. B. die PCI Express Bandbreite beim Track Merger. Es lässt sich fol-
gern, dass bei guter Programmierung eine effiziente Implementierung der meisten Algorithmen
auf GPUs möglich ist. Dies erfordert in der Regel mindestens eine Pipeline und asynchronen
Datentransfer, entlohnt dafür aber mit Steigerungen der Leistung und der Energieeffizienz sowie
mit einer günstigeren Total Cost of Ownership.

David Rohr
Neckargrün 1 – 68259 Mannheim

B drohr@jwdt.org

Curriculum Vitae

Personal Information
Date of Birth September 18, 1983
Place of Birth Mannheim

Citizenship German

Employment
2010 –Today Scientific Assistant, Johann Wolfgang Goethe University, Frankfurt, Germany.

{ 11/2012 – Commissioning & Installation of the Sanam Compute Cluster – Second Rank
in November 2012 Green500 List.

{ 12/2010 – Deployment of the ALICE HLT TPC GPU Tracker at the ALICE HLT.
{ 11/2010 – Commissioning of the LOEWE-CSC Cluster – Rank 22 in the November 2010

Top500 List.
{ Supervision of Master Theses.
{ Teaching Assistant for:
- SS2010 – Lecture in High Performance Computing.
- WS2010/2011 – Practical Course in High Performance Computing.

{ Member of ALICE Computing Workgroups CWG5, CWG7, and CWG12.
2007 – 2010 Tutor in Mathematics, Ruprecht Karls University, Heidelberg, Germany.

Linear Algebra 1/2, Algebra 1/2, Complex Analysis, Höhere Mathematik für Physiker.

Topic of Dissertation Thesis
Title On Development, Feasibility, and Limits of Highly Efficient CPU and GPU

Programs in Several Fields.
Fast Parallel SIMDized GPU-accelerated Reed-Solomon Encoding, Heterogeneous Linpack
Benchmark, and Event Reconstruction for the ALICE Experiment.

Supervisors Prof. Dr. V. Lindenstruth & Prof. Dr. U. Kebschull.

University Studies
09/2010 –Today PhD Student, Johann Wolfgang Goethe University, Frankfurt.
09/2010 –Today Graduate School, Helmholtz Graduate School for Hadron and Ion Research.

03/2010 Physics Diploma, Ruprecht Karls University, Heidelberg, Grade: Very Good (1.1).
Minor Subject: Computer Science.
Thesis Title: ALICE TPC Online Tracking on GPU based on Kalman Filter.
Supervisor: Prof. Dr. V. Lindenstruth.

08/2008 – 03/2010 Scholarship by the Studienstiftung des Deutschen Volkes.
02/2008 Mathematics Vordiplom, Ruprecht Karls University, Grade: Very Good (1.0).

10/2006 Physics Vordiplom, Ruprecht Karls Universität, Grade: Very Good (1.5).
10/2004 – 03/2010 Studies in Physics and Mathematics, Ruprecht Karls University, Heidelberg.

Scientific and Other Work Experience
07/2008 – 09/2008 Participation at the IBM Extreme Blue Project.

{ Topic: Hardware Accelerators for Data Management Applications.
{ Inventions / Patents:
- US 8,380,737 B2: Computing Intersections of Sets of Numbers.
- US 8,495,286 B2: Write Buffer for Improved DRAM Write Access Patterns.

09/2003 Internship at the Max Planck Institute for Astrophysics, Garching, Munich.
Topic: Age Determinations of Metal-Poor Field Stars.

10/2000 Work Experience at Loci Computer Systems, Swansee, Wales.

School and Civilian Service
10/2003 – 08/2004 Civilian Service, Institute for Radiology, Ludwig Maximilian University, Munich.

Development of Web-based Intranet System for Radiological Diagnostic Findings.
1994 – 2003 School, Integrierte Gesamtschule Mannheim Herzogenried.

Abitur with Overall Grade: Very Good (1.2).
1990 – 1994 Elementary School, Gebrüder Grimm Elementary School, Mannheim.

Languages
German Native
English Very Good

Italian, French,
Latin

Basic

Computer Skills
Development C, C++, PHP, HTML, JavaScript, SQL, Assembler, CUDA, OpenCL, CAL:

Very Good Skills
Visual Basic, Java, Bash, VHDL, Verilog, DirectX, OpenGL:
Moderate Skills
Fortran, Pascal, Perl, Python:
Basic Skills

Applications MS Office, OpenOffice, Adobe Creative Suite, Corel Draw Suite, Visual Studio:
Good Skills
ROOT:
Basic Skills

Operating Systems Windows, Linux:
Very Good Skills

Publications
[1] M. Bach, J. De Cuveland, H. Ebermann, D. Eschweiler, M. Kretz, M. Pollok,

D. Rohr, H. J. Lüdde, V. Lindenstruth: “The LOEWE-CSC: A Comprehensive
Approach for a Power Efficient General Purpose Supercomputer”, in 21st Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based Processing, pp. 1–17
[2013].

[2] D. Rohr: “ALICE TPC Online Tracker on GPUs for Heavy-Ion Events”, in 13th International
Workshop on Cellular Nanoscale Networks and their Applications, pp. 298–303 [2012].

[3] D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner,
T. Alt: “ALICE HLT TPC Tracking of Pb-Pb Events on GPUs”, Journal of Physics:
Conference Series, vol. 396, no. 1 : p. 12044 [2012].

[4] D. Rohr, M. Bach, M. Kretz, V. Lindenstruth: “Multi-GPU DGEMM and HPL
on Highly Energy Efficient Clusters”, IEEE Micro, Special Issue, CPU, GPU, and Hybrid
Computing [2011].

[5] M. Bach, M. Kretz, V. Lindenstruth, D. Rohr: “Optimized HPL for AMD GPU
and Multi-Core CPU Usage”, Computer Science - Research and Development, vol. 26, no.
3-4 [2011].

[6] S. Gorbunov, D. Rohr, K. Aamodt, T. Alt, H. Appelsh, A. Arend, M. Bach,
B. Becker, T. Breitner, et al.: “ALICE HLT High Speed Tracking on GPU”, IEEE
Transactions on Nuclear Science, vol. 58, no. 4 [2011].

[7] D. Rohr: “ALICE TPC Online Tracking on GPU based on Kalman Filter”, Diploma thesis,
University of Heidelberg [2010].

[8] A. Arend, B. Becker, T. Breitner, S. Chattopadhyay, J. Cleymans, I. Das,
O. Djuvsland, H. Erdal, R. Fearick, et al.: “ALICE HLT High Speed Tracking and
Vertexing”, in 2010 17th IEEE-NPSS Real Time Conference, pp. 10–13 [2010].

[9] A. Weiss, M. Salaris, D. Rohr: “Age determinations of metal-poor field stars”, in
Proceedings of the International Astronomical Union, vol. 1, p. 279 [2005].

Publications as Collaborator of ALICE
[1] ALICE Collaboration: “Measurement of inelastic, single- and double-diffraction cross

sections in proton-proton collisions at the LHC with ALICE”, The European Physical Journal
C, vol. 73, no. 6 : pp. 1–20 [2013].

[2] ALICE Collaboration: “Charge correlations using the balance function in Pb-Pb
collisions at √

sNN = 2.76 TeV”, Physics Letters B, vol. 723, no. 4-5 : pp. 267 – 279
[2013].

[3] ALICE Collaboration: “Measurement of the inclusive differential jet cross section in pp
collisions at √

s = 2.76 TeV”, Physics Letters B, vol. 722, no. 4-5 : pp. 262 – 272 [2013].

[4] ALICE Collaboration: “Net-charge fluctuations in Pb-Pb collisions at √
sNN = 2.76

TeV”, Phys. Rev. Lett., vol. 110 : p. 152301 [Apr 2013].

....

[44] ALICE Collaboration: “Suppression of charged particle production at large transverse
momentum in central Pb-Pb collisions at √

s = 2.76 TeV”, Physics Letters B, vol. 696, no.
1-2 : pp. 30 – 39 [2011].

[45] ALICE Collaboration: “Centrality dependence of the charged-particle multiplicity
density at midrapidity in Pb-Pb collisions at √

sNN = 2.76 TeV”, Phys. Rev. Lett., vol.
106 : p. 032301 [Jan 2011].

[46] ALICE Collaboration: “Charged-particle multiplicity density at midrapidity in central
Pb-Pb collisions at √

sNN = 2.76 TeV”, Phys. Rev. Lett., vol. 105 : p. 252301 [Dec 2010].

[47] ALICE Collaboration: “Elliptic flow of charged particles in Pb-Pb collisions at √
sNN =

2.76 TeV”, Phys. Rev. Lett., vol. 105 : p. 252302 [Dec 2010].

	Table of Contents
	I Introduction
	1 Motivation & Outline
	2 CPUs
	2.1 Intel
	2.1.1 Nehalem
	2.1.2 Westmere & Sandy Bridge

	2.2 AMD
	2.2.1 Magny-Cours
	2.2.2 Interlagos

	2.3 Summary

	3 GPUs
	3.1 General GPU Architecture

	4 Benchmark Proceeding & Statistics
	4.1 Conventions & Statistics
	4.2 Benchmark Conditions for NVIDIA
	4.3 Benchmark Conditions for AMD

	II Event Reconstruction for the ALICE Experiment
	5 Introduction
	5.1 The ALICE Detector of the LHC Experiment
	5.2 The High Level Trigger
	5.3 The ALICE HLT TPC Tracker
	5.3.1 Geometry
	5.3.2 Creating Track Seeds
	5.3.3 Fitting Tracks with the Kalman Filter
	5.3.4 Initialization & Output

	6 TPC Slice Tracking on GPU
	6.1 The ALICE HLT TPC GPU Tracker
	6.2 Porting the Tracker to the Fermi Architecture
	6.2.1 Fermi Support & Compiler Bugs
	6.2.2 First Comparison
	6.2.3 Tuning Parameters
	6.2.4 Integration in the HLT Framework

	6.3 Online Tracking during the November 2010 Heavy Ion Run
	6.3.1 Evaluation & Quality Assurance for the Tracking Results
	6.3.1.1 Verification of Simulated Data
	6.3.1.2 Verification of Physics Runs

	6.4 Further Optimizations & the Heavy Ion Runs in 2011 and 2012
	6.4.1 Improving the Cluster Assignment
	6.4.1.1 Incorporating the Residual
	6.4.1.2 Track Order
	6.4.1.3 Binary Comparison

	6.4.2 Using the GTX580
	6.4.2.1 Variable Block Size

	6.4.3 Multi-Threading the CPU Parts
	6.4.4 Improved Scheduling
	6.4.4.1 Improved Scheduling Performance

	6.4.5 Combined GPU / CPU Tracking
	6.4.6 Final Performance Analysis
	6.4.7 The 2011 Heavy Ion & 2012 Proton-Lead Runs
	6.4.8 GPU Tracking on non-CUDA Hardware

	7 TPC Track Merging on GPU
	7.1 Review of the Situation
	7.2 GPU-based Track Fit

	8 Global Tracking across Slice Borders
	8.1 Limits of the Slice Tracking Approach
	8.2 Implementation
	8.3 Results

	9 Comparison to Offline & Conclusions

	III Heterogeneous High Performance Linpack Benchmark
	10 Introduction to Linpack, DGEMM, and LOEWE-CSC
	10.1 Heterogeneous Compute Clusters
	10.2 The LOEWE-CSC Compute-Cluster
	10.3 Linpack
	10.3.1 High Performance Linpack
	10.3.2 Double Precision General Matrix Multiplication

	11 An Optimized HPL Variant for the LOEWE-CSC
	11.1 Target Architectures
	11.2 CALDGEMM
	11.2.1 GPU-based DGEMM
	11.2.2 Implementation Details
	11.2.3 Combined GPU / CPU DGEMM
	11.2.3.1 CPU Affinity

	11.2.4 DGEMM Optimizations
	11.2.4.1 Kernel Optimization
	11.2.4.2 Data Buffer Format
	11.2.4.3 Exemplary 8x8 Kernel
	11.2.4.4 Scheduling & GPU / CPU Performance Ratio
	11.2.4.5 Second & Third Phase
	11.2.4.6 Transfer Optimizations

	11.2.5 Vectorization & Patched AMD Driver
	11.2.5.1 Miscellaneous Optimizations

	11.2.6 Summary & Results

	11.3 GPU-based HPL
	11.3.1 Integrating CALDGEMM
	11.3.2 Optimizing HPL
	11.3.2.1 Alignment

	11.3.3 Multi-Node HPL
	11.3.4 Lookahead
	11.3.4.1 Lookahead 1
	11.3.4.2 Lookahead 2
	11.3.4.3 Performance Analysis

	11.3.5 Miscellaneous
	11.3.5.1 Rescheduling Workload
	11.3.5.2 MPI Threading Support

	11.4 DGEMM & Linpack Performance
	11.5 Torture Tests

	12 Optimizations for other architectures
	12.1 CPU-only HPL
	12.2 Real-Time Operating Systems
	12.2.1 The Chaos Operating System
	12.2.2 SUSE Linux Enterprise Server with Real-Time Extensions

	12.3 CPU Scaling
	12.4 Heterogeneous Nodes
	12.4.1 Heterogeneous Solver for Triangular Matrices
	12.4.2 Heterogeneous HPL Performance

	12.5 Zero-Copy DMA Transfer on Intel CPUs
	12.5.1 Kernel DMA Performance
	12.5.2 Alternative DMA Transfer Approach
	12.5.3 DMA Performance Comparison

	12.6 Dual-GPU & Multi-GPU
	12.6.1 Dual-GPU DGEMM Implementation
	12.6.1.1 CPU & GPU Utilization
	12.6.1.2 Performance

	12.6.2 Scaling to Multi-GPU DGEMM
	12.6.2.1 Memory & PCI Express Throughput
	12.6.2.2 CPU Utilization
	12.6.2.3 Other Multi-GPU Improvements

	12.6.3 Multi-GPU DGEMM Results
	12.6.4 Multi-GPU HPL
	12.6.4.1 GPU-based Factorization
	12.6.4.2 GotoBLAS Tuning
	12.6.4.3 Enabling Lookahead

	12.7 Energy Efficiency
	12.7.1 Multi-GPU Considerations
	12.7.2 First Results
	12.7.3 Improvements by more efficient Hardware

	12.8 AMD 6000 Series GPU
	12.8.1 Temperature & Power
	12.8.2 DMA Performance
	12.8.3 Workaround for the DMA Issue
	12.8.3.1 Improving GPU to Host Transfer
	12.8.3.2 Improving Host to GPU Transfer

	12.8.4 6000 Series Multi-GPU DGEMM & HPL Performance

	12.9 CALDGEMM for Interlagos / Sandy Bridge and without GotoBLAS
	12.10 Performance Limits & Exceeding Peak Performance
	12.11 Systems with a slow CPU
	12.12 Overview of CALDGEMM DMA Paths
	12.13 Single Precision General Matrix Multiplication

	13 CALDGEMM Support for Arbitrary GPU Frameworks
	13.1 Motivation
	13.2 A DMA Framework with better Scalability

	14 The Sanam Cluster & the Lattice-QCD Cluster at GSI
	14.1 AMD 7000 Series (Tahiti)
	14.2 Putting the Pieces together
	14.2.1 Preliminary Improvements
	14.2.2 Early Lookahead
	14.2.3 Choosing a Platform
	14.2.4 Multi-Node, Fine-Tuning, and Results
	14.2.4.1 Grouped DMA Thread Mode
	14.2.4.2 Lookahead 2b
	14.2.4.3 Power Efficiency

	14.2.5 The November 2012 Top500 & Green500 Lists

	15 Summary & Perspective for the Future
	15.1 Summary
	15.2 Perspective for the Future

	IV Optimized High Performance Redundant Data Storage
	16 Theory
	16.1 Coding Theory
	16.2 Reed-Solomon Code
	16.3 Integer Calculations & Codes on finite Rings
	16.3.1 Deriving Codes from Algebraic Number Fields
	16.3.1.1 Integrality
	16.3.1.2 An MDS-Code on Residue Class Rings
	16.3.1.3 Codes on the residue class ring modulo a prime power (Integral Codes)
	16.3.1.4 The general Case

	16.3.2 Deriving Codes from Finite Field MDS-Codes
	16.3.3 Summary

	16.4 Cauchy-Reed-Solomon Code
	16.4.1 XOR-only Codes
	16.4.2 Add-only Codes

	16.5 Variants
	16.5.1 Encoding by Matrix-Matrix Multiplication
	16.5.2 Strassen Matrix-Matrix Multiplication
	16.5.3 Parallel Codes

	16.6 Code Overview
	16.7 Computational Complexity
	16.8 Lower Bound for l
	16.9 Partial Update-Codes (Differential Codes)

	17 Implementation
	17.1 Metrics
	17.2 Matrix Multiplication based Codes
	17.2.1 IGEMM
	17.2.2 BGEMM

	17.3 Automorphic Assembly Codes
	17.3.1 XOR-only Encoding
	17.3.2 Blocking & Cache Usage
	17.3.2.1 Register Blocking
	17.3.2.2 L1 Blocking
	17.3.2.3 L1 Instruction Cache Blocking
	17.3.2.4 L2 Blocking
	17.3.2.5 L1 Blocking, Second View

	17.3.3 Code Optimizations
	17.3.3.1 Prefetching
	17.3.3.2 Ternary Instructions
	17.3.3.3 Register Selection

	17.3.4 Reducing Computational Complexity
	17.3.4.1 Local Matrix Optimizations
	17.3.4.2 Global Matrix Optimizations
	17.3.4.3 Eliminating Instructions

	17.3.5 Improved Matrix Size (Smaller l Dimension)
	17.3.6 Large Matrices
	17.3.6.1 Assembling Large Codes
	17.3.6.2 L2 Instruction Blocking

	17.3.7 Exploiting the Strassen Algorithm
	17.3.8 Small Matrices
	17.3.9 Complex Code Example
	17.3.10 Analysis
	17.3.11 Variants
	17.3.11.1 Add-only Encoding
	17.3.11.2 A 256-bit XOR-only Code with AVX

	17.3.12 Comparison

	17.4 Multi-Threading
	17.5 Update-Codes
	17.6 Dependency on k

	18 Encoding with GPU & FPGA Accelerators
	18.1 Matrix Multiplication based Codes for GPUs
	18.2 XOR-only Encoding with OpenCL
	18.3 An FPGA Implementation
	18.4 Performance

	19 Results
	19.1 Achieved Results
	19.2 Conclusions

	V Synthetic Benchmarks & Real World Applications
	20 Achievable CPU & GPU Performance
	20.1 Overview of Synthetic and Application Benchmarks
	20.2 Summary
	20.3 Conclusions & Comments

	Appendix
	A GPU Architectures in Detail
	A.1 NVIDIA
	A.1.1 GeForce
	A.1.2 Fermi

	A.2 AMD
	A.2.1 Cypress
	A.2.2 Cayman (Northern Islands)
	A.2.3 Tahiti (Southern Islands / Graphics Core Next)

	B AMD Intermediate Language / ISA Assembler
	B.1 IL
	B.2 ISA

	C Specifications & Definitions
	C.1 MPI Threading
	C.2 Matrix Representations
	C.3 Huge Pages
	C.4 LU-Factorization
	C.5 Interleaved Memory
	C.6 Field Programmable Gate Arrays

	D TPC Tracking Model
	E CPU Tracker Performance Evaluation
	F Explicit Encoding Examples
	F.1 Code Examples
	F.2 Generation Encoding Matrices
	F.2.1 Codes on the residue class ring modulo a prime power
	F.2.2 -only Codes for arbitrary l

	F.3 C Example Code for QEnc Blocking Levels

	G CALDGEMM & HPL-GPU Settings
	H Test & Development Systems
	I Source Codes

	Miscellaneous
	List of Figures
	List of Tables
	List of Listings
	Index
	Glossary
	Acknowledgements
	Bibliography
	Zusammenfassung
	Curriculum Vitae

