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Introduction

1 Introduction

1.1 Phylogenetic relationships within Passeriformes and the need for new
markers

Among all classes of living organisms, Aves is supposed to be the best known, and
some argue that presumably ‘all’ species have been discovered and named (Groth and
Barrowclough, 1999). Nevertheless, their origin, phylogeny, and biogeography has been a
continuous matter of debate, which has been intensified through the use of molecular data
(e.g. Cracraft, 2001; Groth and Barrowclough, 1999; Sibley and Ahlquist, 1990). The
difficulty in resolving these issues stems from their rapid adaptive radiation and the adaptation
to flight. The anatomical characteristics correlated with the development of flight gained by
the first birds are more or less conserved in recent species and thus, birds own only few taxon

specific morphological synapomorphies (Feduccia, 1996).

The highest diversity among living birds is found in the order Passeriformes. This by
far largest avian taxon comprises roughly 59 % of all living birds (more than 5700 species,
Sibley and Ahlquist, 1990). The Passeriformes form a morphologically very homogenous
group and their monophyly is well established, both on morphological (Raikow, 1982) and
molecular grounds (Sibley and Ahlquist, 1990). However, phylogenetic relationships within
the group have been extremely puzzling, as most of the evolutionary lineages originated
through rapid radiation during the early Tertiary (Feduccia, 1995). Fast diverging clades had
little opportunity to acquire synapomorphies, which resulted in ill-defined groups for

reconstructions of a phylogeny (Lanyon, 1988).

The first extensive molecular study on avian systematics was based on DNA-DNA
hybridization analyses (Sibley and Ahlquist, 1990) and corroborated the basal split of
Passeriformes into the two morphologically monophyletic clades of suboscines (Tyranni) and
oscines (Passeri) (e.g. Ames, 1971; Feduccia, 1975). This study, however, has been criticised
by several authors concerning its reproducibility (Mindell, 1992), sparse sampling and its lack
of internal consistency (Cracraft, 1992; Lanyon, 1992). Nevertheless, Sibley and Ahlquist’s
(1990) phylogeny of the Passeriformes (Fig. 1) with 46 families and 46 subfamilies (classified
by Sibley and Monroe (1990)) has become the basis for subsequent DNA sequence analyses.
While sequence-based studies generally agree with the partition of Passeriformes into the

monophyletic clades of suboscines and oscines, a third group composed of the New Zealand
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Fig. 1 Phylogenetic relationships of passerine families and their higher-level systematic
classifications based on the DNA-DNA hybridization analyses of Sibley and Ahlquist
(1990).

wrens (Acanthisittidae) has been established as the earliest branch within the Passeriformes
and sister group to suboscines and oscines (Barker et al., 2002; Ericson et al., 2002a). The
division of the oscines into the two sister taxa Corvida and Passerida, which had been
hypothesised by Sibley and Ahlquist (1990), has been rejected later, as the Corvida appear to
be paraphyletic (Barker et al., 2002; Ericson et al., 2002a, b). Additionally, conflicting
phylogenetic hypotheses have been put forward for lower phylogenetic relationships,
especially within the Passerida and their three superfamilies defined by Sibley and Ahlquist
(1990): Muscicapoidea, Sylvioidea and Passeroidea (e.g. Barker et al., 2004; Beresford et al.,
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2005; Ericson et al., 2003; Ericson and Johansson, 2003). For example, the phylogenetic
position of the waxwings (Bombycillidae) at the basis of the Muscicapoidea has been
questioned (e.g. Barker et al., 2002; Ericson and Johansson, 2003). Within the Passeroidea,
monophyly of Sibley and Ahlquist’s (1990) Passeridae has been challenged repeatedly
(Groth, 1998; Van der Meij et al., 2005). The whole group of the Sylvioidea has been
doubted, especially regarding the phylogenetic position of the kinglets (Regulidae), the clade
consisting of treecreepers/wrens/nuthatches (Certhiidae and Sittidae), and the monophyly of
the family Sylviidae (e.g. Barker ef al., 2002; Barker et al., 2004; Ericson and Johansson,
2003). An additional point of concern has been the phylogenetic position of the two rockfowl

species (Picathartidae, genus Picathartes), which for a long time has remained enigmatic.

While recent studies on the systematics of the whole order Passeriformes typically
differ in their taxonomic sampling (at most, 173 passerine taxa were included in Beresford et
al. (2005)), they generally rely on one or only a few nuclear genes as phylogenetic markers.
Genes most commonly used have been: the single-copy recombination activating genes RAG-
1 (Barker et al., 2002; Barker et al., 2004; Beresford et al., 2005; Ericson and Johansson,
2003; Irestedt et al., 2002; Irestedt et al., 2001), and RAG-2 (Barker et al., 2004; Beresford et
al., 2005), as well as the proto-oncogene c-myc (e.g. Ericson and Johansson, 2003; Ericson et
al., 2000; Irestedt et al., 2002; Irestedt et al., 2001), which encodes for a protein transcription
factor, and myoglobin (Ericson and Johansson, 2003; Irestedt et al., 2002). Although the
advantages of combining different unlinked genes are well established (e.g. Moore, 1995),
only a few studies have combined more than two molecular markers (e.g. Ericson et al.,
2002b), or added the mitochondrial marker cytochrome b (e.g. Ericson and Johansson, 2003).
This latter gene showed evidence of saturation and has been found to be too variable for
higher-level passerine systematics (e.g. Chikuni et al., 1996; Edwards et al., 1991; Edwards
and Wilson, 1990). Despite all of these studies, many aspects of the phylogeny within the
Passeriformes still remain unresolved, and often new ambiguities arise when additional

species are included (Beresford et al., 2005; Fuchs et al., 2006).

Thus, in order to advance the clarification of passerine phylogenies, new molecular
markers are needed. Therefore, I used one new nuclear gene (ZENK) and several chicken
repeat 1 (CR1) retrotransposons as phylogenetic markers in passerine birds in addition to
three nuclear protein-coding genes already established as phylogenetic markers (RAG-1,

RAG-2, and c-myc).
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1.2 ZENK and CR1 as new phylogenetic molecular markers

ZENK is a single-copy nuclear transcription factor expressed in the song system of
birds and well-studied in the context of neurobiology (reviewed by Clayton, 1997; Ribeiro
and Mello, 2000). ZENK, which is encoded by an immediate-early gene (IEG), is an acronym
derived from the first character in the names of already described mammalian IEG homologs,
i.e., the rodent Zif268 (Christy et al., 1988), Egr-1 (Sukhatme et al., 1988), the human Ngfi-a
(Milbrandt, 1987), and the rodent Krox-24 (Lanfear et al., 1991), all of which share conserved
sequence elements (Long and Salbaum, 1998). Expression of ZENK plays an important role
in neuronal growth regarding learning and memory formation (reviewed by Ribeiro and
Mello, 2000; Stork and Welzl, 1999; Tischmeyer and Grimm, 1999) and has been used as a
marker of neuro-activity during song learning and production (reviewed by Ball and Gentner,
1998; Clayton, 1997). No evidence for selection pressure acting differentially on ZENK
across diverse avian lineages has been found, despite the functional role of ZENK in avian
physiology (Chubb, 2002; cited in Chubb, 2004a). Although it has been known since 1998
that this single-copy gene and parts of its 3’ untranslated region (UTR) are highly conserved
(Long and Salbaum, 1998), its use as a molecular marker in avian phylogenetics has been
very limited so far. In a recent study, Chubb (2004a, b) demonstrated the usefulness of ZENK
for higher level phylogeny in neognath birds as well as for the avian taxa Apodiformes
(hummingbirds and swifts) and Passeriformes. The author provided evidence that ZENK is a
powerful molecular marker with an estimated resolution for deep divergences within orders
ranging roughly from 60 to 10 Mya. This analysis included only 18 passerine taxa and
therefore obviously did not deliver a detailed phylogenetic hypothesis for the by far largest

avian taxon.

The second newly established markers I used, chicken repeat 1 (CR1) elements
(Stumph et al., 1981), are repetitive DNA sequences. Interspersed repeats are very ubiquitous
in the mammalian genome (40-50 %, IHGSC 2001; MGSC 2002), but with 9 % are
comparably rare in the chicken genome (ICGSC 2004). A large number of these repetitive
sequences are associated with mobile elements that can move from a parent locus to a target
locus on the DNA level via DNA or RNA intermediates (Shedlock and Okada, 2000); this
relocation process is called transposition. Classification and characteristics of mobile elements
are shown in Figure 2. To differentiate between the two intermediate forms and to emphasise
the reverse flow of genetic information, RNA mediated transposition is termed

retrotransposition. Retrotransposons can be divided into a viral (containing retroviruses, long
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Mobile Elements
Transposons Retrotransposons
- elements based on DNA - indirect relocation via
- Occurrence in pro- and eukaryotes RNA intermediated
- direct relocation via recombination - Occurrence only in eukaryotes
Viral subfamily Non-viral subfamily
- encodes for reverse transcriptase - does not encode for reverse transcriptase
- Retroviruses, long-terminal repeat (LTR) - SINEs (short interspersed nuclear elements)
retrotransposons und non-LTR retrotransposons  and processed pseudogenes
(LINEs — long interspersed nuclear elements)

Fig. 2 Classifications and characteristics of different kinds of mobile elements.
Classifications following definitions of Shedlock and Okada (2000).

terminal repeat (LTR) retrotransposons and non-LTR retrotransposons), and a nonviral
superfamily (containing processed pseudogenes and short interspersed nuclear elements
(SINEs, Shedlock and Okada, 2000)). Retrotransposons are widely dispersed throughout the
genome and no process is known which could remove an inserted element from a locus. Thus,
the prospect of using retrotransposons as phylogenetic markers seems very promising,
because the presence of an element at a specific locus in two related species can be interpreted
as a virtually homoplasy-free synapomorphy (Shedlock and Okada, 2000). The well-
established use of SINE insertions as reliable apomorphic characters for phylogenetic
inference in non-avian taxa (e.g., Huchon et al., 2002; Lum et al., 2000; Nikaido et al., 2001;
Nikaido et al., 1999; Sasaki et al., 2004; Schmitz et al., 2001; Shedlock et al., 2000;
Shimamura et al., 1997) was recently applied to CR1 insertions. For example, one single
insertion in the lactate dehydrogenase B gene was found to support the monophyly of the
Coscoroba/Cape Barren goose clade within the Anseriformes (St. John et al., 2005), and a
CR1 subfamily was analysed to resolve the phylogeny of penguins (Watanabe et al., 2006).
CRI1 retrotransposon insertions constitute the largest amount of these mobile elements with
more than 80 % (up to 200,000 copies in the chicken genome) and are the most important
non-LTR retrotransposon in birds (ICGSC 2004). Figure 3 shows a schematic structure of a
complete CR1 element. It possesses an 8 bp direct repeat at the 3’-end (typically
[CATTCTRT] [GATTCTRT];.3 with some known variations), which can easily be detected
(Silva and Burch, 1989). Two closely spaced open reading frames (ORF) have been found in
the first complete consensus CR1 sequence (Burch et al., 1993; Haas et al., 1997). The first

5
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ORF (ORF1) follows a 5’-untranslated region (UTR), which probably acts as a promoter
(Haas et al., 2001) and codes either for a zinc finger motif (Kajikawa et al., 1997) or a nucleic
acid binding protein (Haas et al., 1997). The second ORF (ORF2) codes for an endonuclease
and a reverse transcriptase (Haas et al., 1997; Kajikawa et al., 1997). A region of high
sequence conservation is located near the end of the reverse transcriptase, which has been
suggested to act as transcriptional silencer (Chen et al., 1991). Additionally, parts of the 3’-
untranslated region of CR1 elements show high sequence conservation and may serve as a
protein binding site for a nuclear protein of unknown identity (Sanzo ef al., 1984). Thus, CR1
elements meet the criteria, which have been put forward by Eickbush (1992), that define them
as non-LTR retrotransposons (Burch et al., 1993). Until recently, only one full-length (4.5 kb)
CR1 element with both intact ORFs has been described (ICGSC 2004). The first study on the
evolution of CR1 elements resulted in the description of at least six different subfamilies (A-
F) (Vandergon and Reitman, 1994). This was later expanded to 11 complete CR1 source
genes and subdivided into 22 subfamilies (ICGSC 2004). These results pointed to a
hypothesised ancient origin of these elements (Vandergon and Reitman, 1994), and were
confirmed and extended by finding CR1 elements in the genomes of other vertebrates (Chen
et al., 1991; Fantaccione et al., 2004; Kajikawa et al., 1997; Poulter et al., 1999), while CR1-
like elements even have been reported in several invertebrate species (Albalat et al., 2003;
Biedler and Tu, 2003; Drew and Brindley, 1997; Malik et al., 1999). The vast majority of
CR1 elements have severely truncated 5’-ends and have lost their retrotransposable ability
(Silva and Burch, 1989; Stumph et al, 1981). After the insertion of a retrotransposable
element at a specific locus in the genome of a common ancestor and the loss of the
retrotransposable function by truncation, sequence evolution should not be constrained by
selective pressure. This constitutes the possibility of using retrotransposon sequences as
neutral molecular markers, apart from the established method of presence/absence screening.
To my knowledge, such an approach has not been performed so far in a phylogenetic study of

any vertebrate group.

5 UTR ORFI\ ORF2 +UTR

Conserved Direct
region repeat

Fig. 3 Schematic structure of a complete chicken repeat 1 retrotransposon.
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1.3 Aims of this study

The major aim of this study was to establish new molecular markers for avian
systematics, apply them to the largest avian order (Passeriformes), and to provide new
insights into passerine phylogenetic relationships. This complex and diverse taxon is well-
studied and thus, provides useful information about proposed and conflicting phylogenetic
hypotheses. For my dissertation research, I used three different approaches to contribute to the

ongoing phylogenetic debate in the Passeriformes.

(1) I tested the recently introduced new molecular marker ZENK for its phylogenetic
usefulness for passerine systematics in comparison to already established nuclear gene
markers. The data set included representatives of as many passerine families as possible, i.e.
28 families and 40 subfamilies, with an emphasis on representatives of the Passerida. By
using several different methods to create phylogenetic trees, I aimed at yielding the most
robust phylogenetic results possible compared to existing phylogenetic hypotheses. A specific
clade can be regarded as robust, if it is supported significantly and if different analyses
generate the same topology. Therefore, I analysed data sets of single loci, as well as used a
total evidence approach. Additionally, I investigated the phylogenetic utility of each marker
by studying their levels of homoplasy and their contribution to the resolved nodes. I evaluated

new or conflicting phylogenetic results by statistical tests.

(2) I have been the first to employ the clear-cut phylogenetic expressiveness of CR1
insertions as apomorphic characters in passerine systematics. I screened for specific CR1 loci
in the raven Corvus corax. Two phylogenetic informative elements were detected in related
taxa. I used the presence/absence pattern of these elements to help elucidate a special aspect
of the phylogenetic puzzle, namely the position of the two African endemic rockfowl species
Picathartes oreas and Picathartes gymnocephalus in the passerine tree. During this process, |

found evidence that CR1 sequences contained a phylogenetic signal.

(3) The prospect of finding a phylogenetic signal in CR1 sequences provided the basis
for my third approach. I detected and sequenced several CR1 elements isolated from
Passeriformes in closely related species. I used these data to construct phylogenetic trees,
compared, and analysed sequence composition and divergences. To appreciate the variability
and divergences of CR1 sequences and to evaluate how meaningful the resulting phylogenetic
trees were, I compared these to those calculated using sequences of established nuclear

markers.



Summary of articles

2 Summary of articles

2.1 Summary of article I:

SIMONE TREPLIN, ROMY SIEGERT, CHRISTOPH BLEIDORN, HAZELL SHOKELLU THOMPSON,
ROGER FOTSO, AND RALPH TIEDEMANN.

Looking for the ‘best” marker: songbird (Aves: Passeriformes) phylogeny based on sequence
analyses of several unlinked nuclear loci.

Systematic Biology, submitted.

In this study I present a comprehensive phylogenetic analysis of a combination of
established molecular markers (RAG-1, RAG-2, c-myc) and the recently introduced ZENK.
The complete combined data set comprised 6,179 bp and included 80 taxa. I conducted
phylogenetic analyses using maximum parsimony (MP, Farris et al., 1970), maximum
likelihood (ML, Felsenstein, 1981), and Bayesian inference (Huelsenbeck et al., 2000; Larget
and Simon, 1999; Mau and Newton, 1997; Mau et al., 1999; Rannala and Yang, 1996). My
analyses were performed using each gene separately and within a combined data set. I
analysed the contribution of each gene on the phylogenetic tree yielded by the combined
approach using partitioned Bremer support (PBS, Baker and DeSalle, 1997; Baker et al.,
2001; Baker et al., 1998). This analysis evaluates the phylogenetic usefulness of the four
genes. The ZENK trees exhibited by far the best resolution and showed the lowest amount of
homoplasy compared to the other genes. My data indicate that this gene is — at least in
passerines — suitable for inference even of ancient taxonomic splits, dating before the

Cretaceous/Tertiary boundary.

The combined analysis yielded well-supported phylogenetic hypotheses for passerine
phylogeny and, apart from corroborating recently proposed hypotheses on phylogenetic
relationships within the Passeriformes, I provide evidence for several phylogenetic
hypotheses: (1) The main passerine clades of suboscines and oscines are corroborated (2) just
as the paraphyly of the Corvida. (3) Based on my study, I suggest a revision of the taxa
Corvidae and Corvinae as vireos are closer related to crows, ravens, and allies. (4) I
confirmed the subdivision of the Passerida into three superfamilies, Sylvioidea, Passeroidea,
and Muscicapoidea, the first as a sister taxon to the two latter groups. (5) I found evidence for

a strongly supported split within the Sylvioidea into two clades, one consisting of the tits
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(Paridae) and the other comprising the bulbuls (Pycnonotidae), warblers, laughingthrushes,
whitethroats, and allies (Timaliidae, sensu Alstrom et al., 2006). (6) I suggest reflecting this
split in a new classification of the Sylvioidea. (7) Additionally, my data point to a closer
relationship between the Pycnonotidae and the Timaliidae than previous studies have
indicated. (8) In my study, the Passeridae appear to be paraphyletic, because the finches
(Fringillidae) are nested within the sparrows, wagtails, and pipits. (9) The monophyly of the
weavers (Ploceinae) and the estrild finches (Estrildinae) as a separate, not yet described and
named clade was strongly supported. (10) The sister taxon relationships of the dippers
(Cinclidae) to the thrushes and flycatchers (Muscicapidae) was corroborated. (11) Finally, my
data suggest a closer relationship of the waxwings (Bombycillidae) and the kinglets

(Regulidae) to the wrens, tree-creepers (Certhiidae), and nuthatches (Sittidae).

The contributions of the different authors were as follows:

I performed the lab work for the c-myc data set, analysed the data, and wrote the
manuscript. I established the methods and prepared lab work for R. Siegert, as well as I
guided her during performing the lab work for the ZENK data set and the RAG-1 and RAG-2
sequences added to the data sets from GenBank. C. Bleidorn was involved in data analyses.
Together with R. Tiedemann, he participated in the discussion of the results and the
preparation of the manuscript. H. S. Thompson and R. Fotso provided the important samples

of both Picathartes species.
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2.2 Summary of article II:

SIMONE TREPLIN and RALPH TIEDEMANN.
Specific chicken repeat 1 (CR1) retrotransposon insertion suggests phylogenetic affinity of
rockfowls (genus Picathartes) to crows and ravens (Corvidae).

Molecular Phylogenetics and Evolution, under review.

For this study I specifically screened for CR1 loci in Passeriformes and present two
new CR1 loci found in the genome of the raven (Corvus corax). Sequences of these loci,
named Corl-CR1 and Cor2-CR1, are 372 bp and 283 bp in length, and belong to the 5’
truncated CR1 elements. I used PCR to amplify these elements with specifically designed
primers in several species closely related to the raven. The Corl-CR1 locus was found
additionally in representatives of the Corvinae (jays, crows, and allies), and thus corroborates
monophyly of three tribes of the Corvinae, namely Corvini, Artamini, and Paradisaeini. The
Cor2-CR1 locus could also be detected in orioles and two rockfowl species (genus
Picathartes). The rockfowls are endemic to the West-African rainforest and consist of two
species, the grey-necked picathartes (Picathartes oreas) and the white-necked picathartes
(Picathartes gymnocephalus), which have long been regarded as avian curiosities (Thompson
and Fotso, 1995). The phylogenetic position of these species within Passeriformes has been
the object of extensive debate and for a long time has remained a puzzle, due to their unique
combination of morphological traits. Picathartes gymnocephalus was originally described as a
crow (Corvus gymnocephalus, TEMMINCK 1825) before being assigned to its own genus
Picathartes (LESSON 1828). Rockfowls were alternately placed within babblers (Amadon,
1943; Delacour and Amadon, 1951), starlings (Lowe, 1938), corvids (Sclater, 1930) and
thrushes (Amadon, 1943). Sibley and Ahlquist (1990) remained unsure about the phylogenetic
position of Picathartes and Chaetops spp., the rockjumpers of South Africa and the closest
relative to the rockfowls, and granted them a separate parvorder with the status of incertae
sedis, aside all other Passeri. Chaetops itself has usually been placed among babblers
(McLachlan and Liversidge, 1978; Sclater, 1930; Sharpe, 1883) and thrushes (Swainson,
1832). Recent sequence-based studies found that the Picathartidae (Picathartes and Chaetops)
make up the earliest branch of the Passerida (Barker et al., 2004; Beresford et al., 2005;
Ericson and Johansson, 2003). Thus, my results may provoke further discussion about the
phylogenetic relationships at the boundary between the ‘Corvida’ and the Passerida.

Nevertheless, as the Cor2-CR1 locus constitutes a synapomorphy for the three tribes Corvini,

10
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Artamini, and Paradisaeini, together with the Oriolini and the Picathartidae, my study
provided new evidence for a closer relationship of these species. Additionally, I showed that
not only the absence/presence pattern of a CRl-insertion, but also the CRI-sequences

themselves contain phylogenetic information.

The contributions of the different authors were as follows:

I performed all the lab work, analysed the data and wrote the manuscript. R.

Tiedemann discussed the data with me and took part in the preparation of the manuscript.

11
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2.3 Summary of article III:

SIMONE TREPLIN and RALPH TIEDEMANN.
Phylogenetic utility of chicken repeat 1 (CR1) retrotransposon sequences in passerine birds
(Aves: Passeriformes).

Manuscript.

After I had discovered that CR1 sequences contained phylogenetic information
(Article II), I wanted to investigate this issue in more detail. I screened genomes of three
passerine species (the great tit, Parus major, the song thrush, Turdus philomelos, and the
European pied flycatcher, Ficedula hypoleuca) for chicken repeat 1 (CR1) elements. I isolated
seven CRI loci varying in length, was able to design locus specific primers, and amplified
those loci in several species other than the source organism. Additionally, I found a CR1 locus
in GenBank that previously had been overlooked, by doing a blast search with my own CR1
sequences. | found this locus in Darwin’s finches in reverse complement direction adjacent to
a nuclear pseudogene of the mitochondrial cytochrome b gene (Sato et al., 2001). I developed
new primers for this locus, named Darfin-CR1, because the originally described ones (for the
complete sequence including the pseudogene (Sato ef al., 2001)) failed to yield PCR products
in species other than finches, and I was able to amplify this locus in all families of
Passeriformes. Each locus was evaluated with regard to sequence characteristics and
saturation effects, and was phylogenetically analysed using the Bayesian approach and
maximum parsimony. My specific CR1 loci were found in the same species of (1)
Muscicapoidea and (2) Sylvioidea (10 and 21 species, respectively; see Table 2 in Article III).
I combined my CR1 loci and the Darfin-CR1 to two data sets named Mus-CR1 and Syl-CR1,
both 742 bp in length. I performed phylogenetic analyses for each locus separately and for the
two combined data sets. I compared distances of CR1 alignments to those of the established
nuclear markers RAG-1 and ZENK and found not only evidence for a high variability in CR1
elements, but additionally for a correlated substitution rate of CR1 sequences and nuclear
genes in most cases. I did not find evidence for saturation effects. To investigate the
phylogenetic contents of each data set I conducted a likelihood-mapping which is based on
the analysis of quartet puzzling (Strimmer and von Haeseler, 1997). This analysis indicated a
higher resolution of the phylogenetic tree using the Mus-CR1 data. While the Syl-CR1 tree
suffered from unresolved and non-supported clades above the genus level, the Mus-CR1 tree

was fully resolved. Both trees were not fully congruent with previous hypotheses. My
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analyses pointed to a better resolution of larger data sets (i.e. more loci/longer sequences and
further taxa included). Nevertheless, I was able to provide evidence for the phylogenetic
utility of CRI1 retrotransposon sequences with this third study. It offers the opportunity to use
sequences developed for classical presence/absence retrotransposon studies, which have

turned out to be unsuitable for this approach, nevertheless as phylogenetic markers.

The contributions of the different authors were as follows:

I performed all the lab work, analysed the data and wrote the manuscript. R.

Tiedemann discussed the data with me and took part in the preparation of the manuscript.
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3 Discussion

3.1 Utility of new molecular markers for Passeriformes systematics

3.1.1 ZENK

The phylogenetic utility of the immediate-early gene ZENK and its homologs in
mammals and zebrafish was indicated for the first time by Long and Salbaum (1998). The
usefulness of ZENK and parts of the highly conserved 3’UTR for avian systematics was
demonstrated in a higher-level phylogenetic study of neognath birds (Chubb, 2004a). This
was additionally investigated and corroborated within the avian orders Apodiformes
(hummingbirds and swifts) and Passeriformes (Chubb, 2004b). Whereas these previous
studies only included 17 and 18 taxa, respectively, my study, comprising 80 taxa, is the first
comprehensive analysis of passerine systematics using ZENK.

My analyses yielded fully resolved relationships among the three passerine families
Muscicapoidea, Passeroidea and Sylvioidea, unlike the unresolved phylogenetic tree of Chubb
(2004b). Both MP and Bayesian values significantly supported monophyly of these clades
(Fig. 1, Article I). Comparing both the MP and the Bayesian phylogenetic trees of ZENK, I
observed only few inconsistencies, mainly among passerine families (Fig. 1, Article I). A
large proportion of clades in the passerine ZENK tree was fully resolved in my analyses, and
only a few basal relationships within the Sylvioidea and the Muscicapoidea remained
unresolved. Although Chubb (2004a, b) has already demonstrated the value of ZENK as a
molecular marker, it can be evaluated even better when compared to other genes established
for passerine systematics.

My single gene analyses illustrated the individual power of each gene to resolve
phylogenetic relationships of Passeriformes. Such approaches have been applied rarely so far,
as only RAG-1 and c-myc have been evaluated separately in a study on suboscine systematics
(Irestedt et al., 2001). RAG-1 was supposed to have great potential in resolving ancient avian
divergences, but failed in fast evolved lineages (Groth and Barrowclough, 1999; Irestedt et
al.,2001). RAG-2 has been used only in combination with RAG-1 so far (Barker et al., 2004;
Beresford et al., 2005). In my analyses, the single-locus phylogenetic trees of RAG-2 and c-
myc suffered from a high degree of unresolved nodes. I corroborated the usefulness of RAG-1
to resolve uncertain phylogenetic relationships. The values of the partitioned Bremer support

(PBS) indicated that RAG-1 had contributed to most of the nodes of the maximum parsimony
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strict consensus tree (supplementary data, Article I). Nevertheless, it was outperformed by
ZENK, because the ZENK trees exhibited by far the best resolution of all genes analysed. The
phylogenetic tree based on ZENK contained the largest number of resolved nodes and of
nodes that were congruent with the phylogenetic tree of the combined data set (40, compared
to 6-18 for the other three genes, Table 3, Article I). The PBS values, however, indicated that
ZENK did not dominate the combined data set. In the ZENK data set, observed levels of
homoplasy were the lowest of all genes, which further adds to its superior ability to resolve
passerine phylogenies (Table 3, Article I). The PBS values indicated only a slightly smaller
contribution of ZENK to the combined data set compared to RAG-1. Resolving phylogenies
within Passeroidea with ZENK consistently showed the highest PBS values among all nodes
(supplementary data, Article I). This was reflected also in the phylogenetic tree of the single
gene analysis of ZENK, where all nodes were resolved (Fig. 1, Article I).

According to Chubb (2004b), the highest power of the ZENK gene is in resolving
lineages which diverged roughly 60 to 10 Mya ago. My data indicate that this gene is — at
least in passerines — suitable for inference of even older taxonomic splits. The split into the
suboscine taxa of Furnarioidea and Tyrannoidea is estimated to have occurred 61-65 Mya ago
and into the suborders suboscines and oscines around 76 Mya ago (Barker ef al., 2004). These
clades were resolved and strongly supported in my phylogenetic tree using ZENK. Thus,
resolution of lineages, which originated before the Cretaceous/Tertiary boundary, is possible

using the ZENK gene as well.

My study showed the advantages of using the ZENK gene and its 3’ UTR region in a
phylogenetic analysis of Passeriformes. Nevertheless, I would recommend performing a
combined approach of different genes as it was apparent that the combined data set was

superior to all single-locus analyses in resolving passerine phylogenies.

3.1.2 CRI1 elements as apomorphic markers

Since the first demonstrations of short interspersed element (SINE) insertions
providing robust phylogenetic signal (e.g. Okada, 1991), this method has been expanded to a
powerful tool for recovering monophyletic clades (e.g. Cook and Tristem, 1997; Rokas and
Holland, 2000; Shedlock et al., 2000). Verneau et al. (1998) and Nikaido et al. (1999) applied
this approach successfully to non-LTR retrotransposons (LINEs), and were followed by
studies using LINE-1 (L1) element insertions as phylogenetic markers (Lutz et al., 2003;
Mathews et al., 2003; Vincent et al., 2003). Despite the high abundance of chicken repeat 1
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(CR1) retrotransposons (ICGSC 2004), only two studies have performed phylogenetic
analyses with these elements in birds, namely in Anseriformes and Sphenisciformes (St. John
et al., 2005; Watanabe ef al., 2006, respectively). The two CR1 elements I found in the raven,

Corvus corax, appeared appropriate for inferring phylogenetic relationships (Article II).

The difficulties in my approach of analysing the absence/presence pattern of CR1 loci
consisted in the truncated 5’-ends of the elements. Different opinions have been proposed
whether CR1 elements create target site duplications: whereas Silva and Burch (1989)
proposed that such duplications can always be found, Vandergon and Reitman (1994) limited
this event to only some CR1 elements, and recently it was suggested never to occur (ICGSC
2004). Detection of such a duplication and hence, identification of the 5’-end was impossible
in the Corl- and Cor2-CR1 loci and thus, I was unable to perform a classical
presence/absence screening as one primer was lying within the element and the other, i.e. the
locus-specific primer, in the 3’ flanking region. As PCR yielded single-locus products my
strategy of ‘3’-flanked PCR’ does work. According to Shedlock and Okada (2000), false
negative results do not challenge the phylogenetic relationships of those species for which
positive PCR amplifications have been obtained. As an independent control, I confirmed
negative results by performing hybridisation experiments (Fig. 4, Article II). Additionally, I
solved the problem of false positive signals, like the finding of the Cor2-like-CR1 element in
the Bohemian waxwing, Bombycilla garrulus, and the white-throated dipper, Cinclus cinclus,
by directly sequencing the PCR products. The differing 3’-flanking region unambiguously
pointed to a different locus (Fig. 3, Article II).

To avoid these difficulties in future studies, two possibilities are obvious: (1) Similar
to the study of St. John et al. (2005), one could use CR1 elements, which have been inserted
in introns of coding genes. This provides unambiguous ends of the elements and facilitates
primer-design in conserved regions of the gene of concern. As it appears rather unlikely to
find such an intron in the genome of the taxon of interest, (2) screening a genomic library
would possibly be more successful when concentrating on the development of longer clones,
since this increases the likelihood of yielding sequences containing both ends of the elements.
Nevertheless, I consider presence of my newly discovered CR1 loci an apomorphic character
state, proving that these elements can be used to infer phylogenetic relationships within

Passeriformes in general.

16



Discussion

3.1.3 Sequences of CR1 elements

The gain of using retrotransposon insertions as noise-free apomorphic phylogenetic
characters is often disproportionate to the effort one has to invest finding enough suitable
elements. It is known that retrotransposon subfamilies have had different rates of transposition
activity. An appropriate marker has to have been active specifically during the time of
divergence of a clade in question (e.g. Kido ef al., 1991; Sasaki et al., 2004; Shimamura et al.,
1997). Searching for such elements, one will inevitably find many apomorphic, but
uninformative markers (with regard to the specific question), e.g. those that are found in all
representatives of the investigated group. It is widely accepted that retrotransposons
accumulate neutral substitutions after an insertion event, in particular after losing their
retrotransposition ability, like CR1 elements, (Kido e al., 1995; Webster et al., 2006). Thus, I
hypothesised that these sequences contain a phylogenetic signal. This offered the opportunity

to use the retrotransposon sequences themselves as a phylogenetic marker.

I could successfully apply this approach in my study on the insertion pattern of two
CRI1 loci (Figs. 5 and 6, Article II). Furthermore, the eight CR1 loci I investigated in regard to
their phylogenetic utility (Article III) obviously lost their retrotransposable ability as indicated
by several conspicuous indels in the region of ORFI1. These elements did not completely
match a sequence of reverse transcriptase. Thus, random mutation must have caused the high
variability in the CR1 elements among the species studied. I assessed the variability of CR1
sequences by comparing them to the two genes ZENK and RAG-1. Substitution rates of CR1
sequences were up to 3.2 times higher than those of ZENK were, and variability in the two
marker systems was correlated significantly in most cases (Fig. 2, Article III). It usually is
assumed that markers with high variability are saturated due to multiple substitutions. This
has been shown for the mitochondrial cytochrome b gene, which consequently was used less
frequently to resolve higher-level phylogenies in Passeriformes (Chikuni et al., 1996;
Edwards et al., 1991; Edwards and Wilson, 1990). However, I did not find any indications of
saturation in my CRI1 loci when comparing transitions (ti) and transversions (tv) to total
sequence divergences, and neither did the ti/tv ratio point to multiple substitutions (Fig. 1 and
Table 3, Article III). My data further indicated a very low level of homoplasy in the CR1
sequences (Table 3, Article III). These sequence characteristics indicated a powerful
phylogenetic signal. The method of likelihood-mapping visualised the phylogenetic signal and
corroborated my hypothesis with different results for my two combined CRI1 data sets.
According to these findings, the Mus-CR1 data set is superior to the Syl-CR1 data set in
resolving phylogenies. Even though likelihood-mapping does not always produce fully
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reliable results (Nieselt-Struwe and von Haeseler, 2001), the Mus-CR1 tree and the less

resolved phylogenetic tree of the Syl-CR1 data set corroborated this analysis (Figs. 4 and 5,
Article III).

Despite the evidence for CR1 sequences containing useful phylogenetic information,
the phylogenetic trees were not fully congruent with recent hypotheses about passerine
systematics and showed some relationships, which are supposed to be unlikely. Possibly,
these particular data sets were too small, especially for resolving the taxon of Sylvioidea,
which has been shown to be difficult to elucidate (Alstrom et al., 2006; Jonsson and Fjeldsa,
2006; Sheldon and Gill, 1996). As the rather short sequences of the single CR1 loci failed to
produce unambiguous trees, including sequences of additional CR1 loci presumably would
increase the phylogenetic signal. As there is such a high number of CRI elements in the
genomes of birds, generating larger data sets (i.e. more loci/longer sequences and including
additional taxa) than the ones in my study, could definitely contribute to the ongoing debate
on passerine phylogenies. Specific screens for retrotransposons as sequence markers may be

useful for studies, where previous marker systems have been less successful.

3.2 Phylogenetic relationships within Passeriformes inferred from new
markers

3.2.1 Suboscines

My so far partial taxon sampling of suboscines and non-Passerida oscines allows only
an incomplete phylogenetic inference for these groups and, thus, will be discussed only
briefly. Sibley and Ahlquist (1990) found a split of the New-World suboscines in the three
clades Tyrannida, Furnariida, and typical antbirds (Thamnophilidae). I did not find support for
this partition, instead I support the integration of the typical antbirds into the Furnariida, as
well as monophyly of the ovenbirds and woodcreepers (Furnariidae) and their sister group
relationship with the ground antbirds (Formicariidae) (Chesser, 2004; Irestedt et al., 2002;
Irestedt et al., 2001; Article I).

18



Discussion

3.2.2 ‘“Corvida’

This taxon was the most surprising new classification proposed by Sibley and Ahlquist
(1990), because it comprised several species with different morphological traits and
geographical distribution. Nevertheless, it was accepted at first (Lovette and Bermingham,
2000). Later, however, its monophyly has been doubted by several authors and the Corvida
have generally been rendered paraphyletic (Barker ez al., 2002; Ericson et al., 2002a, b). This
was confirmed by my study, as the honeyeaters (Meliphagidae) (originally included in
'Corvida' by Sibley and Ahlquist (1990)) are identified as a sister taxon to all other oscines
(Figs. 1-4, Article I). I found that the orioles (Oriolini) are not as closely related to the ravens,
crows, jays, and allies (Corvini), as had been hypothesised by Sibley and Ahlquist (1990)
(Article I and IT) and therefore I am challenging their taxon Corvinae, consisting of the tribes
Corvini, Artamini (currawongs), Paradisaeini (birds of paradise), and Oriolini. In Article I, I
corroborated the sister taxon relationship between birds of paradise and corvids previously
hypothesised (Cracraft and Feinstein, 2000; Frith and Beehler, 1998; Helmbychowski and
Cracraft, 1993; Nunn and Cracraft, 1996). In addition, I propose that the taxon Corvidae
(sensu Sibley and Ahlquist, 1990) needs to be revised, because vireos (Vireonidae) are
apparently closely related to the corvids and might even be nested within the Corvidae
(Article I). Thus, phylogenetic relationships within the Corvidae remain unresolved and need

further investigation, preferably with a more complete taxon sampling.

3.2.3 Picathartidae

The different historical classifications of the genus Picathartes (see 2.2) illustrate the
difficulties in resolving its phylogenetic relationships. In this regard, the results of my CR1
insertion analyses (Article II) are at odds with my study based on sequences (Article I) and
several other studies (Barker et al., 2004; Beresford et al., 2005; Ericson and Johansson,
2003). Sibley and Ahlquist (1990) tentatively concluded that Picathartes should have
affinities to Corvida, as corroborated by my Cor2-CR1 insertion (Article II), but they
conveyed their uncertainty, coupled with ambiguous morphological data, by placing the taxon
Picathartidae (Picathartes gymnocephalus, P. oreas, Chaetops frenatus, C. aurantius) beside
Corvida and Passerida with the status of incertae sedis. Ericson and Johansson (2003)
proposed Picathartes and Chaetops being basal to the Passerida. They classified them as
Passerida because they all share a 3 bp-insertion in the sequence of c-myc, a character

considered apomorphic for the Passerida. Beresford et al. (2005) and Barker et al. (2004)
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challenged this, by proposing the Petroicidae as the second branch in the Passerida (branching
off after the Picathartidae), because the Petroicidae lack this insertion (only available
representative Eopsaltria australis (Ericson et al., 2002b)). Recently, Fuchs ef al. (2006) and
Jonsson and Fjeldsd (2006) discussed the difficulties in recovering a robust phylogenetic
hypothesis at the boundary between ‘Corvida’ and Passerida using sequence data. Regarding
these ambiguous data, both morphological and molecular, and the clear-cut character state of
the Cor2-CR1 locus, my analyses suggest a closer relationship of the Picathartidae to the

Corvidae.

3.2.4 Passerida

My analyses strongly corroborated the partition of Passerida into three superfamilies
Passeroidea, Muscicapoidea, and Sylvioidea (originally defined by Sibley and Ahlquist
(1990)), however, with slight modifications (Article I).

Passeroidea—The major differences in phylogenetic relationships within the
Passeroidea compared to those established by Sibley and Ahlquist (1990) was in the inclusion
of fairy-bluebirds and leafbirds (Irenidae), (which had been classified as ‘Corvida’ by Sibley
and Ahlquist (1990)) and the exclusion of the larks (Alaudidae) (Article I). Apart from these
fundamentally new classifications, my study also pointed to a revision at lower phylogenetic
levels. Sibley and Ahlquist’s (1990) family Passeridae should not be maintained, because
their family Fringillidae is embedded in parts of the Passeridae (Article I). According to
Sibley and Ahlquist (1990), this taxon consists of five subfamilies, namely (1) sparrows
(Passerinae), (2) wagtails and pipits (Motacillinae), (3) accentors (Prunellinae), (4) weavers
(Ploceinae), and (5) estrildine finches (Estrildinae). I found strong support for a split of the
Passeridae into two clades, one consisting of sparrows, wagtails, and pipits (subfamilies 1 and
2) and the other consisting of weavers and estrildine finches (subfamilies 4 and 5) (Article I).
This relationship has been postulated previously, albeit with high uncertainty (Groth, 1998)
and was recently corroborated (Van der Meij et al., 2005). My analyses significantly
supported the monophyletic clade of weavers and estrildine finches, and I found support for
the position of the whydahs (Viduini) as the basal branch of the estrildine finches (Figs. 1-4,
Article 1), a placement considered controversial (Groth, 1998; Sibley and Ahlquist, 1990).
Due to incongruence among different analysis methods, my results so far are ambiguous
regarding the phylogenetic position of the accentors (Article I). Their position as the earliest

branch of the Passeridae and the Fringillidae has been suggested previously (Barker et al.,
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2004; Beresford et al., 2005; Ericson and Johansson, 2003). In contrast, a closer relationship
to sparrows was supported by the ZENK data set and the MP bootstrap analysis of the
combined data set (Figs. 1 and 2, Article I). My data definitely rejects the hypothesis of
accentors being closer related to weavers and estrildine finches, which has been found in the

supertree of Jonsson and Fjeldsa (2006).

Muscicapoidea.—My studies strongly corroborated recent findings about the phylogeny
of the Muscicapoidea. If one accepts the exclusion of the waxwings (Bombycillidae) from this
taxon (as discussed below), higher-level relationships seem to consolidate with the starlings
and mockingbirds (Sturnidae) as the earliest branch. In particular, I was able to validate the
position of the dippers (Cinclidae) as a sister taxon to the Muscicapidae for the first time with
significant MP support (Figs. 2 and 4, Article I). The split of the Muscicapidae into the two
clades of thrushes (Turdinae) and the chat (Saxicolini)/flycatcher (Muscicapini) assemblage
(Muscicapinae) was congruent with many other studies (e.g. Barker et al., 2004; Beresford et
al., 2005; Cibois and Cracraft, 2004; Jonsson and Fjeldsa, 2006). My data confirmed the
monophyly of the chats and flycatcher, with the modification, that the European pied
flycatcher Ficedula hypoleuca should be included into the chats (Article I and III). Originally,
it had been classified as a member of the Muscicapini (Sibley and Monroe, 1990).

The waxwings recently have been referred to as a ‘problem clade’, which ‘moves
around’ in the phylogenetic trees (Jonsson and Fjeldsd, 2006). They have either not been
resolved at all (Ericson and Johansson, 2003; Fuchs et al., 2006), associated with the tits
(Paridae) as the deepest branch within the Sylvioidea (Barker et al., 2002), or have been
placed basally within the Muscicapoidea (Barker et al., 2004; Beresford et al., 2005; Voelker
and Spellman, 2004). Barker et al. (2004) showed an affinity of the waxwings to the kinglets
(Regulidae), however with only little support. The kinglets themselves, classified as a member
of the Sylvioidea by Sibley and Ahlquist (1990), were recently called another ‘lost lineage’ in
the passerine tree (Jonsson and Fjeldsa, 2006). I found additional evidence for the waxwings
and the kinglets being closely related, possibly as sister taxa (Article I and III). A closer
relationship of the waxwings and the clade of wrens, tree-creepers, and nuthatches (Certhiidae
and Sittidae) has been adumbrated with these groups as deepest splits in the Muscicapoidea
(Jensson and Fjeldsa, 2006). Wrens, tree-creepers, and nuthatches had been placed in the
Sylvioidea by Sibley and Ahlquist (1990) and meanwhile, the closer relationship to the
Muscicapoidea has been confirmed (Barker et al., 2002; Barker et al., 2004; Beresford et al.,

2005). In my study, I cautiously suggest the existence of a clade consisting of waxwings,
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kinglets and the wrens/tree-creepers/nuthatches assemblage, but this hypothesis awaits further

detailed investigations (Article I).

Sylvioidea.—Phylogenetic relationships within the second largest group of oscine birds,
the Sylvioidea (sensu Sibley and Monroe, 1990) have been difficult to elucidate (Alstrom et
al., 2006; Jensson and Fjeldsa, 2006). For example, the exact phylogenetic position of tits
(Paridae) has frequently not been resolved, even in recent studies, and an exclusion from the
Sylvioidea has been proposed (e.g. Alstrom et al., 2006). Alstrom et al. (2006) suggested to
apply the name ‘Sylvioidea’ to a clade without tits. My studies provided strong evidence for a
robust tit-clade as the sister taxon to the Sylvioidea (Article I and III). If the denomination of
‘Sylvioidea’ should be retained, it would require a new name for this sister clade, and I
suggest to assign the name ‘Paroidea’ to it, comprising the tits and relatives. Although
Linnean categories (like superfamilies) are not based on absolute criteria, this new

classification might ease further discussion on their respective phylogenetic relationships.

My results were ambiguous concerning the phylogenetic position of the larks
(Alaudidae). When applying different analysis methods I found either (1) the larks together
with the swallows (Hirundinidae) embedded in the Sylvioidea, or (2) the larks as the earliest
branch of the Sylvioidea (Article I and III). As previous authors have proposed the second
hypothesis I also assume it to be more likely (Alstrom et al., 2006; Barker et al., 2004;
Beresford et al., 2005; Ericson and Johansson, 2003; Fuchs et al., 2006).

In recent studies, the leaf-warblers (Acrocephalinae) have appeared to be a
polyphyletic group (e.g. Alstrom et al., 2006; Sefc et al., 2003). I strongly confirmed this by
finding a Phylloscopus-warbler clade (Article I and III). Additionally, the leaf-warblers
should be excluded from their original classification in Sylviidae (sensu Sibley and Ahlquist,
1990) (Article I and III). In fact they recently have been granted their own family-status
(Acrocephalidae, Alstrom et al, 2006). My data failed to unambiguously resolve the
phylogenetic position of the common grashopper-warbler Locustella naevia. It forms a
monophylum with the Acrocephalus sp./Hippolais icterina clade or constitutes a basal branch
within the Sylvioidea depending on the analysis method (Figs. 2, 4, and 1, 3, Article I,
respectively). Haffer (1991) suggested a close relationship of Locustella, Acrocephalus, and
Hippolais, but meanwhile, this relationship has been questioned (Helbig and Seibold, 1999).

Thus, the phylogenetic position of Locustella requires further investigation.

My study is the first to yield a highly resolved and strongly supported clade consisting
of the bulbuls (Pycnonotidae) and the babblers, white-eyes, laughingthrushes, and allies
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(Timaliidae) (Figs. 2 - 4, Article I). This relationship has been found before but until now has
lacked statistical support (Barker et al., 2002; Barker et al., 2004; Beresford et al., 2005). The
newly defined family of the Timaliidae takes into account the non-monophyly of Sibley and
Ahlquist’s (1990) Sylviidae and the closer relationships of the white-eyes (Zosteropidae) to
the babblers (Timaliini), laughingthrushes (Garrulacinae), and allies (Alstrom et al., 2006).
My data pointed to a sister taxon relationship between laughingthrushes and white-eyes and
strongly corroborated the revision of the Sylviidae, with new evidence apart from the

exclusion of the leaf-warblers (Article I and III).

Despite my comprehensive analyses, the clade of Sylvioidea could not be fully
resolved. The short branch lengths and internodes in my phylogenetic trees (Figs. 1 - 4,
Article I) and the fact that this group had previously been given the status of the least resolved
group in the passerine supertree based on a metaanalysis of 99 studies (Jensson and Fjeldsé,
20006), point to a particularly rapid speciation and radiation of this group. Thus, future studies
on the phylogenetic relationships within the Passeriformes should consider especially these

species as a major subject of investigation.

3.3 Conclusion

My phylogenetic approaches using different new molecular markers further advance
the ongoing debate about phylogenetic relationships of the Passeriformes. I present a revised
phylogenetic tree of major passerine groups inferred from my studies in Figure 4. My
comprehensive sequence analyses (Article I and IIT) and the study using CR1 insertions as
apomorphic characters (Article II) have shown that these promising markers can contribute to
phylogenetic studies of the Passeriformes. I was able to settle several controversial issues in
passerine phylogenies. Furthermore, these markers may be applied to the molecular
systematic of birds in general. Future studies should include an even more extensive taxon

sampling to clarify the last remaining uncertainties.
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4 Abstract

The aim of this study was to provide deeper insights in passerine phylogenetic
relationships using new molecular markers. The monophyly of the largest avian order
Passeriformes (~59 % of all recent birds) and the division into its suborders suboscines and
oscines are well established. Phylogenetic relationships within the group have been extremely
puzzling, as most of the evolutionary lineages originated through rapid radiation. Numerous
studies have hypothesised conflicting passerine phylogenies and have repeatedly stimulated
further research with new markers. In the present study, I used three different approaches to
contribute to the ongoing phylogenetic debate in Passeriformes. I investigated the recently
introduced gene ZENK for its phylogenetic utility for passerine systematics in combination
and comparison to three already established nuclear markers. My phylogenetic analyses of a
comprehensive data set yielded highly resolved, consistent and strongly supported trees. I was
able to show the high utility of ZENK for elucidating phylogenetic relationships within
Passeriformes. For the second and third approach, I used chicken repeat 1 (CR1)
retrotransposons as phylogenetic markers. 1 presented two specific CR1 insertions as
apomorphic characters, whose presence/absence pattern significantly contributed to the
resolution of a particular phylogenetic uncertainty, namely the position of the rockfowl
species Picathartes spp. in the passerine tree. Based on my results, I suggest a closer
relationship of these birds to crows, ravens, jays, and allies. For the third approach, I showed
that CR1 sequences contain phylogenetic signal and investigated their applicability in more
detail. In this context, I screened for CRI1 elements in different passerine birds, used

sequences of several loci to construct phylogenetic trees, and evaluated their reliability.

I was able to corroborate existing hypotheses and provide strong evidence for some
new hypotheses, e.g. | suggest a revision of the taxa Corvidae and Corvinae as vireos are
closer related to crows, ravens, and allies. The subdivision of the Passerida into three
superfamilies, Sylvioidea, Passeroidea, and Muscicapoidea was strongly supported. I found
evidence for a split within Sylvioidea into two clades, one consisting of tits and the other
comprising warblers, bulbuls, laughingthrushes, whitethroats, and allies. Whereas Passeridae
appear to be paraphyletic, monophyly of weavers and estrild finches as a separate clade was
strongly supported. The sister taxon relationships of dippers and the thrushes/flycatcher/chat
assemblage was corroborated and I suggest a closer relationship of waxwings and kinglets to

wrens, tree-creepers, and nuthatches.

25



Abstract (German version)

5 Abstract (German version)

Das Ziel dieser Arbeit war es, mittels neuer molekularer Marker zusitzliche
Informationen iiber die phylogenetischen Verwandtschaftsverhdltnisse der Sperlingsvogel
(Passeriformes) zu erhalten. Die Monophylie der Passeriformes, der groBiten Vogelgruppe
(~59 % aller lebenden Arten), sowie ihrer Unterteilung in Suboscines und Oscines sind gut
belegt. Die phylogenetischen Verwandtschaftsverhéltnisse innerhalb dieser Gruppen sind
jedoch seit jeher sehr schwer zu entschliisseln, da sich die meisten Linien durch eine schnelle
Radiation entwickelten. Zahlreiche Studien haben verschiedene Hypothesen zur Phylogenie
der Sperlingsvogel aufgestellt und damit die Suche nach neuen Markern initiiert. In meiner
Untersuchung habe ich drei verschiedene Ansitze benutzt, um zur Kldarung der Phylogenie
beizutragen. Ich untersuchte das kiirzlich als Marker eingefiihrte ZENK-Gen im Hinblick auf
seinen Nutzen in der Systematik der Sperlingsvogel in Kombination und im Vergleich zu drei
bereits etablierten nukledren Markern. Meine phylogenetischen Analysen eines umfassenden
Datensatzes ergaben hoch aufgeloste, konsistente und stark unterstiitze Stammbaume, so dass
ich den hohen Nutzwert des ZENK-Gens fiir die Klidrung phylogenetischer
Verwandtschaftsverhiltnisse der Passeriformes zeigen konnte. Fiir den zweiten und dritten
Ansatz habe ich Chicken Repeat 1 (CR1) Retrotransposons als phylogenetische Marker
benutzt. Anhand zweier spezifischer CR1 Insertionen als apomorphe Merkmale und deren
Insertionsmuster in verschiedenen Sperlingsvogeln konnte ich die phylogenetische Position
der afrikanischen Felshiipfer, Picathartes spp., kldren. Aufgrund meiner Ergebnisse schlief3e
ich auf eine engere Verwandtschaft der Felshiipfer zu den Rabenvogeln. Durch meinen dritten
Ansatz konnte ich nachweisen, dass CRI1-Sequenzen phylogenetische Informationen
enthalten, und untersuchte detailliert deren Anwendung als Marker. Dafiir habe ich in
verschiedenen Sperlingsvogeln nach CR1 Elementen gesucht und mit einigen dieser

Sequenzen Stammbaume berechnet, um die Verldsslichkeit der Marker zu iiberpriifen.

Durch meine Untersuchungen konnte ich existierende Hypothesen stiitzen und
zusitzlich starke Hinweise auf neue Hypothesen finden. Beispielsweise schlage ich eine
Revision der Taxa Corvidae und Corvinae vor, da Vireos eng mit den Rabenvogeln verwandt
sind. Die Unterteilung der Passerida in die drei Unterfamilien Sylvioidea, Passeroidea und
Muscicapoidea konnte deutlich bestdtigt werden. Ich habe Hinweise auf eine Trennung der
Sylvioidea in zwei taxonomische Gruppen erhalten, einer bestehend aus Meisen und

Verwandten und der andere aus Grasmiicken, Biilbiils, Hiherlingen, Brillenvégeln und
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Verwandten. Wahrend die Passeridae paraphyletisch sind, wurde die Monophylie der Weber
und Astrilden als ein eigenes Taxon unterstiitzt. Das Schwestergruppenverhéltnis zwischen
Wasseramseln und dem Drossel/Fliegenschnépper/Schmétzer-Taxon wurde ebenfalls
bestitigt. AuBerdem habe ich Hinweise auf eine ndhere Verwandtschaft zwischen

Seidenschwinzen und Goldhdhnchen zu Zaunkonigen, Baumléufern und Kleibern gefunden.
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Abstract

While the monophyly of the largest avian order Passeriformes as well as its suborders
suboscines (Tyranni) and oscines (Passeri) is well established, lower phylogenetic
relationships of this fast radiated taxon have been a continuous matter of debate, especially
within the suborder oscines. Many studies analysing phylogenetic relationships of
Passeriformes using molecular markers have been published which led to a better resolved
phylogeny. Conflicting hypotheses and still remaining uncertainties, especially within
Passerida, have repeatedly stimulated further research with additional new markers. In the
present study we used a combination of established molecular markers (RAG-1, RAG-2, c-
myc) and the recently introduced ZENK. We accomplished phylogenetic analyses using MP,
ML, and Bayesian inference, both separately for all genes and simultaneously. To assess the
phylogenetic utility of the different genes in avian systematics we analysed the influence of
each data partition on the phylogenetic tree yielded by the combined approach using
partitioned Bremer support. Compared to the other single gene analyses, the ZENK trees
exhibited by far the best resolution and showed the lowest amount of homoplasy. Our data
indicate that this gene is — at least in passerines — suitable for inference of even old taxonomic

splits, dating before the Cretaceous/Tertiary boundary.

Our combined analysis yields well-supported phylogenetic hypotheses for passerine
phylogeny and apart from corroborating recently proposed hypotheses on phylogenetic
relationships in Passeriformes we provide evidence for some new hypotheses. The main
passerine clades suboscines and oscines are corroborated just as paraphyly of Corvida. Based
on the present study, we suggest a revision of the taxa Corvidae and Corvinae, as vireos are
closer related to crows, ravens, and allies. The subdivision of Passerida into three
superfamilies, Sylvioidea, Passeroidea, and Muscicapoidea, the first as sister to the two latter
groups is strongly supported. We found evidence for a split within Sylvioidea into two clades,
one consisting of tits and the other comprising warblers, bulbuls, laughingthrushes,
whitethroats, and allies. Whereas Passeridae appear paraphyletic, monophyly of weavers and
estrild finches as a separate clade is strongly supported. The sister taxon relationships of
dippers and Muscicapidae is corroborated and we suggest a closer relationship of waxwings

and kinglets to wrens, tree-creepers, and nuthatches.

Keywords: Passeriformes, phylogeny, nuclear markers, ZENK
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INTRODUCTION

With more than 5700 species, the order Passeriformes comprises more than half of all
living birds (Sibley and Ahlquist, 1990). The monophyly of this phenotypically rather
homogenous taxon as well as its basal split into two monophyletic clades, i.e. the suboscines
(Tyranni) and the oscines (Passeri), is well established on morphological (Ames, 1971;
Feduccia, 1975; Raikow, 1982; Raikow, 1987) as well as on molecular grounds (e.g. Edwards
et al., 1991). However, due to the rapid radiation of most passerine lineages during the early
Tertiary (Feduccia, 1995), the phylogenetic relationships especially within the oscines have
been a continuous matter of debate. The first extensive study on avian phylogenetic
relationships, based on DNA-DNA hybridization (Sibley and Ahlquist, 1990) divided the
oscines into the two parvorders Corvida and Passerida, the latter of which consists of the three
superfamilies Muscicapoidea, Sylvioidea and Passeroidea. While subsequent sequence
analyses generally have corroborated the suboscines/oscines partition (e.g. Edwards et al.,
1991), the taxon Corvida is apparently paraphyletic and should not longer be maintained
(Barker et al., 2002; Ericson et al., 2002a, b). In addition, further conflicting phylogenetic
hypotheses have been put forward for lower phylogenetic relationships within the oscines
(e.g. Ericson et al., 2003; Ericson and Johansson, 2003; e.g. Barker et al., 2004; Beresford et
al., 2005). Recent studies on the systematics of passerine birds typically differ in their
taxonomic sampling (with up to 173 passerine taxa included in Beresford et al. (2005)), but
they generally rely on one or a few nuclear genes as phylogenetic markers, especially RAG-1
(Irestedt et al., 2001; Barker et al., 2002; Irestedt et al., 2002; Ericson and Johansson, 2003;
Barker et al., 2004; Beresford et al., 2005), RAG-2 (Barker et al., 2004), c-myc (e.g. Ericson
et al., 2000; Irestedt et al., 2001; Irestedt et al., 2002; e.g. Ericson and Johansson, 2003), and
myoglobin (Irestedt et al., 2002; Ericson and Johansson, 2003).

In two recent studies, Chubb (2004a, b) demonstrated the utility of ZENK as a marker
for a higher level phylogeny in neognath birds as well as for small analyses at a lower
phylogenetic level of the avian orders Apodiformes (hummingbirds and swifts) and
Passeriformes. While this author provided evidence that ZENK could be used as a powerful
molecular marker with an estimated resolution for deep divergences within orders ranging
roughly from 60 to 10 Mya, only 18 passerine taxa were included, such that an in depth

analysis of phylogenetic relationships in this speciouse taxon was not possible.

ZENK (sensu Mello et al., 1992), encoded by an immediate-early gene (IEG), is a

well-studied transcription factor expressed in the song system of birds (reviewed in Clayton,
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1997; Ribeiro and Mello, 2000). ZENK is an acronym derived from the first character in the
names of already described mammalian IEG homologs, i.e., Zif268 (Christy et al., 1988),
Egr-1 (Sukhatme et al., 1988), Ngfi-a (from humans, Milbrandt, 1987) and Krox-24 (Lanfear
et al., 1991), all of which share conserved sequence elements (Long and Salbaum, 1998).
Expression of ZENK plays an important role in neuronal growth concerning learning and
memory formation (Stork and Welzl, 1999; Tischmeyer and Grimm, 1999; reviewed in
Ribeiro and Mello, 2000) and has been used as a marker of neuro-activity during song
learning and production (reviewed in Clayton, 1997; Ball and Gentner, 1998). Although the
conservation of this single-copy gene and parts of its 3’ untranslated region (UTR) is known
since 1998 (Long and Salbaum, 1998), its use as a molecular marker in avian phylogenetics

has been very limited so far.

In this study, we present a combined data set comprising 80 taxa sequenced at four
nuclear genes. While three of them have already been applied on larger analyses of passerine
phylogenies (RAG-1, RAG-2, c-myc, rfs. see above), we put emphasis on the newly
introduced molecular marker ZENK. One aim was to verify the utility of ZENK as a marker
for phylogenetic analyses. Second, we intended to re-assess previously proposed phylogenies
within passerine birds. The phylogenetic reconstruction of relationships among closely related
taxa specifically benefits from comprehensive data sets and a combination of unlinked
markers. We accomplished analyses both separately for all genes and simultaneously for the
combined data set, tested for homogeneity of the different gene combinations, and analysed
the influence of each data partition on the phylogenetic tree yielded by the combined
approach. This comprehensive analysis not only yields well-supported phylogenetic
hypotheses for passerine phylogeny, but also assesses the phylogenetic utility of the different

genes in avian systematics.

MATERIALS AND METHODS
Taxon Sampling, DNA Isolation, and Sequencing

Our taxon sampling of the combined data set comprised 80 taxa in total, representing
29 of the 46 passerine families recognised by Sibley and Monroe (1990) with emphasis on
Passerida (sensu Sibley and Ahlquist, 1990). We here provide 184 new sequences (71 ZENK,
21 RAG-1, 27 RAG-2, 65 c-myc; GenBank, accession nos. XXXXXX — XXXXXX) and

complement our data set with additional sequences available in GenBank (Table 1).
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Total genomic DNA was extracted from blood using the DNeasy Tissue kit (Qiagen)
and from liver tissue using the GNome® DNA Isolation Kit (Qbiogene). Additionally to
previous published primers of ZENK and the 3’ UTR (Chubb, 2004a), RAG-1 (Irestedt et al.,
2001), RAG-2 (Barker et al., 2004), and c-myc (Ericson et al., 2000), new primers were
developed to facilitate amplification of these four genes in passerines (Table 2). PCR-
amplifications were performed in a total volume of 37.5 ul, containing ImM Tris-HCl, pH
9.0, 5 mM KCI, 0.15 mM MgCl,, 0.05 mM of each dNTP, 0.13 uM of both forward and
reverse primers and 0.75 U Tag polymerase (Qbiogene) in two types of thermocyclers
(Biometra, Biorad) according to the following reaction profiles: 1 cycle at 96°C for 5 min, 40
cycles at 96°C for 1 min 30 s, 51°C to 61 °C (depending on the primers’ melting
temperatures) for 1 min 15 s, 72°C for 1 min 30 s, and a final extension at 72°C for 10 min.
Cycle sequencing reactions were performed with the forward and reverse primers using the
BigDye version 3.1 Terminator Cycle Sequencing Kit (Applied Biosystems) and analysed on
an AB 3100 multicapillary automatic sequencer (Applied Biosystems).

Phylogenetic Analysis

Sequences were assembled and aligned with the BioEdit Sequence Alignment Editor
(Hall, 1999). Due to amplification with internal passerine-specific primers (see above), new
sequences of RAG-1 and RAG-2 were shorter (1,420 bp and 847 bp, respectively) in length
than some of the previously published ones (up to 2,887 bp and 1,152 bp, respectively).
Missing nucleotides were treated as unknown. A chi-square test of homogeneity of base
frequencies across taxa was used for each gene to test for variation of the base frequencies
between the OTUs. Data sets of the different genes were tested for heterogeneity using the
partition homogeneity test (Farris et al., 1995), implemented in PAUP* (Swofford, 2001), to
assess the appropriateness of combining the data sets. We conducted a test between each pair

of gene partitions using 1,000 replicates for each test.

All five data sets (i.e., each separate gene and the combined data set) were analysed by
using maximum parsimony (MP, Farris et al., 1970), maximum likelihood (ML, Felsenstein,
1981) and Bayesian inference (Rannala and Yang, 1996; Mau and Newton, 1997; Larget and
Simon, 1999; Mau et al., 1999; Huelsenbeck et al., 2000) with the representatives of the Old
World suboscines (Pitta sordida, Psarisomus dalhousiae, and Calyptomena viridis) chosen as
outgroups. MP analyses were performed using the parsimony ratchet approach (Nixon, 1999)

as implemented in PAUPRat (Sikes and Lewis, 2001) and PAUP* (Swofford, 2001). The
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ratchet search spanned 500 iterations, each of which included a unique and randomised
weighting scheme, one random addition event, and TBR branch swapping. The search was
repeated 20 times, because it is preferable to independently repeat the ratchet search rather
than increasing the number of iterations (Nixon, 1999; Sikes and Lewis, 2001). All 10,020
trees were combined and only the best trees (ZENK: 8,722, RAG-1: 8,100, RAG-2: 9,526, c-

myc: 1,260, combined data set: 10,020) were used to compute a consensus tree.

Additionally, a maximum parsimony bootstrap analysis with 1,000 iterations was
performed for the combined data set using PAUP* (Swofford, 2001). With respect to time-
consuming calculations, the maximum number of trees was limited to 100 and only one tree

held at each step during stepwise addition.

For all five data sets, we used the Akaike Information Criterion (AIC), which is
supposed to be superior to the hierarchical likelihood ratio test (Posada and Buckley, 2004)
for model selection, as implemented in the program Modeltest version 3.7 (Posada and
Crandall, 1998) for the ML analyses of the combined data set and as in MrModeltest version

2.2 (Nylander, 2004) for Bayesian inference.

ML analyses were performed under the likelihood settings suggested for the given
dataset by the result of the modeltest (see Table 3) using PHYML (Guindon and Gascuel,
2003). The resulting likelihood tree was used as starting tree for a ML analyses using PAUP*
(Swofford, 2001) with TBR branch swapping.

Bayesian analyses were conducted with a parallel version of MrBayes version 3.1
(Huelsenbeck and Ronquist, 2001). All priors were set according to the chosen model. Four
Markov chains, three heated and one cold, were started from a random tree and all four chains
ran simultaneously for 5,000,000 and 1,000,000 generations (for the combined analysis and
for each separate gene, respectively), with trees being sampled every 500 and 100 generations
for a total of 10,001 trees. After the likelihood of the trees of each chain converged, the first
trees were discarded as burn in (6,001 combined, 600 ZENK and RAG-2, 400 RAG-1, 350 c-
myc). The majority-rule consensus tree containing the posterior probabilities of the phylogeny

was determined afterwards.

We estimated partitioned Bremer Support (PBS, Baker and DeSalle, 1997; Baker et
al., 1998; Baker et al., 2001) for the strict consensus tree yielded from the MP analysis of the
combined data set to assess the contribution of each gene to any node of the combined tree.
PBS values were calculated using TreeRot version 2 (Sorenson, 1999) and PAUP* (Swofford,

2001). Where different analyses criteria yielded incongruent results, significance tests using
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both the ‘Approximately Unbiased’ (AU) and the non-scaled bootstrap probability (NP) test
of a tree topology selection provided by CONSEL (Shimodaira and Hasegawa, 2001;
Shimodaira, 2002) were performed under the ML criterion for the combined data set for

several a priori hypotheses (see results) against the best tree.

RESULTS

The complete combined data set consisted of 6,179 bp in total and was assembled of
1,651 bp ZENK (1,149 bp of exon 2 and 502 bp of 3°’'UTR), 2,887 bp RAG-1, 1,152 bp RAG-
2, and 489 bp c-myc. Sequences varied in length due to several indels. Summary statistics for
each gene and the combined data set are shown in Table 3. The number of parsimonious
informative sites ranged from 89 (18.2 % of the complete sequence) in c-myc to 779 (27.0 %)
in RAG-1. The chi-square test of homogeneity of base frequencies across taxa showed no
significant heterogeneity (p=1.0) in all data sets. Sequences of ZENK had the lowest
transition:transversion ratio (2.75) and the lowest proportion of invariable sites (0.252)
whereas c-myc had the highest values of both criteria (4.44 and 0.53, respectively). All four
data sets were tested for saturation. Transitions and transversions were plotted against genetic

distance, but no saturation effects could be detected (data not shown).

Figure 1 shows the Bayesian phylogenetic tree of the ZENK data set and indicates
those nodes corroborated by MP analysis. Generally, both MP and Bayesian analyses yield
mostly congruent phylogenetic hypotheses. The basal split into suboscines and oscines was
strongly supported. At the basis of the suborder oscines, the single representative of the
honeyeaters Meliphagidae, the blue-faced honeyeater Entomyzon cyanotis was identified as
the sister taxon to all remaining oscines. Picathartidae (genera Picathartes and Chaetops)
branched off between Corvoidea (Corvidae + Vireonidae) and Passerida as sister group of the
latter taxon. The three superfamilies of Passerida recognised by Sibley and Ahlquist (1990)
were resolved with high Bayesian and parsimony support with the exception to the group of
the wrens, tree-creepers and nuthatches (Certhiidae (7roglodytes and Certhia) and Sittidae).
According to our analysis, this group is related to the Bohemian waxwing Bombycilla
garrulus and the goldcrest Regulus regulus. Together, they represented the sister taxon to
Passeroidea in this phylogenetic tree. Within Passeroidea, the monophyly of the fairy-
bluebirds and leatbirds (Irenidae, represented by the Asian fairy-bluebird Irena puella and the

greater green leatbird Chloropsis sonnerati) was not resolved. The same holds true for the
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leaf-warblers (Acrocephalinae) within Sylvioidea (represented by the Blyth's reed-warbler
Acrocephalus dumetorum, the icterine warbler Hippolais icterina, the willow warbler
Phylloscopus  trochilus, and the common grashopper-warbler Locustella naevia).
Interestingly, both these contradictions between the ‘classical’ phylogeny (i.e., monophyly of
Irenidae and Acrocephalinae) and our Bayesian analysis of the ZENK data set did not yield

high Bayesian support and were not supported in the maximum parsimony analysis.

The partition homogeneity test showed no significant heterogeneity between all data
partitions in the combined data set of all genes (Table 4). Figures 2 to 4 show the
phylogenetic trees of the combined analyses (MP bootstrap analysis, ML with Bayesian
support added at the nodes and strict consensus of the MP ratchet with partitioned Bremer
support included, respectively). All trees showed high congruence and differed only in a few
details, such as the position of wrens, tree-creepers and nuthatches, waxwings
(Bombycillidae), kinglets (Regulidae), and leaf-warblers. Regarding the major groups of
Passeriformes (i.e., suboscines/oscines, ‘Corvida’/Passerida, Picathartidae, superfamilies of
Passerida) all methods of analysing the combined dataset identified phylogenetic relationships
similar to those with both high Bayesian and MP support in the analysis of the ZENK gene
only. All taxa of Sylvioidea (sensu Sibley and Ahlquist, 1990) included in this study except
the single representative of the larks, the Eurasian skylark Alauda arvensis, are the sister
taxon to all Muscicapoidea and Passeroidea. The latter are clearly defined as a monophyletic
group, whereas the relationships of the Muscicapoidea (sensu Sibley and Ahlquist, 1990) to
the wrens and tree-creepers/nuthatches clade and the waxwings and kinglets remain

ambiguous.

Of all MP strict consensus trees, the combined data set yielded the highest number of
resolved nodes (71), followed by the MP strict consensus tree of ZENK with resolved nodes
(51), much more than the other three separate partition analyses (8 to 23 nodes resolved,
Table 3). Additionally, the ZENK tree comprises far more nodes that are congruent with the
strict consensus of the combined data set than the other three genes (40, compared to 6-18,

Table 3).

Several nodes are specifically discussed below and the Partitioned Bremer Support
(PBS) values for these nodes are shown in Figure 5 (the complete PBS values for all 71 nodes
across all partitions are available as supplementary material, online).The PBS values indicated
that ZENK and RAG-1 had contributed to most of the nodes of the maximum parsimony strict

consensus tree of the combined data set (supplementary material). A strong bias in resolving
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phylogenies within Passeroidea with ZENK having the highest PBS values among all nodes

was observed (supplementary material).

We tested seven different a priori phylogenetic hypotheses by AU and NP
significance tests, i.e., we tested the tree constrained by a given hypothesis against the best
tree (Table 5). For five hypotheses, the resulting tree did not significantly differ in topology
from the best tree. Two a priori hypotheses were rejected, i.e., (a) the monophyly of Corvidae
and Picathartidae and (b) the monophyly of Corvini + Oriolini + Vireonidae (except

Gymnorhina).

DISCUSSION
Utility of Different Genes in Resolving Passerine Phylogeny

The enormous radiation of passerine birds has created a scenario where - ‘instead of
distinct evolutionary lines that can be traced by conventional methods, passerine phylogenies
look like an upended head of an artist’s camel hair paintbrush with the myriad single strands
inextricably mixed’ (Feduccia, 1996). As a result, there is a ‘long history of frustration in
oscine phylogenetics and classifications’ (Sheldon and Gill, 1996). In recent years, many
studies analysing phylogenetic relationships within Passeriformes have been published,
leading step-by-step to an at least partially better resolved oscine phylogeny. However,
conflicting hypotheses, especially within Passerida, have repeatedly reinforced our awareness
of the obvious need for additional new markers to clarify these uncertainties. In the present
study we tested the phylogenetic utility of ZENK with a significantly larger data set than

before (Chubb, 2004b) and in combination with three other nuclear genes.

The separate analyses of all four partitions, in both MP and Bayesian inference,
showed the highest resolution in the phylogenetic tree of ZENK, whereas single-gene trees of
RAG-1, RAG-2, and especially c-myc suffered from more or less unresolved nodes. C-myc
has been reported to be highly conserved throughout the vertebrate genome (Ericson et al.,
2000). Indeed, our study indicates that this gene — with only 18.2 % of parsimonious
informative sites — seems to be too conserved for resolving the phylogeny of a speciouse
group like the passerines. Former studies using this gene used indels rather than sequence
information for phylogenetic inference (Ericson et al., 2000) or analysed data sets with by far

smaller taxon samplings and in combination with further molecular markers (Ericson et al.,
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2002a, b; Ericson and Johansson, 2003). Surprisingly, despite of its low number of
phylogenetically informative sites in our data set, this partition contributed most to the
resolution of closely related taxa, i.e., at and near the genus-level (see Figs. 4 & 5 and
Supplementary Material). The phylogenetic utility of RAG-1 has first been shown for basal
divergences in birds in general (Groth and Barrowclough, 1999). RAG-1 was considered a
powerful molecular marker for phylogenetic analyses among avian families. It is frequently
included as an additional marker in passerine phylogenies based on more than one locus and
dealing with varying systematic levels (Irestedt et al., 2001; Barker et al., 2002; Ericson et al.,
2002a, b; Irestedt et al., 2002; Johansson et al., 2002; Ericson and Johansson, 2003; Barker et
al., 2004; Cibois and Cracraft, 2004; Beresford et al., 2005). Rapidly evolving taxa were
harder to resolve with RAG-1 (Groth and Barrowclough, 1999; Irestedt et al., 2001) and most
of the published phylogenetic trees lack robust support for several nodes. High resolution of
the phylogenetic relationships within suboscines was gained from analyses including RAG-1
(Irestedt et al., 2001; Irestedt et al., 2002; Barker et al., 2004; Beresford et al., 2005). This
corroborates the phylogenetic utility of RAG-1 for deeper divergences, as the suboscines are
less speciouse and comprise less closely related evolutionary lineages than the oscines (Sibley
and Ahlquist, 1990). In the present study, the RAG-1 data set had low power in resolving
phylogenetic relationships of closely related taxa and the resolved nodes were not highly
supported above the genus-level. Nevertheless, our analysis of PBS values showed that RAG-
1 makes a strong contribution to the combined data set analyses (see Supplementary
Material). RAG-2 has so far only been used as a phylogenetic marker in passerine
phylogenetics in combination with RAG-1. As a consequence, the phylogenetic utility of
RAG-2 alone has never been evaluated. Although RAG-2 contains the highest proportion of
parsimonious informative characters, only 8 nodes (the lowest value of all genes) are resolved
in the MP strict consensus tree (Table 3). This marker performed poorly in resolving the
passerine superfamilies and MP and Bayesian analyses were particularly incongruent when
based on RAG-2. The contribution of RAG-2 to combined analyses as indicated by PBS
values is much lower than those of RAG-1 are (see Supplementary Material). Compared to
the other single gene analyses, the ZENK trees exhibited by far the best resolution with only a
few inconsistencies between the Bayesian and the MP tree beyond family level (Fig. 1). Test
for homoplasy using CI, RI and RC indices showed the lowest amount of homoplasy in the
ZENK data set compared to the other three genes (Table 3), which further adds to its superior
ability to resolve passerine phylogenies. According to Chubb (2004b), the highest power of
ZENK is in resolving lineages which diverged roughly from 60 to 10 Mya ago. Our data
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indicate that this gene is — at least in passerines — suitable for inference of even older
taxonomic splits, i.e., before the Cretaceous/Tertiary boundary: The split into the suboscine
taxa of Furnarioidea and Tyrannoidea is estimated to 61-65 Mya and into the suborders
suboscines and oscines to ~76 Mya (Barker et al., 2004), both resolved with strong support on
our phylogenetic trees of the ZENK data set (Fig.1). The PBS values show a comparatively
similar contribution as RAG-1, with a strong bias in resolving phylogenies among

Passeroidea (see Supplementary Material).

Phylogenetic Implications

All analyses of the combined data set yielded highly resolved, strongly supported
phylogenetic trees. Given our so far less complete taxon sampling of suboscine and non-
Passerida oscines, our analysis is less conclusive for these taxa than for the phylogeny within
Passerida. Nevertheless, our analysis further advances our knowledge on passerine

phylogeny, both by corroborating existing taxa and forwarding new hypotheses.

Suboscines.—The partition of the New-World suboscines in three clades, Sibley and
Ahlquist’s  (1990) Tyrannida, Furnariida typical antbirds (Thamnophilidae) is not
corroborated by our analyses. Instead, the integration of the typical antbirds into Furnariida
(Irestedt et al., 2001; Irestedt et al., 2002; Chesser, 2004), as well as monophyly of the
ovenbirds and woodcreepers (Furnariidae) and their sister group relationship with the ground

antbirds (Formicariidae) is supported, the latter by all different data sets (node 6 in Fig. 4).

‘Corvida’ —The monophyly of ‘Corvida’, a taxon originally proposed by Sibley and
Ahlquist (1990), has been doubted by several authors (Barker et al., 2002; Ericson et al.,
2002a, b). Presently, 'Corvida' are generally considered paraphyletic. This is again confirmed
by the results of our study, as the honeyeaters (originally included in the 'Corvida' branch) are
identified as a sister taxon to all other oscines (node 70 in Fig. 4). Our analyses also suggest a
further revision of relationships within the superfamily Corvoidea (sensu Sibley and Ahlquist,
1990): we corroborate the sister taxa relationship between birds of paradise (Paradisaeini,
included taxon Manucodia sp.) and corvids (Corvini, Cyanocitta sp., Pica pica and Corvus
spp.; node 67 in Fig. 4), as previously hypothesised (Helmbychowski and Cracraft, 1993;
Nunn and Cracraft, 1996; Frith and Beehler, 1998; Cracraft and Feinstein, 2000). Our data
sets does not add further evidence on the phylogenetic positions of the currawongs (Artamini,
Gymnorhina tibicen), orioles (Oriolini, Oriolus sp.) and vireos (Vireonidae, Vireo sp.) within

Corvoidea. The position of Gymnorhina relative to Corvidae was ambiguous in the MP
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analyses, but the phylogenetic hypothesis excluding this taxon from the remaining Corvidae
was rejected by the significance test (hypothesis 8 in Table 5). These analyses suggest that
both Sibley and Ahlquist’s (1990) definition of the family Corvidae and the subfamily
Corvinae (i.e., excluding vireos) should not be maintained. On the contrary, vireos are
apparently closely related to the corvids and might even be nested within Corvidae. This
assemblage of Corvidae and Vireonidae is strongly supported by the PBS values of all four
genes (Figs. 1-3, 4, node 68).

Picathartidae—The genus Picathartes has long been regarded as an avian curiosity
(Thompson and Fotso, 1995) and their phylogenetic position has been an ongoing puzzle.
Many different classifications have been put forward based on morphological traits after their
initial description as a crow (Corvus gymnocephalus, Temminck 1825): they were classified
as babblers (Amadon, 1943; Delacour and Amadon, 1951), starlings (Lowe, 1938), corvids
(Sclater, 1930) and thrushes (Amadon, 1943). Sibley and Ahlquist (1990) remained unsure
about the phylogenetic position of Picathartes and Chaetops, the closest relative of the
rockfowls, and granted them a separate parvorder with the status of incertae sedis, aside all
other Passeri. The position of Picathartidae (Picathartes gymnocephalus, P. oreas, Chaetops
frenatus, C. aurantius) at the boundary beside ‘Corvida’ and Passerida found in our analyses
has been proposed by several authors before (Ericson and Johansson, 2003; Barker et al.,
2004; Beresford et al., 2005), but never gained robust statistical support. Our analyses do
support this position strongly (bootstrap value=90, Fig. 2, PBS support by all four genes, Fig.
4, node 63). Nevertheless, the discussion about this group and some others, which seem to
constitute a deep split within Passerida, e.g. the genus Hyliota (Fuchs et al., 2006), did not
come to rest yet. A recent analysis based on retrotransposon insertions (assumed to constitute
a truly apomorphic molecular character state) provide strong evidence for Picathartidae being
closer related to Corvidae (Treplin and Tiedemann, under review) than to Passerida. Unlike
this finding, the significance test in the present study, where the included taxa of Corvidae
and Picathartidae were constrained to a monophylum gained significantly less support than
the best tree (hypothesis 7, Table 5). Though, analyses of our RAG-1 data set resulted in
Picathartidae as a member of ‘Corvida’ as the earliest branch in oscines except the
honeyeaters with significant Parsimony support. These findings and the additionally
ambiguous position of Petroicidae (Jonsson and Fjeldsé, 2006, Treplin and Tiedemann, under
review) as a proposed sister-taxon of Picathartidae (Beresford et al., 2005), indicate persisting
difficulties to clarify phylogenetic relationship at the boundary between ‘Corvida’ and

Passerida. Hence, we conclude that alternative hypotheses about the phylogenetic
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relationships of Picathartidae, especially with additional markers, should be seriously

considered.

Passerida—The partition of Passerida into three superfamilies Sylvioidea,
Muscicapoidea and Passeroidea (originally defined by Sibley and Ahlquist (1990)), with the
first being the sister taxon of the two latter groups, is strongly corroborated by our analyses,
but with slight modifications (Figs. 1-3, 4, nodes 28, 41, 42, 59). Non-monophyly of
Sylvioidea has been shown before and is also corroborated by our analyses. Our study shows
that two of the four ‘sylvioid’ clades proposed by Alstrom et al. (2006) are closely related i.e.
tits (Paridae) and Sylvioidea (sensu Alstrom et al., 2006). The exact phylogenetic position of
Paridae has often not been resolved in previous, even recent studies (e.g. Alstrom et al.,
2006). Our data strongly support the exclusion of Paridae from Sylvioidea (sensu Alstrom et
al., 2006) as a separate clade at the basis of Sylvioidea (Figs. 1-3, 4, node 58, 59). In addition,
further taxa (Elminia, Culicicapa, and Stenostira, all with different classifications
(Monarchini, Eopsaltriidae, Acrocephalinae, respectively) by Sibley and Monroe (1990)) have
been suggested as sister-taxa to Paridae (Barker et al., 2004; Beresford et al., 2005), excluded
from Sylvioidea. To keep the denomination ‘Sylvioidea’ introduced by Alstrom et al. (2006)
we suggest to assign the new superfamily name ‘Paroidea’ to the remaining clade including
tits and their relatives (e.g. Aegithalidae). Although taxonomic categories (like superfamilies)
are not based on absolute criteria, the denomination of the two strongly supported clades at
node 59 in Fig. 4 as Sylvioidea and Paroidea might ease further discussion on their respective
phylogenetic relationships. The two remaining ‘sylvioid’ clades proposed by Alstrom et al.
(20006), 1.e. the nuthatch/treecreeper/gnatcatcher/wren clade, (Certhioidea sensu Cracraft et al.
(2004)) and the crest/kinglet clade are not closely related to Sylvioidea and will be discussed

below.

Our data show some incongruence among the different analyses regarding the position
of larks (Alauda sp.). In both likelihood analyses of the combined data set, Alauda is the sister
taxon to the remaining Sylvioidea. In contrast, they form a monophylum with the swallows
(Hirundininae) in both MP analyses, and RAG-2 and c-myc contributed to this clade, as
indicated by the partitioned Bremer support (Fig. 4, node 46). Significance tests for these two
possibilities showed no statistically significant differences (Table 5). However, there are no
hints for a monophyletic clade consisting of larks and swallows from other studies. Instead,
Alauda formed the deepest branch within Sylvioidea (Barker et al., 2004; Beresford et al.,
2005), in some studies together with Panurus (Ericson and Johansson, 2003; Alstrom et al.,

2006; Fuchs et al., 2006) which was not included in our study.
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Another incongruence concerns leaf-warblers (Acrocephalidae, sensu Alstrom et al., 2006).
The phylogenetic position of the common grashopper-warbler (Locustella naevia) could not
be unambiguously clarified. It formed a monophylum with Acrocephalus and Hippolais in
both MP analyses, but appeared as the basal sister taxon of Sylvioidea (excl. Alauda) in both
ML analyses. Haffer (1991) suggested a close relationship among these three taxa. However,
not only this relationship has been questioned (Helbig and Seibold, 1999), but also the
monophyly of both Acrocephalus and Hippolais was challenged (Leisler et al., 1997; Helbig
and Seibold, 1999). In our analysis, bootstrap support for the clade including these three taxa
was very low (Fig. 2) and only two of four genes contributed to this clade (ZENK and RAG-
2, Fig. 4, node 57). Again, no significant differences were detected in the significant test

(Table 5), such that the phylogenetic position of Locustella remains uncertain.

Within Sylvioidea, we yielded high resolution and congruence for a clade consisting
of bulbuls (Pycnonotidae, node 48 in Fig. 4) and Timaliidae (sensu Alstrom et al., 2006). This
relationship is specifically supported by RAG-1 (Fig. 4, node 53). This clade has been found
in other studies also using RAG-1 and includes Hypocolidae and Cisticolidae (Barker et al.,
2002; Barker et al., 2004; Beresford et al., 2005). Generally, the phylogeny within Sylvioidea
(sensu Alstrom et al., 2006) has been difficult to elucidate (Alstrom et al., 2006; Jensson and
Fjeldsa, 2006) and this taxon has appeared to be the least resolved group in the recently
published supertree of Passerida in a metaanalysis of 99 studies (Jonsson and Fjeldsé, 2006).
In this group, radiation and speciation might have been particularly rapid, as indicated by the

very short branch lengths in our phylogenetic analyses (Fig. 2 and 3).

The assignment of taxa to our Passeroidea clade is in general agreement with earlier
studies, apart from the inclusion of the fairy-bluebirds and the leafbirds (Irenidae), which
were classified as ‘Corvida’ by Sibley and Ahlquist (1990), and the exclusion of Alauda (see

above).

At lower levels our study clearly showed that Sibley and Ahlquist’s (1990) family
Passeridae should not be maintained. Their family Fringillidae (except Peucedramus)
appeared to be embedded in sparrows (Passerinae) and wagtails and pipits (Motacillinae). We
found strong support for a split of Passeridae into two clades, one consisting of sparrows,
wagtails, pipits, and Fringillidae and the other consisting of weavers (Ploceinae) and estrildine
finches (Estrildinae) (all taxa sensu Sibley and Ahlquist, 1990). This split has been postulated
earlier, even though this hypothesis was little supported by empirical evidence (Groth, 1998),

and was recently corroborated based on a combined data set of cytochrome b and B-fibrinogen
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sequences (Van der Meij et al., 2005). The monophyly of weavers and estrildine finches is
significantly supported in our analyses by Bayesian and MP values and by the PBS values of
all four partitions (Figs. 1-3, 4, node 25). Additionally, the so far controversial position of
Vidua (Sibley and Ahlquist, 1990; Groth, 1998) as the basal branch of estrildine finches is
strengthened (node 24 in Fig. 4). Whether Prunella is the sister taxon to these two larger
groups or closer related to the sparrows (as indicated by the ZENK data set and the MP
bootstrap analysis of the combined data set, Figs. 1 and 2, respectively) is not fully resolved
by our analyses, due to some incongruence among the different analysis methods. The
significance test for these two possible topologies found no significant difference (Table 5).
Prunella s proposed to be allied with the olive warbler Peucedramus (Ericson and Johansson,
2003), which was not included in this study and was described to represent the deepest branch
in the clade of Passeridae and Fringillidae (Ericson and Johansson, 2003; Barker et al., 2004;
Beresford et al., 2005). We disagree with the supertree proposed by Jensson and Fjeldsa
(2006), where Peucedramus and Prunella are more closely related to weavers and estrildine

finches.

Our studies strongly corroborate recent findings of the phylogeny of Muscicapoidea.
Especially the position of dippers (Cinclus) as sister taxon to Muscicapidae (sensu Sibley and
Ahlquist, 1990) is strengthened for the first time by significant MP support (Figs. 2, 4, node
39), in addition to significant Bayesian support which had been found in previous studies
(Barker et al., 2002; Barker et al., 2004; Cibois and Cracraft, 2004; Beresford et al., 2005).
Some controversies have been discussed concerning the group of wrens, tree-creepers, and
nuthatches (Certhiidae and Sittidae) which were placed to Sylvioidea by Sibley and Ahlquist
(1990). Recent studies based on RAG-1 and RAG-2 sequences suggested a close relationship
to Muscicapoidea, but failed to support a clear phylogenetic position (Barker et al., 2004;
Cibois and Cracraft, 2004; Beresford et al., 2005). Jonsson and Fjeldsa (2006) found them at
the basis of the Muscicapoidea including Bombycilla, but considered the latter taxon a
‘problem clade’. In fact, the phylogenetic position Bombycilla has not been consolidated in
recent studies, where it is either not resolved at all (Ericson and Johansson, 2003; Fuchs et al.,
2000), associated with Parus as the deepest branch within Sylvioidea (Barker et al., 2002), or
basal to Muscicapoidea (Barker et al., 2004; Voelker and Spellman, 2004; Beresford et al.,
2005). The study of Barker et al. (2004) showed an affinity of Bombycilla to the goldcrest
(Regulus), which was, however, not supported significantly. Regulus itself, classified as a
member of Sylvioidea by Sibley and Ahlquist (1990), was recently called another ‘lost

lineage in the passerine tree (Jonsson and Fjeldsd, 2006). In our analysis, the sister
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relationship of Bombycilla and Regulus is corroborated, mainly by the ZENK data set but also
by RAG-1 and c-myc data sets (Figs. 1, 4, node 29). The tested hypothesis that Bombycilla
and Regulus form a monophylum, as suggested by the different MP analyses, showed no
significant difference in likelihood. In addition, it appears possible that Bombycilla and
Regulus form a clade together with the group of wrens, treecreepers, and nuthatches is
proposed: Albeit not supported significantly by Bayesian and MP bootstrap values, this clade
was resolved in the MP ratchet strict consensus tree and supported by ZENK and c-myc as
indicated by PBS (Figs. 1-3, 4, node 32). Of all hypotheses tested, the constrained monophyly
of these taxa showed the highest congruence in likelihood (Table 5). This new hypothesis of
phylogenetic relationships among waxwings, kinglets, wrens, tree-creepers and nuthatches
awaits further evaluation based on a detailed investigation with a denser taxon sampling

within this group.
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Appendix

Table 2 Newly developed primers used in this study, primers 1-7
RAG-1, 8-12 RAG-2, and 13 ZENK.

R1L2 5'GTC CCC AAA CTG TGA TGT GTG C 3'

RIH3 5'GCA GTC TCG ATA AAA GGT TTG GC 3
R1H4 5'GCA TTC ATG AACTTC TGG AGGTA 3

RIL3 5'GCC AGT AGA CAC AAT TGC AAA GAG 3'
R1L4 5'GTT TGT ACC CTG TGT GAT GCC AC 3'
R50int 5'GTC TGG CCA TCC GAA TCA ACA CGT TT 3'
R51int 5'CCT GAC AGT CCA TCT ATA ATT CCC AC 3
R2K1int 5'GACTTT CCT TCC ATG TTT CAATTG C 3'
R2-O 5'GTT GAA AGT GTG AGC CCA GAG TGG AC 3
R2-R 5' GAT GTA AAA GTA GTT TGC ATC TGG GCT 3'
R2R4int 5'GAG CCC CCA ACA AGG ACA AATTC 3'
R2-V 5'GTG ACATTC CAA TGC ATT GAG AAAGA 3
Z7aR 5'GAA TGG CTT CTC TCC TGT GTG 3'

Table 3 Summary of sequence and MP trees for the separate genes and the combined data
set.

ZENK RAG-1 RAG-2 c-myc comb. data set
Size (bp) 1651 2887 1152 489 6179
PI* 422 779 363 89 1648
%G 18.2 24.2 23.4 24.9 22.4
%A 253 31.3 29.4 33.1 29.3
%T 26.5 24.1 26.0 17.5 24.5
%C 30.0 20.5 21.2 24.5 23.7
Ts/tv ratio 2.751 3213 3.270 4.436 3.195
Model" GTR GTR TVM HKY GTR
PINVAR® 0.252 0.374 0.296 0.531 0.344
Gamma® 0.835 1.149 0916 0.577 0.943
CrI 0.546 0.513 0.495 0.436 0.506
CI of the strict consensus 0.525 0.360 0.304 0.237 0.503
RI¢ 0.642 0.581 0.607 0.647 0.596
RI of the strict consensus 0.610 0.214 0.115 0.122 0.591
RC* 0.350 0.298 0.301 0.282 0.302
RC of the strict consensus 0.320 0.077 0.035 0.029 0.298
Resolved nodes® 51 23 8 11 71
Congruent nodes* 40 18 6 8 -

 Parsimonious informative sites

® Models of molecular evolution represent the general time-reversible (GTR) model (Tavaré et al. 1986),
transversion model (TVM) model (Posada and Crandall 1998), and the Hasegawa-Kishuno-Yano (HKY)
model (Hasegawa et al. 1985) all both with assumptions of proportions of invariable sites (PINVAR) and
gamma shape correction parameters (Page and Holmes 1998, Swofford, 2001).

¢ Measures of homoplasy (CI, RI, and RC values) are given for n equally parsimonious trees, followed by
equivalent values for strict consensus.

4 Resolved nodes give the number of completely resolved nodes, and congruent nodes shows the total number
of resolved nodes, which are also present in the tree of the combined data set.

Table 4 Values of the homogeneity
test for all combinations of the four
nuclear genes.

ZENK RAG1 RAG2
RAG-1 0.240
RAG-2 0.740 0.231
c-myc  0.644  0.073 0.260
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Fig. 1 Phylogenetic tree of the Bayesian analysis of the ZENK data set with Bayesian (upper
value) and MP ratchet (lower value) support added at each node. Within Sylvioidea, the
dashed line refers to ‘Paroidea’.
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Within Sylvioidea, the dashed line refers to ‘Paroidea’.
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Fig. 3 Phylogenetic tree of the ML analysis of the combined data set with Bayesian support
added at the nodes. When different representatives of a taxon originated sequences of the four
genes, higher-level taxon names (i.e. genera or (sub)family) are given at the branches. Within
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Supplementary Material

Table 1 Partitioned Bremer Support of each gene and total

Bremer support, numbers of nodes refers to Figure 4 (article).

Number ofnode =~ ZENK  RAG-1 RAG-2 c-myc total BS
1 0.50 1.50 2.50 2.50 7.00
2 0.00 3.00 -3.00 1.00 1.00
3 2.99 3.84 6.03 6.14 19.00
4 -1.00 -1.00 2.00 1.00 1.00
5 9.00 0.00 9.00 0.00 18.00
6 2.50 4.50 4.50 1.50 13.00
7 0.00 16.00 0.00 1.00 17.00
8 1.50 6.50 -0.50 0.50 8.00
9 -0.67 -2.00 4.67 1.00 3.00
10 10.33 21.00 9.17 3.50 44.00
11 3.67 1.00 -1.00 -0.67 3.00
12 12.50 -1.00 1.50 6.00 19.00
13 6.00 2.00 -0.50 0.50 8.00
14 1.00 0.00 -1.00 1.00 1.00
15 3.67 1.67 0.67 1.00 7.00
16 5.33 2.00 2.67 1.00 11.00
17 1.33 2.00 -0.33 -1.00 2.00
18 1.33 0.00 -0.33 0.00 1.00
19 3.50 -0.50 1.00 0.00 4.00

20 0.83 1.00 0.17 1.00 3.00
21 1.00 0.00 0.00 0.00 1.00
22 2.00 -1.00 0.00 0.00 1.00
23 5.00 0.00 2.50 1.50 9.00
24 8.00 -1.00 1.00 3.00 11.00
25 1.33 3.00 0.67 2.00 7.00
26 1.33 13.00 -2.33 1.00 13.00
27 0.46 -0.25 1.04 1.75 3.00
28 1.33 2.00 1.67 1.00 6.00
29 433 1.40 -3.73 1.00 3.00
30 1.00 1.67 -0.67 0.00 2.00
31 2.83 5.00 2.17 1.00 11.00
32 1.33 -0.50 -0.83 1.00 1.00
33 2.00 3.00 1.33 -1.33 5.00
34 11.50 24.50 6.33 0.67 43.00
35 0.33 7.67 0.00 0.00 8.00
36 3.00 6.00 -0.67 3.67 12.00
37 7.03 12.20 2.70 -1.93 20.00
38 0.97 5.00 1.18 -2.15 5.00
39 -1.17 1.50 1.00 0.67 2.00
40 433 4.00 9.67 0.00 18.00
41 6.33 12.00 3.67 3.00 25.00
42 0.33 1.00 -0.33 0.00 1.00
43 0.50 1.50 0.00 -1.00 1.00
44 -1.00 3.00 0.00 -1.00 1.00
45 35.00 17.00 7.00 3.00 62.00
46 -1.87 -1.00 2.87 4.00 4.00
47 22.00 11.00 13.00 9.00 55.00
48 8.00 12.00 3.00 0.00 23.00
49 1.67 3.67 1.67 0.00 7.00
50 2.00 4.00 1.00 2.00 9.00
51 2.00 9.00 4.00 0.00 15.00
52 2.00 1.00 1.00 0.00 4.00
53 0.00 3.50 -1.50 0.00 2.00
54 0.00 3.00 0.00 0.00 3.00
55 -1.00 0.00 1.00 1.00 1.00
56 28.00 6.00 7.00 0.00 41.00
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57 2.00 -1.00 1.00 0.00 2.00
58 2.00 2.00 2.00 0.00 6.00
59 0.83 -2.00 3.17 1.00 3.00
60 3.52 5.00 1.92 0.56 11.00
61 8.96 19.75 -0.46 3.75 32.00
62 1.83 21.00 2.17 -1.00 24.00
63 1.55 043 3.74 0.29 6.00
64 3.00 4.00 5.00 2.00 14.00
65 1.00 1.00 1.00 -1.00 2.00
66 11.00 10.00 3.50 2.50 27.00
67 0.50 8.00 2.50 0.00 11.00
68 1.83 -1.00 5.17 1.00 7.00
69 2.50 4.00 2.50 2.00 11.00
70 12.83 39.67 23.50 4.00 80.00
71 2.00 11.00 3.50 4.50 21.00
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Fig. 1 Percentage PBS values of the four genes and their contribution to selected nodes,
number of nodes refers to Figure 4 (article).
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Fig. 2 Partitioned Bremer Support (PBS) values of the ZENK data set, number of nodes refers
to Figure 4 (article).
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Fig. 4 Partitioned Bremer Support (PBS) values of the RAG-2 data set, number of nodes
refers to Figure 4 (article).
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7.2 Article I1:

SIMONE TREPLIN and RALPH TIEDEMANN.
Specific chicken repeat 1 (CR1) retrotransposon insertion suggests phylogenetic affinity of
rockfowls (genus Picathartes) to crows and ravens (Corvidae).

Molecular Phylogenetics and Evolution, under review.
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Abstract

While the monophyly of the order Passeriformes as well as its suborders suboscines
(Tyranni) and oscines (Passeri) is well established, both on morphological and molecular
grounds, lower phylogenetic relationships have been a continuous matter of debate, especially
within oscines. This is particularly true for the rockfowls (genus Picathartes), which
phylogenetic classification has been an ongoing puzzle. Sequence-based molecular studies
failed in deriving unambiguously resolved and supported hypotheses. We present here a novel
approach: use of retrotransposon insertions as phylogenetic markers in passerine birds.
Chicken repeat 1 (CR1) is the most important non-LTR retrotransposon in birds. We present
two truncated CR1 loci in passerine birds, not only found in representatives of Corvinae (jays,
crows and allies), but also in the West African Picathartes species which provide new
evidence for a closer relationship of these species to Corvidae than has previously been
thought. Additionally, we show that not only the absence/presence pattern of a CR1 insertion,

but also the CR1 sequences themselves contain phylogenetic information.

Keywords: Picathartes, Corvidae, CR1, non-LTR retrotransposon, phylogeny

INTRODUCTION

The passerine birds (Passeriformes) are by far the largest avian order and, with more
than 5700 species, comprise more than a half of all living birds (Sibley and Ahlquist, 1990).
They form a morphologically very homogenous group and their monophyly is well
established, both on morphological (Raikow, 1982) and molecular grounds (Sibley and
Ahlquist, 1990). However, as most of the evolutionary lineages originated through a rapid
radiation during the early Tertiary, phylogenetic relationships within the group have been a
continuous matter of debate. The first extensive molecular study on avian systematics was
based on DNA-DNA hybridization analyses (Sibley and Ahlquist (1990)). While subsequent
sequence analyses generally corroborate partition of Passeriformes into two monophyletic
clades, i.e., the suboscines (Tyranni) and the oscines (Passeri), conflicting phylogenetic
hypotheses have been put forward for lower phylogenetic relationships, especially within
oscines (e.g. Barker et al., 2004; Beresford et al., 2005; Ericson et al., 2003; Ericson and
Johansson, 2003).
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Rockfowls, genus Picathartes, are endemic to the West African rainforest and consist
of the two species grey-necked picathartes (Picathartes oreas) and white-necked picathartes
(Picathartes gymnocephalus), which have long been regarded as avian curiosities (Thompson
and Fotso, 1995). Due to their unique suit of morphological traits, the phylogenetic position of
these species within Passeriformes has been the object of extensive debate and still remains a
puzzle. Picathartes gymnocephalus was originally described as a crow (Corvus
gyvmnocephalus, TEMMINCK 1825) before being assigned to its own genus Picathartes
LESSON. Rockfowls were in turn placed within babblers (Amadon, 1943; Delacour and
Amadon, 1951), starlings (Lowe, 1938), corvids (Sclater, 1930) and thrushes (Amadon,
1943). Sibley and Ahlquist (1990) supported the affinity to corvids and suggested the South
African rockjumpers (genus Chaetops) as their closest relatives. Chaetops itself has been
usually placed among babblers (McLachlan and Liversidge, 1978; Sclater, 1930; Sharpe,
1883) and thrushes (Swainson, 1832). Sibley and Ahlquist’s (1990) analysis was inconclusive
with regard to the phylogenetic affinity of the new family Picathartidae with both Picathartes
and Chaetops, such that they assigned them to a separate parvorder with the status of incertae
sedis, aside all other Passeri which were assembled into the two parvorders Corvida and
Passerida. More recently, the sister relationship between Picathartes and Chaetops has been
corroborated and Picathartidae has been regarded as sister and ancestral to Passerida (Barker
et al., 2004; Ericson and Johansson, 2003). Beresford et al. (2005) published a more extensive
work with special emphasis on African endemic species. Their data supported the placement
of Petroicidae as sister to Passerida (see also Barker et al., 2004) and confirmed the basal
position of the family Picathartidae within Passerida. They however suggested that a denser
taxon sampling would have been desirable to resolve the deeper splits of the passerine
phylogeny. Meanwhile, the validity of the major parvorders themselves has been questioned,
as Corvida appear paraphyletic (Barker et al., 2002; Ericson et al., 2002a,b). Recent studies
on passerine systematics differ in their taxonomic sampling, but generally rely on one or a
few nuclear genes as phylogenetic markers, especially RAG-1, (Barker et al., 2002; Barker et
al., 2004; Beresford et al., 2005; Ericson and Johansson, 2003; Irestedt et al., 2002; Irestedt et
al., 2001), RAG-2 (Barker et al., 2004), c-myc (Ericson and Johansson, 2003; Ericson et al.,
2000; Irestedt et al., 2002; Irestedt et al., 2001) and myoglobin (Ericson and Johansson, 2003;
Irestedt et al., 2002). In the study presented here, we follow a different though complementary
approach. We screened selected representative passerine taxa for occurrence of chicken
repeat 1 (CR1) retrotransposon insertions (Stumph et al., 1981). Retrotransposons are mobile

genetic elements which are integrated in the genome via RNA intermediates. They can be
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divided into a viral (containing retroviruses, long terminal repeat (LTR) retrotransposons and
non-LTR retrotransposons) and a nonviral superfamily (containing processed pseudogenes
and short interspersed nucleotide elements (SINEs)) (Shedlock and Okada, 2000). SINE
insertions are well established as molecular markers and have proved to be reliable
apomorphic characters for phylogenetic inference (e.g., Huchon et al., 2002; Lum et al., 2000;
Nikaido et al., 2001; Nikaido ef al., 1999; Sasaki et al., 2004; Schmitz et al., 2001; Shedlock
et al., 2000; Shimamura et al., 1997). With an estimated number of up to 100.000 copies in
the chicken genome (Vandergon and Reitman, 1994), the chicken repeat 1 (CR1) is the most
important non-LTR retrotransposon in birds. These elements consist of an 8bp direct repeat
[typically (CATTCTRT) (GATTCTRT);.3 with some known variations] at the 3’-end, which
can be easily detected (Silva and Burch, 1989). The vast majority of elements have severely
truncated 5°-ends and have lost their retrotransposable ability (Silva and Burch, 1989; Stumph
et al., 1981). They are hence much shorter than the first complete consensus CR1 sequence
published by Haas et al. (1997), which contained two complete open reading frames. The first
study about the evolution of CR1 elements resulted in at least six different subfamilies (A-F);
these results pointed to an ancient origin of these elements (Vandergon and Reitman, 1994).
This hypothesis was confirmed and extended by finding CR1 elements in the genomes of
other vertebrates (Chen et al., 1991; Fantaccione et al., 2004; Kajikawa et al., 1997; Poulter et
al., 1999), while CR1 like elements have even been reported for some invertebrate species
(Albalat et al., 2003; Biedler and Tu, 2003; Drew and Brindley, 1997; Malik et al., 1999).
Despite their abundance in the avian genome and the clear character polarity of any single
CRI1 insertion at a particular locus, these non-LTR retrotransposons have so far only very
rarely been used in a phylogenetic context. Recently, a single CR1 insertion in the lactate
dehydrogenase B gene was used to support the monophyly of the Coscoroba-Cape Barren
goose clade within Anseriformes (St. John et al., 2005), while a second study considered the
CR1 subfamily utility in the penguin phylogeny (Watanabe et al., 2006). We here present
hitherto undescribed CR1 elements, which are — together with our newly developed CR1
locus for the great tit (Treplin and Tiedemann, unpubl. results; GenBank accession no.
XXXXXX) — the first CR1 described for passerine birds. The occurrence vs. absence of these
elements at two distinct loci among selected passerine representatives will be used to build a
phylogenetic framework for the placement of rockfowls as well as to shed light on affinities

within Corvinae (jays, crows and allies sensu Sibley and Ahlquist (1990)).

81



Appendix

MATERIALS AND METHODS

We amplified a partial CR1 element from the raven (Corvus corax) using the primers
ParE10 114: 5’-TGGGCAGGGACACCTTCTACTAGACC-3’ and Biotin-5’-
GMMMMGGYTKCCCRRAGARGYTGTGG-3" (see GenBank accession no. XXXXXX).
The CRI identity of this amplificate was confirmed by comparison to different CR1
sequences from chicken (Gallus gallus) (Burch et al., 1993; Haas et al., 1997; Stumph et al.,
1983; Stumph et al, 1981), sarus crane (Grus antigone) and emu (Dromaius
novaehollandiae) (Chen et al., 1991). We used this amplificate as a probe to establish a CR1
elements-enriched DNA genomic library from a total DNA extract of a raven liver sample,
following a standard protocol for microsatellite enrichment (Paulus and Tiedemann, 2003).
Recovered enriched fragments were transformed into competent Escherichia coli (TOPO
cloning kit, Invitrogen). Recombinants were blotted onto a nylon membrane (Qiagen) and
again hybridised with the CR1 probe. Positive clones were detected using the Phototope-Star
chemiluminescent detection kit (New England Biolabs), sequenced with the BigDye version
3.1 Terminator Cycle Sequencing Kit (Applied Biosystems) and analysed on an AB 3100

multicapillary automatic sequencer (Applied Biosystems).

The cloned CRI1 raven elements (Corl-CR1 and Cor2-CR1, GenBank accession nos.
XXXXXX) belong to the abundant 5’-truncated type of insertions, which complicates
identification of the elements at the 5’-end. We used these sequences to design new specific
primers. We located forward primers at the 5’-end of each clone, while reverse primers were
located in the 3’-flanking region defined by the position of the CR1 specific 8 bp direct repeat
identified in the clones (primers for the Corl-CR1 locus: Corlfor 5’-
GAGCAAACTTTATTCTATTATT-3’, Corlrev 5’-GCCATATTCTTTTGATTTCATT-3’,
and for the Cor2-CR1 locus: Cor2for 5’-GAATTCTTCCCTGTGAGG-3’, Cor2rev 5’-
GCCGTTTTGCTGCTTACCATA-3’). These primers yielded single amplicons (335 bp for
Corl-CR1; 251 bp for Cor2-CR1) from raven genomic DNA. They were also used for PCR-
amplifications on genomic DNA from different passerine birds supposed to be closely related
to the raven (following Sibley and Monroe (1990)) (Tab. 1). PCR-amplifications were
performed in a total volume of 37.5 pl, containing 1 mM Tris-HCI, pH 9.0, 5 mM KCI, 0.15
mM MgCl,, 0.05 mM of each dNTP, 0.13 uM of both forward and reverse primers and 0.75
U Tagq polymerase (Qbiogene) in a Biometra T3000 thermocycler according to the following
reaction profile: 1 cycle at 96°C for 5 min, 40 cycles at 96°C for 1 min 30 s, 54°C and 55°C
(for the Corl-CR1 and Cor2-CR1 respectively) for 1 min 15 s, 72°C for 1 min 30 s, and a
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final extension at 72°C for 10 min. Cycle sequencing reactions were performed using the

forward and reverse primers.

Sequences were aligned in the BioEdit Sequence Alignment Editor (Hall, 1999) and
analysed phylogenetically by maximum parsimony (MP) (Farris et al., 1970) using the
heuristic search option with the TBR-branch-swapping algorithm in PAUP* 4.0b10
(Swofford, 2001). Robustness of the phylogenetic hypotheses were evaluated by
bootstrapping (Felsenstein, 1985) with 1000 replicates. We used MrModeltest version 2.2
(Nylander, 2004) to identify the best model of sequence evolution for both datasets. Data
were analysed under a maximum likelihood (ML) criterion in a Bayesian framework
(Huelsenbeck et al., 2000; Larget and Simon, 1999; Mau and Newton, 1997; Mau et al., 1999;
Rannala and Yang, 1996) using MrBayes 3.0b4 (Huelsenbeck and Ronquist, 2001), with the
two models yielded (GTR for Corl-CR1 and K80+I for Cor2-CR1) and each analysis starting
from a random tree. The program was set to run 10° generations with four Markov Chain
Monte Carlo iterations simultaneously and trees sampled every 100 generations with the first

200 of each discarded, as estimated graphically as burn-in.

For taxa where PCR-amplifications of our CRI1 elements failed, we performed
hybridization experiments to evaluate the presence/absence of the respective loci. As
hybridization to single CR1 loci might not yield a detectable signal in Southern blots,
especially with non-radioactive methods (St. John et al., 2005), we applied the more sensitive
dot blot technique here. This analysis was performed on those samples where a sufficient
amount of high quality DNA (large molecular size) was available. 5 pg of genomic DNA
from carrion crow (Corvus corone), Bohemian waxwing (Bombycilla garrulus), black redstart
(Phoenicurus ochruros) and great tit (Parus major) were dot-blotted onto a nylon membrane
(Qiagen) and hybridised with a biotin-labelled probe, spanning over the insertion site at the
3’-end of the element into the flanking region (designed to bind specifically to the Cor2 locus,
cf. Fig. 3) overnight at 65°C. Membranes were washed with increasing stringency (0.5 x SSC
/ 0.1% SDS at room temperature, 0.5 x SSC / 0.1% SDS at 45°C, 0.1x SSC / 0.1% SDS at
65°C).
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RESULTS

In the raven CR1 enriched genomic library we were able to identify two CR1 elements
by direct comparisons to the complete CR1 consensus sequence described by Haas et al.

(1997).

We sequenced 372 bp of the locus Corl, containing the 3’-end of reverse transcriptase
and the CR1 direct repeat (Fig. 1). A blastn search in the NCBI database yielded a perfect
match of 35 bp within a CR1 locus of the grey petrel (Procellaria cinerea). At locus Cor2 we
sequenced a 283 bp long fragment. Both the 3’-end of reverse transcriptase and the direct
repeat were again detectable (Fig. 1). A blastn search yielded an 89% match of 144 bp with a
CRI1 gene for the chicken repeat 1 of the king penguin (4Aptenodytes patagonicus). Translation
into amino acid sequences and protein/protein search yielded similarities with reverse
transcriptase of the second open reading frame (ORF2) of the chicken for Corl and Cor2. The
5’-end of a CR1 can be often (but not always, Vandergon and Reitman, 1994)) identified by a
6 bp target site duplication directly adjacent to the inserted CR1 element (Silva and Burch,
1989). We did not detect such duplication for our CR1 loci, which might be either due to
mutations after the insertion event (obscuring the duplication pattern) or to a lack of the 5°-
end in the sequences we analysed. Therefore, we performed our locus-specific PCRs using a

primer adjacent to the 3° end of the CR1 together with one element-specific internal primer.

We confirmed the presence of the Corl-CR1 locus by PCR-amplifications and
subsequent sequencing in six Corvinae species, representing all tribes except Oriolini; the
representative of the latter tribe (Oriolus chinensis) did not give successful amplifications
(Table 1). We were able to amplify and sequence this locus only for taxa belonging to the
subfamily Corvinae; we therefore conclude that, given our taxon sampling, the presence of the

Cor1-CRI1 locus is restricted to this subfamily.

We confirmed the presence of the Cor2-CR1 locus by PCR-amplifications and
subsequent sequencing in all seven tested corvine (including Oriolus chinensis) and in the two
Picathartes species (Table 1). Successful amplifications of the locus were limited to Corvinae
and Picathartidae (Table 1). Two additional taxa (Bombycilla garrulus and Cinclus cinclus),
however, yielded PCR-amplificates 264 bp and 350 bp long, respectively. These amplificates
differed in size from the Cor2-CR1 sequences (283 bp long) we obtained for Corvinae and
Picathartidae. Sequencing of the fragments revealed two CR1 type elements, which showed
some similarity to our Cor2-CR1 locus (Fig. 3). However, sequence analyses, both of the 3’-

end of the element indicated by the direct repeat (cf. Fig 3) and the downstream locus-specific
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sequence, showed pronounced divergence in sequence and length in Bombycilla and Cinclus,
compared to the other taxa. We hence conclude that these two PCR-amplificates represent
related, but non-orthologous CR1 elements, i.e., independent insertion events at different loci

(named Cor2-CR1 like elements hereafter).

To test whether the failures in the PCR amplification of the Cor2-CR1 locus might be
due to a real absence of the locus in some of the species we included in the study or to
technical problems (i.e., nucleotide substitutions in the primer binding sites), we performed a
locus-specific dot blot on the genomic DNA. Hybridization to our specific Cor2-CR1 probe
was tested in dot blotting (a) the Cor2-CR1 PCR products (Fig. 4, dot 1-5), (b) the Cor1-CR1
PCR product (dot 6 and 7), and water (dot 8) as a negative control and genomic DNA of
several representatives of the Passeri (dot 9-12). As expected, the probe hybridised well with
the genomic DNA of the carrion crow (Corvus corone, dot 9) and negligibly to the black
redstart (Phoenicurus ochruros, dot 11) and the great tit (Parus major, dot 12). Additionally,
the probe also hybridised with the genomic DNA of the Bohemian waxwing (Bombycilla
garrulus, dot 10). Based on the sequence comparison of the PCR amplicon produced by the
Cor2-CR1 in Bombycilla garrulus, we consider the hybridizing locus in this species a Cor2-

CR1 like locus (see above, cf. Fig. 3), non-orthologous to our Cor2-CR1 locus.

Sequencing of the Corl-CR1 locus revealed three single nucleotide indels (Fig. 2),
whereas the Cor2-CR1 locus contained some indels comprising more than one nucleotide
(Fig. 3). A six basepair deletion was found in the sequence of the carrion crow (Corvus
corone). The magpie (Pica pica) and Steller’s jay (Cyanocitta stelleri) shared one insertion of
two basepairs and the white-backed magpie (Gymnorhina tibicen) showed a deletion of

sixteen basepairs. Sequences of the two rockfowl species (genus Picathartes) were identical.

Phylogenetic analyses of the Corvinae-specific Corl-CR1 locus support the
monophyly of the genus Corvus and the placement of Corvus and Pica as each other’s closest
relatives (Fig. 5). Phylogenetic analyses of the Cor2-CR1 locus (Fig. 6) recovered,
additionally to the corroborated results of the Corl-CR1 analysis (Fig. 5), both Corvini and
Picathartidae as monophyletic groups but, due to the obvious lack of a clear outgroup, the
relationships among the different tribes/family included in the tree cannot be safely assessed,

as they appear almost equally distant from one another.
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DISCUSSION
Phylogenetic information contained in CR1 insertions

The wide distribution and high conservation of chicken repeat 1 retrotransposons in
birds was first shown by Chen et al. (1991) and led to a copious characterization of these
elements in the chicken genome. Based on the properties of the conservative 3’-end region,
suggested to act as a recognition site for reverse transcriptase (Eickbush, 1992), we were able

to characterise phylogenetically informative CR1 elements for passerine birds.

The CR1 loci we cloned from the raven genome showed high similarities with the
chicken complete consensus CR1 (Haas ef al. 1997) in the region of the second open reading
frame that codes for a reverse transcriptase (Burch et al., 1993). The 5’-end of the elements
could not be unambiguously detected. This was not unexpected, as CR1 elements are
frequently truncated and the only definite indication of the 5’-end is a 6 bp target site
duplication, which is often lacking (Vandergon and Reitman, 1994). Therefore, we designed
specific primers away from the 5’-end to avoid this problem (see Materials and Methods).
Evidently with such an approach, false-negative PCR results (lack of amplifications due to
substitution at the primer site) could not be completely ruled out. Nevertheless, we consider
our loci phylogenetically informative, based on two lines of reasoning: (1) False negative
results do not question the phylogenetic relationships of those species for which we obtained
positive PCR amplifications (Shedlock and Okada, 2000), (2) in case of non-amplification we
confirmed absence of the CR1 element by a hybridization experiment. As the
presence/absence pattern was fully consistent among the locus-specific hybridization on
genomic DNA and the PCR amplification, we conclude that those taxa where our analyses did
not indicate presence of Corl-CR1 and/or Cor2-CR1 elements, truly lack those elements at
the considered loci. Based on this argument and the mode of retrotransposon insertion (see
above), we consider presence of our new CRI1 loci — based on our combined

PCR/hybridization evidence — an apomorphic character state.

Phylogeny of Corvidae and Picathartidae

If we assume the presence of a CR1 locus as an apomorphic character state then (1)
Picathartidae and Corvinae form a monophyletic clade because they all share the Cor2-CR1
locus and (2) the presence of Corl-CR1 groups Corvini, Artamini, and Paradisaeini in a

monophyletic cluster (Fig. 7).
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Within Corvinae we detected the locus Corl-CR1 in all representatives of Corvini,
Paradisaeini, and Artamini we tested, supporting the monophyly of these three groups, but not
in the Oriolini (Figs. 2, 7). This locus therefore provides additional evidences on the
phylogeny of the subfamily Corvinae, pointing to a close relationship among Corvini,
Paradisaeini and Artamini. A sister taxa relationship between birds of paradise (Paradisaeini)
and corvids (Corvini), has been repeatedly postulated (Cracraft and Feinstein, 2000; Frith and
Beehler, 1998; Helmbychowski and Cracraft, 1993; Nunn and Cracraft, 1996), as well as the
hypothesis of these three tribes being a monophyletic group within Corvinae (Helmbychowski
and Cracraft, 1993). Sequence-based studies confirmed a close affinity between Corvini and
Paradisaeini but, at the same time, were not able to provide definitive evidence on the
phylogenetic positions of Artamini and Oriolini as well as on the monophyly of Corvinae
(sensu Sibley and Ahlquist, 1990) (Barker et al., 2002; Barker et al., 2004; Beresford et al.,
2005). Given our limited taxonomic sampling of Corvidae (sensu Sibley and Ahlquist, 1990),
we are presently unable to contribute further to this point. However, the fact that orioles
(conventionally included in Corvinae) possess only the Cor2-CR1 locus is an interesting new

aspect to the phylogeny within Corvinae.

Our hypothesis of Picathartes being closer to corvids than to Passerida (Fig. 7) is at
odds with many molecular studies. Sibley and Ahlquist (1990) tentatively concluded that
Picathartes should have affinities to Corvida, but they conveyed their uncertainty, coupled
with ambiguous morphological data, by placing the genus between Corvida and Passerida
with the status of incertae sedis. The first sequence-based study including Picathartes was not
able to resolve its phylogenetic position (Barker et al., 2002). Ericson and Johansson (2003)
proposed Picathartes and Chaetops being basal to Passerida. They classified them as
Passerida because the three groups all share a 3 bp insertion in the sequence of the proto-
oncogene c-myc (exon 3), a character considered apomorphic for Passerida. The position of
Picathartidae as the earliest branch of Passerida has been further proposed by Barker et al.
(2004) and Beresford et al. (2005). However, while the monophyly of Passerida (excluding
Picathartidae) is apparently well established, the placement of Picathartes within this group
never gained a robust statistical support. Additionally, Beresford et al. (2005), by proposing
Petroicidae as the second branch in Passerida (branching off after Picathartidae), challenged
the assumption of the 3 bp insertion in c-myc being an apomorphy for Passerida, as
Petroicidae lacks this insertion (only available representative Eopsaltria australis (Ericson et
al., 2002b)). Recently, Fuchs et al. (2006) and Jensson and Fjeldséd (2006) highlighted the

difficulties in recovering a robust phylogenetic hypothesis at the boundary between “Corvida”
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and Passerida using sequence data. These contrasting results suggest that the character
polarity of the 3 bp length difference, i.e., whether it comprises an insertion or a deletion in
the c-myc gene, is presumably difficult to assess. In contrast, for a retrotransposition event, as
reported in our study, the character state is clear-cut, i.e., apomorphic, and homoplasy, i.e.,
independent insertion events of the same element at the same locus, very unlikely. Hence, we
conclude that our CRI1 data strongly support a phylogenetic hypothesis, which places

Picathartidae closer to Corvidae than to Passerida.

If we assume that the presence of a CR1 element at a particular locus in a given group
of species is the result of a single insertion event, which occurred in their common ancestor’s
genome, such a locus should also be phylogenetically informative on the relationships within
the group itself. Our data support this assumption, as the trees based on Corl and 2 sequences
both showed high resolution in defining genera and tribes (Figs. 5 and 6). Additionally, they
are in agreement with well-accepted phylogenetic hypothesis, i.e., the monophyly of the
genus Corvus (crows and ravens) and its closer relationship to Pica pica than to Cyanocitta

stelleri (Cibois and Pasquet, 1999; Ericson et al., 2005).

One might challenge our interpretation that the Cor2-CRI1 like locus consistently
detected by both amplification and hybridization in Bombycilla is non-orthologous to our
Cor2-CR1 locus, found in Picathartidae and Corvinae. In fact, this statement on non-orthology
is based on the pronounced sequence difference at the 3' end among the Bombycilla sequence
and all sequences of Picathartidae and Corvidae (cf. Fig. 3). We have also considered the
alternative interpretation that Bombycilla also possesses the orthologous Cor2-CRI1 locus.
While this alternative argument would not alter any of our phylogenetic hypotheses about
Corvinae and their relationship to Picathartidae, it would additionally point towards a
phylogenetic affinity of waxwings (Bombycilla) to a combined Picathartidae/Corvidae clade.
While such a relationship would evidently comprise an interesting additional phylogenetic
hypothesis to be further evaluated, we prefer to consider our data on Bombycilla inconclusive

so far.
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Table 1 Presence of Cor-CR-1-Loci in representative passerine taxa (+ locus-specific
PCR product; * unspecific PCR product; - no PCR product). Taxonomy according to
Sibley and Monroe (1990).

(Sub) Family - tribe Species Corl  Cor2
Irenidae Irena puella (Asian fairy bluebird) - -
Corvinae - Corvini Corvus corax (raven) + +
Corvinae - Corvini Corvus corone (carrion crow) + +
Corvinae - Corvini Cyanocitta stelleri (Steller's jay) + +
Corvinae - Corvini Pica pica (magpie) + +
Corvinae - Paradisaeini Manucodia keraudrenii (trumpet manucode) + +
Corvinae - Artamini Gymnorhina tibicen (White-backed (Australian) magpie) + +
Corvinae - Oriolini Oriolus chinensis (black-naped oriole) - +
Picathardidae Picathartes gymnocephalus (white-necked picathartes) - +
Picathardidae Picathartes oreas (grey-necked picathartes) - +
Bombycillidae Bombycilla garrulus (Bohemian waxwing) - *
Cinclidae Cinclus cinclus (white-throated dipper) - *

Muscicapinae - Saxicolini  Erithacus rubecula (European robin) - -
Muscicapinae - Saxicolini  Phoenicurus ochruros (black redstart) - -
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0. 10. 10 12

Fig. 4 Dot blot of the Cor2-CR locus. Dot 1-5 Cor2-CR1 PCR products of raven
(Corvus corax), carrion crow (Corvus corone), Steller’s jay (Cyanocitta stelleri),
Bohemian waxwing (Bombycilla garrulus) and white-throated dipper (Cinclus
cinclus), dot 6 and 7 Corl-CR1 PCR products of raven and carrion crow, 8 water, 9-12
genomic DNA of carrion crow, Bohemian waxwing, black redstart (Phoenicurus
ochruros) and great tit (Parus major).
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Corvus corone

Corvus corax

Pica pica

Cyanocitta stelleri

Moanucodia keraudrenii

Gymnorhina tibicen

Fig. 5 Bayesian Corl-CR1 tree with support values indicated at the branches. Estimated
Bayesian posterior probabilities above and parsimony bootstrap support below the line.
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Corvini__. ...

Pica pica  Corvus coroné™ ..

Corvus corax
Cyanocitta stelleri

Picathartidae

;"’ﬁicathartes
i gymnocephalus.;

100
“. Picathartes’

Artamini

Paradisaeini

< Manucodia keraudrenii

< Oriolus chinensis

Fig. 6 Bayesian Cor2-CR1 tree with support values indicated at the branches. Estimated
Bayesian posterior probabilities above and parsimony bootstrap support below the line.

C%r 1 Corvinae - Corvini
Cor? Corvinae - Artamini
\ 4 Corvinae - Paradisaeini

Corvinae - Oriolini
Picathartidae
all other Passeriformes tested

Fig. 7 Cladogram based on CR1 loci insertions found in passerine birds.
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7.3 Article I11:

SIMONE TREPLIN and RALPH TIEDEMANN.
Phylogenetic utility of chicken repeat 1 (CR1) retrotransposon sequences in passerine birds
(Aves: Passeriformes).

Manuscript.
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Abstract

The suitability of retrotransposons as apomorphic markers to infer phylogenies has
repeatedly been proven. Apart from this approach, there is evidence that retrotransposon
sequences themselves contain a phylogenetic signal. To investigate this specifically, we
screened genomes of several species of Passeriformes for chicken repeat 1 (CR1) elements,
the most widespread and important retrotransposon type in birds. We isolated seven CR1 loci
and were able to amplify these loci in several species other than the source organism.
Additionally, we analysed a CR1 locus found in GenBank that hitherto had been overlooked
and added it to our study. Each locus was evaluated concerning sequence characteristics and
the degree of saturation. A phylogenetic analysis was performed using the Bayesian approach
and maximum parsimony for each locus by itself and for two combined data sets comprising
species of the passerine superfamilies Muscicapoidea and Sylvioidea. We compared distances
of CR1 alignments to two nuclear markers established in molecular phylogenetics for
Passeriformes. We found that CR1 elements were highly variable. To investigate the
phylogenetic contents of our data sets we conducted a likelthood-mapping. This study
provides evidence for the phylogenetic utility of CR1 retrotransposon sequences, in addition

to the classical presence/absence pattern typically scored in retrotransposon studies.

Keywords: CR1 sequences, retrotransposon, molecular phylogenetics, Passeriformes

INTRODUCTION

Whereas 40-50 % of the mammalian genome consist of interspersed repeats (IHGSC
2001; MGSC 2002), retrotransposons comprise less than 9 % of the chicken genome, the only
avian genome completely analysed so far (ICGSC 2004). Retrotransposons are mobile genetic
elements that are integrated into the genome via RNA intermediates. They can be divided into
a viral subfamily (containing retroviruses, long terminal repeat (LTR) retrotransposons and
non-LTR retrotransposons) and a nonviral one (containing processed pseudogenes and short
interspersed nuclear elements (SINEs)) (Shedlock and Okada, 2000). Chicken repeat 1 (CR1)
retrotransposon insertions (Stumph et al., 1981) constitute the largest number of these
elements (ICGSC 2004), with more than 80 % (up to 200,000 copies in the chicken genome),
and is the most important non-LTR retrotransposon in birds. These elements possess an 8 bp

direct repeat [typically (CATTCTRT) (GATTCTRT),3 with some known variations] at the
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3’-end, which can be easily detected (Silva and Burch, 1989). The first complete consensus
CRI1 sequence, published by Haas et al. (1997), contained two open reading frames (ORF), of
which ORF1 presumably codes for a nucleic binding protein and ORF2 for an endonuclease
and reverse transcriptase (Haas et al. 1997). Recently, the ICGSC (2004) described only one
full-length 4.5 kb CR1 element with both intact ORFs. The first study about the evolution of
CRI1-elements described at least six different subfamilies (A-F) (Vandergon and Reitman,
1994). In the full genomic sequence of chicken, eleven complete CR1 source genes,
subdivided into 22 subfamilies, were identified (ICGSC 2004). These results suggests an
ancient origin of these elements (Vandergon and Reitman, 1994). This was confirmed, when
CRI1 elements were found in the genomes of other vertebrates (Chen ef al., 1991; Fantaccione
et al., 2004; Kajikawa et al., 1997; Poulter et al., 1999), and CR1-like elements were even
reported for some invertebrate species (Albalat et al., 2003; Biedler and Tu, 2003; Drew and
Brindley, 1997; Malik et al., 1999). The vast majority of elements have severely truncated 5°-
ends and have lost their retrotransposition ability (Silva and Burch, 1989; Stumph et al.,
1981).

SINE insertions have been well established as reliable apomorphic characters for
phylogenetic inference (e.g., Huchon et al., 2002; Lum et al., 2000; Nikaido et al., 2001;
Nikaido et al., 1999; Sasaki et al., 2004; Schmitz et al., 2001; Shedlock et al., 2000;
Shimamura et al., 1997). This approach was recently applied to CRI1 insertions as
phylogenetic markers, i.e. one single insertion in the lactate dehydrogenase B gene was used
to support the monophyly of the Coscoroba-Cape Barren goose clade within Anseriformes
(St. John et al., 2005), and a CRI1 subfamily for considering the penguin phylogeny
(Watanabe et al., 2006). Additionally, we were able to use two CR1 elements to support a
novel phylogenetic hypothesis in Passeriformes (Treplin and Tiedemann, under review). The
power of retrotransposon insertions as phylogenetic markers with apparently unambiguous
and homoplasy-free results is, however, compromised by the immense effort needed to find a
sufficient number of phylogenetically informative retrotransposon insertions for a specific
clade. In the course of these efforts, many insertions are sequenced. However, the presence of
an insertion might turn out uninformative for testing a particular hypothesis, when every
representative of the group under investigation might share that insertion. We argue that the
sequences of these elements are potentially phylogenetically informative as well. After the
insertion of a retrotransposable element at a specific locus in the genome of a common
ancestor and the loss of the retrotransposable function by truncation, sequence evolution is

likely not constrained by selection. Instead, these elements can be expected to evolve
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according to a neutral model and, thus, can be treated as neutral molecular markers (see

Treplin and Tiedemann, under review, for a first application).

To investigate the phylogenetic utility of CR1 sequences as neutral markers, we
specifically searched for CR1 elements in the genomes of several species of Passeriformes.
This by far largest avian taxon (comprising more than a half of all living birds Sibley and
Ahlquist (1990) is well suited for such a study because the monophyly of the order itself is
well established (Raikow, 1982; Sibley and Ahlquist, 1990) and phylogenetic relationships on
higher taxonomic levels are strongly supported. Additionally, many studies on passerine
phylogenetic relationships have been published, using large taxon samplings and several
nuclear markers (e.g. Barker ef al., 2002; Barker et al., 2004; Beresford et al., 2005; Ericson
and Johansson, 2003; Irestedt et al., 2002; Irestedt et al., 2001), which facilitates the
comparison of resulting phylogenetic trees of CR1 sequences to current phylogenetic

hypotheses.

MATERIALS AND METHODS

We used a biotin-labelled 26 bp (5’-GMMMMGGYTKCCCRRAGARGYTGTGG-3")
oligonucleotide as a probe to establish a CR1 elements-enriched DNA genomic library from a
total DNA extract of different samples of representatives of Passeriformes (i.e., the great tit
Parus major, the song thrush Turdus philomelos, and the European pied flycatcher Ficedula
hypoleuca) following a standard protocol for microsatellite enrichment (Paulus and
Tiedemann, 2003). This probe was designed to fit the most conserved region of CRI1
elements. Recovered enriched fragments were transformed into competent Escherichia coli
(TOPO cloning kit, Invitrogen). Recombinants were blotted onto a nylon membrane (Qiagen)
and again hybridised with the CR1 probe. Positive clones were detected using the Phototope-
Star chemiluminescent detection kit (New England Biolabs), sequenced with the BigDye
version 3.1 Terminator Cycle Sequencing Kit (Applied Biosystems), and analysed on an AB

3100 multicapillary automatic sequencer (Applied Biosystems).

We isolated seven CR1 passerine elements (Parl to Par3-CR1, Turl to Tur2-CR1, and
Ficl to Fic2-CR1) belonging to the abundant 5’-truncated type of insertions. We used these
sequences to design new specific primers (Table 1). We located forward primers at the 5’-end
of each clone, while reverse primers were located in the 3’-flanking region defined by the

position of the CR1-specific 8 bp direct repeat identified in the clones. These primers yielded
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single amplicons from their source species’ genomic DNA. They were also used for PCR-
amplifications on genomic DNA from different passerine birds that are supposed to be closely

related (following Sibley and Monroe (1990) (Table2).

Additionally to our cloned CR1 elements, we identified a hitherto undescribed CR1
insertion in GenBank that is associated with a nuclear pseudogene of the mitochondrial
cytochrome b (numt) in Darwin’s finches. We suspect that this insertion was not recognised
as CRI1 by the original authors (Sato et al., 2001), because this insertion is in reverse
complement direction compared to the numt. We named it ‘Darfin-CR1’, according to the
method of naming a CR1 element after the species in which it was found. As the primers of
Sato et al. (2001) failed to amplify this insertion in species other than Darwin’s finches, we

developed new primers (Table 1).

PCR-amplifications were performed in a total volume of 37.5 pl, containing 1 mM
Tris-HCI, pH 9.0, 5 mM KCl, 0.15 mM MgCl,, 0.05 mM of each dNTP, 0.13 uM of both
forward and reverse primers and 0.75 U Tag polymerase (Qbiogene) in a Biometra T3000
thermocycler according to the following reaction profile: 1 cycle at 96°C for 5 min, 40 cycles
at 96°C for 1 min 30 s, locus-specific annealing temperature (see Table 1) for 1 min 15 s,
72°C for 1 min 30 s, and a final extension at 72°C for 10 min. Cycle sequencing reactions

were performed using the forward and reverse primers.

Sequences were aligned in the BioEdit Sequence Alignment Editor (Hall, 1999) and
analysed phylogenetically both as single locus data sets and combined analyses (named Mus-
CR1 and Syl-CR1 for Muscicapoidea and Sylvioidea, respectively) where several CR1 loci
were found in the same species (Table 2). For the combined analyses, nucleotides were
treated as unknown where locus specific PCR failed to amplify the CR1 element. A chi-
square test of homogeneity of base frequencies across taxa was used for each gene to test for
variation in the base frequencies between the OTUs. Data sets of the different genes were
tested for heterogeneity using the partition homogeneity test (Farris et al., 1995), implemented
in PAUP* (Swofford, 2001), to assess the appropriateness of combining the data partitions.
We conducted a test between each pair of gene partitions using 1,000 replicates for each test.
Maximum parsimony analyses (MP, Farris ef al., 1970) were performed using the heuristic
search option with the TBR-branch-swapping algorithm in PAUP* 4.0b10 (Swofford, 2001).
Robustness of the phylogenetic hypotheses were evaluated by bootstrapping (Felsenstein,
1985) with 1,000 and 10,000 replicates. We used MrModeltest version 2.2 (Nylander, 2004)

to identify the best model of sequence evolution for both datasets. Data were analysed under a
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maximum likelihood criterion (ML, Felsenstein, 1981) in a Bayesian framework
(Huelsenbeck et al., 2000; Larget and Simon, 1999; Mau and Newton, 1997; Mau et al., 1999;
Rannala and Yang, 1996) using MrBayes 3.0b4 (Huelsenbeck and Ronquist, 2001). All priors
were set according to the chosen model and according to each partition (Table 3). Four
Markov chains, three heated and one cold, were started from a random tree and all four chains
ran simultaneously for 1,000,000 generations (for the combined analysis and for each separate
CR1 respectively), with trees being sampled every 100 generations for a total of 10,001 trees.
After the likelihood of the trees of each chain converged, the first trees were discarded as burn
in (150 for Mus-CR1 and 200 for Syl-CR1). The majority-rule consensus tree containing the
posterior probabilities of the phylogeny was determined afterwards. In the combined data set

analyses, the common starling Sturnus vulgaris was chosen as an outgroup.

To test for saturation, pairwise transition and transversion sequence distances were
plotted against total sequence distances. The variability of CR1 elements was evaluated by
comparison of pairwise p-distances of CR1 sequences to sequences of the two nuclear marker
genes proven useful in resolving passerine phylogenies, ZENK (Chubb, 2004; Treplin et al.,
submitted), and RAG-1 (e.g. Barker ef al., 2002; Barker et al., 2004; Beresford et al., 2005;
Ericson and Johansson, 2003; Irestedt et al., 2002; Irestedt et al., 2001). To visualise the
content of phylogenetic information of the Mus-CR1 and Syl-CR1 alignments, we used the
likelihood-mapping method (Strimmer and von Haeseler, 1997), which is based on the
analysis of quartet puzzling, included in TREE-PUZZLE 5.0, (Schmidt et al., 2002) with the
model set to HKY (Hasegawa et al., 1985).

RESULTS

In the CR1 enriched genomic libraries we were able to identify seven CR1 elements
by direct comparisons with the complete CR1 consensus sequence described by Haas et al.
(1997). Sequences of the flanking regions were excluded from all analyses. All sequences are

deposited in GenBank (accession nos. XXXXXX-XXXXXX, cf. Table 2), and final

alignment lengths are shown in Table 3. Translation into amino acids showed sequence
homology to reverse transcriptase, but — as expected for truncated CR1 elements — genes were
not functional, as they frequently contained indels shifting the reading frame. All CR1
sequences of the Blyth’s reed-warbler (Acrocephalus dumetorum) and the icterine warbler

(Hippolais icterina) were identical. Amplification of the Darfin-CR1 yielded products in
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representatives of all major passerine taxa, other than the Muscicapoidea and Sylvioidea, and
all sequences were included in distance calculations, instead of adding just 21 and 10 the Syl-
CR1 and the Mus-CR1 data set. Sequences of the Darfin-CR1 element were added to both
Mus-CR1 and Syl-CR1 combined data sets. Overall, uncorrected pairwise divergence among
passerine birds varied from 0.0 within genera to 0.364 in the Darfin-CR1 data set (Table 3).
The chi-square test of homogeneity of base frequencies across taxa did not show significant
heterogeneity (p=0.99 to 1.0) in any data set. The partition homogeneity test showed no
significant heterogeneity among all data partitions in the combined data sets Mus-CR1 and
Syl-CR1 of all loci (Table 4). Despite the high variability with most loci having a proportion
of invariable sites of zero, the number of parsimonious informative sites, ranging from 7 to 28
% of the complete sequence length, is comparably low. Additionally, plotting transition and
transversion sequence distances over total distances did not detect any saturation (Fig. 1).
Homoplasy seems to have low impact as indicated by the high values of the homoplasy
indices (Table 3). The high variability is illustrated by comparison of the CR1 loci with two
nuclear markers, ZENK and RAG-1 (Fig. 2). Correlation of distances compared to ZENK was
significant for every locus, whereas two loci (Par3-CR1 and Ficl-CR1) showed no significant
correlation of distances to RAG-1. In all but two significantly correlated loci (Parl vs. RAG-
1, and Par2 vs. ZENK), the CR1-variability was higher compared with the nuclear genes.
Figure 3 shows the results of the likelihood mapping of the Syl-CR1 (A) and Mus-CR1 (B)
data sets. This method defines seven areas of attraction (the lower triangles in Fig. 3): The
quartet-puzzling method yields three possible fully resolved tree topologies by comparing
four sequences, represented by the corners of the triangle. A star phylogeny or sequences that
are too short sometimes make it impossible to resolve the phylogenetic relationships of four
sequences. Thus, the mid triangles represent the region where the star-like tree is the optimal
tree. The rectangles between the corners of the triangle represent the situation when two fully
resolved trees could not be distinguished. The number of fully resolved trees is much higher
in the Mus-CR1 (87.7 %) than in the Syl-CR1 data set (70.0 %). With 21.4 %, the Syl-CR1
data set shows a relatively high likelihood of star-like evolution, whereas the likelihood of the
Mus-CR1 data set is much lower with 6.7 % of all quartet points. The percentage of quartets
mapped into the regions, where two topologies could not be distinguished, is comparable in

both cases (8.6 % and 5.7 % for Syl- and Mus-CR1, respectively).

Single locus phylogenetic analyses of our CR1 loci suffered from sequences being too

short and having low phylogenetic informative contents and yielded no consistent
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phylogenetic trees (data not shown). Analyses of the two combined CR1 data sets resulted in

phylogenetic trees that differed in their resolution and nodal support.

In the Syl-CR1 MP analysis, only closely related taxa were resolved (Fig. 4), whereas
the Bayesian phylogenetic tree resolved more nodes but lacked significant support, apart from
closely related taxa. Whenever more than one representative of a genus was included, they
were resolved as a strongly supported monophylum with both types of analysis. The
Bohemian waxwing (Bombycilla garrulus) and the goldcrest (Regulus regulus) form a
monophyletic clade. The tits (Parus spp.) are separated from the remaining Sylvioidea with
the winterwren (Troglodytes troglodytes) as their closest relative. Phylogenetic relationships
within Sylvioidea (sensu Alstrom et al., 2006) are poorly resolved: the Eurasian skylark
(Alauda arvensis) is supported as the most basal branch, followed by two sister clades
consisting of (1) bulbuls (Pycnonotus sp.), the Blyth’s reed-warbler and the icterine warbler,
and the northern house-martin (Delichon urbica), and (2) the willow warbler (Phylloscopus
trochilus), the common grasshopper-warbler (Locustella naevia), the short-toed tree-creeper
(Certhia brachydactyla), and a trichotomy consisting of the African yellow white-eye
(Zosterops senegalensis), the white-necked laughingthrush (Garrulax strepitans), and the

greater whitethroat (Sylvia communis).

In comparison, both trees based on the Mus-CR1 data set are well resolved and
congruent (Fig. 5). The subfamilies Turdinae and Muscicapinae, as well as the muscicapine
tribes Muscicapini and Saxicolini could be distinguished as monophyletic clades. The two
redstarts (Phoenicurus spp.) form their own clade within the Saxicolini. The European pied
flycatcher (Ficedula hypoleuca) and the European robin (Erithacus rubecula) are sister taxa
and together closer related to the whinchat (Saxicola rubetra) than to the thrush nightingale

(Luscinia luscinia).

DISCUSSION
Characteristics of CR1 sequences and conditions for a use as phylogenetic markers

Although many studies have been published about CR1 retrotransposons since they
were discovered in 1981 (Stumph et al., 1981), sequence characteristics and evolution of the
same element after an insertion event at a specific locus have— to our knowledge — not been

subject of investigation. Although less is known about the mechanism of retrotransposition of
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non-LTR retrotransposons (Kazazian, 2004) than of LTR retrotransposons (reviewed by
Wilhelm and Wilhelm, 2001), evolution of CR1 elements was supposed to trace back to at
least eleven ‘source genes’ (ICGSC 2004). The relative abundance of CR1 elements and the
ongoing increase in estimation of the number of copies in the chicken genome (i.e. from
30,000 (Burch et al., 1993), over 100,000 (Vandergon and Reitman, 1994) to 200,000
(ICGSC 2004)) provide the possibility of utilising them as phylogenetic markers. It was
recently demonstrated that CR1 sequences contain phylogenetic signals (Treplin and
Tiedemann, under review). The significance of the contained information is depending on the
time span from the insertion event to the recent observed character state. Our single locus
sequences showed a high variability among taxa. The single locus data sets, however, failed to
resolve phylogenetic relationships unambiguously due to low numbers of informative
characters and comparably short sequence lengths. The highly conserved regions of CR1
elements throughout different CR1 families and distantly related taxa pointed to an evolution
under functional constraints, i.e. these conserved regions may act as transcriptional silencers
and protein binding sites (Chen et al., 1991). Apart from these conserved regions, the other
parts diverged considerably (Chen et al., 1991; Haas et al., 2001). This suggests an ancient
origin of these elements, as sequences of the progenitor and the newly inserted copies should
be nearly identical (Deininger et al., 1992; Kido et al., 1995). During incomplete reverse
transcription from the 3’ end, the functional constraints are relaxed when CR1 elements lose
their retrotransposition ability. Consequently, neutral point substitutions could accumulate
randomly in the genome in the large number of truncated CR1 elements, varying in length
(Kido et al., 1995; Webster et al., 2006). The loci described here have obviously lost their
function and developed a high variability among closely related taxa due to neutral evolution,

e.g. 3.2 times higher in Fic2-CR1, compared to ZENK (Fig. 2c¢).

Generally, the substitution rate of CR1 sequences is correlated to that of the sequences
of the two nuclear genes (Fig. 2). Despite the high variability, the problem of noise in fast and
constantly evolving neutral markers does not play an important role, as no saturation was
detected in the CR1 loci (Fig. 1), and the transition/transversion ratios did not indicate a high
rate of multiple substitutions (Table 3). Saturation has been found to occur in molecular
markers with higher variability, e.g. the mitochondrial cytochrome b gene, compromising its
suitability for higher-level systematics in Passeriformes (e.g. Chikuni et al., 1996; Edwards et
al., 1991; Edwards and Wilson, 1990). Additionally, all three homoplasy indices are on the
same level or even higher than those of the nuclear gene markers used in Treplin ef al. are

(ZENK, RAG-1, RAG-2, c-myc; submitted) (Table 3).
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The results of the likelihood-mapping indicate a higher content of phylogenetic signal
in the Mus-CR1 data set than in the Syl-CR1 data set. Although likelihood-mapping results
are influenced by sequence lengths (Strimmer and von Haeseler, 1997), this does not apply
here, as both combined data sets comprise the same length. The total amount of 87.7 % fully
resolved quartets in the Mus-CR1 data set could lead to a highly resolved phylogenetic tree.
Despite the possibility of likelihood-mapping producing false positives (Nieselt-Struwe and
von Haeseler, 2001), the tree based on the Mus-CR1 data set (Fig. 5) follows this expectation,
as well as the tree based on the Syl-CR1 data set (Fig. 4). Altogether, the aligned sequence
data display informative phylogenetic signal. Probably, additional sequences of CR1 loci

would increase the phylogenetic signal.

Application as phylogenetic markers

Phylogenetic relationships in the Bayesian tree of the Syl-CR1 data set are generally in
good agreement with recent phylogenetic hypotheses. Excluding the Paridae from the
Sylvioidea (sensu Alstrom et al., 2006) was strongly supported in a recent study (Treplin et
al. submitted) and again is corroborated by this study. The position of the Eurasian skylark
Alauda arvensis at the base of the Sylvioidea (sensu Alstrom et al., 2006) confirms this
phylogenetic position which had already been proposed by several other studies (Alstrom et
al., 2006; Barker et al., 2004; Beresford et al., 2005; Ericson and Johansson, 2003; Fuchs et
al., 2006). The Syl-CR1 tree also contains some ambiguous clades, such as the distribution of
the wrens, tree-creepers and nuthatches, (Certhiidae, Troglodytes sp. and Certhia sp., and
Sittidae, Sitta sp.). These taxa, placed among unlikely clades without strong support, are
believed to form a monophyletic clade and to be more closely related to the Muscicapoidea
(Barker et al., 2004; Beresford et al., 2005; Cibois and Cracraft, 2004). Our CR1 sequences
remarkably failed to define such a clade. Phylogeny within the Sylvioidea (sensu Alstrom et
al.) has been difficult to elucidate (Alstrom et al., 2006; Jonsson and Fjeldsd, 2006) and this
taxon has appeared to be the least resolved group in the recently published supertree of
Passerida in a metaanalysis based on 99 studies (Jonsson and Fjeldsd, 2006). The present
analysis again cannot fully resolve this clade. Polyphyly of the Acrocephalinae (sensu Sibley
and Ahlquist, 1990) and exclusion from the Sylviidae (sensu Sibley and Ahlquist, 1990) has
been suggested by several authors (e.g. Alstrom et al., 2006; Sefc et al., 2003) and is also
confirmed in this study by the separation of both the willow warbler (Phylloscopus trochilus)

and the common grashopper-warbler from the Blyth’s reed-warbler/icterine warbler clade.
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The established groups within the Muscicapidae (sensu Sibley and Ahlquist, 1990) are
well resolved and congruent in both analyses (Fig. 4). The blackbird Turdus merula and the
hermit thrush Catharus guttatus form a strongly supported monophyletic clade, which
represents the Turdinae, defined by Sibley and Ahlquist, (1990) as sister to the Muscicapinae.
This clade is in congruence to many other sequence-based studies (e.g. Barker et al., 2004;
Beresford et al., 2005; Cibois and Cracraft, 2004; Jensson and Fjeldsa, 2006). Division of the
Muscicapinae into the two tribes Muscicapini and Saxicolini is confirmed by our data set
regarding the only representative of Muscicapini, the spotted flycatcher Muscicapa striata.
The European pied flycatcher was classified as a Muscicapini by Sibley and Monroe (1990),
but it has recently been shown that instead it belongs to the Saxicolini (e.g. Treplin et al.,
submitted). Phylogenetic relationships within the Saxicolini are difficult to evaluate, because
hardly any comprehensive study exists dealing with that clade. Higher-level studies typically
include only few saxicoline taxa. The supertree analyses of Jensson and Fjeldsa (2006)
combined different studies and hence yielded a higher taxon density. In this supertree, it is
apparent that the two species European pied flycatcher and European robin are basal
representatives of the Saxicolini. This had also been found by Cibois and Cracraft (2004),
who additionally showed a sister taxon relationship of the genera Phoenicurus and Luscinia.
Our analyses therefore agree with recently hypothesised higher-level phylogenetic

relationships.

The two data sets of combined CR1 sequences, though analysing phylogenetic
relationships on comparably same taxonomical levels, showed remarkable differences with
regard to resolution, congruence, and support. These differences may stem from unequal rates
of evolution in these two groups, indicated by the different phylogenetic informative signal
contained in these markers (see above). Sheldon and Gill (1996) summarised the long history
of difficulties investigating sylvioid relationships. The Sylvioidea comprise the second largest
group of oscine birds (sensu Sibley and Monroe, 1990). Radiation and speciation might have
been particularly rapid in the Sylvioidea, leading to a large group of closely related species
(compared to the obviously less diversified group of Muscicapoidea), as indicated by the very
short branch lengths in recent phylogenetic analyses (Treplin ef al., submitted) and the weak
resolution in the metaanalysis of Jensson and Fjeldsa (2006). With short intervals between

branching events, evolving clades likely acquired few — if any — synapomorphies (Lanyon,

1988).
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Conclusion

This study proves the suitability of CR1 loci as phylogenetic markers. The benefit of
available sequences, possibly unsuitable for classical retrotransposon studies with
synapomorphic character approaches, is worth utilising as standard sequence based analyses.
As there is such a high number of elements in the birds’ genome, generating a larger data set
(i.e. more loci/longer sequences and further taxa included) than those included in the present
study, could definitely contribute to the ongoing debate in passerine phylogenies. In
particular, CR1 sequences, as a source of multilocus nuclear phylogenetic markers, are
potentially less prone to possible lineage sorting effects, which can cause gene tree/species

tree incongruencies in studies based on single or few loci.
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Appendix

Table 4a p-values of the heterogeneity test for all combinations
of the Mus-CRI1 loci.

Darfin-CR1 Ficl-CR1 Fic2-CR1 Turl-CR1

Ficl-CR1 0.404

Fic2-CR1 0.868 0.384

Turl-CR1 0.990 0.357 0.996

Tur2-CR1 1.000 0.229 1.000 0.949

Table 4b p-values of the heterogeneity test for all
combinations of the Syl-CR1 loci.

Darfin-CR1 Parl-CR1 Par2-CR1

Parl1-CR1 0.956
Par2-CR1 0.653 0.544
Par3-CR1 0.999 0.679 1.000
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Pairwise transition (filled squares) and transversion (circles) sequence distances
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Fig. 1 Saturation plots. Pairwise transition and transversion sequence distance plotted against
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Fig. 2 a-h Total distances of CR1 loci plotted against total distances of the nuclear genes
ZENK (left) and RAG-1 (right). p-values indicate significance of correlation between the
nuclear markers.
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Fig. 3 Likelihood-mapping analyses of Syl-CR1 (A) and Mus-CR1 (B) data sets with
distribution patterns (upper triangles) and percentages of the seven areas of attraction (lower

triangles).
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Fig. 4 Phylogenetic tree of the Bayesian analysis of the combined Syl-CR1 data set. Bayesian
support values are given above, MP bootstrap support below the nodes. Hyphens indicate
unresolved nodes in the MP bootstrap analysis.
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Fig. 5 Phylogenetic tree of the Bayesian analysis of the combined Mus-CR1 data set.
Bayesian support values are given above, MP bootstrap support below the nodes.
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