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ABSTRACT
The global instability index (GII) is a computationally inexpensive bond valence-based metric originally designed to evaluate the total bond
strain in a crystal. Recently, the GII has gained popularity as a feature of data-driven models in materials research. Although prior studies
have proven that GII is an effective predictor of structural distortions and decomposition energy when applied to small datasets, the wider
use of GII as a global indicator of structural stability has yet to be evaluated. To that end, we compute GII for thousands of compounds in
inorganic structure databases and partition compounds by chemical interactions underlying their stability to understand the GII values and
their variations. Our results show that the GII captures relative chemical trends, such as electronegativity, even beyond the intended domain
of strongly ionic compounds. However, we also find that GII magnitudes vary significantly with factors such as chemistry (cation–anion
identities and bond character), geometry (connectivity), data source, and model bias, making GII suitable for comparisons within controlled
datasets but unsuitable as an absolute, universal metric for structural feasibility.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0140480

I. INTRODUCTION
The global instability index (GII or R1) measures the aggre-

gated deviation of a structure’s bond lengths from their respective
“ideal” lengths via comparison of bond valence sums with the formal
valence,1,2

GII =

√

∑
N
i=1 (VVSR,i − Vi)

2

N
, (1)

where VVSR,i is the bond valence sum of atom i according to the elec-
trostatic valence sum rule (VSR), V i is the formal valence state of
atom i, and N is the number of cations in a compound’s unit cell. The
GII metric was developed as a measure of bond strain in a structure.3
Brown showed how this metric could be used to predict structural
distortions in perovskite oxides,1 and Salinas–Sanchez used the met-
ric to rationalize formability in a superconducting cuprate family.2
Since then, GII has gained popularity as a tool for understanding
the distortion and formation of crystals, for example, as a feasibil-
ity check during structural refinement,4,5 and as part of a perovskite
structure prediction software.6

GII has also found use as a predictor of properties beyond steric
effects. Rao et al. used GII to create electronic and magnetic phase

diagrams for perovskite manganites,7 Feng et al. used GII as a pre-
dictor of thermal stability of perovskite oxides,8 and Georgescu et al.
found that GII is an important feature in predicting a compound’s
metallicity.9 Kapera and Koleżyński used GII to inform structural
stability across doping in a thermoelectric materials candidate.10

Clearly, GII can be a cost-effective, powerful tool to help pre-
dict bonding-related properties of materials. However, most of these
studies focus on a limited family of compounds with relatively
well-known electronic characteristics, as is consistent with Brown’s
original work. Brown excluded structures with electronic distortions
(compounds containing certain transition metals and Pearson’s soft
acids and bases11), noting that electronic effects often cooperate
with steric effects to stabilize such distortions. The presence of elec-
tronic effects beyond simple local charge transfer yields a more
complicated physical picture less easily captured by the bond valence
model.

As the popularity and size of open access materials databases
increase and large-scale materials studies become more common,
GII becomes even more attractive to use because of its relatively low
computational cost, interpretability, and simplicity as a single scalar
value. Many papers have touted Brown’s observed maximum GII of
0.2 valence units (v.u.), as a universal threshold, above which the
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feasibility of a structure should be doubted.6,7,12–14 Several papers,
however, have noted that while GII is correlated with lattice energy,
the 0.2 v.u. threshold is far from comprehensive.8,15 In fact, Brown
specifically cautions readers against assuming the 0.2 v.u. threshold
for arbitrary structures.1 Given the diversity of factors affecting the
bonding behavior, such as covalency, metal–metal bonding, electron
filling, coordination, and polyhedral connectivity, it follows that one
simple metric is unlikely to capture a property as complex as struc-
tural stability for all inorganic crystals. Thus, we seek to explore
the limits of the global instability index. We address this goal by
focusing on four aspects of a compound: chemistry (cation–anion
identities and bond character), geometry (connectivity), data source,
and model bias. We find that GII depends on all of these aspects
to varying degrees in different compounds, making it less useful for
global predictions across diverse compositions and structure types
and better suited for materials-chemistry-informed analyses within
controlled datasets.

II. METHODS
All structures are stored as Crystallographic Information Files

(CIFs)16 and manipulated using Pymatgen17 and visualized using
VESTA.18

A. Glossary of terms
We use the following terms throughout to analyze GII depen-

dencies on various underlying contributions to atomic structure,
composition, and stability:

● Energy above hull (Ehull): The energy per atom separating
a given compound from the DFT-computed convex hull of

ground state structures, sourced from the Materials Project
(v2021.05.13).19

● Kernel density estimate (KDE): Kernel-smoothed, normal-
ized estimate of a probability distribution used in this work
to convey the relative distributions of materials proper-
ties, such as GII and energy above hull. We use SciPy’s
gaussian_kde function.20

B. Data sets
We used two datasets: one derived from the Materials Project

(MP)19 and the other derived from the Inorganic Crystal Structure
Database (ICSD).21 The MP dataset includes binary through quinte-
nary compounds reported as synthesizable for which all components
can be assigned a meaningful integer oxidation state. Figure 1 shows
an overview of the chemical makeup of the MP dataset, reveal-
ing a strong bias toward ternary and quaternary oxides. The ICSD
dataset includes binary and ternary compounds containing at least
one transition, alkali, or alkaline earth metal as well as at least one
of the following anions: N, O, F, P, S, Cl, As, Se, Br, Te, and I.
These structures are all reported in the ICSD under the following
conditions: 283 K ≤ T ≤ 303 K and 0.9 atm ≤ P ≤ 1.1 atm. A cor-
responding chemical composition plot for the ICSD dataset can be
found in the supplementary material.

We also generated two intersection datasets, consisting of sub-
sets of the MP and ICSD datasets for which there are matching
entries in the other dataset. Cross-dataset matches were obtained
using the icsd_ids feature from MP or by matching formula and
AFLOW prototype.22–24 In cases where there are multiple matching
ICSD entries, we choose the most recent entry. The GII distributions

FIG. 1. (a) Histogram showing the population by number of elements and (b) a heatmap showing the frequency of elements in the MP dataset used for our GII assessments.
The number below each element corresponds to the percentage of compounds that contain that element.
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are nearly unaffected by choice of ICSD entry in these cases. Unless
otherwise specified, the figures shown were generated from the MP
dataset and the corresponding figures for the ICSD data can be found
in the supplementary material.

C. Data processing
We employed the following workflow for data augmentation

and cleaning:

1. Retrieve Ehull values from the Materials Project (for MP-
derived entries only).

2. Standardize file formats and remove problematic files.
3. Predict oxidation states.
4. Calculate GII (both conventional and softBV variants).
5. Assign structural prototype tags to all structures to remove

duplicates and to indicate isopointal groupings, i.e., groupings
that exhibit the same space-group type (or belong to enan-
tiomorphic space-group pairs) and the same (fully or partially)
occupied Wyckoff sites.

Standardization was achieved by first determining the proto-
type and parameters of each structure using AFLOW-XtalFinder’s
– –prototype function and then rewriting each structure using
AFLOW-XtalFinder’s – –proto function. Files that triggered errors
for either step were discarded. The oxidation states were pre-
dicted using Pymatgen’s ValenceIonicRadiusEvaluator class.
We calculated the conventional GII using the bond valence para-
meters from Brown’s 2020 bond valence parameter set.25 Struc-
tures for which any bond valence parameter was absent from the
bond valence parameter set were left out. The first coordination
shell was defined using CrystalNN26 as implemented in Pymat-
gen.17 For the softBV model, we calculated GII using the cal-gii
function of the softBV executable (version 1.2.7).27 We assigned
structural prototype (isopointal grouping) tags by categorizing

structures using the ––compare_structures function from
AFLOW-XtalFinder.24,28

III. RESULTS AND DISCUSSION
A. GII as a proxy for stability

In addition to the applications of GII for structural validation
and phase stability, GII has been formulated as a pseudo-energy
and applied successfully to simple compounds. Models using GII as
a proxy for lattice energy or component of a semiempirical inter-
atomic potential have found success in predicting the ground-state
structures of MgO surfaces29 and perovskite oxides.15,30 However,
GII may have limitations in smaller energy regimes. One study
found GII to be insufficient to predict anion-order in perovskite
oxides.31 Furthermore, all of these studies are limited to relatively
small datasets. None has performed a large-scale examination of GII
and its dependence on stability-related features.

In Fig. 2(a), we find that the spread of the Ehull distribution
increases with GII. In Fig. 2(b), we find that the percentage of
materials predicted to be stable at room temperature, indicated by
Ehull = kT and T = 300 K, decreases with larger GII. Both of these
trends indicate that GII is at least weakly correlated with stability.
However, our data also show that many stable compounds exhibit
high GII values and that not all compounds with very low GII val-
ues are stable in the specified structure near room temperature.
We further find that compounds with GII ≤0.2 v.u. are not signif-
icantly closer to the convex hull on average [Fig. 2(a)]. The majority
of experimentally observed structures exhibit GII values above the
0.2 v.u. threshold [Fig. 2(b)]. The existence of significant tails in
the distributions with low GII values and the significant number of
stable compounds with high GII values demonstrates that, at least
on a broad scale, a universal GII threshold is not a reliable global
predictor of phase stability. As Brown said,1 “there is no particular
reason to assume that (the 0.20 v.u.) limit will apply to all crystals.”

FIG. 2. Two plots showing that the 0.2 GII threshold is not strongly related to crystal stability. (a) KDE of computed energies above the convex hull for various segments of
the GII distribution from the MP dataset. (b) Histogram of GII values segmented into regions for which the percentage of materials lying within 26 meV of the convex hull is
shown at the top. The 0.2 v.u. GII threshold is represented by the red dotted line.

APL Mater. 11, 101108 (2023); doi: 10.1063/5.0140480 11, 101108-3

© Author(s) 2023

 25 April 2024 05:42:52

https://pubs.aip.org/aip/apm


APL Materials ARTICLE pubs.aip.org/aip/apm

While GII remains a cost-effective, powerful tool for bonding anal-
ysis in limited chemical families, researchers should be aware of its
limitations when applied to larger datasets.

B. GII dependence on chemistry
GII distributions also depend on the ligand species coordinat-

ing the metal atoms in a structure. Since the bond valence model
underlying the GII measures conformity to Pauling’s second rule,
which assume ionic “bonding,” i.e., electrostatic-based charge trans-
fer, we would expect GII to be negatively correlated with the elec-
tronegativity of the anion. This hypothesis is supported in part by the
GII distributions for our datasets, consistent with a chemist’s expec-
tation when moving across a row of the Periodic Table but not when
moving down a column of the Periodic Table. In Figs. 3(a)–3(c),
we show that the GII distributions generally skew to smaller val-
ues moving from group 7 to group 9 anions, i.e., upon increasing
electronegativity. In Fig. 3(d), we collapse the GII distributions to
median GII values to confirm that there is clear negative correlation
between GII and electronegativity moving to the right in the Peri-
odic Table. However, the correlation is absent when moving down
a column. Both the KDEs in Figs. 3(a)–3(c) and the median GII
values in Fig. 3(d) show inconsistency with the hypothesized GII
values moving down the Periodic Table, i.e., from N → P → As, O
→ S → Se → Te, and F → Cl → Br → I. Rather than a negative cor-
relation with electronegativity, our data suggest that, overall, GII is
negatively correlated with the anion oxidation state. Further nuance
likely exists within these chemical groups related to sp hybridization,
lone pairs, and σ- vs π-bonding.

The presence of this correlation in the dataset as a whole does
not mean it holds for individual structural families. By limiting our
analysis to the rock salt structural family, for example, we can control
for structural influences on GII to isolate the chemical contribution.
In Fig. 4, we show GII KDE comparisons across rows of main group
anions for rock salt compounds. Compounds with anions in row
2 support the overall trend [Fig. 4(a)], with GII tending to decrease

as we move to the right in the Periodic Table. However, in rows
3 and 4, the trend is less well-supported [Figs. 4(b) and 4(c)], with
the distributions being more similar and the GII peaks of the chalco-
genides being lower and further toward large GII than those of the
pnictides [Fig. 4(b)].

We showed on a large scale that the GII reflects broad bond-
ing behavior trends across the anion oxidation state even beyond
the domain of strongly ionic compounds but does not capture
vertical periodic trends. These trends also show that average GII
values increase markedly as we move inward in the Periodic
Table—affirming Brown’s warning about a universal GII threshold.1
We conclude that GII can be useful in relative comparisons of any
one factor in bonding behavior, e.g., covalency, bond strain, and
bond multiplicity, even beyond strongly ionic systems, as long as the
other factors are controlled.

C. GII dependence on geometry
We observe that GII distributions vary significantly between

different structural prototypes, indicating that connectivity and
bonding environment are important factors. Figure 5 shows that
while some prototypes may exhibit similar GII distributions to each
other, e.g., caswellsilverite, orthorhombic perovskite, and spinel,
other prototypes, e.g., cubic perovskite, rock salt, and orthorhom-
bic double perovskite, are both unique and different from the overall
GII distribution.

To provide a more controlled analysis of the role of structure,
we perform a comparison among the following four AB prototypes:
NiAs, rock salt, wurtzite, and zinc blende. The main crystal chem-
istry features for these close-packed structure types are given in
Table I. Examining the GII distributions in these prototypes (Fig. 6),
we see that the NiAs family exhibits the largest GII values followed
by rock salt, with wurtzite and zinc blende both featuring relatively
low GII values. Referencing Table I and Fig. 6, we see that com-
pounds with a higher coordination number and greater connectivity,
i.e., face > edge > corner, feature a higher GII.

FIG. 3. KDEs of GII values for all (a) pnictides, (b) oxides and chalcogenides, and (c) halides in the MP dataset. The commonly adopted GII threshold is indicated by the
black dashed line. (d) Median GII by anion. Percent occurrences of each anion are shown in the top left corners. The MP dataset contained too few antimonides (N < 10)
to provide a meaningful distribution.
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FIG. 4. KDEs of GII for rock salt-structure compounds with anions from (a) row 2, (b) row 3, and (c) row 4.

FIG. 5. KDEs of GII values for the top 6 most common structural prototypes in the
MP dataset.

Possible sources of these correlations include metal–metal
bonding, steric effects, and sampling bias in bond valence para-
meters. Face connectivity and edge connectivity provide more
opportunity for bonding interactions between cations than corner
connectivity. Since metal–metal bonding is not accounted for by the
bond valence model, any such interactions would tend to increase
the GII. For example, the first coordination shell of NiAs consists of
2.5 Å Ni–As bonds and the Ni–Ni distances are only 1 Å larger, close

TABLE I. Select characteristics of four common close-packed AB structures.

Structure Coordination Anion packing Connectivity

NiAs Octahedral Hexagonal Face
Rock salt Octahedral Cubic Edge
Wurtzite Tetrahedral Hexagonal Corner
Zinc blende Tetrahedral Cubic Corner

enough that some coordination environment calculators include
those Ni–Ni interactions in the first shell.26 The bond valence model,
which does not account for cation–cation interactions, cannot cap-
ture the stabilizing influence of the metal–metal bonding that occurs
between the face-sharing octahedra in the NiAs structure.32 We find
similar effects that occur in rutile-structured compounds. For exam-
ple, NbO2,33 VO2,34 MoO2,35 RuO2,36,37 and IrO2

36 all feature strong
metal–metal interactions along the c-directed axis and, as a result,
have inflated GII values (all above 0.14 v.u.).

Figure 7 displays a comparison of the electron localization func-
tions (ELF) and GII values for two representative crystals. The first is
MgO, an ionic crystal with well-separated electron clouds evidenced
by the white regions of very low ELF values (<0.10), indicating the
absence of electron sharing between neighboring ions in Fig. 7. This
ionic material has strong, spherical localization around the anions
and is well within the assumptions of bond valence theory. Accord-
ingly, MgO exhibits a very low GII value of 0.002. MoO2 provides
an example of behavior beyond the scope of the bond valence model
with more covalent cation–anion bonds and metal–metal bonding
shown by the gray regions of larger ELF values ranging from 0.3 to
0.8 between Mo–O and Mo–Mo neighbors. Values in this range are
consistent with electron localization expected for an electron gas and
metallic bonding. This departure from the ionic model caused by
these extended Mo-4d orbitals contributes to bond length deviation
from the empirical bond valence parameters and, therefore, to a high
GII value of 0.243. The lack of clear correlation and the significant
population of structures on the hull for all GII values demonstrate
that on large scales, GII is not an effective predictor of stability. This
supports the idea that other factors contribute to the GII and its
scope is more limited.

In addition, ions found in octahedral coordination tend to have
radius ratios closer to unity, making alternate phases with larger
coordination, such as CsCl, more competitive.38 Since the bond
valence parameters are calculated empirically, any bias present in
the bond valence parameter set will appear in the GII values. Bond
lengths show a significant variance, skew, and even multimodal-
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FIG. 6. KDEs of GII values for four AB structural prototypes shown for (a) all anions, (b) pnictides, (c) chalcogenides, and (d) halides.

ity (i.e., multiple maxima in the distribution of bond lengths) even
for a single anion with a specific oxidation state and coordination
number.39–42 Since a single scalar value cannot accommodate such
a variation, bond valence models necessarily sacrifice accuracy for
simplicity and generality, especially for ions that are found in a
variety of bonding environments. Gagné and Hawthorne observed
this phenomenon directly in their analysis of bond length variation
in oxides.41 This simplification of the ideal bond length underly-
ing the bond valence model is another explanation for the mul-
timodality and inflated values of the GII distributions shown in
Figs. 5 and 7.

Other sources of bond length variation identified by Gagné
and Hawthorne include bond-topological effects, the Jahn–Teller
effect (JTE), the pseudo-Jahn–Teller effect (PJTE), and the π-bond
formation. These mechanisms for variations in GII appear in both

FIG. 7. Electron localization function (ELF) and crystal structure for (left) rock salt
MgO and (right) rutile MoO2. The teal outlines indicate the corresponding frames
for the ELF and the crystal structure. The yellow lines indicate a metal–metal bond
in MoO2.

TABLE II. Examples of structures with large GII values due to the bond length
variation.

Mechanisms Example (MP ID) GII (v.u.)

Bond topology SrV2P2O9 (mp-21614) 0.28
Jahn–Teller effect (JTE) Cr5S8 (mp-1181961) 0.21
Pseudo-JTE DyTa7O19 (mp-15492) 0.19
π-bond formation BaMo2(PO4)4 (mp-555876) 0.16

of our datasets. As shown in Table II, each of these phenomena can
result in large GII values, above the commonly used 0.1 v.u. thresh-
old for stable structures and even above the 0.2 v.u. threshold for
incorrect structures.

As a response to the widespread use of GII as a measure of
structural feasibility, we present a use case evaluating the efficacy
of GII as a relative structural stability metric in a tightly controlled
dataset. Figure 8 showcases the ability of GII to accurately predict
the lower energy structural phase for a given compound. If GII were
a good predictor of phase stability, all green and orange circles would
lie in the green and orange regions, respectively. Instead, we observe
an inconsistency of agreement between GII and Ehull for different
pairwise comparisons. In Fig. 8(d), there is some agreement between
GII and Ehull, with most of the green and orange points lying in
the correspondingly colored region. However, the low number of
common compounds with zinc blende ground states means that the
agreement in this plot offers very weak support for the predictive
power of GII on phase stability. The other plots in Fig. 8 show insuf-
ficient data and/or a clear lack of reliable correlation between GII
and phase stability—manifesting as orange points in green regions
and vice versa. Furthermore, the substantial spread along the diago-
nal of each plot reinforces that the variation in GII due to bonding
type is much larger than the 0.2 v.u. threshold.

Separating GII distributions into more narrow materials
classes, e.g., controlling for data source, BV model, structure type,
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FIG. 8. Pairwise comparison of GII values for compounds that have been com-
puted in at least two of the four AB prototypes. For any point on a plot, the x and
y coordinates correspond to the GII value of the compound in that structure listed
on the corresponding axis. Coloring of the point protectors indicates the lower
energy structure according to DFT calculation. Coloring of the plot area indicates
the region in which the relative GII values imply stability for the correspondingly col-
ored phase, i.e., orange (green) regions indicate lower GII for the structural phase
on the yaxis (xaxis). Thus, an orange point protector in the orange region indicates
a compound for which relative GII correctly predicts the more stable structural
phase, while an orange point protector in the green region indicates a compound
for which relative GII incorrectly predicts the more stable phase. Compounds for
which the more stable phase lies on the convex hull are labeled with black texts;
otherwise, they are labeled with purple texts.

and ligand, generally tightens the spread of GII but does not nec-
essarily remove multimodality, suggesting that additional factors
remain. In Fig. 7, we find that the multimodality of a structure type’s
total GII distribution can be reduced to some extent by breaking
down further by the anion oxidation state. We observe the expected
dependence of the GII distribution, with halides featuring the lowest
GII, clustered below 0.5, and pnictides featuring the lowest relative
population of low GII structures. However, all of the subfamilies
shown in Figs. 7(b) and 7(c) still exhibit a significant spread in their
GII distributions.

This tendency of the distributions to tighten and move toward
a monomodal distribution in the case of halides, as we control
for more factors, suggests that GII can capture physical trends.
The remaining variance indicates that the various factors affecting
GII should first be disentangled before useful information can be
extracted. So far, this has indicated that GII is only reliable for use in
small datasets in which only one or two of the aforementioned fac-
tors are allowed to vary. To move beyond such narrow applications,
one might derive a set of GII baselines to account for different chem-
ical and structural regimes. If successful, these baselines could allow
GII comparison on a larger scale more suitable for high-throughput
materials informatics work.

D. GII dependence on model bias
As shown in Eq. (1), the GII depends on bond valence sums

VVSR, which take the form

VVSR,i =
Mi

∑
j=1

exp(
Rij − R0

B
),

where Mi is the number of anions in the first coordination shell
of cation i, Rij is the distance between atoms i and j, and R0 and
B are the so-called bond valence parameters (BVPs). These bond
valence parameters must be known a priori and are generally derived
empirically from experimental observations. Several different ways
of obtaining them have been proposed, which differ in the dataset
used for derivation and the approximations made. Brown and Alter-
matt proposed a universal B parameter and optimized R0 values
for the standard deviation in R0 to obtain the most consistent fit
to the relevant cation environments in their ICSD dataset.44 Gagné
and Hawthorne optimized both B and R0 for the root-mean-squared
deviation between bond valence sum and the formal valence of
the central cation—essentially the GII for a single polyhedron.39

Chen and Adams moved beyond the consideration of only the first
coordination shell and incorporated bond softness into their ver-
sion (softBV), building off Pearson’s concept of hard and soft acids
and bases.11,12,43,45 Although the best way to parameterize the bond
valence model has been debated, the consequences of these nuances
have not been extended to the GII.

Here, we provide a comparison between two of the most dif-
ferent models: the original GII based on Brown’s conventional bond
valence model and GII based on softBV, a revised model that cap-
tures bond softness11 and considers interactions beyond the first
coordination shell.12,27,45 In Fig. 9(a), we show that GII values pro-
duced by the softBV model have a similar distribution shape but are
generally lower, with the Brown and softBV models yielding median
GIIs of 0.28 and 0.19, respectively. On a per-structure basis, we show
in Fig. 9(b) differences between the GII values from each BVP model.
The two GII types produce significantly different values for many
structures. Most notably, the softBV model yields far fewer GII val-
ues above the 0.2 v.u. threshold. The tails beyond ±0.2 in Fig. 9(b)
indicate that a single stability criterion, such as the 0.2 v.u. cut-
off, would find contradictions between the two models. Out of the
16 070 structures for which both the Brown and softBV BVP sets can
be applied to our MP dataset, 5644 (≈35%) cross over the 0.2 v.u.
threshold when changing between bond valence models. In short,
GII is sensitive to the approximations and simplifications built into
the underlying model.

E. GII dependence on dataset characteristics
Both experiment- and simulation-sourced materials datasets

have utility in ongoing efforts to characterize broad inorganic phase
spaces. Simulated-sourced data can offer more standardized data
and access to regions of phase space unavailable to experiment but
contain bias from any approximations in the theory underlying
the simulation. Experiment-sourced data can offer a higher fidelity
but can contain variations due to differences in synthesis and/or
measurement conditions. These trade-offs are reflected in our GII
observations for both the MP and ICSD datasets.
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FIG. 9. (a) Histogram of GII values calculated using two different bond valence
models for the MP dataset: the traditional model with Brown’s bond valence para-
meters25 and the softBV model.12,43 Dotted lines represent the median GII. (b)
Histogram of the disparities between GII values from the two bond valence mod-
els. Entries plotted are limited to the subset of compounds for which BVPs are
available from both sources.

In Fig. 10, the GII distributions of the two datasets show us
that structures in the ICSD dataset tend to have lower GII val-
ues on the whole and on a per-structure basis. Considering that
the bond valence parameters used to evaluate GII were empirically
determined using the ICSD data, we expect that the ICSD versions
of structures tend to have a lower GII. In addition, any GII val-
ues calculated using ab initio structural data include the errors of
the model used to perform geometric optimization, e.g., the com-
plexity and completeness of exchange and correlation energies of
the DFT functional. In some cases, this DFT error manifests sys-
tematically, allowing for trends to be preserved.46 For example, the
series of rock-salt-structured alkaline earth metal oxides shown in
the left side of Fig. 11 display identical trends in both the ICSD and
MP data. The MP data are approximately translated by a constant
value. Given that these materials have large electronegativity differ-
ences and relatively simple electronic structures, it makes sense that
the bond valence model would accurately capture the electronega-
tivity trend and that DFT could replicate those relationships. While
the trend is reproduced, these data further undermine the concept
of the 0.2 v.u. threshold. In those nine compounds alone, four (SrO,
CaO, ZnO, and CdO) yield GII values, which sit on either side of the

FIG. 10. (a) Histograms of GII values for the intersection datasets. The dotted lines
represent the median GII for each dataset. (b) Histogram of the per-structure GII
disparities between the MP and ICSD versions of the structures in the intersection
datasets.

FIG. 11. GII dependencies on electronegativity for select rock salt structured
oxides with the MP (DFT-calculated) and ICSD (experimental) datasets. The
horizontal black dotted line represents the commonly adopted 0.2 v.u. GII
threshold.

threshold. This is an interesting observation because two researchers
using the same threshold but different data sources for these com-
pounds would produce predictions that disagree almost half the
time.

In compounds with more complex electronic structures, there
is even less consistency in agreement between the MP (DFT-
calculated) and ICSD (experimental) data. In the right half of Fig. 11,
we show the GII values for several transition metal oxides, of which
all feature electrons in d orbitals near their Fermi levels. For the
transition metal oxides, we find a range of agreements between MP
and experiment: from excellent agreement in TiO to systematic dis-
agreement in ZnO, CdO, and NiO, to extreme disagreement in PdO
and PtO. Notably, PdO and PtO also receive larger GII values for
their experimental structures than their DFT structures in our MP
dataset. Since PdO and PtO are unstable phases, both decompos-
ing their dioxide counterparts, the high GII values can be ascribed
to phase instability and difficulty in modeling the electron–electron
interactions endemic to Pd and Pt metal oxides.47–49

Our comparisons of the MP and ICSD datasets have shown
that both DFT and experimental GII values can capture chemi-
cal trends for limited datasets for strongly ionic crystals, consistent
with the original assumptions of the bond valence model. Consis-
tency between datasets is not guaranteed for compounds containing
cations near the center of the Periodic Table where covalent bonding
is expected to be stronger. It may be possible to develop a renor-
malization scheme to enable mixing of data from different sources,
but the large variance in the per-structure residuals in Fig. 10(b)
foreshadows a difficult task. We have identified the source of the
structural data as yet another factor affecting GII.

IV. CONCLUSION
GII has successfully been used in a diverse set of contexts

to explore bonding-related behaviors and capture the key factors
of crystal structure stability. We highlight some additional factors
that affect GII and suggest several precautions for its use. We have
demonstrated that the various ways a compound can defy the bond
valence model translate to variations in global instability index val-
ues across chemistry, structure, data source, and model bias. We
also showed that GII depends on the partitioning of chemical bonds,
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specifically the choice of coordination shells to be included, and the
source of the structural data. Accordingly, GII can be used as a proxy
for many materials properties but is only reliable when the other fac-
tors are controlled. We offer two caveats: (1) GII should not be used
as an absolute metric but rather as a relative metric for compari-
son and (2) GII should only be used for limited datasets in which
a baseline value can be established by controlling for the chemical,
electronic, and structural factors. Moving forward, we see an oppor-
tunity in the development of a normalization scheme for GII to
extend its generality. This could establish a middle ground between
the simplicity of GII and the complexity of interatomic potentials—a
regime well-suited to high-throughput screening.

In addition to its utility as a cost-effective, simple metric for
small-scale, comparative investigations of bonding behavior, we
posit that GII may also be useful as an indicator of electronic
instabilities. In both our AB compound data and rutile analysis,
we observed that GII is strongly correlated with nonionic inter-
actions, e.g., metal–metal covalency, a hallmark of Peierls-type
metal–insulator transitions. The search for such metal–insulator
transitions constitutes a needle-in-the-haystack problem, where we
must search a vast materials space for materials exhibiting a very rare
property. In cases like these, any metric that can indicate a subset of
materials as more likely to contain the property of interest can be
useful as a way to focus the search, even if there are false positives
and false negatives.

SUPPLEMENTARY MATERIAL

Additional computational methods, link to data and featur-
ization code, and figures of various GII dependencies from the
ICSD.
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