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ABSTRACT

Matter at extreme temperatures and pressures—commonly known as warm dense matter (WDM)—is ubiquitous throughout our Universe and
occurs in astrophysical objects such as giant planet interiors and brown dwarfs. Moreover, WDM is very important for technological applications such
as inertial confinement fusion and is realized in the laboratory using different techniques. A particularly important property for the understanding of
WDM is given by its electronic density response to an external perturbation. Such response properties are probed in x-ray Thomson scattering
(XRTS) experiments and are central for the theoretical description of WDM. In this work, we give an overview of a number of recent developments in
this field. To this end, we summarize the relevant theoretical background, covering the regime of linear response theory and nonlinear effects, the fully
dynamic response and its static, time-independent limit, and the connection between density response properties and imaginary-time correlation func-
tions (ITCF). In addition, we introduce the most important numerical simulation techniques, including path-integral Monte Carlo simulations and dif-
ferent thermal density functional theory (DFT) approaches. From a practical perspective, we present a variety of simulation results for different density
response properties, covering the archetypal model of the uniform electron gas and realistic WDM systems such as hydrogen. Moreover, we show
how the concept of ITCFs can be used to infer the temperature from XRTS measurements of arbitrary complex systems without the need for any
models or approximations. Finally, we outline a strategy for future developments based on the close interplay between simulations and experiments.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0138955

I. INTRODUCTION

Warm dense matter (WDM) is an extreme state that is char-
acterized by high temperatures (T 2 103 � 108 K), high pressures
(P � 1� 104 Gbar), and densities in the vicinity of and even

partially exceeding solid state densities (n � 1021 � 1028 cm–3).
These conditions are ubiquitous throughout Nature and occur in a
host of astrophysical objects,1,2 see the overview in Fig. 1.
Prominent examples are not only giant planet interiors,3,4 such as
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Jupiter in our solar system,5–9 but also exoplanets.10,11 Other natu-
ral realizations of WDM include brown dwarfs,6,12 white dwarf
atmospheres,13,14 neutron star crusts,15,16 and the remnants of
meteor impacts.17,18 Another prominent example of WDM is the
core of Earth. It consists primarily of iron at a temperature of
�6000 K and pressure of �300 GPa, which is considered at the
cold end of the WDM parameter space. Understanding the
response properties, such as the electrical and thermal conductivity
in warm dense iron,19,20 is tied to geophysical dynamics within
Earth’s interior that generate its magnetic field.21 Experimental
measurements and modeling are the subjects of very active
investigations.22–25

In addition to its fundamental importance for stellar objects,
WDM is also highly relevant for a number of technological appli-
cations, such as the discovery of novel materials17,30–34 and hot-
electron chemistry.35–37 A particularly important application is
given by inertial confinement fusion38,39 as it is realized at the
National Ignition Facility (NIF).40 On its pathway toward ignition,
the fuel capsule traverses the WDM regime27 (see the black line in
Fig. 1 that indicates the implosion path of a deuterium–tritium
[DT] capsule27).

Due to the high current interest in WDM, such extreme states
are realized in large experimental facilities using different techniques,
see the topical overview by Falk.41 Indeed, many ground-breaking
results have been reported over the last few years, including the forma-
tion of nanodiamonds at extreme pressure17,30,42 and the study of the
liquid-liquid phase transition in hot dense hydrogen.43–47 In addition,
it can be expected that emerging capabilities at facilities such as
NIF,40,48 LCLS at SLAC,18,49 the Sandia Z Pulsed Power Facility50–52

and the OMEGA laser53 in the USA, SACLA54 in Japan, and the
European XFEL55 in Germany will open up new avenues for the study
of matter at increasingly extreme densities and temperatures, with
direct relevance to technological applications and laboratory
astrophysics.13,56,57

At the same time, it is important to note that a rigorous theoreti-
cal description of WDM is notoriously difficult.11,26,28 More specifi-
cally, WDM can be conveniently characterized in terms of three
dimensionless parameters that are of the order of unity.28,58 First, the
Wigner-Seitz radius rs ¼ d=aB is given by the ratio of the average
interparticle distance d to the in Bohr radius aB, see the vertical blue
lines in Fig. 1. Second, the degeneracy temperature h ¼ kBT=EF mea-
sures the thermal energy in units of the electronic Fermi energy EF,

59

with h� 1 and h� 1 corresponding to the fully degenerate and
semi-classical regime, respectively. Different values of h are included
as the green lines in Fig. 1. A third useful parameter is the classical
coupling parameter of the electrons C that measures the ratio of the
interaction to the kinetic energy on the level of a mean-field descrip-
tion;58 it is depicted by the solid red line in Fig. 1, and we also find
C � 1 in the WDM regime.

Consequently, there are no small parameters that can serve as the
basis for a suitable expansion.11,26 Nevertheless, the strong demand for
theoretical models and simulations has sparked a surge of develop-
ments in the field. For example, ab initio quantum Monte Carlo
(QMC)60 methods are capable of providing exact results for the static
properties of the uniform electron gas (UEG)61–75—the quantum ver-
sion of the classical one-component plasma (OCP)28,59,76—and light
elements such as hydrogen77,78 over substantial parts of the WDM
regime. Moreover, path-integral Monte Carlo (PIMC) simulations
within the fixed-node approximation79—also known as restricted
PIMC (RPIMC) in the literature—have allowed Militzer and co-work-
ers80–82 to go to heavier elements andmaterial mixtures.83 These simu-
lations constitute the basis for an extensive equation-of-state (EOS)
database84 that can be used for a host of practical applications.

A second important tool for the ab initio simulation of WDM is
the thermal density functional theory (DFT),85–89 which combines a
computational cost that is generally less demanding compared to
QMC methods with an often acceptable accuracy.90–93 In particular,
first accurate parametrizations of the exchange-correlation (XC) free
energy fxc of the warm dense UEG28,69,94,95 allow for thermal DFT
simulations of WDM on the level of the local density approximation
(LDA) that take consistently into account the dependence of the XC
functional on the temperature parameter h. Such temperature effects
can have a substantial impact on the DFT results for different observ-
ables,96–98 and the development of improved XC functionals for
WDM calculations constitutes an active area of research.99–102 This is
complemented by the development of efficient algorithms that allow
one to extend DFT to higher temperatures,103–111 which are unfeasible
for standard Kohn–Sham implementations.112 Moreover, there has
been a surge of research activities in utilizing machine-learning techni-
ques in the context of DFT.113 The most promising approaches for
improving calculations in the WDM regime include machine-learning
interatomic potentials that enable large-scale ab initio molecular
dynamics calculations and actually replacing DFT calculations with
machine-learning surrogate models.114 The development of accurate
machine-learning interatomic potentials has become a broad field of
research.115 They enable covering a large parameter space in tempera-
ture and pressure than is feasible with conventional ab initiomolecular
dynamics as has recently been demonstrated in several works.42,116–118

Replacing DFT all along in terms of machine-learning models is an
avenue of research with great potential. Pioneering efforts on mod-
els119–121 have matured into production-level codes that accelerate

FIG. 1. The warm-dense matter (WDM, orange bubble) regime is schematically
illustrated in the density-temperature plane. Characteristic parameters are given by
the Wigner–Seitz radius rs (vertical blue) and the degeneracy temperature h
¼ kBT=EF (diagonal green), also shown is the effective coupling parameter of the
electrons C (solid red), see Ref. 26. The gray bubbles indicate conditions of various
astrophysical objects taken from Ref. 1, and the black line sows the implosion path
of a DT fuel capsule taken from Hu et al.27 Adapted from Refs. 28 and 29.
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DFT calculations for realistic materials at finite temperature and pres-
sure122,123 and have recently enabled simulations at unprecedented
system size.124

In combination with complementary methods such as quantum
hydrodynamics,125–130 quantum scattering theory,131,132 and kinetic
models,133,134 these developments have given new insights into the
physics of WDM, including the EOS,84,135,136 effective poten-
tials,137–140 and a number of transport properties141 such as stopping
power109,142–144 and electrical conductivity.133,145

Many of the properties of WDM are encoded in its response to
an external perturbation. Of particular interest are perturbations that
couple to the electronic charge density, e.g., an incident electromag-
netic field or the Coulomb field of an incident charged particle. The
response to these probes contains information about a wide range of
excitations, and many of which are sufficiently sensitive to the thermo-
dynamic state of the WDM that they can be used to infer conditions
like temperature146 or density.136,147,148 X-ray Thomson Scattering
(XRTS)147,149–151 is a widely used diagnostic that enables these infer-
ences (among others) through measurements of the intensity of hard
x-rays that are inelastically scattered from WDM samples. The fact
that hard x-rays are required is a reflection of the fact that the densities
of WDM are sufficiently high that they are opaque to lower energy
probes. Those same hard x-rays can be used to probe the state of these
systems, while isochorically heat it on femtosecond time scales.145,152

More specifically, XRTS experiments rely on measurements of the
angle- and energy-resolved scattering intensity to probe the dynamic
structure factor (DSF), Sðq;xÞ, where q and x are a wave vector and
frequency, respectively. The DSF itself can be conveniently defined as
the Fourier transform of the intermediate scattering function,147

Sðq;xÞ ¼
ð1
�1

dt eixtFðq; tÞ; (1)

which is defined as

Fðq; tÞ ¼ hn̂ðq; tÞn̂ð�q; 0Þi (2)

for homogeneous systems in equilibrium. For sufficiently weak probes
in the linear response regime, the DSF is related to the linear density
response function vðq;xÞ through the fluctuation-dissipation theo-
rem59 (FDT), Eq. (31). Kinematic constraints from the first Born
approximation dictate that the scattering angle is related to the
momentum transferred q to or from the sample in the scattering pro-
cess. Similarly, the shift in energy upon scattering x is the quantity of
interest, rather than the absolute energy of the detected light, as this
encodes information about the excitation or de-excitation of the sam-
ple. Thus, it is typical to parametrize the XRTS scattering intensity
Iðq;xÞ in terms of the same momentum and energy transfer as those
parametrizing Sðq;xÞ and vðq;xÞ, even though the salient experi-
mental quantities (detection angle and photon energy) are different.

In fact, because the XRTS probe beam is only approximately
monochromatic and the detector has energy-dependent sensitivity, the
actually detected intensity is a convolution of the DSF and the com-
bined source-instrument function RðxÞ,

Iðq;xÞ ¼ Sðq;xÞ~RðxÞ: (3)

Nevertheless with careful characterization of RðxÞ, information about
Sðq;xÞ and vðq;xÞ can be obtained from the measured intensity.
Thus in addition to its practical utility as a multi-purpose diagnostic,

XRTS is ultimately a powerful technique to directly access the density
response function.

From a theoretical perspective, it is very convenient to express
vðq;xÞ as153

vðq;xÞ ¼ v0ðq;xÞ

1� 4p
q2

1� Gðq;xÞ½ �v0ðq;xÞ
; (4)

with v0ðq;xÞ is a known reference function, such as the density
response of an ideal Fermi gas (also known as Lindhard function in
the literature) in the case that vðq;xÞ describes the density response
of the UEG. In this case, the complete wave-vector- and frequency-
resolved information about electronic XC effects is contained in the
local field correction (LFC) Gðq;xÞ. Indeed, setting Gðq;xÞ � 0 in
Eq. (4) corresponds to the well-known random phase approximation
(RPA), which describes the density response on a mean-field level.154

Consequently, the LFC constitutes key input for a host of applications,
such as the construction of advanced XC functionals for DFT via the
adiabatic-connection formula,99,155,156 the incorporation of electron–e-
lectron correlations into quantum hydrodynamics,125,126 or the inter-
pretation of XRTS experiments.157–160 In addition, the LFC is formally
equivalent to the XC kernel from linear response time-dependent DFT
(LR-TDDFT);161–163 they are related by Kxcðq;xÞ ¼ �4p=q2Gðq;xÞ.
Indeed, replacing v0ðq;xÞ by the dynamic Kohn–Sham response
function vSðq;xÞ in Eq. (4) constitutes the basis for the LR-TDDFT
simulation of real materials,162,164–166 see Sec. IIA 2.

While the assumption of a linear response is fairly ubiquitous
throughout quantum many-body theory, it holds, strictly speaking,
only in the limit of an infinitesimal perturbation amplitude A.
Recently, Dornheim et al.167 have presented the first ab initio PIMC
simulation results for the nonlinear density response of the warm
dense UEG. Such nonlinear effects168–177 become important, for
example, for XRTS experiments with ultra-high intensities that can be
realized at x-ray free-electron laser (XFEL) facilities via the novel seed-
ing technique.178 Moreover, they are an important ingredient to the
construction of effective pair potentials at small distances139,179,180 and
stopping power calculations for slow and/or heavy particles.181–183

Finally, it has been shown that nonlinear effects depend much more
sensitively on system parameters like the temperature T,167,175 which
makes their experimental observation a potentially interesting new
method of diagnostics.184 Describing the dynamics of a quantum
many-body system due to a time-dependent external perturbation
beyond the linear response regime is achieved by the real-time formu-
lation of time-dependent DFT (RT-TDDFT),185 which will be intro-
duced later.

Finally, we note that even the interpretation of XRTS experi-
ments with comparably low scattering intensity such that any nonlin-
ear effects can safely be neglected generally relies on a number of
model assumptions. More specifically, the most widely used model is
the Chihara decomposition,147,148,151,186 which is a chemical model
assuming a clear distinction between bound and free electrons. This
assumption is questionable in the WDM regime77 and constitutes a de
facto uncontrolled approximation in practice. Therefore, previous
EOS measurements14,187,188 can substantially depend on the employed
model and do not necessarily constitute a reliable benchmark for the
development of new theoretical approaches such as TDDFT,189 or reli-
able input for other applications. To overcome this unsatisfactory
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situation, Dornheim et al.146,190–192 have very recently suggested
switching from the usual frequency-representation to the imaginary-
time domain. This gives one direct access to the physical properties of
a given system of interest and allows one to extract, for example, the
temperature without any models, approximations, or simulations. In
addition, such imaginary-time correlation functions (ITCF) naturally
emerge within Feynman’s imaginary-time path-integral picture of
statistical mechanics193 and constitute an important link between
simulations,194,195 physical insights,190,192 and experimental
measurements.146,191

In this work, we attempt to give a coherent picture of the current
state-of-the-art with respect to our understanding of the electronic
density response of WDM. While we put more emphasis on a number
of recent promising developments with respect to theoretical models
and different simulation techniques, we also indicate the respective
connection to relevant experiments. Indeed, although the notion of
evaluating experimental data in the imaginary-time domain might
seem to be somewhere between impractical to outright outlandish, we
demonstrate the simplicity of the idea using an actual XRTS dataset.

The paper is organized as follows. Sec. II contains the relevant
theoretical background, starting with an introduction of the most
relevant numerical methods in Sec. II A, namely, path-integral
Monte Carlo (Sec. II A 1), thermal DFT (Sec. II A 2), and real-time
time-dependent DFT (RT-TDDFT) (Sec. II A 3). Moreover, we
briefly touch upon nonequilibrium Green’s functions (NEGF) in
Sec. II A 4. In addition, we discuss important relations within lin-
ear response theory (Sec. II B), its relationship to imaginary-time
correlation functions (Sec. II C), and finally some basic concepts
for a nonlinear theory of the electronic density response
(Sec. II D). Section III is devoted to the discussion of a gamut of
simulation results both for a uniform electron gas and for real
WDM systems. In particular, we start our discussion with results
for the linear density response in the static limit in Sec. III A,
including a discussion of PIMC simulations of the UEG (Sec.
III A 1) and recent PIMC and thermal DFT simulations of warm
dense hydrogen (Sec. III A 2). In Sec. III B, we extend these consid-
erations to the fully dynamic case, again starting with a PIMC-
based investigation of the UEG (Sec. III B 1) followed by TDDFT
calculations for hydrogen, iron, and aluminum in Sec. III B 2. The
discussion of simulation results is completed in Sec. III C, where
we present new results for the nonlinear density response of the
warm dense UEG. In Sec. IV, we connect our theoretical frame-
work to experimental observations by re-interpreting the XRTS

measurement of plasmons in warm dense beryllium by Glenzer
et al.202 in the imaginary-time domain.146,191 This paper is con-
cluded in Sec. V, where we discuss how our understanding of the
electronic density response of WDM can be improved in future
works by combining new developments in ab initio simulations
with new experimental setups.

II. THEORY

We consider an N-particle system that is described by the sum of
an unperturbed Hamiltonian Ĥ 0 and an external single-particle per-
turbation that we give in the most general form,

Ĥ ¼ Ĥ 0 þ V̂ q;x;A ; Ĥ 0 ¼ K̂ þ Ŵ þ V̂ pot; (5)

V̂ q;x;A ¼ 2Af ðtÞ
XN
l¼1

cos q � r̂ l � cxtð Þ: (6)

Here, K̂ ; Ŵ , and V̂ pot are the kinetic, interaction, and external
Coulomb energy (e.g., due to a configuration of ions) of the electrons,
respectively. Moreover, V̂ q;x;A corresponds to an additional external
perturbation with q and x being the corresponding wave vector and
frequency, and AðtÞ ¼ Af ðtÞ is a real perturbation amplitude that can
explicitly depend on the time.203 We note that both V̂ q;x;A and V̂ pot

contribute to the total external single-electron potential energy
V̂ ext ¼ V̂ pot þ V̂ q;x;A. In Eq. (6), we introduced a parameter c that is
either 0 or 1 to distinguish between static and monochromatic excita-
tion scenarios. An overview of the different physical situations that
have been treated with established analytical and computational
approaches is presented in Table I. Note that we assume Hartree
atomic units throughout unless indicated otherwise.

We are here interested in response functions whose most general
form explicitly depends on two spatial locations and two times
vðr1; t1; r2; t2Þ for inhomogeneous and nonequilibrium situations.
However, for sufficiently homogeneous equilibrium systems, only the
difference variables remain important, and after the Fourier transform
of r ¼ r1 � r2 and t ¼ t1 � t2, one usually studies vðq;xÞ.

In the limit of small A, linear response theory (LRT)59 becomes
valid, which leads to a number of simplifications and useful relations
that are discussed in Sec. II B. A more general nonlinear theory of the
electronic density response is discussed in Sec. IID. While it is often
convenient to restrict oneself to a static perturbation amplitude
AðtÞ � A in Eq. (5), the more general form is useful to study the
response of a given system to a finite perturbation pulse with real-time
methods, which is discussed in more detail in Sec. IIA 4.

TABLE I. Overview of possible excitation scenarios contained in the Hamiltonian Eq. (5). More details on linear-response theory (cases 1 and 3) can be found in Sec. II B; static
nonlinear response theory (case 4) is discussed in Sec. II D, and its generalization to the dynamic nonlinear regime (case 2) has been presented in Ref. 175. The theoretical for-
malism behind cases 5 and 6 is discussed in Sec. II A 4.

f(t) A0 c Regime Approach

1 1 Small 1 Dynamic linear response LR-TDDFT (Sec. II A 2), PIMC (Sec. II A 1) þ analytic continuation (Sec. II C)
2 1 Large 1 Dynamic nonlinear response Dynamic nonlinear response theory (Ref. 175)
3 1 Small 0 Static linear response PIMC (Sec II A 1), KS-DFT (Sec. II A 2), dielectric theories (Refs. 163 and 196–201)
4 1 Large 0 Static nonlinear response PIMC (Sec. II A 1), KS-DFT (Sec. II A 2)
5 A0dðtÞ Small 0 Weak kick Real-time TDDFT (RT-TDDFT) (Sec. II A 3), NEGF (Sec. II A 4)
6 A0dðtÞ Large 0 Strong kick RT-TDDFT (Sec. II A 3), NEGF (Sec. II A 4)
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From a practical perspective, we note that a gamut of numerical
methods for the description of WDM systems has been presented in the
literature, including molecular dynamics, classical Monte Carlo simula-
tions, average-atom models204–209 as well as integral equation theory
approaches within the hypernetted-chain approximation for effective
quantum potentials,210–213 dielectric formalism schemes,163,196–200,214–219

and quantum hydrodynamics.125,126,129,130,220

In Sec. IIA, we focus on four particularly important methods,
namely, path-integral Monte Carlo (Sec. IIA 1), thermal DFT (Sec.
IIA 2), real-time time-dependent DFT (Sec. IIA 3), and nonequilib-
rium Green functions (Sec. IIA 4).

A. Numerical methods

1. Path-integral Monte Carlo

The ab initio path-integral Monte Carlo (PIMC) approach221–224

is one of the most successful methods for the description of quantum
degenerate many-body systems. It is based on an evaluation of the par-
tition function in coordinate representation, which, in the case of an
electron gas in the canonical ensemble (inverse temperature
b ¼ 1=kBT , volume V ¼ L3, and number density n ¼ N=V are con-
stant) with N" andN# spin-up and spin-down electrons, is given by

Zb;N;V ¼
1

N"!N#!

X
r"2S"N

X
r#2S#N

sgn r"; r#
� �ð

V
dRhRje�bĤ jp̂r" p̂r#Ri:

(7)
Here, the summation over all elements ri of the respective permutation
group SiN , with p̂ri being the corresponding permutation operator,
ensures the exact anti-symmetry with respect to the exchange of coordi-
nates of identical fermions. Since a detailed introduction to the PIMC
method has been presented elsewhere,221 we here restrict ourselves to a
brief sketch of the main idea. The central obstacle with respect to a
direct evaluation of Eq. (7) is the non-commutability of the kinetic (K̂ )
and potential (V̂ ¼ Ŵ þ V̂ ext) contributions to the full Hamiltonian
Ĥ ¼ K̂ þ V̂ , which renders the matrix elements of the density operator
q̂ ¼ e�bĤ generally unfeasible. To overcome this issue, one can exploit
the well-known semi-group property of the density operator, which
eventually leads to a summation over P particle coordinates Ri.
Crucially, each of the corresponding P density matrices has to be evalu-
ated at P-times the original temperature, which allows for the introduc-
tion of suitable factorization schemes;225–227 the associated factorization
error can be estimated from the Baker–Campbell–Hausdorff formula228

and vanishes in the limit of large P.
In addition, we note that each high-temperature factor can be

interpreted as a propagation in the imaginary time t ¼ �i�hs over a
discrete time step s ¼ b=P. Consequently, each quantum particle is
represented as a path along the imaginary time, which can be mapped
onto an ensemble of classical ringpolymers; this is the origin of the cel-
ebrated classical isomorphism by Chandler and Wolynes.229

Moreover, PIMC gives one direct access to different imaginary-time
correlation functions, such as the imaginary-time version of the inter-
mediate scattering function defined in Eq. (39). The basic idea of the
PIMC method is to stochastically generate all possible path configura-
tions according to their respective contribution to the partition func-
tion Z based on the Metropolis algorithm.230 For indistinguishable
quantum particles—bosons or fermions—this also requires the

sampling of all possible permutation topologies,231 which can be
achieved efficiently using different implementations72,232 of the worm
algorithm by Boninsegni et al.233,234

In the case of bosons (or hypothetical distinguishable quantum
particles, which are sometimes referred to as Boltzmannons in the lit-
erature235,236), the sign function in Eq. (7) is always positive, and the
PIMC method allows for the quasi-exact simulation of up to N � 104

particles, which has given important insights into phenomena such as
superfluidity.237–239 For fermions, such as the electrons that are a key
constituent of WDM, the sign function changes its sign for every pair
exchange. The resulting cancelation of positive and negative terms is
the root cause of the notorious fermion sign problem,240–243 which
leads to an exponential increase in the required compute time upon
increasing the system size N or decreasing the temperature T.
Therefore, the direct PIMC method that is used in the present work is
limited to specific parts of the WDM parameter space (h � 0:5) and to
light elements such as hydrogen.78

For completeness, we note that the sign problem can formally be
avoided by imposing restrictions on the nodal structure of the thermal
density matrix; this restricted PIMC method developed by Ceperley79

is exact if the true nodal structure of the quantum many-body system
of interest was known. In practice, however, one has to introduce
approximations, and often the nodal structure of an ideal Fermi gas at
the same conditions is used.79,244 First, this fixed-node approximation
introduces an uncontrolled error that can be of the order of 10% in the
XC energy of a UEG at high density and low temperature,68 whereas it
is less pronounced in the momentum distribution function around h
¼ 1.72,73 Second, the nodal restrictions break the imaginary-time
translation invariance, which prevents the direct estimation of
imaginary-time correlation functions such as Fðq; sÞ, see Sec. II C.

2. Thermal density functional theory

Let us consider an (time-independent) electronic Hamiltonian of
the form

Ĥ ¼ K̂ þ Ŵ þ V̂ ext; (8)

with K̂ being the kinetic part, Ŵ containing the electron–electron
interaction, and V̂ ext an external single-particle potential. In particular,
V̂ ext takes into account the electron–ion interaction when a snapshot
of ions is considered, which is a common practice when DFT calcula-
tions are coupled to molecular dynamics (MD) simulations of classical
ions within the Born–Oppenheimer approximation.11 Furthermore,
V̂ ext can also include the monochromatic external perturbation that is
used to obtain the electronic density response, cf. Eq. (6) in the limit of
x! 0 and f ðtÞ � 1. The basic idea of DFT is to express the ground-
state energy of a many-electron system defined by Eq. (8) in terms of
the many-electron density nðrÞ. At finite temperature, this is achieved
by Mermin’s generalization85 of the Hohenberg–Kohn theorems.245

This enables a thermodynamic description of many-electron systems
within the context of DFT by the grand-canonical potential as a den-
sity functional,

X n½ � ¼ FT n½ � þ Vext n½ �; (9)

where
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FT n½ � ¼ min
Ĉ!n

K Ĉ½ � þ S Ĉ½ � þW Ĉ½ �
� �

(10)

is the universal functional that includes contributions from the kinetic
energy, entropy S, and electron–electron interaction. Note that FT ½n�
itself is minimized over the statistical operator Ĉ defined by the many-
particle states of the Hamiltonian in Eq. (8). Then, the grand-
canonical potential of a many-electron system in thermal equilibrium
is found by minimization

X ¼ min
n

X n½ � ¼ min
n

FT n½ � þ Vext n½ �
� �

: (11)

Minimizing X½n� over trial densities requires knowledge of all terms in
Eq. (9) as a functional of the density. This is, however, not straightfor-
ward because explicit density functionals of these terms (besides the
trivial term Vext½n�) are not known.

A practical solution to this problem is the KS approach.246 Here,
one defines an auxiliary system of noninteracting particles described
by a set of noninteracting single-particle Schr€odinger equations,

�r
2

2
þ vS n½ �ðrÞ

� �
/a;kðrÞ ¼ �a;k/a;kðrÞ; (12)

where /a;kðrÞ and �a;k denote the KS orbitals and corresponding
eigenvalues with band index a and Bloch wave number k, respectively.
The KS approach allows writing the grand-canonical potential as

X n½ � ¼ KS n½ � þ TSS n½ � þ U n½ � þ XXC n½ � þ Vext n½ �; (13)

where KS½n� denotes the KS kinetic energy, SS½n� the KS entropy, U½n�
the Hartree energy, and XXC the XC free energy. The KS system is
constructed such that the density it yields

nðrÞ ¼
X
a;k

fa;kðb; lÞj/a;kðrÞj2 (14)

is identical to the many-electron density of the corresponding interact-
ing many-electron system defined in Eq. (8). Due to their nature as
effective single-particle states, the KS orbitals f/a;kg are populated
according to the Fermi–Dirac distribution

fa;kðb; lÞ ¼ 1þ ebð�a;k�lÞ
� ��1

; (15)

with b ¼ 1=kBT and l is the chemical potential.59 In combination,
Eqs. (12) and (15) give one direct access to KS½n� ¼ �1=2
	
P

a;k

Ð
dr/
a;kðrÞr2/a;kðrÞ and SS½n� ¼ �

P
a;kðfa;k ln ðfa;kÞ þ ð1

� fa;kÞ ln ð1� fa;kÞÞ, whereas all non-ideal contributions to the full
kinetic energy K and entropy S are contained in the XC functional.
The equality of the density in Eq. (14) with the true many-electron
density is achieved by the KS potential defined as vS½n� ¼ vextðrÞ
þ vH½n�ðrÞ þ vXC½n�ðrÞ in terms of the external potential vextðrÞ, the
Hartree potential vH½n�ðrÞ ¼ dU ½n�=dnðrÞ, and the XC potential
vXC½n�ðrÞ ¼ dXXC½n�=dnðrÞ. In particular, the XC contribution
XXC½n� contains the full information about many-body correlations
and, therefore, would require the exact solution of the original many-
electron problem, which is not feasible. In practice, XXC½n�, therefore,
has to be approximated. Specifically, the particular choice of the
XC functional substantially influences the accuracy of a DFT
calculation,247 which makes both the benchmarking of existing func-
tionals90–93,255 and the construction of novel, more sophisticated
approximations toXXC½n� indispensable.

We note that the KS orbitals by themselves should be viewed not
as physical quantities but as auxiliary properties that are connected to
the energy and density of a system. At the same time, the f/ag consti-
tute an important ingredient to a number of other applications, such
as the incorporation of nonlocality into quantum hydrodynamics via
an ab initio Bohm potential term.129,220 A particularly important
application of the KS orbitals that have been obtained from an equilib-
rium DFT calculation is given by linear response time-dependent DFT
(LR-TDDFT), which is based on the KS response function162,248 given
by

vSGG0 ðq;xÞ ¼
1
V
X
k;a;a0

fak � fa0kþq
xþ �ak � �a0kþq þ ig

	 h/akje�iðqþGÞ�rj/a0kþqih/akjeiðqþG
0Þ�r0 j/a0kþqi: (16)

Here, the parameter 0 < g� 1 ensures the retardation, the sum runs
over the different eigenvalues � and Fermi functions f at different
momenta k and k þ q, x is the energy of the excited mode, and G;G0
are the reciprocal lattice vectors. We are here mainly interested in the
macroscopic response functions, i.e., setting G ¼ G0 ¼ 0.

The physically meaningful dynamic electronic linear density
response of a system of interest is then given by

vðq;xÞ ¼ vSðq;xÞ
1� vðqÞ þ Kxcðq;xÞ½ �vSðq;xÞ ; (17)

with Kxcðq;xÞ being the XC kernel mentioned in the discussion of
Eq. (4) above. Since the LHS of Eq. (17) is a well-defined physical
observable, the kernel Kxcðq;xÞ strongly depends on the particular
form of the KS response function vSðq;xÞ. In other words, the true
XC kernel has to depend both on the material and on the XC func-
tional that has been used for the computation of the f/ag. From a
theoretical perspective, the XC kernel is readily defined in terms of
a double functional derivative of the XC free energy;163 this is diffi-
cult to evaluate in practice and, to our knowledge, only possible for
simple XC functionals in the case of bulk systems. Consequently,
accurate and dynamic XC kernels exist only for model systems
such as the UEG.185,249–252

An alternative approach to the computation of the XC kernel
from the second order functional derivatives is based on the per-
turbation of the system by an external harmonic field to measure
the density response and from that to extract the XC kernel by
inverting Eq. (17). This method was used by Moroni et al.253 to cal-
culate the static density response function and the LFC of the UEG
in the ground state from quantum Monte Carlo simulations.
Recently, it was used within KS-DFT by Moldabekov et al. to com-
pute the static XC kernel of the UEG and warm dense hydrogen on
the basis of various XC functionals across Jacob’s Ladder.254,255

Some illustrative results from these studies are presented in
Sec. III A 2.

We note that setting Kxcðq;xÞ � 0 in Eq. (17) is often denoted
as RPA in the DFT literature but does not correspond to a mean-field
description as the KS orbitals automatically contain a certain amount
of information about electronic XC effects due to the employed XC
functional. Finally, having the LR-TDDFT result for vðq;xÞ gives one
direct access to a number of material properties, such as the dynamic
structure factor Sðq;xÞ, see Eq. (31).
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3. Real-time time-dependent DFT (RT-TDDFT)

The real-time approach to TDDFT (RT-TDDFT)185,256,257 is a
computationally efficient method for studying nonequilibrium elec-
tronic dynamics in first principles models of materials with an explicit
treatment of the electron–ion interaction (usually within the
Born–Oppenheimer approximation or sometimes using Ehrenfest
molecular dynamics) and large basis sets. The equations of motion in
RT-TDDFT are the time-dependent Kohn–Sham equations,

i
@

@t
/a;kðr; tÞ ¼ �r

2

2
þ vS n½ �ðr; tÞ

� 	
/a;kðr; tÞ; (18)

where we have vS½n�ðr; tÞ ¼ vextðr; tÞ þ vH ½n�ðr; tÞ þ vxc½n�ðr; tÞ. In
what follows, we shall abbreviate the effective Hamiltonian as
Ĥ SðtÞ ¼ �r2=2þ vSðr; tÞ. This is typically posed as an initial value
problem in which /a;kðr; tÞ is known for some t ¼ ti, typically from
the solution to a static Mermin–Kohn–Sham DFT problem. The time-
dependent density is

nðr; tÞ ¼
X
a;k

fa;kðb;lÞj/a;kðr; tÞj2; (19)

and these occupation factors are typically consistent with the initial
condition and held constant over the course of the dynamics. Among
the three terms in vS, vext describes the attractive electron–ion interac-
tion as well as impressed perturbations that drive the dynamics, vH is
the time-dependent Hartree potential, and vxc is the time-dependent
XC potential that describes electronic exchange and correlation. The
creation of approximations to the exact time-dependent Kohn–Sham
potential that are both accurate and computationally efficient is one of
the central problems in RT-TDDFT. The practical trade-off between
the cost and accuracy of available and prospective approximations is
the central factor in determining whether RT-TDDFT is the right
method for a particular calculation.

While RT-TDDFT is capable of approximating these dynamics
owing to arbitrary excitations [i.e., forms of vextðr; tÞ], it can also cap-
ture linear response functions in the limit that vextðr; tÞ is proportional
to dv0f ðtÞ, where dv0 is a constant that determines the strength of the
perturbation and f(t) is an arbitrary smooth function whose Fourier
transform has support on the energies over which the linear response
function is desired. As in LR-TDDFT, the response function computed
using RT-TDDFT captures collective effects258,259 that are absent in
approaches, in which the Kubo–Greenwood (KG) formula is directly
applied to the Kohn–Sham orbitals.260–262 Furthermore, the computa-
tional details of these formulations differ in such a way that RT-
TDDFT can be made asymptotically less expensive than LR-TDDFT.
To understand when and how RT-TDDFT is most efficient, we first
need to describe typical approaches to the numerical solution of Eq.
(18).

The time integration of Eq. (18) requires the implementation of a
numerical approximation to the exact time-ordered unitary propaga-
tor that translates any KS orbital in time,

Uðtf ; tiÞ ¼ T exp �i
ðtf

ti

dsĤ SðsÞ

2
64

3
75; (20a)

where /a;kðr; tf Þ ¼ Uðtf ; tiÞ/a;kðr; tiÞ; (20b)

and T is the time-ordering operator. One approach to approximating
this is first-order Trotterization of Eq. (20a) into N time steps of width
Dt ¼ ðtf � tiÞ=N , over which the effective Hamiltonian is approxi-
mated as a constant at the midpoint of each step, eliminating the need
for time ordering,

Uðtf ; tiÞ �
YN�1
k¼0
Uap ti þ ðkþ 1ÞDt; ti þ kDt½ �; (21a)

where Uapðt þ Dt; tÞ ¼ exp �iDtĤ S t þ Dt
2

� �
 �
: (21b)

While conceptually straightforward, the practical implementation of
this approach requires the numerical approximation of a matrix expo-
nential and, thus, the diagonalization of Ĥ S at each time step or some
other more efficient method for numerically effecting this operation.

Naive approaches to these operations have a cost that is cubic in
the number of KS orbitals, which grows rapidly with temperature in
and beyond the warm dense regime. The parallel scalability of these
approaches is also limited by a conflict between the optimal data distri-
bution for effecting the product of Ĥ S and a trial orbital, and orthogo-
nalization of those orbitals, i.e., the optimal distribution for one is
suboptimal for the other. It turns out that it is possible to avoid both of
these costs in RT-TDDFT, and, thus, it can be made to be more effi-
cient and scalable259,263–265 than implementations that rely directly on
dense linear algebra, including many implementations of LR-TDDFT.
The precise conditions under which an RT-TDDFT linear response
calculation is more efficient than an LR-TDDFT calculation are sensi-
tive to many details of the calculation, but a large number of thermally
occupied orbitals common in WDM calculations tend to favor RT-
TDDFT as temperature increases.

While a scalar perturbation of the form vextðr; tÞ ¼ v0 exp ðiq
�rÞf ðtÞ can be used to compute the DSF at non-zero q,189,225 the calcu-
lation of the conductivity in the q! 0 limit requires the extension of
RT-TDDFT to vector perturbations. More specifically, these vector
perturbations are used to simulate a spatially uniform electric field,
EðtÞ ¼ �ð1=cÞð@A=@tÞ, impressed over the entire supercell.266,267

While the strength of this perturbation need not be weak in
RT-TDDFT, as with the DSF, one can implement an LR-TDDFT cal-
culation with a sufficiently weak EðtÞ to compute the conductivity
rðxÞ. Then, rather than the time-dependent electronic charge density,
the spatially uniform component of the time-dependent current den-
sity is related to the response function of interest. Calculations of the
conductivity are realized using a microscopic version of Ohm’s
law,23,24

JiðxÞ ¼ rijðxÞ EjðxÞ: (22)

Here, the current density (J) and electric field (E) are vectors, while the
conductivity (r) is a tensor. The dielectric tensor is related to the con-
ductivity tensor via

�ijðxÞ ¼ dij þ i
4prijðxÞ

x
: (23)

Figure 2 illustrates the methodology starting with a weak sigmoi-
dal pulse applied in the z direction. The induced current density along
z is shown in the left panel, and the frequency-dependent conductivity
obtained using the Fourier transform of the induced current density is

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 30, 032705 (2023); doi: 10.1063/5.0138955 30, 032705-7

VC Author(s) 2023

 19 April 2024 14:55:57

https://scitation.org/journal/php


shown in the right panel. Note that the values for jzðtÞ in Fig. 2 are in
atomic units.

4. Nonequilibrium Green’s functions

The nonequilibrium Green’s functions (NEGF) theory is a pow-
erful approach to treat electronic correlations, quantum and spin
effects as well as dynamical screening in non-ideal quantum systems,
e.g., Refs. 154 and 268. There exist many applications to the warm
dense uniform electron gas and to dense fully ionized plasmas.268–270

Being computationally very demanding, many studies of real materials
have been restricted to ground-state properties, e.g., Refs. 271 and 272,
providing important benchmarks for DFT, where QMC results are not
available. On the other hand, an accurate analysis of the behavior of
electrons out of equilibrium, including strong excitation and the short-
time dynamics, is possible but has been performed mostly for model
systems, such as the UEG or lattice systems.273,274 Thus, the NEGF
theory is complementary to both PIMC and DFT.

The NEGF theory is formulated in second quantization (Fock
space), starting from a complete set of single-particle orbitals, f/ig
and the associated creation and annihilation operators, ĉ

†

i and ĉj. The
central quantity is the single-particle Green’s function, which is an
ensemble average of the Heisenberg form of the field operators,

gijðt; t0Þ ¼ �
i
�h
hT CĉiðtÞ̂c

†

j ðt0Þi; (24)

where T C is the time-ordering operator that is analogous to the one in
Eq. (20a). Here, the subscript C indicates the use of the Keldysh time
contour C275 that allows the extension of the power of Feynman dia-
grams to arbitrary nonequilibrium situations (for details, see the text
books276,277) The angular brackets denote the expectation value that is
computed either with the N-particle wave function (pure state) or N-
particle density operator (mixed state) of the non-excited system.

The Green’s function (24) gives access to all one-particle observ-
ables, such as the density matrix, which follows from the time-
diagonal Green’s function, njiðtÞ ¼ �h

i gijðt; t þ �Þ, where � is an infini-
tesimal positive constant assuring the proper ordering of the two field
operators. A particular advantage of the NEGF theory arises from the
two-time structure of the function g: its values for different time argu-
ments give direct access to the spectral function, the density of states,
and the interaction energy of the system.

A special case is the coordinate representation, which will be
used in Sec. IID. There, a special notation for the field operators is
used, ciðtÞ ! wð1Þ, where 1 ¼ fr; t1g (the spin index is suppressed).
Then, the single-particle space and time-dependent density is obtained
from the space and time-diagonal elements of Green’s function (24),

nð1Þ ¼ �h
i
gð1; 1þ �Þ: (25)

The equations of motion for the NEGF are the Keldysh–
Kadanoff–Baym equation (KBE, to be supplemented by the adjoint
equation),X

k

i�h@tdik � hHF
ikrðtÞ

� �
gkjrðt; t0Þ

¼ dCðt � t0Þdij þ
X
k

ð
C
dsRcor

ikrðt; sÞgkjrðs; t0Þ; (26)

where hHF contains kinetic, potential, and mean-field (Hartree–Fock)
energy contributions, whereas correlation effects are included in the
self-energy Rcor½g�, which is a functional of the one-particle NEGF.

The KBE is analogous to the time-dependent Kohn–Sham equa-
tions of TDDFT, Eq. (18). The main differences are: (1) the KBE are
equations for a density matrix that is similar to a product of two KS
orbitals. (2) The energy terms are grouped slightly differently than in
TDDFT—the Hartree mean field and exact exchange are contained in
hHF. (3) The exchange-correlation potential vxc½n� is replaced by the
correlation self-energy Rcor, which depends on g rather than on the
density and, therefore, depends on two times. Thus, it includes mem-
ory effects. (4) Similar to vxc in the case of DFT, Rcor is the only
approximation of the NEGF theory. Many systematic approaches exist
for the self-energy, most importantly Feynman diagram methods that
include the perturbation theory and partial resummations that allow
the systematic inclusion of dynamical screening effects and bound
states, e.g., Refs. 278 and 279. A comparison of the known approxima-
tions for vxc and Rcor is a topic of active research as it allows for bench-
marks between the two approaches and offers the derivation of novel
approximations for both, DFT and NEGF.

For the electronic density response of warm dense matter, the
NEGF theory offers a variety of approaches. First, it is the derivation
of equilibrium density response functions, which are obtained by func-
tional derivation of g, as will be demonstrated in Sec. IID.
This method allows one to systematically derive not only the linear

FIG. 2. (a) Induced current density in the z
direction vs time; (b) frequency-dependent
conductivity component rzz .
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density response but also nonlinear generalizations. Second, there
exists a straightforward real-time approach to the linear and nonlinear
density response that was developed by Kwong and Bonitz.203 To this
end, an external potential is added to the general Hamiltonian (5) that
is of the form Vextðr; tÞ ¼ U0ðtÞ cos ðqrÞ. This potential imposes a
density modulation to the system, and the short temporal duration of
the pulse (“kick”) translates into a broad range of excitation energies.
The solution of the KBE (26) for a UEG excited with this short pulse
excites a monochromatic density perturbation that decays with the
plasmon frequency for that q as shown in Fig. 3. The density fluctua-
tion dnðq; tÞ follows directly from the perturbation of the NEGF, via
Eq. (25),

X
p

dgðp; t; tÞ ¼ idnðq; tÞ ¼
ð1
�1

d�t vðq; t;�tÞU0ð�tÞ; (27)

and is, to the lowest order (linear response), proportional to the excita-
tion. In equilibrium, the density response function is stationary,
vðq; t; t0Þ ¼ vðq; t � t0Þ, and Eq. (27) can be solved in Fourier space
for v: vðq;xÞ ¼ dnðq;xÞ=U0ðxÞ, which gives access to all linear
response functions, including the dielectric function and the dynamic
structure factor, as discussed in Sec. IIB.

A remarkable feature of real-time NEGF computations of the
density response is that already fairly simple approximations for the
self-energy Rcor yield high level results for the density response func-
tions. The relation to the first (equilibrium) approach which requires
to solve the Bethe–Salpeter equation (BSE) for the two-particle
Green’s function with a kernel N268 is given by Kwong and Bonitz203

and Bonitz et al.,280

Nð1; 3; 4; 2Þ ¼ 6dRð1; 3Þ=dgð4; 2Þ: (28)

The diagrams contributing to N, if the KBE is solved on the level of
second Born self-energies, are shown in the bottom of Fig. 3. Thereby,
use of conserving self-energies automatically yields sum rule preserv-
ing approximations for N. These attractive properties of NEGF should
also be fulfilled for other time-dependent approaches, including real-
time TDDFT offering interesting opportunities for the treatment of
correlation effects in WDM.

Finally, we note that the real-time NEGF approach can be
straightforwardly extended to the nonlinear response of the UEG as
demonstrated in Ref. 203.

B. Linear response theory

At this point, let us set the perturbation amplitude in Eq. (5) to
be a constant (except for an infinitesimal damping that assures the
vanishing of the perturbation for t !�1), which leads to the har-
monically perturbed Hamiltonian,167,253,281

Ĥ ! Ĥq;x;A ¼ Ĥ 0 þ 2A
XN
l¼1

cos q � r̂ l � xtð Þ: (29)

In the limit of small A, the linear response theory (LRT)59 becomes
valid, and the induced density is fully described by the simple linear
relation,

dnðq;x;AÞ ¼ Avðq;xÞ/q;x; (30)

where /q;x is the Fourier transform of the cosine perturbation, given
by a sum of delta functions at positive and negative values of the wave
vector q and the frequency x. In other words, the system only exhibits
a non-zero response at the wave vector and frequency of the original
perturbation within LRT for homogeneous systems. For completeness,
we note that this remains approximately true for weakly inhomoge-
neous systems, see Ref. 255 for a recent discussion. Effects such as the
excitation of higher harmonics175 or mode-coupling between multiple
perturbations177 are then exclusively nonlinear effects and are dis-
cussed in Sec. IID.

For now, we shall postpone the discussion of the theoretical esti-
mation of the linear density response function vðq;xÞ and instead
focus on its utility for the description of WDM and beyond. In this
regard, a key relation is given by the fluctuation-dissipation theorem
(FDT),59

Sðq;xÞ ¼ � Imvðq;xÞ
pnð1� e�bxÞ ; (31)

where n denotes the average density. Equation (31) gives a direct and
unique relation between the density response and the dynamic struc-
ture factor Sðq;xÞ. In fact, Sðq;xÞ fully determines vðq;xÞ, as the

FIG. 3. Real-time NEGF simulation of the density response of the warm dense
UEG following an excitation with a potential Vextðr ; tÞ ¼ U0ðtÞ cos ðqrÞ, cf. dash-
dotted line. Even after the excitation has vanished, the electron density exhibits
plasma oscillations where frequency and damping depend on the self-energy Rcor

used in the solution of the KBE (26). HF (HF2): no correlation self-energy starting
from an noninteracting (interacting) initial state—this corresponds to the RPA result
of the equilibrium theory; HFþ second Born: Rcor within the second Born approxi-
mation (2BA) showing correlation induced red-shift and collisional damping in addi-
tion to Landau damping. Diagrams at the bottom show the relation to equilibrium
approach: the use of the 2BA for Rcor is equivalent to solving the Bethe–Salpetr
equation with a two-particle kernel N containing the indicated diagrams. Figure
modified from Ref. 154.
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real and imaginary parts of the latter are connected by the well-known
Kramers–Kronig relations.59

From a practical perspective, the DSF constitutes the central
quantity in XRTS experiments with WDM;147,149,151 the measured
scattering intensity Iðq;xÞ is given by the convolution of the DSF
with the combined source and instrument function RðxÞ, see Eq. (3),
and the wave vector q is determined by the scattering angle. Therefore,
the availability of an accurate model for either vðq;xÞ [subsequently
evaluating Eq. (31)] or directly for Sðq;xÞ allows one to compare the-
oretical calculations with experimental measurements. Here, LR-
TDDFT (Sec. IIA 2) is an example for the first route, whereas approxi-
mate Chihara models147,148,151,186 that decompose the full DSF into
contributions from bound and free electrons and their respective tran-
sitions directly work with Sðq;xÞ. In practice, these models can easily
be convolved with RðxÞ and are used to infer a-priori unknown sys-
tem parameters such as the temperature. Evidently, the quality of a,
thus, inferred EOS significantly depends on the level of accuracy of the
employed approximation. Very recently, Dornheim et al.146,190 have
proposed to avoid this limitation by switching to the imaginary-time
domain, which is discussed in Sec. II C.

A second highly important application of LRT stems from the
combination of the FDT [Eq. (31)] with the adiabatic-connection for-
mula, which we describe in the following. As an initial step, we note
that the DSF gives straightforward access to the static structure factor
(SSF) SðqÞ via

SðqÞ ¼
ð1
�1

dx Sðq;xÞ: (32)

For completeness, we point out that the SSF contains the same infor-
mation as the pair correlation function gðrÞ, and they are related by
Hansen and McDonald,282

gðrÞ ¼ 1þ 1
n

ð
dq

ð2pÞ3
SðqÞ � 1ð Þeiq�r: (33)

As the next step, we can use either SðqÞ or gðrÞ to estimate the interac-
tion energyW, for example,282

W ¼ 1
2

ð
V
dr1

ð
V
dr2

nð2Þðr1; r2Þ
jr1 � r2j

: (34)

where nð2Þðr1; r2Þ ¼ nðr1Þnðr2Þgðr1 � r2Þ denotes the two-particle
density. Note that, for the classical and quantum OCP, owing to the
rigid charge neutralizing background, the substitution n2ðr1; r2Þ
! n2ðr1; r2Þ � nðr1Þnðr2Þ is implied, which is necessary for conver-
gence.283 Finally, the adiabatic-connection formula relates Eq. (34)
with the XC contribution fxc to the free energy,

59

fxc ¼
ð1
0
dk hŴ ikk: (35)

In other words, integrating over the interaction energy of a system
where the interaction contribution to the Hamiltonian has been re-
scaled by k 2 ½0; 1�; Ĥ k ¼ Ĥ 0 þ kŴ gives access to the free energy.
From the k� parametric form, it is rather evident that the adiabatic-
connection formula constitutes the finite temperature version of the
Hellmann–Feynmann theorem,284 which is a very useful tool at zero
temperature.59 In the context of the classical and quantum OCP, the

coupling parameter forms of the adiabatic-connection formula are
nearly exclusively employed,28,283,285

fxcðrs; hÞ ¼
1
r2s

ðrs
0
r0sWðr0s; hÞdr0s; quantum OCP; (36a)

fcðCÞ ¼
ðC

0

WðC0Þ
C0

dC0; classical OCP: (36b)

Consequently, knowledge of the response of a given system to all pos-
sible external perturbations, in the limit of a weak perturbation ampli-
tude, gives access to all thermodynamic properties and, thus, also to
the free energy.

In practice, Eqs. (34) and (35) constitute the prime motivations
for the field of the self-consistent dielectric formal-
ism.163,196–201,214–219,286,287 Here, the basic idea is to develop approxi-
mate expressions for the LFC Gðq;xÞ, which give access to vðq;xÞ,
see Eq. (4) that can be employed via Eqs. (31), (32), (34), and (35) to
compute a host of dynamic, static, and thermodynamic properties. It
is noted that, in general, the LFC is a complicated functional of the
DSF. In practice though, the LFC is a complicated functional of the
SSF only, which still translates to a complex nonlinear system of inte-
gral (in wavenumber and frequency) equations. Recent advances in
this field have mainly focused on the accurate description of the
strongly coupled electron liquid288 with rs � 10, with notable progress
reported by Tanaka200 and Tolias et al.201 These schemes are based on
the combination of the non-perturbative integral equation theory of
classical liquids with the quantum dielectric formalism. The latter
scheme201 simplifies to the former200 in well-defined limits and bene-
fits from the availability of accurate OCP bridge functions extracted
from MD simulations.289,290 Moreover, we stress that further develop-
ment of dielectric theories remains an important goal also in the
WDM regime, as the best available LFCs are frequency averaged, i.e.,
they neglect the dependence on x, Gðq;xÞ � GðqÞ. Having a reliable
and consistently frequency-dependent model for the LFC would allow
a number of interesting investigations such as the determination of the
effective mass within the concept of Fermi liquid theory,291 or the fur-
ther analysis of a possible experimental detection of the roton fea-
ture252,292 in the dilute electron gas.

Finally, we note that Eq. (35) has been used by a number of
groups28,69,94,163,197 to construct representations of the XC free
energy of the UEG based on different input datasets for the inter-
action energyW.

As an alternative route to obtain insights into the local field cor-
rection without any dielectric approximations, Moroni et al.253 have
suggested to carry out QMC calculations based on the modified
Hamiltonian of Eq. (29), but in the static limit of x! 0. In the
ground state, the stiffness theorem59 then gives a straightforward rela-
tion between the induced change in the total energy and the static den-
sity response function vðqÞ � vðq; 0Þ. This approach has
subsequently been used by different groups to estimate the static den-
sity response of a number of systems, including the UEG,281,293 a
charged Bose gas,294 and neutron matter.295

At finite temperature, it is more convenient to directly work with
induced densities in reciprocal space,296,297

hq̂kiq;A ¼
1
V

�XN
l¼1

e�ik�r̂ l



q;A

; (37)
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with h…iq;A indicating that the expectation value is to be taken with
respect to Eq. (29). The sought-after static linear density response
function vðqÞ can then be obtained via the relation

hq̂kiq;A ¼ dk;qvðqÞA: (38)

Furthermore, it is straightforward to invert Eq. (4) to obtain the
static local field correction GðqÞ. This has allowed Moroni et al.281 to
compute the first accurate results for GðqÞ of the UEG in the zero-
temperature limit, which have subsequently been used as input for the
parameterization by Corradini et al.298

While being formally exact, the approach that is delineated by
Eqs. (37) and (38) requires, for any given combination of ðrs; hÞ, the
execution of multiple independent QMC simulations for each individ-
ual q and for different perturbation amplitudes A (also to ensure non-
linear effects are negligible). An elegant and computationally less
demanding alternative is given by the PIMC estimation of the
imaginary-time density-density correlation function Fðq; sÞ [Eq. (39)],
which is discussed in Secs. IIC.

C. Imaginary-time density-density correlation function

The imaginary-time density–density correlation function (ITCF)
Fðq; sÞ is given by the intermediate scattering function defined in
Eq. (2) above but evaluated at the imaginary time t ¼ �i�hs, with
0 � s � b; in the following, we will simply denote it as

Fðq; sÞ ¼ hn̂ðq; 0Þn̂ð�q; sÞi: (39)

From a theoretical perspective, the estimation of Eq. (39) within a
PIMC simulation is straightforward190,193 and requires the correlated
evaluation of two density operators in reciprocal space at two different
imaginary-time slices. For completeness, note that QMC results for
the ITCF have been reported for a gamut of systems beyond WDM,
including ultracold helium,299–303 exotic supersolids,304 and the UEG
in the zero-temperature limit.305

A first important relation is given by the connection between
Fðq; sÞ and the static density response function vðqÞ, which is known
as the imaginary-time version of the fluctuation–dissipation
theorem,190,293

vðqÞ ¼ �n
ðb

0
ds Fðq; sÞ: (40)

In practice, Eq. (40) therefore allows one to estimate the full wave vec-
tor dependence of the static linear density response function from a
single simulation of the unperturbed system without worrying about
nonlinear effects. This approach was extensively used by Dornheim
and co-workers over different parameter regimes.29,194,288,306,307

A second important relation is given by the connection between
Fðq; sÞ and the DSF, which simply comprises a two-sided Laplace
transform,

Fðq; sÞ ¼ L Sðq;xÞ½ � ¼
Ð1
�1 dx e�xsSðq;xÞ: (41)

Traditionally, Eq. (41) constitutes the starting point for a so-called
analytic continuation,308 i.e., a numerical inversion to obtain Sðq;xÞ
from the QMC data for the ITCF. This is a well-known, though noto-
riously difficult problem. In fact, an inverse Laplace transform is ill-
posed, and the inevitable statistical error bars in the QMC input data

lead to different instabilities in practice.308 As a consequence, a host of
different strategies to deal with the analytic continuation have been
suggested in the literature,252,299,300,306,309–316 but the quality of the,
thus, reconstructed Sðq;xÞ generally remains unclear. A notable
exception is given by the warm dense UEG, for which a number of
exact analytical constraints allow one to sufficiently reduce the space
of possible Sðq;xÞ to render the numerical inversion of Eq. (41) trac-
table.252,306,317,318 This has allowed Dornheim et al.252 to present the
first accurate results for Sðq;xÞ, which has given important insights
into the nature of the XC induced red-shift in the dispersion of the
UEG, cf. Sec. III B 1.

On the other hand, it is well understood that the two-sided
Laplace transform constitutes a unique mathematical transformation.
Therefore, the ITCF contains by definition the same amount of infor-
mation as the DSF, albeit in an, at first, unfamiliar representa-
tion.146,190,192 For example, consider the exact spectral representation
of the DSF59

Sðq;xÞ ¼
X
m;l

PmknmlðqÞk2dðx� xlmÞ: (42)

In other words, Sðq;xÞ is given by the sum over all possible transi-
tions between the eigenstates m and l of the full N-body Hamiltonian
induced by the density operator n̂ðqÞ, with Pm being the probability to
occupy the initial state m, knmlðqÞk is the corresponding transition
matrix element, and xlm ¼ ðEl � EmÞ=�h denotes the energy differ-
ence. Inserting Eq. (42) into Eq. (41) gives the analogous representa-
tion in the s-domain,

Fðq; sÞ ¼
X
m;l

PmknmlðqÞk2e�sxlm : (43)

Evidently, the s-decay of Fðq; sÞ for a given wave vector q is shaped
by the characteristic frequencies in the corresponding Sðq;xÞ. In par-
ticular, Eq. (43) directly implies that energetically low-lying excitations
such as the roton feature in the dilute UEG292 will directly manifest as
a less pronounced decay with s. Conversely, it holds that xðqÞ � q2 in
the non-collective single-particle regime with q� qF (with qF being
the usual Fermi wave number59), which will lead to a steeper decay of
the ITCF. Dornheim et al.190 have suggested characterizing this with a
relative decay measure of the following form:

DFsðqÞ ¼
Fðq; 0Þ � Fðq; sÞ

Fðq; 0Þ ; (44)

and the corresponding results are shown in Fig. 10.
In addition to being of great value for the interpretation of simu-

lation results for Fðq; sÞ, these considerations open up new avenues
for the interpretation of XRTS experiments with WDM.146 In particu-
lar, the numerical deconvolution of the measured XRTS signal [Eq. (3)
above] is generally prevented by the inevitable experimental noise.
Therefore, XRTS experiments do not give direct access to the DSF,
which contains the relevant physical information about the given sys-
tem of interest. Instead, one has to take the aforementioned detour
over a model description of Sðq;xÞ, which then has to be inserted into
Eq. (3) for a comparison to the experimental observation.
Unfortunately, this forward-fitting approach introduces a bias to the
interpretation of the experiment that depends on the employed
approximation. To our knowledge, no exact simulation or theory is
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available for the description of Sðq;xÞ of real materials in the WDM
regime.

In stark contrast, switching to the Laplace domain, i.e., inserting
both the XRTS intensity Iðq;xÞ and the combined source and instru-
ment function RðxÞ into Eq. (41), makes the deconvolution trivial;
this is due to the convolution theorem of L½…�, which states that

L Sðq;xÞ½ � ¼ L Sðq;xÞ~RðxÞ½ �
L RðxÞ½ � ¼ L Iðq;xÞ½ �

L RðxÞ½ � : (45)

Indeed, the LHS of Eq. (45) is the ITCF Fðq; sÞ, which contains the
same physical information as the DSF. As we shall see, this allows for
the straightforward interpretation of XRTS experiments without any
models, simulations, or approximations.

For a uniform system in thermodynamic equilibrium, the DSF
fulfills the well-known detailed balance between positive and negative
frequencies,59,147,319

Sðq;�xÞ ¼ Sðq;xÞe�bx: (46)

The detailed balance condition is a direct consequence of the exact
spectral representation of the DSF, see Eq. (42), and is central to the
derivation of the FDT, see Eq. (31). In essence, detailed balance is
reflected by the FDT, given the odd frequency-parity of Imvðq;xÞ.
Inserting Eq. (46) into Eq. (41) gives the important symmetry
relation,146,191

Fðq; sÞ ¼
ð1
0
dx Sðq;xÞ e�xs þ e�xðb�sÞ

� �
¼ Fðq; b� sÞ: (47)

In particular, Eq. (47) implies that Fðq; sÞ is symmetric around
s ¼ b=2. In practice, one can, thus, directly diagnose the tempera-
ture of a given system from the Laplace transform of the XRTS sig-
nal, cf. Fig. 16 in Sec. IV; no forward-modeling or simulations are
required.

As a final useful property of the ITCF, we mention its relation to
the frequency moments of the DSF, which are defined as59,153,320

MS
a ¼ hxaiS ¼

ð1
�1

dx Sðq;xÞxa: (48)

For example, the first moment (i.e., a ¼ 1) is given by the exact f-sum
rule,59,321

MS
1 ¼ hx1iS ¼

q2

2
: (49)

The same information is encoded into the ITCF via its derivatives with
respect to s around s¼ 0,190,322

MS
a ¼ �1ð Þa @

a

@sa
Fðq; sÞ

����
s¼0
: (50)

In addition to being interesting in their own right, the frequency
moments constitute exact constraints that assist in the analytic
continuation that is necessary for the reconstruction of the DSF
from the QMC ITCF data, see the inversion of the Laplace trans-
form of Eq. (41).252,306,317,318 They also constitute the key input for
the non-perturbative method of moments that is used by
Tkachenko and co-workers to estimate Sðq;xÞ based on static
structural properties.323–326

D. Nonlinear density response theory

Even though the idea of LRT is prevalent and very useful in
almost all areas of physics, an incomparably richer treasure trove
of physics can be obtained by considering stronger deviations from
equilibrium, i.e., the nonlinear response. The response of the inves-
tigated system to stronger external perturbations not only can be
described but also gives direct access to higher-order correlation
functions.176

The general definition of higher-order response functions is given
by an induced density dnð~r ; tÞ expansion,

dnð1Þ ¼
XN
l¼2

ð
w
ðl�1ÞðflgÞ

Yl
i¼2

VðiÞdðiÞ; (51)

where 1 ¼ f~r1; t1g; flg ¼ ð1; 2;…; lÞ; d1 ¼ fd~r1; dt1g. After writ-
ing the first three terms explicitly and setting vð1; 2Þ �w

ð1Þð1; 2Þ, we
have171,181

dnð1Þ ¼
ð
d2 vð1; 2ÞVð2Þ

þ
ð
d2d3wð2Þð1; 2; 3ÞVð2ÞVð3Þ

þ
ð
d2d3d4wð3Þð1; 2; 3; 4ÞVð2ÞVð3ÞVð4Þ � � � : (52)

Here, all time integrations run from �1 to t1, meaning that we
need the retarded response functions. Still assuming a relatively
weak perturbation, the series can be truncated after the second
(quadratic) or third (cubic) term. Thus, the quadratic response
function w

ð2Þ and the cubic response function w
ð3Þ are

introduced.
Mathematically, these response functions can be defined as func-

tional derivatives of the one-particle Green’s function gð110Þ
¼ �ihTfwþð10Þwð1Þgi with respect to the external perturbation.
They are special cases of more general higher-order correlation func-
tions. For the linear response function, we have

vð1; 2Þ ¼ Lð12; 1020Þ
���� 10 ¼ 1þ

20 ¼ 2

¼ 6i
dgð110Þ
dVð202Þ

���� 10 ¼ 1þ

20 ¼ 2

: (53)

Here, tþ1 ¼ t1 þ e. The function L is, in general, a true four-point
function describing, among other properties, the correlations of two
density fluctuations and the scattering of two particles in a medium.
The definition of the quadratic response function is

w
ð2Þð1; 2; 3Þ ¼ ð6iÞ2 d2gð11þÞ

dVð33ÞdVð22Þ : (54)

Again, this is a special case of the three-particle correlator
Yð123; 102030Þ. Similar considerations are valid for the cubic response
function. Equations (53) and (54) can be used to derive exact equa-
tions of motion for the linear and quadratic response functions and
also to obtain RPA and other approximations for any of the higher-
order response functions.

It may sometimes be useful to introduce effective quantities like
the polarization function and dielectric functions to describe in-matter
effects. In the case of linear response, it holds
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vð1; 2Þ ¼
ð
d3Pð13ÞKð23Þ; (55)

where the polarization function P and the generalized linear dielectric
function K were introduced. In such a way, the effective response
described by the polarization function is connected to the total
response described by v. A similar relation for the quadratic response
function reads

w
ð2Þð1;2;3Þ ¼

ð
d4d5Pð1;4;5ÞKð35ÞKð24Þþ

ð
d4Pð14ÞKð3;2;4Þ:

(56)

This defines the quadratic polarization Pð123Þ and the quadratic
dielectric function K(123). Naturally, this can be extended to the cubic
case.

For simplicity, we restrict ourselves to the quadratic
response; the higher-order response has been investigated else-
where.175,195 We also assume the system to be homogeneous and
the external perturbation to be of harmonic nature. Note that the
latter does not restrict the generality of the considerations. We
shall only treat the static x ¼ 0 case herein. The induced density
contains various combinations of higher harmonics of the per-
turbing potential. In wavenumber space, the result is, up to the
second order,

dnðkÞ ¼ AvðkÞfdðk � qÞ þ dðk þ qÞg
þA2fwð2Þðk � q; qÞ dðk � 2qÞ þ dðkÞ½ �
þw

ð2Þðk þ q;�qÞ dðk þ 2qÞ þ dðkÞ½ �g: (57)

Here, vðqÞ denotes the usual static (x ¼ 0) limit of the linear response
function (53)59,327 and w

ð2Þðq1; q2Þ denotes the static quadratic
response function. A more in-depth derivation up to the third order is
given in Ref. 175.

In addition, we note that the quadratic density response function
(see Ref. 195 for details) is connected to the imaginary-time structure
of the system by the relation

w
ð2Þðq1;q2Þ¼

1
2V

ðb

0

ds1

ðb

0

ds2h~qðq1þq2;0Þ~qð�q1;�s1Þ~qð�q2;�s2Þi:

(58)

The density operator

~qðq; sÞ ¼
XN
l¼1

exp �iq � r̂ l;sð Þ (59)

is not normalized, and rl;s denotes the position of particle l at an imag-
inary time s 2 ½0; b�. Equation (58), thus, directly implies that all qua-
dratic terms of the nonlinear density response (including mode-
coupling effects, see below) can be obtained from a single simulation
of the unperturbed UEG.

One can determine all contributions of linear or nonlinear origin
to the induced density at any wavenumber or frequency from a
higher-order generalization of Eq. (57). For instance, the induced den-
sity at the first harmonic, i.e., original perturbing wave vector, is given
as a sum of linear and cubic contributions,

hq̂qiq;A ¼ vðqÞAþ vð1;3ÞðqÞA3 þ � � � ; (60)

where we have introduced vð1;3ÞðqÞ ¼w
ð3Þð�q; q; qÞ

þwð3Þðq;�q; qÞ þw
ð3Þðq; q;�qÞ. The signal at the second har-

monic is given as a sum of quadratic and quartic contributions,

hq̂2qiq;A ¼ vð2;2ÞðqÞA2 þ vð2;4ÞðqÞA4 þ � � � : (61)

The diagonal response function is again a special case of the general
quadratic response function vð2;2ÞðqÞ ¼w

ð2Þðq; qÞ and can, therefore,
be estimated from PIMC results for the quadratic ITCF defined by

Fð2Þðq; s1; s2Þ ¼ h~qð2q; 0Þ~qð�q; s1Þ~qð�q; s2Þi; (62)

cf. Equation (58). At the third harmonic, the signal is given as a sum of
cubic and quintic contributions,

hq̂3qiq;A ¼ vð3;3ÞðqÞA3 þ vð3;5ÞðqÞA5 þ � � � : (63)

The cubic response again determines the nonlinear signal, but the
cubic response at the third harmonic is a different realization of the
general third order response function, vð3;3ÞðqÞ ¼w

ð3Þðq; q; qÞ, com-
pared to the cubic response at the first harmonic.

The ideal quadratic response function can be derived analogously
to the (finite-T) Lindhard formula known from LRT. Two terms are
contributing. At the second harmonic, a recursion relation is known
expressing the ideal quadratic response in terms of the ideal linear
response evaluated at the first and second harmonics. This result is
due to Mikhailov,173,174

vð2;2Þ0 ðqÞ ¼ 2
q2

vð1;1Þ0 ð2qÞ � vð1;1Þ0 ðqÞ
h i

: (64)

The exact equation of motion for the quadratic response allows for an
RPA-like approximation with two linear response functions in the
denominator,

vð2;2ÞRPA ðqÞ ¼
vð2;2Þ0 ðqÞ

1� vðqÞvð1;1Þ0 ðqÞ
h i2

1� vð2qÞvð1;1Þ0 ð2qÞ
h i : (65)

There is a square of the Lindhard dielectric function at the first har-
monic and a factor comprised of the Lindhard dielectric function at
the second harmonic.

The general structure of the equations of motion for the linear
and quadratic responses is very similar. The idea of introducing LFCs
into the RPA formula for the quadratic response is, thus, obvious

vð2;2ÞLFC ðqÞ ¼ vð2;2Þ0 ðqÞ 1� vðqÞ 1� GðqÞ½ �vð1;1Þ0 ðqÞ
h i�2

	 1� vð2qÞ 1� Gð2qÞ½ �vð1;1Þ0 ð2qÞ
h i�1

: (66)

III. SIMULATION RESULTS

Throughout this work, we limit ourselves to the discussion of
simulation results for spin-unpolarized systems with an equal number
of spin-up and spin-down electrons, N" ¼ N# ¼ N=2. We note that
spin effects are expected to play a particularly important role for
WDM in magnetic fields and have been studied extensively through-
out the literature, e.g., Refs. 28, 69, 73, 94, 199, 218, 244, 328, and 329.
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In addition, we note that both QMC and DFT simulations are
restricted to a finite number of particles N in a finite simulation cell.
The corresponding finite-size effects have been analyzed in detail both
for ambient conditions330–334 and in the WDM regime64,317,335 and
are not covered in the present work.

A. Static linear density response

1. Uniform electron gas

Let us begin the discussion of simulation results with an analysis
of the static linear density response of the warm dense UEG.28,95 In
particular, the UEG constitutes one of the most fundamental model
systems in physics, quantum chemistry, and related disciplines. Often
considered as the archetypal system of interacting electrons, the avail-
ability of accurate QMC simulations results336–339 in the zero-
temperature limit that were subsequently used as input for various
parametrizations340–343 has been of pivotal importance for the success
of DFT at ambient conditions.112 The first ground-state calculations
for the static linear density response of the UEG have been presented
by Moroni et al.253,281 They were parametrized by Corradini et al.298

and have been confirmed in the recent study by Chen and Haule.344

At finite temperature, a host of approximate results for the static
linear density response has been reported based on, e.g., dielectric the-
ories163,196,197,199–201,215,216,218 and classical mappings.212,345,346 To our
knowledge, the first accurate QMC results for the linear response of
the UEG at finite temperature have been presented in Refs. 28, 296,
and 297, using the permutation blocking PIMC (PB-PIMC)347–349 and
the configuration PIMC (CPIMC)61,68,70,350 methods. More specifi-
cally, these results have been based on a direct simulation of a harmon-
ically perturbed system, see Eqs. (29), (37), and (38). While formally
being exact, these efforts have required to perform a considerable
number of independent QMC simulations to acquire the density
response for a single combination of q with ðrs; hÞ. Therefore, they
have been limited to a few density-temperature combinations.

A more efficient strategy to investigate the static linear density
response of any given system is offered by the imaginary-time version
of the fluctuation-dissipation theorem [Eq. (40)], see the discussion in
Sec. IIC. In Fig. 4, we show a corresponding investigation of the warm
dense UEG at the electronic Fermi temperature h ¼ 1 and the metallic
density of rs ¼ 4, which is close to sodium.351,352 Panel (a) shows the
raw PIMC results for the ITCF Fðq; sÞ [Eq. (39)] in the s-q-plane. For
completeness, we note that the q-grid is defined by the system
size,64,330,332,335,353 which limits us to discrete values with q 
 2p=L.
The s-grid, on the other hand, directly follows from the number of
high-temperature factors P in our PIMC simulations (see Sec. IIA 1),
and can, in principle, be made arbitrary fine. In addition, we note that
it is fully sufficient to restrict ourselves to the half-interval of 0 � s
� b=2 due to the symmetry relation derived in Eq. (47). The Fðq; sÞ
symmetry can also be discerned in panel (b), where we show the full
s-dependence of the ITCF for a particular wave vector. Returning to
panel (a), it becomes evident that the ITCF approaches the SSF SðqÞ in
the limit of s! 0; Fðq; 0Þ ¼ SðqÞ; this is indicated by the bold-
dashed green curve.

While the SSF does not exhibit any maxima due to the absence of
spatial order at these conditions, its thermal analogue given by
Fðq;b=2Þ (light blue dashed curve) exhibits a distinct structure with a
pronounced peak around q � 2qF. We note that the physical behavior

of Fðq; sÞ has often been described as featureless in the literature221,299

and has been treated as a means for the estimation of other properties
such as the DSF. Very recently, we have shown that Fðq; sÞ directly
gives a number of physical insights into phenomena such as the roton
feature of the UEG and the related XC induced red-shift of Sðq;xÞ
without any analytic continuation,190,192 see also the discussion of Fig.
10. For example, the single-particle dispersion xðqÞ � q2 directly
manifests in Fðq; sÞ as the steep exponential decay for large q; in this
regime, the ITCF can, indeed, be modeled very accurately based on a
simple, semi-analytical single-particle model for the imaginary-time
diffusion process, see Ref. 192 for details. Moreover, the well-known
sum rules of the DSF manifest in the ITCF as derivatives with respect
to s around s¼ 0 [Eq. (50)].

This is demonstrated in Fig. 4(b), where we illustrate Fðq; sÞ
for q ¼ 1:88qF. More specifically, the solid green curve shows our
exact PIMC results, and the dash-double-dotted yellow line has
been obtained from the exact f-sum rule [Eq. (49)] that describes
the slope of Fðq; sÞ at the origin; we find perfect agreement
between the two curves, as it is expected. The availability of exact
PIMC benchmark data for the case of the UEG also allows us to
unambiguously assess the accuracy of different approximations.
The dash-dotted gray curve corresponds to the ubiquitous RPA,
which provides the least accurate description of all curves shown
in Fig. 4(b). Evidently, the mean-field description of the dynamic
density response function [i.e., setting Gðq;xÞ � 0 in Eq. (4)] on
which RPA is based is not appropriate in this regime, where elec-
tronic XC effects play an important role. For completeness, we
note that the RPA still exactly fulfills the f-sum rule, which only
describes the derivative at s ¼ 0 but is agnostic with respect to the
particular value of Fðq; 0Þ.

The dashed blue curve has been computed within the static
approximation, i.e., by setting Gðq;xÞ � Gðq; 0Þ in Eq. (4). In partic-
ular, Dornheim et al.252 have reported that the static approximation
gives highly accurate results for the DSF Sðq;xÞ of the UEG for metal-
lic densities rs � 4. Evidently, the same trend manifests in the ITCF,
which is in very good agreement with the exact PIMC results over the
entire s-range. For completeness, we note that the static approxima-
tion induces a slight overestimation of Fðq; 0Þ ¼ SðqÞ for
q� 2qF.

159,354 While almost being negligible for an individual q, this
systematic error accumulates within integrated properties such as the
interaction energy W [Eq. (34)]. This problem can be solved by com-
bining the static local field correction of the UEG with a consistent
limit for large wave numbers q ¼ jqj � qF that is connected to the
so-called on-top pair correlation function, gðr ¼ 0Þ. The correspond-
ing effective static approximation159 has been analytically parame-
trized in Ref. 354.

Finally, the dotted red curve in Fig. 4(b) has been obtained by
combining the SSF with the semi-analytical single-particle imaginary-
time diffusion model presented in the recent Ref. 192. Remarkably,
this simple model, too, fulfills the exact f-sum rule and accurately cap-
tures the s-dependence of the ITCF over the entire s-range.

Let us next get to the task at hand, which is the estimation of the
static linear density response function vðqÞ from the PIMC data for
Fðq; sÞ via Eq. (40). The results are shown in Fig. 4(c), where we show
the, thus, obtained PIMC results for vðqÞ as the green crosses. In the
limit of small q, the exact density response is given by Kugler320 (dot-
ted yellow curve),
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lim
q!0

vðqÞ ¼ � q2

4p
; (67)

this is a direct consequence of the perfect screening in the UEG and is
not reproduced by the density response of the ideal Fermi gas (solid
blue curve).

The density response of the UEG to an external static perturba-
tion attains a maximum around q � 2qF. From a physical perspective,

this can be understood intuitively from the following considerations:
for intermediate q, the wavelength k ¼ 2p=q of the perturbation is
comparable to the average interparticle distance d. Consequently, such
a perturbation induces a spatial pattern that automatically minimizes
the interaction energy between the electrons, which maximizes the
reaction of the system.355 A more technical explanation can be
gleamed from the ITCF depicted in panel (a). In particular, Eq. (40)
states that vðqÞ is proportional to the area under Fðq; sÞ for a given

FIG. 4. PIMC results for the ITCF and the static linear density response of the UEG for N¼ 34, rs ¼ 4, and h ¼ 1. (a) ITCF in the q–s-plane in the interval 0 � s � b=2; the
dashed green line indicates the limit of s ¼ 0, where the ITCF becomes equal to the static structure factor, Fðq; 0Þ ¼ SðqÞ, and the light blue line indicates the thermal struc-
ture factor Fðq; b=2Þ. (b) Full s-dependence of Fðq; sÞ for a particular wave vector with q ¼ 1:88qF; solid green: PIMC data from Ref. 190; dotted red: single-particle decay
model from Ref. 192; dash-dotted black: RPA, dashed blue: static approximation,252 Gðq;xÞ � Gðq; 0Þ. (c) Static linear density response function vðqÞ, green crosses:
ITCF-based evaluation of Eq. (40); red dots: estimation from PIMC simulations of the harmonically perturbed system [cf. Eq. (29)] via Eq. (60); solid blue: ideal Lindhard func-
tion, v0ðqÞ; dash-dotted black: RPA; dotted yellow: long-wavelength expansion Eq. (67). (d) Symbols: raw PIMC results for the induced density, Eq. (37) for different q as a
function of the perturbation amplitude A; dotted lines: corresponding fits according to Eq. (60); solid bars on the y-axis: LRT limit computed from the ITCF.
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value of q. Therefore, the peak in vðqÞ is directly related to the maxi-
mum in Fðq;b=2Þ. In other words, the existence of a hypothetical spa-
tial pattern that minimizes the interaction energy—but which is not
actually manifested in the unperturbed UEG as there is no maximum
in SðqÞ at these conditions—manifests itself as a reduced decay along s
for intermediate q; this is directly translated to the static density
response function shown in Fig. 4.

The dash-dotted black curve shows the static linear density
response function within the RPA, which systematically underesti-
mates the true response of the UEG for q� qF. This, too, can be attrib-
uted to the behavior of the ITCF shown in Fig. 4(b), which is too small
over the entire s-range. At the same time, the RPA reproduces the cor-
rect perfect screening described by Eq. (67).

Finally, we have carried out extensive new PIMC simulations for
the harmonically perturbed electron gas; the results for the depen-
dence of the induced density [Eq. (37)] on the perturbation amplitude
A are shown in Fig. 4(d) for integer multiples of the minimum wave
number qmin ¼ 2p=L. Specifically, the data points show our raw
PIMC simulation data (divided by A, such that the response attains a
constant value in the LRT limit), and the corresponding dotted curves
have been obtained from cubic fits according to Eq. (60). Evidently,
the functional form nicely reproduces the PIMC results everywhere, as
it is expected.167,175 The horizontal bars show the LRT limit computed
from the ITCF, which is consistent both to the fits and to the PIMC
data on which they are based. The linear coefficient in Eq. (60) directly
corresponds to the linear response function vðqÞ, which are included
in Fig. 4(c) as the red dots. For completeness, we note that the cubic
coefficients correspond to the cubic response at the first har-
monic.167,175 Evidently, these independent data for vðqÞ that are based
on the actual response of the UEG are in excellent agreement with the
ITCF-based evaluation of Eq. (40) over the entire q-range. This dem-
onstrates the high consistency of both our PIMC simulations as well as
of the underlying theoretical framework.

Based on the described estimation of vðqÞ from the ITCF,
Dornheim et al.194 have carried out extensive PIMC calculations for

�50 density-temperature combinations; the corresponding parame-
ters are depicted as the red crosses in the rs-h-plane shown in Fig. 5(a).
In addition, the black squares and dashed blue line show the ground-
state QMC calculations by Moroni et al.281 (MCS) and the corre-
sponding parameterization by Corradini et al.298 (CDOP). The task at
hand was to obtain an accurate representation of the static local field
correction GðqÞ, covering the entire relevant parameter range, i.e., the
shaded green area in Fig. 5(a).

On the one hand, the inversion of Eq. (4) to compute GðqÞ from
PIMC data for vðqÞ is straightforward. On the other hand, Gðq; rs; hÞ
exhibits a nontrivial dependence on q based on different combination
of rs and h. This is illustrated in Fig. 5(b), where we show the static
local field correction in the rs-q-plane at the electronic Fermi tempera-
ture, h ¼ 1. Specifically, the red crosses show the q-dependence of our
PIMC results for GðqÞ, and we observe the following trend. For low
densities (i.e., large rs), GðqÞ exhibits a pronounced increase in the
limit of large q. This increase becomes less pronounced with decreas-
ing rs and actually becomes negative for high densities. From a physi-
cal perspective, this interesting behavior can be traced back to the XC
contribution to the kinetic energy,356,357 which is negative for some
parameters at finite temperatures.306,358 To construct a reliable repre-
sentation of Gðq; rs; hÞ that is capable to capture these interesting
trends, Dornheim et al.194 have trained a deep neural network to learn
the appropriate functional dependence. The results are shown as the
green surface in Fig. 5. Evidently, the neural net nicely reproduces the
PIMC data where they are available and smoothly interpolates in
between. The high quality of this surrogate model359 was subsequently
confirmed by the validation against independent data that had not
been included into the training procedure, and by the very recent
study of electronic exchange-correlation effects by Hou et al.357

Since its publication in 2019, the neural-net representation of
Gðq; rs; hÞ has been used for a number of applications, including the
modeling of XRTS experiments,159 the estimation of ionization-
potential depression,160 and as input for a theory of nonlinear effects
in the UEG,175 which is covered in more detail in Sec. IIIC.

FIG. 5. Neural network representation of the static local field correction Gðq; rs; hÞ. (a) Available training data in the rs-h-plane: red crossed: PIMC simulations based on the
ITCF via Eq. (40); black squares (MCS): ground-state QMC calculations by Moroni et al.281 based on simulations of the harmonically perturbed system, cf. Eq. (29); dashed
blue (CDOP): ground-state parameterization based on the MCS data by Corradini et al.298 The shaded green area indicates the validity range of the neural network. (b) Static
local field correction at h ¼ 1 in the rs-q-plane. The red crosses show PIMC results, and the green surface is the prediction by the neural network. Reprinted with permission
from Dornheim et al.,194 J. Chem. Phys. 151, 194104 (2019). Copyright 2019 AIP Publishing.
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2. Warm dense hydrogen

Let us next investigate the static linear density response of a real
system. In Fig. 6, we show the static density response function for
hydrogen at the electronic Fermi temperature, i.e., h ¼ 1. Panel (a)
corresponds to the metallic density of rs ¼ 2, and the green circles
have been obtained by B€ohme et al.77 by exactly solving the electronic
problem in a fixed ion potential with PIMC. In particular, they have
applied an external harmonic potential and subsequently measured
the response in the electronic density; see also Ref. 78 for a more
detailed description of the simulation setup. The dotted red line shows
results for the density response of the UEG at the same conditions and
has been computed based on the neural-net representation of
Gðq; rs; hÞ.194 Evidently, the electronic density response of hydrogen at
these conditions strongly resembles the behavior of a free electron gas,
as most of the electrons are delocalized here.360

Let us for now ignore the black stars and proceed to Fig. 6(b),
where we present the same analysis for a lower density at rs ¼ 4. Such
conditions are expected to exhibit a number of interesting physical
effects and can be realized experimentally, for example, in hydrogen
jets.361 Low-density systems constitute an interesting benchmark for
the assessment of electronic XC effects,263,362 which are more pro-
nounced at larger values of the quantum coupling parameter rs.

58 In
fact, they constitute a realistic option for an experimental observation
of the roton feature in the dispersion of the warm dense electron gas
that has been reported and analyzed in earlier works.190,252,292 In addi-
tion, these conditions are characterized by a partial localization of the
electrons around the ions,360 which means that widely used concepts
such as the decomposition into bound and free electrons148,186 are
expected to break down. Indeed, the analysis by B€ohme et al.77 has
revealed that the actual electronic density response of hydrogen
(green) is substantially lowered compared to the UEG model at the
same conditions (dotted red). The dash-dotted yellow curve in Fig.
6(b) has also been computed based on the UEG, but with modified
parameters rs
 and h
 that correspond to an effective free-electronic
fraction of a ¼ 0:6, i.e., 60%; this is consistent with the value of
a ¼ 0:54 reported by Militzer and Ceperley.360 While this effective
density response overall exhibits the correct magnitude around
q � 2qF, it deviates from the PIMC reference data in particular, for
large q. In fact, the true electronic density response of hydrogen even
exceeds the red UEG curve for q� 4qF, which has been attributed to
an isotropy breaking due to the presence of the ions at small length
scales kq ¼ 2p=q. This is a strong indication that ionization models do
not universally work over all relevant length scales.

While being important in their own right, the availability of
highly accurate PIMC benchmark results also allows one to bench-
mark a number of previously used approximations. Of particular
interest is the assessment of the accuracy of thermal DFT, which
constitutes the workhorse of WDM theory.11,89,363 In Fig. 6, we
include DFT results that have been obtained by Moldabekov
et al.255 based on the PBE XC functional364 for the electronic den-
sity response of the same ion snapshot as the black stars. As men-
tioned above, hydrogen basically behaves as a free electron gas at rs
¼ 2, and the DFT results are in good agreement with the PIMC ref-
erence data. For rs ¼ 4, the agreement is less good, and the DFT
calculations overestimate the actual response over the entire
depicted q-range. This can be traced back to an underestimation of
the localization of the electrons around the ions due to the PBE XC
functional, which is known to be afflicted with self-interaction
errors.365 At the same time, we note that the overall agreement
between PIMC and PBE-based DFT calculations is better com-
pared to the effective UEG model with a ¼ 0:6. In particular, the
DFT simulations are capable of accurately reproducing the effect
of the isotropy breaking at large q; this has important implications,
as we shall discuss in the following.

Having found vðqÞ, e.g., from a DFT calculation, it is straightfor-
ward to invert Eq. (17) to obtain the static XC kernel KxcðqÞ that is
fully consistent with any KS-reference function vSðq;xÞ. This proce-
dure is outlined in more detail in Fig. 17 and allows one to generate
the material-specific XC kernel for any XC functional; no evaluation
of a functional derivative is required. Indeed, the latter point is notori-
ously difficult in practice and had hitherto to our knowledge prevented
the computation of XC kernels of extended systems beyond adiabatic

FIG. 6. Static density response of hydrogen at the electronic Fermi temperature, h
¼ 1, for (a) rs ¼ 2 and (b) rs ¼ 4. Green circles: PIMC reference data by B€ohme
et al.;77 black stars: DFT results using the PBE XC functional by Moldabekov
et al.;255 dotted red: density response of the UEG at the same conditions evaluated
using the neural-net representation from Ref. 194; dash-dotted yellow [only panel
(b)]: density response of a UEG with modified rs
 and h
 corresponding to a free-
electron fraction of a ¼ 0:6.
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LDA (ALDA) or adiabatic generalized-gradient approximations
(AGGA) for extended systems.366

In Fig. 7, we show the corresponding results for the XC kernel of
hydrogen for rs ¼ 4 and h ¼ 1. As a reference function to obtain the
kernel from the physical density response function vðqÞ, Moldabekov
et al.255 have used the same mean-field response function v0ðqÞ that
has been obtained without any XC functional for all datasets.
Specifically, the black squares have been computed from the PIMC
data for vðqÞ by B€ohme et al.77 and constitute a highly accurate bench-
mark for the other results. The dashed red curve corresponds to the
popular ALDA kernel, which is computed from the parabolic com-
pressibility sum rule expansion around q¼ 0 for a UEG,

lim
q!0

GðqÞ ¼ � q2

4p
@2

@n2
nFxcð Þ; (68)

at the same density and temperature. Clearly, it does not capture the
true behavior of the kernel and substantially overestimates it over the
entire depicted q-range. The solid dashed line has been obtained from
the accurate neural-net representation of Gðq; rs; hÞ of the UEG;194 it,
by definition, reproduces the ALDA expansion for small q and does
not reproduce the PIMC results for larger q either. In fact, using the
RPA expression for vðqÞ in Eq. (17), which corresponds to setting
KxcðqÞ � 0, constitutes a superior approximation compared to either
ALDA or the full UEG model, which lead to an actual deterioration of
the attained accuracy. This has important implications for the LR-
TDDFT simulation of WDM, as we discuss in more detail in Sec. III B.

In stark contrast to the ALDA model, the new DFT-based results
for KxcðqÞ from Ref. 255 that have been computed within the LDA
(blue circles, using the functional by Perdew and Zunger341) PBE364

(orange triangles) and SCAN367 (green diamonds) qualitatively cap-
ture the q-dependence of the PIMC reference data over the entire
depicted q-range. In particular, SCAN exhibits the best accuracy for

intermediate wave numbers with q � 2qF, although there remain sig-
nificant differences to the exact PIMC reference data.

To summarize, the recent approach for the computation of
KxcðqÞ constitutes a promising route to study electron–electron corre-
lations of real materials within the framework of KS-DFT. In combina-
tion with accurate reference results such as the PIMC data for
hydrogen by B€ohme et al.,77 it provides an ideally suited tool for the
assessment of the accuracy of different XC functionals. Future efforts
in this direction will include the rigorous benchmark of orbital-
dependent hybrid functionals, which have already been successfully
applied to the study of WDM,145,368 and the development and bench-
mark of new functionals that are explicitly designed to meet the chal-
lenges of capturing the electronic density response of matter at
extreme conditions.

B. Dynamic linear density response

In Sec. IIIA, we have given an overview of some recent promising
developments regarding the description of the electronic density
response in the static limit of x! 0. While being an important step
in the right direction, many important applications such as the model-
ing of XRTS experiments147,164,166,189 or the construction of advanced
XC functionals within the adiabatic-connection fluctuation–dissipa-
tion formulation of DFT99,156 require, as input, some information
about the full frequency-dependence of the electronic density response
of a given system.

Unfortunately, the accurate estimation of the dynamic electronic
properties of WDM is even more difficult than in the static case, and
only a handful of methods are serious contenders. Among these, the
nonequilibrium Green’s functions (NEGF) method276,278 deserves a
special place, as it is, as the name suggests, capable of treating real non-
equilibrium conditions as they occur, for example, during the stopping
of a projectile in a medium.142,369–371 While some remarkable method-
ological improvements have been reported over the last few
years,372,373 it remains unclear if NEGF calculations of highly excited
states as they occur in WDM are computationally feasible, and if com-
mon approximations to the self-energy are sufficient to capture the
impact of electron–electron interactions. To our knowledge, no NEGF
calculations of real WDM systems have been presented in the
literature.

A second route toward dynamic electronic properties of WDM is
RT-TDDFT.162,259,374–376 RT-TDDFT is a computationally efficient
approach that allows for the use of large supercells and basis sets along
with an accurate description of the electron–ion interaction. Among
its key capabilities for WDM purposes are its ability to model XRTS
experiments without the ubiquitous Chihara decomposition189 and
the possibility to estimate both nonequilibrium377 and nonlinear
effects.267 For example, RT-TDDFT allows for a description of nonadi-
abatic electron–ion dynamics such as those that are relevant to elec-
tronic stopping power,109,142,378–380 which is critical to self-heating in
inertial fusion applications.381,382 On the downside, systematically
improvable approximations to the true dynamic XC potential383,384—
which replaces the standard XC functional of equilibrium DFT—have
been difficult to develop, and most calculations are done with adiabatic
approximations to standard functionals. Nevertheless, RT-TDDFT has
performed well when compared to experiments, and stopping power
calculations have so far demonstrated reasonable agreement with

FIG. 7. Static XC kernel, plotted as the local field correction GðqÞ
¼ �KxcðqÞ=vðqÞ, of hydrogen at h ¼ 1 and rs ¼ 4. The solid black and dashed
red line show the full G(q) of the UEG at the same conditions evaluated from the
neural-net representation from Ref. 194 and the corresponding exact long-
wavelength expansion given by the compressibility sum rule (CSR) Eq. (68). The
black squares have been computed from the exact PIMC reference data by B€ohme
et al.,77 and the blue circles, orange triangles, and green diamonds from DFT
results for vðqÞ (see Fig. 6) using the LDA,341 PBE,364 and SCAN367 XC function-
als, respectively. Adapted from Moldabekov et al.255
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WDM experiments106,385 and databases of experimental results in less
extreme conditions.386–389

Currently, the arguably most widely used ab initio method for
the description of electron dynamics in WDM is given by linear
response TDDFT (LR-TDDFT).161,162,164,166 To be more specific, LR-
TDDFT is based on a standard equilibrium KS-DFT simulation of a
given system, which gives access to a set of KS orbitals f/ag. The latter
are then used to compute the dynamic KS-response function vSðq;xÞ
via Eq. (16); the key ingredient is then given by the XC kernel
Kxcðq;xÞ, which relates vSðq;xÞ to the actual physical dynamic linear
density response function vðq;xÞ of the system of interest via Eq.
(17). Formally, LR-TDDFT and RT-TDDFT should give equal results
in the limit of weak perturbations; a practical investigation of this
assumption for the density response of WDM constitutes an impor-
tant topic for future research. The main bottleneck of LR-TDDFT is
given by its dependence on a particular XC kernel, which has to be
material-specific and must be consistent with the XC functional that
has been used to determine vSðq;xÞ. In practice, both conditions are
generally violated by the most commonly used model kernels,366,390

and the impact of such inconsistencies on the calculated observables
remains as of yet poorly understood. Here, we stress that this is not a
shortcoming of the general formulation of the LR-TDFT, but of the
inconsistency in the ad hoc approximations used for the XC kernel. As
we have elaborated in Sec. IIIA 2, Moldabekov et al.255 have recently
introduced a formally exact framework to estimate the consistent static
kernel for any given XC functional and material, and its utilization for
LR-TDDFT calculations within the static approximation where
Kxcðq;xÞ � KxcðqÞ in Eq. (17) is discussed in Sec. III B 2.

As the final method for the computation of the dynamic density
response, we mention PIMC. While, from a conceptual perspective,
the real-time propagation of any observable in Feynman’s path-
integral picture of quantum mechanics228 is straightforward, it leads to
an oscillating complex exponential function in practice; this is the ori-
gin of the infamous dynamic phase problem.391–393 Still, PIMC meth-
ods give direct access to the imaginary-time dynamics of a given
system190,193,195 in thermodynamic equilibrium; exact PIMC results
for the ITCF Fðq; sÞ of the warm dense UEG are shown in Fig. 4.
Indeed, the ITCF, in principle, contains the same information as the
DSF Sðq;xÞ—albeit in an unfamiliar representation190,192—and is
directly useful for the interpretation of XRTS experiments,146 see Sec.
IV. Yet, the analytic continuation308 from the s-domain to real fre-
quencies is notoriously difficult, and information about specific fea-
tures might be lost in the process. It is, however, possible for the case
of the UEG252,306,318 as we shall explain in Secs. III B 1.

1. Uniform electron gas

The accurate estimation of the dynamic density response and
dynamic structure factor of the UEG has been an active topic of inves-
tigation over many decades.161,203,214,249–251,268,287,318,326,394–400 In the
ground state, Takada and collaborators396,397 have presented accurate
data for Sðq;xÞ over a broad range of densities, with important impli-
cations for scattering experiments with aluminum.352,396 Only very
recently, LeBlanc et al.400 have presented accurate data for the UEG
density response based on novel diagrammatic Monte Carlo calcula-
tions at low temperatures, h ¼ 0:1; it remains to be seen if these prom-
ising efforts can be extended to the WDM regime in future works.

The first highly accurate results for the dynamic electronic den-
sity response of the warm dense UEG have been presented by
Dornheim et al.252 based on exact PIMC results for the ITCF Fðq; sÞ.
To render the numerical inversion of Eq. (41) tractable, the original
problem has been re-cast into the reconstruction of the dynamic local
field correction Gðq;xÞ. More specifically, trial solutions for Gðq;xÞ
give straightforward access to vðq;xÞ [Eq. (4)], and via the
fluctuation-dissipation theorem [Eq. (31)] also to the corresponding
DSF Sðq;xÞ; finally, the latter is inserted into Eq. (41) and compared
to the PIMC reference data for Fðq; sÞ. While formally being equiva-
lent to the original problem of the analytic continuation,308 this
approach allows one to incorporate a number of exact properties of
Gðq;xÞ,161,252,287,306 which sufficiently constrains the space of possible
trial solutions for Sðq;xÞ.

In Fig. 8, we show corresponding results for both the real (top
panel) and the imaginary part (bottom panel) of Gðq;xÞ for the UEG
at h ¼ 1, rs ¼ 6318 with the shaded gray area indicating the given
uncertainty interval. For the real part, the static x! 0 limit can be
inferred from vðqÞ, while the high frequency x!1 limit follows
from the DSF cubic sum rule, which allows expressing MS

3 [cf. Eq.
(48)] in terms of static properties such as the SðqÞ.59,401,402 It is inter-
esting that the real part exhibits a nontrivial and, in fact, non-
monotonic behavior between these limits, with a pronounced
maximum around x � 2xp, with xp ¼

ffiffiffiffiffiffiffiffiffi
3=r3s

p
being the usual

plasma frequency.59 The corresponding imaginary part of the dynamic

FIG. 8. Ab initio PIMC results for the frequency-dependence of the dynamic local
field correction Gðq;xÞ of the UEG with h ¼ 1 and rs ¼ 6 for q ¼ 1:88qF. The
shaded gray areas indicate the respective uncertainty intervals of the real [top] and
imaginary [bottom] parts. Reprinted with permission from Hamann et al.,318 Phys.
Rev. B 102, 125150 (2020). Copyright 2020 American Physical Society.
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local field correction vanishes in both the limits of x! 0 and x!
1 and exhibits a single broad peak around x � 5xp.

From a theoretical perspective, accurate knowledge of Gðq;xÞ
gives one direct access to the dynamic density response function
vðq;xÞ [cf. Eq. (4)] and, in this way, a gamut of other properties such
as the dynamic dielectric function �ðq;xÞ or the electric conductivity
rðq;xÞ at finite wave numbers. This has been explored in detail in
recent works by Hamann et al.318,399

Due to its central role in the interpretation and modeling of
XRTS experiments147,149 [cf. Eq. (3)], one of the most interesting prop-
erties in this regard is given by Sðq;xÞ, which has been studied exten-
sively in Refs. 252, 292, 306, and 317. In particular, Dornheim et al.252

have found an XC induced red-shift in the position of the maximum
of the true Sðq;xÞ; xðqÞ, compared to the RPA for metallic densities.
This is shown in Fig. 9(a) for rs ¼ 4 at the electronic Fermi tempera-
ture, h ¼ 1. Specifically, the solid green curve depicts the exact xðqÞ

based on the full PIMC results for the dynamic local field correction
Gðq;xÞ, which are down-shifted compared to the RPA mean-field
description that is depicted as the dash-dotted black curve. In addition,
the dashed blue curve in Fig. 9(a) shows the static approximation,252

where the dynamic local field correction in Eq. (4) is approximated by
its exact static limit, i.e., Gðq;xÞ � GðqÞ. The results are in excellent
agreement with the full reference PIMC data. In other words, the com-
bination of a dynamic description on the level of the RPA [where the
frequency-dependence comes from the dynamic Lindhard function
v0ðq;xÞ] with a static (frequency averaged) treatment of electron–
electron XC effects via GðqÞ provides a highly accurate description of
the DSF of the UEG at metallic densities. Note that this is consistent
with previous observations in the ground-state limit.161,403

Let us postpone the discussion of the dotted red curve for now
and proceed with Fig. 9(b), where we show the same analysis for a
lower density with rs ¼ 10. Owing to the role of the Wigner–Seitz
radius as the quantum coupling parameter of the UEG,58,59 these con-
ditions are located at the margin of the strongly coupled electron liquid
regime where electron–electron correlation effects play the dominant
role.201,288 In this case, the exact PIMC reference data for xðqÞ exhibit
a nonmonotonous behavior, with a minimum at intermediate wave
numbers, q � 2qF. In fact, this phenomenologically resembles the
roton feature that is well-known from quantum liquids such as ultra-
cold helium.301,303,404–408 It is worth noting that a phonon-roton spec-
trum is an unambiguous feature of collective excitations in classical
liquids and supercritical fluids.408,409 This includes not only model
liquids (hard-sphere,410 Lennard-Jones,411 Yukawa,412 and inverse
power law413) but also real liquids (water,414,415 elemental noble
liquids,416 and liquid alkali metals417), for which the phonon-roton
structure has been predicted by ab initio molecular dynamics simula-
tions and observed by inelastic x-ray and neutron scattering.
Nevertheless, despite some numerical hints,418 a plasmon-roton spec-
trum has not been univocally observed in MD simulation studies of
the classical OCP,419,420 which is characterized by the onset of a nega-
tive long-wavelength limit dispersion, dxðqÞ=dq < 0 as q! 0, at
intermediate coupling C � 10.421–425 It is interesting that both quan-
tum and classical cases have been elucidated by the onset of spatial
structure:409 through the form of the Feynman ansatz426 [SðqÞ connec-
tion] for quantum liquids and through the quasi-localized charge
approximation427 [gðrÞ connection] or the static local field corrected
dielectric formalism428 [SðqÞ connection] for classical liquids. Yet, no
signatures of spatial structure can be found in either the static structure
factor SðqÞ or the pair correlation function gðrÞ for the UEG at the
conditions of Fig. 9(b).

To explain the mysterious roton feature in the UEG, Dornheim
et al.292 have recently introduced the pair alignment model (PA) that
interprets the minimum in xðqÞ in terms of the relative length scales
upon applying an external harmonic perturbation. In particular, the
fluctuation-dissipation theorem [Eq. (31)] directly implies that
the behavior of Sðq;xÞ can be fully explained by understanding the
response of any given system to a monochromatic external perturba-
tion of the same wave vector q and frequency x. In the vicinity of the
roton minimum in xðqÞ around q � 2qF, the wavelength of the
cosinuoidal perturbation is comparable to the average interparticle dis-
tance, kq ¼ 2p=q � d. Therefore, the alignment of the electrons to the
respective potential minima is associated with a reduction in the inter-
action energyW.

FIG. 9. Position of the maximum of the DSF as a function of the wave number,
xðqÞ, of the UEG at the electronic Fermi temperature, h ¼ 1, at (a) rs ¼ 4 and (b)
rs ¼ 10. Solid green: exact PIMC results taken from Ref. 252; dashed blue: static
approximation, i.e., setting Gðq;xÞ � Gðq; 0Þ in Eq. (4); dash-dotted black: RPA;
dotted red: pair alignment model introduced in Ref. 292. The vertical red arrows
indicate the XC induced down-shift DWxc of the true xðqÞ compared to the mean-
field description within RPA.
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The PA model introduced in Ref. 292 postulates that the XC
induced down-shift of the true xðqÞ compared to the RPA is due to a
deficiency of the latter to capture the true change in the interaction
energy W. The latter can be accurately quantified using a suitable
effective potential,140,429,430 and the difference between the true change
in the interaction and the respective RPA result is indicated by the ver-
tical red arrows labeled as DWxc in Fig. 9; the corresponding dotted
red curves have been computed as xPAðqÞ ¼ xRPAðqÞ þ DWxcðqÞ.
For the metallic density of rs ¼ 4, the PA model nicely captures the
true down-shift of xðqÞ and, therefore, is directly relevant for the
modeling of XRTS experiments of WDM.157 For the strongly coupled
case of rs ¼ 10, the PA model follows the dashed blue static approxi-
mation curve rather than the actual PIMC results and, consequently,
underestimates the true depth of the roton minimum at these condi-
tions. This is not a coincidence, and it can be attributed to the con-
struction of the PA model as an average energy shift. Empirically, the
static approximation exhibits the same behavior and merges the sharp
roton peak at low x with the shoulder at xRPAðqÞ, see Ref. 292 for a
more detailed explanation.

We note that the pair alignment that causes the XC induced
down-shift of xðqÞ is the same mechanism that has been evoked to
explain the peak in the static linear density response function vðqÞ in
Fig. 4. In fact, Sðq;xÞ and vðqÞ are related via the inverse-frequency
sum rule, which states that

MS
�1 ¼ �

vðqÞ
2n

: (69)

Here,MS
�1 denotes the inverse-frequency moment of the DSF defined

in Eq. (48). It is evident from Eq. (69) that a shift of spectral weight in
Sðq;xÞ to smaller frequencies x is associated with an increase in the
magnitude of vðqÞ. This explains the emergence of an increasingly
sharp peak in vðqÞ around q ¼ 2qF, which has been reported in previ-
ous studies of the electron liquid both at finite temperature201,288 and
in the ground state.431

While having exact reference results for Sðq;xÞ gives one valu-
able insights into a number of physical effects, the required analytic
continuation308 is not expected to be feasible for arbitrary complex
systems due to the ill-posed nature of the inverse Laplace transform.
On the other hand, it is clear that, from a mathematical perspective,
the ITCF Fðq; sÞ contains exactly the same information as the DSF,
although in an unfamiliar representation. The task at hand is, thus, to
understand the manifestation of a given physical effect of interest in
the imaginary-time domain. For example, it is obvious from Eq. (47)
that Fðq; sÞ is symmetric around s ¼ b=2 and constitutes a direct and
highly sensitive measure for the temperature of any system in thermo-
dynamic equilibrium.146,190 This has important implications for the
interpretation of XRTS experiments and is discussed in Sec. IV.

In addition, understanding the physics encoded into Fðq; sÞ192 is
also directly helpful for the interpretation of simulation results. Very
recently, Dornheim et al.190 have demonstrated that the roton feature
in the dispersion xðqÞ of the DSF of the UEG manifests as a reduced
decay with respect to s of the ITCF for a given wave vector q, see the
spectral representation of Fðq; sÞ in Eq. (43). In other words, the exis-
tence of energetically low-lying density excitations manifests as the sta-
bility of electron–electron correlations along the diffusion through the
imaginary time s; this can be quantified using the relative decay mea-
sure DFb=2ðq; sÞ defined in Eq. (44).

The results are shown in Fig. 10 for h ¼ 1 with green and red
datasets corresponding to rs¼ 4 and rs¼ 10, respectively. More specif-
ically, the symbols show the PIMC reference data for xðqÞ that are
also depicted in Fig. 9, and the corresponding solid lines show the rela-
tive decay measure DFb=2ðq; sÞ that has been directly computed from
the ITCF without the need for an analytic continuation. We note that
all curves have been re-normalized with respect to their respective
plasmon limit for q! 0, which is given by the usual plasma frequency
xp in the case of xðqÞ. In addition, all curves exhibit a characteristic
single-particle limit for q� qF. For the DSF, it is given by the well-
known single-particle dispersion xðqÞ � q2. For the ITCF, one finds
DFb=2ðq!1; sÞ ¼ 1, which means that the corresponding re-
normalized curves attain a constant value in the short wavelength
limit. This is due to the increasingly steep decay of Fðq; sÞ with
0 � s � b=2 in this regime, which can be explained with a simple
semi-analytical Gaussian imaginary-time diffusion model; see Ref. 192
for an extensive discussion of the physical origin of the s-dependence
of the ITCF.

For intermediate q, we find a close correspondence between the
respective xðqÞ and DFb=2ðq; sÞ for the same value of the density
parameter rs. Indeed, the relative decay measure even becomes slightly
negative for rs ¼ 10. We note that the phenomenological similarity
between the roton minimum in the DSF and the reduced s-decay of
the ITCF becomes even more apparent at rs¼ 20, where the alignment
of pairs of electrons292 has a more pronounced impact on the physical
observables of the system.

Despite these works, we emphasize that the thorough develop-
ment of a dynamic quantum many-body theory in the imaginary-time
domain as of yet remains in its infancy. Future works may start with
the investigation of other systems such as quantum liquids301,303,404

and, of course, real WDM applications that include both electrons and
ions. It is evident from Eq. (41) that every theoretical model such as

FIG. 10. Dispersion of dynamic density fluctuations in the UEG at h ¼ 1 for rs ¼ 4
(green) and rs ¼ 10 (red). Symbols: PIMC-based results for the position of the max-
imum in the DSF xðqÞ, cf. Fig. 9; the corresponding curves depict the relative
decay measure of the ITCF DFb=2ðqÞ defined in Eq. (44). All datasets have been
re-normalized with respect to the plasmon limit for q! 0. Data taken from Refs.
192 and 252.
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not only the Chihara decomposition148,151,186 but also TDDFT simula-
tions can be straightforwardly translated into a description of the
ITCF. At the same time, we also stress that working in the s-domain
might allow for the development of entirely new concepts that natu-
rally emerge from Feynman’s imaginary-time path-integral represen-
tation of statistical mechanics but may not have an obvious analogue
in the traditional frequency-domain.

2. Warm dense matter

Let us next extend our analysis of the dynamic electronic density
response of WDM beyond the UEG model. As we have elaborated
above, no exact method for the simulation of frequency-dependent
properties of real WDM systems is currently available to our knowl-
edge. Being motivated by the remarkable performance of the static
approximation Kxcðq;xÞ � KxcðqÞ for the UEG for metallic densities
rs � 4, we, here, explore the combination of LR-TDDFT (cf.
Sec. IIA 2) with a consistent static XC kernel for the example of warm
dense hydrogen. The results are shown in Fig. 11 for (a) rs¼ 2 and (b)
rs¼ 4 at the electronic Fermi temperature, h ¼ 1. More specifically, all
curves have been computed via Eq. (17) using the KS-response func-
tion vSðq;xÞ based on a set of KS orbitals from an equilibrium DFT
simulation with the LDA functional.

Let us start our analysis for rs¼ 2, where hydrogen is mostly ion-
ized, as it has been explained in Sec. IIIA 2. In this case, the depicted
LR-TDDFT results closely resemble the DSF of the UEG.252 In partic-
ular, the solid black curve has been computed by setting Kxcðq;xÞ
� 0 in Eq. (17), which is commonly being referred to as RPA in the
DFT literature.162 Including the appropriate PIMC results for the static
XC kernel KxcðqÞ by B€ohme et al.77 leads to the dotted red curve; it
exhibits a similar XC induced red-shift as we have observed in the case
of the UEG in Sec. II B 1. Finally, the dashed green curve has been
obtained by replacing the true static kernel with the ALDA, which is
based on the q! 0 limit of the UEG at the same parameters, cf.
Eq. (68). Evidently, the ALDA is in good agreement with the dotted
red curve. This is expected, as the electrons of hydrogen basically
behave like a UEG at these conditions due to the high degree of
ionization.77,360

In stark contrast, the electrons are strongly influenced by the ions
at rs¼ 4, which is shown in Fig. 11(b). In particular, we find a diffusive
peak around x ¼ 0, which is a direct consequence of the partial locali-
zation of the electrons around the protons. For these parameters, the
RPA and the static approximation are in close agreement, as the exact
PIMC results for the static XC kernel nearly vanish, cf. Fig. 7. The cor-
responding ALDA kernel fails to capture this trend, and the dashed
green line substantially deviates from the dotted red reference curve.
In other words, using the ALDA kernel that is based on the UEG in
combination with the dynamic KS-response function vSðq;xÞ that
has been computed from the KS orbitals for a specific model system
leads to an actual deterioration of the quality of the results compared
to the RPA. Therefore, we view the construction or utilization of uni-
versal model kernels as more or less futile, since a good kernel must
(1) be consistent with the employed XC functional that has been used
to compute vSðq;xÞ and (2) depend on the physical behavior of the
given system of interest.

A promising route is given by the recent framework by
Moldabekov et al.,255 which allows one to compute the appropriate

static XC kernel for any given system, and for arbitrary XC functionals
across Jacob’s Ladder432 without the need for an explicit evaluation of
functional derivatives. The accuracy of a corresponding LR-TDDFT
calculation will then hinge on the static approximation, which has to
be studied in more detail in future works. In this regard, we mention
the advent of direct PIMC simulations of real WDM systems without
the fixed-node approximation,77,78 which will give us the first exact
results for the ITCF Fðq; sÞ of hydrogen in the near future. In addition
to being interesting in their own right, such results will constitute an
unassailable benchmark for the development of TDDFT simulations
of WDM and will guide the development of improved approximations
that can be applied to more complex systems that are beyond the
scope of PIMC.

Based on the methodology introduced in Sec. IIA 3, RT-TDDFT
is a powerful method for evaluating experimentally relevant features

FIG. 11. LR-TDDFT results for hydrogen at the electronic Fermi temperature h ¼ 1
for (a) rs ¼ 2 and (b) rs ¼ 4 for a wave vector of q ¼ 1:69qF. Solid black: RPA,
i.e., setting Kxcðq;xÞ � 0 in Eq. (17); dashed green: adiabatic LDA (ALDA), cf.
Eq. (68); dotted red: static approximation, Kxcðq;xÞ � KxcðqÞ using exact PIMC
data for the XC kernel in the static limit. Adapted from Ref. 77.
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such as the DSF, and the electrical conductivity (in the optical
limit q! 0). Figure 12 shows the frequency-dependent electrical con-
ductivity23 of iron at earth-core conditions (P � 320GPa or
rs � 2:2; T � 0:55 eV). The red curve shows the tensor averaged result
of several ionic configurations of size N¼ 16 with an energy resolution
Dx � 0.11 eV, which is proportional to the inverse of the total propaga-
tion time (t � 1500 a.u.). We compare our calculations with prior
results (black dashed and dotted curves) obtained using the KG formula
based on static DFT (up to 20 eV).433,434 In general, KG results are
affected by finite-size effects and are highly dependent on the density
and location of the KS eigenvalues.435,436 The red dotted line shows the
Drude fit to RT-TDDFT data to obtain the DC conductivity, which is in
the range observed in previous ab initio433,434,437 methods.

Next, in Fig. 13, we consider a RT-TDDFT calculation of the
DSF of isochorically heated aluminum (Te ¼ 0:3 eV) at a momentum
transfer of q ¼ 0:67 a.u., compared to both experiment and a DFT-
based theory for these same conditions first studied in Ref. 145. The
RT-TDDFT calculations make use of in-house extensions to the
Vienna ab initio simulation package (VASP)438–440 first reported in
Ref. 189, and we consider adiabatic PBE and SCAN exchange-
correlation potentials. The plasmon for both RT-TDDFT functionals
is notably red-shifted relative to the experiment, similar to the LR-
TDDFT ALDA results reported in Ref. 167, but inconsistent with LR-
TDDFT results for cold solid aluminum reported in Ref. 441], which
also indicated better agreement (and a small blue shift) between
ALDA and experiment. The DFT-based theory to which we compare
from Ref. 145 uses separate models for the bound-free edge (the
q! 0 limit of the optical conductivity) and the plasmon (the Mermin
approximation, with collision frequencies taken from Kubo–
Greenwood calculations442), but both are based on thermal DFT in a
limit that is equivalent to an LR-TDDFT calculation in which fHxc ¼ 0
and both make use of the HSE exchange-correlation functional in the
attendant ground-state calculations.443 To capture the bound-free edge,
we used an 11-electron projector augmented-wave pseudization444

of the electron–ion interaction. Relative to a three-electron pseudization,
the additional spectral width adversely impacts the condition number of
the linear system of equations in the time propagation scheme, making
HSE impractical relative to simply verifying expected systematics for

FIG. 12. Frequency-dependent electrical conductivity of iron under Earth-core con-
ditions (T � 0:55 eV, rs � 2:2) from RT-TDDFT calculations (red curve). This is
compared with previous works (black) using the KG formula.433,434 The Drude fit to
RT-TDDFT data is indicated by the red dotted line.

FIG. 13. (Top) The RT-TDDFT density response to a perturbation of the form
v0 exp ðiq � rÞf ðtÞ, where q ¼ 0:67 a.u., and f(t) is a Gaussian envelope. Results for
adiabatic PBE and SCAN are included, and the envelope for a postprocessing window
with a 3-eV Lorentzian broadening is indicated in the background. (Bottom) The RT-
TDDFT results postprocessed into simulated XRTS spectra through convolution with a
4-Gaussian least squares fit to the instrument function in Ref. 145. We simulate a
range of ionic structures, spanned by the shaded regions, by subtracting the elastic
peak from the RT-TDDFT and adding a range of model ionic peaks. We compare to
digitizations of both the experimental spectra and a subset of the theoretical data by
Witte et al.145 The theoretical data from Witte et al.145 are the bound-free edge from
the Kubo–Greenwood optical conductivity and the rest of the spectrum from the
Mermin approximation with collision frequencies determined using Kubo–
Greenwood—both of which used HSE. Note that the SCAN results are on top of the
PBE results, with the exception of a slight difference in the bound-free edge.
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much cheaper PBE and SCAN calculations. We expect that the only
impact of using HSE would be to more strongly bind the 2p states and
to shift the bound-free edge a bit further than SCAN, consistent with
prior DFT-MD calculations.445 This is consistent with the systematics
that are observable in switching between PBE and SCAN in RT-
TDDFT, in which no change in the shape of the plasmon is observable.

The RT-TDDFT DSF for a range of plausible ionic structures is
convolved with a fit to the reported instrument function, and while the
simulated scattering intensity is in reasonable agreement with experi-
ment, the discrepancy between RT-TDDFT and the methods based
strictly on DFT is notable. The bound-free edge is approximately con-
sistent with Kubo–Greenwood at q! 0, which suggests that this
region of the DSF should be well treated within a ground-state frame-
work. However, the plasmon is notably distorted relative to the ab ini-
tio formulation of the Mermin approximation. We note that this has
previously been observed,189 and more severe discrepancies between
Kubo–Greenwood and RT-TDDFT have been observed in the context
of simulations of bound-bound features in XRTS.258 In as far as RT-
TDDFT is ostensibly a higher level of theory, this warrants further
investigation to reach a better understanding of the relative strengths/
weaknesses of the two approaches as well as ultimate consistency.

C. Nonlinear density response

The concept of linear density response is ubiquitous throughout
physics,327 in general, and WDM description, in particular. From a
theoretical perspective, neglecting all nonlinear terms, e.g., in Eq. (52),
leads to substantial simplifications, which often render calculations
feasible in the first place. Indeed, the assumption of a linear response is
well justified for many applications,167 such as XRTS experiments with
low to moderate intensities as they are employed for WDM diagnos-
tics.147 At the same time, nonlinear effects are known to play an
important role in high-Z stopping power calculations181–183 and have
been suggested to be important in the construction of effective pair
potentials.139,179,180 To be more specific, the Bethe stopping power for-
mula, together with its many corrections, remains the cornerstone of
our understanding of electron ionization-excitation energy losses
of charged heavy particles in matter.446 One of the primary limitations
of the bare (uncorrected) Bethe formula is reflected on its origin from
the first-order quantum mechanical perturbation theory.447 In fact, for
high-Z particles, it can be expected that higher-order terms of the
Born series become significant.448,449 Translating from the language of
quantum scattering theory to the language of density response theory,
the stopping power of the high-Z particle is the force that it experien-
ces from its own induced field in the medium.450 Thus, it is straight-
forward to deduce that the next high-order correction will roughly be
/ Z3 and will emerge from the quadratic density response.182,451,452

This is the famous Barkas effect and corresponding Barkas correction
that also accounts for the stopping power differences between equal
mass projectiles of opposite charge sign.453,454

In addition, it can be shown176 that nonlinear response functions
are directly connected to higher-order correlation functions.
Therefore, the experimental investigation of nonlinear observables
might allow one to gain new insights into many-body effects in a given
system. Finally, we note that the nonlinear density response has been
shown167,175 to depend much more sensitively on system parameters
like the temperature compared to the usually considered linear

response, which might make them useful as a new tool for WDM
diagnostics.184

To our knowledge, the first rigorous analysis of the static nonlin-
ear density response of WDM has been presented in Ref. 167 based on
exact PIMC simulations of a harmonically perturbed UEG, cf. Eq.
(29). The basic idea can be seen in Fig. 4(d), where we show the
induced density hq̂kiq;A [Eq. (37)] as a function of the perturbation
amplitude A. More specifically, the symbols show the raw PIMC
results, and the dotted curves fit functions based on the expansion
given in Eq. (60). Note that the induced density has been divided by A,
so that the datasets attain a constant value in the linear response limit.
For the smallest depicted value of the wave number q (blue diamonds),
the density response of the UEG is comparably small, and nonlinear
effects are basically negligible over the entire depicted A-range. In stark
contrast, the induced density for q ¼ 3qmin is substantially larger in
magnitude and visibly deviates from the constant LRT limit for
A� 0:02. This is reflected by a large value in the cubic coefficient in
Eq. (60), which directly corresponds to the cubic density response at
the first harmonic, i.e., at the third power of the perturbation ampli-
tude but exactly at the perturbation wave vector (and, in general, fre-
quency). Detailed investigations of the latter have been presented in
Refs. 167 and 175.

While being formally exact, the approach based on the direct
PIMC simulation of the harmonically perturbed system is computa-
tionally very demanding as it requires one to carry out a set of inde-
pendent simulations over a sufficient interval of perturbation
amplitudes A to extract the nonlinear density response for a single
combination of rs, h, and q. A promising route to circumvent this issue
has been suggested by Moldabekov et al.,455 who have shown that the
nonlinear density response can be studied very accurately based on
KS-DFT simulations. In particular, this will allow one to transcend the
current limitations of PIMC and to study nonlinear effects in real
materials. From the perspective of PIMC itself, Dornheim et al.195

have presented relations between generalized nonlinear response func-
tions and high-order imaginary-time correlation functions, which can
be viewed as generalizations of the imaginary-time version of the
fluctuation-dissipation theorem given in Eq. (40). In the present work,
we restrict ourselves to quadratic orders in the perturbation strength
A, and the corresponding relation between the quadratic density
response function at the second harmonic and the respective
imaginary-time three-body correlation function Fð2Þðq; s1; s2Þ is given
by Eq. (58).

In Fig. 14, we show new ab initio PIMC results for Fð2Þðq; s1; s2Þ
in the s1-s2-plane for two different values of the wave number q for
the UEG at rs ¼ 4 and h ¼ 1, i.e., for the same conditions as in Fig. 4.
Overall, we find that Fð2Þðq; s1; s2Þ exhibits a qualitatively similar
behavior to the two-body ITCF Fðq; sÞ. Specifically, we observe an
increasingly steep decay with respect to both s1 and s2 with increasing
q, whereas the three-body ITCF becomes flatter in the long-
wavelength limit. At the same time, we note that the physical behavior
of Fð2Þðq; s1; s2Þ remains very poorly understood, and its improved
understanding along similar lines as it has been achieved for Fðq; sÞ in
Refs.190,192 remains an important task for future works.

In the present context, the main utility of Fð2Þðq; s1; s2Þ is given
by its direct connection to the quadratic static density response func-
tion of the second harmonic, vð2;2ÞðqÞ, via Eq. (58), which is explored
in Fig. 15 for the same conditions as in Fig. 14. In particular, the green
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crosses have been obtained from a single simulation of the unper-
turbed UEG in this way. Evidently, vð2;2ÞðqÞ exhibits the opposite sign
compared to the linear static density response function vðqÞ shown in
Fig. 4, which, together with the positive sign of the cubic response at
the first harmonic, leads to a saturation of the true response compared
to LRT for medium to large perturbation amplitudes A. In addition,
we find that the PIMC-based evaluation of Eq. (58) is in excellent
agreement with the five red dots, which have been obtained from a
multitude of PIMC simulations of the harmonically perturbed system
by fitting Eq. (61) to the induced density at the second harmonic, i.e.,
hq̂2qiq;A. In practice, the imaginary-time framework introduced in

Ref. 195, thus, gives superior results for the quadratic density response
of the second harmonic for all relevant wave numbers with a fraction
of the computation cost. For completeness, we note that similar rela-
tions also exist for the nonlinear interaction between multiple external
perturbations, which has been explored in more detail in Ref. 177.

In addition to their direct value for the understanding of nonlin-
ear effects in WDM, the availability of exact PIMC reference data is
also pivotal to guide the development of new theoretical frameworks.
In this regard, a highly useful result is given by the recursion formula
for the quadratic density response of the ideal Fermi gas by
Mikhailov,173,174 cf. Eq. (64). The results are shown as the solid yellow
curve in Fig. 15 and exhibit the correct asymptotic behavior for
q� 2qF. Screening effects for small q, on the other hand, are not

FIG. 14. Ab initio PIMC results for the three-body ITCF Fð2Þðq; s1; s2Þ [Eq. (62)] for
N¼ 34, rs ¼ 4, and h ¼ 1 in the s1-s2-plane; (a) q ¼ 1:25qF and (b) q ¼ 2:51qF.

FIG. 15. Quadratic density response at the second harmonic vð2;2Þðq; 0Þ for
N¼ 34, rs ¼ 4, and h ¼ 1. Red circles: estimation from PIMC simulations of the
harmonically perturbed system [cf. Eq. (29)] via Eq. (61); green crosses: integration
of the three-body ITCF Fð2Þðq; s1; s2Þ shown in Fig. 14 via Eq. (58); solid yellow:
quadratic density response of the ideal Fermi gas, Eq. (64); dashed black: RPA
expression, Eq. (65); dotted blue: incorporation of XC effects via the static local field
correction G(q) taken from Ref. 194 via Eq. (66).
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included. In Ref. 175, five of us have introduced an RPA-like expres-
sion for vð2;2ÞðqÞ—and also for high-order response functions which
are beyond the scope of the present overview—that is truncated at the
linear level with regard to screening effects, see Eq. (65). The results
have been included as the dashed black curve. They exhibit the correct
trends in the limits of q! 0 and q!1 but substantially underesti-
mate the true quadratic response around its maximum at q � 2qF.
Including the static local field correction Gðq; rs; hÞ evaluated from the
neural-net representation from Ref. 194 via Eq. (66) gives the dotted blue
curve, which is in perfect agreement with the PIMC datasets over the
entire q-range. This is a strong empirical verification for the small effect
of the screening truncation employed in Eqs. (65) and (66). Moreover, it
confirms the more pronounced importance of electronic XC effects for
the description of nonlinear effects, since the RPA curve is less accurate
for the description of vð2;2ÞðqÞ compared to vðqÞ; this is consistent with
previous investigations presented in Refs. 175 and 176.

Future investigations of the nonlinear density response of the
UEG will include the study of dynamic effects, which is possible in
multiple ways. For example, the RPA and LFC-based expressions for
the quadratic density response Eqs. (65) and (66) remain the same for
all frequencies. As a first step, one might, therefore, study dynamic
nonlinear effects based on the static approximation, which is straight-
forward given the easy availability of Gðq; rs; hÞ based on different rep-
resentations.72,194 Moreover, these efforts can be improved by
including the full, frequency-dependent results for Gðq;xÞ that are
available for certain parameters of the UEG based on the analytic con-
tinuation252 discussed in Sec. III B 1. Such an approach will allow one
to gain both qualitative and quantitative insights into a number of
interesting phenomena, such as double plasmons250,456,457 and
dynamic three-body correlations.458–460

In addition, upcoming direct PIMC simulations (i.e., without
the fixed-node approximation) of real WDM systems such as
hydrogen77,78 will allow one to directly estimate Fð2Þðq; s1; s2Þ as
well as higher-order ITCFs that are connected to the cubic density
response and so on.195 First and foremost, this will facilitate inves-
tigations of the static nonlinear density response of WDM, without
any assumptions or approximations. In particular, the presence of
both electrons and ions leads to various cross terms, which deserve
a closer examination. Finally, we envision the systematic develop-
ment of the study of dynamic many-body effects in the imaginary-
time domain similar to the efforts that have been developed in
Refs. 146, 190, and 192, for Fðq; sÞ, which have been touched upon
throughout the present work.

IV. INTERPRETATION OF XRTS EXPERIMENTS

One of the most important practical applications of the electronic
density response of WDM is given by the interpretation of XRTS
experiments. In the traditional way, one constructs a theoretical model
for the DSF Sðq;xÞ with a-priori unknown system variables such as
the temperature T, the density n, or the charge state Z being the free
parameters.147 Convolving the DSF with the combined source and
instrument function RðxÞ, cf. Eq. (3), then allows one to compare
these results with the experimentally measured scattering intensity
Iðq;xÞ, and the best fit between the model and the experiment then
gives one access to the system parameters of interest. We note that the
numerical deconvolution of Eq. (3) is generally rendered highly unsta-
ble by the inevitable experimental noise. Therefore, XRTS does not

give one direct access to the DSF, which could have been used, e.g., to
extract the temperature via the detailed balance relation Eq. (46).319

To our knowledge, the most widely used theoretical model for
the interpretation of XRTS experiments with WDM is given by the
Chihara decomposition,147,148,151,186 which is based on a separation
into bound and free electrons. Yet, such a chemical picture is expected
to break down for significant parts of the WDM regime, where the
electrons are partially localized around the ions; in this case, they are
neither bound nor free, see also the discussion of warm dense hydro-
gen in Sec. IIIA 2.

We note that overcoming these difficulties with more advanced
simulation methods such as LR-TDDFT is also no trivial matter for
numerous reasons. First and foremost, such ab initio simulations are
computationally very costly and are unclear if it will be feasible to carry
them out on a sufficient grid of free parameters to infer thermody-
namic variables such as the temperature from XRTS measurements. In
this regard, modern machine-learning based interpolation methods114

will likely be helpful, but their practical application to this problem
remains an important task for future research. Second, the accuracy of
LR-TDDFT simulations is determined by the XC kernel, and the
development of consistent useful approximations for real WDM sys-
tems is still in its infancy.

In any case, it is safe to say that previous approaches for the inter-
pretation of XRTS measurements are based on approximations, and
their accuracy remains largely unclear. Therefore, EOS measure-
ments187,188 are actually model-dependent and do not necessarily con-
stitute a reliable baseline either for practical applications or to guide
the development of improved theoretical methods.

Very recently, Dornheim et al.146,190,191 have suggested that this
problem can be circumvented by switching from the usual frequency-
domain that is centered around Sðq;xÞ to the imaginary time s; here,
the main property is the ITCF Fðq; sÞ, which contains exactly the
same information as the DSF. In particular, the convolution theorem
Eq. (45) implies that the deconvolution is trivial in the Laplace
domain. In other words, XRTS gives us direct access to Fðq; sÞ, which
can subsequently be used to infer information about the given system
without any intermediate models or simulations. For example, the
symmetry relation Eq. (47) indicates that the ITCF is symmetric
around s ¼ b=2 ¼ 1=2T . In this sense, one could say that XRTS mea-
surements effectively function as a thermometer as the relation
between Fðq; sÞ and T is trivial.

In Fig. 16, we demonstrate this idea for the pioneering observa-
tion of plasmons in warm dense beryllium by Glenzer et al.202 Panel
(a) shows the actual experimental scattering intensity (green) and the
corresponding combined source and instrument function (blue). In
particular, the elastic feature around x ¼ 0 is dominated by the latter,
and both the up- and down-shifted plasmons are nicely visible around
x � 625 eV. From a practical perspective, it is clear that the evalua-
tion of the Laplace transform Eq. (41)—and also the proof of the con-
volution theorem, Eq. (45)—requires an integration over an infinite
frequency-range, whereas the available x-range is clearly limited in
any given experiment. In practice, we, thus, define a symmetrically
truncated Laplace transform,

Lx Sðq;xÞ~RðxÞ½ � ¼
ðx
�x

dx e�sx Sðq;xÞ~RðxÞ
� �

; (70)

with the corresponding truncated ITCF
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Fxðq; sÞ ¼
Lx Sðq;xÞ~RðxÞ½ �

L RðxÞ½ � : (71)

It is easy to see that the truncation error vanishes in the limit of large x

lim
x!1

Fxðq; sÞ ¼ Fðq; sÞ; (72)

and the convergence with x has to be carefully checked.
This is demonstrated in Fig. 16(b), where we plot the position of

the minimum in Fxðq; sÞ as a function of the integration boundary.
We note that the shaded green area constitutes a measure of the
respective uncertainty due to the experimental noise, and the utilized
procedure is explained in detail in Ref. 191. Evidently, we observe a
convergence of the, thus, inferred temperature around x � 30 eV, i.e.,
upon capturing the main plasmon peak in the integration range. As
our final estimate for the temperature, we find T ¼ 14:862 eV. This
is comparably close to the nominal temperature of T ¼ 12 eV, which
was found in the original publication202 based on a simple Mermin
model.461

Let us conclude this reassessment of the beryllium XRTS data
by examining the actual result for Fðq; sÞ, shown in Fig. 16 for the
converged value of x ¼ 40 eV. Specifically, the green line shows the
deconvolved ITCF (up to the unknown normalization factor), and
the shaded gray area is the corresponding uncertainty interval due
to the experimental noise. The vertical yellow line indicates the
location of the minimum, which has been used to infer the temper-
ature via Eq. (47). Moreover, the dotted blue line shows
the Laplace transform of the instrument function RðxÞ, i.e., the
denominator of the RHS of Eq. (45). Without this correction, the
minimum of the ITCF would be shifted to smaller values of s, lead-
ing to an overestimation of the temperature T.146,191 Finally, the
dashed red curve has been obtained by mirroring the ITCF around
s ¼ b=2. Evidently, the red curve is in excellent agreement with the
green curve, which means that the ITCF computed from the XRTS
data shown in Fig. 16(a) is really symmetric to a remarkable degree
given the comparably high noise level in the latter. The stability of

the method with respect to experimental noise is analyzed in detail
in Ref. 191.

In summary, the formally exact method proposed in Ref. 146
allows one to extract very accurate results for the temperature of arbi-
trary complex systems in thermodynamic equilibrium from an XRTS
measurement without any models, approximations, or simulations.
From a practical perspective, a decisive factor is given by the accurate
quantification of the combined source and instrument function RðxÞ.
This is relatively straightforward using source monitors at modern
XFEL facilities,18,55 whereas the characterization of backlighter emis-
sion spectra462 at facilities like NIF is more challenging. On the other
hand, we note that the high temperatures typical for NIF implosion
experiments make the influence of RðxÞ on the extracted temperature
less pronounced in any case. Furthermore, it has been shown191 that
the characteristic width of the instrument function also determines the
minimum temperature that can be inferred from the ITCF method,
which becomes apparent both from considerations of the respective
DSF and the corresponding ITCF. Specifically, the detailed balance
relation Eq. (46) of the DSF directly implies that the signal at negative
frequencies is exponentially damped with increasing b, i.e., upon low-
ering the temperature. At some point, the signal for x < 0 will vanish
within the given experimental noise, and no inference of a temperature
will be possible. In the s-domain, large b means that one has to resolve
the ITCF over a correspondingly large imaginary-time interval. With
increasing s, the effect of the convolution becomes exponentially more
pronounced. In this case, every small uncertainty in the determination
of RðxÞ will have increasing consequences for the evaluation of Eq.
(45) and, thus, make the localization of the minimum around s ¼ b=2
less accurate.

Additional challenges for future works include the investigation
of the effect of inhomogeneity onto the ITCF, which is particularly
important for spatially extended systems such as the fuel capsule in
implosion experiments at the NIF.463,464 Moreover, the symmetry rela-
tion Eq. (47) naturally only holds in thermodynamic equilibrium, and
the influence even of small nonequilibrium effects270,465 should be

FIG. 16. Temperature diagnosis of the XRTS measurement of warm dense beryllium by Glenzer et al.202 (a) XRTS signal (green) and combined source and instrument
function (blue); (b) convergence of the inferred temperature with the integration boundary x [Eq. (71)] and the corresponding uncertainty interval due to the noise in the
intensity Iðq;xÞ; (c) extracted ITCF for x ¼ 40 eV (solid green); the shaded gray area illustrates the uncertainty in Fðq; sÞ, and the dotted blue line shows the Laplace
transform of the instrument function; the dotted red curve has been mirrored around s ¼ b=2, which illustrates that the symmetry relation Eq. (47) is fulfilled to a high
degree. Taken from Ref. 191.
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quantified in the future. As a final point, we mention the potential
impact of the (small) frequency-dependence of the wave vector,
q ¼ qðxÞ, even though a first investigation in Ref. 191 has led to the
conclusion that the effect can likely be neglected for XRTS experiments
and is of no consequence for the interpretation of the beryllium data
shown in Fig. 16.

V. SUMMARY AND OUTLOOK

In this work, we have given an overview of our current under-
standing of the electronic density response of WDM.More specifically,
we have attempted to form a coherent picture that elucidates the con-
nections between various theoretical approaches and simulation meth-
ods such as PIMC and different flavors of DFT, and between different
representations such as the DSF Sðq;xÞ and the ITCF Fðq; sÞ. In
addition, we have discussed both the ubiquitous weak-perturbation
limit described by linear response theory and its extension to include
nonlinear effects with respect to the perturbation amplitude.

From a theoretical perspective, density response theory consti-
tutes a powerful framework for the investigation of a host of observ-
ables. Indeed, it forms the basis for the widely used LR-TDDFT
method and helps to connect approaches such as dielectric theories
with PIMC and DFT. In addition, the density response theory is piv-
otal for the understanding and modeling of experiments, with XRTS
measurements of WDM being a prime example. In this regard, special
attention has been given to the imaginary-time domain, which com-
bines a number of key advantages. First, obtaining the ITCF Fðq; sÞ
from XRTS experiments is straightforward; this allows for exact and
model-free diagnostics of the temperature146 and can likely be
extended to other observables in future works.190 Second, the ITCF
contains the same information as the DSF, which makes it a useful
tool for the investigation of dynamic effects from exact PIMC simula-
tions.190 Finally, we argue that the ITCF is at the heart of density
response theory as it is directly connected to vðqÞ and Sðq;xÞ in dif-
ferent ways. In fact, we view the imaginary-time domain as a comple-
mentary representation of dynamic quantum many-body theory. As
such, it is reasonable to consider it even in cases where frequency-
dependent properties such as the DSF are exactly known, since differ-
ent representations tend to emphasize different aspects of the same
information.

Let us conclude this work by outlining three particularly promis-
ing routes for future research.

A. Improved real-time TDDFT and NEGF simulations

As we discussed in Secs. IIA 3 and IIA4, real-time simulations
offer a number of attractive features: direct access to nonlinear
response properties, to non-adiabatic effects as well as to high-level
electronic correlations. The observation that real-time NEGF simula-
tions with rather simple self-energies allow one to reproduce linear
response results that, otherwise, require to solve complicated
Bethe–Salpeter-type equations indicates a promising route for future
developments in NEGF and real-time TDDFT. This can benefit from
recent developments in the NEGF theory that allowed to dramatically
speed up the simulations achieving time-linear scaling372,373 also for
advanced self-energies.279 These simulations can be used, among other
things, to benchmark existing and derive improved exchange-
correlation potentials for RT-TDDFT. In this context, we also mention
the recently developed quantum fluctuations approach,466 which

constitutes another promising concept for the real-time computation
of the density response.

B. Systematic improvement of LR-TDDFT

In Fig. 17, we illustrate the recent framework by Moldabekov
et al.255 for the DFT-based estimation of the static XC kernel KxcðqÞ.
As the first step (top left), KS-DFT calculations are carried out with
respect to the original electronic Hamiltonian Ĥ 0 and with respect to
a modified Hamiltonian Ĥ ¼ Ĥ 0 þ V̂ ext that is perturbed by a mono-
chromatic static potential V̂ ext, cf. Eq. (29). The difference between
these two calculations gives one the induced density shown in the bot-
tom left panel. In the limit of small A, one gets direct access to the
physical static density response vðqÞ and, in this way, to the static XC
kernel KxcðqÞ of real materials (top right).

As the first future improvement, it will be indispensable to com-
pare these DFT results for different conditions and for a variety of XC

FIG. 17. Schematic illustration of the DFT setup to the static XC kernel by
Moldabekov et al.255 Top left: standard KS-DFT is used to compute the single-
electron density nðrÞ a) with respect to the original electronic Hamiltonian of interest
Ĥ 0 (solid black) and (b) with respect to a modified Hamiltonian subject to an exter-
nal monochromatic perturbation V̂ ext (dashed blue). Bottom left: this gives access
to the corresponding density modulation DnðrÞ for different wave vectors q. Top
right: in the linear-response regime (V̂ ext � Ĥ 0), the induced density gives access
to the static density response function vðqÞ and the corresponding XC kernel
KxcðqÞ (blue crosses). Bottom right: the FDT [Eq. (31)] provides a direct connection
to electron–electron correlation functions such as the static structure factor SeeðqÞ,
which cannot be readily computed within standard DFT.
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functionals across Jacob’s Ladder to upcoming exact PIMC simula-
tions of real WDM, starting with hydrogen. It can be expected that a
comparison of the static XC kernel by itself will give invaluable insights
into the performance of different functionals and may guide the devel-
opment of improved approximations. In this context, we also mention
the enticing possibility to actually measure the exact KxcðqÞ in XRTS
experiments, which is discussed in more detail below. Second, we pro-
pose to utilize the DFT results for KxcðqÞ as input for LR-TDDFT sim-
ulations within the static approximation.252 This can be motivated by
the high accuracy of this approach for the UEG at metallic densities
and should work particularly well for highly ionized matter. The corre-
sponding results for Sðq;xÞ can then a) be used to interpret and
model XRTS experiments [Eq. (3)] and, after performing the Laplace
transform Eq. (41), compared to exact PIMC reference data for
Fðq; sÞ, e.g., for hydrogen.

In fact, the last step with the DFT results can be viewed as a linear
response imaginary-time-dependent DFT (LR-iTDDFT) calculation
within the respective static approximation. From a theoretical perspec-
tive, iTDDFT has a crucial advantage over usual TDDFT methods that
operate in frequency-space: exact PIMC calculations can be used to
extract an exact dynamic XC kernel that contains the full dependence
on the complex frequency z, Kxcðq; zÞ. Such information can give key
insights into the limits of the static approximation. Moreover, it can
form the basis for the construction of novel dynamic XC kernels for
LR-iTDDFT calculations of real materials that transcend the current
limitations of TDDFT. We re-iterate that such calculations will allow
one to accurately predict the ITCF Fðq; sÞ, which is directly accessible
from XRTS experiments.

Finally, we propose to use either the aforementioned LR-TDDFT
calculations within the static approximation or improved LR-iTDDFT
calculations with a dynamic, z-dependent kernel as the basis for the
estimation of electron–electron correlation functions such as the static
structure factor SðqÞ or the electron–electron pair correlation function
gðrÞ. From a philosophical perspective, the key ingredient to this idea
is given by the fluctuation-dissipation theorem [Eq. (31)] that provides
a straightforward relation between the induced single-particle den-
sity—a property that is easily accessed within standard KS-DFT—and
an electron–electron correlation function such as the DSF Sðq;xÞ. In
this way, it will be possible to reconstruct information about electronic
correlations; we also note that this idea is not limited to pair correla-
tions and can be extended to higher-order correlation functions176 by
using KS-DFT to study the nonlinear density response of a given sys-
tem of interest.455

C. Improved XRTS measurements at modern XFEL
facilities

The proposed systematic improvements of our theoretical under-
standing of the electronic density response of WDM can be decisively
aided by new emerging experimental capabilities. Indeed, the new
framework for the interpretation of XRTS experiments with WDM in
the imaginary-time domain allows us to suggest new experimental set-
ups that exploit these ideas in an optimal way. While this applies to
XRTS experiments in general, we find that modern XFEL facilities
such as the European XFEL55 are particularly promising in this regard,
as they offer a high degree of flexibility for new developments, and for
the exploration of novel concepts and ideas. In practice, a key advan-
tage of the European XFEL is given by the rep-rated high-power drive

laser systems ReLaX and DiPOLE100X, which are made available by
the HIBEF user consortium and match the macro-bunch frequency of
the x-ray laser of 10Hz.467 This increase in the data rate of up to sev-
eral thousand times in comparison to similar installations at LCLS and
SACLA leads to a revolutionary improvement in photon statistics,468

which can result in high-quality scattering spectra with a dynamic
range over four orders of magnitude or more. This accuracy is particu-
larly important for clear measurements of the blue-shifted part of the
scattering spectrum, which is exponentially damped by the Boltzmann
factor in detailed balance. Furthermore, the use of self-seeding, both
with and without a monochromator, can substantially reduce the
bandwidth of the instrument function while keeping the photon flux
in a comparable realm as for pure SASE radiation or, indeed, even bet-
ter.469 This reduces the influence of uncertainties of the instrument
function for further analysis.

A clear example of a first experiment to test the proposed
imaginary-time framework would be the measurement of XRTS of high
energy density matter with unprecedented quality for an entire set of
scattering angles. This would give us access to Iðq;xÞ over the full rele-
vant q-range and will be beneficial for two reasons. First, this would
allow the ITCF-based temperature diagnostics developed in Ref. 146 to
be applied for all wave vectors. Since the extracted temperature has to be
the same independent of a particular q, such an experiment can be used
to further demonstrate the consistency of the idea and to quantify the
underlying uncertainty. Second, recording the XTRS spectrum for mul-
tiple q will be indispensable to test theoretical models and to guide the
development of methodological improvements. In Sec. IIIA1, we have
made extensive use of the imaginary-time version of the fluctuation-
dissipation theorem, Eq. (40), which gives a straightforward relation
between Fðq; sÞ and the static density response function vðqÞ. The pro-
posed set of XRTS measurements will, thus, make it possible to measure
the static density response function of WDM systems. In addition to
being very interesting in their own right, these data can be used to invert
Eq. (17) and, in this way, to obtain unassailable experimental reference
data for the XC kernel of real materials.
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