# A guide to the methodology and potential applications of economic agent-based models (ABMs) 

Nikita Strelkovskii, Sebastian Poledna, Elena Rovenskaya, Joanne Linnerooth-Bayer

## Economic agent-based modeling methodology

## Agent-based modeling of economic systems

Agent-based models (ABMs) are computer simulation models with the following features:

- They model individual agents and their individual decisions (decentralized decision-making)
- Can include thousands or even millions of agents
- Can capture bounded rationality (often in the form of some heuristics)
- Depict emergent patterns from micro-processes that aggregate to a macro level: the economy as a complex system subject to fundamental uncertainty

ABM is a (relatively) new way to model complex systems ABMs have potential to be "more realistic" models of socioeconomic systems

Real world
Agent-based model


县


## Why ABM for economic systems?

- It seems that standard economic models perform rather well for "normal" times and not so well in "abnormal" times
- Many models currently used by central banks and large international institutions had "difficulty explaining both the depth and the slow recovery of the Great Recession." (Lindé, Smets \& Wouters, 2016)
- More generally, "... ABMs are a promising complement to the current crop of macroeconomic models, especially when making sense of the types of extreme macroeconomic movements the world has witnessed for the past decade." (Haldane \& Turrell, 2017)

- introducing heterogeneous agents
- relaxing rational expectations


## Comparison of different types of economic models

Agent-based models explain the evolution of an economy by simulating the micro-level behaviour of individual agents to give a macro-level picture:

| DSGE | TANK, HANK | ABM | ABM (next gen) |
| :--- | :--- | :--- | :--- |
| Representative agents | Heterogeneous agents | Heterogeneous agents | Heterogeneous agents |
| $\begin{array}{l}\text { Log-linearized and solved } \\ \text { numerically }\end{array}$ | $\begin{array}{l}\text { Log-linearized and solved } \\ \text { numerically }\end{array}$ | $\begin{array}{l}\text { Solved numerically at the } \\ \text { agent level }\end{array}$ | $\begin{array}{l}\text { Solved numerically at the } \\ \text { agent level }\end{array}$ |
| $\begin{array}{l}\text { Rational or model- } \\ \text { consistent expectations }\end{array}$ | $\begin{array}{l}\text { Bounded rationality } \\ \text { through myopia or limited } \\ \text { foresight }\end{array}$ | $\begin{array}{l}\text { Bounded rationality in } \\ \text { expectations }\end{array}$ | $\begin{array}{l}\text { Bounded rationality in } \\ \text { expectations }\end{array}$ |
| $\begin{array}{l}\text { Agents optimize given } \\ \text { expectations }\end{array}$ | $\begin{array}{l}\text { Agents optimize given } \\ \text { expectations }\end{array}$ | Agents use simple heuristics |  | \(\left.\begin{array}{l}Agents use simple <br>

heuristics calibrated to <br>

micro \& macro data\end{array}\right]\)| Match the historical |
| :--- |
| evolution of variables |

"In principle it might even be possible to create an agent-based economic model capable of making useful forecasts of the real economy, although this is ambitious ...

## Comparison of different types of economic models



Figure 8. Macroeconomic ABMs may be thought of as lying within a wider modelling space, here shown as having two axes. Internal consistency is best represented by strongly microfounded behaviour, while external consistency is demonstrated by agreement with the data. On the other axis is the degree of agent heterogeneity which the model can include, with representative agents on one end and heterogeneity along many dimensions at the other. The within variation of each model type is likely to be larger than the variation between them, but the figure illustrates their approximate location within the wider modelling space.

## ABM for economic forecasting

- Statistical models using (mostly linear) time series analysis offer good forecasting performance
- large-scale macroeconometric models that use large amounts of data are possible...
- ...but are weak in providing an explanation and interpretation of economic events
- DSGE and other models derived from economic theory
- provide explanation and interpretation of economic events...
- ...by depicting the micro-founded behaviour of agents
- but for methodological reasons are restricted to smaller models with fewer variables than statistical models
- ABMs
- combine advantages from large-scale statistical models and models derived from economic theory
- can be large-scale and derived from economic theory at the same time
- can compete with other models in out-of-sample prediction performance


## Proliferation of ABMs in the economic literature

Share of publications indexed in Scopus for the search request
TITLE-ABS-KEY ( "*econom* agent-based" OR "agent-based *econom*") in the total number of publications in the "Economics, Econometrics and Finance" research area


## IIASA macroeconomic ABM

## Overview of the ABM

## Agents:

- Non-financial corporations (firm sector), limited companies and self-employed
- Financial corporations (banking sector), one representative bank
- Individual persons (household sector)
- Employed (active on labor market)
- Unemployed (involuntarily idle)
- Investor (own firms)
- Inactive households (not active on labor market, receive social benefits)
- General government (consists of central, state and local governments)
- Central Bank


## Overview of the ABM

## Mechanisms:

- Firms in 64 sectors (NACE) produce goods and services by using labor, capital and intermediate inputs from other firms
- Bounded rationality: Firms and consumers form expectations about future developments using adaptive learning and simple heuristics depending on the expected growth rate and inflation
- Consumption networks and supply chains are formed through search-and-matching processes:
- Firms are randomly "visited" by consumers
- The likelihood that firms are visited by consumers correlates negatively with the price and positively with firm size
- Inventories and involuntary savings result from the search and matching process
- The labor market is also modeled with a search-and-matching process
- Demand for funding of firms is based on expectations of the expected future cash flow
- Banks grant loans based on financial conditions of firms and with respect to minimum capital requirements
- The central bank follows a Taylor rule
- The general government acts a consumer (government consumption) and as a "redistributive entity"


## Agents \& mechanisms in more detail Click to read

## Overview of the ABM



Major economic agents and their interactions

## Key modeling choices and mechanisms of the ABM

- Includes all sectors (financial, non-financial, households, a general government) populated with a large number of heterogenous agents calibrated to census and survey (LFS) data
- Includes a complete GDP identity with al/ transactions in products, non-financial assets, and distributive transactions calibrated to national accounting data
- Rational expectations are relaxed with adaptive learning (Hommes \& Zhu, 2014)
- Includes a multi-sector production network calibrated to input-output tables
- Has decentralized markets, which allows for trade frictions
- Incorporates financial frictions with a financial accelerator and debt-financed investment (Bernanke, Gertler, \& Gilchrist 1996)
- Allows non-linear responses, which may be underestimated by linearized DSGE models (Lindé, 2018), and for the possibility of endogenous economic crises without exogenous shocks
- The ABM is validated based on the comparison of its forecast performance (out-of-sample prediction) with that of econometric and DSGE models


## Calibration of the ABM for Austria

| Data type | Data purpose |
| :--- | :--- |
| Census and business demography | Populate the model with realistic <br> numbers of agents-individuals and <br> agents-firms |
| Input-output industry $\times$ industry <br> tables (IOTs); all economic <br> activities as classified by the <br> European System of Accounts: 64 <br> industries (NACE-level 2) | Describe the sale and purchase <br> relationships between producers and <br> consumers within an economy, i.e., <br> flows of final and intermediate goods <br> and services defined according to <br> industry outputs tables |
| Government statistics and sector <br> accounts | Calibrate tax rates, social insurance <br> rates, etc. |
| National accounts (GDP and main <br> components) and money market <br> interest rates | Estimate exogenous processes and <br> the Taylor rule to determine the policy <br> rate |
| Statutory guidelines, financial <br> regulation, and banking practices | Determine capital requirements, <br> inflation targets, unemployment <br> benefit replacement rate, etc. |



## o <br> Calibration in more detail Click to read

## ABM implementation

Two implementations of the IIASA Macroeconomic ABM exist:

- The "reference" implementation is written in MATLAB. In the spirit of Dynare, the model is implemented almost as it is described in the manuscript. This implementation is available on https://github.com/iiasa/abm and on zenodo.
- A Distributed Memory Parallel (DMP-HPC) implementation was developed in Gill et al. (2021).


## 를 DMP implementation in more detail Click to read

ABM for informing economic policies on migration (ABM2Policy project)

## Economic effects of migration

- In Europe, large migratory shocks have led to a heated political debate on their management
- Uncertainty about the migratory impact on the economy and society has, in many instances, polarized the debate
- There is a need for tools to inform stakeholders and policymakers of the most likely economic and social consequences of migration

- Investigation of the economic consequences of an extreme migration scenario for Austria
- Enhance the policy realism of the IIASA macroeconomic ABM
- Consider social heterogeneity to allow studying distributional impacts
- Make use of detailed microdata from Statistic Austria
- GDP
- Government debt
- Unemployment rate...
- Wages..
- Social benefits...
...by economic sector and socioeconomic status


## Calibration of the population module of the ABM



Data source: Statistics Austria

## Calibration of labour market transitions

Labor market transitions to employment are guided by transition probabilities which are estimated from absolute values: flows of individuals between the activity states (employed, unemployed, inactive) divided by stocks of individuals in each activity state.

Citizenship


Sex


Data source: Statistics Austria, Register-based Labour Market Career (ERV) data Data on the employment history of each person in Austria from 2009 onwards (~4.1 mIn. employees; ~20 mln. employment relationships)

## Calibration of the migration scenario

Migration scenario: 250,000 additional agents-migrants of working age ( $15-64$ years old) are dynamically added to the ABM every quarter for six quarters.

The numbers of agents-migrants with certain attributes (citizenship, sex, activity status and industry) are calibrated to resemble the composition of the 2015 refugee crisis in Austria.

| Migration influx |
| :---: |
| (15-64 years old) |
| Quarter 1: $\sim 22 \mathrm{k}$ agents |
| Quarter 2: $\sim 39 \mathrm{k}$ agents |
| Quarter 3: $\sim 63 \mathrm{k}$ agents |
| Quarter 4: $\sim 70 \mathrm{k}$ agents |
| Quarter 5: $\sim 31 \mathrm{k}$ agents |
| Quarter 6: $\sim 24 \mathrm{k}$ agents |



## Macroeconomic impacts and labour market dynamics under the migration scenario


u.r.: Unemployment rate in the baseline scenario; $\Delta$ u.r.: Difference in the unemployment rate (in p.p.) between the migration scenario and the baseline scenario; \#U: Absolute number of unemployed persons in the baseline scenario; $\Delta \# U$ : Difference in the absolute number of unemployed

| Nationality | Gender | Variable | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NATIVES | MEN | u.r. (\%) | 5.20\% | 5.33\% | 5.59\% | 5.83\% | 6.10\% | 6.35\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +0.03\% | +0.10\% | +0.25\% | +0.46\% | +0.71\% |
|  |  | \#U (units) | 85350 | 87833 | 92680 | 97509 | 102824 | 107966 |
|  |  | $\Delta \# \cup$ (units) | +0 | +493 | +1527 | +3743 | +7156 | +11140 |
|  | WOMEN | u.r. (\%) | 5.21\% | 5.39\% | 5.73\% | 6.06\% | 6.37\% | 6.64\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +0.01\% | +0.03\% | +0.13\% | +0.31\% | +0.54\% |
|  |  | \# U (units) | 80615 | 83663 | 89854 | 95893 | 101781 | 107241 |
|  |  | $\Delta \# \cup$ (units) | +0 | +76 | +300 | +1588 | +4266 | +7671 |
| EU | MEN | u.r. (\%) | 7.07\% | 6.80\% | 6.28\% | 5.92\% | 5.78\% | 5.77\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +0.09\% | +0.30\% | +0.52\% | +0.74\% | +0.96\% |
|  |  | \# U (units) | 14483 | 14219 | 13731 | 13504 | 13647 | 14028 |
|  |  | $\Delta \# \cup$ (units) | +0 | +129 | +437 | +785 | +1238 | +1721 |
|  | WOMEN | u.r. (\%) | 8.91\% | 8.91\% | 8.89\% | 8.87\% | 8.92\% | 9.01\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +0.04\% | +0.14\% | +0.34\% | +0.59\% | +0.87\% |
|  |  | \#U (units) | 18211 | 18404 | 18845 | 19343 | 19996 | 20739 |
|  |  | $\Delta \# \cup$ (units) | +0 | +49 | +148 | +399 | +815 | +1321 |
| Other Countries | MEN | u.r. (\%) | 11.80\% | 11.51\% | 10.86\% | 10.23\% | 9.73\% | 9.36\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +0.09\% | +0.34\% | +0.67\% | +1.02\% | +1.36\% |
|  |  | \#U (units) | 28023 | 27450 | 26161 | 24912 | 23975 | 23309 |
|  |  | $\Delta \# U$ (units) | +0 | +198 | +727 | +1447 | +2242 | +3023 |
|  | WOMEN | u.r. (\%) | 14.34\% | 14.41\% | 14.53\% | 14.65\% | 14.80\% | 14.96\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +0.03\% | +0.10\% | +0.24\% | +0.45\% | +0.73\% |
|  |  | \#U (units) | 30149 | 30378 | 30865 | 31383 | 32003 | 32657 |
|  |  | $\Delta \# \cup$ (units) | +0 | +54 | +144 | +343 | +726 | +1244 |
| Refugees | MEN | u.r. (\%) | 28.86\% | 25.29\% | 18.76\% | 13.81\% | 10.57\% | 8.42\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +35.66\% | +45.87\% | +38.82\% | +31.86\% | +26.04\% |
|  |  | \# U (units) | 11319 | 10162 | 7955 | 6199 | 5003 | 4183 |
|  |  | $\Delta \# U$ (units) | +0 | +41755 | +91063 | +78827 | +66050 | +55540 |
|  | WOMEN | u.r. (\%) | 32.47\% | 21.00\% | 9.14\% | 4.61\% | 2.89\% | 2.18\% |
|  |  | $\Delta$ u.r. (p.p) | +0.00\% | +33.20\% | +33.17\% | +19.66\% | +11.62\% | +7.19\% |
|  |  | \# U (units) | 1795 | 1298 | 700 | 430 | 318 | 275 |
|  |  | $\Delta \# U$ (units) | +0 | +7290 | +12977 | +8401 | +5493 | +3823 | persons between the migration scenario and the baseline scenario

# Sectoral labour market dynamics under the migration scenario 

| Industry | Variable | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | u.r. (\%) | 8.19\% | 8.08\% | 8.26\% | 8.67\% | 9.21\% | 9.71\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +2.38\% | +5.07\% | +4.73\% | +4.53\% | +4.55\% |
|  | \# U (units) | 1791 | 1770 | 1831 | 1955 | 2112 | 2265 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +583 | +1311 | +1252 | +1229 | +1256 |
| B | u.r. (\%) | 2.75\% | 2.76\% | 2.73\% | 2.83\% | 3.01\% | 3.12\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.02\% | +0.10\% | +0.18\% | +0.29\% | +0.43\% |
|  | \# U (units) | 167 | 172 | 179 | 191 | 206 | 216 |
|  | $\Delta \# \cup$ (units) | +0 | +2 | +7 | +13 | +20 | +31 |
| c | u.r. (\%) | 3.40\% | 3.53\% | 3.71\% | 3.94\% | 4.24\% | 4.51\% |
|  | $\Delta$ u.r.(p.p) | +0.00\% | +0.36\% | +0.78\% | +0.75\% | +0.80\% | +0.89\% |
|  | \# U (units) | 21669 | 22715 | 24448 | 26522 | 29033 | 31414 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +2442 | +5431 | +5421 | +5917 | +6663 |
| D | u.r. (\%) | 1.40\% | 1.12\% | 0.81\% | 0.72\% | 0.70\% | 0.69\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.05\% | +0.06\% | +0.03\% | +0.10\% | +0.20\% |
|  | \# U (units) | 73 | 59 | 42 | 38 | 37 | 37 |
|  | $\Delta \# \cup$ (units) | +0 | +2 | +3 | +2 | +6 | +11 |
| E | u.r. (\%) | 4.05\% | 4.20\% | 4.94\% | 5.86\% | 6.83\% | 7.79\% |
|  | $\Delta$ u.r.(p.p) | +0.00\% | +0.61\% | +1.13\% | +0.80\% | +0.83\% | +1.08\% |
|  | \# U (units) | 637 | 663 | 790 | 958 | 1142 | 1331 |
|  | $\Delta \# \cup$ (units) | +0 | +101 | +196 | +146 | +158 | +210 |
| F | u.r. (\%) | 5.17\% | 5.11\% | 4.98\% | 4.92\% | 4.97\% | 5.07\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.57\% | +1.01\% | +0.65\% | +0.49\% | +0.52\% |
|  | \# U (units) | 14768 | 14626 | 14371 | 14372 | 14676 | 15134 |
|  | $\Delta \# \cup$ (units) | +0 | +1738 | +3176 | +2127 | +1658 | +1789 |
| G | u.r. (\%) | 6.54\% | 6.59\% | 6.71\% | 6.86\% | 7.05\% | 7.26\% |
|  | $\Delta$ u.r.(p.p) | +0.00\% | +0.61\% | +1.08\% | +0.82\% | +0.74\% | +0.78\% |
|  | \# U (units) | 41306 | 41795 | 43050 | 44528 | 46361 | 48307 |
|  | $\Delta \# \cup$ (units) | +0 | +4198 | +7853 | +6272 | +5808 | +6125 |
| H | u.r. (\%) | 6.07\% | 5.97\% | 5.71\% | 5.52\% | 5.50\% | 5.51\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.81\% | +1.63\% | +1.40\% | +1.28\% | +1.32\% |
|  | \# U (units) | 11780 | 11625 | 11230 | 11008 | 11119 | 11262 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +1695 | +3505 | +3060 | +2850 | +2944 |
| 1 | u.r. (\%) | 18.31\% | 17.92\% | 17.04\% | 16.05\% | 15.12\% | 14.25\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +4.27\% | +8.82\% | +8.03\% | +7.18\% | +6.49\% |
|  | \# U (units) | 46739 | 45712 | 43345 | 40775 | 38376 | 36155 |
|  | $\Delta \# \cup$ (units) | +0 | +14089 | +30914 | +27608 | +24183 | +21409 |
| k | u.r. (\%) | 3.88\% | 3.95\% | 4.29\% | 4.71\% | 5.19\% | 5.66\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.13\% | +0.20\% | +0.13\% | +0.29\% | +0.55\% |
|  | \# U (units) | 4324 | 4422 | 4854 | 5429 | 6080 | 6741 |
|  | $\Delta \# \cup$ (units) | +0 | +156 | +251 | +194 | +403 | +736 |


| Industry | Variable | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | u.r. (\%) | 2.63\% | 2.83\% | 3.18\% | 3.51\% | 3.87\% | 4.19\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | -+0.01\% | -+0.15\% | -+0.24\% | -+0.19\% | -+0.03\% |
|  | \# U (units) | 3087 | 3348 | 3815 | 4285 | 4795 | 5264 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | -+13 | -+169 | -+274 | -+207 | +0 |
| L | u.r. (\%) | 5.96\% | 5.78\% | 5.43\% | 5.13\% | 4.93\% | 4.78\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.25\% | +0.23\% | +0.08\% | +0.11\% | +0.24\% |
|  | \# U (units) | 2915 | 2830 | 2670 | 2535 | 2450 | 2391 |
|  | $\Delta \# \cup$ (units) | +0 | +132 | +144 | +69 | +87 | +155 |
| M | u.r. (\%) | 4.62\% | 4.54\% | 4.54\% | 4.66\% | 4.91\% | 5.20\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.24\% | +0.41\% | +0.34\% | +0.46\% | +0.70\% |
|  | \# U (units) | 9586 | 9436 | 9525 | 9901 | 10559 | 11339 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +531 | +942 | +807 | +1104 | +1688 |
| N | u.r. (\%) | 19.02\% | 18.41\% | 17.09\% | 15.85\% | 14.86\% | 14.09\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +4.91\% | +10.13\% | +9.11\% | +8.05\% | +7.22\% |
|  | \# U (units) | 52442 | 50577 | 46711 | 43221 | 40538 | 38516 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +17621 | +38362 | +33602 | +28993 | +25517 |
| 0 | u.r. (\%) | 2.42\% | 3.07\% | 4.41\% | 5.62\% | 6.67\% | 7.62\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.08\% | +0.26\% | +0.33\% | +0.45\% | +0.59\% |
|  | \# U (units) | 16096 | 20652 | 30195 | 39264 | 47477 | 55139 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +587 | +1887 | +2426 | +3432 | +4581 |
| P | u.r. (\%) | 4.45\% | 4.56\% | 4.73\% | 4.82\% | 4.83\% | 4.81\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.35\% | +0.72\% | +0.73\% | +0.82\% | +0.95\% |
|  | \# U (units) | 7781 | 8013 | 8399 | 8626 | 8718 | 8748 |
|  | $\Delta \# \cup$ (units) | +0 | +646 | +1374 | +1413 | +1588 | +1842 |
| Q | u.r. (\%) | 8.05\% | 8.15\% | 8.32\% | 8.46\% | 8.57\% | 8.64\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +1.28\% | +2.78\% | +2.63\% | +2.46\% | +2.39\% |
|  | \# U (units) | 23866 | 24274 | 25051 | 25699 | 26283 | 26748 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +4250 | +9562 | +9149 | +8675 | +8460 |
| R | u.r. (\%) | 9.72\% | 9.20\% | 8.13\% | 7.14\% | 6.34\% | 5.72\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.55\% | +1.00\% | +0.90\% | +0.93\% | +1.04\% |
|  | \# U (units) | 3877 | 3661 | 3224 | 2824 | 2511 | 2268 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +248 | +463 | +417 | +425 | +465 |
| s | u.r. (\%) | 7.01\% | 7.00\% | 6.96\% | 6.88\% | 6.84\% | 6.83\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +0.94\% | +1.84\% | +1.56\% | +1.40\% | +1.34\% |
|  | \# U (units) | 7041 | 7056 | 7063 | 7044 | 7073 | 7123 |
|  | $\Delta \# \mathrm{U}$ (units) | +0 | +1038 | +2110 | +1827 | +1657 | +1601 |
| TOTAL | u.r. (\%) | 6.60\% | 6.65\% | 6.75\% | 6.86\% | 7.02\% | 7.19\% |
|  | $\Delta$ u.r. (p.p) | +0.00\% | +1.12\% | +2.31\% | +2.02\% | +1.83\% | +1.76\% |
|  | \# U (units) | 269945 | 273406 | 280793 | 289173 | 299546 | 310399 |
|  | $\Delta \# U$ (units) | +0 | +50046 | +107322 | +95533 | +87986 | +85482 |


|  | Industry |
| :--- | :--- |
| A | Agriculture, Forestry and Fishing |
| B | Mining and Quarrying |
| C | Manufacturing |
| D | Electricity, Gas, Steam and Air <br> Conditioning Supply |
| E | Water Supply; Sewerage, Waste <br> Management and Remediation <br> Activities |
| F | Construction |
| G | Wholesale and Retail Trade; Repair <br> of Motor Vehicles and Motorcycles |
| H | Transportation and Storage |
| I | Accommodation and Food Service <br> Activities |
| J | Information and Communication |
| K | Financial and Insurance Activities |
| L | Real Estate Activities |
| M | Professional, Scientific and Technical <br> Activities |
| N | Administrative and Support Service <br> Activities |
| O | Public Administration and Defence; <br> Compulsory Social Security |
| P | Education |
| Q | Human Health and Social Work <br> Activities |
| R | Arts, Entertainment and Recreation |
| S | Other Service Activities |
| T | Activities of Households as <br> Employers; Undifferentiated Goods <br> and Services Producing Activities of <br> Households for Own Use |
| U | Activities of Extraterritorial <br> Organisations and Bodies |
|  |  |

© Further applications of the IIASA Macroeconomic ABM Click to view

## Some insights and good practices

- To ABM or not to ABM?
- Simple or complicated ABMs?
- Dealing with uncertainty in ABM


## To ABM or not to ABM?

- Building an ABM is often fun (like building a LEGO model), but demands computational resources and data
- Rigor and comprehensive analysis of an ABM can be increasingly complex
- ABMs are especially useful when the agents have heterogeneous decision-making processes and/or interact in non-random ways (social and trade networks, spatially explicit systems, etc.)


Source: Rattanachai Singtrangarn | Dreamstime.com

- Sometimes other modeling paradigms (systems dynamics, analytical models, regressions, etc.) can be more suitable, i.e., have a higher explanatory power/complexity ratio
- There is a small set of agents => systems dynamics
- There is a very large set of agents who interact randomly => microsimulation


## Simple or complicated ABMs?

- Abstract ("toy") models vs. large-scale simulators
- From modeling a specific emergent phenomenon to modeling the entire economic system
- Avoiding the YAAWN syndrome (Yet Another Agent-Based Model ... Whatever ... Nevermind) (O'Sullivan et al., 2016)
- "Simple or complicated agent-based models? A complicated issue" (Sun et al., 2016)


## Dealing with uncertainty in ABM

- Monte-Carlo simulations (MCS)
- A broad class of computational algorithms that rely on repeated random sampling to obtain numerical results
- Typically, each random realization is generated by first randomly sampling the parameters (usually, several/many random parameters in combination) from their assumed distributions, and then computing a model simulation with the model defined by these randomly chosen constant parameters (Young, Parkinson, \& Lees, 1996)
- In case of stochastic disturbance inputs, the inputs must also be randomly generated for each realization but as time series spanning the simulation time interval (Young, Parkinson, \& Lees, 1996)


## Summary

- ABMs offer a complementary tool to current suite of models for central banks and other institutions
- Rich firm and household heterogeneity
- Nonlinear effects
- Competitive out-of-sample forecasting performance
- Strength in realistic expectation formation and behavior modelling
- Bounded rationality and learning
- Great potential for policy analysis \& scenario building
- Understanding inflation dynamics
- Analyzing and forecasting economic crises
- ABM require computational power and micro-level data which typically come from differnet sources and are often inconsistent. Calibration of $A B M$ s is a huge challenge.


## References \& further reading

- Bachner, G., Knittel, N., Poledna, S., Hochrainer-Stigler, S., \& Reiter, K. (2023). Revealing indirect risks in complex socioeconomic systems: A highly detailed multi-model analysis of flood events in Austria. Risk Analysis
- Bernanke, B., Gertler, M., \& Gilchrist, S. (1996). The Financial Accelerator and the Flight to Quality. The Review of Economics and Statistics, 78(1), 1-15.
- Blattner, T. S. \& Margaritov, E. (2010). Towards a Robust Monetary Policy Rule for the Euro Area. ECB Working Paper No. 1210.
- Dawid, H., \& Delli Gatti, D. (2018). Agent-based macroeconomics. Handbook of Computational Economics (Vol. 4), 63-156.
- Delli Gatti, D., Desiderio, S., Gaffeo, E., Cirillo, P., \& Gallegati, M. (2011). Macroeconomics from the Bottom-up (Vol. 1). Springer.
- Farmer, J. \& Foley, D. (2009). The economy needs agent-based modelling. Nature, 460, 685-686.
- Gill, A., Lalith, M., Poledna, S., Muneo, H., Fujita, K., Ichimura, T. (2021). High-Performance Computing Implementations of AgentBased Economic Models for Realizing 1:1 Scale Simulations of Large Economies. IEEE Transactions on Parallel and Distributed Systems, 32:8, 2101-2114.
- Grazzini, J., Hommes, C., Poledna, S., \& Zhang, Y. (2023). Understanding Post-Pandemic Inflation Dynamics with a Behavioral Macroeconomic Model of the Canadian Economy. Available at SSRN 4381235.
- Haldane, A. G. (2016). The Dappled World. Bank of England Speech.

Haldane, A. G., \& Turrell, A. E. (2017). An interdisciplinary model for macroeconomics. Bank of England Staff Working Paper No. 696.

## References \& further reading

- Hommes, C., He, M., Poledna, S., Siqueira, M., \& Zhang, Y. (2022). CANVAS: A Canadian Behavioral Agent-Based Model. Staff Working Paper No. 2022-51, Bank of Canada.
- Hommes, C. H. \& Poledna (2023). Analyzing and forecasting economic crises with an agent-based model of the euro area. Available at SSRN 4381261.
- Hommes, C. \& Zhu M. (2014). Behavioral learning equilibria. Journal of Economic Theory, 150, 778-814.
- Lindé, J., Smets, F., \& Wouters R. (2016). Chapter 28 - Challenges for Central Banks' Macro Models. In: Taylor, J.B., \& Uhlig, H. Handbook of Macroeconomics, Volume 2: 2185-2262. Elsevier.
- O'Sullivan, D., Evans, T., Manson, S., Metcalf, S., Ligmann-Zielinska, A., \& Bone, C. (2016). Strategic directions for agent-based modeling: avoiding the YAAWN syndrome. Journal of Land Use Science, 11:2, 177-187.
- Poledna, S., Miess, M. G., Hommes, C., \& Rabitsch, K. (2023). Economic forecasting with an agent-based model. European Economic Review, 151, 104306.
- Sun Z., Lorscheid I., Millington, J.D., Lauf, S., Magliocca, N.R., Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J., Buchmann, C.M. (2016). Simple or complicated agent-based models? A complicated issue. Environmental Modelling \& Software, 86, 56-67.
- Young, P.C., Parkinson, S. D., \& Lees, M. (1996). Simplicity out of complexity: Occam's razor revisited. Journal of Applied Statistics, 23, 165-210.

Appendices

## IIASA Macroeconomic ABM agents \& mechanisms in detail

Non-financial corporations (firm sector)

Individual persons (household sector)

General government

Financial corporations (banking sector)

# Non-financial corporations (firm sector) 

## Non-financial and Financial Corporations (Firms): Economic activities

Output (P.1) $\rightarrow$ part of which results in realized sales:
$+P_{i} Q_{i}$ where $P_{i}$ is the price charged, and $Q_{i}$ are realized sales of firm $i$

- Intermediate consumption (P.2)
- Capital consumption (P.51C)
- Wages and salaries (D.11)
- Employers' social contributions (D.611)
- Taxes on products (D.21)
- Other taxes on production (D.29)
+ Subsidies on products (D.31)
+ Other subsidies on production (D.39)
= Operating surplus (B.2A3N)
- Interest (D.41)
- Taxes on income (D.51)
- dividend payments (D.42)


## Firms: Expectations

Agents' expectations are modelled by a parsimonious form of adaptive learning where agents act as econometricians and learn the optimal (consistent with the sample mean and first-order autocorrelation) parameters of simple AR rules following Hommes and Zhu (2014).

Expectations on GDP growth and inflation are formed using $\operatorname{AR}(1)$ :

$$
\begin{aligned}
\gamma^{e}(t) & =\alpha^{\gamma}(t-1) \gamma(t-1)+\beta^{\gamma}(t-1)+\epsilon^{\gamma}(t) \\
\pi^{e}(t) & =\alpha^{\pi}(t-1) \pi(t-1)+\beta^{\pi}(t-1)+\epsilon^{\pi}(t)
\end{aligned}
$$

where $\alpha^{\gamma}(t-1), \alpha^{\pi}(t-1), \beta^{\gamma}(t-1), \beta^{\pi}(t-1)$, are coefficients re-estimated every period and $\epsilon^{\gamma}(t)$, and $\epsilon^{\pi}(t)$ are random shocks.

## Firms: Supply Choice \& Pricing

Supply choice: Firms change supply based on expectations of economic growth $\gamma^{e}(t)$ and perceived local market conditions using two indicators: the level of excess supply, which is the difference between the previous period's supply $Y_{i}(t-1)$ and demand $Q_{i}^{d}(t-1)$, and the deviation of the firm's own price $P_{i}(t-1)$ from the average price of firms' producing the same good, $\bar{P}^{g}(t-1)$ :

$$
Q_{i}^{S}(t)=Y_{i}(t-1)\left(1+\gamma^{e}(t)\right)\left(1+\gamma_{i}^{d}(t)\right)
$$

Price-setting includes three components of inflation (built-in inflation, demand-pull inflation, and cost-push inflation):

$$
P_{i}(t)=P_{i}(t-1) \cdot \begin{gathered}
\left(1+\pi_{i}^{c}(t)\right) \\
\text { cost-pushinflation demànt-pottinftation buttt-ininftation }
\end{gathered}
$$

Firms: Supply Choice \& Pricing

$\gamma_{i}^{d}(t)=\left\{\begin{array}{c}\text { positive, if optimistic about demand despite higher price than average } \\ \text { negative, }\end{array}\right.$

Firms: Supply Choice \& Pricing

$\pi_{i}^{d}(t)=\left\{\begin{array}{cl}\text { positive, } & \text { if optimistic about demand and price is competitive } \\ \text { negative, } & \text { if positive inventory but charged higher price than average }\end{array}\right.$

## Firms: Output



Firm iproduces $Y_{i}(t)$ with Leontief technology using labour $N_{i}(t)$, intermediate inputs $M_{i}(t)$ and capital stock $K_{i}(t-1)$ :

$$
Y_{i}(t)=\min \left(Q_{i}^{S}(t), \alpha_{i} N_{i}(t), \beta_{i} M_{i}(t), \kappa_{i} K_{i}(t-1)\right)
$$

$\alpha_{i}, \beta_{i}$ and $\kappa_{i}$ : productivity coefficients, $a_{s g}$ technologically determined input coefficients

$$
\begin{gathered}
\pi_{i}^{c}(t)=\underbrace{\frac{\left(1+\tau^{S I F}\right) \bar{w}_{i}}{\bar{\alpha}_{i}}\left(\frac{\bar{P}^{H H}(t-1)}{P_{i}(t-1)}-1\right)}_{\text {wage }} \\
+\frac{1}{\beta_{i}}\left(\frac{\sum_{g} \boldsymbol{\alpha}_{s g} \bar{P}^{g}(t-1)}{P_{i}(t-1)}-1\right)+\frac{\delta_{i}}{\kappa_{i}}\left(\frac{\bar{P}^{C F}}{P_{i}(t-1)}-1\right)
\end{gathered}
$$

## Firms: Demand \& Sales

Demand: each firm $i$ experiences demand $Q_{i}^{d}(t)$ from consumers. The level of demand will be determined by consumers only after the firm has set its price and carried out production $Y_{i}(t)$ and is subject to the search and matching mechanism specifying the visiting consumers of firm $i$ :

$$
Q_{i}^{d}(t)\left\{\begin{array}{cc}
<S_{i} \quad(t-1)+Y_{i}(t) \text { if demand from consumers is smaller than supply } \\
=S_{i} \quad(t-1)+Y_{i}(t) \text { if demand from consumers exactly matches supply } \\
>S_{i}(t-1)+Y_{i}(t) \text { if demand from consumers is larger than supply }
\end{array}\right.
$$

where $S_{i}(t-1)$ is the inventory of finished goods.
Sales $Q_{i}(t)$ are then the realized demand dependent on the supply available from firm $i$ after the production process has taken place:

$$
Q_{i}(t)=\min \left(S_{i}(t-1)+Y_{i}(t), Q_{i}^{d}(t)\right)
$$

## Firms: external funding \& investment

If internal financial resources $D_{i}(t-1)$ of a firm are not enough to finance its expected expenditures $\Delta D_{i}^{e}(t)$, the firm will ask for a bank loan to cover its financing gap,

$$
\Delta L_{i}^{d}(t)=\Delta D_{i}^{e}(t)-D_{i}(t-1)
$$

The availability of credit depends on the financial condition of the firm and will be limited by the expected market value of the collateral and the total outstanding debt,

$$
\Delta L_{i}(t) \leq \zeta^{L T V}\left(1+\pi^{e}(t)\right) \bar{P}^{C F}(t-1) K_{i}^{e}(t)-(1-\theta) L_{i}(t-1)
$$

If firm $i$ has a funding gap, i.e. the difference between requested and granted external funding $\left(\Delta L_{i}^{d}(t)-\Delta L_{i}(t)\right)$, the firms' investment is reduced,

$$
I_{i}^{d}(t)=\frac{\delta_{i} Q_{i}^{S}(t)}{\kappa_{i}}-\frac{\Delta L_{i}^{d}(t)-\Delta L_{i}(t)}{\left(1+\pi^{e}(t)\right) \bar{P}^{C F}(t-1)}
$$

where $\delta_{i}$ is the firm's capital depreciation rate. Therefore, a fall in asset prices results in a deterioration of the ability of firms to borrow, which has a negative impact on their investment.

## Individual persons (household sector)

## Households: Economic activities

+ Wages and salaries (D.11)
+ Property Income (D.4)
+ Mixed Income from Self-Employment (B2A3N)
+ Social benefits other than social transfers in kind (D.62)
+ Other current transfers net (D7, D8, D.9)
- Final consumption expenditure (P.3)
- Taxes on products (D.21)
- Taxes on income (D.5)
- Employees' social contributions (D.612, D.613, D.614)
- Capital formation (dwellings) (P.51)


## Households: Income

Income: each household forms expectations on its expected nominal disposable income $Y_{h}^{e}(t)$ (i.e. expected net income after taxes and including social or unemployment benefits):

$$
Y_{h}^{e}(t)= \begin{cases}\left(w_{h}(t)\left[1-\tau^{S I W}-\tau^{I N C}\left(1-\tau^{S I W}\right)\right]+s b^{\text {other }}\right) \bar{P}^{H H}(t-1)\left(1+\pi^{e}(t)\right) & \text { if employed } \\ \left(w_{h}(t)+s b^{o t h e r}\right) \bar{P}^{H H}(t-1)\left(1+\pi^{e}(t)\right) & \text { if unemployed } \\ \left(s b^{\text {inact }}+s b^{\text {other }}\right) \bar{P}^{H H}(t-1)\left(1+\pi^{e}(t)\right) & \text { if not economically active } \\ \theta^{D I V}\left(1-\tau^{I N C}\right)\left(1-\tau^{\text {FIRM }}\right) \max \left(0, \Pi_{i}^{e}(t)\right)+s b^{\text {other }} \bar{P}^{H H}(t-1)\left(1+\pi^{e}(t)\right) & \text { if an investor } \\ \theta^{\text {DIV }}\left(1-\tau^{\text {INC }}\right)\left(1-\tau^{\text {FIRM }}\right) \max \left(0, \Pi_{k}^{e}(t)\right)+s b^{\text {other }} \bar{P}^{H H}(t-1)\left(1+\pi^{e}(t)\right) & \text { if a bank investor }\end{cases}
$$

Here,
$w_{h}(t)$ is wage income or unemployment benefits (which are a fixed fraction $\theta$ of the wage last earned before the unemployment) of household $h$, $\bar{P}^{H H}(t-1)$ is last period's consumer price index, $\Pi_{i}^{e}(t)$ are expected profits of firm $i, \Pi_{k}^{e}(t)$ are expected bank profits, $s b^{\text {inact }}$ are social benefits for inactive persons (mostly pension payments), sbother social benefits; distributed equally to all households
$\tau^{I N C}$ is the income tax rate, $\tau^{S I W}$ is the rate of social insurance contributions to be paid by the employee, $\theta^{D I V}$ is the dividend payout ratio, and $\tau^{F I R M}$ the corporate tax rate.

## Households: Consumption, Investment \& Savings

Households spend a fraction of their expected income on consumption:

$$
C_{h}^{d}(t)=\frac{\psi Y_{h}^{e}(t)}{1+\tau^{V A T}}
$$

and on investment:

$$
I_{h}^{d}(t)=\frac{\psi^{H} Y_{h}^{e}(t)}{1+\tau^{C F}}
$$

where $\psi, \psi^{H}$ are propensities to consume, invest out of expected income; $\tau^{V A T}, \tau^{C F}$ are value added, investment tax rates. Total household consumption allocated to goods $g$ according to fixed coefficients from IOTs, analogous to firm investment above.

Savings: difference between realized disposable income $Y_{h}(t)$, realized consumption expenditure $C_{h}(t)$, used to accumulate financial wealth:

Savings

## General Government

## General Government: Economic activities

The government mainly acts as a consumer (government consumption) and as a "redistributive" entity consumes on the goods market to provide a public good, collects taxes, and provides transfers:

+ Taxes on income (D.5, D.91)
+ Taxes on products and production (D.2)
+ Property Income (D.4)
+ Social contributions (D.61)
- Final consumption (P.3)
- Subsidies (D.3)
- Interest payments (D.41)
- Social benefits other than social transfers in kind (D.62)
- Other current expenditures (D.7, D.8, D.9)


## General Government: Revenues

$$
\begin{aligned}
Y^{G}(t)= & \overbrace{\left(\tau^{S I F}+\tau^{S I W}\right) \bar{P}^{H H}(t) \sum_{h \in H^{E}(t)} w_{h}(t)}^{\text {Social security contributions }}+\overbrace{\tau^{I N C}\left(1-\tau^{S I W}\right) \bar{P}^{H H}(t) \sum_{h \in H^{E}(t)} w_{h}(t)}^{\text {Labour income taxes }} \\
& +\overbrace{\tau^{V A T} \sum_{h} C_{h}(t)}^{\text {Value added taxes }}
\end{aligned}
$$

Capital income taxes

$$
+\overbrace{\tau^{I N C}\left(1-\tau^{F I R M}\right) \theta^{D I V}\left(\sum_{i} \max \left(0, \Pi_{i}(t)\right)+\max \left(0, \Pi_{k}(t)\right)\right)}
$$

Corporate income taxes

$$
+\overbrace{\tau^{F I R M}\left(\sum_{i} \max \left(0, \Pi_{i}(t)\right)+\max \left(0, \Pi_{k}(t)\right)\right)}+\underbrace{\tau^{C F} \sum_{h} I_{h}(t)}_{\text {Taxes on capital formation }}
$$

$$
+\underbrace{\sum_{s, i \in I_{s}} \tau_{i}^{Y} P_{i}(t) Y_{i}(t)}_{\text {Net taxes/subsidies on products }}+\underbrace{\bar{P}^{C F}(t) \sum_{i} \tau_{i}^{K} K_{i}(t)}_{\text {Net taxes/subsidies on production }}+\underbrace{\tau_{l}^{E X P O R T} \sum_{l} C_{l}(t)}_{\text {Export taxes }}
$$

## General Government: Deficit \& Debt

The government deficit (or surplus) resulting from its redistributive activities is

$$
\begin{aligned}
\Pi^{G}(t)= & \overbrace{Y^{G}(t)}^{\text {Government revenues }}-\overbrace{\sum_{j} C_{j}(t)}^{\text {Government consumption }}-\overbrace{r^{G} L^{G}(t)}^{\text {Interest payments }} \\
& -\underbrace{\sum_{h \in H^{\text {inact }}} \bar{P}^{H H}(t) s b^{\text {inact }}+\sum_{h \in H^{U}(t)} \bar{P}^{H H}(t) w_{h}(t)+\sum_{h} \bar{P}^{H H}(t) s b^{\text {other }}}_{\text {Social benefits and transfers }}
\end{aligned}
$$

The government debt is determined by the year-to-year deficits/surpluses of the government sector:

$$
L^{G}(t)=L^{G}(t-1)+\Pi^{G}(t)
$$

## Financial corporations (banking sector)

## Banking sector

The bank takes deposits from firms and households, and extends a total amount of loans $L^{t o t}(t)=\Sigma_{i=1}^{I} L_{i}(t)$

The bank will grant a loan to firm $i$ up to the point where the borrower's leverage (loan-to-value) ratio after the loan,

$$
\frac{L_{i}(t)}{\bar{p}^{C F}(t-1) K_{i}(t)} \leq \zeta^{L T V}
$$

is below $\zeta^{L T V}$, which is a constant.
Furthermore, the bank is subject to minimum capital requirements, i.e. it can only extend total loans up to a maximum multiple of its equity base or net worth $E^{B}(t)$.

The interest rate $r(t)$ for bank credit to firms is determined by means of a fixed risk premium $\mu$ over the policy rate $\bar{r}(t)$ set by the central bank according to a Taylor rule:

$$
r(t)=\bar{r}(t)+\mu
$$

## The Central Bank

The central bank sets the policy rate $\bar{r}(t)$ based on implicit inflation and growth targets, provides liquidity to the banking system (advances to the bank), and takes deposits from the bank in the form of reserves deposited at the central bank.

The policy rate is determined by an augmented Taylor rule, where the central bank agent learns the optimal parameters. Following Blattner and Margaritov (2010), we include forecasted quarter-over-quarter inflation and real GDP growth in the reaction function:

$$
\bar{r}(t)=\rho(t-1) \bar{r}(t-1)+(1-\rho(t-1))\left(r^{*}(t-1)+\pi^{*}+\xi^{\pi}(t-1)\left(\pi^{e}(t)-\pi^{*}\right)+\xi^{\gamma}(t-1) \gamma^{e}(t)\right)
$$

where $\rho(t-1)$ is the interest rate smoothing parameter that reflects the gradual adjustment to the policy rate, $r^{*}(t-1)$ is the real equilibrium interest rate, $\pi^{*}$ is the inflation target, $\xi^{\pi}(t-1)$ is the policy parameter on inflation deviations from the target, and $\xi^{\gamma}(t-1)$ is the weight on the forecasted real GDP growth rate.

## Exports, Imports, Government Consumption

These economic aggregates are either assumed to be exogenously given from data (conditional forecasts) or to follow autoregressive (AR) processes due to the assumption of a small open economy setting.

Imports $Y^{I}(t)$, exports $C^{E}(t)$ and government consumption $C^{G}(\mathrm{t})$ (all real and in log levels) follow AR(1) processes:

$$
\begin{gathered}
Y^{I}(t)=\alpha^{I} Y^{I}(t-1)+\beta^{I}+\epsilon^{I}(t) \\
C^{E}(t)=\alpha^{E} C^{E}(t-1)+\beta^{E}+\epsilon^{E}(t) \\
C^{G}(\mathrm{t})=\alpha^{G} C^{G}(t-1)+\beta^{G}+\epsilon^{G}(t)
\end{gathered}
$$

## Complete <br> GDP identity

$$
G D P(t)=\underbrace{\sum_{i} \tau_{i}^{\mathrm{Y}} P_{i}(t) Y_{i}(t)+\sum_{h} \tau^{\mathrm{VAT}} C_{h}(t)+\sum_{h} \tau^{\mathrm{CF}} I_{h}(t)+\sum_{j} \tau^{\mathrm{G}} C_{j}(t)+\sum_{l} \tau^{\mathrm{EXPORT}} C_{l}(t)}
$$

Taxes on products

$$
\begin{aligned}
& +\underbrace{\sum_{i}\left(1-\tau_{i}^{\mathrm{Y}}\right) P_{i}(t) Y_{i}(t)}_{\text {Total sales of goods and services }}-\underbrace{\sum_{i} \frac{1}{\beta_{i}} \bar{P}_{i}(t) Y_{i}(t)}_{\text {Intermediate inputs }} \text { (Production approach) } \\
& =\underbrace{\sum_{h}\left(1+\tau^{\mathrm{VAT}}\right) C_{h}(t)}+\underbrace{\sum_{j}\left(1+\tau^{\mathrm{G}}\right) C_{j}(t)}+\underbrace{\sum_{h}\left(1+\tau^{\mathrm{CF}}\right) I_{h}(t)+\sum_{i} P_{i}^{\mathrm{CF}}(t) I_{i}(t)}
\end{aligned}
$$

Household consumption Government consumption
Gross fixed capital formation

$$
+\underbrace{\sum_{i} P_{i}(t)\left(Y_{i}(t)-Q_{i}(t)\right)+\bar{P}_{i}(t)\left(\Delta M_{i}(t)-\frac{1}{\beta_{i}} Y_{i}(t)\right)}
$$

Changes in inventories

$$
+\underbrace{\sum_{l}\left(1+\tau^{\mathrm{EXPORT}}\right) C_{l}(t)}-\underbrace{\left.\sum_{m} P_{m}(t) Q_{m}(t)\right)} \quad \text { (Expenditure approach) }
$$

$$
\text { Exports } \quad \text { Imports }
$$

$$
=\underbrace{\sum_{i} \tau_{i}^{\mathrm{Y}} P_{i}(t) Y_{i}(t)+\sum_{h} \tau^{\mathrm{VAT}} C_{h}(t)+\sum_{h} \tau^{\mathrm{CF}} I_{h}(t)+\sum_{j} \tau^{\mathrm{G}} C_{j}(t)+\sum_{l} \tau^{\mathrm{EXPORT}} C_{l}(t)}
$$

Taxes on products

$$
+\underbrace{\sum_{i} P_{i}(t) Y_{i}(t)-\left(1+\tau^{\mathrm{SIF}}\right) \bar{P}^{\mathrm{HH}}(t) N_{i}(t) w_{i}(t)-\frac{1}{\beta_{i}} \bar{P}_{i}(t) Y_{i}(t)-\tau_{i}^{\mathrm{Y}} P_{i}(t) Y_{i}(t)-\tau_{i}^{\mathrm{K}} P_{i}(t) Y_{i}(t)}
$$

Gross operating surplus and mixed income

$$
+\underbrace{\sum_{i}\left(1+\tau^{\mathrm{SIF}}\right) \bar{P}^{\mathrm{HH}}(t) N_{i}(t) w_{i}(t)}_{\text {Compensation of employees }}+\underbrace{\sum_{i} \tau_{i}^{\mathrm{K}} P_{i}(t) Y_{i}(t)}_{\text {Net taxes on productiol }}
$$

## IIASA Macroeconomic ABM calibration

## Calibration

## All parameters are calibrated to micro and macro data such that there is no burn-in period that has to be disregarded.

## Data sources include national accounts, input-output tables, government statistics, demography data, and firm-level data.

| Name | Code |
| :--- | :--- |
| Population by current activity status, NACE Rev. 2 activity and NUTS 2 region | cens_11an_r2 |
| Business demography by legal form (from 2004 onwards, NACE Rev. 2) | bd_9ac_1_form_r2 |
| Symmetric input-output table at basic prices (product by product) | naio_10_cp1700 |
| Cross-classification of fixed assets by industry and by asset (stocks) | nama_10_nfa_st |
| Government revenue, expenditure and main aggregates | gov_10a_main |
| General government expenditure by function (COFOG) | gov_10a_exp |
| Quarterly non-financial accounts for general government | gov_10q_ggnfa |
| Quarterly government debt | gov_10q_ggdebt |
| Financial balance sheets | nasq_10__bs |
| Non-financial transactions (annually) | nasa_10_nf_tr |
| Non-financial transactions (quarterly) | nasq_10_nf_tr |
| GDP and main components (output, expenditure and income) | namq_10_gdp |
| Money market interest rates - quarterly data | irt_st_q |

## Eurostat data tables used

## Parameters

| Parameter | Description | Value | Source |
| :---: | :---: | :---: | :---: |
| $G / S$ | Number of products/industries | 62 |  |
| $H^{\text {act }}$ | Number of economically active persons | 4729215 |  |
| $H^{\text {inact }}$ | Number of economically inactive persons | 4130385 |  |
| $J$ | Number of government entities | 152820 |  |
| $L$ | Number of foreign consumers | 305639 |  |
| $I_{s}$ | Number of firms/investors in the $s^{\text {th }}$ industry | see Online Appendix D |  |
| $\bar{\alpha}_{i}$ | Average productivity of labour of the $i^{\text {th }}$ firm |  |  |
| $\kappa_{i}$ | Productivity of capital of the $i^{\text {th }}$ firm |  |  |
| $\beta_{i}$ | Productivity of intermediate consumption of the $i^{\text {th }}$ firm |  |  |
| $\delta_{i}$ | Depreciation rate for capital of the $i^{\text {th }}$ firm |  |  |
| $\bar{w}_{i}$ | Average wage rate of firm $i$ |  |  |
| $a_{s g}$ | Technology coefficient of the $g^{\text {th }}$ product in the $s^{\text {th }}$ industry |  |  |
| $b_{g}^{\text {CF }}$ | Capital formation coefficient of the $g^{\text {th }}$ product (firm investment) |  |  |
| $b_{g}^{\text {CFH }}$ | Household investment coefficient of the $g^{\text {th }}$ product |  |  |
| $b_{g}^{\text {HH }}$ | Consumption coefficient of the $g^{\text {th }}$ product of households |  |  |
| $c_{g}^{\text {G }}$ | Consumption of the $g^{\text {th }}$ product of the government in mln. Euro |  |  |
| $c_{g}^{\text {E }}$ | Exports of the $g^{\text {th }}$ product in mln. Euro |  |  |
| $c_{g}^{\text {I }}$ | Imports of the $g^{\text {th }}$ product in mln. Euro |  |  |
| $\tau_{i}^{\text {Y }}$ | Net tax rate on products of the $i^{\text {th }}$ firm |  |  |
| $\tau_{i}^{\mathrm{K}}$ | Net tax rate on production of the $i^{\text {th }}$ firm |  |  |
| $\tau^{\text {INC }}$ | Income tax rate | 0.2134 |  |
| $\tau^{\text {FIRM }}$ | Corporate tax rate | 0.0762 |  |
| $\tau^{\text {VAT }}$ | Value-added tax rate | 0.1529 |  |
| $\tau^{\text {SIF }}$ | Social insurance rate (employers' contributions) | 0.2122 |  |
| $\tau^{\text {SIW }}$ | Social insurance rate (employees' contributions) | 0.1711 |  |
| $\tau^{\text {EXPORT }}$ | Export tax rate | 0.0029 |  |
| $\tau^{\text {CF }}$ | Tax rate on capital formation | 0.0876 |  |
| $\tau^{\mathrm{G}}$ | Tax rate on government consumption | 0.0091 |  |
| $r^{\text {G }}$ | Interest rate on government bonds | 0.0091 |  |
| $\mu$ | Risk premium on policy rate | 0.0293 |  |
| $\psi$ | Fraction of income devoted to consumption | 0.9394 |  |
| $\psi^{\mathrm{H}}$ | Fraction of income devoted to investment in housing | 0.0736 |  |
| $\theta^{\text {DIV }}$ | Dividend payout ratio | 0.7768 |  |
| $\theta^{\text {UB }}$ | Unemployment benefit replacement rate | 0.3586 |  |
| $\theta$ | Rate of instalment on debt | 0.05 |  |
| $\zeta$ | Banks' capital ratio | 0.03 |  |
| $\zeta^{\text {LTV }}$ | Loan-to-value (LTV) ratio | 0.6 |  |
| $\zeta^{\text {b }}$ | Loan-to-capital ratio for new firms after bankruptcy | 0.5 |  |
| $\pi^{*}$ | Inflation target of the monetary authority | 0.005 |  |

## Initial conditions

| Initial condition | Description | Value | Source |
| :---: | :---: | :---: | :---: |
| $P_{i}(0)$ | Initial price of the $i^{\text {th }}$ firm |  |  |
| $Y_{i}(0) / Q_{i}^{\mathrm{d}}(0)$ | Initial production/demand of the $i^{\text {th }}$ firm (in mln. Euro) |  |  |
| $K_{i}(0)$ | Initial capital of the $i^{\text {th }}$ firm (in mln. Euro) |  | $\stackrel{0}{\square}$ |
| $M_{i}(0)$ | Initial stocks of raw materials, consumables, supplies of the $i^{\text {th }}$ firm (in mln. Euro) | $\stackrel{\square}{\sim}$ | O |
| $S_{i}(0)$ | Initial stocks of finished goods of the $i^{\text {th }}$ firm (in mln. Euro) | - | O |
| $N_{i}(0)$ | Initial number of employees of the $i^{\text {th }}$ firm | $\stackrel{y}{4}$ | ¢ |
| $D_{i}(0)$ | Initial liquidity (deposits) of the $i^{\text {th }}$ firm (in mln. Euro) |  | O |
| $L_{i}(0)$ | Initial debt of the $i^{\text {th }}$ firm (in mln. Euro) |  | $\infty$ |
| $\Pi_{i}(0)$ | Initial profits of the $i^{\text {th }}$ firm (in mln. Euro) |  |  |
| $D_{h}(0)$ | Initial personal assets (deposits) of the $h^{\text {th }}$ household (in mln. Euro) | - |  |
| $K_{h}(0)$ | Initial household capital (in mln. Euro) | - | \% |
| $w_{h}(0)$ | Initial wage of the $h^{\text {th }}$ household (in mln. Euro) | - | 5 |
| $s b^{\text {inact }}(0)$ | Initial pension/social benefits in mln. Euro | 0.0022 | ¢ |
| $s b^{\text {other }}(0)$ | Initial social benefits received by all households in mln. Euro | 0.0007 | $\bigcirc$ |
| $L^{\mathrm{G}}(0)$ | Initial government debt (in mln. Euro) | 243871.1 | $\stackrel{\square}{\square}$ |
| $\Pi_{k}(0)$ | Initial banks' profits (in mln. Euro) | 6516.2 | H |
| $E_{k}(0)$ | Initial banks' equity (in mln. Euro) | 97802.3 | $\sim$ |
| $E^{\text {CB }}(0)$ | Initial central banks' equity (in mln. Euro) | 115947.6 | 60 |
| $D^{\text {RoW }}(0)$ | Initial net creditor/debtor position of the national economy to RoW (in mln. Euro) | 0 |  |

## IIASA Macroeconomic ABM forecast performance

## Out-of-sample forecast performance in comparison to VAR for Austria

|  | GDP | Inflation | Government <br> consumption | Exports | Imports | GDP EA | Inflation EA | Euribor |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VAR(1) | RMSE-statistic for different forecast horizons |  |  |  |  |  |  |  |
| 1q | 0.45 | 0.33 | 0.66 | 1.53 | 1.66 | 0.41 | 0.17 | 0.05 |
| 2q | 0.82 | 0.3 | 0.67 | 2.83 | 2.66 | 0.79 | 0.15 | 0.08 |
| 4q | 1.78 | 0.28 | 1 | 6.18 | 5.67 | 1.85 | 0.16 | 0.18 |
| 8q | 4.06 | 0.28 | 1.61 | 13.46 | 11.96 | 4.08 | 0.18 | 0.42 |
| 12q | 5.83 | 0.25 | 2.1 | 18.93 | 16.08 | 5.36 | 0.19 | 0.57 |
| ABM | Percentage | improvements $(+)$ or losses $(-)$ relative to VAR(1) model |  |  |  |  |  |  |
| 1q | $-13(0.36)$ | $9.8(0.21)$ | $-14.1(0.31)$ | $10(0.45)$ | $7.5(0.54)$ | $-1.1(0.94)$ | $11.5(0.12)$ | $25.6(0.16)$ |
| 2q | $4.3(0.82)$ | $7\left(0.02^{* *}\right)$ | $-14.5\left(0.06^{*}\right)$ | $28.8\left(0.04^{* *}\right)$ | $16.8(0.24)$ | $2.6(0.90)$ | $-4.7(0.64)$ | $17.7(0.35)$ |
| 4q | $25.6(0.40)$ | $0.1(0.99)$ | $3.6(0.71)$ | $47.4\left(0.06^{*}\right)$ | $35.6(0.12)$ | $19.8(0.60)$ | $-4.8(0.59)$ | $37.7\left(0.00^{* * *}\right)$ |
| 8q | $46(0.39)$ | $-0.4(0.92)$ | $15.9(0.13)$ | $60.5(0.16)$ | $50.3(0.23)$ | $32.1(0.63)$ | $5.3(0.58)$ | $62.5\left(0.02^{* *}\right)$ |
| 12q | $49.2(0.50)$ | $-0.5(0.90)$ | $13.4(0.49)$ | $62.2(0.26)$ | $48.1(0.37)$ | $25(0.79)$ | $5.8(0.14)$ | $64.2\left(0.01^{* *}\right)$ |

RMSE-statistic for main aggregates from ABM simulations in comparison to a VAR(1) model for the forecast period from 2010:Q2-2019:Q4 for Austria.

## Comparison to DSGE models

As a comparison, we use the benchmark model of Smets and Wouters (2007) and the main DSGE model of the Bank of Canada ToTEM III.

ToTEM III is a large-scale, multi-sector, small-open-economy model with many shocks:

- Imperfectly competitive finished-goods sector for consumption, investment, government and non-commodity exports
- Small degree of nominal rigidity combined with firm-specific capital services
- Separate commodity-producing sector featuring perfect competition and flexible prices
- Commodities are used in the production of finished goods or are exported


## Out-of-sample forecast performance in comparison to VAR and DSGE model for Canada

|  | GDP | Inflation | Consumption | Investment | Exports | Imports |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VAR(1) | RMSE-statistic for different forecast horizons |  |  |  |  |  |
| 1 q | 0.48 | 0.73 | 0.33 | 1.54 | 2.17 | 1.8 |
| 2q | 0.76 | 0.68 | 0.54 | 2.7 | 2.98 | 2.68 |
| 4 q | 1.24 | 0.65 | 1.01 | 5.19 | 3.53 | 4.55 |
| 8 q | 1.9 | 0.69 | 1.66 | 9.95 | 4.57 | 9.22 |
| 12 q | 2.24 | 0.71 | 1.98 | 15.14 | 4.65 | 13.83 |
| ToTEM (III) | Percentage gains ( + ) or losses (-) relative to VAR(1) model |  |  |  |  |  |
| 1 q | -27.2 (0.09) | 14.4 (0.07) | -49.2 (0.00) | -18.8 (0.03) | 14.9 (0.05) | 24.2 (0.00) |
| 2q | -56 (0.01) | 7.3 (0.09) | -77.5 (0.00) | -28.7 (0.02) | 20.4 (0.16) | 27.6 (0.01) |
| 4 q | -73.4 (0.00) | 1.9 (0.71) | -76.7 (0.02) | -16.8 (0.15) | 6.8 (0.67) | 30.1 (0.02) |
| 8 q | -58.5 (0.03) | 8 (0.14) | -56.6 (0.18) | 15.9 (0.50) | 8.7 (0.78) | 48 (0.00) |
| 12q | -33.8 (0.29) | 6.4 (0.23) | -39.2 (0.07) | 41.5 (0.01) | 24.7 (0.19) | 64.9 (0.03) |
| CAN-ABM | Percentage gains ( + ) or losses (-) relative to VAR(1) model |  |  |  |  |  |
| 1 q | 0.6 (0.93) | 10.1 (0.07) | -51.5 (0.01) | 5.4 (0.49) | -0.7 (0.89) | 13.5 (0.20) |
| 2q | 4 (0.46) | -0.6 (0.84) | -67.8 (0.02) | 13.3 (0.02) | 0.8 (0.90) | 21.6 (0.07) |
| 4 q | 17.2 (0.02) | -5.3 (0.27) | -25.3 (0.43) | 23.6 (0.08) | -6.1 (0.36) | 42.3 (0.02) |
| 8 q | 20.6 (0.04) | -6.4 (0.19) | 7.7 (0.85) | 33.5 (0.09) | -15.5 (0.31) | 65.9 (0.01) |
| 12q | 33.4 (0.00) | -2.4 (0.58) | 31.8 (0.67) | 43.3 (0.00) | -38.5 (0.17) | 79.6 (0.05) |

RMSE-statistic for main aggregates from ABM simulations in comparison to a $\operatorname{VAR}(1)$ and the main DSGE model of the Bank of Canada (ToTEM III) for the forecast period from 2010:Q2-2019:Q4 for Canada.

## Out-of-sample forecast performance in comparison to VAR for the euro area

|  | GDP | Inflation | Euribor | Government consumption | Exports |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VAR(1) | RMSE-statistic for different forecast horizons |  |  |  |  |
| 1 q | 0.74 | 0.21 | 0.09 | 0.31 | 2.1 |
| 2 q | 1.63 | 0.21 | 0.18 | 0.48 | 4.88 |
| 4 q | 3.59 | 0.23 | 0.39 | 0.88 | 10.73 |
| 8 q | 6.98 | 0.25 | 0.71 | 1.75 | 20.46 |
| 12 q | 7.72 | 0.22 | 0.7 | 2.61 | 22.47 |
| ABM | Percentage gains (+) or losses (-) relative to VAR(1) model |  |  |  |  |
| 1 q | 3.1 (0.31) | 8.5 (0.10) | 1.4 (0.47) | -98.4 (0.90) | -3.4 (0.54) |
| 2 q | 11 (0.11) | 4.6 (0.29) | 9.1 (0.27) | -64.2 (0.85) | 18.5 (0.24) |
| 4 q | 30.4 (0.12) | 9.6 (0.18) | 26.1 (0.12) | -9 (0.82) | 36.4 (0.13) |
| 8 q | 45.3 (0.13) | 14.6 (0.15) | 46.7 (0.09) | -17.3 (0.82) | 52.4 (0.11) |
| 12 q | 38.1 (0.14) | 9.1 (0.12) | 42.5 (0.03) | -19.8 (0.84) | 52.8 (0.07) |
| ABM (with financial frictions) | Percentage gains (+) or losses (-) relative to VAR(1) model |  |  |  |  |
| 1 q | 8.1 (0.40) | 3.1 (0.43) | -2.3 (0.53) | -18.8 (0.96) | -4.5 (0.56) |
| 2 q | 21.2 (0.21) | 11.6 (0.26) | 10.8 (0.30) | -4.6 (0.73) | 18.6 (0.24) |
| 4 q | 35.1 (0.14) | 3.1 (0.33) | 32.3 (0.13) | -7 (0.86) | 36.6 (0.13) |
| 8 q | 53.9 (0.14) | 18 (0.14) | 53.1 (0.10) | -14.1 (0.84) | 51.9 (0.11) |
| 12 q | 52.5 (0.16) | 4.9 (0.29) | 57.6 (0.03) | -12.4 (0.92) | 52.2 (0.07) |

RMSE-statistic for main aggregates from ABM simulations in comparison to a $\operatorname{VAR}(1)$ for the forecast period from 2005:Q2-2019:Q4 for the euro area.

## Out-of-sample forecast performance of sectoral gross value added (GVA) for Austria

|  | A | B, C, D and E | F | G, H and I | J | K | L | M and N | $\mathrm{O}, \mathrm{P}$ and Q | R and S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VAR(1) | RMSE-statistic for different forecast horizons |  |  |  |  |  |  |  |  |  |
| 1 q | 5.25 | 1.2 | 1.49 | 0.8 | 1.66 | 3.29 | 0.41 | 1.17 | 0.46 | 0.62 |
| 2 q | 7.32 | 1.71 | 1.93 | 1.15 | 2.01 | 3.63 | 0.6 | 1.57 | 0.61 | 0.83 |
| 4 q | 9.9 | 2.24 | 3.35 | 1.83 | 2.96 | 5.03 | 0.9 | 2.28 | 0.88 | 1.19 |
| 8 q | 10.76 | 2.83 | 5.99 | 2.96 | 2.75 | 4.58 | 1.22 | 3.75 | 1.46 | 1.86 |
| 12 q | 13.67 | 3.31 | 8.06 | 3.79 | 3.63 | 4.45 | 1.72 | 5.04 | 1.94 | 2.63 |
| ABM | Percentage improvements (+) or losses (-) relative to VAR(1) model |  |  |  |  |  |  |  |  |  |
| 1 q | 0.5 (0.95) | -2.3 (0.82) | 23.9 (0.04**) | -6.8 (0.40) | 4.9 (0.47) | 14.8 (0.04**) | -39.1 (0.01***) | -15.7 (0.24) | -1.3 (0.87) | 12.3 (0.32) |
| 2q | 2.6 (0.36) | 7.3 (0.18) | 8.8 (0.04**) | -7.4 (0.61) | 2.5 (0.82) | 0.6 (0.90) | -90.2 (0.00***) | -14.1 (0.33) | -15.1 (0.34) | 10.4 (0.52) |
| 4 q | 8.4 (0.08*) | 5.8 (0.17) | 8.5 (0.01***) | -3.6 (0.88) | -2.8 (0.74) | 1.8 (0.45) | -150.8 (0.00***) | -24.3 (0.36) | -34.3 (0.36) | 14.5 (0.47) |
| 8 q | 8.1 (0.44) | 7.6 (0.16) | 7.8 (0.00***) | 15.6 (0.66) | -48.2 (0.01***) | 5.8 (0.35) | -250 (0.00***) | -24.2 (0.51) | -54.4 (0.41) | 28.7 (0.35) |
| 12q | 9.1 (0.39) | 6.8 (0.21) | 10.2 (0.09*) | 38.4 (0.56) | -64.6 (0.00***) | 5.4 (0.62) | -271 (0.00***) | -31.3 (0.51) | -74.1 (0.43) | 27.5 (0.46) |

RMSE-statistic for sectoral gross value added (GVA) from ABM simulations in comparison to a VAR(1) models. GVA is shown for the sectors Agriculture, forestry and fishing (A); Industry (except construction) ( $B, C, D$ and $E$ ); Manufacturing (C); Construction (F); Wholesale and retail trade, transport, accommodation and food service activities (G, H and I); Information and communication (J); Financial and insurance activities (K); Real estate activities (L); Professional, scientific and technical activities, as well as administrative and support service activities ( $M$ and $N$ ); Public administration, defence, education, human health and social work activities ( $\mathrm{O}, \mathrm{P}$ and Q ); Arts, entertainment, and recreation, as well as other service activities ( R and S ).

## Conditional forecast performance in comparison to DSGE








Comparison of ABM conditional forecasts (black), ARX(1) (blue), DSGE conditional forecasts (red), and observed Eurostat data for Austria (dashed line) for a forecast horizon of 12 quarters.

## IIASA Macroeconomic ABM applications

Earnings forecasts for Austrian firms

Flash projections in the COVID pandemic in Austria

Post-pandemic inflation in Canada

Financial crisis in the euro area

Economic effects of natural disasters

## Earnings forecasts for Austrian firms (work in progress)

## Earnings forecasts for Austrian firms

Based on the SABINA database from Bureau van Dijk

- Company financials, in a detailed format, with up to 10 years of history for 175.000 companies in Austria
- Directors, shareholders and subsidiaries
- Activity codes and trade descriptions
- Stock data for listed companies
- Detailed corporate structures and the corporate family Business and company-related news
- M\&A deals and rumors
$\underset{\times 10^{10}}{\substack{\text { Gazprom Neft Trading GmbH } \\ \mathbf{H} \\ \times 1}}$




200820092010201120122013
KELAG-Kärntner Elektrizit


200820092010201120122013
Osterreichischer Rundfunk



200820092010201120122013
WIENER NETZE GmbH


Borealis AG




 Bundesimmobiliengesellsch
 70820092010201120122013
METRO Cash \& Carry Ôsterr $\times 10^{8} \quad$ reich mbH m


Borealis AG
$\underset{\times 10^{9}}{\substack{\text { GmbH } \\ \text { Gefining } \\ \text { \& Marketing } \\ \hline}}$ (20) SIBUR International GmbH
$\times 10^{9}$


Billa Aktiengesellschaft


$$
\begin{aligned}
& 20082009201020112012 \\
& \text { RWA Raiffeisen Ware Au } \\
& \times 10^{8} \text { ria Aktiengesell }
\end{aligned}
$$



200820092010201120122013
LIEBHERR-WERK NENZING GMB


SPAR Österreichische War






EconGas GmbH

(2002


(2002



 IIASA
200820092010201120122013
REWE International Lager-
$\times 10^{9}$ - und Transportg


200820092010201120122013
OBB-Personenverkehr Aktie




200820092010201120122013
ÖBB-Produktion Gesellscha


200820092010201120122013
voestalpine Rohstoftbesch $10 \times 10^{8}$ haffungs $G$ mbH
$\epsilon$


200820092010201120122013
Samsung Electronics Austr $15 \times 10^{8} \quad \begin{aligned} & \text { ria GmbH. }\end{aligned}$


## Earnings forecasts to GDP



# Flash projections in the COVID-19 pandemic in Austria 

with Elena Rovenskaya, Jesus Crespo Cuaresma, Serguei Kaniovski, and Michael Miess

## Flash projections in the COVID-19 pandemic in Austria

- Parameters of the model are calibrated with Austrian data (as of 2019Q4): national accounts, census, firm-level data, input-output tables
- The COVID-19 shock is calibrated using labor market data (AMS), assumption on the use of short-time work and forecasts by Oxford Economics (imports / exports):
- AMS data for March 2020 (by sector) + assumption that approx. 65\% of companies use short-time work
- April 2020 forecasts for Austrian imports and exports (Oxford Economics)


## Projections vs. Benchmark

Macroeconomic variables under different shutdown scenarios


## Projections vs. Benchmark

Contribution of industries to GDP-growth with
shutdown until mid-May with respect to baseline scenario [pp]


Contribution is shown of the sectors Agriculture, forestry and fishing (A); Industry (except construction) (B, C, D and E); Manufacturing (C); Construction (F); Wholesale and retail trade, transport, accommodation and food service activities (G, H and I); Information and communication (J); Financial and insurance activities (K); Real estate activities (L); Professional, scientific and technical activities, as well as administrative and support service activities ( M and N ); Public administration, defence, education, human health and social work activities (O, P and Q); Arts, entertainment, and recreation, as well as other service activities ( $R$ and $S$ ).

## Projections vs. Benchmark

Contribution of expenditure components to GDP-growth with


Contribution of income components to GDP-growth with shutdown until mid-May with respect to baseline scenario [pp]


## Application: Post-pandemic inflation in Canada

with Cars Hommes, Jakob Grazzini, Mario He, Melissa Siqueira, and Yang Zhang



BANK OF CANADA
$\therefore$ BANQUE DU CANADA

Disclaimer: The views expressed in this presentation are solely those of the authors and may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank of Canada.

## Next-generation Agent-based Model of Canada

Heterogenous Firms


Simple heuristics
$>13 \mathrm{~K}$ firms (1:100)
> Input-Output Tables
> National accounts
$>$ Census and business demography

## Post-pandemic inflation in Canada is captured well by the ABM



## Marginal impact of causes and mechanisms on inflation

Mechanisms


Marginal impact of causes and mechanisms on Inflation in Canada.

## Marginal impact of Industry sectors on inflation



Marginal impact of industries on inflation. The right panel shows the share of GDP by industry and provides the legend of the left panel.

## Corporate profits in Canada




## Application: Financial crisis in the euro area

with Cars Hommes

## Financial crisis of 2007-2008 in the euro area

ABM GDP forecasts from the last quarter of 2006


UK GDP forecasts in 2007


[^0]
## Financial crisis of 2007-2008 in the euro area



Distribution GDP-growth forecasts normal year


Histograms of ABM quarterly GDP-growth rates in the euro area for a "normal" year and the financial crisis of 2007/2008.

## Out-of-sample forecast performance during the financial crisis of 2007-2008

|  | GDP | Inflation | Euribor | Government consumption | Exports |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VAR(1) | RMSE-statistic for different forecast horizons |  |  |  |  |
| 1 q | 0.72 | 0.21 | 0.11 | 0.33 | 2.19 |
| 2q | 1.72 | 0.28 | 0.19 | 0.45 | 5.15 |
| 4 q | 3.66 | 0.31 | 0.34 | 0.65 | 10.69 |
| 8 q | 6.35 | 0.29 | 0.5 | 0.96 | 17.75 |
| 12 q | 7.99 | 0.28 | 0.52 | 1.62 | 20.99 |
| ABM | Percentage gains (+) or losses (-) relative to VAR(1) model |  |  |  |  |
| 1 q | -19.5 (0.88) | 6.6 (0.16) | -34.9 (0.82) | -86.2 (0.88) | -50.2 (0.87) |
| 2q | -11.5 (0.90) | 8.2 (0.17) | -36.7 (0.81) | -43.2 (0.93) | -20.4 (0.86) |
| 4 q | -7.7 (0.85) | 6.2 (0.11) | -31.3 (0.82) | 9.9 (0.37) | 1.3 (0.38) |
| 8 q | -4.9 (0.91) | 4.8 (0.25) | -20.1 (0.92) | -26.5 (0.76) | 17.5 (0.11) |
| 12 q | -5.1 (0.90) | 0.4 (0.40) | -6.1 (0.89) | -45.1 (0.97) | 29.5 (0.00) |
| ABM (with financial frictions) | Percentage gains (+) or losses (-) relative to VAR(1) model |  |  |  |  |
| 1 q | -58.8 (0.88) | -4.4 (0.57) | -51.4 (0.85) | -18.9 (0.94) | -59.2 (0.87) |
| 2q | -26.9 (0.87) | 28.2 (0.13) | -51.9 (0.84) | -10.2 (0.73) | -25 (0.86) |
| 4 q | -5.9 (0.89) | 8.9 (0.08) | -38.3 (0.85) | 4.6 (0.44) | -0.7 (0.58) |
| 8 q | 32.5 (0.03) | 15.4 (0.17) | -12.2 (0.99) | -20.3 (0.97) | 16 (0.12) |
| 12q | 52.8 (0.00) | 5.6 (0.13) | 14.1 (0.01) | -13.9 (0.92) | 29.8 (0.00) |

[^1]
## Financial crisis of 2007-2008 in the euro area



Comparison of ABM simulations (black), AR(1) (blue), DSGE (red), and observed Eurostat data for the euro area (dashed line) for a forecast horizon of 12 quarters.

## Financial crisis of 2007-2008 in the euro area

with (forward-looking) expectations for a global downturn







Comparison of $A B M$ simulations (blue), ABM without financial frictions (red), conditional forecasts (on exports) of the ABM (black), and observed Eurostat data for the euro area (dashed line) for a forecast horizon of 12 quarters.

## Sectorial decomposition during the financial crisis of 2007-2008 in the euro area



Sectoral decomposition ABM simulations and observed Eurostat data for the euro area (dashed line) for a forecast horizon of 12 quarters.

## Sectorial decomposition during the financial crisis

with (forward-looking) expectations for a global downturn


## Structural change after the financial crisis of 2007-2008 in the euro area





GDP determined with production approach (grey), income approach (blue), and expenditure approach (red) from ABM simulations and observed Eurostat data for the euro area (dashed line) for a forecast horizon of 12 quarters.

## Out-of-sample forecast Performance during the European debt crisis

|  | GDP | Inflation | Euribor | Government consumption | Exports |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VAR(1) | RMSE-statistic for different forecast horizons |  |  |  |  |
| 1q | 0.54 | 0.14 | 0.05 | 0.37 | 1.35 |
| 2q | 1.19 | 0.1 | 0.1 | 0.63 | 2.9 |
| 4 q | 2.84 | 0.15 | 0.23 | 1.24 | 7.02 |
| 8 q | 6.15 | 0.2 | 0.54 | 2.52 | 14.53 |
| 12q | 7.77 | 0.21 | 0.67 | 3.55 | 18.32 |
| ABM | Percentage gains (+) or losses (-) relative to VAR(1) model |  |  |  |  |
| 1q | 28 (0.06) | 13.3 (0.19) | 13.9 (0.08) | 41.4 (0.00) | -33.1 (0.77) |
| 2q | 38.7 (0.00) | 8.3 (0.26) | 13.1 (0.22) | 9.2 (0.19) | 13.7 (0.26) |
| 4 q | 45.7 (0.00) | -3 (0.56) | 32.4 (0.00) | -14.9 (0.94) | 50.1 (0.00) |
| 8 q | 56.4 (0.05) | 7.4 (0.22) | 66.9 (0.04) | -17.3 (0.86) | 69.5 (0.00) |
| 12q | 59.8 (0.00) | 8.4 (0.02) | 71.4 (0.00) | -10.6 (0.98) | 64.4 (0.00) |
| ABM (with financial frictions) | Percentage gains (+) or losses (-) relative to VAR(1) model |  |  |  |  |
| 1 q | 21.3 (0.19) | -29.9 (0.85) | -13.6 (0.87) | 51.2 (0.00) | -26.1 (0.72) |
| 2q | 40.5 (0.00) | -42.1 (0.83) | -10.4 (0.65) | 18.5 (0.03) | 16 (0.22) |
| 4 q | 56.8 (0.00) | -29.9 (0.99) | 26.3 (0.11) | -4.4 (0.72) | 50.3 (0.00) |
| 8 q | 72.3 (0.04) | -11.7 (0.86) | 77.1 (0.03) | -11.5 (0.82) | 69.6 (0.00) |
| 12q | 74.6 (0.00) | -6.6 (0.86) | 86.7 (0.00) | -4.5 (0.84) | 63.9 (0.00) |

Out-of-sample forecast performance for different forecast horizons of the ABM in comparison to the benchmark DSGE model of Smets and Wouters (2007) estimated for the subsample from 2010:Q1 to 2012:Q4 of the euro area.

## The European debt crisis



Comparison of ABM simulations (black), AR(1) (blue), DSGE (red), and observed Eurostat data for the euro area (dashed line) for a forecast horizon of 12 quarters.

## The European debt crisis

with (forward-looking) expectations for government austerity


Comparison of ABM simulations (blue), ABM without financial frictions (red), conditional forecasts (on exports) of the ABM (black), and observed Eurostat data for the euro area (dashed line) for a forecast horizon of 12 quarters.

## Application: Economic effects of natural disasters

## Economic effects of natural disasters

- We study indirect disaster losses of natural disasters
- We couple the ABM with a catastrophe model (damage scenario generator) for flood events at a high resolution
- Projections are based on scenarios for three flood events:
- 100-year flood event
- 250-year flood event
- 1500-year flood event


## Flood risk in Austria



- 39 basins with loss distributions
- Dependency between basins very different
- Copula models for all basins developed


Copula model for two basins in Lower Austria


Copula model for two basins

## Indirect losses from natural disasters

Agent-based model


## Indirect losses from natural disasters

Total Losses


Sectors



Agents


| Agent 1 |
| :---: |
| Agent 2 |
| $\ldots$ |
|  |
|  |
|  |
|  |
|  |
|  |
|  |

Coupling with damage scenario generator to estimate indirect losses

## Geospatial location of firms in Austria used for flood scenarios



## Indirect losses from natural disasters



## Indirect losses from natural disasters



Sectorial effects of the extreme event. Effects differ substantially across industries.

DMP implementation of the IIASA Macroeconomic ABM

## Challenges of developing a DMP-HPC implementation

- Shared memory implementations are not scalable due to random interactions among millions of agents
- Multiple interaction graphs make it a challenging task to implement a scalable Distributed Memory Parallel (DMP) extension
- Agents interact over multiple graphs which are random and dense, and centralized Buying-selling, firms-workers, banks-customers, government-tax payers, etc.

Example of a dense graph with random links


Example of a centralized graph


## Challenges of developing a DMP-HPC implementation

- Each interaction involves one or more communications among MPI-processes
- Most of the interactions are bi-directional
- Firms have to check the availability of goods and decide how much to sell
- Banks have to estimate the risk and decide the amount to lend and the interest
- Some of the interactions are sequential
- A buyer visit another seller only if his demand is not satisfied, etc.
- Produces unknown number of communications to random MPI-processes
- How can we partition the domain taking all the interaction graphs into account?



## Distributed Memory Parallel (DMP) implementation

Graph to partition


Partitions


- Agents are partitioned based on a graph representing interactions between households and firms
- Nodes (i.e., agents) are assign a weight according to the amount of computation
- For example, workers are connected to the nearest firms according to available vacancies. Inactive households, etc. are connected with a lower link weight.


## Solutions for the centralized and dense random graphs

Centralized graphs


F Firm H Household B Bank C Central Bank

Dense graph with random links


- Intra-process interactions (local load and store)
...... Inter-process interactions (MPI communications)
- Drastic reduction of communications by introducing local branches of banks and government entities
- Scalable
- Eliminated the involvement of unknown number of sequential communications to random ranks by Introducing sales-outlets
- Scalable, though communication intensive


## Reduction of communication with the latest MPI standard



Cfirms and foreign sellers of sector 0
$\rightarrow$ firms and foreign sellers of sector 1
firms and foreign sellers of sector 6

- Poor scalability due to $2 \times N$ of calls to MPI_Iallgather()
$\circ N$ is the number of industries; for Japan $N=108$


## Reduction of communication with the latest MPI standard



- firms and foreign sellers of sector 0
-firms and foreign sellers of sector 1
$\llcorner$ firms and foreign sellers of sector $N-1$
- Used MPI_Ialltoallw()with user defined MPI data types to attain higher performance


## Reduction of serial computation time

Average runtime per period, with $\mathbf{1 0}$ million agents, at different stages


- Significant improvements in computational performance are attained in three stages, by implementing cache friendly and low memory intensive algorithms and data structures


## Runtime and strong scalability

| \# MPI <br> processes | Run-time <br> per <br> iteration(s) | Strong <br> scalability |
| :---: | :---: | :---: |
| 4 | 44.5 |  |
| 8 | 26.0 | $85.7 \%$ |
| 16 | 18.3 | $70.2 \%$ |
| 32 | 15.2 | $60.2 \%$ |
| 64 | 13.2 | $57.4 \%$ |

Strong scalability $=\frac{T_{n} / T_{m}}{n / m}$, where $n \geq 2 m$

Problem settings: 20 iterations with 10 million agents in Reedbush computer (The Univ. of Tokyo)

- Scalability is sufficient for simulating a 1-to-1 scale model of Japan, the U.S. or the euro area with more than 300 million interacting agents
- A single period with 100 million agents takes 38 seconds on 128 CPU cores.


[^0]:    Comparison of $A B M$ simulations (dashed lines) and observed Eurostat data for the euro area (black line) for a forecast horizon of 12 quarters.

[^1]:    Out-of-sample forecast performance for different forecast horizons of the ABM in comparison to the benchmark DSGE model of Smets and Wouters (2007) estimated for the subsample from 2007:Q1 to 2008:Q4 of the euro area

